US20060095136A1 - Bone fusion device - Google Patents

Bone fusion device Download PDF

Info

Publication number
US20060095136A1
US20060095136A1 US11/264,958 US26495805A US2006095136A1 US 20060095136 A1 US20060095136 A1 US 20060095136A1 US 26495805 A US26495805 A US 26495805A US 2006095136 A1 US2006095136 A1 US 2006095136A1
Authority
US
United States
Prior art keywords
fusion device
bone fusion
bone
tab
bones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/264,958
Inventor
Gary McLuen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McLuen Design Inc
Original Assignee
McLuen Design Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US11/264,958 priority Critical patent/US20060095136A1/en
Application filed by McLuen Design Inc filed Critical McLuen Design Inc
Assigned to MCLUEN DESIGN, INC. reassignment MCLUEN DESIGN, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MCLUEN, GARY R.
Priority to PCT/US2005/039984 priority patent/WO2006050500A2/en
Priority to US11/357,319 priority patent/US7727280B2/en
Publication of US20060095136A1 publication Critical patent/US20060095136A1/en
Priority to US11/484,379 priority patent/US8187332B2/en
Priority to US13/482,778 priority patent/US8597360B2/en
Priority to PCT/US2013/042066 priority patent/WO2013181024A1/en
Priority to US14/067,813 priority patent/US9186262B2/en
Priority to US14/885,777 priority patent/US9974665B2/en
Priority to US15/954,414 priority patent/US10682240B2/en
Priority to US16/798,098 priority patent/US11583414B2/en
Priority to US18/111,561 priority patent/US20230201005A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/446Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages having a circular or elliptical cross-section substantially parallel to the axis of the spine, e.g. cylinders or frustocones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/44Joints for the spine, e.g. vertebrae, spinal discs
    • A61F2/4455Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages
    • A61F2/447Joints for the spine, e.g. vertebrae, spinal discs for the fusion of spinal bodies, e.g. intervertebral fusion of adjacent spinal bodies, e.g. fusion cages substantially parallelepipedal, e.g. having a rectangular or trapezoidal cross-section
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2817Bone stimulation by chemical reactions or by osteogenic or biological products for enhancing ossification, e.g. by bone morphogenetic or morphogenic proteins [BMP] or by transforming growth factors [TGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • A61F2002/2835Bone graft implants for filling a bony defect or an endoprosthesis cavity, e.g. by synthetic material or biological material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30405Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by screwing complementary threads machined on the parts themselves
    • A61F2002/30411Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by screwing complementary threads machined on the parts themselves having two threaded end parts connected by a threaded central part with opposite threads at its opposite ends, i.e. for adjusting the distance between both end parts by rotating the central part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30492Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a locking pin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30476Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism
    • A61F2002/30507Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements locked by an additional locking mechanism using a threaded locking member, e.g. a locking screw or a set screw
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30329Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2002/30518Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts
    • A61F2002/30523Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements with possibility of relative movement between the prosthetic parts by means of meshing gear teeth
    • A61F2002/30525Worm gears
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/30538Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting angular orientation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30537Special structural features of bone or joint prostheses not otherwise provided for adjustable
    • A61F2002/30556Special structural features of bone or joint prostheses not otherwise provided for adjustable for adjusting thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2002/30001Additional features of subject-matter classified in A61F2/28, A61F2/30 and subgroups thereof
    • A61F2002/30316The prosthesis having different structural features at different locations within the same prosthesis; Connections between prosthetic parts; Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30535Special structural features of bone or joint prostheses not otherwise provided for
    • A61F2002/30579Special structural features of bone or joint prostheses not otherwise provided for with mechanically expandable devices, e.g. fixation devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30772Apertures or holes, e.g. of circular cross section
    • A61F2002/30784Plurality of holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30841Sharp anchoring protrusions for impaction into the bone, e.g. sharp pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/3085Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves with a threaded, e.g. self-tapping, bone-engaging surface, e.g. external surface
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2/30771Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves
    • A61F2002/30904Special external or bone-contacting surface, e.g. coating for improving bone ingrowth applied in original prostheses, e.g. holes or grooves serrated profile, i.e. saw-toothed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/30Joints
    • A61F2/30767Special external or bone-contacting surface, e.g. coating for improving bone ingrowth
    • A61F2002/3092Special external or bone-contacting surface, e.g. coating for improving bone ingrowth having an open-celled or open-pored structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/0006Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting angular orientation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0004Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable
    • A61F2250/0009Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof adjustable for adjusting thickness
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00005The prosthesis being constructed from a particular material
    • A61F2310/00011Metals or alloys
    • A61F2310/00023Titanium or titanium-based alloys, e.g. Ti-Ni alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2310/00Prostheses classified in A61F2/28 or A61F2/30 - A61F2/44 being constructed from or coated with a particular material
    • A61F2310/00389The prosthesis being coated or covered with a particular material
    • A61F2310/00976Coating or prosthesis-covering structure made of proteins or of polypeptides, e.g. of bone morphogenic proteins BMP or of transforming growth factors TGF

Definitions

  • This invention relates generally to bone fusion devices. More specifically, the present invention relates to devices for fusing vertebrae of the spine that can be inserted arthroscopically.
  • the spinal column is made up of vertebrae stacked on top of one another. Between the vertebrae are discs which are gel-like cushions that act as shock-absorbers and keep the spine flexible. Damage, disease, or excessive pressure on the discs can cause degenerative disc disease or other disorders where the disc becomes thinner and allows the vertebrae to move closer together or become misaligned. As a result, nerves may become pinched, causing pain that radiates into other parts of the body, or instability of the vertebrae may ensue.
  • the fusion cage is typically a hollow metal device usually made of titanium. Once inserted, the fusion cage maintains the proper separation between the vertebrae to prevent nerves from being pinched and provides structural stability to the spine. Also, the inside of the cage is filled with bone graft material which eventually fuses permanently with the adjacent vertebrae into a single unit.
  • U.S. Pat. No. 4,961,740 to Ray, et al. entitled, “V-Thread Fusion Cage and Method of Fusing a Bone Joint,” discloses a fusion cage with a threaded outer surface, where the crown of the thread is sharp and cuts into the bone. Perforations are provided in valleys between adjacent turns of the thread.
  • the cage can be screwed into a threaded bore provided in the bone structure at the surgical site and then packed with bone chips which promote fusion.
  • U.S. Pat. No. 5,015,247 to Michelson entitled, “Threaded Spinal Implant,” discloses a fusion implant comprising a cylindrical member having a series of threads on the exterior of the cylindrical member for engaging the vertebrae to maintain the implant in place and a plurality of openings in the cylindrical surface.
  • U.S. Pat. No. 6,342,074 to Simpson entitled, “Anterior Lumbar Underbody Fusion Implant and Method For Fusing Adjacent Vertebrae,” discloses a one-piece spinal fusion implant comprising a hollow body having an access passage for insertion of bone graft material into the intervertebral space after the implant has been affixed to adjacent vertebrae.
  • the implant provides a pair of screw-receiving passages that are oppositely inclined relative to a central plane.
  • the screw-receiving passages enable the head of an orthopaedic screw to be retained entirely within the access passage.
  • U.S. Pat. No. 5,885,287 to Bagby entitled, “Self-tapping Interbody Bone Implant,” discloses a bone joining implant with a rigid, implantable base body having an outer surface with at least one bone bed engaging portion configured for engaging between a pair of bone bodies to be joined, wherein at least one spline is provided by the bone bed engaging portion, the spline being constructed and arranged to extend outwardly of the body and having an undercut portion.
  • U.S. Pat. No. 6,582,467 to Teitelbaum et al. entitled,“Expandable Fusion Cage,” discloses an expandable fusion cage where the surfaces of the cage have multiple portions cut out of the metal to form sharp barbs. As the cage is expanded, the sharp barbs protrude into the subcortical bone of the vertebrae to secure the cage in place.
  • the cage is filled with bone or bone matrix material.
  • U.S. Pat. No. 5,800,550 to Sertich entitled, “Interbody Fusion Cage,” discloses a prosthetic device which includes an inert generally rectangularly shaped support body adapted to be seated on hard end plates of vertebrae.
  • the support body has top and bottom faces.
  • a first peg is movably mounted in a first aperture located in the support body, and the first aperture terminates at one of the top and bottom faces of the support body. Further, the first peg projects away from the one of the top and bottom faces and into an adjacent vertebra to secure the support body in place relative to the vertebra.
  • U.S. Pat. No. 6,436,140 to Liu et al. entitled, “Expandable Interbody Fusion Cage and Method for Insertion,” discloses an expandable hollow interbody fusion device, wherein the body is divided into a number of branches connected to one another at a fixed end and separated at an expandable end.
  • the expandable cage may be inserted in its substantially cylindrical form and may be expanded by movement of an expansion member to establish lordosis of the spine.
  • An expansion member interacts with the interior surfaces of the device to maintain the cage in the expanded condition and provide a large internal chamber for receiving bone in-growth material.
  • the present invention is a bone fusion device for insertion between bones that are to be fused together, such as, for example, the vertebrae of a spinal column.
  • the bone fusion device comprises one or more extendable tabs.
  • the bone fusion device is in its most compact state when the tabs are aligned with the body of the device such that the tabs lie within the exterior of the device.
  • the bone fusion device is preferably inserted between the vertebrae by using an arthroscopic procedure.
  • the bone fusion device of some embodiments is filled with bone graft material. In these embodiments, the bone graft material is typically relocated from the interior to the exterior of the bone fusion device by using a lead screw.
  • each tab typically has an associated rotating means.
  • the position of each tab relative to the bone fusion device is adjustable depending upon the configuration of the associated rotating means. In this way, the tabs are advantageously positioned in the confined space between the vertebrae to help brace the device until the bone has fused. Further, the tabs of the bone fusion device provide a larger surface area to which the bones attach and fuse during a healing period.
  • the body of the bone fusion device is a round cylinder with end faces.
  • the bone fusion device has conduits or holes that allow the bone graft material within the device to flow to the exterior of the device where the material contacts and grafts to the vertebrae.
  • the extendable tabs are arranged in various configurations on the exterior of the bone fusion device, including the end faces.
  • the tabs are attached to the body of the device on more than one side to optimally brace the device from multiple directions between the adjacent vertebrae.
  • the bone fusion device has a rectangular shape with end faces and extendable tabs attached to multiple exterior surfaces.
  • the bone fusion device of some embodiments includes protrusions, threading, and/or sharp features on the exterior surface and/or the extendable tabs. These features are configured to engage the adjacent vertebrae to provide a tighter interface between the device and the vertebrae.
  • FIG. 1 illustrates a bone fusion device in accordance with some embodiments of the invention.
  • FIG. 2 illustrates a bone fusion device according to an alternative embodiment of the present invention.
  • FIGS. 3 A-B illustrate a section of a vertebral column showing the bone fusion device inserted between two adjacent vertebrae in place of an intervertebral disc.
  • FIGS. 4 A-B illustrate a detailed view of the worm screw drive and the extendable tabs of some embodiments.
  • FIGS. 5 A-B illustrate the small form factor of some embodiments.
  • FIGS. 7 A-B are perspective drawings illustrating the tabs and tab bays of some embodiments.
  • FIG. 8 illustrates a process flow in accordance with some embodiments of the invention.
  • FIG. 1 illustrates a bone fusion device 100 in accordance with some embodiments of the invention.
  • the bone fusion device 100 has a round cylindrical shape and has two end faces, including the end face 140 .
  • the bone fusion device 100 is preferably constructed from a high strength biocompatible material, such as titanium, which has the strength to withstand compressive and shear forces in the spine that are generated by a patient's body weight and daily movements.
  • the base biocompatible material is often textured or coated with a porous material conducive to the growth of new bone cells on the bone fusion device 100 .
  • the end face 140 has an opening 145 which allows the insertion of bone graft material into the bone fusion device 100 .
  • the bone graft material includes bone chips from the same patient (autograft), bone chips from a donor (allograft or xenograft), and/or a synthetic bone matrix.
  • the bone graft material typically promotes bone growth during a recovery period after the patient receives bone fusion surgery.
  • the bone fusion device 100 has several conduits or holes 150 , which permit the bone graft material to contact the vertebral bone after the device 100 has been inserted between the vertebrae of the patient.
  • the bone graft material and the surface texturing of the device 100 encourage the growth and fusion of bone from the neighboring vertebrae.
  • the fusion and healing process will result in the bone fusion device 100 becoming embedded within the two adjacent vertebrae of the spine which eventually fuse together during the healing period.
  • tabs 131 , 132 , 133 , 134 , 135 , and 136 are distributed along the round cylindrical body of the bone fusion device 100 .
  • These tabs 131 - 136 are each attached to the bone fusion device 100 by a respective rotating means 111 , 112 , 113 , 114 , 115 , and 116 .
  • the rotating means 111 - 116 is typically a turn screw type assembly.
  • the unextended tabs 121 - 126 of the bone fusion device 100 provide a compact assembly that is suitable for insertion into the patient's body through an arthroscopic surgical procedure.
  • An arthroscopic procedure is considered minimally invasive and has certain advantages over more invasive conventional surgical procedures.
  • a smaller surgical incision is employed as compared to the size of the incision required for conventional invasive surgery.
  • arthroscopic procedures minimize or eliminate the need for excessive retraction of a patient's tissues such as muscles and nerves, thereby minimizing trauma and injury to the muscles and nerves and further reducing the patient's recovery time.
  • each tab's 131 - 136 position is individually adjustable so as to optimally brace the device 100 between the vertebrae. Due to the compressive forces commonly associated with spinal column vertebrae, some embodiments include a range of motion for each tab that is slightly greater than 90 degrees.
  • the tabs of these embodiments are preferably rotated to an angle that is slightly more than about 90 degrees with respect to the surface of the bone fusion device.
  • the tabs extended in this configuration were found to be capable of withstanding the greatest amount of compressive force.
  • the tabs 131 - 136 when extended, abut tightly against the surfaces of the vertebrae that are immediately adjacent to the bone fusion device 100 .
  • the tabs 131 - 136 have sharp protrusions along the length of the tab for engaging the adjacent vertebrae, while the tabs 131 - 136 of some embodiments have screw-type threads for screwing into and engaging the vertebrae.
  • the tabs of some embodiments have surface texturing to encourage and enhance the growth of new bone on the tabs 131 - 136 . This surface texturing is often similar to the surface texturing used on the main body of the device 100 .
  • the tabs 131 - 136 advantageously wedge the bone fusion device 100 in a fixed position between the vertebrae and provide a larger surface area with which the adjacent vertebrae fuses during the healing period.
  • bone growth material such as protein, is typically applied to the tabs 131 - 136 to stimulate the regeneration of bone cells needed for bone fusion. The application of bone growth material is described further in relation to FIG. 4 .
  • the tabs of the device 100 have sharp ridges or threads which bite into the adjacent vertebrae, further helping to brace the device between the vertebrae.
  • the body and the tabs 131 - 136 of the bone fusion device 100 employs different numbers and/or configurations of tabs in different embodiments.
  • the tabs 131 - 136 depicted in FIG. 1 are merely exemplary.
  • the tabs 131 - 136 are located anywhere over the exterior surface of the bone fusion device 100 , in a variety of orientations.
  • the tabs 131 - 136 are preferably arranged such that when they are extended, the tabs 131 - 136 act to stabilize the bone fusion device 100 against the vertebrae from several points and directions. Typically, the tighter the bone fusion device 100 is wedged between the adjacent vertebrae by the tabs 131 - 136 , the more stability the device 100 provides to the vertebrae and the spine of the patient.
  • the tabs 131 - 136 of the embodiments described above are critical to insure that the device 100 is not dislodged, since movement of the device 100 could cause serious injury to the patient, and especially because the inserted device is situated near the patient's spinal cord.
  • FIG. 2 shows an alternative embodiment of the bone fusion device 200 .
  • the bone fusion device 200 of some embodiments has a rectangular shape. Similar to the round cylindrical shaped bone fusion device 100 shown in FIG. 1 , the rectangular bone fusion device 200 has two end faces, including the end face 245 visible in FIG. 2 , and multiple tabs 211 , 212 , 213 , 214 , 215 , 216 , 217 , and 218 that are attached by rotating means to the exterior surface.
  • the rotating means are screw type assemblies in some embodiments.
  • the tabs 211 - 218 are also selectively extended after insertion of the bone fusion device 200 between the vertebrae.
  • the insertion of the bone fusion device 200 and the extension of the selected tabs 211 - 218 are typically performed by a surgeon during an arthroscopic surgical procedure.
  • the procedure of some embodiments is further described in relation to FIG. 8 .
  • the rotation of a respective rotating means associated with each tab 211 - 218 individually adjusts the position of the associated tab 211 - 218 such that the device 200 is firmly braced between the two adjacent vertebrae.
  • the tabs 211 - 218 are distributed over the exterior surfaces of the bone fusion device 200 in a variety of configurations, which include the ends and the surfaces of the device 200 that are not readily visible in FIG. 2 .
  • different numbers of tabs 211 - 218 are distributed over each surface of the bone fusion device 200 of different embodiments.
  • the surfaces of the bone fusion device 200 and/or the tabs 211 - 218 are coated with a porous surface texturing which promotes bone growth.
  • the end face 245 has an opening 240 , which provides access to a cavity within the interior of the bone fusion device 200 .
  • bone graft materials such as the bone chips and/or the synthetic bone matrix that were mentioned above, are pre-loaded into the cavity within the bone fusion device 200 through the opening 240 .
  • conduits or holes 250 in the bone fusion device 200 permit the bone graft material to flow from the interior cavity to the exterior surfaces of the device 200 that are in contact with the vertebral bone.
  • the bone graft material is relocated from the interior cavity to the exterior of the bone fusion device 200 , after the device 200 has been positioned between the vertebrae.
  • FIG. 3A illustrates a section of a vertebral column that has a bone fusion device 300 positioned between two vertebrae 330 and 335 .
  • the bone fusion device 300 is positioned in a location where an intervertebral disc would normally reside.
  • a flexible disc is typically sandwiched between the two vertebrae of a normal healthy spinal column.
  • the normal, healthy disc 340 is sandwiched between the vertebrae 337 and 330 .
  • the intervertebral disc that normally resides between the vertebrae 330 and 335 has been excised and surgical insertion of the bone fusion device 300 has replaced the disc as the supporting structure between the vertebrae 330 and 335 .
  • FIG. 3A further illustrates that the damaged disc that is normally sandwiched between vertebrae 330 and 335 has been totally removed.
  • complete removal of the disc is not necessary in order to use the bone fusion device 300 of some embodiments.
  • a sufficient amount of the disc is typically removed that allows access to the rotating means 311 , 312 , 313 , and 314 , which control the extension of the tabs 321 , 322 , 323 , and 324 , of the bone fusion device 300 .
  • additional numbers and configurations of the tabs are distributed over the exterior surfaces of the bone fusion device 300 , including the surfaces that are not visible in FIG. 3A .
  • the tabs 321 - 324 are deposed in a position aligned along the body of the bone fusion device 300 , such that the tabs 321 - 324 lie substantially within the exterior surfaces of the device 300 .
  • the tabs 321 - 324 are flush with the exterior surface.
  • the form factor of the bone fusion device 300 is configured to be as compact as possible.
  • the form factor of some embodiments has a diameter of approximately 0.28 inches and a length of approximately 1.0 inch.
  • the form factor of these same embodiments has a diameter of approximately 0.48 inches when the tabs 321 - 324 are fully extended.
  • the cross-section of the bone fusion device 300 has different shapes in various embodiments.
  • a more circular bone fusion device such as the device 100 illustrated in FIG. 1 , or a device having another shape is employed in conjunction with a set of extendable tabs that are located in various configurations in additional embodiments of the invention.
  • some embodiments have four rows of tabs, where each row is positioned on a side of the bone fusion device. In some of these embodiments, each row preferably has four tabs.
  • FIG. 3B a first set of four tabs 311 - 314 lock the bone fusion device 300 against the vertebra 330
  • a second set of tabs 315 - 318 lock the bone fusion device 300 against the vertebra 335 .
  • FIG. 4A illustrates the bone fusion device 400 of some embodiments in further detail.
  • the bone fusion device 400 includes an interior cavity 405 for the insertion of a lead screw 415 , and one or more tabs 431 each deposed in a tab bay 421 , 422 , 423 , 424 .
  • the tab bays 421 - 424 allow the tabs 431 to lie flush and/or within the exterior surface 420 of the bone fusion device 400 when not extended. Also when not extended, the tab 431 and tab bay 421 provides a conduit 450 from the interior cavity 405 to the exterior surface 420 of the bone fusion device 400 , such that the bone graft and/or growth material within the interior cavity 405 has a directed path to the exterior surface 420 . Typically, the insertion of the lead screw 415 forces the material within the interior cavity 405 to relocate to the exterior surface 420 .
  • the tab 431 includes a rotating means 411 and gear teeth 455 .
  • the gear teeth 455 provide a series of passive grooves by which the lead screw 415 traverses the interior cavity 405 .
  • the tab 431 remains fixed as the lead screw 415 is screwed into the interior cavity 405 .
  • the threading of the lead screw 415 does not address or affect the gear teeth 455 during the insertion of the lead screw 415 .
  • the rotating means 411 is turned to raise the tab 431 .
  • the rotating means 411 for the tab 431 typically comprises a turn screw type mechanism such that when the rotating means 411 is turned, the gear teeth 455 drive or rotate against the stationary threads of the inserted lead screw 415 . Similarly, due to the angle of the stationary lead screw's spiral threads, the gear teeth 455 cause the tab 431 to elevate and extend above the exterior surface 420 of the bone fusion device 400 .
  • the tabs 431 of some embodiments have a range of motion that exceeds 90 degrees with respect to the exterior surface 420 of the bone fusion device 400 . Accordingly, FIG. 4B illustrates the tab 431 extended slightly past 90 degrees, which is the optimum position to withstand the compressive force exerted on the vertebrae of some embodiments.
  • FIG. 5A illustrates a closed view of the small form factor for a bone fusion device 500 in accordance with some embodiments.
  • the bone fusion device 500 has a tab 531 that is not extended and lies within the exterior surface of the device 500 .
  • FIG. 5B illustrates the form factor for the bone fusion device 500 with the tab 531 extended, as described above.
  • FIG. 6A illustrates a cross section view of the bone fusion device 600 having a small form factor, while FIG. 6B illustrates the cross section view with the tab 631 extended.
  • FIG. 7A is a perspective drawing illustrating the bone fusion device 700 with four tab bays on four opposite sides of the device 700 , according to some embodiments of the invention.
  • a tab is deposed in each tab bay and secured by a rotating means.
  • the tab 731 is deposed in the tab bay 721 and secured by the rotating means 711 .
  • a lead screw 715 is preferably driven into the cavity.
  • the lead screw 715 provides the thread by which the gear teeth 755 elevate the tabs 731 - 733 .
  • FIG. 7B illustrates the bone fusion device 700 with the tabs 731 - 733 elevated.
  • FIG. 8 is a process flow diagram that summarizes the insertion and use of the bone fusion device according to some embodiments.
  • the process 800 begins at the step 805 where a small, minimally invasive surgical incision is performed.
  • the small incision is typically only large enough to permit entry of an arthroscopic surgical tool.
  • the process 800 transitions to the step 810 , where the bone fusion device is inserted through the small incision and delivered to a region between two vertebrae that are to be fused together. Insertion and delivery of the bone fusion device are preferably performed by using arthroscopic tool(s).
  • the bone fusion device is positioned in the region where bone fusion is to occur, also typically by using one or more arthroscopic tool(s).
  • the process 800 transitions to the step 820 , where the lead screw is inserted and driven into the bone fusion device.
  • the lead screw is typically driven into a cavity in the center of the bone fusion device.
  • the cavity contains a bone growth material comprising collagen and/or a matrix for the promotion of bone growth. Accordingly, insertion of the lead screw into the cavity causes the bone growth material to be relocated from the interior cavity to the exterior surface of the bone growth device.
  • the bone fusion device of some embodiments has a particular pattern of conduits or pores that extend from the interior cavity to the exterior surface for facilitating the relocation of bone growth material to particular locations at the exterior of the device. For instance, some embodiments have pores that facilitate the relocation of bone growth material to particular tabs.
  • the tabs are selectively extended to lock the bone fusion device in place in the region between the two vertebrae.
  • the tabs of some embodiments are extended by using the worm screw drive mechanism described above in relation to FIG. 4 .
  • the small incision and minimally invasive (arthroscopic) surgical procedure advantageously promote health and rapid recovery by the patient.
  • bone growth occurs around the bone fusion device and particularly at the locations of the extended tabs, such that the bone fusion device is further secured by the bone growth, which further promotes a superior, robust bone fusion result.

Abstract

A bone fusion device provides stability to bones during a bone fusion period. The bones include, for example, the vertebrae of a spinal column. The bone fusion device comprises one or more extendable tabs attached to the bone fusion device by associated rotating means. The bone fusion device is preferably inserted by using an arthroscopic surgical procedure. During arthroscopic insertion of the device, the tabs are pre-configured for compactness. In this compact configuration, the tabs are preferably deposed along and/or within an exterior surface of the bone fusion device. After the bone fusion device has been positioned between the bones, one or more tab(s) are extended. In some embodiments, the position of each tab relative to the bone fusion device is adjustable. Typically, the tabs advantageously position and brace the bone fusion device in the confined space between the bones until the bones have fused.

Description

    RELATED APPLICATIONS
  • This patent application claims priority under 35 U.S.C. § 119(e) of the co-pending U.S. Provisional Patent Application, Ser. No. 60/624,836, filed Nov. 03, 2004, and entitled “BONE FUSION DEVICE,” which is hereby incorporated by reference in its entirety.
  • FIELD OF THE INVENTION
  • This invention relates generally to bone fusion devices. More specifically, the present invention relates to devices for fusing vertebrae of the spine that can be inserted arthroscopically.
  • BACKGROUND OF THE INVENTION
  • The spinal column is made up of vertebrae stacked on top of one another. Between the vertebrae are discs which are gel-like cushions that act as shock-absorbers and keep the spine flexible. Injury, disease, or excessive pressure on the discs can cause degenerative disc disease or other disorders where the disc becomes thinner and allows the vertebrae to move closer together or become misaligned. As a result, nerves may become pinched, causing pain that radiates into other parts of the body, or instability of the vertebrae may ensue.
  • One method for correcting disc-related disorders is to insert a fusion cage between the vertebrae to act as a structural replacement for the deteriorated disc. The fusion cage is typically a hollow metal device usually made of titanium. Once inserted, the fusion cage maintains the proper separation between the vertebrae to prevent nerves from being pinched and provides structural stability to the spine. Also, the inside of the cage is filled with bone graft material which eventually fuses permanently with the adjacent vertebrae into a single unit.
  • The use of fusion cages for fusion and stabilization of vertebrae in the spine is known in the prior art. U.S. Pat. No. 4,961,740 to Ray, et al. entitled, “V-Thread Fusion Cage and Method of Fusing a Bone Joint,” discloses a fusion cage with a threaded outer surface, where the crown of the thread is sharp and cuts into the bone. Perforations are provided in valleys between adjacent turns of the thread. The cage can be screwed into a threaded bore provided in the bone structure at the surgical site and then packed with bone chips which promote fusion.
  • U.S. Pat. No. 5,015,247 to Michelson entitled, “Threaded Spinal Implant,” discloses a fusion implant comprising a cylindrical member having a series of threads on the exterior of the cylindrical member for engaging the vertebrae to maintain the implant in place and a plurality of openings in the cylindrical surface.
  • U.S. Pat. No. 6,342,074 to Simpson entitled, “Anterior Lumbar Underbody Fusion Implant and Method For Fusing Adjacent Vertebrae,” discloses a one-piece spinal fusion implant comprising a hollow body having an access passage for insertion of bone graft material into the intervertebral space after the implant has been affixed to adjacent vertebrae. The implant provides a pair of screw-receiving passages that are oppositely inclined relative to a central plane. In one embodiment, the screw-receiving passages enable the head of an orthopaedic screw to be retained entirely within the access passage.
  • U.S. Pat. No. 5,885,287 to Bagby entitled, “Self-tapping Interbody Bone Implant,” discloses a bone joining implant with a rigid, implantable base body having an outer surface with at least one bone bed engaging portion configured for engaging between a pair of bone bodies to be joined, wherein at least one spline is provided by the bone bed engaging portion, the spline being constructed and arranged to extend outwardly of the body and having an undercut portion.
  • U.S. Pat. No. 6,582,467 to Teitelbaum et al. entitled,“Expandable Fusion Cage,” discloses an expandable fusion cage where the surfaces of the cage have multiple portions cut out of the metal to form sharp barbs. As the cage is expanded, the sharp barbs protrude into the subcortical bone of the vertebrae to secure the cage in place. The cage is filled with bone or bone matrix material.
  • U.S. Pat. No. 5,800,550 to Sertich entitled, “Interbody Fusion Cage,” discloses a prosthetic device which includes an inert generally rectangularly shaped support body adapted to be seated on hard end plates of vertebrae. The support body has top and bottom faces. A first peg is movably mounted in a first aperture located in the support body, and the first aperture terminates at one of the top and bottom faces of the support body. Further, the first peg projects away from the one of the top and bottom faces and into an adjacent vertebra to secure the support body in place relative to the vertebra.
  • U.S. Pat. No. 6,436,140 to Liu et al. entitled, “Expandable Interbody Fusion Cage and Method for Insertion,” discloses an expandable hollow interbody fusion device, wherein the body is divided into a number of branches connected to one another at a fixed end and separated at an expandable end. The expandable cage may be inserted in its substantially cylindrical form and may be expanded by movement of an expansion member to establish lordosis of the spine. An expansion member interacts with the interior surfaces of the device to maintain the cage in the expanded condition and provide a large internal chamber for receiving bone in-growth material.
  • These patents all disclose fusion cage devices that can be inserted between vertebrae of the spine in an invasive surgical procedure. Such an invasive surgical procedure requires a long recovery period.
  • SUMMARY OF THE INVENTION
  • The present invention is a bone fusion device for insertion between bones that are to be fused together, such as, for example, the vertebrae of a spinal column. The bone fusion device comprises one or more extendable tabs. The bone fusion device is in its most compact state when the tabs are aligned with the body of the device such that the tabs lie within the exterior of the device. In this compact form, the bone fusion device is preferably inserted between the vertebrae by using an arthroscopic procedure. The bone fusion device of some embodiments is filled with bone graft material. In these embodiments, the bone graft material is typically relocated from the interior to the exterior of the bone fusion device by using a lead screw. After the device has been positioned between the vertebrae, and the lead screw is inserted to optionally deliver the bone graft material, selected tabs are extended. Each tab typically has an associated rotating means. The position of each tab relative to the bone fusion device is adjustable depending upon the configuration of the associated rotating means. In this way, the tabs are advantageously positioned in the confined space between the vertebrae to help brace the device until the bone has fused. Further, the tabs of the bone fusion device provide a larger surface area to which the bones attach and fuse during a healing period.
  • According to an embodiment of the present invention, the body of the bone fusion device is a round cylinder with end faces. The bone fusion device has conduits or holes that allow the bone graft material within the device to flow to the exterior of the device where the material contacts and grafts to the vertebrae. The extendable tabs are arranged in various configurations on the exterior of the bone fusion device, including the end faces. Preferably, the tabs are attached to the body of the device on more than one side to optimally brace the device from multiple directions between the adjacent vertebrae. Alternatively, the bone fusion device has a rectangular shape with end faces and extendable tabs attached to multiple exterior surfaces.
  • Optionally, the bone fusion device of some embodiments includes protrusions, threading, and/or sharp features on the exterior surface and/or the extendable tabs. These features are configured to engage the adjacent vertebrae to provide a tighter interface between the device and the vertebrae.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates a bone fusion device in accordance with some embodiments of the invention.
  • FIG. 2 illustrates a bone fusion device according to an alternative embodiment of the present invention.
  • FIGS. 3A-B illustrate a section of a vertebral column showing the bone fusion device inserted between two adjacent vertebrae in place of an intervertebral disc.
  • FIGS. 4A-B illustrate a detailed view of the worm screw drive and the extendable tabs of some embodiments.
  • FIGS. 5A-B illustrate the small form factor of some embodiments.
  • FIGS. 6A-B illustrate a cross section view of the small form factor of some embodiments.
  • FIGS. 7A-B are perspective drawings illustrating the tabs and tab bays of some embodiments.
  • FIG. 8 illustrates a process flow in accordance with some embodiments of the invention.
  • DETAILED DESCRIPTION
  • In the following description, numerous details and alternatives are set forth for purpose of explanation. However, one of ordinary skill in the art will realize that the invention can be practiced without the use of these specific details. For instance, the figures and description below often refer to the vertebral bones of a spinal column. However, one of ordinary skill in the art will recognize that some embodiments of the invention are practiced for the fusion of other bones, including broken bones and/or joints. In other instances, well-known structures and devices are shown in block diagram form in order not to obscure the description of the invention with unnecessary detail.
  • FIG. 1 illustrates a bone fusion device 100 in accordance with some embodiments of the invention. As shown in this figure, the bone fusion device 100 has a round cylindrical shape and has two end faces, including the end face 140. The bone fusion device 100 is preferably constructed from a high strength biocompatible material, such as titanium, which has the strength to withstand compressive and shear forces in the spine that are generated by a patient's body weight and daily movements. The base biocompatible material is often textured or coated with a porous material conducive to the growth of new bone cells on the bone fusion device 100.
  • Also shown in FIG. 1, the end face 140 has an opening 145 which allows the insertion of bone graft material into the bone fusion device 100. The bone graft material includes bone chips from the same patient (autograft), bone chips from a donor (allograft or xenograft), and/or a synthetic bone matrix. The bone graft material typically promotes bone growth during a recovery period after the patient receives bone fusion surgery. As further illustrated in FIG. 1, the bone fusion device 100 has several conduits or holes 150, which permit the bone graft material to contact the vertebral bone after the device 100 has been inserted between the vertebrae of the patient. The bone graft material and the surface texturing of the device 100 encourage the growth and fusion of bone from the neighboring vertebrae. The fusion and healing process will result in the bone fusion device 100 becoming embedded within the two adjacent vertebrae of the spine which eventually fuse together during the healing period.
  • As further illustrated in FIG. 1, several tabs 131, 132, 133, 134, 135, and 136 are distributed along the round cylindrical body of the bone fusion device 100. These tabs 131-136 are each attached to the bone fusion device 100 by a respective rotating means 111, 112, 113, 114, 115, and 116. The rotating means 111-116 is typically a turn screw type assembly. When the bone fusion device 100 is inserted into the patient's body, the tabs 131-136 lie along the body of the device 100, as shown by the dotted outlines 121-126 of the tabs. Thus, the unextended tabs 121-126 of the bone fusion device 100 provide a compact assembly that is suitable for insertion into the patient's body through an arthroscopic surgical procedure. An arthroscopic procedure is considered minimally invasive and has certain advantages over more invasive conventional surgical procedures. In an arthroscopic procedure, a smaller surgical incision is employed as compared to the size of the incision required for conventional invasive surgery. Moreover, arthroscopic procedures minimize or eliminate the need for excessive retraction of a patient's tissues such as muscles and nerves, thereby minimizing trauma and injury to the muscles and nerves and further reducing the patient's recovery time.
  • After insertion of the device 100 into the space between the patient's vertebrae, the surgeon selectively extends particular tabs 131-136 by rotating each selected tab's respective rotating means 111-116. The more each rotating means 111-116 is rotated, the farther its respective tab 131-136 elevates and extends outward from its initial position 121-126 along the body of the device 100. Each tab's 131-136 position is individually adjustable so as to optimally brace the device 100 between the vertebrae. Due to the compressive forces commonly associated with spinal column vertebrae, some embodiments include a range of motion for each tab that is slightly greater than 90 degrees. It was particularly discovered during the reduction to practice of the present invention, that the tabs of these embodiments are preferably rotated to an angle that is slightly more than about 90 degrees with respect to the surface of the bone fusion device. The tabs extended in this configuration were found to be capable of withstanding the greatest amount of compressive force.
  • Preferably, the tabs 131-136, when extended, abut tightly against the surfaces of the vertebrae that are immediately adjacent to the bone fusion device 100. In some embodiments, the tabs 131-136 have sharp protrusions along the length of the tab for engaging the adjacent vertebrae, while the tabs 131-136 of some embodiments have screw-type threads for screwing into and engaging the vertebrae. Optionally, the tabs of some embodiments have surface texturing to encourage and enhance the growth of new bone on the tabs 131-136. This surface texturing is often similar to the surface texturing used on the main body of the device 100. Regardless of their texturing and/or particular physical characteristics, the tabs 131-136 advantageously wedge the bone fusion device 100 in a fixed position between the vertebrae and provide a larger surface area with which the adjacent vertebrae fuses during the healing period. Moreover, bone growth material, such as protein, is typically applied to the tabs 131-136 to stimulate the regeneration of bone cells needed for bone fusion. The application of bone growth material is described further in relation to FIG. 4.
  • In an alternative embodiment of the invention, the tabs of the device 100 have sharp ridges or threads which bite into the adjacent vertebrae, further helping to brace the device between the vertebrae. It will be readily apparent to one skilled in the art that there are a number of variations for the body and the tabs 131-136 of the bone fusion device 100. For instance, the bone fusion device 100 employs different numbers and/or configurations of tabs in different embodiments. Hence, the tabs 131-136 depicted in FIG. 1 are merely exemplary. Moreover, the tabs 131-136 are located anywhere over the exterior surface of the bone fusion device 100, in a variety of orientations. Specifically, the tabs 131-136 are preferably arranged such that when they are extended, the tabs 131-136 act to stabilize the bone fusion device 100 against the vertebrae from several points and directions. Typically, the tighter the bone fusion device 100 is wedged between the adjacent vertebrae by the tabs 131-136, the more stability the device 100 provides to the vertebrae and the spine of the patient. The tabs 131-136 of the embodiments described above are critical to insure that the device 100 is not dislodged, since movement of the device 100 could cause serious injury to the patient, and especially because the inserted device is situated near the patient's spinal cord.
  • FIG. 2 shows an alternative embodiment of the bone fusion device 200. As shown in this figure, the bone fusion device 200 of some embodiments has a rectangular shape. Similar to the round cylindrical shaped bone fusion device 100 shown in FIG. 1, the rectangular bone fusion device 200 has two end faces, including the end face 245 visible in FIG. 2, and multiple tabs 211, 212, 213, 214, 215, 216, 217, and 218 that are attached by rotating means to the exterior surface. The rotating means are screw type assemblies in some embodiments. The tabs 211-218 are also selectively extended after insertion of the bone fusion device 200 between the vertebrae. As before, the insertion of the bone fusion device 200 and the extension of the selected tabs 211-218, are typically performed by a surgeon during an arthroscopic surgical procedure. The procedure of some embodiments is further described in relation to FIG. 8. The rotation of a respective rotating means associated with each tab 211-218, individually adjusts the position of the associated tab 211-218 such that the device 200 is firmly braced between the two adjacent vertebrae. One skilled in the art will recognize that the tabs 211-218 are distributed over the exterior surfaces of the bone fusion device 200 in a variety of configurations, which include the ends and the surfaces of the device 200 that are not readily visible in FIG. 2. Moreover, as mentioned above, different numbers of tabs 211-218 are distributed over each surface of the bone fusion device 200 of different embodiments. In some embodiments, the surfaces of the bone fusion device 200 and/or the tabs 211-218, are coated with a porous surface texturing which promotes bone growth.
  • Preferably, the end face 245 has an opening 240, which provides access to a cavity within the interior of the bone fusion device 200. In some embodiments, bone graft materials, such as the bone chips and/or the synthetic bone matrix that were mentioned above, are pre-loaded into the cavity within the bone fusion device 200 through the opening 240. Several conduits or holes 250 in the bone fusion device 200 permit the bone graft material to flow from the interior cavity to the exterior surfaces of the device 200 that are in contact with the vertebral bone. Typically, the bone graft material is relocated from the interior cavity to the exterior of the bone fusion device 200, after the device 200 has been positioned between the vertebrae. However, in some embodiments the bone graft material is delivered to the site of the bone fusion device 200 by arthroscopic means that originate external to the device 200. Regardless of the delivery means, the bone graft material and the surface texturing of the bone fusion device 200 encourage bone growth and fusion with the adjacent vertebrae that are in contact with the device 200. As bone fusion and healing progresses, the bone fusion device 200 preferably becomes embedded within the two fused vertebrae of the spine.
  • FIG. 3A illustrates a section of a vertebral column that has a bone fusion device 300 positioned between two vertebrae 330 and 335. As shown in this figure, the bone fusion device 300 is positioned in a location where an intervertebral disc would normally reside. A flexible disc is typically sandwiched between the two vertebrae of a normal healthy spinal column. For instance, the normal, healthy disc 340 is sandwiched between the vertebrae 337 and 330. However, for the spinal column illustrated in FIG. 3, the intervertebral disc that normally resides between the vertebrae 330 and 335 has been excised and surgical insertion of the bone fusion device 300 has replaced the disc as the supporting structure between the vertebrae 330 and 335.
  • FIG. 3A further illustrates that the damaged disc that is normally sandwiched between vertebrae 330 and 335 has been totally removed. However, complete removal of the disc is not necessary in order to use the bone fusion device 300 of some embodiments. Typically, only as much of the disc needs to be excised as is required to permit the placement and positioning of the bone fusion device 300. Additionally, a sufficient amount of the disc is typically removed that allows access to the rotating means 311, 312, 313, and 314, which control the extension of the tabs 321, 322, 323, and 324, of the bone fusion device 300. As mentioned above, additional numbers and configurations of the tabs are distributed over the exterior surfaces of the bone fusion device 300, including the surfaces that are not visible in FIG. 3A.
  • Preferably, during the insertion and placement of the bone fusion device 300, the tabs 321-324 are deposed in a position aligned along the body of the bone fusion device 300, such that the tabs 321-324 lie substantially within the exterior surfaces of the device 300. In some embodiments, the tabs 321-324 are flush with the exterior surface. In these embodiments, the form factor of the bone fusion device 300 is configured to be as compact as possible. For instance, the form factor of some embodiments has a diameter of approximately 0.28 inches and a length of approximately 1.0 inch. In contrast, the form factor of these same embodiments has a diameter of approximately 0.48 inches when the tabs 321-324 are fully extended.
  • By minimizing the space occupied, the bone fusion device 300 is advantageously inserted arthroscopically into the patient's body. If instead, the device 300 were inserted in its fully extended form, a larger surgical incision would be required, and a greater displacement of the muscles and nerves would be needed. However, its compact form factor allows the bone fusion device 300 to be inserted by advantageously utilizing minimally invasive arthroscopic techniques. Then, the tabs 321-324 of the bone fusion device 300 are extended after arthroscopic insertion to optimally increase the form factor and brace the device 300 between the vertebrae 330 and 335. In some embodiments, selected tabs 321-324 are extended.
  • While the particular embodiment described above has a rectangular shape, it will be readily apparent to one skilled in the art that the cross-section of the bone fusion device 300 has different shapes in various embodiments. For instance, a more circular bone fusion device such as the device 100 illustrated in FIG. 1, or a device having another shape is employed in conjunction with a set of extendable tabs that are located in various configurations in additional embodiments of the invention. For instance, some embodiments have four rows of tabs, where each row is positioned on a side of the bone fusion device. In some of these embodiments, each row preferably has four tabs. Such an embodiment is further described in relation to FIG. 7 and is illustrated in its inserted form in FIG. 3B. As shown in FIG. 3B, a first set of four tabs 311-314 lock the bone fusion device 300 against the vertebra 330, while a second set of tabs 315-318 lock the bone fusion device 300 against the vertebra 335.
  • FIG. 4A illustrates the bone fusion device 400 of some embodiments in further detail. As shown in this figure, the bone fusion device 400 includes an interior cavity 405 for the insertion of a lead screw 415, and one or more tabs 431 each deposed in a tab bay 421, 422, 423, 424.
  • The tab bays 421-424 allow the tabs 431 to lie flush and/or within the exterior surface 420 of the bone fusion device 400 when not extended. Also when not extended, the tab 431 and tab bay 421 provides a conduit 450 from the interior cavity 405 to the exterior surface 420 of the bone fusion device 400, such that the bone graft and/or growth material within the interior cavity 405 has a directed path to the exterior surface 420. Typically, the insertion of the lead screw 415 forces the material within the interior cavity 405 to relocate to the exterior surface 420.
  • The tab 431 includes a rotating means 411 and gear teeth 455. When the tab 431 is not extended, the gear teeth 455 provide a series of passive grooves by which the lead screw 415 traverses the interior cavity 405. Typically, the tab 431 remains fixed as the lead screw 415 is screwed into the interior cavity 405. In these embodiments, the threading of the lead screw 415 does not address or affect the gear teeth 455 during the insertion of the lead screw 415.
  • However, the gear teeth 455 do employ the threading of the lead screw 415 when the lead screw 415 has been fully inserted into the cavity 405, in some embodiments. For instance, in a particular implementation of the invention, the lead screw 415 is driven into the cavity 405, until it reaches an endcap 406. The endcap 406 allows the lead screw 415 to continue rotating in place, but does not allow the lead screw 415 to continue its forward progress through the cavity 405. When the lead screw 415 of these embodiments rotates without making forward progress, the rotating lead screw's threading contacts and engages the gear teeth 455 of each tab 431. Accordingly, the motion and angle of the spiraling threads, when applied against the gear teeth 455, causes the tabs 431 to elevate and extend. The combination of the gear teeth 455 on the tabs 431 and the inserted lead screw 415, is referred to, in some embodiments, as a worm screw drive mechanism.
  • In an alternative embodiment of the worm screw drive mechanism, the rotating means 411 is turned to raise the tab 431. In these embodiments, the rotating means 411 for the tab 431 typically comprises a turn screw type mechanism such that when the rotating means 411 is turned, the gear teeth 455 drive or rotate against the stationary threads of the inserted lead screw 415. Similarly, due to the angle of the stationary lead screw's spiral threads, the gear teeth 455 cause the tab 431 to elevate and extend above the exterior surface 420 of the bone fusion device 400.
  • As mentioned above, the tabs 431 of some embodiments have a range of motion that exceeds 90 degrees with respect to the exterior surface 420 of the bone fusion device 400. Accordingly, FIG. 4B illustrates the tab 431 extended slightly past 90 degrees, which is the optimum position to withstand the compressive force exerted on the vertebrae of some embodiments.
  • FIG. 5A illustrates a closed view of the small form factor for a bone fusion device 500 in accordance with some embodiments. As shown in this figure, the bone fusion device 500 has a tab 531 that is not extended and lies within the exterior surface of the device 500. In contrast, FIG. 5B illustrates the form factor for the bone fusion device 500 with the tab 531 extended, as described above. Similarly, FIG. 6A illustrates a cross section view of the bone fusion device 600 having a small form factor, while FIG. 6B illustrates the cross section view with the tab 631 extended.
  • FIG. 7A is a perspective drawing illustrating the bone fusion device 700 with four tab bays on four opposite sides of the device 700, according to some embodiments of the invention. As described above, a tab is deposed in each tab bay and secured by a rotating means. For instance, the tab 731 is deposed in the tab bay 721 and secured by the rotating means 711. Also shown in FIG. 7A, a lead screw 715 is preferably driven into the cavity. As described above, the lead screw 715 provides the thread by which the gear teeth 755 elevate the tabs 731-733. Accordingly, FIG. 7B illustrates the bone fusion device 700 with the tabs 731-733 elevated.
  • FIG. 8 is a process flow diagram that summarizes the insertion and use of the bone fusion device according to some embodiments. As shown in this figure, the process 800 begins at the step 805 where a small, minimally invasive surgical incision is performed. The small incision is typically only large enough to permit entry of an arthroscopic surgical tool. Then, the process 800 transitions to the step 810, where the bone fusion device is inserted through the small incision and delivered to a region between two vertebrae that are to be fused together. Insertion and delivery of the bone fusion device are preferably performed by using arthroscopic tool(s).
  • At the step 815, the bone fusion device is positioned in the region where bone fusion is to occur, also typically by using one or more arthroscopic tool(s). Once the bone fusion device is positioned in the region between the two vertebrae, the process 800 transitions to the step 820, where the lead screw is inserted and driven into the bone fusion device. The lead screw is typically driven into a cavity in the center of the bone fusion device. Preferably, the cavity contains a bone growth material comprising collagen and/or a matrix for the promotion of bone growth. Accordingly, insertion of the lead screw into the cavity causes the bone growth material to be relocated from the interior cavity to the exterior surface of the bone growth device. The bone fusion device of some embodiments has a particular pattern of conduits or pores that extend from the interior cavity to the exterior surface for facilitating the relocation of bone growth material to particular locations at the exterior of the device. For instance, some embodiments have pores that facilitate the relocation of bone growth material to particular tabs.
  • At the step 825 of the FIG. 8, the tabs are selectively extended to lock the bone fusion device in place in the region between the two vertebrae. The tabs of some embodiments are extended by using the worm screw drive mechanism described above in relation to FIG. 4. Once the selected tabs are extended and the bone fusion device is secured in place at the step 825, the surgical tools are removed from the patient, and the small incision is sutured. Then, the process 800 concludes.
  • As mentioned above, the small incision and minimally invasive (arthroscopic) surgical procedure advantageously promote health and rapid recovery by the patient. Preferably, bone growth occurs around the bone fusion device and particularly at the locations of the extended tabs, such that the bone fusion device is further secured by the bone growth, which further promotes a superior, robust bone fusion result.
  • The present invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of principles of construction and operation of the invention. Such reference herein to specific embodiments and details thereof is not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modification may be made in the embodiments chosen for illustration without departing from the spirit and scope of the invention.

Claims (38)

1. A bone fusion device for insertion between bones comprising:
first and second ends;
an interior cavity deposed between the first and second ends;
an exterior surface;
a conduit providing a pathway from the interior cavity to the exterior surface; and
one or more tabs for bracing the bone fusion device in a space between the bones, wherein the one or more tabs comprise an adjustable element.
2. The bone fusion device of claim 1, wherein the adjustable element is collapsible to a compact position deposed within the exterior surface such that the bone fusion device has a minimized form factor.
3. The bone fusion device of claim 1, wherein the adjustable element is configured for a plurality of positions.
4. The bond fusion device of claim 1, wherein the adjustable element has a range of motion that is greater than 90 degrees with respect to the exterior surface of the bone fusion device.
5. The bone fusion device of claim 1, wherein the adjustable element is configured for a position slightly more than 90 degrees with respect to the exterior surface.
6. The bone fusion device of claim 1, wherein the adjustable element comprises an independent extendable tab, wherein the independent extendable tab is separately configured.
7. The bone fusion device of claim 1, further comprising a bone graft material pre-deposited into the interior cavity before insertion of the bone fusion device between the bones.
8. The bone fusion device of claim 1, further comprising a lead screw driven into the interior cavity, wherein driving the lead screw into the interior cavity relocates a bone growth material from the interior cavity to the exterior surface.
9. The bone fusion device of claim 1, further comprising a worm screw drive mechanism such that driving a lead screw into the interior cavity modifies the configuration for a tab among the one or more tabs.
10. The bone fusion device of claim 1, further comprising a bone graft material that is applied after placement of the bone fusion device between the bones.
11. The bone fusion device of claim 1, further comprising one or more protrusions configured for engaging the bones.
12. The bone fusion device of claim 1, further comprising a cylinder.
13. The bone fusion device of claim 1, further comprising a rectangular shape.
14. The bone fusion device of claim 1, wherein a material of the bone fusion device is biocompatible.
15. The bone fusion device of claim 1, wherein the bone fusion device is configured for insertion by using an arthroscopic procedure.
16. The bone fusion device of claim 1, wherein the bones comprise vertebral bones.
17. A bone fusion device for insertion between adjacent bones, comprising:
a. a hollow body having one or more holes along a length of the body; and
b. one or more extendable tabs each attached to the hollow body by a screw,
wherein the one or more extendable tabs are aligned along a surface of the hollow body in a compact position during insertion into a patient.
18. The bone fusion device of claim 16, wherein the one or more tabs are individually adjustable to a desired position after insertion for bracing the bone fusion device between the adjacent bones.
19. The bone fusion device of claim 18, wherein the tabs are adjusted by a rotation of the screw.
20. The bone fusion device as claimed in claim 15, wherein an extendable tab is deposed to lie within the exterior surface of the bone fusion device such that the bone fusion device has a small form factor.
21. The bone fusion device as claimed in claim 15, wherein an extendable tab is attached to the hollow body on an end face.
22. The bone fusion device as claimed in claim 15, wherein the bones comprise vertebrae, wherein a material of the bone fusion device is biocompatible.
23. The bone fusion device as claimed in claim 15, wherein bone graft material is present within the hollow body before insertion between the bones.
24. The bone fusion device as claimed in claim 15, wherein bone graft material is applied after insertion and placement between the bones.
25. The bone fusion device as claimed in claim 15, wherein an extendable tab has a sharp protrusion configured to engage the adjacent bones.
26. The bone fusion device as claimed in claim 15, wherein an extendable tab has threading configured to engage the adjacent bones.
27. The bone fusion device as claimed in claim 15, wherein an extendable tab has a textured surface.
28. The bone fusion device as claimed in claim 15, wherein an extendable tab is coated with a porous material.
29. A method of implanting a bone fusion device between bones, the method comprising:
inserting the bone fusion device between the bones, wherein the bone fusion device comprises an internal cavity, an exterior surface, and an extendable tab, wherein the extendable tab comprises an associated rotating element;
pre-configuring the extendable tab to lie within the exterior surface by using the rotating element such that the bone fusion device has a minimized form factor;
driving a lead screw into the cavity; and
extending the tab to a desired position by using the rotating element.
30. The method of claim 28, further comprising selecting the tab.
31. The method of claim 28, wherein extending the tab comprises turning the rotating element associated with the tab to elevate the tab.
32. The method of claim 28, wherein the bone fusion device comprises a worm screw drive mechanism such that driving the lead screw into the cavity past a predetermine point elevates the tab by using the rotating element.
33. The method of claim 28, wherein the desired position comprises an angle of slightly greater than approximately 90 degrees with respect to an exterior surface of the bone fusion device.
34. The method of claim 28, further comprising before implantation, depositing a bone graft material into the cavity.
35. The method of claim 28, further comprising applying bone growth material to the tab after extension, wherein the bone growth material stimulates regeneration of bone cells in the bones.
36. The method of claim 28, wherein driving the lead screw relocates a bone graft material from the interior to the exterior of the bone fusion device.
37. The method of claim 28, wherein the bones comprise vertebrae.
38. The method of claim 28, wherein inserting the bone fusion device comprises an arthroscopic procedure.
US11/264,958 2004-11-03 2005-11-01 Bone fusion device Abandoned US20060095136A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
US11/264,958 US20060095136A1 (en) 2004-11-03 2005-11-01 Bone fusion device
PCT/US2005/039984 WO2006050500A2 (en) 2004-11-03 2005-11-02 Bone fusion device
US11/357,319 US7727280B2 (en) 2004-11-03 2006-02-16 Bone fusion device
US11/484,379 US8187332B2 (en) 2004-11-03 2006-07-10 Bone fusion device
US13/482,778 US8597360B2 (en) 2004-11-03 2012-05-29 Bone fusion device
PCT/US2013/042066 WO2013181024A1 (en) 2004-11-03 2013-05-21 Bone fusion device
US14/067,813 US9186262B2 (en) 2004-11-03 2013-10-30 Bone fusion device
US14/885,777 US9974665B2 (en) 2004-11-03 2015-10-16 Bone fusion device
US15/954,414 US10682240B2 (en) 2004-11-03 2018-04-16 Bone fusion device
US16/798,098 US11583414B2 (en) 2004-11-03 2020-02-21 Bone fusion device
US18/111,561 US20230201005A1 (en) 2004-11-03 2023-02-18 Bone fusion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62483604P 2004-11-03 2004-11-03
US11/264,958 US20060095136A1 (en) 2004-11-03 2005-11-01 Bone fusion device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/357,319 Continuation-In-Part US7727280B2 (en) 2004-11-03 2006-02-16 Bone fusion device

Publications (1)

Publication Number Publication Date
US20060095136A1 true US20060095136A1 (en) 2006-05-04

Family

ID=36263100

Family Applications (3)

Application Number Title Priority Date Filing Date
US11/264,958 Abandoned US20060095136A1 (en) 2004-11-03 2005-11-01 Bone fusion device
US11/357,319 Active 2028-04-05 US7727280B2 (en) 2004-11-03 2006-02-16 Bone fusion device
US11/484,379 Active 2027-05-26 US8187332B2 (en) 2004-11-03 2006-07-10 Bone fusion device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/357,319 Active 2028-04-05 US7727280B2 (en) 2004-11-03 2006-02-16 Bone fusion device
US11/484,379 Active 2027-05-26 US8187332B2 (en) 2004-11-03 2006-07-10 Bone fusion device

Country Status (2)

Country Link
US (3) US20060095136A1 (en)
WO (1) WO2006050500A2 (en)

Cited By (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060136060A1 (en) * 2002-09-10 2006-06-22 Jean Taylor Posterior vertebral support assembly
US20060224241A1 (en) * 2005-03-31 2006-10-05 Life Spine, Llc Expandable spinal interbody and intravertebral body devices
WO2006116850A1 (en) * 2005-05-02 2006-11-09 Kinetic Spine Technologies Inc. Artificial vertebral body
US20060264938A1 (en) * 2005-03-21 2006-11-23 St. Francis Medical Technologies, Inc. Interspinous process implant having deployable wing and method of implantation
US20060265066A1 (en) * 2005-03-21 2006-11-23 St. Francis Medical Technologies, Inc. Interspinous process implant having a thread-shaped wing and method of implantation
US20060271049A1 (en) * 2005-04-18 2006-11-30 St. Francis Medical Technologies, Inc. Interspinous process implant having deployable wings and method of implantation
US20070005064A1 (en) * 2005-06-27 2007-01-04 Sdgi Holdings Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070032790A1 (en) * 2005-08-05 2007-02-08 Felix Aschmann Apparatus for treating spinal stenosis
US20070043362A1 (en) * 2005-02-17 2007-02-22 Malandain Hugues F Percutaneous spinal implants and methods
US20070043363A1 (en) * 2005-02-17 2007-02-22 Malandain Hugues F Percutaneous spinal implants and methods
US20070055237A1 (en) * 2005-02-17 2007-03-08 Edidin Avram A Percutaneous spinal implants and methods
US20070203495A1 (en) * 1997-01-02 2007-08-30 Zucherman James F Spine distraction implant and method
US20070225706A1 (en) * 2005-02-17 2007-09-27 Clark Janna G Percutaneous spinal implants and methods
US20070250060A1 (en) * 2006-04-24 2007-10-25 Sdgi Holdings, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US20070288005A1 (en) * 2006-04-05 2007-12-13 Uri Arnin Fixation of spinal prosthesis
US20080033553A1 (en) * 2002-10-29 2008-02-07 Zucherman James F Interspinous process implants and methods of use
WO2008021955A2 (en) * 2006-08-10 2008-02-21 James Dwyer Modular intervertebral disc prosthesis and method of replacing an intervertebral disc
US20080051904A1 (en) * 1997-01-02 2008-02-28 Zucherman James F Supplemental spine fixation device and method
WO2008034140A2 (en) 2006-09-15 2008-03-20 Pioneer Surgical Technology, Inc. Systems and methods for sizing, inserting and securing an implant intervertebral space
US20080071280A1 (en) * 2004-04-28 2008-03-20 St. Francis Medical Technologies, Inc. System and Method for Insertion of an Interspinous Process Implant that is Rotatable in Order to Retain the Implant Relative to the Spinous Processes
US20080081896A1 (en) * 2006-09-28 2008-04-03 Helmut-Werner Heuer (Co)polycarbonates having improved adhesion to metals
US20080147190A1 (en) * 2006-12-14 2008-06-19 Warsaw Orthopedic, Inc. Interspinous Process Devices and Methods
US20080180206A1 (en) * 2006-08-28 2008-07-31 Avago Technologies Ecbu (Singapore) Pte.Ltd. Coil Transducer with Reduced Arcing and Improved High Voltage Breakdown Performance Characteristics
US20080249623A1 (en) * 2006-12-22 2008-10-09 Qi-Bin Bao Implant Restraint Device and Methods
US20080288075A1 (en) * 1997-01-02 2008-11-20 Zucherman James F Spine distraction implant and method
US20090012528A1 (en) * 2005-08-05 2009-01-08 Felix Aschmann Apparatus for Treating Spinal Stenosis
US20090054988A1 (en) * 2007-05-01 2009-02-26 Harold Hess Interspinous implants and methods for implanting same
US20090198338A1 (en) * 2008-02-04 2009-08-06 Phan Christopher U Medical implants and methods
US20090240333A1 (en) * 2007-09-17 2009-09-24 Trudeau Jeffrey L Motion Preserving Artificial Intervertebral Disc Device
US20100010633A1 (en) * 2008-07-10 2010-01-14 Kyphon Sarl Deployable Arc Fusion Cage and Methods Associated Therewith
US20100016974A1 (en) * 2006-09-15 2010-01-21 Janowski Brian P Systems and methods for securing an implant in intervertebral space
US20100114320A1 (en) * 2006-05-23 2010-05-06 Warsaw Orthopedic, Inc., An Indiana Corporation Surgical spacer with shape control
US20100161057A1 (en) * 2008-12-19 2010-06-24 Amicus, Llc Interbody Vertebral Prosthetic Device With Self-Deploying Screws
US20100185285A1 (en) * 2009-01-19 2010-07-22 Richard Perkins Annular repair device and method
US7803190B2 (en) 2002-10-29 2010-09-28 Kyphon SÀRL Interspinous process apparatus and method with a selectably expandable spacer
US20100280619A1 (en) * 2006-09-15 2010-11-04 Hansen Yuan Systems and methods for sizing, inserting and securing an implant in intervertebral space
US7846186B2 (en) 2005-06-28 2010-12-07 Kyphon SÀRL Equipment for surgical treatment of two vertebrae
US7879104B2 (en) 2006-11-15 2011-02-01 Warsaw Orthopedic, Inc. Spinal implant system
US20110029021A1 (en) * 2009-08-03 2011-02-03 Hartsell Brian D Spinous Process Spacer
US20110098745A1 (en) * 2009-10-28 2011-04-28 Kyphon Sarl Interspinous process implant and method of implantation
US20110172596A1 (en) * 2010-01-13 2011-07-14 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US20110178599A1 (en) * 2009-09-17 2011-07-21 Brett Darrell C Intervertebral implant having extendable bone fixation members
US8007521B2 (en) 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US8029567B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US8034079B2 (en) 2005-04-12 2011-10-11 Warsaw Orthopedic, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US8034080B2 (en) 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US8038698B2 (en) 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US8043378B2 (en) 2006-09-07 2011-10-25 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
US8048119B2 (en) 2006-07-20 2011-11-01 Warsaw Orthopedic, Inc. Apparatus for insertion between anatomical structures and a procedure utilizing same
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US8070778B2 (en) 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20120004729A1 (en) * 2005-06-03 2012-01-05 Zipnick Richard I Minimally invasive apparatus to manipulate and revitalize spinal column disc
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8096994B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8114131B2 (en) 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
US8114132B2 (en) 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US8118839B2 (en) 2006-11-08 2012-02-21 Kyphon Sarl Interspinous implant
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US8157842B2 (en) 2009-06-12 2012-04-17 Kyphon Sarl Interspinous implant and methods of use
US20120150229A1 (en) * 2007-05-01 2012-06-14 Spinal Simplicity Llc Interspinous process implants having deployable engagement arms
US8226653B2 (en) 2005-04-29 2012-07-24 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US8257439B2 (en) 2004-12-22 2012-09-04 Ldr Medical Intervertebral disc prosthesis
US8262698B2 (en) 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8268001B2 (en) 2007-10-29 2012-09-18 Life Spine, Inc. Foldable orthopedic implant
US8267999B2 (en) 2002-11-05 2012-09-18 Ldr Medical Intervertebral disc prosthesis
US20120277865A1 (en) * 2011-04-27 2012-11-01 Warsaw Orthopedic, Inc. Expandable implant system and methods of use
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US8349013B2 (en) 1997-01-02 2013-01-08 Kyphon Sarl Spine distraction implant
US8372117B2 (en) 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8454694B2 (en) 2011-03-03 2013-06-04 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US20130211525A1 (en) * 2011-08-09 2013-08-15 Gary R. McLuen Bone fusion device, apparatus and method
US8545563B2 (en) 2011-02-02 2013-10-01 DePuy Synthes Product, LLC Intervertebral implant having extendable bone fixation members
US20130274881A1 (en) * 2012-04-13 2013-10-17 Marc Arginteanu Device and method for spinal fusion surgery
WO2013155418A1 (en) * 2012-04-13 2013-10-17 Neuropro Technologies, Inc. Bone fusion device
US20130281769A1 (en) * 2010-08-16 2013-10-24 Allergan, Inc. Implantable access port system
US8591548B2 (en) 2011-03-31 2013-11-26 Warsaw Orthopedic, Inc. Spinous process fusion plate assembly
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
WO2013181024A1 (en) 2004-11-03 2013-12-05 Neuropro Technologies, Inc. Bone fusion device
US8641762B2 (en) 2006-10-24 2014-02-04 Warsaw Orthopedic, Inc. Systems and methods for in situ assembly of an interspinous process distraction implant
US8641769B2 (en) 2010-07-15 2014-02-04 Spine Wave, Inc. Plastically deformable inter-osseous device
US8679161B2 (en) 2005-02-17 2014-03-25 Warsaw Orthopedic, Inc. Percutaneous spinal implants and methods
US8685104B2 (en) 2012-03-19 2014-04-01 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US20140094921A1 (en) * 2012-10-02 2014-04-03 Titan Spine, Llc Implants with self-deploying anchors
US8771284B2 (en) 2005-11-30 2014-07-08 Ldr Medical Intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae
US20140228956A1 (en) * 2010-02-24 2014-08-14 Mark Weiman Expandable Intervertebral Spacer and Method of Posterior Insertion Thereof
US8814908B2 (en) 2010-07-26 2014-08-26 Warsaw Orthopedic, Inc. Injectable flexible interspinous process device system
US8858635B2 (en) 2004-02-04 2014-10-14 Ldr Medical Intervertebral disc prosthesis
WO2014145527A3 (en) * 2013-03-15 2014-12-31 Lifenet Health Medical implant for fixation and integration with hard tissue
US8940048B2 (en) 2005-03-31 2015-01-27 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US8974532B2 (en) 2004-04-28 2015-03-10 Ldr Medical Intervertebral disc prosthesis
US8979932B2 (en) 2005-09-23 2015-03-17 Ldr Medical Intervertebral disc prosthesis
US20150119991A1 (en) * 2012-01-31 2015-04-30 Blackstone Medical, Inc. Intervertebral disc prosthesis and method
US9034041B2 (en) 2005-03-31 2015-05-19 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US9039774B2 (en) 2012-02-24 2015-05-26 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9044337B2 (en) 2009-12-31 2015-06-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9078765B2 (en) 2001-07-13 2015-07-14 Ldr Medical Vertebral cage device with modular fixation
US9138328B2 (en) 2007-03-29 2015-09-22 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US9216096B2 (en) 2010-03-16 2015-12-22 Pinnacle Spine Group, Llc Intervertebral implants and related tools
US9254130B2 (en) 2011-11-01 2016-02-09 Hyun Bae Blade anchor systems for bone fusion
US9301788B2 (en) 2008-04-10 2016-04-05 Life Spine, Inc. Adjustable spine distraction implant
US9333095B2 (en) 2001-05-04 2016-05-10 Ldr Medical Intervertebral disc prosthesis, surgical methods, and fitting tools
US9381050B2 (en) 2007-04-10 2016-07-05 Life Spine, Inc. Adjustable spine distraction implant
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US9427324B1 (en) 2010-02-22 2016-08-30 Spinelogik, Inc. Intervertebral fusion device and method of use
US20160278935A1 (en) * 2013-11-11 2016-09-29 41Medical Ag Expandable spinal implant
US9456908B2 (en) 2013-03-12 2016-10-04 Coorstek Medical Llc Fusion cage
US9480511B2 (en) 2009-12-17 2016-11-01 Engage Medical Holdings, Llc Blade fixation for ankle fusion and arthroplasty
US9526525B2 (en) 2006-08-22 2016-12-27 Neuropro Technologies, Inc. Percutaneous system for dynamic spinal stabilization
US20170035471A1 (en) * 2008-11-19 2017-02-09 Endoorthopaedics, Inc. Intramedullary repair system for bone fractures
US9566165B2 (en) 2012-03-19 2017-02-14 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9610172B2 (en) 2007-03-29 2017-04-04 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US9615856B2 (en) 2011-11-01 2017-04-11 Imds Llc Sacroiliac fusion cage
US20170165082A1 (en) * 2015-12-15 2017-06-15 Globus Medical, Inc. Stabilized expandable intervertebral spacer
US9707100B2 (en) 2015-06-25 2017-07-18 Institute for Musculoskeletal Science and Education, Ltd. Interbody fusion device and system for implantation
US9713535B2 (en) 2006-02-15 2017-07-25 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US9730805B1 (en) * 2008-03-27 2017-08-15 Spinelogik, Inc. Intervertebral fusion device and method or use
US9757164B2 (en) 2013-01-07 2017-09-12 Spinal Simplicity Llc Interspinous process implant having deployable anchor blades
US9788971B1 (en) 2013-05-22 2017-10-17 Nuvasive, Inc. Expandable fusion implant and related methods
US9801733B2 (en) 2005-03-31 2017-10-31 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US9861399B2 (en) 2009-03-13 2018-01-09 Spinal Simplicity, Llc Interspinous process implant having a body with a removable end portion
US9877842B2 (en) 2014-01-30 2018-01-30 Ldr Medical Anchoring device for a spinal implant, spinal implant and implantation instrumentation
US9925056B2 (en) 2009-04-15 2018-03-27 DePuy Synthes Products, Inc. Arcuate fixation member
US9925051B2 (en) 2010-12-16 2018-03-27 Engage Medical Holdings, Llc Arthroplasty systems and methods
US9937050B2 (en) 2013-05-16 2018-04-10 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US10070970B2 (en) 2013-03-14 2018-09-11 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
US10098757B2 (en) 2013-03-15 2018-10-16 Neuropro Technologies Inc. Bodiless bone fusion device, apparatus and method
US10105236B2 (en) 2009-04-15 2018-10-23 DePuy Synthes Products, Inc. Arcuate fixation member
US10111760B2 (en) 2017-01-18 2018-10-30 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
US10154911B2 (en) 2013-03-13 2018-12-18 Life Spine, Inc. Expandable implant assembly
US10159583B2 (en) 2012-04-13 2018-12-25 Neuropro Technologies, Inc. Bone fusion device
US10195053B2 (en) 2009-09-18 2019-02-05 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US10213321B2 (en) 2017-01-18 2019-02-26 Neuropro Technologies, Inc. Bone fusion system, device and method including delivery apparatus
US10213231B2 (en) 2014-01-28 2019-02-26 Life Spine, Inc. System and method for reducing and stabilizing a bone fracture
US10238382B2 (en) 2012-03-26 2019-03-26 Engage Medical Holdings, Llc Blade anchor for foot and ankle
US10245159B1 (en) 2009-09-18 2019-04-02 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US10251759B2 (en) 2007-03-29 2019-04-09 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US10292830B2 (en) 2011-08-09 2019-05-21 Neuropro Technologies, Inc. Bone fusion device, system and method
US10383741B2 (en) 2013-03-13 2019-08-20 Life Spine, Inc. Expandable spinal interbody assembly
US10390955B2 (en) 2016-09-22 2019-08-27 Engage Medical Holdings, Llc Bone implants
US10420654B2 (en) 2011-08-09 2019-09-24 Neuropro Technologies, Inc. Bone fusion device, system and method
US10426632B2 (en) 2013-03-13 2019-10-01 Life Spine, Inc. Expandable spinal interbody assembly
US10456272B2 (en) 2017-03-03 2019-10-29 Engage Uni Llc Unicompartmental knee arthroplasty
US10478310B2 (en) 2014-05-06 2019-11-19 Ldr Medical, S.A.S. Vertebral implant, device for vertebral attachment of the implant and instrumentation for implantation thereof
US10524928B2 (en) 2015-12-15 2020-01-07 Globus Medical, Inc Stabilized intervertebral spacer
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US10603087B2 (en) 2008-01-14 2020-03-31 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US10617530B2 (en) 2011-07-14 2020-04-14 Seaspine, Inc. Laterally deflectable implant
US10729560B2 (en) 2017-01-18 2020-08-04 Neuropro Technologies, Inc. Bone fusion system, device and method including an insertion instrument
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US10973657B2 (en) 2017-01-18 2021-04-13 Neuropro Technologies, Inc. Bone fusion surgical system and method
US10973656B2 (en) 2009-09-18 2021-04-13 Spinal Surgical Strategies, Inc. Bone graft delivery system and method for using same
US10973658B2 (en) 2017-11-27 2021-04-13 Titan Spine, Inc. Rotating implant and associated instrumentation
US10980643B2 (en) * 2017-07-18 2021-04-20 Blue Sky Technologies, LLC Joint implant
US11033403B2 (en) 2017-07-10 2021-06-15 Life Spine, Inc. Expandable implant assembly
US11135070B2 (en) 2018-02-14 2021-10-05 Titan Spine, Inc. Modular adjustable corpectomy cage
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
US11298241B2 (en) 2007-03-29 2022-04-12 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US11304818B2 (en) 2013-03-13 2022-04-19 Life Spine, Inc. Expandable spinal interbody assembly
US11382764B2 (en) 2019-06-10 2022-07-12 Life Spine, Inc. Expandable implant assembly with compression features
US11534305B2 (en) * 2018-09-26 2022-12-27 Nexus Spine, L.L.C. Expanding, conforming interbody spacer
US11540928B2 (en) 2017-03-03 2023-01-03 Engage Uni Llc Unicompartmental knee arthroplasty
US11602439B2 (en) 2020-04-16 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11602440B2 (en) 2020-06-25 2023-03-14 Life Spine, Inc. Expandable implant assembly
US20230091542A1 (en) * 2020-06-15 2023-03-23 Nofusco Corporation Orthopedic implant system and methods of use
US20230240860A1 (en) * 2020-09-01 2023-08-03 Dignity Health Systems and methods for an expandable interbody device
US11723778B1 (en) 2021-09-23 2023-08-15 Nofusco Corporation Vertebral implant system and methods of use
US11806247B2 (en) 2020-06-15 2023-11-07 Nofusco Corporation Intravertebral implant system and methods of use
US11857432B2 (en) 2020-04-13 2024-01-02 Life Spine, Inc. Expandable implant assembly
US11872143B2 (en) 2016-10-25 2024-01-16 Camber Spine Technologies, LLC Spinal fusion implant
US11877935B2 (en) 2016-10-18 2024-01-23 Camber Spine Technologies, LLC Implant with deployable blades
US11896494B2 (en) 2017-07-10 2024-02-13 Life Spine, Inc. Expandable implant assembly

Families Citing this family (288)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7041309B2 (en) 2002-06-13 2006-05-09 Neuropro Technologies, Inc. Spinal fusion using an HMG-CoA reductase inhibitor
US6793678B2 (en) 2002-06-27 2004-09-21 Depuy Acromed, Inc. Prosthetic intervertebral motion disc having dampening
WO2004073563A2 (en) 2003-02-14 2004-09-02 Depuy Spine, Inc. In-situ formed intervertebral fusion device
US20040267367A1 (en) 2003-06-30 2004-12-30 Depuy Acromed, Inc Intervertebral implant with conformable endplate
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US7217291B2 (en) * 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
US8636802B2 (en) 2004-03-06 2014-01-28 DePuy Synthes Products, LLC Dynamized interspinal implant
WO2006034436A2 (en) 2004-09-21 2006-03-30 Stout Medical Group, L.P. Expandable support device and method of use
US20060095136A1 (en) * 2004-11-03 2006-05-04 Mcluen Design, Inc. Bone fusion device
WO2006058221A2 (en) 2004-11-24 2006-06-01 Abdou Samy M Devices and methods for inter-vertebral orthopedic device placement
US7942903B2 (en) 2005-04-12 2011-05-17 Moskowitz Ahmnon D Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion
US9848993B2 (en) 2005-04-12 2017-12-26 Nathan C. Moskowitz Zero-profile expandable intervertebral spacer devices for distraction and spinal fusion and a universal tool for their placement and expansion
US11903849B2 (en) 2005-04-12 2024-02-20 Moskowitz Family Llc Intervertebral implant and tool assembly
US7674296B2 (en) 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
WO2007009107A2 (en) 2005-07-14 2007-01-18 Stout Medical Group, P.L. Expandable support device and method of use
US8303660B1 (en) * 2006-04-22 2012-11-06 Samy Abdou Inter-vertebral disc prosthesis with variable rotational stop and methods of use
US8477658B2 (en) * 2006-04-25 2013-07-02 The Hong Kong University Of Science And Technology Intelligent peer-to-peer media streaming
EP2023864B1 (en) 2006-05-01 2019-07-10 Stout Medical Group, L.P. Expandable support device
US8771355B2 (en) 2006-05-26 2014-07-08 M. S. Abdou Inter-vertebral disc motion devices and methods of use
US20080039843A1 (en) 2006-08-11 2008-02-14 Abdou M S Spinal motion preservation devices and methods of use
JP5268113B2 (en) 2006-09-20 2013-08-21 ウッドウェルディング・アクチェンゲゼルシャフト Device to be implanted in human or animal tissue and method for embedding and assembling the device
ES2339472T3 (en) 2006-11-23 2010-05-20 Biedermann Motech Gmbh EXPANSIBLE INTERVERTEBRAL IMPLANT.
WO2008070863A2 (en) 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
US9107705B2 (en) 2006-12-11 2015-08-18 M. Samy Abdou Dynamic spinal stabilization systems and methods of use
US7935117B2 (en) * 2007-05-02 2011-05-03 Depuy Products, Inc. Expandable proximal reamer
FI122996B (en) * 2007-05-10 2012-09-28 Teliasonera Ab Processing of service request
US7744649B2 (en) * 2007-06-25 2010-06-29 Moore Mark R Spondylolisthesis correction apparatus and method
US8900307B2 (en) 2007-06-26 2014-12-02 DePuy Synthes Products, LLC Highly lordosed fusion cage
US8142508B1 (en) * 2007-07-02 2012-03-27 Theken Spine, Llc Spinal cage having deployable member which is removable
US8292958B1 (en) 2007-07-02 2012-10-23 Theken Spine, Llc Spinal cage having deployable member
US10342674B2 (en) 2007-07-02 2019-07-09 Theken Spine, Llc Spinal cage having deployable member
US8545562B1 (en) 2007-07-02 2013-10-01 Theken Spine, Llc Deployable member for use with an intervertebral cage
US8864829B1 (en) 2007-07-02 2014-10-21 Theken Spine, Llc Spinal cage having deployable member
US8328818B1 (en) 2007-08-31 2012-12-11 Globus Medical, Inc. Devices and methods for treating bone
US8167950B2 (en) * 2007-10-11 2012-05-01 International Spinal Innovations, Llc Minimally invasive lateral intervertbral fixation system, device and method
US20090112325A1 (en) * 2007-10-30 2009-04-30 Biospine, Llc Footplate member and a method for use in a vertebral body replacement device
US8142441B2 (en) * 2008-10-16 2012-03-27 Aesculap Implant Systems, Llc Surgical instrument and method of use for inserting an implant between two bones
US8182537B2 (en) * 2007-10-30 2012-05-22 Aesculap Implant Systems, Llc Vertebral body replacement device and method for use to maintain a space between two vertebral bodies within a spine
US8591587B2 (en) 2007-10-30 2013-11-26 Aesculap Implant Systems, Llc Vertebral body replacement device and method for use to maintain a space between two vertebral bodies within a spine
US8267997B2 (en) 2007-11-12 2012-09-18 Theken Spine, Llc Vertebral interbody compression implant
US7985231B2 (en) * 2007-12-31 2011-07-26 Kyphon Sarl Bone fusion device and methods
AU2009205896A1 (en) 2008-01-17 2009-07-23 Synthes Gmbh An expandable intervertebral implant and associated method of manufacturing the same
US8267939B2 (en) 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
JP5309163B2 (en) 2008-03-07 2013-10-09 ジンテス ゲゼルシャフト ミット ベシュレンクテル ハフツング Expandable interbody spacer device
BRPI0910325A8 (en) 2008-04-05 2019-01-29 Synthes Gmbh expandable intervertebral implant
WO2009144562A1 (en) * 2008-05-26 2009-12-03 Medtech Research Intersomatic cage
US8545566B2 (en) * 2008-10-13 2013-10-01 Globus Medical, Inc. Articulating spacer
US20100211176A1 (en) 2008-11-12 2010-08-19 Stout Medical Group, L.P. Fixation device and method
WO2010056895A1 (en) 2008-11-12 2010-05-20 Stout Medical Group, L.P. Fixation device and method
US8062374B2 (en) * 2008-12-01 2011-11-22 Custom Spine, Inc. Compliant interbody fusion device with deployable bone anchors
US8523944B2 (en) 2008-12-31 2013-09-03 Spinex Tec, Llc Methods and apparatus for vertebral body distraction and fusion employing flexure members
US8968405B2 (en) * 2009-01-20 2015-03-03 Incite Innovation Llc Interbody fusion device and method of operation
US8142435B2 (en) * 2009-02-19 2012-03-27 Aesculap Implant Systems, Llc Multi-functional surgical instrument and method of use for inserting an implant between two bones
EP2408382A4 (en) 2009-03-13 2013-06-19 Univ Toledo Minimally invasive collapsible cage
US8628577B1 (en) 2009-03-19 2014-01-14 Ex Technology, Llc Stable device for intervertebral distraction and fusion
US9526620B2 (en) 2009-03-30 2016-12-27 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
CN105342683B (en) 2009-07-06 2018-02-13 斯恩蒂斯有限公司 Expandable fixation assemblies
EP2456396B1 (en) 2009-07-22 2017-09-13 Spinex Tec, LLC Apparatuses for vertebral body distraction and fusion employing a coaxial screw gear sleeve mechanism
US9216095B2 (en) 2009-10-15 2015-12-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8679183B2 (en) 2010-06-25 2014-03-25 Globus Medical Expandable fusion device and method of installation thereof
US11103366B2 (en) 2009-10-15 2021-08-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10098758B2 (en) * 2009-10-15 2018-10-16 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8556979B2 (en) 2009-10-15 2013-10-15 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8062375B2 (en) 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US20140163682A1 (en) * 2012-12-11 2014-06-12 Expandable Vertebral Implant Expandable Vertebral Implant
US8709086B2 (en) * 2009-10-15 2014-04-29 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10806596B2 (en) 2009-10-15 2020-10-20 Globus Medical, Inc. Expandable fusion device and method installation thereof
US9155628B2 (en) * 2009-10-15 2015-10-13 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8685098B2 (en) 2010-06-25 2014-04-01 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11344430B2 (en) 2009-10-15 2022-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10327917B2 (en) * 2009-10-15 2019-06-25 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11564807B2 (en) 2009-10-15 2023-01-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9801732B2 (en) * 2009-10-30 2017-10-31 Spinefrontier, Inc System and method for an intervertebral implant assembly
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US9393129B2 (en) 2009-12-10 2016-07-19 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
US8353963B2 (en) 2010-01-12 2013-01-15 Globus Medical Expandable spacer and method for use thereof
US9421109B2 (en) 2010-01-13 2016-08-23 Jcbd, Llc Systems and methods of fusing a sacroiliac joint
EP3138533B1 (en) 2010-01-13 2021-12-01 Jcbd, Llc Sacroiliac joint fixation fusion system
WO2012174485A1 (en) 2011-06-17 2012-12-20 Jcbd, Llc Sacroiliac joint implant system
US9381045B2 (en) 2010-01-13 2016-07-05 Jcbd, Llc Sacroiliac joint implant and sacroiliac joint instrument for fusing a sacroiliac joint
WO2014015309A1 (en) 2012-07-20 2014-01-23 Jcbd, Llc Orthopedic anchoring system and methods
US9333090B2 (en) * 2010-01-13 2016-05-10 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US8870880B2 (en) 2010-04-12 2014-10-28 Globus Medical, Inc. Angling inserter tool for expandable vertebral implant
US9301850B2 (en) 2010-04-12 2016-04-05 Globus Medical, Inc. Expandable vertebral implant
US8535380B2 (en) 2010-05-13 2013-09-17 Stout Medical Group, L.P. Fixation device and method
US8506635B2 (en) * 2010-06-02 2013-08-13 Warsaw Orthopedic, Inc. System and methods for a laterally expanding implant
US9592063B2 (en) 2010-06-24 2017-03-14 DePuy Synthes Products, Inc. Universal trial for lateral cages
US8979860B2 (en) 2010-06-24 2015-03-17 DePuy Synthes Products. LLC Enhanced cage insertion device
US9597200B2 (en) 2010-06-25 2017-03-21 Globus Medical, Inc Expandable fusion device and method of installation thereof
AU2011271465B2 (en) 2010-06-29 2015-03-19 Synthes Gmbh Distractible intervertebral implant
JP5807928B2 (en) 2010-07-15 2015-11-10 エヌエルティー スパイン エルティーディー. Surgical system and method for implanting expandable implants
EP2608747A4 (en) 2010-08-24 2015-02-11 Flexmedex Llc Support device and method for use
US8845734B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9855151B2 (en) 2010-09-03 2018-01-02 Globus Medical, Inc Expandable fusion device and method of installation thereof
US10869768B2 (en) 2010-09-03 2020-12-22 Globus Medical Inc. Expandable fusion device and method of installation thereof
US11446162B2 (en) 2010-09-03 2022-09-20 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9474625B2 (en) 2010-09-03 2016-10-25 Globus Medical, Inc Expandable fusion device and method of installation thereof
US10835387B2 (en) 2010-09-03 2020-11-17 Globus Medical Inc. Expandable fusion device and method of installation thereof
US8491659B2 (en) 2010-09-03 2013-07-23 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10779957B2 (en) 2010-09-03 2020-09-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10085849B2 (en) 2010-09-03 2018-10-02 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10945858B2 (en) 2010-09-03 2021-03-16 Globus Medical, Inc. Expandable interspinous process fixation device
US9566168B2 (en) 2010-09-03 2017-02-14 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8435298B2 (en) 2010-09-03 2013-05-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10758367B2 (en) 2010-09-03 2020-09-01 Globus Medical Inc. Expandable fusion device and method of installation thereof
US9907673B2 (en) 2010-09-03 2018-03-06 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10512550B2 (en) 2010-09-03 2019-12-24 Globus Medical, Inc. Expandable interspinous process fixation device
US10842644B2 (en) 2010-09-03 2020-11-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8845732B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8632595B2 (en) 2010-09-03 2014-01-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9351848B2 (en) 2010-09-03 2016-05-31 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8845731B2 (en) 2010-09-03 2014-09-30 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US11793654B2 (en) 2010-09-03 2023-10-24 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US10709573B2 (en) 2010-09-03 2020-07-14 Globus Medical Inc. Expandable fusion device and method of installation thereof
US8852279B2 (en) 2010-09-03 2014-10-07 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US20120078372A1 (en) 2010-09-23 2012-03-29 Thomas Gamache Novel implant inserter having a laterally-extending dovetail engagement feature
US9402732B2 (en) 2010-10-11 2016-08-02 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
US9149286B1 (en) 2010-11-12 2015-10-06 Flexmedex, LLC Guidance tool and method for use
US8876866B2 (en) 2010-12-13 2014-11-04 Globus Medical, Inc. Spinous process fusion devices and methods thereof
US9358122B2 (en) 2011-01-07 2016-06-07 K2M, Inc. Interbody spacer
IT1404831B1 (en) * 2011-02-21 2013-12-09 Maida INTERVERTEBRAL PROSTHESIS FOR THE DETACHABLE FIXING OF TWO ADJACENT VERTEBRAS
US9265620B2 (en) 2011-03-18 2016-02-23 Raed M. Ali, M.D., Inc. Devices and methods for transpedicular stabilization of the spine
FR2973684B1 (en) * 2011-04-11 2014-03-14 Osteal Medical Lab INTERVERTEBRAL CAGE FOR FUSION.
DE102011002076A1 (en) * 2011-04-15 2012-10-18 Z.-Medical Gmbh & Co. Kg Intervertebral implant and device for insertion
JP6047571B2 (en) * 2011-08-16 2016-12-21 ストライカー・スピン Expandable graft
CN103930058A (en) 2011-08-23 2014-07-16 弗雷科斯米德克斯有限公司 Tissue removal device and method
US9248028B2 (en) 2011-09-16 2016-02-02 DePuy Synthes Products, Inc. Removable, bone-securing cover plate for intervertebral fusion cage
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US8864833B2 (en) 2011-09-30 2014-10-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US8460388B2 (en) 2011-10-28 2013-06-11 Incite Innovation Llc Spinal interbody device
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US8628578B2 (en) 2011-12-19 2014-01-14 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US9445919B2 (en) 2011-12-19 2016-09-20 Warsaw Orthopedic, Inc. Expandable interbody implant and methods of use
US8512409B1 (en) * 2012-02-10 2013-08-20 Integral Spine Solutions, Inc. Implant with outwardly extending fixation elements
US9233007B2 (en) * 2012-02-13 2016-01-12 Blue Tip Biologics, Llc Expandable self-anchoring interbody cage for orthopedic applications
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US8771277B2 (en) 2012-05-08 2014-07-08 Globus Medical, Inc Device and a method for implanting a spinous process fixation device
CA2874749C (en) * 2012-05-29 2018-04-24 Neuropro Technologies, Inc. Bone fusion device
EP2877127B1 (en) 2012-07-26 2019-08-21 Synthes GmbH Expandable implant
JP6463677B2 (en) * 2012-08-08 2019-02-06 ジェームズ シー. ロビンソン, Expandable intervertebral cage assembly and method
US10154914B2 (en) 2012-08-08 2018-12-18 Spectrum Spine Ip Holdings, Llc Expandable intervertebral cage assemblies
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
US9907671B2 (en) 2012-11-16 2018-03-06 In Queue Innovations, Llc Oblique expanding fusion cage device and method
US10299934B2 (en) 2012-12-11 2019-05-28 Globus Medical, Inc Expandable vertebral implant
US8663332B1 (en) 2012-12-13 2014-03-04 Ouroboros Medical, Inc. Bone graft distribution system
US9011493B2 (en) 2012-12-31 2015-04-21 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9486251B2 (en) 2012-12-31 2016-11-08 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9198697B2 (en) 2013-03-13 2015-12-01 Globus Medical, Inc. Spinous process fixation system and methods thereof
US9585765B2 (en) 2013-02-14 2017-03-07 Globus Medical, Inc Devices and methods for correcting vertebral misalignment
US10105239B2 (en) 2013-02-14 2018-10-23 Globus Medical, Inc. Devices and methods for correcting vertebral misalignment
US9402738B2 (en) 2013-02-14 2016-08-02 Globus Medical, Inc. Devices and methods for correcting vertebral misalignment
US9782265B2 (en) 2013-02-15 2017-10-10 Globus Medical, Inc Articulating and expandable vertebral implant
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US10117754B2 (en) 2013-02-25 2018-11-06 Globus Medical, Inc. Expandable intervertebral implant
US9717601B2 (en) 2013-02-28 2017-08-01 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US9554918B2 (en) 2013-03-01 2017-01-31 Globus Medical, Inc. Articulating expandable intervertebral implant
US9198772B2 (en) 2013-03-01 2015-12-01 Globus Medical, Inc. Articulating expandable intervertebral implant
US9204972B2 (en) 2013-03-01 2015-12-08 Globus Medical, Inc. Articulating expandable intervertebral implant
US10004607B2 (en) 2013-03-01 2018-06-26 Globus Medical, Inc. Articulating expandable intervertebral implant
US9770343B2 (en) 2013-03-01 2017-09-26 Globus Medical Inc. Articulating expandable intervertebral implant
US9522070B2 (en) 2013-03-07 2016-12-20 Interventional Spine, Inc. Intervertebral implant
US10342675B2 (en) * 2013-03-11 2019-07-09 Stryker European Holdings I, Llc Expandable implant
US10687962B2 (en) 2013-03-14 2020-06-23 Raed M. Ali, M.D., Inc. Interbody fusion devices, systems and methods
US9861495B2 (en) 2013-03-14 2018-01-09 Raed M. Ali, M.D., Inc. Lateral interbody fusion devices, systems and methods
US10245087B2 (en) 2013-03-15 2019-04-02 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
US9717539B2 (en) 2013-07-30 2017-08-01 Jcbd, Llc Implants, systems, and methods for fusing a sacroiliac joint
US9826986B2 (en) 2013-07-30 2017-11-28 Jcbd, Llc Systems for and methods of preparing a sacroiliac joint for fusion
WO2014146018A1 (en) 2013-03-15 2014-09-18 Jcbd, Llc Systems and methods for fusing a sacroiliac joint and anchoring an orthopedic appliance
US11311312B2 (en) 2013-03-15 2022-04-26 Medtronic, Inc. Subcutaneous delivery tool
US9572677B2 (en) 2013-03-15 2017-02-21 Globus Medical, Inc. Expandable intervertebral implant
US9700356B2 (en) 2013-07-30 2017-07-11 Jcbd, Llc Systems for and methods of fusing a sacroiliac joint
US9149367B2 (en) 2013-03-15 2015-10-06 Globus Medical Inc Expandable intervertebral implant
US9233009B2 (en) 2013-03-15 2016-01-12 Globus Medical, Inc. Expandable intervertebral implant
US9456906B2 (en) 2013-03-15 2016-10-04 Globus Medical, Inc. Expandable intervertebral implant
US9034045B2 (en) 2013-03-15 2015-05-19 Globus Medical, Inc Expandable intervertebral implant
EP2967901B1 (en) 2013-03-15 2020-05-06 In Queue Innovations, LLC Expandable fusion cage system
WO2014145995A2 (en) 2013-03-15 2014-09-18 Spectrum Spine Ip Holdings, Llc Expandable inter-body fusion devices and methods
US20140277510A1 (en) * 2013-03-15 2014-09-18 Spectrum Spine Ip Holdings, Llc Expandable vertebral body replacement device, system, and methods
US9186258B2 (en) 2013-03-15 2015-11-17 Globus Medical, Inc. Expandable intervertebral implant
US9220610B2 (en) * 2013-03-20 2015-12-29 Kuei Jung CHEN Textured implant device having series extendible blades
US9421110B2 (en) * 2013-05-10 2016-08-23 Sidewinder Medical Products Llc Expandable spinal fusion cage
US10149770B2 (en) 2013-07-09 2018-12-11 Seaspine, Inc. Orthopedic implant with adjustable angle between tissue contact surfaces
US9186259B2 (en) 2013-09-09 2015-11-17 Ouroboros Medical, Inc. Expandable trials
US9820865B2 (en) 2013-10-31 2017-11-21 Nlt Spine Ltd. Adjustable implant
US9668876B2 (en) 2013-12-05 2017-06-06 Spinal Elements, Inc. Expandable interbody device
WO2015087285A1 (en) * 2013-12-11 2015-06-18 Nlt Spine Ltd. Worm-gear actuated orthopedic implants & methods
US9662224B2 (en) 2014-02-07 2017-05-30 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US9402739B2 (en) 2014-02-07 2016-08-02 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US9839528B2 (en) 2014-02-07 2017-12-12 Globus Medical, Inc. Variable lordosis spacer and related methods of use
US9486328B2 (en) 2014-04-01 2016-11-08 Ex Technology, Llc Expandable intervertebral cage
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US9801546B2 (en) 2014-05-27 2017-10-31 Jcbd, Llc Systems for and methods of diagnosing and treating a sacroiliac joint disorder
JP6263314B2 (en) * 2014-06-04 2018-01-17 ヴェンツェル スパイン,インコーポレイテッド Interbody fusion device that expands bilaterally
US10492923B2 (en) 2014-06-25 2019-12-03 Seaspine, Inc. Expanding implant with hinged arms
US9730806B2 (en) 2014-10-27 2017-08-15 Warsaw Orthopedic, Inc. Spinal implant system and method
US10575964B2 (en) 2014-10-28 2020-03-03 Spectrum Spine Ip Holdings, Llc Expandable, adjustable inter-body fusion devices and methods
WO2016069796A1 (en) 2014-10-28 2016-05-06 Spectrum Spine Ip Holdings, Llc Expandable, adjustable inter-body fusion devices and methods
US9937053B2 (en) 2014-11-04 2018-04-10 Warsaw Orthopedic, Inc. Expandable interbody implant
US9901459B2 (en) 2014-12-16 2018-02-27 Globus Medical, Inc. Expandable fusion devices and methods of installation thereof
US9060876B1 (en) 2015-01-20 2015-06-23 Ouroboros Medical, Inc. Stabilized intervertebral scaffolding systems
US9907670B2 (en) 2015-01-21 2018-03-06 Warsaw Orthopedic, Inc. Unitarily formed expandable spinal implant and method of manufacturing and implanting same
US11426290B2 (en) 2015-03-06 2022-08-30 DePuy Synthes Products, Inc. Expandable intervertebral implant, system, kit and method
US20180049754A1 (en) * 2015-03-13 2018-02-22 Redemed S.R.L. Intervertebral prosthesis, apparatus for implanting intervertebral prostheses and surgical method for implanting intervertebral prostheses, particularly for percutaneous mini-invasive surgery procedures
US9931227B2 (en) 2015-03-13 2018-04-03 Redemed S.R.L. Intervertebral prosthesis, apparatus for implanting intervertebral prostheses and surgical method for implanting intervertebral prostheses, particularly for percutaneous minimally-invasive surgical procedures
US10376378B2 (en) 2015-05-21 2019-08-13 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US10433975B2 (en) 2015-05-21 2019-10-08 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US10765532B2 (en) 2015-05-21 2020-09-08 Globus Medical, Inc. Device and method for deployment of an anchoring device for intervertebral spinal fusion
US9848996B2 (en) 2015-06-17 2017-12-26 Globus Medical, Inc. Variable lordotic interbody spacer
US9913727B2 (en) 2015-07-02 2018-03-13 Medos International Sarl Expandable implant
US10016282B2 (en) 2015-07-17 2018-07-10 Globus Medical, Inc. Intervertebral spacer and plate
US9713536B2 (en) 2015-08-12 2017-07-25 Warsaw Orthopedic, Inc. Expandable spinal implant and method of implanting same
US10034768B2 (en) 2015-09-02 2018-07-31 Globus Medical, Inc. Implantable systems, devices and related methods
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
US10610376B2 (en) * 2015-10-16 2020-04-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method
US10779955B2 (en) 2015-10-26 2020-09-22 Warsaw Orthopedic, Inc. Spinal implant system and method
US10188526B2 (en) 2015-10-26 2019-01-29 Warsaw Orthopedic, Inc. Spinal implant system and method
US10219914B2 (en) 2015-11-10 2019-03-05 Globus Medical, Inc. Stabilized expandable intervertebral spacer
US10369004B2 (en) 2015-12-16 2019-08-06 Globus Medical, Inc. Expandable intervertebralspacer
US10076423B2 (en) 2016-01-04 2018-09-18 Warsaw Orthopedic, Inc. Pivoting wedge expanding spinal implant and method of implanting same
US10137006B2 (en) 2016-01-28 2018-11-27 Warsaw Orthopedic, Inc. Geared cam expandable interbody implant and method of implanting same
US9937054B2 (en) 2016-01-28 2018-04-10 Warsaw Orthopedic, Inc. Expandable implant and insertion tool
US10299837B2 (en) * 2016-03-08 2019-05-28 West End Bay Partners, Llc Sacroiliac joint stabilization and fixation devices and related methods
EP4233801A3 (en) 2016-06-28 2023-09-06 Eit Emerging Implant Technologies GmbH Expandable, angularly adjustable intervertebral cages
EP3474782A2 (en) 2016-06-28 2019-05-01 Eit Emerging Implant Technologies GmbH Expandable and angularly adjustable articulating intervertebral cages
US10052215B2 (en) 2016-06-29 2018-08-21 Globus Medical, Inc. Expandable fusion device and method of installation thereof
US9974662B2 (en) 2016-06-29 2018-05-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof
EP3487448A4 (en) * 2016-07-21 2020-03-04 Seaspine, Inc. Expandable implant
US10537434B2 (en) 2016-08-08 2020-01-21 Wu Jau Ching Intervertebral implant
CN106073876B (en) * 2016-08-10 2018-12-04 邹德威 Fusion device
US9883953B1 (en) 2016-09-21 2018-02-06 Integrity Implants Inc. Stabilized laterovertically-expanding fusion cage systems with tensioner
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10537436B2 (en) 2016-11-01 2020-01-21 DePuy Synthes Products, Inc. Curved expandable cage
US10238503B2 (en) 2016-11-01 2019-03-26 Warsaw Orthopedic, Inc. Expandable spinal implant system with a biased tip and method of using same
US9750618B1 (en) * 2016-11-29 2017-09-05 Amendia, Inc. Intervertebral implant device with independent distal-proximal expansion
US10888433B2 (en) 2016-12-14 2021-01-12 DePuy Synthes Products, Inc. Intervertebral implant inserter and related methods
US10682239B2 (en) * 2017-01-06 2020-06-16 Ke Ling Biotech Limited Expandable spinal interbody cage
WO2018132502A1 (en) 2017-01-10 2018-07-19 Anza Innovations Inc. Expandable intervertebral fusion device
US10398563B2 (en) 2017-05-08 2019-09-03 Medos International Sarl Expandable cage
US11344424B2 (en) * 2017-06-14 2022-05-31 Medos International Sarl Expandable intervertebral implant and related methods
US10940016B2 (en) 2017-07-05 2021-03-09 Medos International Sarl Expandable intervertebral fusion cage
WO2019023251A1 (en) 2017-07-24 2019-01-31 Integrity Implants, Inc. Surgical implant and related methods
US10022239B1 (en) * 2017-08-16 2018-07-17 Hammill Medical LLC Spinal implant with opposing taper coaxial drive system
US10709578B2 (en) 2017-08-25 2020-07-14 Integrity Implants Inc. Surgical biologics delivery system and related methods
US11628057B2 (en) * 2017-08-28 2023-04-18 Conmed Corporation System and method for preparing a soft tissue graft
US10603055B2 (en) 2017-09-15 2020-03-31 Jcbd, Llc Systems for and methods of preparing and fusing a sacroiliac joint
US11013610B2 (en) * 2017-10-18 2021-05-25 Spine Wave, Inc. Expandable anterior lumbar interbody fusion device
US10864029B2 (en) 2018-01-26 2020-12-15 West End Bay Partners, Llc Sacroiliac joint stabilization and fixation devices and related methods
US11806250B2 (en) 2018-02-22 2023-11-07 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
AU2019226097A1 (en) 2018-02-22 2020-08-20 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
AU2019226102A1 (en) 2018-02-22 2020-08-13 Warsaw Orthopedic, Inc. Expandable spinal implant system and method of using same
US11285018B2 (en) 2018-03-01 2022-03-29 Integrity Implants Inc. Expandable fusion device with independent expansion systems
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11446156B2 (en) 2018-10-25 2022-09-20 Medos International Sarl Expandable intervertebral implant, inserter instrument, and related methods
US10722380B1 (en) * 2019-02-04 2020-07-28 Bret Michael Berry Laterally expandable spinal implant
US11497622B2 (en) 2019-03-05 2022-11-15 Ex Technology, Llc Transversely expandable minimally invasive intervertebral cage and insertion and extraction device
US11234835B2 (en) 2019-03-05 2022-02-01 Octagon Spine Llc Transversely expandable minimally invasive intervertebral cage
US11219531B2 (en) 2019-04-10 2022-01-11 Wenzel Spine, Inc. Rotatable intervertebral spacing implant
USD948048S1 (en) 2019-04-26 2022-04-05 Warsaw Orthopedic, Inc. Surgical implant
USD955579S1 (en) 2019-04-26 2022-06-21 Warsaw Orthopedic, Inc. Surgical implant
US11259933B2 (en) 2019-09-06 2022-03-01 Globus Medical Inc. Expandable motion preservation spacer
US11191650B2 (en) 2020-02-03 2021-12-07 Globus Medical Inc. Expandable fusions devices, instruments, and methods thereof
US11426286B2 (en) 2020-03-06 2022-08-30 Eit Emerging Implant Technologies Gmbh Expandable intervertebral implant
US11065127B1 (en) * 2020-04-01 2021-07-20 Hammill Medical LLC Dual-lead thread drive screw for a lateral expanding coaxial spinal implant
US11298240B2 (en) 2020-06-16 2022-04-12 Globus Medical, Inc. Expanding intervertebral implants
US11166825B1 (en) 2020-07-01 2021-11-09 Warsaw Orthopedic, Inc. Spinal implant
US11357640B2 (en) 2020-07-08 2022-06-14 Globus Medical Inc. Expandable interbody fusions devices
US11491020B2 (en) 2020-07-09 2022-11-08 Globus Medical, Inc. Articulating and expandable interbody fusions devices
US11554020B2 (en) 2020-09-08 2023-01-17 Life Spine, Inc. Expandable implant with pivoting control assembly
WO2022061477A1 (en) 2020-09-23 2022-03-31 Caratsch Alexander Expandable and modular intervertebral implant
US11376134B1 (en) 2020-11-05 2022-07-05 Warsaw Orthopedic, Inc. Dual expanding spinal implant, system, and method of use
US11395743B1 (en) 2021-05-04 2022-07-26 Warsaw Orthopedic, Inc. Externally driven expandable interbody and related methods
US11638653B2 (en) 2020-11-05 2023-05-02 Warsaw Orthopedic, Inc. Surgery instruments with a movable handle
US11617658B2 (en) 2020-11-05 2023-04-04 Warsaw Orthopedic, Inc. Expandable inter-body device, system and method
US11517443B2 (en) 2020-11-05 2022-12-06 Warsaw Orthopedic, Inc. Dual wedge expandable implant, system and method of use
US11291554B1 (en) 2021-05-03 2022-04-05 Medtronic, Inc. Unibody dual expanding interbody implant
US11285014B1 (en) 2020-11-05 2022-03-29 Warsaw Orthopedic, Inc. Expandable inter-body device, system, and method
US11833059B2 (en) 2020-11-05 2023-12-05 Warsaw Orthopedic, Inc. Expandable inter-body device, expandable plate system, and associated methods
US11850160B2 (en) 2021-03-26 2023-12-26 Medos International Sarl Expandable lordotic intervertebral fusion cage
US11752009B2 (en) 2021-04-06 2023-09-12 Medos International Sarl Expandable intervertebral fusion cage
WO2022232957A1 (en) 2021-05-02 2022-11-10 Caratsch Alexander Expandable and flexible intervertebral implant
US11612499B2 (en) 2021-06-24 2023-03-28 Warsaw Orthopedic, Inc. Expandable interbody implant
US11730608B2 (en) 2021-07-13 2023-08-22 Warsaw Orthopedic, Inc. Monoblock expandable interbody implant
US11712346B2 (en) 2021-12-02 2023-08-01 Globus Medical, Inc. Expandable fusion device with integrated deployable retention spikes
US11850163B2 (en) 2022-02-01 2023-12-26 Warsaw Orthopedic, Inc. Interbody implant with adjusting shims
US11883080B1 (en) 2022-07-13 2024-01-30 Globus Medical, Inc Reverse dynamization implants

Citations (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4961740A (en) * 1988-10-17 1990-10-09 Surgical Dynamics, Inc. V-thread fusion cage and method of fusing a bone joint
US5015247A (en) * 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US5702391A (en) * 1995-05-16 1997-12-30 Lin; Chih-I Intervertebral fusion device
US5800550A (en) * 1996-03-13 1998-09-01 Sertich; Mario M. Interbody fusion cage
US5800547A (en) * 1994-08-20 1998-09-01 Schafer Micomed Gmbh Ventral intervertebral implant
US5885287A (en) * 1995-12-19 1999-03-23 Spine-Tech, Inc. Self-tapping interbody bone implant
US6045579A (en) * 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US6102950A (en) * 1999-01-19 2000-08-15 Vaccaro; Alex Intervertebral body fusion device
US6102949A (en) * 1997-12-03 2000-08-15 Biedermann Motech Gmbh Intervertebrae implant
US6176882B1 (en) * 1998-02-20 2001-01-23 Biedermann Motech Gmbh Intervertebral implant
US6179873B1 (en) * 1995-08-11 2001-01-30 Bernhard Zientek Intervertebral implant, process for widening and instruments for implanting an intervertebral implant
US6342074B1 (en) * 1999-04-30 2002-01-29 Nathan S. Simpson Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae
US6371968B1 (en) * 1996-05-09 2002-04-16 Olympus Optical Co., Ltd. Cavity retaining tool for bone surgery, a cavity retaining tool for general surgery, an endoscopic surgery system involving the use of a cavity retaining tool, and a procedure for surgery
US6371987B1 (en) * 1998-04-23 2002-04-16 Medinorm Ag Medizintechnische Produkte Device for connecting vertebrae of the vertebral column
US6409766B1 (en) * 1998-07-30 2002-06-25 Expanding Concepts, Llc Collapsible and expandable interbody fusion device
US6436140B1 (en) * 1998-08-28 2002-08-20 Sofamor S.N.C. Expandable interbody fusion cage and method for insertion
US6464727B1 (en) * 1999-09-01 2002-10-15 Hugh R. Sharkey Intervertebral spacer implant
US6488710B2 (en) * 1999-07-02 2002-12-03 Petrus Besselink Reinforced expandable cage and method of deploying
US6491695B1 (en) * 1999-11-05 2002-12-10 Carl Roggenbuck Apparatus and method for aligning vertebrae
US6527803B1 (en) * 1998-06-23 2003-03-04 Dimso (Distribution Medicale Du Sud-Ouest) Intersomatic spine implant having anchoring elements
US6562041B1 (en) * 1997-08-29 2003-05-13 Sulzer Spine-Tech Inc. Apparatus and method for spinal stabilization
US6572619B2 (en) * 2001-02-23 2003-06-03 Albert N. Santilli Cage plate for spinal fusion and method of operation
US6582467B1 (en) * 2000-10-31 2003-06-24 Vertelink Corporation Expandable fusion cage
US6582431B1 (en) * 1997-02-06 2003-06-24 Howmedica Osteonics Corp. Expandable non-threaded spinal fusion device
US6595995B2 (en) * 1995-03-27 2003-07-22 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6613091B1 (en) * 1995-03-27 2003-09-02 Sdgi Holdings, Inc. Spinal fusion implants and tools for insertion and revision
US6645249B2 (en) * 2001-10-18 2003-11-11 Spinecore, Inc. Intervertebral spacer device having a multi-pronged domed spring
US6666888B1 (en) * 2000-08-23 2003-12-23 Roger P. Jackson Threaded fusion cage with enhanced anterior support
US6767367B1 (en) * 2002-02-02 2004-07-27 Gary K. Michelson Spinal fusion implant having deployable bone engaging projections
US6770096B2 (en) * 1999-07-01 2004-08-03 Spinevision S.A. Interbody spinal stabilization cage and spinal stabilization method
US20050283236A1 (en) * 2002-11-12 2005-12-22 Hassan Razian Intervertebral cage with medial fixing plate
US7018415B1 (en) * 2002-09-23 2006-03-28 Sdgi Holdings, Inc. Expandable spinal fusion device and methods of promoting spinal fusion

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1333209C (en) * 1988-06-28 1994-11-29 Gary Karlin Michelson Artificial spinal fusion implants
JP3390431B2 (en) * 1991-02-22 2003-03-24 マドハヴァン、ピシャロディ Centrally expandable disc implant and method
US5443514A (en) * 1993-10-01 1995-08-22 Acromed Corporation Method for using spinal implants
CN1156255C (en) * 1993-10-01 2004-07-07 美商-艾克罗米德公司 Spinal implant
US5665122A (en) * 1995-01-31 1997-09-09 Kambin; Parviz Expandable intervertebral cage and surgical method
US5658335A (en) * 1995-03-09 1997-08-19 Cohort Medical Products Group, Inc. Spinal fixator
US5782919A (en) * 1995-03-27 1998-07-21 Sdgi Holdings, Inc. Interbody fusion device and method for restoration of normal spinal anatomy
US5653763A (en) * 1996-03-29 1997-08-05 Fastenetix, L.L.C. Intervertebral space shape conforming cage device
FR2753368B1 (en) * 1996-09-13 1999-01-08 Chauvin Jean Luc EXPANSIONAL OSTEOSYNTHESIS CAGE
US6174311B1 (en) * 1998-10-28 2001-01-16 Sdgi Holdings, Inc. Interbody fusion grafts and instrumentation
US6080158A (en) * 1999-08-23 2000-06-27 Lin; Chih-I Intervertebral fusion device
US6709458B2 (en) * 2000-02-04 2004-03-23 Gary Karlin Michelson Expandable push-in arcuate interbody spinal fusion implant with tapered configuration during insertion
US6821298B1 (en) * 2000-04-18 2004-11-23 Roger P. Jackson Anterior expandable spinal fusion cage system
WO2002058600A2 (en) * 2001-01-26 2002-08-01 Osteotech, Inc. Implant insertion tool
JP4133331B2 (en) * 2001-02-04 2008-08-13 ウォーソー・オーソペディック・インコーポレーテッド Apparatus and method for inserting and deploying an expandable interbody spinal fusion implant
US7128760B2 (en) * 2001-03-27 2006-10-31 Warsaw Orthopedic, Inc. Radially expanding interbody spinal fusion implants, instrumentation, and methods of insertion
US8025684B2 (en) * 2001-11-09 2011-09-27 Zimmer Spine, Inc. Instruments and methods for inserting a spinal implant
US6902568B2 (en) * 2002-03-19 2005-06-07 Hassan Serhan Vertebral endplate milling device
US6981991B2 (en) * 2002-06-27 2006-01-03 Ferree Bret A Arthroplasty devices configured to reduce shear stress
JP4164315B2 (en) * 2002-08-20 2008-10-15 昭和医科工業株式会社 Intervertebral spacer
DE10248171A1 (en) * 2002-10-16 2004-05-13 Advanced Medical Technologies Ag Implant for placement between vertebrae of the spine
US6685742B1 (en) * 2002-11-12 2004-02-03 Roger P. Jackson Articulated anterior expandable spinal fusion cage system
US6986771B2 (en) 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
US7621956B2 (en) 2003-07-31 2009-11-24 Globus Medical, Inc. Prosthetic spinal disc replacement
US7217291B2 (en) * 2003-12-08 2007-05-15 St. Francis Medical Technologies, Inc. System and method for replacing degenerated spinal disks
US20060069436A1 (en) * 2004-09-30 2006-03-30 Depuy Spine, Inc. Trial disk implant
US20060095136A1 (en) * 2004-11-03 2006-05-04 Mcluen Design, Inc. Bone fusion device
US7674296B2 (en) 2005-04-21 2010-03-09 Globus Medical, Inc. Expandable vertebral prosthesis
US7811327B2 (en) 2005-04-21 2010-10-12 Globus Medical Inc. Expandable vertebral prosthesis
US7758617B2 (en) 2005-04-27 2010-07-20 Globus Medical, Inc. Percutaneous vertebral stabilization system
US7837688B2 (en) 2005-06-13 2010-11-23 Globus Medical Spinous process spacer
US20070093897A1 (en) * 2005-10-21 2007-04-26 Stryker Spine (In France) System and method for fusion cage implantation
US7594932B2 (en) * 2005-12-29 2009-09-29 International Spinal Innovations, Llc Apparatus for anterior intervertebral spinal fixation and fusion
US8157845B2 (en) * 2006-03-22 2012-04-17 Beacon Biomedical, Llc Pivotable vetrebral spacer
US8801791B2 (en) * 2006-09-27 2014-08-12 K2M, Inc. Spinal interbody spacer
WO2008070863A2 (en) * 2006-12-07 2008-06-12 Interventional Spine, Inc. Intervertebral implant
US8167950B2 (en) * 2007-10-11 2012-05-01 International Spinal Innovations, Llc Minimally invasive lateral intervertbral fixation system, device and method
WO2009070721A1 (en) * 2007-11-28 2009-06-04 Pioneer Surgical Technology, Inc Device for securing an implant to tissue
US8267939B2 (en) * 2008-02-28 2012-09-18 Stryker Spine Tool for implanting expandable intervertebral implant
US8062375B2 (en) 2009-10-15 2011-11-22 Globus Medical, Inc. Expandable fusion device and method of installation thereof

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5015247A (en) * 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US4961740A (en) * 1988-10-17 1990-10-09 Surgical Dynamics, Inc. V-thread fusion cage and method of fusing a bone joint
US4961740B1 (en) * 1988-10-17 1997-01-14 Surgical Dynamics Inc V-thread fusion cage and method of fusing a bone joint
US5800547A (en) * 1994-08-20 1998-09-01 Schafer Micomed Gmbh Ventral intervertebral implant
US6595995B2 (en) * 1995-03-27 2003-07-22 Sdgi Holdings, Inc. Methods and instruments for interbody fusion
US6613091B1 (en) * 1995-03-27 2003-09-02 Sdgi Holdings, Inc. Spinal fusion implants and tools for insertion and revision
US5702391A (en) * 1995-05-16 1997-12-30 Lin; Chih-I Intervertebral fusion device
US6179873B1 (en) * 1995-08-11 2001-01-30 Bernhard Zientek Intervertebral implant, process for widening and instruments for implanting an intervertebral implant
US5885287A (en) * 1995-12-19 1999-03-23 Spine-Tech, Inc. Self-tapping interbody bone implant
US5800550A (en) * 1996-03-13 1998-09-01 Sertich; Mario M. Interbody fusion cage
US6371968B1 (en) * 1996-05-09 2002-04-16 Olympus Optical Co., Ltd. Cavity retaining tool for bone surgery, a cavity retaining tool for general surgery, an endoscopic surgery system involving the use of a cavity retaining tool, and a procedure for surgery
US6582431B1 (en) * 1997-02-06 2003-06-24 Howmedica Osteonics Corp. Expandable non-threaded spinal fusion device
US6576016B1 (en) * 1997-05-01 2003-06-10 Spinal Concepts, Inc. Adjustable height fusion device
US6080193A (en) * 1997-05-01 2000-06-27 Spinal Concepts, Inc. Adjustable height fusion device
US6045579A (en) * 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US6562041B1 (en) * 1997-08-29 2003-05-13 Sulzer Spine-Tech Inc. Apparatus and method for spinal stabilization
US6102949A (en) * 1997-12-03 2000-08-15 Biedermann Motech Gmbh Intervertebrae implant
US6176882B1 (en) * 1998-02-20 2001-01-23 Biedermann Motech Gmbh Intervertebral implant
US6371987B1 (en) * 1998-04-23 2002-04-16 Medinorm Ag Medizintechnische Produkte Device for connecting vertebrae of the vertebral column
US6527803B1 (en) * 1998-06-23 2003-03-04 Dimso (Distribution Medicale Du Sud-Ouest) Intersomatic spine implant having anchoring elements
US6409766B1 (en) * 1998-07-30 2002-06-25 Expanding Concepts, Llc Collapsible and expandable interbody fusion device
US6436140B1 (en) * 1998-08-28 2002-08-20 Sofamor S.N.C. Expandable interbody fusion cage and method for insertion
US6102950A (en) * 1999-01-19 2000-08-15 Vaccaro; Alex Intervertebral body fusion device
US6342074B1 (en) * 1999-04-30 2002-01-29 Nathan S. Simpson Anterior lumbar interbody fusion implant and method for fusing adjacent vertebrae
US6770096B2 (en) * 1999-07-01 2004-08-03 Spinevision S.A. Interbody spinal stabilization cage and spinal stabilization method
US6488710B2 (en) * 1999-07-02 2002-12-03 Petrus Besselink Reinforced expandable cage and method of deploying
US6464727B1 (en) * 1999-09-01 2002-10-15 Hugh R. Sharkey Intervertebral spacer implant
US6491695B1 (en) * 1999-11-05 2002-12-10 Carl Roggenbuck Apparatus and method for aligning vertebrae
US6666888B1 (en) * 2000-08-23 2003-12-23 Roger P. Jackson Threaded fusion cage with enhanced anterior support
US6582467B1 (en) * 2000-10-31 2003-06-24 Vertelink Corporation Expandable fusion cage
US6572619B2 (en) * 2001-02-23 2003-06-03 Albert N. Santilli Cage plate for spinal fusion and method of operation
US6645249B2 (en) * 2001-10-18 2003-11-11 Spinecore, Inc. Intervertebral spacer device having a multi-pronged domed spring
US6767367B1 (en) * 2002-02-02 2004-07-27 Gary K. Michelson Spinal fusion implant having deployable bone engaging projections
US6923830B2 (en) * 2002-02-02 2005-08-02 Gary K. Michelson Spinal fusion implant having deployable bone engaging projections
US7018415B1 (en) * 2002-09-23 2006-03-28 Sdgi Holdings, Inc. Expandable spinal fusion device and methods of promoting spinal fusion
US20050283236A1 (en) * 2002-11-12 2005-12-22 Hassan Razian Intervertebral cage with medial fixing plate

Cited By (342)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8568454B2 (en) 1997-01-02 2013-10-29 Warsaw Orthopedic, Inc. Spine distraction implant and method
US8128663B2 (en) 1997-01-02 2012-03-06 Kyphon Sarl Spine distraction implant
US7901432B2 (en) 1997-01-02 2011-03-08 Kyphon Sarl Method for lateral implantation of spinous process spacer
US20100042217A1 (en) * 1997-01-02 2010-02-18 Kyphon Sarl Spine distraction implant and method
US7918877B2 (en) 1997-01-02 2011-04-05 Kyphon Sarl Lateral insertion method for spinous process spacer with deployable member
US7955356B2 (en) 1997-01-02 2011-06-07 Kyphon Sarl Laterally insertable interspinous process implant
US7993374B2 (en) 1997-01-02 2011-08-09 Kyphon Sarl Supplemental spine fixation device and method
US8029542B2 (en) 1997-01-02 2011-10-04 Kyphon Sarl Supplemental spine fixation device and method
US20080288075A1 (en) * 1997-01-02 2008-11-20 Zucherman James F Spine distraction implant and method
US8821548B2 (en) 1997-01-02 2014-09-02 Warsaw Orthopedic, Inc. Spine distraction implant and method
US20080051904A1 (en) * 1997-01-02 2008-02-28 Zucherman James F Supplemental spine fixation device and method
US20070203495A1 (en) * 1997-01-02 2007-08-30 Zucherman James F Spine distraction implant and method
US20080183210A1 (en) * 1997-01-02 2008-07-31 Zucherman James F Supplemental spine fixation device and method
US8349013B2 (en) 1997-01-02 2013-01-08 Kyphon Sarl Spine distraction implant
US20070265625A1 (en) * 1997-01-02 2007-11-15 Zucherman James F Spine distraction implant and method
US8617211B2 (en) 1997-01-02 2013-12-31 Warsaw Orthopedic, Inc. Spine distraction implant and method
US20080015700A1 (en) * 1997-01-02 2008-01-17 Zucherman James F Spine distraction implant and method
US8540751B2 (en) 1997-01-02 2013-09-24 Warsaw Orthopedic, Inc. Spine distraction implant and method
US8568455B2 (en) 1997-01-02 2013-10-29 Warsaw Orthopedic, Inc. Spine distraction implant and method
US8672975B2 (en) 1997-01-02 2014-03-18 Warsaw Orthopedic, Inc Spine distraction implant and method
US8740943B2 (en) 1997-01-02 2014-06-03 Warsaw Orthopedic, Inc. Spine distraction implant and method
US9333095B2 (en) 2001-05-04 2016-05-10 Ldr Medical Intervertebral disc prosthesis, surgical methods, and fitting tools
US9078765B2 (en) 2001-07-13 2015-07-14 Ldr Medical Vertebral cage device with modular fixation
US20060136060A1 (en) * 2002-09-10 2006-06-22 Jean Taylor Posterior vertebral support assembly
US7776069B2 (en) 2002-09-10 2010-08-17 Kyphon SÀRL Posterior vertebral support assembly
US20080051898A1 (en) * 2002-10-29 2008-02-28 Zucherman James F Interspinous process implants and methods of use
US20080065214A1 (en) * 2002-10-29 2008-03-13 Zucherman James F Interspinous process implants and methods of use
US20080033553A1 (en) * 2002-10-29 2008-02-07 Zucherman James F Interspinous process implants and methods of use
US8007537B2 (en) 2002-10-29 2011-08-30 Kyphon Sarl Interspinous process implants and methods of use
US7803190B2 (en) 2002-10-29 2010-09-28 Kyphon SÀRL Interspinous process apparatus and method with a selectably expandable spacer
US8267999B2 (en) 2002-11-05 2012-09-18 Ldr Medical Intervertebral disc prosthesis
US8070778B2 (en) 2003-05-22 2011-12-06 Kyphon Sarl Interspinous process implant with slide-in distraction piece and method of implantation
US8048117B2 (en) 2003-05-22 2011-11-01 Kyphon Sarl Interspinous process implant and method of implantation
US8858635B2 (en) 2004-02-04 2014-10-14 Ldr Medical Intervertebral disc prosthesis
US10603185B2 (en) 2004-02-04 2020-03-31 Ldr Medical Intervertebral disc prosthesis
US20080071280A1 (en) * 2004-04-28 2008-03-20 St. Francis Medical Technologies, Inc. System and Method for Insertion of an Interspinous Process Implant that is Rotatable in Order to Retain the Implant Relative to the Spinous Processes
US8974532B2 (en) 2004-04-28 2015-03-10 Ldr Medical Intervertebral disc prosthesis
US10682240B2 (en) 2004-11-03 2020-06-16 Neuropro Technologies, Inc. Bone fusion device
US9974665B2 (en) 2004-11-03 2018-05-22 Neuropro Technologies, Inc. Bone fusion device
US11583414B2 (en) 2004-11-03 2023-02-21 Neuropro Technologies, Inc. Bone fusion device
WO2013181024A1 (en) 2004-11-03 2013-12-05 Neuropro Technologies, Inc. Bone fusion device
US9186262B2 (en) 2004-11-03 2015-11-17 Neuropro Technologies, Inc. Bone fusion device
US10226355B2 (en) 2004-12-22 2019-03-12 Ldr Medical Intervertebral disc prosthesis
US8257439B2 (en) 2004-12-22 2012-09-04 Ldr Medical Intervertebral disc prosthesis
US8679161B2 (en) 2005-02-17 2014-03-25 Warsaw Orthopedic, Inc. Percutaneous spinal implants and methods
US7998174B2 (en) 2005-02-17 2011-08-16 Kyphon Sarl Percutaneous spinal implants and methods
US8100943B2 (en) 2005-02-17 2012-01-24 Kyphon Sarl Percutaneous spinal implants and methods
US8096994B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8097018B2 (en) 2005-02-17 2012-01-17 Kyphon Sarl Percutaneous spinal implants and methods
US8057513B2 (en) 2005-02-17 2011-11-15 Kyphon Sarl Percutaneous spinal implants and methods
US8147516B2 (en) 2005-02-17 2012-04-03 Kyphon Sarl Percutaneous spinal implants and methods
US20070225706A1 (en) * 2005-02-17 2007-09-27 Clark Janna G Percutaneous spinal implants and methods
US8157841B2 (en) 2005-02-17 2012-04-17 Kyphon Sarl Percutaneous spinal implants and methods
US8454693B2 (en) 2005-02-17 2013-06-04 Kyphon Sarl Percutaneous spinal implants and methods
US20070055237A1 (en) * 2005-02-17 2007-03-08 Edidin Avram A Percutaneous spinal implants and methods
US20070043363A1 (en) * 2005-02-17 2007-02-22 Malandain Hugues F Percutaneous spinal implants and methods
US8038698B2 (en) 2005-02-17 2011-10-18 Kphon Sarl Percutaneous spinal implants and methods
US20070043362A1 (en) * 2005-02-17 2007-02-22 Malandain Hugues F Percutaneous spinal implants and methods
US8034080B2 (en) 2005-02-17 2011-10-11 Kyphon Sarl Percutaneous spinal implants and methods
US8029567B2 (en) 2005-02-17 2011-10-04 Kyphon Sarl Percutaneous spinal implants and methods
US8007521B2 (en) 2005-02-17 2011-08-30 Kyphon Sarl Percutaneous spinal implants and methods
US8221458B2 (en) 2005-02-17 2012-07-17 Kyphon Sarl Percutaneous spinal implants and methods
US8167890B2 (en) 2005-02-17 2012-05-01 Kyphon Sarl Percutaneous spinal implants and methods
US7988709B2 (en) * 2005-02-17 2011-08-02 Kyphon Sarl Percutaneous spinal implants and methods
US7931674B2 (en) 2005-03-21 2011-04-26 Kyphon Sarl Interspinous process implant having deployable wing and method of implantation
US8591546B2 (en) 2005-03-21 2013-11-26 Warsaw Orthopedic, Inc. Interspinous process implant having a thread-shaped wing and method of implantation
US20060264938A1 (en) * 2005-03-21 2006-11-23 St. Francis Medical Technologies, Inc. Interspinous process implant having deployable wing and method of implantation
US20060265066A1 (en) * 2005-03-21 2006-11-23 St. Francis Medical Technologies, Inc. Interspinous process implant having a thread-shaped wing and method of implantation
US8147548B2 (en) 2005-03-21 2012-04-03 Kyphon Sarl Interspinous process implant having a thread-shaped wing and method of implantation
US20100305705A1 (en) * 2005-03-31 2010-12-02 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US10172718B2 (en) 2005-03-31 2019-01-08 Life Spine, Inc. Expandable interbody and intravertebral body devices
US9801733B2 (en) 2005-03-31 2017-10-31 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US20060224241A1 (en) * 2005-03-31 2006-10-05 Life Spine, Llc Expandable spinal interbody and intravertebral body devices
US8512407B2 (en) 2005-03-31 2013-08-20 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US7731751B2 (en) * 2005-03-31 2010-06-08 Life Spine, Inc. Expandable spinal devices and method of insertion
US8940048B2 (en) 2005-03-31 2015-01-27 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US9034041B2 (en) 2005-03-31 2015-05-19 Life Spine, Inc. Expandable spinal interbody and intravertebral body devices
US8034079B2 (en) 2005-04-12 2011-10-11 Warsaw Orthopedic, Inc. Implants and methods for posterior dynamic stabilization of a spinal motion segment
US8128702B2 (en) 2005-04-18 2012-03-06 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US7959652B2 (en) 2005-04-18 2011-06-14 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US8109972B2 (en) 2005-04-18 2012-02-07 Kyphon Sarl Interspinous process implant having deployable wings and method of implantation
US20060271049A1 (en) * 2005-04-18 2006-11-30 St. Francis Medical Technologies, Inc. Interspinous process implant having deployable wings and method of implantation
US8226653B2 (en) 2005-04-29 2012-07-24 Warsaw Orthopedic, Inc. Spinous process stabilization devices and methods
US20080065217A1 (en) * 2005-05-02 2008-03-13 Kinetic Spine Technologies, Inc. Artificial vertebral body
WO2006116850A1 (en) * 2005-05-02 2006-11-09 Kinetic Spine Technologies Inc. Artificial vertebral body
US8795367B2 (en) * 2005-06-03 2014-08-05 Arthrodisc, L.L.C. Minimally invasive apparatus to manipulate and revitalize spinal column disc
US20120004729A1 (en) * 2005-06-03 2012-01-05 Zipnick Richard I Minimally invasive apparatus to manipulate and revitalize spinal column disc
US20070005064A1 (en) * 2005-06-27 2007-01-04 Sdgi Holdings Intervertebral prosthetic device for spinal stabilization and method of implanting same
US7846186B2 (en) 2005-06-28 2010-12-07 Kyphon SÀRL Equipment for surgical treatment of two vertebrae
US7753938B2 (en) * 2005-08-05 2010-07-13 Synthes Usa, Llc Apparatus for treating spinal stenosis
US8870890B2 (en) 2005-08-05 2014-10-28 DePuy Synthes Products, LLC Pronged holder for treating spinal stenosis
US20090012528A1 (en) * 2005-08-05 2009-01-08 Felix Aschmann Apparatus for Treating Spinal Stenosis
US20070032790A1 (en) * 2005-08-05 2007-02-08 Felix Aschmann Apparatus for treating spinal stenosis
US8979932B2 (en) 2005-09-23 2015-03-17 Ldr Medical Intervertebral disc prosthesis
US10492919B2 (en) 2005-09-23 2019-12-03 Ldr Medical Intervertebral disc prosthesis
US11872138B2 (en) 2005-09-23 2024-01-16 Ldr Medical Intervertebral disc prosthesis
US8771284B2 (en) 2005-11-30 2014-07-08 Ldr Medical Intervertebral disc prosthesis and instrumentation for insertion of the prosthesis between the vertebrae
US8083795B2 (en) 2006-01-18 2011-12-27 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US9713535B2 (en) 2006-02-15 2017-07-25 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US10758363B2 (en) 2006-02-15 2020-09-01 Ldr Medical Transforaminal intersomatic cage for an intervertebral fusion graft and an instrument for implanting the cage
US8262698B2 (en) 2006-03-16 2012-09-11 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US20070288005A1 (en) * 2006-04-05 2007-12-13 Uri Arnin Fixation of spinal prosthesis
US8118844B2 (en) 2006-04-24 2012-02-21 Warsaw Orthopedic, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US20070250060A1 (en) * 2006-04-24 2007-10-25 Sdgi Holdings, Inc. Expandable device for insertion between anatomical structures and a procedure utilizing same
US8048118B2 (en) 2006-04-28 2011-11-01 Warsaw Orthopedic, Inc. Adjustable interspinous process brace
US20100114320A1 (en) * 2006-05-23 2010-05-06 Warsaw Orthopedic, Inc., An Indiana Corporation Surgical spacer with shape control
US8690919B2 (en) 2006-05-23 2014-04-08 Warsaw Orthopedic, Inc. Surgical spacer with shape control
US8048119B2 (en) 2006-07-20 2011-11-01 Warsaw Orthopedic, Inc. Apparatus for insertion between anatomical structures and a procedure utilizing same
WO2008021955A3 (en) * 2006-08-10 2008-06-26 James Dwyer Modular intervertebral disc prosthesis and method of replacing an intervertebral disc
US20080051902A1 (en) * 2006-08-10 2008-02-28 James Dwyer Modular intervertebral disc prosthesis and method of replacing an intervertebral disc
WO2008021955A2 (en) * 2006-08-10 2008-02-21 James Dwyer Modular intervertebral disc prosthesis and method of replacing an intervertebral disc
US9526525B2 (en) 2006-08-22 2016-12-27 Neuropro Technologies, Inc. Percutaneous system for dynamic spinal stabilization
US20080180206A1 (en) * 2006-08-28 2008-07-31 Avago Technologies Ecbu (Singapore) Pte.Ltd. Coil Transducer with Reduced Arcing and Improved High Voltage Breakdown Performance Characteristics
US8043378B2 (en) 2006-09-07 2011-10-25 Warsaw Orthopedic, Inc. Intercostal spacer device and method for use in correcting a spinal deformity
US20100016974A1 (en) * 2006-09-15 2010-01-21 Janowski Brian P Systems and methods for securing an implant in intervertebral space
US20080103598A1 (en) * 2006-09-15 2008-05-01 Trudeau Jeffrey L System and Method for Sizing, Inserting and Securing Artificial Disc in Intervertebral Space
US8377133B2 (en) 2006-09-15 2013-02-19 Pioneer Surgical Technology, Inc. Systems and methods for sizing, inserting and securing an implant in intervertebral space
US8715350B2 (en) 2006-09-15 2014-05-06 Pioneer Surgical Technology, Inc. Systems and methods for securing an implant in intervertebral space
US20100280619A1 (en) * 2006-09-15 2010-11-04 Hansen Yuan Systems and methods for sizing, inserting and securing an implant in intervertebral space
US9693872B2 (en) 2006-09-15 2017-07-04 Pioneer Surgical Technology, Inc. Intervertebral disc implant
US8597357B2 (en) 2006-09-15 2013-12-03 Pioneer Surgical Technology, Inc. System and method for sizing, inserting and securing artificial disc in intervertebral space
WO2008034140A3 (en) * 2006-09-15 2008-07-31 Pioneer Surgical Tech Inc Systems and methods for sizing, inserting and securing an implant intervertebral space
US9233011B2 (en) 2006-09-15 2016-01-12 Pioneer Surgical Technology, Inc. Systems and apparatuses for inserting an implant in intervertebral space
US10080667B2 (en) 2006-09-15 2018-09-25 Pioneer Surgical Technology, Inc. Intervertebral disc implant
WO2008034140A2 (en) 2006-09-15 2008-03-20 Pioneer Surgical Technology, Inc. Systems and methods for sizing, inserting and securing an implant intervertebral space
US20080081896A1 (en) * 2006-09-28 2008-04-03 Helmut-Werner Heuer (Co)polycarbonates having improved adhesion to metals
US8641762B2 (en) 2006-10-24 2014-02-04 Warsaw Orthopedic, Inc. Systems and methods for in situ assembly of an interspinous process distraction implant
US8118839B2 (en) 2006-11-08 2012-02-21 Kyphon Sarl Interspinous implant
US7879104B2 (en) 2006-11-15 2011-02-01 Warsaw Orthopedic, Inc. Spinal implant system
US7955392B2 (en) 2006-12-14 2011-06-07 Warsaw Orthopedic, Inc. Interspinous process devices and methods
US20080147190A1 (en) * 2006-12-14 2008-06-19 Warsaw Orthopedic, Inc. Interspinous Process Devices and Methods
US8163019B2 (en) 2006-12-22 2012-04-24 Pioneer Surgical Technology, Inc. Implant restraint device and methods
US20080249623A1 (en) * 2006-12-22 2008-10-09 Qi-Bin Bao Implant Restraint Device and Methods
US10188528B2 (en) 2007-02-16 2019-01-29 Ldr Medical Interveterbral disc prosthesis insertion assemblies
US10398574B2 (en) 2007-02-16 2019-09-03 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US8465546B2 (en) 2007-02-16 2013-06-18 Ldr Medical Intervertebral disc prosthesis insertion assemblies
US11298241B2 (en) 2007-03-29 2022-04-12 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US10251759B2 (en) 2007-03-29 2019-04-09 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US9138328B2 (en) 2007-03-29 2015-09-22 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US9610172B2 (en) 2007-03-29 2017-04-04 Life Spine, Inc. Radially expandable spinal interbody device and implantation tool
US10543024B2 (en) 2007-04-10 2020-01-28 Life Spine, Inc. Adjustable spine distraction implant
US9381050B2 (en) 2007-04-10 2016-07-05 Life Spine, Inc. Adjustable spine distraction implant
US8075593B2 (en) * 2007-05-01 2011-12-13 Spinal Simplicity Llc Interspinous implants and methods for implanting same
US8523909B2 (en) * 2007-05-01 2013-09-03 Spinal Simplicity Llc Interspinous process implants having deployable engagement arms
US20120150229A1 (en) * 2007-05-01 2012-06-14 Spinal Simplicity Llc Interspinous process implants having deployable engagement arms
US20090054988A1 (en) * 2007-05-01 2009-02-26 Harold Hess Interspinous implants and methods for implanting same
US8343219B2 (en) 2007-06-08 2013-01-01 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US10751187B2 (en) 2007-06-08 2020-08-25 Ldr Medical Intersomatic cage, intervertebral prosthesis, anchoring device and implantation instruments
US20090240333A1 (en) * 2007-09-17 2009-09-24 Trudeau Jeffrey L Motion Preserving Artificial Intervertebral Disc Device
US8231676B2 (en) 2007-09-17 2012-07-31 Pioneer Surgical Technology, Inc. Motion preserving artificial intervertebral disc device
US8268001B2 (en) 2007-10-29 2012-09-18 Life Spine, Inc. Foldable orthopedic implant
US10603087B2 (en) 2008-01-14 2020-03-31 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US11399878B2 (en) 2008-01-14 2022-08-02 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
US8105358B2 (en) 2008-02-04 2012-01-31 Kyphon Sarl Medical implants and methods
US20090198338A1 (en) * 2008-02-04 2009-08-06 Phan Christopher U Medical implants and methods
US8317832B2 (en) 2008-03-18 2012-11-27 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of spinal motion segment
US8114136B2 (en) 2008-03-18 2012-02-14 Warsaw Orthopedic, Inc. Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US9730805B1 (en) * 2008-03-27 2017-08-15 Spinelogik, Inc. Intervertebral fusion device and method or use
US9301788B2 (en) 2008-04-10 2016-04-05 Life Spine, Inc. Adjustable spine distraction implant
US10117682B2 (en) 2008-04-10 2018-11-06 Life Spine, Inc. Adjustable spine distraction implant
US20100010633A1 (en) * 2008-07-10 2010-01-14 Kyphon Sarl Deployable Arc Fusion Cage and Methods Associated Therewith
US8114131B2 (en) 2008-11-05 2012-02-14 Kyphon Sarl Extension limiting devices and methods of use for the spine
US10321941B2 (en) * 2008-11-19 2019-06-18 Endoorthopaedics, Inc. Intramedullary repair system for bone fractures
US20170035471A1 (en) * 2008-11-19 2017-02-09 Endoorthopaedics, Inc. Intramedullary repair system for bone fractures
US10045860B2 (en) 2008-12-19 2018-08-14 Amicus Design Group, Llc Interbody vertebral prosthetic device with self-deploying screws
US8998920B2 (en) 2008-12-19 2015-04-07 Amicus Design Group, Llc Insertion tool for inter-body vertebral prosthetic device with self-deploying screws
US20100161057A1 (en) * 2008-12-19 2010-06-24 Amicus, Llc Interbody Vertebral Prosthetic Device With Self-Deploying Screws
US8425528B2 (en) 2008-12-19 2013-04-23 Amicus Design Group, Llc Insertion tool for inter-body vertebral prosthetic device with self-deploying screws
US20100185285A1 (en) * 2009-01-19 2010-07-22 Richard Perkins Annular repair device and method
US8182533B2 (en) * 2009-01-19 2012-05-22 Richard Perkins Annular repair device and method
US9861399B2 (en) 2009-03-13 2018-01-09 Spinal Simplicity, Llc Interspinous process implant having a body with a removable end portion
US9925056B2 (en) 2009-04-15 2018-03-27 DePuy Synthes Products, Inc. Arcuate fixation member
US10716680B2 (en) 2009-04-15 2020-07-21 DePuy Synthes Products, Inc. Arcuate fixation member
US10806592B2 (en) 2009-04-15 2020-10-20 DePuy Synthes Products, Inc. Arcuate fixation member
US11617654B2 (en) 2009-04-15 2023-04-04 DePuy Synthes Products, Inc. Arcuate fixation member
US10105236B2 (en) 2009-04-15 2018-10-23 DePuy Synthes Products, Inc. Arcuate fixation member
US8372117B2 (en) 2009-06-05 2013-02-12 Kyphon Sarl Multi-level interspinous implants and methods of use
US8157842B2 (en) 2009-06-12 2012-04-17 Kyphon Sarl Interspinous implant and methods of use
US8998954B2 (en) 2009-08-03 2015-04-07 Life Spine, Inc. Spinous process spacer
US20110029021A1 (en) * 2009-08-03 2011-02-03 Hartsell Brian D Spinous Process Spacer
US20110178599A1 (en) * 2009-09-17 2011-07-21 Brett Darrell C Intervertebral implant having extendable bone fixation members
US8617245B2 (en) 2009-09-17 2013-12-31 DePuy Synthes Products, LLC Intervertebral implant having extendable bone fixation members
US8932359B2 (en) 2009-09-17 2015-01-13 Expanding Concepts, Llc Intervertebral implant having extendable bone fixation members
US10973656B2 (en) 2009-09-18 2021-04-13 Spinal Surgical Strategies, Inc. Bone graft delivery system and method for using same
US10195053B2 (en) 2009-09-18 2019-02-05 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US10245159B1 (en) 2009-09-18 2019-04-02 Spinal Surgical Strategies, Llc Bone graft delivery system and method for using same
US11660208B2 (en) 2009-09-18 2023-05-30 Spinal Surgical Strategies, Inc. Bone graft delivery system and method for using same
US20110098745A1 (en) * 2009-10-28 2011-04-28 Kyphon Sarl Interspinous process implant and method of implantation
US8771317B2 (en) 2009-10-28 2014-07-08 Warsaw Orthopedic, Inc. Interspinous process implant and method of implantation
US10238426B2 (en) 2009-12-17 2019-03-26 Engage Medical Holdings, Llc Blade fixation for ankle fusion and arthroplasty
US9480511B2 (en) 2009-12-17 2016-11-01 Engage Medical Holdings, Llc Blade fixation for ankle fusion and arthroplasty
US9044337B2 (en) 2009-12-31 2015-06-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10531961B2 (en) 2009-12-31 2020-01-14 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US9833331B2 (en) 2009-12-31 2017-12-05 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10195046B2 (en) 2009-12-31 2019-02-05 Ldr Medical Instruments and methods for removing fixation devices from intervertebral implants
US11246715B2 (en) 2009-12-31 2022-02-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US8317831B2 (en) 2010-01-13 2012-11-27 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US8114132B2 (en) 2010-01-13 2012-02-14 Kyphon Sarl Dynamic interspinous process device
US20110172596A1 (en) * 2010-01-13 2011-07-14 Kyphon Sarl Interspinous process spacer diagnostic balloon catheter and methods of use
US9427324B1 (en) 2010-02-22 2016-08-30 Spinelogik, Inc. Intervertebral fusion device and method of use
US20140228956A1 (en) * 2010-02-24 2014-08-14 Mark Weiman Expandable Intervertebral Spacer and Method of Posterior Insertion Thereof
US9913726B2 (en) * 2010-02-24 2018-03-13 Globus Medical, Inc. Expandable intervertebral spacer and method of posterior insertion thereof
US8147526B2 (en) 2010-02-26 2012-04-03 Kyphon Sarl Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US8840617B2 (en) 2010-02-26 2014-09-23 Warsaw Orthopedic, Inc. Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US9216096B2 (en) 2010-03-16 2015-12-22 Pinnacle Spine Group, Llc Intervertebral implants and related tools
US9649203B2 (en) 2010-03-16 2017-05-16 Pinnacle Spine Group, Llc Methods of post-filling an intervertebral implant
US9788973B2 (en) 2010-03-16 2017-10-17 Pinnacle Spine Group, Llc Spinal implant
US8920507B2 (en) 2010-07-15 2014-12-30 Spine Wave, Inc. Plastically deformable inter-osseous device
US9101488B2 (en) 2010-07-15 2015-08-11 Spine Wave, Inc. Apparatus for use in spinal surgery
US11083592B2 (en) 2010-07-15 2021-08-10 Spine Wave, Inc. Plastically deformable inter-osseous device
US10117756B2 (en) 2010-07-15 2018-11-06 Spine Wave, Inc. Plastically deformable inter-osseous device
US8641769B2 (en) 2010-07-15 2014-02-04 Spine Wave, Inc. Plastically deformable inter-osseous device
US9398961B2 (en) 2010-07-15 2016-07-26 Spine Wave, Inc. Plastically deformable inter-osseous device
US8814908B2 (en) 2010-07-26 2014-08-26 Warsaw Orthopedic, Inc. Injectable flexible interspinous process device system
US8905916B2 (en) * 2010-08-16 2014-12-09 Apollo Endosurgery, Inc. Implantable access port system
US20130281769A1 (en) * 2010-08-16 2013-10-24 Allergan, Inc. Implantable access port system
US10342667B2 (en) 2010-12-16 2019-07-09 Engage Medical Holdings, Llc Arthroplasty systems and methods
US11197763B2 (en) 2010-12-16 2021-12-14 Engage Medical Holdings, Llc Arthroplasty systems and methods
US9925051B2 (en) 2010-12-16 2018-03-27 Engage Medical Holdings, Llc Arthroplasty systems and methods
US8545563B2 (en) 2011-02-02 2013-10-01 DePuy Synthes Product, LLC Intervertebral implant having extendable bone fixation members
US8454694B2 (en) 2011-03-03 2013-06-04 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9526532B2 (en) 2011-03-03 2016-12-27 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US8690948B2 (en) 2011-03-03 2014-04-08 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9615940B2 (en) 2011-03-03 2017-04-11 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9180019B2 (en) 2011-03-03 2015-11-10 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US9925063B2 (en) 2011-03-03 2018-03-27 Warsaw Orthopedic, Inc. Interbody device and plate for spinal stabilization and instruments for positioning same
US8591548B2 (en) 2011-03-31 2013-11-26 Warsaw Orthopedic, Inc. Spinous process fusion plate assembly
US8591549B2 (en) 2011-04-08 2013-11-26 Warsaw Orthopedic, Inc. Variable durometer lumbar-sacral implant
US8795368B2 (en) * 2011-04-27 2014-08-05 Warsaw Orthopedic, Inc. Expandable implant system and methods of use
US20120277865A1 (en) * 2011-04-27 2012-11-01 Warsaw Orthopedic, Inc. Expandable implant system and methods of use
US10617530B2 (en) 2011-07-14 2020-04-14 Seaspine, Inc. Laterally deflectable implant
US9358123B2 (en) * 2011-08-09 2016-06-07 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
US11432940B2 (en) 2011-08-09 2022-09-06 Neuropro Technologies, Inc. Bone fusion device, system and method
US20130211525A1 (en) * 2011-08-09 2013-08-15 Gary R. McLuen Bone fusion device, apparatus and method
US10736754B2 (en) 2011-08-09 2020-08-11 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
US10292830B2 (en) 2011-08-09 2019-05-21 Neuropro Technologies, Inc. Bone fusion device, system and method
US10092422B2 (en) 2011-08-09 2018-10-09 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
US11452616B2 (en) 2011-08-09 2022-09-27 Neuropro Spinal Jaxx, Inc. Bone fusion device, apparatus and method
US10420654B2 (en) 2011-08-09 2019-09-24 Neuropro Technologies, Inc. Bone fusion device, system and method
US10856914B2 (en) 2011-09-28 2020-12-08 Life Spine, Inc. Adjustable spine distraction implant
US10245090B2 (en) 2011-11-01 2019-04-02 Engage Medical Holdings, Llc Blade anchor systems for bone fusion
US9615856B2 (en) 2011-11-01 2017-04-11 Imds Llc Sacroiliac fusion cage
US9254130B2 (en) 2011-11-01 2016-02-09 Hyun Bae Blade anchor systems for bone fusion
US9380932B1 (en) 2011-11-02 2016-07-05 Pinnacle Spine Group, Llc Retractor devices for minimally invasive access to the spine
US9814594B2 (en) 2012-01-31 2017-11-14 Blackstone Medical, Inc. Intervertebral disc prosthesis and method
US20150119991A1 (en) * 2012-01-31 2015-04-30 Blackstone Medical, Inc. Intervertebral disc prosthesis and method
US9283085B2 (en) * 2012-01-31 2016-03-15 Blackstone Medical, Inc. Intervertebral disc prosthesis and method
US9039774B2 (en) 2012-02-24 2015-05-26 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10245156B2 (en) 2012-02-24 2019-04-02 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US10350083B2 (en) 2012-02-24 2019-07-16 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US11273056B2 (en) 2012-02-24 2022-03-15 Ldr Medical Anchoring device and system for an intervertebral implant, intervertebral implant and implantation instrument
US8906101B2 (en) 2012-03-19 2014-12-09 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US10058435B2 (en) 2012-03-19 2018-08-28 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US8685104B2 (en) 2012-03-19 2014-04-01 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9283087B2 (en) 2012-03-19 2016-03-15 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9757252B2 (en) 2012-03-19 2017-09-12 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9107761B2 (en) 2012-03-19 2015-08-18 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US9566165B2 (en) 2012-03-19 2017-02-14 Amicus Design Group, Llc Interbody vertebral prosthetic and orthopedic fusion device with self-deploying anchors
US10238382B2 (en) 2012-03-26 2019-03-26 Engage Medical Holdings, Llc Blade anchor for foot and ankle
US20130274881A1 (en) * 2012-04-13 2013-10-17 Marc Arginteanu Device and method for spinal fusion surgery
US11439517B2 (en) 2012-04-13 2022-09-13 Neuropro Technologies, Inc. Bone fusion device
WO2013155418A1 (en) * 2012-04-13 2013-10-17 Neuropro Technologies, Inc. Bone fusion device
US10709574B2 (en) 2012-04-13 2020-07-14 Neuropro Technologies, Inc. Bone fusion device
US9532883B2 (en) 2012-04-13 2017-01-03 Neuropro Technologies, Inc. Bone fusion device
US10159583B2 (en) 2012-04-13 2018-12-25 Neuropro Technologies, Inc. Bone fusion device
US10016283B2 (en) 2012-04-13 2018-07-10 Neuropro Technologies, Inc. Bone fusion device
US9114020B2 (en) * 2012-04-13 2015-08-25 Marc Arginteanu Device and method for spinal fusion surgery
US9642721B2 (en) * 2012-10-02 2017-05-09 Titan Spine, Llc Implants with self-deploying anchors
US20140094921A1 (en) * 2012-10-02 2014-04-03 Titan Spine, Llc Implants with self-deploying anchors
US9757164B2 (en) 2013-01-07 2017-09-12 Spinal Simplicity Llc Interspinous process implant having deployable anchor blades
US9456908B2 (en) 2013-03-12 2016-10-04 Coorstek Medical Llc Fusion cage
US9775720B2 (en) 2013-03-12 2017-10-03 Coorstek Medical Llc Fusion cage
US11304818B2 (en) 2013-03-13 2022-04-19 Life Spine, Inc. Expandable spinal interbody assembly
US10426632B2 (en) 2013-03-13 2019-10-01 Life Spine, Inc. Expandable spinal interbody assembly
US10383741B2 (en) 2013-03-13 2019-08-20 Life Spine, Inc. Expandable spinal interbody assembly
US11103362B2 (en) 2013-03-13 2021-08-31 Life Spine, Inc. Expandable implant assembly
US10154911B2 (en) 2013-03-13 2018-12-18 Life Spine, Inc. Expandable implant assembly
US10070970B2 (en) 2013-03-14 2018-09-11 Pinnacle Spine Group, Llc Interbody implants and graft delivery systems
WO2014145527A3 (en) * 2013-03-15 2014-12-31 Lifenet Health Medical implant for fixation and integration with hard tissue
US20160038299A1 (en) * 2013-03-15 2016-02-11 Lifenet Health Medical Implant for Fixation and Integration with Hard Tissue
US20170312091A1 (en) * 2013-03-15 2017-11-02 Lifenet Health Medical implant for fixation and integration with hard tissue
US11116643B2 (en) * 2013-03-15 2021-09-14 Lifenet Health Medical implant for fixation and integration with hard tissue
US11399956B2 (en) 2013-03-15 2022-08-02 Neuropro Technologies, Inc. Bodiless bone fusion device, apparatus and method
US10575966B2 (en) 2013-03-15 2020-03-03 Neuropro Technologies, Inc. Bodiless bone fusion device, apparatus and method
US10098757B2 (en) 2013-03-15 2018-10-16 Neuropro Technologies Inc. Bodiless bone fusion device, apparatus and method
US9750614B2 (en) * 2013-03-15 2017-09-05 Lifenet Health Medical implant for fixation and integration with hard tissue
US9937050B2 (en) 2013-05-16 2018-04-10 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US11633288B2 (en) 2013-05-16 2023-04-25 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US9974661B2 (en) 2013-05-16 2018-05-22 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US10779953B2 (en) 2013-05-16 2020-09-22 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US10154909B2 (en) 2013-05-16 2018-12-18 Ldr Medical Vertebral implant, vertebral fastening device of the implant and implant instrumentation
US10219915B1 (en) 2013-05-22 2019-03-05 Nuvasive, Inc. Expandable fusion implant and related methods
US9788971B1 (en) 2013-05-22 2017-10-17 Nuvasive, Inc. Expandable fusion implant and related methods
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US10492924B2 (en) 2013-08-09 2019-12-03 Nuvasive, Inc. Lordotic expandable interbody implant
US11696836B2 (en) 2013-08-09 2023-07-11 Nuvasive, Inc. Lordotic expandable interbody implant
US9675466B2 (en) * 2013-11-11 2017-06-13 41Medical Ag Expandable spinal implant
US20160278935A1 (en) * 2013-11-11 2016-09-29 41Medical Ag Expandable spinal implant
US10213231B2 (en) 2014-01-28 2019-02-26 Life Spine, Inc. System and method for reducing and stabilizing a bone fracture
US9877842B2 (en) 2014-01-30 2018-01-30 Ldr Medical Anchoring device for a spinal implant, spinal implant and implantation instrumentation
US10245157B2 (en) 2014-01-30 2019-04-02 Ldr Medical Anchoring device for a spinal implant, spinal implant and implantation instrumentation
US10478310B2 (en) 2014-05-06 2019-11-19 Ldr Medical, S.A.S. Vertebral implant, device for vertebral attachment of the implant and instrumentation for implantation thereof
US10702391B2 (en) 2014-05-06 2020-07-07 Ldr Medical, S.A.S. Vertebral implant, device for vertebral attachment of the implant and instrumentation for implantation thereof
US9707100B2 (en) 2015-06-25 2017-07-18 Institute for Musculoskeletal Science and Education, Ltd. Interbody fusion device and system for implantation
US10524928B2 (en) 2015-12-15 2020-01-07 Globus Medical, Inc Stabilized intervertebral spacer
US11259938B2 (en) 2015-12-15 2022-03-01 Globus Medical, Inc. Stabilized intervertebral spacer
US20170165082A1 (en) * 2015-12-15 2017-06-15 Globus Medical, Inc. Stabilized expandable intervertebral spacer
US10390955B2 (en) 2016-09-22 2019-08-27 Engage Medical Holdings, Llc Bone implants
US11877935B2 (en) 2016-10-18 2024-01-23 Camber Spine Technologies, LLC Implant with deployable blades
US11872143B2 (en) 2016-10-25 2024-01-16 Camber Spine Technologies, LLC Spinal fusion implant
US10111760B2 (en) 2017-01-18 2018-10-30 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
US11497623B2 (en) 2017-01-18 2022-11-15 Neuropro Technologies, Inc. Bone fusion system, device and method including an insertion instrument
US10973657B2 (en) 2017-01-18 2021-04-13 Neuropro Technologies, Inc. Bone fusion surgical system and method
US10729560B2 (en) 2017-01-18 2020-08-04 Neuropro Technologies, Inc. Bone fusion system, device and method including an insertion instrument
US10213321B2 (en) 2017-01-18 2019-02-26 Neuropro Technologies, Inc. Bone fusion system, device and method including delivery apparatus
US10729562B2 (en) 2017-01-18 2020-08-04 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
US11141289B2 (en) 2017-01-18 2021-10-12 Neuropro Technologies, Inc. Bone fusion system, device and method including delivery apparatus
US11458029B2 (en) 2017-01-18 2022-10-04 Neuropro Technologies, Inc. Bone fusion system, device and method including a measuring mechanism
US11369488B2 (en) 2017-03-03 2022-06-28 Engage Uni Llc Unicompartmental knee arthroplasty
US11540928B2 (en) 2017-03-03 2023-01-03 Engage Uni Llc Unicompartmental knee arthroplasty
US10456272B2 (en) 2017-03-03 2019-10-29 Engage Uni Llc Unicompartmental knee arthroplasty
US10918426B2 (en) 2017-07-04 2021-02-16 Conventus Orthopaedics, Inc. Apparatus and methods for treatment of a bone
US11896494B2 (en) 2017-07-10 2024-02-13 Life Spine, Inc. Expandable implant assembly
US11033403B2 (en) 2017-07-10 2021-06-15 Life Spine, Inc. Expandable implant assembly
US10980643B2 (en) * 2017-07-18 2021-04-20 Blue Sky Technologies, LLC Joint implant
US11147682B2 (en) 2017-09-08 2021-10-19 Pioneer Surgical Technology, Inc. Intervertebral implants, instruments, and methods
USD968613S1 (en) 2017-10-09 2022-11-01 Pioneer Surgical Technology, Inc. Intervertebral implant
USD907771S1 (en) 2017-10-09 2021-01-12 Pioneer Surgical Technology, Inc. Intervertebral implant
US10973658B2 (en) 2017-11-27 2021-04-13 Titan Spine, Inc. Rotating implant and associated instrumentation
US11911290B2 (en) 2018-02-14 2024-02-27 Titan Spine, Llc Modular adjustable corpectomy cage
US11135070B2 (en) 2018-02-14 2021-10-05 Titan Spine, Inc. Modular adjustable corpectomy cage
US11534305B2 (en) * 2018-09-26 2022-12-27 Nexus Spine, L.L.C. Expanding, conforming interbody spacer
US11382764B2 (en) 2019-06-10 2022-07-12 Life Spine, Inc. Expandable implant assembly with compression features
US11857432B2 (en) 2020-04-13 2024-01-02 Life Spine, Inc. Expandable implant assembly
US11602439B2 (en) 2020-04-16 2023-03-14 Life Spine, Inc. Expandable implant assembly
US20230091542A1 (en) * 2020-06-15 2023-03-23 Nofusco Corporation Orthopedic implant system and methods of use
US11806247B2 (en) 2020-06-15 2023-11-07 Nofusco Corporation Intravertebral implant system and methods of use
US11883300B2 (en) * 2020-06-15 2024-01-30 Nofusco Corporation Orthopedic implant system and methods of use
US11602440B2 (en) 2020-06-25 2023-03-14 Life Spine, Inc. Expandable implant assembly
US11850166B2 (en) * 2020-09-01 2023-12-26 Dignity Health Systems and methods for an expandable interbody device
US20230240860A1 (en) * 2020-09-01 2023-08-03 Dignity Health Systems and methods for an expandable interbody device
US11723778B1 (en) 2021-09-23 2023-08-15 Nofusco Corporation Vertebral implant system and methods of use

Also Published As

Publication number Publication date
WO2006050500A3 (en) 2006-09-28
US20060253201A1 (en) 2006-11-09
US8187332B2 (en) 2012-05-29
US7727280B2 (en) 2010-06-01
US20060142859A1 (en) 2006-06-29
WO2006050500A2 (en) 2006-05-11

Similar Documents

Publication Publication Date Title
US7727280B2 (en) Bone fusion device
US11583414B2 (en) Bone fusion device
AU2017221852B2 (en) Bone fusion device
US11399956B2 (en) Bodiless bone fusion device, apparatus and method
US7824445B2 (en) Corpectomy vertebral body replacement implant system
US20210068959A1 (en) Bone fusion device, system and method
JP2004508888A (en) Bone formation fusion device
AU735572B2 (en) Threaded fusion cage anchoring device and method

Legal Events

Date Code Title Description
AS Assignment

Owner name: MCLUEN DESIGN, INC., WASHINGTON

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MCLUEN, GARY R.;REEL/FRAME:017187/0459

Effective date: 20051101

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION