US20060058853A1 - Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (cmpes) - Google Patents

Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (cmpes) Download PDF

Info

Publication number
US20060058853A1
US20060058853A1 US10/904,505 US90450504A US2006058853A1 US 20060058853 A1 US20060058853 A1 US 20060058853A1 US 90450504 A US90450504 A US 90450504A US 2006058853 A1 US2006058853 A1 US 2006058853A1
Authority
US
United States
Prior art keywords
brain
patient
cognitive
region
disease
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/904,505
Inventor
Jonathan Bentwich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/904,505 priority Critical patent/US20060058853A1/en
Publication of US20060058853A1 publication Critical patent/US20060058853A1/en
Priority to US12/153,037 priority patent/US8498708B2/en
Priority to US12/285,417 priority patent/US20090105521A1/en
Priority to US12/285,416 priority patent/US20090099623A1/en
Priority to US13/912,868 priority patent/US8805516B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3605Implantable neurostimulators for stimulating central or peripheral nerve system
    • A61N1/3606Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
    • A61N1/36082Cognitive or psychiatric applications, e.g. dementia or Alzheimer's disease
    • A61N1/36092Mental training
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/002Magnetotherapy in combination with another treatment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/0613Apparatus adapted for a specific treatment
    • A61N5/0616Skin treatment other than tanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/06Radiation therapy using light
    • A61N5/067Radiation therapy using light using laser light
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4076Diagnosing or monitoring particular conditions of the nervous system
    • A61B5/4088Diagnosing of monitoring cognitive diseases, e.g. Alzheimer, prion diseases or dementia

Definitions

  • MRI Magnetic Resonance Imaging
  • f-MRI Functional Magnetic Resonance Imaging
  • PET Positron Emission Tomography
  • SPECT Single Photon Emission Computerized Tomography
  • Various cognitive diagnostic techniques are known in the art including inter-alia Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, as well as various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency, e.g. frontal-temporal deficiency.
  • TMS Transcranial Magnetic Stimulation
  • Doth Y Zangen A, Hallett M.: “A coil design for transcranial magnetic stimulation of deep brain regions”, J Clin Neurophysiol. 2002 August; 19 (4):361-70).
  • the present invention provides an integrated system and method for treatment of various diseases, including psychiatric, mental, brain and bodily disorders, which preferably combines personalized brain stimulation together with appropriate personalized cognitive training, and which iteratively fine-tunes this treatment by monitoring specific cognitive and brain functions in response to treatment.
  • a preferred embodiment of the present invention is the Integrated Cognitive Neuronal Stimulation (ICONS) system, which is described hereinbelow.
  • ICONS Integrated Cognitive Neuronal Stimulation
  • a medical device for treatment of a disease including: a non-invasive brain stimulator operative to selectively stimulate at least one region of a brain of a patient, which at least one region is associated with the disease; and a cognitive stimulator operative to stimulate at least one cognitive feature in the patient, which the at least one cognitive feature is associated with the disease.
  • a medical device wherein the medical device also includes an analyzer operative to modulate operation of the medical device based at least in part on comparison of a measurement of a property in a patient to a norm of the property, which property is one of the following items: a localized brain feature and a cognitive feature.
  • a medical device wherein the medical device also includes a feedback modulator operative to modulate operation of the medical device based at least in part on detection and analysis of alteration of a property following operation of the medical device, which property is one of the following items: a localized brain feature and a cognitive feature.
  • a method of the therapy for a disease including: stimulating at least one region of a brain of a patient, which at least one region is associated with the disease; and stimulating at least one cognitive feature in the patient, which the at least one cognitive feature is associated with the disease.
  • a method of the therapy for a disease wherein the method also includes: comparing a measurement of a property in property in a patient to a norm of the property, which property is one of the following items: a localized brain feature and a cognitive feature; and wherein the comparing modulates at least one of the following: the stimulating at least one region of a brain of a patient and the stimulating at least one cognitive feature in the patient.
  • a method of the therapy for a disease wherein the method also includes: analyzing alteration of a property following operation of the medical device, which property is one of the following items: a localized brain feature and a cognitive feature; and wherein the analyzing modulates at least one of the following: the stimulating at least one region of a brain of a patient and the stimulating at least one cognitive feature in the patient.
  • a medical device for treatment of a disease containing an electromagnetic stimulator and a laser stimulator and operative to induce a magnetic photo-electric stimulation which selectively stimulates at least one region of a brain of a patient, which at least one region is associated with the disease.
  • a method of therapy for a disease consisting of: electromagnetically stimulating at least one region of a brain of a patient, which at least one region is associated with the disease; and laser stimulating the at least one region of a brain of a patient by means of at least one laser beam; and wherein the electromagnetically stimulating and the laser stimulating cause a magnetic photo-electric stimulation.
  • FIG. 1 is a simplified illustration of a usage of a medical device constructed and operative in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a simplified block diagram illustrating a design of a medical device constructed and operative in accordance with a preferred embodiment of the present invention
  • FIG. 3A is a simplified flowchart illustrating operation of a brain analyzer constructed and operative in accordance with a preferred embodiment of the present invention
  • FIG. 3B is a simplified flowchart illustrating operation of a cognitive analyzer constructed and operative in accordance with a preferred embodiment of the present invention
  • FIG. 4 is a simplified block diagram illustrating a design of an integrated treatment controller constructed and operative in accordance with a preferred embodiment of the present invention.
  • FIG. 5 is a simplified illustration of a Computerized Magnetic Photo-Electric Stimulator constructed and operative in accordance with a preferred embodiment of the present invention.
  • FIG. 1 is a simplified illustration of a usage of a medical device constructed and operative in accordance with a preferred embodiment of the present invention.
  • An important aspect of the present invention is the concept of integrating external neuronal stimulation of the brain, together with cognitive stimulation, e.g. cognitive training, that causes internal stimulation of the brain.
  • cognitive stimulation e.g. cognitive training
  • Another important aspect of the present invention is the concept of patient-specific brain stimulation, which is based at least in part on a comparison of neuronal function and structure of a brain of a patient, and cognitive properties of a patient to a norm of these brain and cognitive properties in a control population.
  • Yet another important aspect of the present invention is the concept of patient-specific brain stimulation, which is based on an iterative comparison of changes in brain-function and in cognitive properties, in response to treatment.
  • FIG. 1 illustrated a patient 100 being treated by an Integrated Cognitive Neuronal Stimulation (ICONS) system, constructed and operative in accordance with a preferred embodiment of the present invention, and which is further described hereinbelow with reference to FIGS. 2-4 .
  • the ICONS system preferably comprises of a brain stimulator and device 102 , a cognitive stimulator and assessment device 104 , an integrated treatment controller device 106 , and optionally a human operator 108 .
  • the brain stimulator and imaging device 102 is a medical device capable of selectively stimulating various regions of the brain, either excitatory or inhibitory stimuli.
  • Various such devices are known in the art, including inter alia various Magnetic Photo-Electric Stimulator (MPES) devices, Transcranial Magnetic Stimulation (TMS) and Deep TMS devices.
  • MPES Magnetic Photo-Electric Stimulator
  • TMS Transcranial Magnetic Stimulation
  • Deep TMS devices Deep TMS devices.
  • the brain stimulator and imaging device 102 is a medical device that stimulates various regions of the body, thus stimulating the brain indirectly, i.e. stimulating different organs of the body, thereby causing these organs to transmit neuronal impulses which stimulate regions of the brain.
  • the brain stimulator and imaging device is also capable of functional and or structural imaging the brain. Imaging may be performed using various functional and structural CNS imaging instrumentations that are know in the art, including inter alia Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT).
  • MRI Magnetic Resonance Imaging
  • f-MRI Functional Magnetic Resonance Imaging
  • PET Positron Emission Tomography
  • SPECT Single Photon Emission Computerized Tomography
  • FIG. 1 depicts both the brain stimulation and the brain imaging functionality as being performed by the brain stimulator and imaging device 102 , this is not meant to be limiting: the brain imaging functionality may be performed by a physically separate instrument, which is a separate component of the ICONS device of the present invention, or the ICONS device may not include a brain imaging component.
  • the cognitive stimulator and assessment device 104 is a computer having a computer monitor and optionally a user-input device, such as a keyboard or a microphone, and which runs a computer program that causes display of cognitive stimuli on the computer monitor and accepts responses of the patient 100 to these stimuli.
  • the cognitive stimulator and assessment device 104 is operative to perform specific cognitive stimulation, i.e. cognitive training, which is beneficial to the treatment of the patient 100 , and is optionally also operative to assess the cognitive features of the patient 100 , both at the start of the treatment as well as in response to the treatment.
  • the integrated treatment controller device 106 is a computer running a computer program, which computer program is constructed and operative to control the brain stimulator and imaging device 102 , and the cognitive stimulator and assessment device 104 . Operation of the integrated treatment controller device 106 is further described hereinbelow with reference to FIGS. 2 and 4 .
  • FIG. 2 is a simplified block diagram illustrating a design of an Integrated Cognitive Neuronal Stimulation (ICONS) system constructed and operative in accordance with a preferred embodiment of the present invention.
  • ICONS Integrated Cognitive Neuronal Stimulation
  • Treatment of the patient 100 ( FIG. 1 ) by the ICONS system of the present invention preferably begins by action of an analyzer 110 , which preferably comprises a brain analyzer 112 and a cognitive analyzer 114 .
  • the analyzer is operational to assess localized brain properties, such as function or structure, and cognitive features, both of the patient 100 , in comparison to a norm of these properties and features.
  • the brain analyzer 112 analyzes functional and structural brain properties of the patient 100 in comparison to a norm of these properties. Imaging may be performed using various functional and structural CNS imaging instrumentations that are know in the art, including inter alia Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT). Operation of the brain analyzer 112 is further elaborated hereinbelow with reference to FIG. 2A
  • the cognitive analyzer 14 analyzes cognitive properties of the patient 100 in comparison to a norm of these properties. Cognitive analysis may be performed by a computer having a computer monitor and an input device and running a computer program which displays cognitive stimuli and measures responses of the patient 100 to these stimuli.
  • the cognitive analyzer preferably utilizes at least one of various cognitive diagnostic techniques known in the art such as Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency in a disease state, such as in patients suffering from depression. Operation of the cognitive analyzer 114 is further elaborated hereinbelow with reference to FIG. 2B .
  • An integrated treatment controller 116 is a computer program, which receives as input the results of analysis of the analyzer 110 , and based at least in part on these analysis results, computes and determines the appropriate, personalized, brain and cognitive stimuli for a patient 100 . Operation of the integrated treatment controller 116 is further elaborated hereinbelow with reference to FIG. 4 .
  • a stimulator 118 is a medical device, preferably comprising a brain stimulator 120 and a cognitive stimulator 122 , which receives as input personalized brain and cognitive stimuli, calculated by the integrated treatment controller 116 , and generates and applies these stimuli to the patient 100 .
  • the brain stimulator 120 is a medical device capable of selectively stimulating various regions of the brain, either excitatory or inhibitory stimuli.
  • Various such devices are known in the art, including inter alia various Transcranial Magnetic Stimulation (TMS), and Deep TMS devices.
  • TMS Transcranial Magnetic Stimulation
  • the brain stimulator 120 functionality may be achieved by a Computerized Magnetic Photo-Electric Stimulator (CMPES) device of the present invention, described hereinbelow with reference to FIG. 5 .
  • CCMPES Computerized Magnetic Photo-Electric Stimulator
  • the brain stimulator and imaging device 102 is a medical device that stimulates various regions of the body, thus stimulating the brain indirectly, i.e. stimulating different organs of the body, thereby causing these organs to transmit neuronal impulses which stimulate regions of the brain.
  • the cognitive stimulator 122 is a computer having a computer monitor and optionally a user-input device, such as a keyboard or a microphone, and which runs a computer program that causes display of cognitive stimuli on the computer monitor and accepts responses of the patient 100 to these stimuli.
  • the cognitive stimulator 122 is operative to perform specific cognitive stimulation, i.e. cognitive training, which is beneficial in treating a medical disease or condition of the patient 100 .
  • cognitive stimulation includes various cognitive tests and stimulations known in the art, such as Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, as well as various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency, e.g. frontal-temporal deficiency.
  • An important aspect of the present invention is a concept that cognitive training, when performed in conjunction with neuronal stimulation of the brain, improves the plasticity of the brain, and hence is synergistic to the neuronal stimulation of the brain.
  • a feedback detector 124 is a sensor device comprising a brain feedback detector 126 and a cognitive feedback detector 128 , which iteratively measures changes in brain and cognitive parameters in response stimulation of the stimulator 118 , and reports these changes to the integrated treatment controller 116 . Based on the feedback data provided by the feedback detector 124 , the integrated treatment controller 116 may modify its instructions to the stimulator 118 , as to the type and intensity of the neuronal and cognitive stimuli to be applied to the patient 100 .
  • the brain feedback detector 126 is a device operative to measure changes in functional and structural brain properties of the patient 100 in response to stimulation of the stimulator 118 . Measurement may be performed using devices known in the art such as a Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) or Single Photon Emission Computerized Tomography (SPECT).
  • MRI Magnetic Resonance Imaging
  • f-MRI Functional Magnetic Resonance Imaging
  • PET Positron Emission Tomography
  • SPECT Single Photon Emission Computerized Tomography
  • the cognitive feedback detector 128 is a device operative to measure changes in cognitive properties of the patient 100 in response to stimulation of the stimulator 118 .
  • Cognitive analysis may be performed by a computer having a computer monitor and an input device and running a computer program which displays cognitive stimuli and measures responses of the patient 100 to these stimuli.
  • the cognitive analyzer preferably utilizes at least one of various cognitive diagnostic techniques known in the art such as Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency, e.g. frontal-temporal deficiency.
  • FIG. 3A is a simplified flowchart illustrating operation of a brain analyzer 112 of FIG. 2 , constructed and operative in accordance with a preferred embodiment of the present invention.
  • the brain analyzer 112 measures a localized brain property in the patient 100 .
  • the localized brain property may be a structural property or a functional property, and is preferably obtained by various neuro-imaging devices known in the art, such as Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) or Single Photon Emission Computerized Tomography (SPECT).
  • MRI Magnetic Resonance Imaging
  • f-MRI Functional Magnetic Resonance Imaging
  • PET Positron Emission Tomography
  • SPECT Single Photon Emission Computerized Tomography
  • a norm of the localized brain property measured in the previous step is obtained.
  • the norm is preferably calculated by performing the desired neuro-imaging of the previous step on a control group.
  • the control group may be a group of healthy individuals, or a group of individuals diagnosed as having a specific disease, or a group of individuals diagnosed as not having a specific disease.
  • the measurement of the brain property in the patient 100 is compared to the norm of that property in the control group, so as to determine specific differences between the patient and the control group.
  • abnormal brain regions of the patient 100 are determined. For example, by comparing the fMRI functional imaging results of the patient 100 to the fMRI results of a large group of healthy individuals, the regions of abnormality of the patient 100 may be determined. As an another example, if a patient 100 is known to suffer from autism, by comparing the functional imaging results of the patient 100 to those of a control group of patients diagnosed with autism, the specific regions of abnormality in the brain of the patient 100 , which are likely to be associated with autism, are determined.
  • Determination of abnormal brain regions of the patient 100 is used by the integrated treatment controller 116 ( FIG. 2 ), as further described hereinbelow with reference to FIG. 4 .
  • FIG. 3A is provided as an illustration only, and is not meant to be limiting, and that these steps may be performed in a different sequence.
  • FIG. 3B is a simplified flowchart illustrating operation of a cognitive analyzer 114 of FIG. 2 , constructed and operative in accordance with a preferred embodiment of the present invention.
  • the cognitive analyzer 114 measures a cognitive feature in the patient 100 .
  • the cognitive feature is preferably measured by various cognitive tests known in the art, such as Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency, e.g. frontal-temporal deficiency.
  • a norm of the cognitive feature measured in the previous step is obtained.
  • the norm is preferably calculated by performing the desired cognitive test of the previous step on a control group.
  • the control group may be a group of healthy individuals, or a group of individuals diagnosed as having a specific disease, or a group of individuals diagnosed as not having a specific disease.
  • the measurement of the cognitive feature in the patient 100 is compared to the norm of that cognitive feature in the control group, so as to determine specific differences between the patient and the control group.
  • abnormal cognitive features of the patient 100 are determined. For example, by comparing results of a cognitive test of the patient 100 to the results a large group of healthy individuals to that cognitive test, the abnormal test results of the patient 100 may be determined. As an another example, if a patient 100 is known to suffer from autism, by comparing results of the patient 100 in a cognitive test, to the results of a control group of patients diagnosed with autism to that cognitive test, the specific cognitive deficiencies of the patient 100 , which are likely to be associated with autism, are determined.
  • Determination of abnormal cognitive features of the patient 100 is used by the integrated treatment controller 116 ( FIG. 2 ), as further described hereinbelow with reference to FIG. 4 .
  • FIG. 3B is provided as an illustration only, and is not meant to be limiting, and that these steps may be performed in a different sequence.
  • FIG. 4 is a simplified block diagram illustrating a design of an integrated treatment controller 116 of FIG. 2 , constructed and operative in accordance with a preferred embodiment of the present invention.
  • the integrated treatment controller 116 comprises a stimulator controller 130 , operative to control the stimulator 118 ( FIG. 2 ), so as to personalize the neuronal and cognitive stimulation of the ICONS device of the present invention, adjusting it to an individual patient, such as the patient 100 .
  • the stimulator controller 130 comprises a brain stimulator controller 132 , operative to control the brain stimulator 120 ( FIG. 2 ), and a cognitive stimulator controller 134 , operative to control the cognitive stimulator 122 ( FIG. 2 ).
  • the stimulator controller 130 receives as input, initial data 136 comprising abnormal brain regions 138 and abnormal cognitive features 140 , both of the patient 100 . Based on this initial data 136 , the stimulator controller 130 determines the neuronal and cognitive stimuli appropriate for an individual patient.
  • Abnormal brain regions 132 are produced by operation of the brain analyzer 112 ( FIG. 2 ), described hereinabove with reference to FIG. 3A .
  • Abnormal cognitive features 134 are produced by operation of the cognitive analyzer 114 ( FIG. 2 ), described hereinabove with reference to FIG. 3B .
  • the stimulator controller 130 also receives as additional input feedback data 142 comprising brain feedback data 144 and cognitive feedback data 146 , both of the patient 100 .
  • Brain feedback data 144 is produced by operation of the brain feedback detector 126 ( FIG. 2 )
  • cognitive feedback data 146 is produced by operation of the cognitive feedback detector 128 ( FIG. 2 ).
  • the feedback data 142 is an optional aspect of the present invention, allowing fine-tuning of the operation of the stimulator 118 , and is preferably generated and passed on to the stimulator controller 130 , iteratively, during the process of treatment. Alternatively it may take place intermittently, between treatment sessions, or at the end of treatment.
  • FIG. 5 is a simplified illustration of a Computerized Magnetic Photo-Electric Stimulator (CMPES), constructed and operative in accordance with a preferred embodiment of the present invention.
  • CMS Computerized Magnetic Photo-Electric Stimulator
  • a Computerized Magnetic Photo-Electric Stimulator (CMPES) 148 is a device capable of therapeutically stimulating an organ of a patient, such as a head of a patient, preferably applying a combination of an electromagnetic stimulation together with a laser stimulation, thereby triggering a therapeutic photo-electric effect.
  • the Computerized Magnetic Photo-Electric Stimulator (CMPES) 148 comprises a magnetic stimulator 150 , which is preferably a concentric hollow device capable of creating an electromagnetic stimulation.
  • the magnetic stimulator 150 surrounds a treatment cavity 152 , in which the patient's head/body 154 , which is to be treated, is placed.
  • An optional support 156 may support the patient's head/body 154 in a proper location within the treatment cavity 152 , and relative to the magnetic stimulator 150 .
  • the Computerized Magnetic Photo-Electric Stimulator (CMPES) 148 further comprises at least one laser generator 158 , which emits a respective at least one laser beam 160 .
  • the at least one laser generator 158 may be located inside the treatment cavity 152 , or may be located outside thereof, emitting the at least one laser beam 160 through an optional at least one laser channel 162 .
  • An at least one deflecting mirror 164 may be utilized to direct the at least one laser beam 160 to the desired specific location in the patient's head/body 154 which needs stimulation.
  • a computerized multi-site brain activator 166 controls the at least one laser generator 158 , and the magnetic stimulator, and optionally the at least one deflecting mirror 164 , so as to apply an integrated magnetic photo-electric stimulation.
  • applying a plurality of the at least one laser beams 160 allows specific stimulation of an exact three-dimensional location within the patient's head/body 154 .
  • a magnetic stimulation generated by the magnetic stimulator 150 together with a laser stimulation caused by the at least one laser generator 158 causes a synergistic magnetic photo-electric stimulation.
  • the provisional patent outlines a novel integrative Clinical-therapeutic application of an individual-based brain stimulation of (functional/structural) deficient brain regions that is coupled with specific plasticity-based cognitive-behavioral training methodologies that are geared towards improving the cognitive, affective, behavioral or bodily function (or condition) of the individual (as measured through localized brain functional/structural measurements and cognitive-behavioral or medical performance/condition measurements).
  • the present invention comprises of the following plasticity-based principles
  • BODILY AILMENT/DISEASE A utilization of various (existing or prospective) measurement methodologies that can identify localized (functional or structural) brain-deficient regions, relative to the normal population. The emphasis here is on the ability to localize- and statistically qualify-individual-based deviations in functional or structural properties of specific brain regions (relative to the normal-healthy population).
  • MRI Magnetic Resonance Imaging
  • f-MRI Functional Magnetic Resonance Imaging
  • PET Positron Emission Tomography
  • SPECT Single Photon Emission Computerized Tomography
  • this integrative therapeutic methodology capitalizes on the integration of specific cognitive/behavioral (or other clinical) measurements of deficient performance/capabilities of any particular Clinical population—as coupled with accurate brain-deficient (structural/functional) mapping—and powerful statistical deviation analysis of the (examined) individual relative to the “normal population”.
  • cognitive tasks/measurements such as: the Stroop Color-Task, Navon Global-Local Paradigm, various Memory, Intelligence, Language, frontal-temporal (or any other specific brain region) deficiency, various personality, cognitive-affective measurement tolls, but also prospective tests/tasks that specifically activate/measure the deficient brain/bodily illness/deficiency;
  • An example for the ability of this integrative therapeutic tool to measure even the brain correlates (or tracers) of bodily illnesses is the utilization of Kreitler & Kreitler's Dimensional Meaning Profile—which was shown to cognitively distinguish between the performance of Ovarian Cancer patients, AIDS (and other clinical populations), and even between different professions (which in turn may be associated with particular health risks/deficiencies).
  • any (existing or prospective) Neuropsychological/Neurological or Bodily illness may be localized to a specific pattern of deficient (single- or multi-site localized) brain deficiency (relative to the normal healthy population)—which then affords itself (through the proposed statistical brain imaging measurements) to an individual-based stimulation (e.g., excitatory or inhibitory) of those deficient brain regions, thereby significantly improving both performance and clinical condition (of the specific ailment).
  • a good example for this principle is the utilization of various (existing or novel) short-term memory-training methodologies applied in conjunction with Brain activation of the specific deficient regions associated with Alzheimer's (initial) loss of short-term memory functions (as identified through the Cognitive-Behavioral tests). It is worthwhile noting that this combination of neurophysiological brain stimulation (or CMPES bodily stimulation)—along with specific plasticity-based training methodologies—is especially powerful, given extensive knowledge of the regenerative processes associated with brain stimulation (both in terms of function and dendritic growth)—which also appears to facilitate the effectiveness of various cognitive-behavioral interventions (as in the case of the enhanced capability to “erase” traumatic memories in PTSD through a combination of specific psychological manipulation and stimulation of the affected brain regions).
  • the present invention may further be clarified by the following steps:
  • STEP I IDENTIFICATION OF (EXISTING OR PROSPECTIVE) NEURO-PSYCHOLOGICAL/NEUROLOGICAL BRAIN (OR ALSO CMPES' BODILY/MEDICAL) DEFICIENCY—THROUGH SPECIFIC COGNITIVE-BEHAVIORAL/PHSYIOLOGICAL TASKS/TESTS/MEASUREMENTS WITH CONCURRENT BRAIN IMAGING: These allow us to localize the deviant pattern of brain (or bodily) activation (on an individual-basis, as well as collectively for all patients suffering from a specific Disease/condition).
  • STEP II BRAIN (OR BODILY) STIMULATION OF DEFICIENT (FUNCTIONAL OR STRUCTURAL) REGIONS: through a sophisticated individual-based statistical analysis of deficient brain (or bodily) activity/structure, relative to the normal brain (or body).
  • the primary advantage here is both the fact that we can individually “tailor” the brain (bodily) stimulation according to the specific localization/s of the deficiency and their precise ‘deficiency value’ relative to the “healthy norm” (as established statistically) (e.g., adjust the necessary excitatory or inhibitory stimulation in intensity, duration and recurrency—based on the particular pattern of individual deficiency), as well as the temporal-spatial accuracy of the application of the corrective stimulation (i.e., with the brain/bodily mapping of deficiencies tied almost simultaneously to the deliverance of individually tailored treatment).
  • STEP III PLASTICITY-BASED TRAINING OF SPECIFIC DEFICIENT BRAIN (OR BODILY)
  • REGIONS Identification of (existent or prospective) training methodologies that specifically address the Cognitive-Behavioral/Medical deficiency/ies, that would be administered in conjunction with the stimulation of the deficient Brain/Bodily regions—to maximize the plastic changes in brain activation (functionally and structurally) and general hoemstasis controlling capabilities of bodily functions/condition.
  • STEP IV MEASUREMENT OF COGNITIVE-BEHAVIORAL/MEDICAL IMPROVEMENT: Both through localized (functional structural or other) brain mapping and corresponding Clinical Performance/condition; This module also allows for an
  • STEP V ASSESSMENT AND REAPPLICATION/ADJUSTMENT OF BRAIN/BODILY STIMULATION—UNTIL (PARTIAL OR FULL) RECOVERY OR IMPROVEMENT IN PERFORMANCE/CLINICAL CONDITION: Given the Homeostasis capabilities of plasticity-based regeneration of functional/structural brain capabilities, the application of both localized stimulation of deficient brain (or bodily) regions that is coupled with rigorous (and possibly repetitive) plasticity-based specific training (for these deficient Cognitive-Behavioral/Medical capabilities) may very well lead to a dynamic change in the individual-based performance as well as brain/bodily deficient regions/functions. Therefore the continuous measurement feedback of improved functional/structural capabilities can be interactively modulated until a (partial or full) remediation/normalcy results.
  • CPES Computerized Magnetic Photo-Electric Stimulator
  • a Computerized Magnetic Photo-Electric Stimulator (CMPES) is described.
  • the CMPES is a novel apparatus that utilizes a strong magnetic field applied to either the entire (or parts of) the human brain and/or the human body (or parts of it), in conjunction with localized laser beams—which together produce localized electrical stimulation of the “deficient” (over- or under-activated) brain/bodily regions—thereby improving the functional, structural or medical/health of any diseased/deficient organ, system, or entire body.
  • the novel CMPES device which will also consist of advanced statistical analysis of brain/body imaging of “deficient” (e.g., hypo- or hyper-activation) on an individual-based level (as well as relative to specific Clinical Diseases)—would allow for a computerized detection of single- or multiple-(structural or functional) deficient activation brain/bodily sites and “correct” this deficiency through the elicitation of electro-magnetic current in those deficient regions.

Abstract

An integrated system and method for treatment of various diseases, including psychiatric, mental and brain disorders, which preferably combines personalized non-invasive neuronal brain stimulation together with appropriate personalized cognitive training, and which iteratively fine-tunes this treatment by monitoring specific cognitive and brain functions in response to the treatment. A novel brain stimulator device and method, Computerized Magnetic Photo-Electric Stimulator (CCMPES), is described, which integrates electromagnetic stimulation with laser stimulation to generate a magnetic photo-electric stimulation.

Description

    BACKGROUND OF THE INVENTION
  • Various functional and structural central nervous system (CNS) imaging instrumentations are known in the art, including inter alia Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT).
  • Various cognitive diagnostic techniques are known in the art including inter-alia Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, as well as various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency, e.g. frontal-temporal deficiency.
  • Various non-invasive brain neuronal stimulation techniques are known in the art, including inter alia, Transcranial Magnetic Stimulation (TMS), and Deep TMS (Roth Y, Zangen A, Hallett M.: “A coil design for transcranial magnetic stimulation of deep brain regions”, J Clin Neurophysiol. 2002 August; 19 (4):361-70).
  • SUMMARY OF THE INVENTION
  • The present invention provides an integrated system and method for treatment of various diseases, including psychiatric, mental, brain and bodily disorders, which preferably combines personalized brain stimulation together with appropriate personalized cognitive training, and which iteratively fine-tunes this treatment by monitoring specific cognitive and brain functions in response to treatment. A preferred embodiment of the present invention is the Integrated Cognitive Neuronal Stimulation (ICONS) system, which is described hereinbelow.
  • There is thus provided in accordance with a preferred embodiment of the present invention a medical device for treatment of a disease including: a non-invasive brain stimulator operative to selectively stimulate at least one region of a brain of a patient, which at least one region is associated with the disease; and a cognitive stimulator operative to stimulate at least one cognitive feature in the patient, which the at least one cognitive feature is associated with the disease.
  • There is further provided in accordance with another embodiment of the present invention a medical device wherein the medical device also includes an analyzer operative to modulate operation of the medical device based at least in part on comparison of a measurement of a property in a patient to a norm of the property, which property is one of the following items: a localized brain feature and a cognitive feature.
  • There is yet further provided in accordance with another embodiment of the present invention a medical device wherein the medical device also includes a feedback modulator operative to modulate operation of the medical device based at least in part on detection and analysis of alteration of a property following operation of the medical device, which property is one of the following items: a localized brain feature and a cognitive feature.
  • There is additionally provided in accordance with a preferred embodiment of the present invention a method of the therapy for a disease, the method including: stimulating at least one region of a brain of a patient, which at least one region is associated with the disease; and stimulating at least one cognitive feature in the patient, which the at least one cognitive feature is associated with the disease.
  • There is moreover provided in accordance with another embodiment of the present invention a method of the therapy for a disease wherein the method also includes: comparing a measurement of a property in property in a patient to a norm of the property, which property is one of the following items: a localized brain feature and a cognitive feature; and wherein the comparing modulates at least one of the following: the stimulating at least one region of a brain of a patient and the stimulating at least one cognitive feature in the patient.
  • There is further provided in accordance with another embodiment of the present invention a method of the therapy for a disease wherein the method also includes: analyzing alteration of a property following operation of the medical device, which property is one of the following items: a localized brain feature and a cognitive feature; and wherein the analyzing modulates at least one of the following: the stimulating at least one region of a brain of a patient and the stimulating at least one cognitive feature in the patient.
  • There is yet further provided in accordance with another embodiment of the present invention a medical device for treatment of a disease containing an electromagnetic stimulator and a laser stimulator and operative to induce a magnetic photo-electric stimulation which selectively stimulates at least one region of a brain of a patient, which at least one region is associated with the disease.
  • There is additionally provided in accordance with another embodiment of the present invention a method of therapy for a disease, the method consisting of: electromagnetically stimulating at least one region of a brain of a patient, which at least one region is associated with the disease; and laser stimulating the at least one region of a brain of a patient by means of at least one laser beam; and wherein the electromagnetically stimulating and the laser stimulating cause a magnetic photo-electric stimulation.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a simplified illustration of a usage of a medical device constructed and operative in accordance with a preferred embodiment of the present invention;
  • FIG. 2 is a simplified block diagram illustrating a design of a medical device constructed and operative in accordance with a preferred embodiment of the present invention;
  • FIG. 3A is a simplified flowchart illustrating operation of a brain analyzer constructed and operative in accordance with a preferred embodiment of the present invention;
  • FIG. 3B is a simplified flowchart illustrating operation of a cognitive analyzer constructed and operative in accordance with a preferred embodiment of the present invention;
  • FIG. 4 is a simplified block diagram illustrating a design of an integrated treatment controller constructed and operative in accordance with a preferred embodiment of the present invention; and
  • FIG. 5 is a simplified illustration of a Computerized Magnetic Photo-Electric Stimulator constructed and operative in accordance with a preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE DRAWINGS
  • Reference is now made to FIG. 1, which is a simplified illustration of a usage of a medical device constructed and operative in accordance with a preferred embodiment of the present invention.
  • An important aspect of the present invention is the concept of integrating external neuronal stimulation of the brain, together with cognitive stimulation, e.g. cognitive training, that causes internal stimulation of the brain. Another important aspect of the present invention is the concept of patient-specific brain stimulation, which is based at least in part on a comparison of neuronal function and structure of a brain of a patient, and cognitive properties of a patient to a norm of these brain and cognitive properties in a control population. Yet another important aspect of the present invention is the concept of patient-specific brain stimulation, which is based on an iterative comparison of changes in brain-function and in cognitive properties, in response to treatment.
  • FIG. 1 illustrated a patient 100 being treated by an Integrated Cognitive Neuronal Stimulation (ICONS) system, constructed and operative in accordance with a preferred embodiment of the present invention, and which is further described hereinbelow with reference to FIGS. 2-4. As depicted by FIG. 1, the ICONS system preferably comprises of a brain stimulator and device 102, a cognitive stimulator and assessment device 104, an integrated treatment controller device 106, and optionally a human operator 108.
  • In accordance with a preferred embodiment of the present invention the brain stimulator and imaging device 102 is a medical device capable of selectively stimulating various regions of the brain, either excitatory or inhibitory stimuli. Various such devices are known in the art, including inter alia various Magnetic Photo-Electric Stimulator (MPES) devices, Transcranial Magnetic Stimulation (TMS) and Deep TMS devices.
  • In accordance with another preferred embodiment of the present invention, the brain stimulator and imaging device 102 is a medical device that stimulates various regions of the body, thus stimulating the brain indirectly, i.e. stimulating different organs of the body, thereby causing these organs to transmit neuronal impulses which stimulate regions of the brain.
  • In accordance with yet another preferred embodiment of the present invention, the brain stimulator and imaging device is also capable of functional and or structural imaging the brain. Imaging may be performed using various functional and structural CNS imaging instrumentations that are know in the art, including inter alia Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT).
  • It is appreciate that while FIG. 1 depicts both the brain stimulation and the brain imaging functionality as being performed by the brain stimulator and imaging device 102, this is not meant to be limiting: the brain imaging functionality may be performed by a physically separate instrument, which is a separate component of the ICONS device of the present invention, or the ICONS device may not include a brain imaging component.
  • In accordance with a preferred embodiment of the present invention the cognitive stimulator and assessment device 104 is a computer having a computer monitor and optionally a user-input device, such as a keyboard or a microphone, and which runs a computer program that causes display of cognitive stimuli on the computer monitor and accepts responses of the patient 100 to these stimuli. The cognitive stimulator and assessment device 104 is operative to perform specific cognitive stimulation, i.e. cognitive training, which is beneficial to the treatment of the patient 100, and is optionally also operative to assess the cognitive features of the patient 100, both at the start of the treatment as well as in response to the treatment.
  • The integrated treatment controller device 106 is a computer running a computer program, which computer program is constructed and operative to control the brain stimulator and imaging device 102, and the cognitive stimulator and assessment device 104. Operation of the integrated treatment controller device 106 is further described hereinbelow with reference to FIGS. 2 and 4.
  • Reference is now made to FIG. 2, which is a simplified block diagram illustrating a design of an Integrated Cognitive Neuronal Stimulation (ICONS) system constructed and operative in accordance with a preferred embodiment of the present invention.
  • Treatment of the patient 100 (FIG. 1) by the ICONS system of the present invention preferably begins by action of an analyzer 110, which preferably comprises a brain analyzer 112 and a cognitive analyzer 114. The analyzer is operational to assess localized brain properties, such as function or structure, and cognitive features, both of the patient 100, in comparison to a norm of these properties and features.
  • The brain analyzer 112 analyzes functional and structural brain properties of the patient 100 in comparison to a norm of these properties. Imaging may be performed using various functional and structural CNS imaging instrumentations that are know in the art, including inter alia Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) and Single Photon Emission Computerized Tomography (SPECT). Operation of the brain analyzer 112 is further elaborated hereinbelow with reference to FIG. 2A
  • The cognitive analyzer 14 analyzes cognitive properties of the patient 100 in comparison to a norm of these properties. Cognitive analysis may be performed by a computer having a computer monitor and an input device and running a computer program which displays cognitive stimuli and measures responses of the patient 100 to these stimuli. The cognitive analyzer preferably utilizes at least one of various cognitive diagnostic techniques known in the art such as Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency in a disease state, such as in patients suffering from depression. Operation of the cognitive analyzer 114 is further elaborated hereinbelow with reference to FIG. 2B.
  • An integrated treatment controller 116 is a computer program, which receives as input the results of analysis of the analyzer 110, and based at least in part on these analysis results, computes and determines the appropriate, personalized, brain and cognitive stimuli for a patient 100. Operation of the integrated treatment controller 116 is further elaborated hereinbelow with reference to FIG. 4.
  • A stimulator 118 is a medical device, preferably comprising a brain stimulator 120 and a cognitive stimulator 122, which receives as input personalized brain and cognitive stimuli, calculated by the integrated treatment controller 116, and generates and applies these stimuli to the patient 100.
  • According to a preferred embodiment of the present invention the brain stimulator 120 is a medical device capable of selectively stimulating various regions of the brain, either excitatory or inhibitory stimuli. Various such devices are known in the art, including inter alia various Transcranial Magnetic Stimulation (TMS), and Deep TMS devices. In a preferred embodiment of the present invention, the brain stimulator 120 functionality may be achieved by a Computerized Magnetic Photo-Electric Stimulator (CMPES) device of the present invention, described hereinbelow with reference to FIG. 5.
  • In accordance with another preferred embodiment of the present invention, the brain stimulator and imaging device 102 is a medical device that stimulates various regions of the body, thus stimulating the brain indirectly, i.e. stimulating different organs of the body, thereby causing these organs to transmit neuronal impulses which stimulate regions of the brain.
  • In accordance with a preferred embodiment of the present invention the cognitive stimulator 122 is a computer having a computer monitor and optionally a user-input device, such as a keyboard or a microphone, and which runs a computer program that causes display of cognitive stimuli on the computer monitor and accepts responses of the patient 100 to these stimuli. The cognitive stimulator 122 is operative to perform specific cognitive stimulation, i.e. cognitive training, which is beneficial in treating a medical disease or condition of the patient 100. Such cognitive stimulation includes various cognitive tests and stimulations known in the art, such as Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, as well as various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency, e.g. frontal-temporal deficiency.
  • An important aspect of the present invention is a concept that cognitive training, when performed in conjunction with neuronal stimulation of the brain, improves the plasticity of the brain, and hence is synergistic to the neuronal stimulation of the brain.
  • A feedback detector 124 is a sensor device comprising a brain feedback detector 126 and a cognitive feedback detector 128, which iteratively measures changes in brain and cognitive parameters in response stimulation of the stimulator 118, and reports these changes to the integrated treatment controller 116. Based on the feedback data provided by the feedback detector 124, the integrated treatment controller 116 may modify its instructions to the stimulator 118, as to the type and intensity of the neuronal and cognitive stimuli to be applied to the patient 100.
  • The brain feedback detector 126 is a device operative to measure changes in functional and structural brain properties of the patient 100 in response to stimulation of the stimulator 118. Measurement may be performed using devices known in the art such as a Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) or Single Photon Emission Computerized Tomography (SPECT).
  • The cognitive feedback detector 128 is a device operative to measure changes in cognitive properties of the patient 100 in response to stimulation of the stimulator 118. Cognitive analysis may be performed by a computer having a computer monitor and an input device and running a computer program which displays cognitive stimuli and measures responses of the patient 100 to these stimuli. The cognitive analyzer preferably utilizes at least one of various cognitive diagnostic techniques known in the art such as Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency, e.g. frontal-temporal deficiency.
  • Reference is now made to FIG. 3A, which is a simplified flowchart illustrating operation of a brain analyzer 112 of FIG. 2, constructed and operative in accordance with a preferred embodiment of the present invention.
  • The brain analyzer 112 measures a localized brain property in the patient 100. The localized brain property may be a structural property or a functional property, and is preferably obtained by various neuro-imaging devices known in the art, such as Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET) or Single Photon Emission Computerized Tomography (SPECT).
  • A norm of the localized brain property measured in the previous step is obtained. The norm is preferably calculated by performing the desired neuro-imaging of the previous step on a control group. The control group may be a group of healthy individuals, or a group of individuals diagnosed as having a specific disease, or a group of individuals diagnosed as not having a specific disease.
  • The measurement of the brain property in the patient 100 is compared to the norm of that property in the control group, so as to determine specific differences between the patient and the control group.
  • Based on the comparison of the previous step, abnormal brain regions of the patient 100 are determined. For example, by comparing the fMRI functional imaging results of the patient 100 to the fMRI results of a large group of healthy individuals, the regions of abnormality of the patient 100 may be determined. As an another example, if a patient 100 is known to suffer from autism, by comparing the functional imaging results of the patient 100 to those of a control group of patients diagnosed with autism, the specific regions of abnormality in the brain of the patient 100, which are likely to be associated with autism, are determined.
  • Determination of abnormal brain regions of the patient 100, which results from the previous step, is used by the integrated treatment controller 116 (FIG. 2), as further described hereinbelow with reference to FIG. 4.
  • It is appreciated that the sequence of the steps illustrated by FIG. 3A is provided as an illustration only, and is not meant to be limiting, and that these steps may be performed in a different sequence.
  • Reference is now made to FIG. 3B, which is a simplified flowchart illustrating operation of a cognitive analyzer 114 of FIG. 2, constructed and operative in accordance with a preferred embodiment of the present invention.
  • The cognitive analyzer 114 measures a cognitive feature in the patient 100. The cognitive feature is preferably measured by various cognitive tests known in the art, such as Stroop Color Task, Navon Global Local Paradigm, Dimensional Meaning Profile, various memory, intelligence, language, personality tests, cognitive-affective measurement tools, and tests for locating brain region deficiency, e.g. frontal-temporal deficiency.
  • A norm of the cognitive feature measured in the previous step is obtained. The norm is preferably calculated by performing the desired cognitive test of the previous step on a control group. The control group may be a group of healthy individuals, or a group of individuals diagnosed as having a specific disease, or a group of individuals diagnosed as not having a specific disease.
  • The measurement of the cognitive feature in the patient 100 is compared to the norm of that cognitive feature in the control group, so as to determine specific differences between the patient and the control group.
  • Based on the comparison of the previous step, abnormal cognitive features of the patient 100 are determined. For example, by comparing results of a cognitive test of the patient 100 to the results a large group of healthy individuals to that cognitive test, the abnormal test results of the patient 100 may be determined. As an another example, if a patient 100 is known to suffer from autism, by comparing results of the patient 100 in a cognitive test, to the results of a control group of patients diagnosed with autism to that cognitive test, the specific cognitive deficiencies of the patient 100, which are likely to be associated with autism, are determined.
  • Determination of abnormal cognitive features of the patient 100, which result from the previous step, is used by the integrated treatment controller 116 (FIG. 2), as further described hereinbelow with reference to FIG. 4.
  • It is appreciated that the sequence of the steps illustrated by FIG. 3B is provided as an illustration only, and is not meant to be limiting, and that these steps may be performed in a different sequence.
  • Reference is now made to FIG. 4, which is a simplified block diagram illustrating a design of an integrated treatment controller 116 of FIG. 2, constructed and operative in accordance with a preferred embodiment of the present invention.
  • The integrated treatment controller 116 comprises a stimulator controller 130, operative to control the stimulator 118 (FIG. 2), so as to personalize the neuronal and cognitive stimulation of the ICONS device of the present invention, adjusting it to an individual patient, such as the patient 100. The stimulator controller 130 comprises a brain stimulator controller 132, operative to control the brain stimulator 120 (FIG. 2), and a cognitive stimulator controller 134, operative to control the cognitive stimulator 122 (FIG. 2).
  • The stimulator controller 130 receives as input, initial data 136 comprising abnormal brain regions 138 and abnormal cognitive features 140, both of the patient 100. Based on this initial data 136, the stimulator controller 130 determines the neuronal and cognitive stimuli appropriate for an individual patient. Abnormal brain regions 132 are produced by operation of the brain analyzer 112 (FIG. 2), described hereinabove with reference to FIG. 3A. Abnormal cognitive features 134 are produced by operation of the cognitive analyzer 114 (FIG. 2), described hereinabove with reference to FIG. 3B.
  • The stimulator controller 130 also receives as additional input feedback data 142 comprising brain feedback data 144 and cognitive feedback data 146, both of the patient 100. Brain feedback data 144 is produced by operation of the brain feedback detector 126 (FIG. 2), and cognitive feedback data 146 is produced by operation of the cognitive feedback detector 128 (FIG. 2).
  • The feedback data 142 is an optional aspect of the present invention, allowing fine-tuning of the operation of the stimulator 118, and is preferably generated and passed on to the stimulator controller 130, iteratively, during the process of treatment. Alternatively it may take place intermittently, between treatment sessions, or at the end of treatment.
  • Reference is now made to FIG. 5, which is a simplified illustration of a Computerized Magnetic Photo-Electric Stimulator (CMPES), constructed and operative in accordance with a preferred embodiment of the present invention.
  • A Computerized Magnetic Photo-Electric Stimulator (CMPES) 148 is a device capable of therapeutically stimulating an organ of a patient, such as a head of a patient, preferably applying a combination of an electromagnetic stimulation together with a laser stimulation, thereby triggering a therapeutic photo-electric effect.
  • The Computerized Magnetic Photo-Electric Stimulator (CMPES) 148 comprises a magnetic stimulator 150, which is preferably a concentric hollow device capable of creating an electromagnetic stimulation.
  • The magnetic stimulator 150 surrounds a treatment cavity 152, in which the patient's head/body 154, which is to be treated, is placed. An optional support 156, may support the patient's head/body 154 in a proper location within the treatment cavity 152, and relative to the magnetic stimulator 150.
  • The Computerized Magnetic Photo-Electric Stimulator (CMPES) 148 further comprises at least one laser generator 158, which emits a respective at least one laser beam 160. The at least one laser generator 158 may be located inside the treatment cavity 152, or may be located outside thereof, emitting the at least one laser beam 160 through an optional at least one laser channel 162.
  • An at least one deflecting mirror 164 may be utilized to direct the at least one laser beam 160 to the desired specific location in the patient's head/body 154 which needs stimulation.
  • A computerized multi-site brain activator 166 controls the at least one laser generator 158, and the magnetic stimulator, and optionally the at least one deflecting mirror 164, so as to apply an integrated magnetic photo-electric stimulation.
  • It is appreciated that applying a plurality of the at least one laser beams 160, allows specific stimulation of an exact three-dimensional location within the patient's head/body 154.
  • It is further appreciated, that the combination of a magnetic stimulation generated by the magnetic stimulator 150, together with a laser stimulation caused by the at least one laser generator 158 causes a synergistic magnetic photo-electric stimulation.
  • The following description may be useful in further understanding the present invention and different possible embodiments thereof. Given extensive documentation of the localization of various Neuropsychological illnesses to specific brain-deficient (structural or functional) regions, and research indicating the “plasticity” of cognitive, affective and behavioral aspects—following stimulation of corresponding neurological sites, the provisional patent outlines a novel integrative Clinical-therapeutic application of an individual-based brain stimulation of (functional/structural) deficient brain regions that is coupled with specific plasticity-based cognitive-behavioral training methodologies that are geared towards improving the cognitive, affective, behavioral or bodily function (or condition) of the individual (as measured through localized brain functional/structural measurements and cognitive-behavioral or medical performance/condition measurements).
  • The present invention comprises of the following plasticity-based principles
  • IDENTIFICATION OF INDIVIDUAL-BASED BRAIN-DEFICIENT REGIONS OF NEUROPSYCHOLOGICAL/NEUROLOGICAL OR (ANY OTHER TYPE OF) BODILY AILMENT/DISEASE: A utilization of various (existing or prospective) measurement methodologies that can identify localized (functional or structural) brain-deficient regions, relative to the normal population. The emphasis here is on the ability to localize- and statistically qualify-individual-based deviations in functional or structural properties of specific brain regions (relative to the normal-healthy population). An example for such (existent) instrumentation would be: Magnetic Resonance Imaging (MRI), Functional Magnetic Resonance Imaging (f-MRI), Positron Emission Tomography (PET), Single Photon Emission Computerized Tomography (SPECT), etc.—when coupled with sophisticated cognitive-behavioral (or any other clinically-specific) deviant performance measurement. It is to be emphasized here that this integrative therapeutic methodology capitalizes on the integration of specific cognitive/behavioral (or other clinical) measurements of deficient performance/capabilities of any particular Clinical population—as coupled with accurate brain-deficient (structural/functional) mapping—and powerful statistical deviation analysis of the (examined) individual relative to the “normal population”.
  • UTILIZATION OF NEUROPSYCHOLOGICAL/NEUROLOGICAL/BODILY DISEASE SPECIFIC COGNITIVE—BEHAVIORAL/MEDICAL/PHYSIOLOGICAL TASK THAT BOTH QUANTIFIES IMPAIRED PERFORMANCE AND ASSISTS IN IDENTIFYING THE DEFICIENT BRAIN REGIONS (THROUGH BRIAN MAPPING, DISCUSSED ABOVE AND/OR WITH THE PROPOSED CMPES TECHNOLOGY): Usage of various Cognitive-Behavioral or Medical/Physiological tests or tasks that specifically identify the behavioral or cognitive/affective deficiency of each Clinical population. Among these tasks are included cognitive tasks/measurements such as: the Stroop Color-Task, Navon Global-Local Paradigm, various Memory, Intelligence, Language, frontal-temporal (or any other specific brain region) deficiency, various personality, cognitive-affective measurement tolls, but also prospective tests/tasks that specifically activate/measure the deficient brain/bodily illness/deficiency; An example for the ability of this integrative therapeutic tool to measure even the brain correlates (or tracers) of bodily illnesses is the utilization of Kreitler & Kreitler's Dimensional Meaning Profile—which was shown to cognitively distinguish between the performance of Ovarian Cancer patients, AIDS (and other clinical populations), and even between different professions (which in turn may be associated with particular health risks/deficiencies). The ability to identify and categorize a very wide range of illnesses/ailments—both Neuropsychological/Neurological and/or Bodily diseases—on the basis of specific Cognitive-Behavioral tasks/measurements, which can identify specific Neurological/Brain (structural or functional) deficiencies has far reaching implications and applications; Thus, for instance it is claimed that any (existing or prospective) Neuropsychological/Neurological or Bodily illness—may be localized to a specific pattern of deficient (single- or multi-site localized) brain deficiency (relative to the normal healthy population)—which then affords itself (through the proposed statistical brain imaging measurements) to an individual-based stimulation (e.g., excitatory or inhibitory) of those deficient brain regions, thereby significantly improving both performance and clinical condition (of the specific ailment). This is particularly true (for both Neuropsychological and Bodily Ailments Diseases)—as there is ample scientific evidence suggesting that the brain—not only serves as the “central executive control” of the nervous, immunological, endocrine (and practically all other systems and functions in the body)—but also possesses extraordinary “plasticity” capabilities (both in terms of neural regeneration and in terms of effectively affecting the homeostasis of the body). Hence, this novel introduction of Cognitive-Behavioral tasks/measurements (and/or Physiological/Medical tasks/measurements) that can identify the specific brain-deficient localizations that are characteristic of any Neuropsychological/Medical Clinical Disease (in conjunction with the abovementioned brain mapping of individual-based deficient localizations measurements)—offers a highly potent means of identifying and then stimulating these Illness-specific brain regions. It may be added here, that as part of the novel CMPES technology, the application of these Cognitive-Behavioral/Medical testing relating to the specific deficiencies that are characteristic of any Neuropsychological/Medical Disease/Ailment—would have an important application—not just in stimulating (e.g., activating or suppressing) specific brain regions—but also targeting such functional/structural deficient areas in the body (through electro-magnetic stimulation of the deficient localization).
  • (SINGLE- OR MULTI-SITE) STIMULATION (E.G., EXCITATION OR SUPPRESSION) OF IDENTIFIED (FUNCTIONAL OR STRUCTURAL) DEFICIENT BRAIN-REGIONS (AND IN THE CMPES—ANYWHERE IN THE BODY): Here, the intent is to employ existing and/or novel Brain Stimulation methodologies (such as the CMPES) that allow for single- or multi-site excitatory or inhibitory stimulation of (functional or structural) deficient brain regions (all throughout the brain and nervous system- or throughout the Body, for the CMPES). Based on the identification of specific Brain (or bodily) deficient regions (with the combination of specific Cognitive-Behavioral/Medical tasks/tests and in conjunction with Brain mapping of these deficiencies), there will be an (excitatory or inhibitory) stimulation of these deficient regions—which is hypothesized to lead to a significant improvement in both (cognitive/behavioral/physiological) performance and its corresponding (neurological or medical) activity/health. Part of the novelty of this therapeutic integrative application has to so with the fact that for any Neuropsychological/Medical Clinical Disease/condition there should be an effective therapeutic intervention—through the appropriate stimulation of the (Cognitive-Behavioral/Medical tasks' identified deficient) brain/body regions, which relies on the well-documented plasticity and capabilities of both the functional and structural regenerative aspects of the brain's operation (in controlling both neurochemical activity and bodily functions and homestasis).
  • PLASTICITY-BASED TRAINING METHODOLOGIES OF COGNITIVE-BEHAVIORAL (OR PHSYIOLOGICAL/MEDICAL) DEFICIENT CAPABILITIES (IN CONJUNCTION WITH THE STIMULATION OF THE CORRESPONDING NEURAL/BODILY DEFICIENT LOCALIZATIONS): Finally, the proposed Integrative Therapeutic Application calls for a powerful synergy between the stimulation of Brain (or CMPES' bodily) “deficient” (e.g., hypo- or hyper-activation/function/structure) regions and the direct training of these brain (or bodily) “deficient” capabilities—through (existing or novel) training methodologies (such as mnemonic, semantic, reasoning, mathematical, physical, etc.) that specifically improve the functional (or structural capabilities) of these deficient Brain/Cognitive-Behavioral/Phsyiological-Medical Capabilities. A good example for this principle is the utilization of various (existing or novel) short-term memory-training methodologies applied in conjunction with Brain activation of the specific deficient regions associated with Alzheimer's (initial) loss of short-term memory functions (as identified through the Cognitive-Behavioral tests). It is worthwhile noting that this combination of neurophysiological brain stimulation (or CMPES bodily stimulation)—along with specific plasticity-based training methodologies—is especially powerful, given extensive knowledge of the regenerative processes associated with brain stimulation (both in terms of function and dendritic growth)—which also appears to facilitate the effectiveness of various cognitive-behavioral interventions (as in the case of the enhanced capability to “erase” traumatic memories in PTSD through a combination of specific psychological manipulation and stimulation of the affected brain regions).
  • The present invention may further be clarified by the following steps:
  • STEP I: IDENTIFICATION OF (EXISTING OR PROSPECTIVE) NEURO-PSYCHOLOGICAL/NEUROLOGICAL BRAIN (OR ALSO CMPES' BODILY/MEDICAL) DEFICIENCY—THROUGH SPECIFIC COGNITIVE-BEHAVIORAL/PHSYIOLOGICAL TASKS/TESTS/MEASUREMENTS WITH CONCURRENT BRAIN IMAGING: These allow us to localize the deviant pattern of brain (or bodily) activation (on an individual-basis, as well as collectively for all patients suffering from a specific Disease/condition).
  • STEP II: BRAIN (OR BODILY) STIMULATION OF DEFICIENT (FUNCTIONAL OR STRUCTURAL) REGIONS: through a sophisticated individual-based statistical analysis of deficient brain (or bodily) activity/structure, relative to the normal brain (or body). The primary advantage here is both the fact that we can individually “tailor” the brain (bodily) stimulation according to the specific localization/s of the deficiency and their precise ‘deficiency value’ relative to the “healthy norm” (as established statistically) (e.g., adjust the necessary excitatory or inhibitory stimulation in intensity, duration and recurrency—based on the particular pattern of individual deficiency), as well as the temporal-spatial accuracy of the application of the corrective stimulation (i.e., with the brain/bodily mapping of deficiencies tied almost simultaneously to the deliverance of individually tailored treatment).
  • STEP III: PLASTICITY-BASED TRAINING OF SPECIFIC DEFICIENT BRAIN (OR BODILY) REGIONS: Identification of (existent or prospective) training methodologies that specifically address the Cognitive-Behavioral/Medical deficiency/ies, that would be administered in conjunction with the stimulation of the deficient Brain/Bodily regions—to maximize the plastic changes in brain activation (functionally and structurally) and general hoemstasis controlling capabilities of bodily functions/condition.
  • STEP IV: MEASUREMENT OF COGNITIVE-BEHAVIORAL/MEDICAL IMPROVEMENT: Both through localized (functional structural or other) brain mapping and corresponding Clinical Performance/condition; This module also allows for an
  • STEP V: ASSESSMENT AND REAPPLICATION/ADJUSTMENT OF BRAIN/BODILY STIMULATION—UNTIL (PARTIAL OR FULL) RECOVERY OR IMPROVEMENT IN PERFORMANCE/CLINICAL CONDITION: Given the Homeostasis capabilities of plasticity-based regeneration of functional/structural brain capabilities, the application of both localized stimulation of deficient brain (or bodily) regions that is coupled with rigorous (and possibly repetitive) plasticity-based specific training (for these deficient Cognitive-Behavioral/Medical capabilities) may very well lead to a dynamic change in the individual-based performance as well as brain/bodily deficient regions/functions. Therefore the continuous measurement feedback of improved functional/structural capabilities can be interactively modulated until a (partial or full) remediation/normalcy results.
  • A Computerized Magnetic Photo-Electric Stimulator (CMPES)
  • In accordance with another preferred embodiment of the present invention, a Computerized Magnetic Photo-Electric Stimulator (CMPES) is described. The CMPES is a novel apparatus that utilizes a strong magnetic field applied to either the entire (or parts of) the human brain and/or the human body (or parts of it), in conjunction with localized laser beams—which together produce localized electrical stimulation of the “deficient” (over- or under-activated) brain/bodily regions—thereby improving the functional, structural or medical/health of any diseased/deficient organ, system, or entire body.
  • Based on the well known photoelectric effect, and the interchangeability of electro-magnetic energy, the novel CMPES device—which will also consist of advanced statistical analysis of brain/body imaging of “deficient” (e.g., hypo- or hyper-activation) on an individual-based level (as well as relative to specific Clinical Diseases)—would allow for a computerized detection of single- or multiple-(structural or functional) deficient activation brain/bodily sites and “correct” this deficiency through the elicitation of electro-magnetic current in those deficient regions.
  • The rational for the hypothesized highly effective therapeutic effect of the CMPES—is quite obvious in the case of brain deficiencies, due to the well known (functional and structural) plasticity of neural activity following “corrective” (e.g., facilitative or inhibitory) electrical stimulation. Thus, for example research indicates that the application of corrective ECT or Transcranial Magnetic Stimulation (TMS) may eliminate epileptic seizures or disrupt deficient cognitive processing (as in the case of stimulating the left prefrontal cortex of Clinically Depressed Patients), as well as stimulate regenerative dendritic sprouting. Furthermore, given preliminary evidence that even regular cells may be characterized in terms of their “normal” or “deficient” electromagnetic or photonic emission imprint—it is reasonable to expect that an electromagnetic-photonic stimulation of specific regions that have been shown to be deviant in terms of their functional/structural patterns—may be greatly enhanced through this novel technology (including but not limited to therapeutic effects on cancerous cells, neural paralysis, endocrine functioning- and perhaps even at a cellular level—genetic treatment).
  • It is appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove as well as variations and modifications which would occur to persons skilled in the art upon reading the specifications and which are not in the prior art.

Claims (10)

1. A medical device for treatment of a disease comprising:
a non-invasive brain stimulator operative to selectively stimulate at least one region of a brain of a patient, which at least one region is associated with said disease; and
a cognitive stimulator operative to stimulate at least one cognitive feature in said patient, which said at least one cognitive feature is associated with said disease.
2. A medical device according to claim 1 and wherein said medical device also comprises an analyzer operative to modulate operation of said medical device based at least in part on comparison of a measurement of a property in a patient to a norm of said property, which property is one of the following items: a localized brain feature and a cognitive feature.
3. A medical device according to claim 1 and wherein said medical device also comprises a feedback modulator operative to modulate operation of said medical device based at least in part on detection and analysis of alteration of a property following operation of said medical device, which property is one of the following items: a localized brain feature and a cognitive feature.
4. A method of therapy for a disease, the method comprising:
stimulating at least one region of a brain of a patient, which at least one region is associated with said disease; and
stimulating at least one cognitive feature in said patient, which said at least one cognitive feature is associated with said disease.
5. A method of therapy for a disease according to claim 4 and wherein said method also comprises:
comparing a measurement of a property in property in a patient to a norm of said property, which property is one of the following items: a localized brain feature and a cognitive feature;
and wherein said comparing modulates at least one of the following: said stimulating at least one region of a brain of a patient and said stimulating at least one cognitive feature in said patient.
6. A method of therapy for a disease according to claim 4 and wherein said method also comprises:
analyzing alteration of a property following operation of said medical device, which property is one of the following items: a localized brain feature and a cognitive feature;
and wherein said analyzing modulates at least one of the following: said stimulating at least one region of a brain of a patient and said stimulating at least one cognitive feature in said patient.
7. A medical device for treatment of a disease comprising an electromagnetic stimulator and a laser stimulator and operative to induce a magnetic photo-electric stimulation which selectively stimulates at least one region of a brain of a patient, which at least one region is associated with said disease.
8. A method of therapy for a disease, the method comprising:
electromagnetically stimulating at least one region of a brain of a patient, which at least one region is associated with said disease; and
laser stimulating said at least one region of a brain of a patient by means of at least one laser beam;
and wherein said electromagnetically stimulating and said laser stimulating cause a magnetic photo-electric stimulation.
9. A medical device for treatment of a disease comprising:
a first stimulus generator, operative to induce selective stimulation of a first region of a brain of a patient; and
a second stimulus generator, operative to induce selective stimulation of a second region of said brain of said patient, which second region of said brain of said patient is different from said first region of said brain of said patient;
and wherein a third region of said brain of said patient is comprised in said first region of said brain of said patient and in said first region of said brain of said patient, and is associated with said disease.
10. A method of therapy for a disease, the method comprising:
stimulating a first region of a brain of a patient by means of a first stimulus generator;
stimulating a second region of said brain of said patient, which second region of said brain of said patient is different from said first region of said brain of said patient, by means of a second stimulus generator;
and wherein a third region of said brain of said patient is comprised in said first region of said brain of said patient and in said first region of said brain of said patient, and is associated with said disease.
US10/904,505 2004-09-13 2004-11-14 Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (cmpes) Abandoned US20060058853A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/904,505 US20060058853A1 (en) 2004-09-13 2004-11-14 Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (cmpes)
US12/153,037 US8498708B2 (en) 2004-09-13 2008-05-13 Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (CMPES)
US12/285,417 US20090105521A1 (en) 2004-09-13 2008-10-03 Systems and methods for assessing and treating medical conditions related to the central nervous system and for enhancing cognitive functions
US12/285,416 US20090099623A1 (en) 2004-09-13 2008-10-03 Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions
US13/912,868 US8805516B2 (en) 2004-09-13 2013-06-07 Integrated system and method for treating disease using cognitive training and brain stimulation and computerized magnetic photoelectric stimulator (CMPES)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US52228604P 2004-09-13 2004-09-13
US10/904,505 US20060058853A1 (en) 2004-09-13 2004-11-14 Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (cmpes)

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US52228604P Continuation 2004-09-13 2004-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/153,037 Continuation US8498708B2 (en) 2004-09-13 2008-05-13 Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (CMPES)

Publications (1)

Publication Number Publication Date
US20060058853A1 true US20060058853A1 (en) 2006-03-16

Family

ID=39967436

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/904,505 Abandoned US20060058853A1 (en) 2004-09-13 2004-11-14 Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (cmpes)
US12/153,037 Expired - Fee Related US8498708B2 (en) 2004-09-13 2008-05-13 Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (CMPES)
US13/912,868 Active US8805516B2 (en) 2004-09-13 2013-06-07 Integrated system and method for treating disease using cognitive training and brain stimulation and computerized magnetic photoelectric stimulator (CMPES)

Family Applications After (2)

Application Number Title Priority Date Filing Date
US12/153,037 Expired - Fee Related US8498708B2 (en) 2004-09-13 2008-05-13 Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (CMPES)
US13/912,868 Active US8805516B2 (en) 2004-09-13 2013-06-07 Integrated system and method for treating disease using cognitive training and brain stimulation and computerized magnetic photoelectric stimulator (CMPES)

Country Status (1)

Country Link
US (3) US20060058853A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060129205A1 (en) * 1998-10-26 2006-06-15 Boveja Birinder R Method and system for cortical stimulation with rectangular and/or complex electrical pulses to provide therapy for stroke and other neurological disorders
US20060217782A1 (en) * 1998-10-26 2006-09-28 Boveja Birinder R Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components
US20070260107A1 (en) * 2006-05-05 2007-11-08 Mishelevich David J Trajectory-based deep-brain stereotactic transcranial magnetic stimulation
US20080004660A1 (en) * 2006-06-28 2008-01-03 Medtrode Inc. Systems and methods for improving a cognitive function
US20080262565A1 (en) * 2004-09-13 2008-10-23 Jonathan Bentwich Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (CMPES)
US20080319505A1 (en) * 2007-05-09 2008-12-25 Massachusetts Institute Of Technology Integrated Transcranial Current Stimulation and Electroencephalography Device
US20090099623A1 (en) * 2004-09-13 2009-04-16 Neuronix Ltd. Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions
US20090099405A1 (en) * 2007-08-05 2009-04-16 Neostim, Inc. Monophasic multi-coil arrays for trancranial magnetic stimulation
US20090105521A1 (en) * 2004-09-13 2009-04-23 Jonathan Bentwich Systems and methods for assessing and treating medical conditions related to the central nervous system and for enhancing cognitive functions
WO2009055634A1 (en) * 2007-10-24 2009-04-30 Neostim Inc. Intra-session control of transcranial magnetic stimulation
US20090156884A1 (en) * 2007-11-27 2009-06-18 Schneider M Bret Transcranial magnet stimulation of deep brain targets
US20100106181A1 (en) * 2007-01-08 2010-04-29 Yossi Gross In-situ filter
US20100185042A1 (en) * 2007-08-05 2010-07-22 Schneider M Bret Control and coordination of transcranial magnetic stimulation electromagnets for modulation of deep brain targets
WO2010113164A1 (en) * 2009-04-03 2010-10-07 Neuronix Ltd. Method and system for neurological treatment
US20100256439A1 (en) * 2007-08-13 2010-10-07 Schneider M Bret Gantry and switches for position-based triggering of tms pulses in moving coils
US20100256438A1 (en) * 2007-08-20 2010-10-07 Mishelevich David J Firing patterns for deep brain transcranial magnetic stimulation
US20100286468A1 (en) * 2007-10-26 2010-11-11 David J Mishelevich Transcranial magnetic stimulation with protection of magnet-adjacent structures
US20100286470A1 (en) * 2007-08-05 2010-11-11 Schneider M Bret Transcranial magnetic stimulation field shaping
US20100331602A1 (en) * 2007-09-09 2010-12-30 Mishelevich David J Focused magnetic fields
US20110004450A1 (en) * 2007-10-09 2011-01-06 Mishelevich David J Display of modeled magnetic fields
US20110098779A1 (en) * 2009-10-26 2011-04-28 Schneider M Bret Sub-motor-threshold stimulation of deep brain targets using transcranial magnetic stimulation
US8583238B1 (en) 2012-10-02 2013-11-12 Great Lakes Neuro Technologies Inc. Wearable, unsupervised transcranial direct current stimulation (tDCS) device for movement disorder therapy, and method of using
US20130338483A1 (en) * 2011-03-03 2013-12-19 Nexstim Oy Cognitive mapping using transcranial magnetic stimulation
US8723628B2 (en) 2009-01-07 2014-05-13 Cervel Neurotech, Inc. Shaped coils for transcranial magnetic stimulation
US20160030703A1 (en) * 2012-01-31 2016-02-04 Richard Chi Method and device for increasing human ability for idea generation and insight related tasks using dc stimulation
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
CN105534520A (en) * 2015-12-02 2016-05-04 中国科学院深圳先进技术研究院 Multi-parameter family-type brain cognition detection method, device and system
US9352167B2 (en) 2006-05-05 2016-05-31 Rio Grande Neurosciences, Inc. Enhanced spatial summation for deep-brain transcranial magnetic stimulation
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
US9492679B2 (en) 2010-07-16 2016-11-15 Rio Grande Neurosciences, Inc. Transcranial magnetic stimulation for altering susceptibility of tissue to pharmaceuticals and radiation
WO2018018019A1 (en) * 2016-07-22 2018-01-25 Freqlogic, Inc. Automated multi-spectra transcranial stimulation device
CN109171642A (en) * 2018-06-17 2019-01-11 南京仁康医院有限公司 A kind of MX brain balanced rehabilitation technology treatment mental disease system
CN111372639A (en) * 2017-11-20 2020-07-03 皇家飞利浦有限公司 System for delivering sensory stimuli to a user to enhance cognitive domains in the user
CN113499085A (en) * 2021-06-16 2021-10-15 南京曦光信息科技研究院有限公司 Self-learning type chronic neurological disease risk assessment and regulation device
US11465013B2 (en) * 2012-08-31 2022-10-11 Blue Goji Llc System and method for targeted neurological therapy using brainwave entrainment
EP4088777A1 (en) * 2021-05-11 2022-11-16 Consejo Superior de Investigaciones Científicas (CSIC) Method and system to trigger the activation of the cortico-hippocampal memory system
US20230215532A1 (en) * 2012-08-31 2023-07-06 Blue Goji Llc Cloud - based healthcare diagnostics and treatment platform

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110040356A1 (en) * 2009-08-12 2011-02-17 Fredric Schiffer Methods for Treating Psychiatric Disorders Using Light Energy
US9165472B2 (en) * 2010-01-06 2015-10-20 Evoke Neuroscience Electrophysiology measurement and training and remote databased and data analysis measurement method and system
US9629568B2 (en) * 2010-01-06 2017-04-25 Evoke Neuroscience, Inc. Electrophysiology measurement and training and remote databased and data analysis measurement method and system
US8812125B2 (en) 2012-08-31 2014-08-19 Greatbatch Ltd. Systems and methods for the identification and association of medical devices
US8983616B2 (en) 2012-09-05 2015-03-17 Greatbatch Ltd. Method and system for associating patient records with pulse generators
US9375582B2 (en) 2012-08-31 2016-06-28 Nuvectra Corporation Touch screen safety controls for clinician programmer
US9615788B2 (en) 2012-08-31 2017-04-11 Nuvectra Corporation Method and system of producing 2D representations of 3D pain and stimulation maps and implant models on a clinician programmer
US10668276B2 (en) 2012-08-31 2020-06-02 Cirtec Medical Corp. Method and system of bracketing stimulation parameters on clinician programmers
US9594877B2 (en) 2012-08-31 2017-03-14 Nuvectra Corporation Virtual reality representation of medical devices
US8868199B2 (en) 2012-08-31 2014-10-21 Greatbatch Ltd. System and method of compressing medical maps for pulse generator or database storage
US8903496B2 (en) 2012-08-31 2014-12-02 Greatbatch Ltd. Clinician programming system and method
US9471753B2 (en) 2012-08-31 2016-10-18 Nuvectra Corporation Programming and virtual reality representation of stimulation parameter Groups
US9180302B2 (en) 2012-08-31 2015-11-10 Greatbatch Ltd. Touch screen finger position indicator for a spinal cord stimulation programming device
US9259577B2 (en) 2012-08-31 2016-02-16 Greatbatch Ltd. Method and system of quick neurostimulation electrode configuration and positioning
US8761897B2 (en) 2012-08-31 2014-06-24 Greatbatch Ltd. Method and system of graphical representation of lead connector block and implantable pulse generators on a clinician programmer
US9507912B2 (en) 2012-08-31 2016-11-29 Nuvectra Corporation Method and system of simulating a pulse generator on a clinician programmer
US9767255B2 (en) 2012-09-05 2017-09-19 Nuvectra Corporation Predefined input for clinician programmer data entry
US8757485B2 (en) 2012-09-05 2014-06-24 Greatbatch Ltd. System and method for using clinician programmer and clinician programming data for inventory and manufacturing prediction and control
US9517351B2 (en) 2014-05-17 2016-12-13 Thyne Global, Inc. Methods and apparatuses for amplitude-modulated ensemble waveforms for neurostimulation
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
CN204147427U (en) 2012-11-26 2015-02-11 塞恩克公司 Wearable electrocutaneous stimulation equipment
US9014811B2 (en) 2013-06-29 2015-04-21 Thync, Inc. Transdermal electrical stimulation methods for modifying or inducing cognitive state
US9440070B2 (en) 2012-11-26 2016-09-13 Thyne Global, Inc. Wearable transdermal electrical stimulation devices and methods of using them
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
US9399126B2 (en) 2014-02-27 2016-07-26 Thync Global, Inc. Methods for user control of neurostimulation to modify a cognitive state
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
US9792406B2 (en) 2014-02-10 2017-10-17 Neuronetics, Inc. Head modeling for a therapeutic or diagnostic procedure
WO2016069058A1 (en) 2014-04-25 2016-05-06 The General Hospital Corporation Method for cross-diagnostic identification and treatment of neurologic features underpinning mental and emotional disorders
US9333334B2 (en) 2014-05-25 2016-05-10 Thync, Inc. Methods for attaching and wearing a neurostimulator
JP6588472B2 (en) 2014-05-25 2019-10-09 ハイイン エクイティ インベストメント ファンド エル.ピー. Wearable transcutaneous nerve stimulator
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
WO2016109851A1 (en) 2015-01-04 2016-07-07 Thync, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
WO2016196454A1 (en) 2015-05-29 2016-12-08 Cerevast Medical Inc. Methods and apparatuses for transdermal electrical stimulation
WO2017106411A1 (en) 2015-12-15 2017-06-22 Cerevast Medical, Inc. Electrodes having surface exclusions
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
WO2017106878A1 (en) 2015-12-18 2017-06-22 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
JP2019523108A (en) * 2016-05-05 2019-08-22 ベストブレイン リミテッド Neurofeedback system and method
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11278724B2 (en) 2018-04-24 2022-03-22 Thync Global, Inc. Streamlined and pre-set neuromodulators
CA3112564A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep
GB202018397D0 (en) * 2020-11-23 2021-01-06 Univ Birmingham Improving congnitive function
US20240075310A1 (en) * 2020-12-10 2024-03-07 Beth Israel Deaconess Medical Center, Inc. Targeting Trancranial Magnetic Stimulation to Specific Brain Regions and Evaluating the Reduction of Symptoms of Psychotic Disorders
IL309846A (en) * 2021-07-06 2024-02-01 Sinaptica Therapeutics Inc Systems and methods for providing personalized targeted non-invasive stimulation to a brain network

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890957A (en) * 1972-10-24 1975-06-24 Fsw Associates Biological feedback systems
US4421122A (en) * 1981-05-15 1983-12-20 The Children's Medical Center Corporation Brain electrical activity mapping
US4883067A (en) * 1987-05-15 1989-11-28 Neurosonics, Inc. Method and apparatus for translating the EEG into music to induce and control various psychological and physiological states and to control a musical instrument
US5365939A (en) * 1993-10-15 1994-11-22 Neurotrain, L.C. Method for evaluating and treating an individual with electroencephalographic disentrainment feedback
US5450855A (en) * 1992-05-13 1995-09-19 Rosenfeld; J. Peter Method and system for modification of condition with neural biofeedback using left-right brain wave asymmetry
US6129748A (en) * 1996-03-22 2000-10-10 Kamei; Tsutomu Apparatus for applying pulsed light to the forehead of a user
US6205359B1 (en) * 1998-10-26 2001-03-20 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US20030004429A1 (en) * 1999-11-16 2003-01-02 Price Gregory Walter Interactive-modified interactive event related potential (IMIERP)
US6549805B1 (en) * 2001-10-05 2003-04-15 Clinictech Inc. Torsion diagnostic system utilizing noninvasive biofeedback signals between the operator, the patient and the central processing and telemetry unit
US6594524B2 (en) * 2000-12-12 2003-07-15 The Trustees Of The University Of Pennsylvania Adaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control
US20040131998A1 (en) * 2001-03-13 2004-07-08 Shimon Marom Cerebral programming

Family Cites Families (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE34015E (en) * 1981-05-15 1992-08-04 The Children's Medical Center Corporation Brain electrical activity mapping
US4862359A (en) * 1984-08-31 1989-08-29 Bio-Logic Systems Corporation Topographical mapping of brain functionality from neuropsychological test results
US4736752A (en) * 1986-11-28 1988-04-12 Axelgaard Manufacturing Co., Ltd. Transcutaneous medical electrode
US4736751A (en) * 1986-12-16 1988-04-12 Eeg Systems Laboratory Brain wave source network location scanning method and system
US5092835A (en) * 1990-07-06 1992-03-03 Schurig Janet L S Brain and nerve healing power apparatus and method
US5299569A (en) * 1991-05-03 1994-04-05 Cyberonics, Inc. Treatment of neuropsychiatric disorders by nerve stimulation
US6497872B1 (en) * 1991-07-08 2002-12-24 Neurospheres Holdings Ltd. Neural transplantation using proliferated multipotent neural stem cells and their progeny
US5361773A (en) * 1992-12-04 1994-11-08 Beth Israel Hospital Basal view mapping of brain activity
DE19529639C2 (en) * 1995-08-11 1997-06-19 Siemens Ag Process for the temporal and location-resolved representation of functional brain activities of a patient and arrangement for carrying out the process
US6463328B1 (en) * 1996-02-02 2002-10-08 Michael Sasha John Adaptive brain stimulation method and system
US6066163A (en) * 1996-02-02 2000-05-23 John; Michael Sasha Adaptive brain stimulation method and system
US5938688A (en) * 1997-10-22 1999-08-17 Cornell Research Foundation, Inc. Deep brain stimulation method
US7209787B2 (en) * 1998-08-05 2007-04-24 Bioneuronics Corporation Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease
US6253109B1 (en) * 1998-11-05 2001-06-26 Medtronic Inc. System for optimized brain stimulation
DE19855671A1 (en) * 1998-12-02 2000-06-15 Siemens Ag Functional brain activity representation method
US6539263B1 (en) * 1999-06-11 2003-03-25 Cornell Research Foundation, Inc. Feedback mechanism for deep brain stimulation
US6708064B2 (en) * 2000-02-24 2004-03-16 Ali R. Rezai Modulation of the brain to affect psychiatric disorders
US7146217B2 (en) * 2000-07-13 2006-12-05 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a change in a neural-function of a patient
US7010351B2 (en) * 2000-07-13 2006-03-07 Northstar Neuroscience, Inc. Methods and apparatus for effectuating a lasting change in a neural-function of a patient
US6488617B1 (en) * 2000-10-13 2002-12-03 Universal Hedonics Method and device for producing a desired brain state
US6678548B1 (en) * 2000-10-20 2004-01-13 The Trustees Of The University Of Pennsylvania Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device
US6572528B2 (en) * 2001-04-20 2003-06-03 Mclean Hospital Corporation Magnetic field stimulation techniques
WO2003082405A1 (en) * 2002-03-25 2003-10-09 Musc Foundation For Research Development Methods and systems for using transcranial magnetic stimulation to enhance cognitive performance
AU2004222307B2 (en) * 2003-03-17 2008-04-17 Neurohealing Pharmaceuticals, Inc. High potency dopaminergic treatment of neurological impairment associated with brain injury
US6990377B2 (en) 2003-04-24 2006-01-24 Northstar Neuroscience, Inc. Systems and methods for facilitating and/or effectuating development, rehabilitation, restoration, and/or recovery of visual function through neural stimulation
US7684866B2 (en) * 2003-08-01 2010-03-23 Advanced Neuromodulation Systems, Inc. Apparatus and methods for applying neural stimulation to a patient
WO2005018432A2 (en) * 2003-08-20 2005-03-03 Philometron, Inc. Hydration monitoring
US20060241718A1 (en) * 2003-11-26 2006-10-26 Wicab, Inc. Systems and methods for altering brain and body functions and for treating conditions and diseases of the same
US20050123526A1 (en) * 2003-12-01 2005-06-09 Medtronic Inc. Administration of growth factors for neurogenesis and gliagenesis
US20050154425A1 (en) * 2004-08-19 2005-07-14 Boveja Birinder R. Method and system to provide therapy for neuropsychiatric disorders and cognitive impairments using gradient magnetic pulses to the brain and pulsed electrical stimulation to vagus nerve(s)
US20060058853A1 (en) * 2004-09-13 2006-03-16 Jonathan Bentwich Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (cmpes)
WO2006044793A2 (en) 2004-10-18 2006-04-27 Louisiana Tech University Foundation Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto
US7400927B1 (en) * 2005-01-06 2008-07-15 Chester Litvin Method and system for psychological treatment by brain stimulation of the psychologically disordered object
US20070088403A1 (en) 2005-10-19 2007-04-19 Allen Wyler Methods and systems for establishing parameters for neural stimulation

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3890957A (en) * 1972-10-24 1975-06-24 Fsw Associates Biological feedback systems
US4421122A (en) * 1981-05-15 1983-12-20 The Children's Medical Center Corporation Brain electrical activity mapping
US4883067A (en) * 1987-05-15 1989-11-28 Neurosonics, Inc. Method and apparatus for translating the EEG into music to induce and control various psychological and physiological states and to control a musical instrument
US5450855A (en) * 1992-05-13 1995-09-19 Rosenfeld; J. Peter Method and system for modification of condition with neural biofeedback using left-right brain wave asymmetry
US5365939A (en) * 1993-10-15 1994-11-22 Neurotrain, L.C. Method for evaluating and treating an individual with electroencephalographic disentrainment feedback
US6129748A (en) * 1996-03-22 2000-10-10 Kamei; Tsutomu Apparatus for applying pulsed light to the forehead of a user
US6205359B1 (en) * 1998-10-26 2001-03-20 Birinder Bob Boveja Apparatus and method for adjunct (add-on) therapy of partial complex epilepsy, generalized epilepsy and involuntary movement disorders utilizing an external stimulator
US20030004429A1 (en) * 1999-11-16 2003-01-02 Price Gregory Walter Interactive-modified interactive event related potential (IMIERP)
US6594524B2 (en) * 2000-12-12 2003-07-15 The Trustees Of The University Of Pennsylvania Adaptive method and apparatus for forecasting and controlling neurological disturbances under a multi-level control
US20040131998A1 (en) * 2001-03-13 2004-07-08 Shimon Marom Cerebral programming
US6549805B1 (en) * 2001-10-05 2003-04-15 Clinictech Inc. Torsion diagnostic system utilizing noninvasive biofeedback signals between the operator, the patient and the central processing and telemetry unit

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060129205A1 (en) * 1998-10-26 2006-06-15 Boveja Birinder R Method and system for cortical stimulation with rectangular and/or complex electrical pulses to provide therapy for stroke and other neurological disorders
US20060217782A1 (en) * 1998-10-26 2006-09-28 Boveja Birinder R Method and system for cortical stimulation to provide adjunct (ADD-ON) therapy for stroke, tinnitus and other medical disorders using implantable and external components
US20080262565A1 (en) * 2004-09-13 2008-10-23 Jonathan Bentwich Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (CMPES)
US8805516B2 (en) 2004-09-13 2014-08-12 Neuronix Ltd. Integrated system and method for treating disease using cognitive training and brain stimulation and computerized magnetic photoelectric stimulator (CMPES)
US20090105521A1 (en) * 2004-09-13 2009-04-23 Jonathan Bentwich Systems and methods for assessing and treating medical conditions related to the central nervous system and for enhancing cognitive functions
US8498708B2 (en) 2004-09-13 2013-07-30 Neuronix Ltd. Integrated system and method for treating disease using cognitive-training and brain stimulation and computerized magnetic photo-electric stimulator (CMPES)
US20090099623A1 (en) * 2004-09-13 2009-04-16 Neuronix Ltd. Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions
US9486639B2 (en) 2006-05-05 2016-11-08 The Board Of Trustees Of The Leland Stanford Junior University Trajectory-based deep-brain stereotactic transcranial magnetic stimulation
US20070260107A1 (en) * 2006-05-05 2007-11-08 Mishelevich David J Trajectory-based deep-brain stereotactic transcranial magnetic stimulation
US9352167B2 (en) 2006-05-05 2016-05-31 Rio Grande Neurosciences, Inc. Enhanced spatial summation for deep-brain transcranial magnetic stimulation
US8052591B2 (en) 2006-05-05 2011-11-08 The Board Of Trustees Of The Leland Stanford Junior University Trajectory-based deep-brain stereotactic transcranial magnetic stimulation
US20110009922A1 (en) * 2006-06-28 2011-01-13 Medtrode Inc. Systems and methods for improving a cognitive function
US20080004660A1 (en) * 2006-06-28 2008-01-03 Medtrode Inc. Systems and methods for improving a cognitive function
US8942809B2 (en) * 2006-06-28 2015-01-27 Souhile Assaf Systems and methods for improving a cognitive function
US20100106181A1 (en) * 2007-01-08 2010-04-29 Yossi Gross In-situ filter
US20080319505A1 (en) * 2007-05-09 2008-12-25 Massachusetts Institute Of Technology Integrated Transcranial Current Stimulation and Electroencephalography Device
US20090099405A1 (en) * 2007-08-05 2009-04-16 Neostim, Inc. Monophasic multi-coil arrays for trancranial magnetic stimulation
US20100286470A1 (en) * 2007-08-05 2010-11-11 Schneider M Bret Transcranial magnetic stimulation field shaping
US8956274B2 (en) 2007-08-05 2015-02-17 Cervel Neurotech, Inc. Transcranial magnetic stimulation field shaping
US20100185042A1 (en) * 2007-08-05 2010-07-22 Schneider M Bret Control and coordination of transcranial magnetic stimulation electromagnets for modulation of deep brain targets
US20100256439A1 (en) * 2007-08-13 2010-10-07 Schneider M Bret Gantry and switches for position-based triggering of tms pulses in moving coils
US8956273B2 (en) 2007-08-20 2015-02-17 Cervel Neurotech, Inc. Firing patterns for deep brain transcranial magnetic stimulation
US20100256438A1 (en) * 2007-08-20 2010-10-07 Mishelevich David J Firing patterns for deep brain transcranial magnetic stimulation
US20100331602A1 (en) * 2007-09-09 2010-12-30 Mishelevich David J Focused magnetic fields
US20110004450A1 (en) * 2007-10-09 2011-01-06 Mishelevich David J Display of modeled magnetic fields
US8265910B2 (en) 2007-10-09 2012-09-11 Cervel Neurotech, Inc. Display of modeled magnetic fields
US20100298623A1 (en) * 2007-10-24 2010-11-25 Mishelevich David J Intra-session control of transcranial magnetic stimulation
WO2009055634A1 (en) * 2007-10-24 2009-04-30 Neostim Inc. Intra-session control of transcranial magnetic stimulation
US20100286468A1 (en) * 2007-10-26 2010-11-11 David J Mishelevich Transcranial magnetic stimulation with protection of magnet-adjacent structures
US8267850B2 (en) 2007-11-27 2012-09-18 Cervel Neurotech, Inc. Transcranial magnet stimulation of deep brain targets
US20090156884A1 (en) * 2007-11-27 2009-06-18 Schneider M Bret Transcranial magnet stimulation of deep brain targets
US8523753B2 (en) 2007-11-27 2013-09-03 Cervel Neurotech, Inc. Transcranial magnet stimulation of deep brain targets
US9132277B2 (en) 2009-01-07 2015-09-15 Cerval Neurotech, Inc. Shaped coils for transcranial magnetic stimulation
US9381374B2 (en) 2009-01-07 2016-07-05 Rio Grande Neurosciences, Inc. Shaped coils for transcranial magnetic stimulation
US8723628B2 (en) 2009-01-07 2014-05-13 Cervel Neurotech, Inc. Shaped coils for transcranial magnetic stimulation
WO2010113164A1 (en) * 2009-04-03 2010-10-07 Neuronix Ltd. Method and system for neurological treatment
US8591392B2 (en) * 2009-04-03 2013-11-26 Neuronix Ltd. Method and system for neurological treatment
CN102395404A (en) * 2009-04-03 2012-03-28 纽若尼克斯有限公司 Method and system for neurological treatment
US20110118534A1 (en) * 2009-04-03 2011-05-19 Neuronix Ltd. Method and system for neurological treatment
JP2012522568A (en) * 2009-04-03 2012-09-27 ニューロニクス リミテッド Method and system for neurotherapy
US20110098779A1 (en) * 2009-10-26 2011-04-28 Schneider M Bret Sub-motor-threshold stimulation of deep brain targets using transcranial magnetic stimulation
US8795148B2 (en) 2009-10-26 2014-08-05 Cervel Neurotech, Inc. Sub-motor-threshold stimulation of deep brain targets using transcranial magnetic stimulation
US9492679B2 (en) 2010-07-16 2016-11-15 Rio Grande Neurosciences, Inc. Transcranial magnetic stimulation for altering susceptibility of tissue to pharmaceuticals and radiation
US10383541B2 (en) * 2011-03-03 2019-08-20 Nexstim Oyj Cognitive mapping using transcranial magnetic stimulation
US20130338483A1 (en) * 2011-03-03 2013-12-19 Nexstim Oy Cognitive mapping using transcranial magnetic stimulation
US20160030703A1 (en) * 2012-01-31 2016-02-04 Richard Chi Method and device for increasing human ability for idea generation and insight related tasks using dc stimulation
US20230215532A1 (en) * 2012-08-31 2023-07-06 Blue Goji Llc Cloud - based healthcare diagnostics and treatment platform
US11791026B2 (en) * 2012-08-31 2023-10-17 Blue Goji Llc Cloud-based healthcare diagnostics and treatment platform
US11465013B2 (en) * 2012-08-31 2022-10-11 Blue Goji Llc System and method for targeted neurological therapy using brainwave entrainment
US8583238B1 (en) 2012-10-02 2013-11-12 Great Lakes Neuro Technologies Inc. Wearable, unsupervised transcranial direct current stimulation (tDCS) device for movement disorder therapy, and method of using
US9265458B2 (en) 2012-12-04 2016-02-23 Sync-Think, Inc. Application of smooth pursuit cognitive testing paradigms to clinical drug development
US9380976B2 (en) 2013-03-11 2016-07-05 Sync-Think, Inc. Optical neuroinformatics
CN105534520A (en) * 2015-12-02 2016-05-04 中国科学院深圳先进技术研究院 Multi-parameter family-type brain cognition detection method, device and system
WO2018018019A1 (en) * 2016-07-22 2018-01-25 Freqlogic, Inc. Automated multi-spectra transcranial stimulation device
CN111372639A (en) * 2017-11-20 2020-07-03 皇家飞利浦有限公司 System for delivering sensory stimuli to a user to enhance cognitive domains in the user
CN109171642A (en) * 2018-06-17 2019-01-11 南京仁康医院有限公司 A kind of MX brain balanced rehabilitation technology treatment mental disease system
EP4088777A1 (en) * 2021-05-11 2022-11-16 Consejo Superior de Investigaciones Científicas (CSIC) Method and system to trigger the activation of the cortico-hippocampal memory system
CN113499085A (en) * 2021-06-16 2021-10-15 南京曦光信息科技研究院有限公司 Self-learning type chronic neurological disease risk assessment and regulation device

Also Published As

Publication number Publication date
US8498708B2 (en) 2013-07-30
US8805516B2 (en) 2014-08-12
US20130267761A1 (en) 2013-10-10
US20080262565A1 (en) 2008-10-23

Similar Documents

Publication Publication Date Title
US8805516B2 (en) Integrated system and method for treating disease using cognitive training and brain stimulation and computerized magnetic photoelectric stimulator (CMPES)
US10914803B2 (en) Optogenetic magnetic resonance imaging
Bergmann et al. Concurrent TMS-fMRI for causal network perturbation and proof of target engagement
US20220280801A1 (en) Brain stimulation treatment in depression
US8262714B2 (en) Techniques for selecting signal delivery sites and other parameters for treating depression and other neurological disorders, and associated systems and methods
US20090099623A1 (en) Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions
CA2903953C (en) System and method for modeling brain dynamics in normal and diseased states
Ruff et al. Experimental methods in cognitive neuroscience
US20140303424A1 (en) Methods and systems for diagnosis and treatment of neural diseases and disorders
WO2009044271A2 (en) Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions
Singh et al. Cerebellar theta frequency transcranial pulsed stimulation increases frontal theta oscillations in patients with schizophrenia
Zhong et al. Precise modulation strategies for transcranial magnetic stimulation: advances and future directions
Turner et al. Rapid, dose-dependent enhancement of cerebral blood flow by transcranial AC stimulation in mouse
Zhang et al. Cell type-specific excitability probed by optogenetic stimulation depends on the phase of the alpha oscillation
Moffa et al. Assessing neuromodulation effects of theta burst stimulation to the prefrontal cortex using TMS-evoked potentials
Noh Exploring cortical plasticity and oscillatory brain dynamics via transcranial magnetic stimulation and resting-state electroencephalogram
Kochanski et al. The future perspectives of psychiatric neurosurgery
Engelmann et al. Brain measurement and manipulation methods
CN106687587A (en) Acoustic sensitive ion channel genetic manipulation method and system
Opitz Dose and location dependent effects of single-pulse TMS in invasive electrophysiological recordings in a non-human primate model
Ilmoniemi Transcranial Magnetic Stimulation—New Modality In Brain Mapping
Bansal Pre-TMS Phase of Ongoing EEG Oscillations Modulates Cortical Activity Response at the Prefrontal Cortex
CN111888657A (en) Radiation therapy system for addiction diseases
Ruff et al. Neuroeconomics: Chapter 6. Experimental Methods in Cognitive Neuroscience

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION