US20060032492A1 - Real-time control of exhaust flow - Google Patents

Real-time control of exhaust flow Download PDF

Info

Publication number
US20060032492A1
US20060032492A1 US10/907,300 US90730005A US2006032492A1 US 20060032492 A1 US20060032492 A1 US 20060032492A1 US 90730005 A US90730005 A US 90730005A US 2006032492 A1 US2006032492 A1 US 2006032492A1
Authority
US
United States
Prior art keywords
flow
hood
exhaust
filter
canopy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/907,300
Other versions
US20110005507A9 (en
Inventor
Rick Bagwell
Derek Schrock
Andrey Livchak
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Halton Group Ltd Oy
Original Assignee
Halton Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2001/025063 external-priority patent/WO2002014746A1/en
Application filed by Halton Co Inc filed Critical Halton Co Inc
Priority to US10/907,300 priority Critical patent/US20110005507A9/en
Assigned to HALTON COMPANY reassignment HALTON COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAGWELL, RICK, LIVCHAK, ANDREY, SCHROCK, DEREK
Publication of US20060032492A1 publication Critical patent/US20060032492A1/en
Assigned to OY HALTON GROUP LTD. reassignment OY HALTON GROUP LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HALTON COMPANY
Publication of US20110005507A9 publication Critical patent/US20110005507A9/en
Priority to US13/073,706 priority patent/US20110174384A1/en
Priority to US13/845,635 priority patent/US9335057B2/en
Priority to US15/149,305 priority patent/US9909766B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2021Arrangement or mounting of control or safety systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2028Removing cooking fumes using an air curtain
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2035Arrangement or mounting of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2042Devices for removing cooking fumes structurally associated with a cooking range e.g. downdraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0324With control of flow by a condition or characteristic of a fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy

Definitions

  • the present invention relates generally to flow-volume control devices. More specifically, the present invention relates to flow control devices that may be used for balancing fluid flow in a context where suspended particles are entrained in the fluid and their precipitation must be avoided, in free-flowing parts of a flow system, except during filtration.
  • Exhaust hoods are used to remove air contaminants close to the source of generation located in a conditioned space.
  • one type of exhaust hoods kitchen range hoods, creates suction zones directly above ranges, fryers, or other sources of air contamination.
  • Exhaust hoods tend to waste energy because they must draw some air out of a conditioned space in order to insure that all the contaminants are removed.
  • a perennial problem with exhaust hoods is minimizing the amount of conditioned air required to achieve total capture and containment of the contaminant stream.
  • a typical prior art exhaust hood 90 is located over a range 15 .
  • the exhaust hood 90 has a recess 55 with at least one vent 65 (covered by a filter 60 ) and an exhaust duct 30 leading to an exhaust system (not shown) that draws off contaminated air 45 .
  • the vent 65 is an opening in a barrier 35 defining a plenum 37 and a wall of the canopy recess 55 .
  • the exhaust system usually consists of external ductwork and one or more fans that pull air and contaminants out of a building and discharge them to a treatment facility or into the atmosphere.
  • the recess 55 of the exhaust hood 90 plays an important role in capturing the contaminant because heat, as well as particulate and vapor contamination, are usually produced by the contaminant-producing processes.
  • the heat causes its own thermal convection-driven flow or plume 10 which must be captured by the hood within its recess 55 while the contaminant is steadily drawn out of the hood.
  • the recess creates a buffer zone to help insure that transient, or fluctuating, surges in the convection plume do not escape the steady exhaust flow through the vent.
  • the convection-driven flow or plume 10 may form a vortical flow pattern 20 due to its momentum and confinement in the hood recess.
  • the Coanda effect causes the thermal plume 10 to cling to the back wall.
  • the exhaust rate in all practical applications is such that room air 5 is drawn off along with the contaminants.
  • exhaust hoods 90 such as illustrated in FIG. 1 , vary in length and can be manufactured to be very long as illustrated in FIG. 2 .
  • multiple vents 65 can be seen from a straight-on view from the vantage of a worker 80 .
  • the length can present a problem because the perimeter along which capture and containment must be achieved is longer near the ends than in the middle. In the middle, there is only one perimeter, the one along the forward edge indicated at 70 in FIG. 1 . At the ends, this perimeter includes the side edge as well which is indicated at 75 in FIG. 1 .
  • the additional perimeter length that must be accommodated at the ends may be called an “end effect.”
  • the hood cannot be approximated as a two-dimensional configuration because of its finite length.
  • more air must be exhausted in the vicinity of the ends of the hood than in the middle because the perimeter at the ends consists of both the forward edge 70 of the hood adjacent the worker and end edges 75 , which are perpendicular to the forward edge 70 .
  • a similar problem occurs when multiple hoods are connected to a single exhaust system.
  • the hoods may be connected to a common exhaust duct 191 .
  • Each hood must be balanced against the others so that each exhausts at the minimum rate that ensures full capture and containment of the contaminants.
  • ducts carrying grease aerosol should not have dampers because of the hazard caused by grease precipitation.
  • FIG. 1 is a side view of a canopy style wall hood according to the prior art.
  • FIG. 2 is a front view of a long canopy style hood with multiple vents.
  • FIG. 3 is a front view of multiple hoods attached to a common exhaust system.
  • FIG. 4 is a side section view of a canopy style hood according to embodiment of the invention.
  • FIG. 5A is a section view of a canopy style hood according to the embodiment of FIG. 4 .
  • FIG. 5B is a perspective view of a shutter with an actuator mechanism according to embodiment of the invention.
  • FIG. 6 is a front view of a canopy style hood with multiple vents including the shutter mechanism of FIG. 5B .
  • FIG. 7 is a front view of multiple canopy style hoods connected to a common exhaust in which respective vents of the hoods are controlled by shutter mechanisms according to embodiment of the invention.
  • FIG. 8 is a section view of a canopy hood with a shutter according to another embodiment of the invention.
  • FIG. 9A is a side view of a centrifugal style cartridge filter used for grease extraction.
  • FIG. 9B is a section view of a canopy style hood with a flow control mechanism according to another embodiment of the invention.
  • FIG. 10 is a side view of a canopy style hood with the flow .degree.control mechanism according to still another embodiment of the invention.
  • FIG. 11 is a front view of vents of a canopy hood or back shelf hood with rolling shutters according to yet another embodiment of the invention.
  • FIG. 12 is a section view of rolling shutter mechanism according to an embodiment of the invention.
  • FIG. 13 is a partial section view all long hood with multiple exhaust vents and corresponding flow of throttling devices according to an embodiment of the invention.
  • FIG. 14 is a sectional side view of the embodiment of FIG. 13 .
  • FIG. 15 is the perspective cut away of a shutter mechanism according to embodiment of the invention.
  • FIG. 16 a perspective cut away of a shutter mechanism according to another embodiment of the invention.
  • FIG. 17 is a sectional view of a combination filter/flow throttling device according to embodiment of the invention.
  • FIG. 18 is a sectional view of a combination filter/flow throttling device according to embodiment of the invention.
  • FIG. 19 is a sectional view of a combination filter/flow throttling device of FIG. 18 in a throttle-down position.
  • FIG. 20 is the face view of the filter of FIGS. 18 and 19 shown partly in throttle-down position and partly in throttle-up position.
  • FIG. 21A is a sectional view of a combination filter/flow throttling device according to yet another embodiment of the invention.
  • FIG. 21B is a sectional view of the filter/flow throttling device of FIG. 21 a in the throttle-up position.
  • FIG. 21C is a front view of the filter of FIGS. 21 a and 21 B.
  • FIG. 22A is a section view of a filter/flow throttling device according to another embodiment of the invention.
  • FIG. 22B is a section view of the filter of FIG. 22A in a throttle-down position.
  • FIG. 22C is a front view of the filter of FIGS. 22A . and 22 B.
  • FIG. 23A is a alternative embodiment of the device of FIGS. 22A through c.
  • FIG. 23B is an alternative embodiment of the device of FIGS. 22 a through 22 C.
  • FIG. 24A is a section view of a canopy hood with a flow throttling device including a cleaning fluid according to embodiment of the invention.
  • FIG. 24B is a section view of the flow throttling device of FIG. 24 day in the throttle-down position.
  • FIG. 24C is a top view of the embodiments of FIGS. 24A and 24B .
  • FIG. 25A is a section view of a flow throttling device also using A cleaning fluid according to embodiment of the invention.
  • FIG. 25B is a section view of the flow throttling device of FIG. 25 a in a throttle-down position.
  • FIG. 26 is a section view of a canopy hood showing a flow throttling device in which apply them is contracted according to embodiment of the invention.
  • FIG. 27 is a section view of the embodiment of FIG. 26 in throttle-down position.
  • FIG. 28 a business section view of the canopy hood showing a flow throttling device employing an expandable bladder according to embodiment of the invention.
  • FIG. 28B is a section view of the flow throttling device of FIG. 28 a in throttle-down position
  • FIG. 29 to section view of a canopy hood with a flow throttling device employing a flexible back wall of a plenum according to embodiment of the invention.
  • FIG. 30 is a section view of a canopy hood with a flow throttling device using a ball bowel arrangement according to embodiment of the invention.
  • FIG. 31 is a section view of a canopy hood with the flow throttling device of FIG. 30 in throttle-down position.
  • FIGS. 32A and 32B are side views of an alternative bowel arrangement suitable for use in the embodiment of FIGS. 30 and 31 .
  • FIG. 33 is a section view of a flow throttling device for a hood and a throttle-up position according to an embodiment of the invention.
  • FIG. 34 is a section view of the flow throttling device of FIG. 33 in a throttle-down position.
  • FIG. 35 is a front view all long hood with multiple vents and multiple duct sections which may be selectively blocked according to embodiment of the invention.
  • FIG. 36 is a section side view of the embodiment of FIG. 35 .
  • FIG. 37 is a perspective view of a cylindrical module of a combination filter/flow throttling device according to an embodiment of the invention.
  • FIG. 38 is a perspective view of a combination filter/flow throttling device employing the module of FIG. 37 and a rotating assembly.
  • FIG. 39 is a perspective view of the embodiment of FIG. 38 and a throttle-up position.
  • FIG. 40 is a section view of a canopy style hood sensors to gather data about cooking conditions.
  • FIG. 41 is a blocked side man of the controller with sensors for controlling the balance of one or more kitchen exhaust hoods.
  • FIG. 42 is a perspective view of a cooking appliance and hood showing various camera angles.
  • FIG. 43A is a side view of a hood and cooking appliance with a plume in which the exhaust rate is higher than necessary.
  • FIG. 43B is a side view of a hood and cooking appliance with a plume in which the exhaust rate is set at an optimal rate.
  • FIG. 43C is a side view of a hood and cooking appliance with a plume in which the exhaust rate is set to low.
  • FIG. 44 is a perspective view of a canopy quoted and cooking appliance showing a plume escaping containment.
  • FIG. 45 is a Schlerian photograph of the thermal plume rising from a cooking appliance into a canopy hood.
  • FIG. 46 is a section view of a canopy hood with a shutter and an actuator mechanism according to embodiment of the invention.
  • FIG. 47 is a section view of a canopy hood with a shutter and an actuator mechanism according to another embodiment of the invention.
  • FIG. 48A is a perspective view of expandable scroll module which functions as a filter/flow throttling mechanism according to an embodiment of the invention.
  • FIG. 48B is a perspective view of a set of the expandable scroll modules of FIG. 48A attached to each other such that they can expand and contract as a unit.
  • FIG. 49 is a section view of the embodiment of FIG. 48 in a throttle-up position.
  • FIG. 50 is a section view of the embodiment of FIGS. 48 and 49 in a throttle-up position.
  • FIG. 51 is a perspective view of the embodiment of FIG. 48 showing a supporting framework and actuator mechanism.
  • FIG. 52 is a section view of the embodiment of FIG. 51 showing a support feature of that embodiment.
  • FIG. 53 is a perspective view of an embodiment similar to the embodiment of FIGS. 48A and 48B in which flow exits from a central position between divided sets of scroll modules.
  • FIG. 54 shows a support structure for the embodiment of FIG. 53 .
  • FIG. 55 is a side view illustration of a canopy style hood with adjustable side skirts according to a first inventive embodiment.
  • FIG. 56 is a schematic illustration of a control system for the embodiment of FIG. 3A as well as other embodiments.
  • FIG. 57 is a side view illustration of a backshelf hood with a fire gap and movable side skirts and a movable back skirt.
  • FIG. 58 is a side view illustration of a canopy style hood with adjustable side skirts according to a second inventive embodiment.
  • FIG. 59 is a figurative representation of a combination of horizontal and vertical jets to be generated at the edge of a hood according to an inventive embodiment.
  • FIG. 60 is a figurative illustration of a plenum configured to generate the vertical and horizontal jets with diagonal horizontal jets at ends of the plenum according to an inventive embodiment.
  • FIG. 61 is an illustration of a plan view of a typical hood showing a central location of the exhaust vent.
  • FIGS. 62A and 62B illustrate the position of the plenum of FIG. 7 as would be installed in a wall-type (backshelf) hood as well as a combination of the horizontal and vertical jets with side skirts according to at least one inventive embodiment.
  • FIGS. 63A-63C illustrate various ways of wrapping a series of horizontal jets around a corner to avoid end effects according to inventive embodiment(s).
  • FIG. 63D illustrates a way of creating a hole in a plenum that redirects a small jet without a separate fixture by warping the wall of the plenum.
  • FIG. 64A illustrates a canopy-style hood with vertical jets and a configuration that provides a vertical flow pattern that is subject to an end effects problem.
  • FIGS. 64B and 64C illustrate configurations of a canopy hood that reduce or eliminate the end effect problem of the configuration of FIG. 10 .
  • FIG. 64D illustrates a corner shield configuration for a hood with curtain jets.
  • FIG. 65A illustrates an application for a breach detector for a hood control system.
  • FIG. 65B illustrates an interferometer sensor and a detector conditioning circuit for various embodiments of interferometer-based sensing of fume breach.
  • FIG. 65C illustrates an interferometer using a directional coupler and optical waveguides instead of beam splitter and mirrors.
  • FIG. 65D illustrates some mechanical issues concerning measurements that depend on the structure of turbulence.
  • FIG. 66 illustrates a combination make-up air discharge register and hood combination with a control mechanism for apportioning flow between room-mixing discharge and short-circuit discharge flows.
  • FIG. 67 illustrates a combination make-up air discharge register and hood combination with a control mechanism for apportioning flow between room-mixing discharge and a direct discharge into the exhaust zone of the hood from either outdoor air, transfer air from another conditioned space, or a mixture thereof.
  • FIGS. 68A and 68B illustrate drop-down skirts that can be manually swung out of the way and permitted to drop into place after a time interval.
  • FIG. 69 illustrates a control system for the device of FIGS. 68A and 68B .
  • FIG. 70 illustrates an embodiment of a device consistent with the description of FIGS. 68A and 68B .
  • FIG. 71 illustrates a multisensor configuration of an interference detector.
  • FIG. 72 illustrates another view of the multisensor configuration of FIG. 71 showing installation on a hood.
  • a kitchen hood 125 has a canopy 145 positioned over a heat/contaminant source 175 (such as a grill) to capture a thermal convection plume 170 produced by the heat/contaminant source 175 .
  • the canopy 145 defines a recess 140 , having an access 155 .
  • An exhaust fan (not shown) draws a flue stream 105 through an exhaust plenum 180 .
  • Negative pressure in the exhaust duct 180 in turn draws gases residing in the recess 140 through a vent 130 .
  • In the vent 130 is a mechanical grease filter 115 , set in a boundary wall 120 that defines part of the recess 140 . The filter reduces the mass of suspended grease particles in the resulting flue stream.
  • the grease filter 115 may be an impingement filter or one based on cyclone type separation principles.
  • the thermal convection plume 170 carries pollutants and air upwardly into the canopy recess 140 by buoyancy forces combined with forced convection resulting from the suction created by the exhaust fan.
  • a combined effluent stream comprising the thermal convection plume 170 and conditioned air drawn from the space 165 in which the hood 125 is located, flows into the vortex 135 . This flow is extracted from the canopy recess 140 steadily forming the effluent stream 110 , which becomes the flue stream 105 .
  • the kitchen hood 125 may have multiple vents 130 , each connected to the exhaust plenum 180 .
  • multiple exhaust plenums 180 may be connected to a single exhaust duct header (not shown but as indicated at 191 in FIG. 3 ) supplied by a single fan (not shown) as will be appreciated by those skilled in the relevant art.
  • the exhaust rate through the exhaust plenum 180 or exhaust duct header determines the rate of extraction of effluent and indoor air 165 by the hood 125 .
  • the determination of the optimal flow rate involves a tradeoff between energy conservation and a requirement called capture and containment. Capture and containment is the state where no pollutant from the thermal plume 170 or the buffered volume in vortex 135 escapes into the conditional space.
  • Full capture and containment requires the exhaust of at least some air 165 from the space in which the hood 125 is located.
  • the exhaust rate should be set at the lowest possible rate that still provides full capture and containment. This setting must account for the variability of the thermal plume 170 , which varies with the cooking load, stage of cooking (e.g., rendering of fat which causes dripping and attendant smoke), and random variation (e.g., random dripping from fatty foods) or steam generation.
  • stage of cooking e.g., rendering of fat which causes dripping and attendant smoke
  • random variation e.g., random dripping from fatty foods
  • steam generation random variation
  • the prior art approach has been one of setting the flow rate according to the peak expected load. This approach insures that the bulk exhaust rate is high enough to provide full capture and containment by the hood, or hood portion, requiring the greatest volume of exhaust to achieve it (capture and containment), at the times of maximum instantaneous load.
  • the load can vary along the length of a long hood or from hood to hood and the balancing problem is analogous in balancing from hood portion to hood portion as it is for balancing from hood to hood.
  • a flow control system is employed to permit modulation of the exhaust from one hood 125 to another or from one vent 120 to another along a single long hood 110 .
  • the exhaust rate. may be controlled to achieve the lowest local (“local” referring generically to the respective hood portion or the respective each hood linked to a common exhaust) exhaust rate required for the current local, instantaneous load. This is achieved by controlling the local exhaust rate by an active flow control device 120 linked to a real-time control (discussed in greater detail much later in the present specification).
  • a flow control device 120 selectively blocks a portion of an exhaust vent 130 in a boundary wall 190 of the hood 145 .
  • the flow control device 120 has a flat plate 112 partially covering the vent 130 defining an aperture 185 .
  • the flat plate 112 is selectively moved across the vent 130 which makes the aperture 185 variable-sized.
  • the flat plate 112 may be moved by a linear actuator 119 such as a linear motor with a driver 118 and stator 117 .
  • the flat plate 112 may be guided by linear bearings 113 .
  • the shape of the flow control device 120 is generally flat so that its impact on the shape of the canopy recess 140 is minimal. Thus, the flow control device 120 does not interfere with the vortical flow pattern 135 .
  • canopy 145 is of great length (again, “length” referring to the dimension perpendicular to the plane of the FIG. 5A drawing and best illustrated by FIG. 6 )
  • the respective flow control devices 120 may be set to provide a larger aperture 185 for the vents 130 close to the ends of the canopy 145 and to provide a smaller aperture 185 for the vents 130 near the middle of the canopy 145 .
  • the flow control devices 120 may be set accordingly.
  • the flow control device 120 may be set to restrict flow more in those canopies 145 protecting lower loads and to restrict flow less in canopies 145 protecting higher loads.
  • real-time control which is discussed later in the present specification, may be used to control each flow control device 120 according to an instantaneous load sensed by a smoke, temperature, image, and/or other sensor system as described below.
  • the canopy recess 140 acts as a buffer to dampen the effects of temporal variability in the load.
  • the thermal plume 170 rises at a rate that is faster than the mean rate of exhaust.
  • the flow 135 circulates within the canopy recess 140 dissipating its energy in a turbulent cascade whilst the plume 170 and room air 165 , drawn by negative pressure created by the exhaust fan (not shown), are tapped from the canopy recess 140 as indicated figuratively by the arrow 245 .
  • the shape of the canopy recess 140 augments the vortical pattern by guiding it in a circular path as illustrated at 135 .
  • the vortical pattern may not be present in all hoods, but all hoods have some capacity to buffer temporal variability in the load whether a stable vortex is formed or not. More complex flow patterns may arise in other hoods, depending on the load, the hood shape and other variables.
  • FIGS. 9A, 9B , and 10 another type of flow control device provides variable control of the flow rate through certain types of filters 305 .
  • the raw effluent stream enters as indicated at 246 and leaves at the ends of the filters as indicated at 307 . Examples of this type of filter are described in U.S. Pat. No. 4,872,892, which is hereby incorporated by reference in its entirety as if fully set forth herein.
  • the exit flows 307 are selectively blocked by movable plates 300 thereby providing a variable exit passage 325 .
  • the plates 300 translate as indicated by arrows 308 .
  • movable plates 330 are pivotably mounted by hinges 335 and pivoted to provide variable exit passages 340 .
  • FIGS. 11 and 12 another embodiment of a flow control device employs scroll shutters 360 that unroll from spools 385 inside a covered compartment 265 .
  • Each shutter 360 selectively blocks a vent 370 on the canopy recess side thereby providing a variable aperture 350 respective of each vent 370 .
  • Each vent 370 may be separated by a partition portion 380 from one or two adjacent vents 370 .
  • Suitable guides and drive mechanisms are available from the field of movable shutters and may be employed to actuate the present embodiment.
  • a flow control device such as described in U.S. Patent Application 60/226,953 may be employed in a duct leading from the respective vents 420 of a single hood or from groups of vents in one or more hoods all linked to a common exhaust (not shown in this drawing).
  • a single hood is shown.
  • a wall 425 of the recess has three vents 420 each leading to a respective plenum 430 .
  • Each plenum is connected to a duct containing a flow control device 410 having smooth walls as described in the above US patent application.
  • Each flow control device 410 then leads to a common plenum 400 from which effluent is drawn through a common exhaust 415 .
  • the flow through the respective vents 420 can be optimized as discussed above.
  • a similar configuration may be used to balance respective hoods connected to a common exhaust.
  • FIG. 15 another type of flow control device 510 selectively blocks flow through a vent 505 (in a wall of a canopy 525 ) using a vertical-blind type mechanism.
  • Louvers 515 of the flow control device 510 pivot in a manner analogous to window blinds.
  • the louvers 515 may be oriented with their pivot axes parallel to the tangent of the vortex 135 formed within a canopy recess 500 . In this orientation, the louvers 515 generate less resistance to the vortical flow.
  • the louvers 515 are pivoted about their axes in concert to vary the net flow area through the vent 505 in the canopy wall 525 . Referring to FIG.
  • louvers 535 are located over only a portion of the vent 505 , since the flow may not need to be cut off 100%.
  • the louvers 515 may be as in FIG. 15 , but not close 100%.
  • the structure of an impingement filter 545 is varied to modulate flow therethrough.
  • the drawing shows a split view of a single filter in two configurations.
  • the concave-back plates 550 and concave forward plates 555 are close together narrowing the flow passage between the inlets 570 and the outlets 580 .
  • the separation distance is increase providing a larger flow passage that is correspondingly less resistant to flow therethrough.
  • the separation distance may be varied progressively or step-wise, depending on design choice, by any suitable mechanism.
  • adjustable standoffs 560 are used to separate the plates 550 and 555 .
  • the adjustable standoffs could be screws 560 with idle clips 565 that hold one end of the screws 560 at a fixed position along it length and threaded holes 566 that traverse the lengths of the screws 560 when it is turned.
  • the separation device may be automatic or manual, as required.
  • a filter is formed substantially as described in the above patent. That is, air flows into slots 620 along a face of the filter as indicated at 632 (all similar slots—only one is labeled) and exits through the ends of tubular sections 610 as indicated by the outward-facing-flow symbol 633 . While travelling through each chamber tubular section 615 , the flow swirls helically due to the tangential entry of the flow at each slot 620 .
  • FIG. 20 is a split view showing two configurations of the filter.
  • the open configuration of FIG. 18 is illustrated on the left side of FIG. 20 and the closed configuration of FIG. 19 is illustrated on the right side of FIG. 20 .
  • the aperture 620 may be varied progressively or in steps.
  • the inlet slots 620 are varied in flow area by bending a wall that forms the tubular chambers 615 , it is possible to accomplish a similar result using separate blocking plate with a hinge. That is, the wall 630 may be a separate element pivotably attached to the rest of the modules 610 .
  • each tubular chamber 650 receives air through a respective slot-shaped flow aperture 655 and delivers it through exits 649 of each of a plurality of modules 648 as indicated by the arrows 656 and 657 .
  • each flow aperture 655 is relatively large in area.
  • the shutter plate 660 position may be used to control the pressure drop across the filter and consequently the flow rate across the filter.
  • All of the filters that are able to control flow may be used for hood balancing. If each filter is controlled independently, the flow rate through each vent of one or more hoods can be controlled independently. Each filter may be controlled in each hood of a system to flow-balance longer hoods and to balance hoods against each other. Alternatively, a single filter of a hood with multiple vents can be controlled leaving the other filters uncontrolled. This may allow the balancing of the entire hood against other hoods. In a longer hood, this solution may be less desirable because it would vary the exhaust rate across the length of the hood, which may produce inefficiencies as discussed above.
  • a shutter plate 653 is moved to vary the size of flow apertures 657 . Effluent flows from the inlet flow apertures 657 to respective outlets 658 . The selective variation of the flow apertures 657 varies the pressure drop through the flow apertures 657 . Note that although in this embodiment, a shutter plate 653 is used to selectively block the aperture 657 , it is clearly possible to use a shutter plate to selectively block the outlets 658 or both to achieve the same effect.
  • FIGS. 21 A-C and 22 A-C are illustrated as having rectangular openings. Referring to FIGS. 23A and 23B , it is possible to employ other shapes to good effect.
  • a shutter plate 680 has openings 675 with a curved border such that access to the middle section of the filter is blocked more than the ends.
  • a shutter plate 681 has openings 676 with a curved border such that access to the end sections is blocked more than the middle section.
  • Either embodiment may be used with either type of filter cartridge or others not described herein, but the embodiment of FIG. 23B may be more favorable in a filter such as described in U.S. Pat. No. 4,872,892 because it favors a longer travel path of the air along the flow modules providing greater grease separation in the process.
  • a canopy 717 has a recess 715 bounded, in part, by a flexible accordion wall 710 , a filter 720 , and a water tank 730 .
  • the filter 720 is partly immersed in a pool of water or other liquid 735 , held by the tank 730 .
  • the exposed face of the filter is limited by the immersion of part of the filter 720 in the pool of water 735 and thus the flow area is reduced.
  • the flow area may be modulated by varying how deeply the filter 720 is immersed. By varying this flow area, the pressure drop between the recess 715 and a plenum 725 may be selectively varied to vary the exhaust flow.
  • the filter 720 may be translated.
  • the flexible accordion wall 710 flexes to follow the filter 720 .
  • the flexible accordion wall 710 may be made of steel or some other material.
  • the filter may be held by a suitable engagement device (not shown) at the distal end of the flexible accordion wall 710 .
  • Cleaning solution may be used in the tank 730 .
  • the filter 720 may be immersed more completely in the cleaning solution to clean the filter 720 .
  • seal plates 723 prevent effluent gases from bypassing the filter 720 by going around it.
  • the seal plates may extend from the top of the accordion wall 710 to the level of the liquid 735 .
  • a recess 745 is bounded in part by a fixed wall section 740 to which a filter 750 is connected at a distal end thereof.
  • Seal plates (not shown) may be provided as in the embodiment of FIGS. 24A-24C .
  • the filter is immersed partly in a tank 755 filled with water or a cleaning solution or some other liquid 760 .
  • Pressure drop between a suction-side plenum 765 and the recess 745 across the filter is governed by the level of the liquid 760 in the tank 755 which in turn controls the flow area available through the filter.
  • the flow area is greater than the illustration of FIG. 25B because the liquid 760 level is higher in the latter figure.
  • a recess 788 of an exhaust hood 789 is defined in part by a pivoting wall 781 that pivots at one end 790 and is connected by a flexible wall 781 at another end.
  • the pivoting wall 781 also defines in part a suction side plenum 775 whose flow passage is reduced in flow area by the change in the angle of pivot of the pivoting wall 781 .
  • the flow through each controlled vent 786 may be modulated by means of an independent apparatus as shown.
  • two or more sets (“sets” may be single in number) of vents may lead into separately controlled plenums 775 .
  • a hood canopy 815 has a plenum 810 that receives exhaust air through a filter 820 .
  • the pressure drop through the plenum 810 is modulated by varying the configuration of an obstruction 805 .
  • the obstruction may, for example, be an inflatable bladder.
  • the obstruction may be made of steel with an accordion type bellow integral thereto to permit its volume to vary. Alternatively, it may be of polymeric material or other suitable construction.
  • the obstruction 805 is shown with a substantially pillow shape, but it is understood that it could have any shape. A shape that presents a face that is substantially parallel to the exit face of the filter 820 would be better than one that is at a substantial angle as shown so as not to favor one portion of the filter over another.
  • wall of the plenum 810 has a face 808 and accordion ribbing 807 to permit the face 808 to be pushed into the plenum 812 to vary the flow channel area and thereby the pressure drop through the plenum.
  • wall of the plenum 810 has a face 808 and accordion ribbing 807 to permit the face 808 to be pushed into the plenum 812 to vary the flow channel area and thereby the pressure drop through the plenum.
  • the face angled as face 808 could be formed in the obstruction 805 .
  • separate plenums 810 / 812 may be provided for each modulated vent 814 / 811 .
  • the flow obstructor 805 / 808 may be made local to a respective vent 814 / 811 , all vents may share a common plenum 810 / 812 for a single hood while still providing the ability to balance a single long hood. That is, a separate and independently controllable flow obstructor 805 / 808 may be made respective to each vent 814 / 811 to control each controlled vent independently of the others.
  • a hood of substantially standard construction has a suction side plenum 835 which draws air through a filter 820 .
  • An aperture 832 leads to an exhaust collar 800 .
  • the aperture 832 is selectively blocked by a smooth obstruction 830 whose distance from the aperture 832 determines the flow area for exhaust flow through the aperture.
  • the flow obstruction 830 is in the shape of a sphere.
  • an alternative shape for a flow obstruction 840 is a water-drop shape.
  • the shape of the flow obstruction is smooth so as not to generate stable and quasi-stable or periodic flow structures that result in undue precipitation of aerosols.
  • flexible smooth flow obstructor plates 855 are provided in a rectangular exhaust collar 850 fed from a suction side plenum 860 of an exhaust hood.
  • a flow channel 857 By varying the shape and area of a flow channel 857 , the pressure drop across the flow channel 857 is modulated providing the ability to balance suction side plenums 860 selectively.
  • the shapes' of the obstructor plates 855 may be varied by translating tongue segments 856 accordingly.
  • the final actuator used to vary the shape and size of the flow channel 857 may be any suitable device. Note that one side only may be translated rather than both as indicated.
  • an exhaust hood has a suction side plenum 535 A divided into an upper part 535 A and a lower part 535 B.
  • the upper and lower parts 535 A and 535 B are connected by a series of duct sections 547 / 548 that may be selectively covered with blanks 546 to vary the flow through each respective vent 566 .
  • two of the middle-most blanks are set to block flow through ducts 547 and permit free flow through ducts 548 .
  • the relative flow of the vents 566 is altered. For example, the flow through vent 566 ′ would be reduced relative to the flow through adjacent vents 566 because of the presence of the blanks 546 . Since no obstructions are added to a flow path, no mechanism is introduced that would cause undue precipitation.
  • a movable blank 546 would either be in place blocking flow through a respective duct section 547 or it would be out of the way permitting free flow through the respective duct section 548 .
  • the plenum 535 B may be sufficiently generously sized that the only effect of reducing the aggregate flow area by blocking ducts 547 may be to reduce the total flow for the entire hood without redistributing the flow along the hood.
  • this design may be used to balance multiple hoods or single hoods, as may all the previous embodiments.
  • the advantage of using this technique rather than a single flow control, however, is that it does not create any obstruction around which fumes and air must flow. Thus, it avoids the attending precipitation problems.
  • a cylindrical grease filter module 580 has in inlet 588 through which raw effluent and air are drawn and an outlet 592 from which the cleansed air is extracted.
  • a guide van 582 causes an incoming stream 584 to be directed into a helical flow 590 so that grease and other airborne particulates precipitate on its interior walls.
  • the exit flow 586 is directed at approximately a right angle to the incoming stream 584 .
  • the cylindrical grease filter module is similar in function to that of the filters described in U.S. Pat. No. 4,872,892. Its cylindrical walls, however, may provide lower resistance and improved cyclonic flow therewithin.
  • a filter cartridge 581 is formed from multiple cylindrical grease filter modules 580 .
  • Each cylindrical grease filter module has a lever tab 604 which is tied to a rotator bar 602 which is used to rotate the cylindrical grease filter modules 580 in concert.
  • the exposed area of the inlet 588 of each cylindrical grease filter module 580 is selectively altered.
  • the cylindrical grease filter modules 580 are in the positions shown in FIG. 38 the flow through the filter cartridge 581 is restricted more than when they are in the positions shown in FIG. 39 . This is because the inlets 588 are increasingly blocked by partitions 606 as the cylindrical grease filter modules 580 rotate clockwise.
  • the cylindrical grease filter modules 580 may be set immediately adjacent to each other and the blocking function of the partition plate formed by the external surfaces of adjacent cylindrical grease filter modules 580 . In this way, the partition plates 606 may be avoided.
  • a controller 950 may receive input signals from one or more input devices including one or more video cameras 961 , infrared video cameras 962 , opacity sensors 963 , temperature sensors 964 , audio transducers 965 (e.g., microphones), manual switches 966 , and flow rate sensors 967 . Based on one or more of these inputs signals the controller may control the setting of one or more output controllers 970 connected to any of the flow control devices described previously or described later in the present specification.
  • Video or IR cameras may be located at any desired position, examples being indicated at 920 and 935 and as discussed later in connection with FIG. 42 .
  • Opacity and temperature sensors may be located at any positions, two examples being indicated at 925 / 930 .
  • Optical and/or infrared images may be captured and a cooking load indicator derived therefrom.
  • an IR image processing algorithm that simply indicates the percentage of the field of view that is above a temperature threshold may thereby indicate escape of a thermal plume from a hood; i.e., a loss of capture and containment due to the thermal plume rising in front of the external edge of the hood. As such a loss of containment is approached, the hot buffer zone tends to grow from deep within the recess until it breaches the capture zone.
  • This growth of the buffer zone can be indicated in precisely the same way: by imaging a predefined field of view and recognizing the size and/or shape of the hot zone (the latter being defined as a zone in which the imaged temperature exceeds a predefined threshold). This is discussed further below.
  • the movement of a worker, the image of the food being cooked, the presence of smoke at particular locations (such as escape of containment at the edge of the hood), the temperature of air near the hood or within the canopy recess, the proximity of a worker, etc. may all be combined to form a classification input-vector from which a condition (e.g., percentage of full-load) classification may be derived.
  • a condition e.g., percentage of full-load
  • Algorithmic, rule-based methods may be used. Bayesian networks or neural network techniques may be used.
  • just one sensory indicator of load may be used to determine the current load.
  • a gas rate flow sensor for a gas grill could provide the single input signal. Many possibilities are available with current sensor, machine-classification, and control technologies.
  • a camera 982 is positioned to image a side view of a canopy 972 , range, 984 , and a work area between and adjacent them.
  • this side view can image a hot zone whose size and shape are dependent on effluent load (which includes heat) and exhaust rate.
  • FIG. 45 is a Schlerian image, but the shape of the hot plume is essentially the same as what would be provided by a thermal camera.
  • a hot zone image provided by the camera 982 would expand progressively as illustrated in the series of FIGS. 43A-43C .
  • the hot zone changes from one associated with adequate capture and containment 990 , to one on the verge of breaching 992 , to one where capture and containment has been lost 994 .
  • the changes in the images, the rate of change of images, and the history of change of the images may be employed in a control system as described to insure that capture and containment is maintained.
  • FIG. 44 other camera angle views such as provided by camera 980 may provide more information about the particular location of the exhaust rate deficit along the canopy 972 edge 1003 .
  • Illustrated in FIG. 44 is an oblique view of a canopy and plume 1002 showing a spillover 1001 over an edge 1003 near an end of the canopy. This image may be used to provide an adjustment to exhaust flow rate favoring the portion of the canopy 972 close to an end thereof, as illustrated.
  • the ability to detect spillover and its position along the edge 1003 may be obtained by positioning a camera 986 looking downwardly so that it captures the entire front edge 988 / 1003 .
  • Thermal plumes have a characteristic waist 1005 that results from the increase in velocity and the draw of cooler air as they rise. This waist begins to bulge at the top as capture competency is lost. Again, the spillover can be detected as a three-dimensional model based on temperature or opacity.
  • the model or two-dimensional image(s) may be graded or thresholded.
  • the image resolution need not be high since the structures are highly repeatable and their variability quite distinct.
  • a relatively inexpensive imaging device may be employed with a small number of pixels.
  • the classification process must include unrecognized classes and be capable of indicating same. For example, if the view of a camera is occasionally obstructed, the image processing process should be capable of recognizing the absence of an expected image and responding to it. Images that change suddenly or do not belong to a recognized plume shape may be classified as a bad image. The response to a bad image may be to ignore it or alternatively to ramp the exhaust rate to a design maximum until a recognized image is acquired again.
  • Fiducial marks or particular features of the exhaust or cooking equipment may be employed to help determine if the camera view is obstructed. The lack of such features or fiducials in the image may indicate the loss of the image.
  • Activity can be indicated by live camera images, IR and optical.
  • the presence of an operator near the working area of a cooking appliance may be used as a signal indicating that the cooking load is increased.
  • the particular activities in which the operator is engaged are likely to be highly repeatable events and readily classifiable by video classification methods as a result.
  • a particular stage of cooking may be characterized by the laying out of many pieces of meat on a hot grill.
  • Neural networks may be trained to classify the conditions in a kitchen using neural network techniques.
  • the inputs from multiple devices may be combined to form a vector.
  • Thresholded image reduce to 1-bit map; all temperatures (radiative) or light levels above a threshold are one color and all temperatures or light levels another color.
  • the contiguous domains can be further processed to define feature points and their relationship mapped to a vector in a manner similar to optical character recognition techniques.
  • Thresholded image may be calibrated to provide high sensitivity to smoke or the range of radiative temperatures associated with a thermal plume characteristic of the cooking appliance.
  • the image processing may be tuned to recognize and distinguish shapes characteristic of thermal plumes for the cooking processes being monitored.
  • the output vector in this case would be a characterization of the particular plume state.
  • Camera may simply band-pass a color, luminosity, or radiative temperature range and cumulate the total of the image corresponding to that passed signal. This would be scalar. This could be done for a quad tree where the total band-passed image area for each quadrant of the image is passed as a component vector and this could be done down to multiple levels of a quad tree.
  • Spot temperatures of food and empty areas on a grill or other appliance may be used to predict the load. These may be derived from a single IR image and processed to report the total area, average temperature, or other lump parameters predictive of the load.
  • Opacity may be monitored between two points to detect when a plume is swelling.
  • an opacity sensor may be positioned near the inside of the edge 1003 of the canopy 972 and the opacity at that point indicated.
  • the opacity near multiple points may be monitored and provided as a single vector from which it is possible to deduce the scale of turbulence induced by the thermal plume. (The opacity would be expected to vary over time at different locations along the edge in response to three-dimensional turbulent gusts giving rise to temporal and spatial variability in opacity that can be resolved using multiple opacity signals spaced apart and monitored synchronously.)
  • a simple frequency profile may be resolved into a histogram whose values correspond to the sound power in each of a series of ranges of audio frequency.
  • the ranges need not be adjacent; they can amount to discrete band pass filters.
  • the sound of frying, grilling meat, operator activity, etc. can make characteristic profiles.
  • a sound-signature classifier may be employed to add the temporal component to the sound classification.
  • certain audio signatures may be present and recognized using technology as employed in voice recognition. For example, the sound of a switch being turned on, the sounds of a spatula being used on a grill, etc. are discrete audio events that have temporal signatures that are characteristic to them.
  • Sensors placed at various locations may each provide components of a vector.
  • Sensors may be arrayed to provide a signal indicative of a spatial temperature profile which can be characterized by a more compact set of numbers than simply the whole series of temperatures. For example, the sharpest increases of temperature along respective dimensions may be reported to indicate the location of respective boundaries of the thermal plume 1003 .
  • the presence of food or other workpieces whose presence is predictive of load may be sensed.
  • the proximity sensor may be provided as a single signal or multiple signals may provided from multiple sensors.
  • the distance of the object may be sensed using a proximity sensor. For example, something that grows while it is heated could indicate a stage of a varying load.
  • the presence of an operator and the duration of the operator's presence may be used to signal the load.
  • the movement of a worker, tools, and/or workpieces may be predictive of the load.
  • FIGS. 46 and 47 a great variety of different kinds of actuators may be employed to operate the various flow control devices described above. Preferably, designs which are tolerant of grease deposition from the effluent. A couple of embodiments are shown to illustrate the range of possibilities, but these by no means are these intended to represent an exhaustive range.
  • the prior art relating to hermetic seals, motor and actuator seals, high temperature, high corrosion environments, etc. are rich with candidate devices that may be employed.
  • a lever formed by a first arm 1017 and a second arm 1018 connected through a top wall 1019 of a canopy.
  • the top wall is corrugated to allow it to flex so that when an actuator 1013 pushes the first arm 1017 upwardly, the second arm 1018 moves downwardly actuating a blind mechanism 1010 .
  • the embodiment of FIG. 46 thereby provides a hermetic seal between the linear actuator 1013 and the blind mechanism 1010 , which provides flow control.
  • another actuator embodiment has a motor and cam 1021 that are mounted externally from the canopy recess 1012 which moves a blind mechanism 1022 through a seal 1030 with a bellows 1022 and pushrod 1032 . Again the sensitive mechanisms are isolated outside the canopy recess 1012 . Many such mechanisms may be employed and a comprehensive discussion of them is not necessary since many suitable mechanisms are described in the machine mechanism prior art.
  • a scroll shaped module 1130 has an inlet 1132 through which air is admitted as indicated by arrows 1120 , 1110 and 115 .
  • the admitted air swirls as indicated by helical arrows 1117 and 1110 and exits as indicated by arrows 1125 .
  • the helical motion is caused by the fact that the entry point 1132 is at a tangent to the cylindrical space 1131 defined by the scroll shaped module 1130 .
  • the entry point 1132 is a gap between an inside distal edge 1136 and an outside distal edge 1137 defined by the scroll shape of the scroll shaped module 1130 and can be increased and reduced in width by flexing the scroll shaped module 1130 .
  • the scroll shaped module's 1130 are connected to each other to form a filter cartridge 1140 .
  • the outside distal edge 1137 of each module 1130 is connected to a middle portion 1138 of an adjacent module 1130 (except for a last module 1130 ′.
  • the modules 1130 may be supported in any of a number of ways so that when they are drawn apart (as indicated by arrows 1171 ) as illustrated in FIG. 49 , the inlet 1132 expands and the resistance to the inflow of air is reduced.
  • the modules 1130 are squeezed together as indicated in FIG. 50 (the force being as indicated by arrows 11 , 72 )
  • the inlet 1132 contracts and resistance to the inflow of air increases.
  • the bank of cartridges 1147 forms a combination filter and flow throttling device.
  • a support mechanism with a back plate 1180 and L-shaped lower braces 1195 support scroll-shaped modules 1130 by tongues 1148 on each module. The latter fit into channels 1147 formed in the edges of back plate 1180 .
  • a sliding L-shaped seal member 1185 is slidably attached to one of the L-shaped lower braces 1195 and moved relative to the back plate 1180 and lower braces 1195 to squeeze and expand the scroll-shaped modules 1130 .
  • a tongue 1186 of one of the L-shaped lower braces 1185 is elongated to serve as a seal when the entire device is placed in an exhaust vent.
  • a set of scroll shaped modules 1270 have exits 1255 in the center thereof.
  • they are like the modules 1230 of the previous embodiments except that their outlets are toward the middle of the filter device 1299 rather than along its edges.
  • the air enters tangentially as indicated by arrows 1265 and swirls in a helical motion until it exits as indicated by arrows 1255 .
  • side panels 1285 may be incorporated in a support structure 1225 .
  • a single opening 1220 may be formed in the back (downstream face) of the support structure for air to exit.
  • a similar configuration 1235 to that described in connection with the embodiment of FIG. 51 may be used to compress and expand the modules 1270 .
  • FIG. 55 is a side view illustration of a canopy style hood 61 with adjustable side skirts 2105 according to a first inventive embodiment.
  • Fumes 2035 rise from a cooking appliance 2041 into a suction zone of the hood 2026 .
  • the fumes are drawn, along with air from the surrounding conditioned space 2036 the hood 61 occupies, through exhaust vents and grease filters connected to a plenum, the combination indicated at 2021 .
  • Suction is provided by an exhaust fan (not shown in the present drawing) connected to draw through an exhaust duct collar 2011 .
  • An exhaust stream 2015 is then forced away from the occupied space.
  • movable side skirts 2105 which may be raised or lowered by means of a manual or motor drive 2135 .
  • the manual or motor drive 2135 rotates a shaft 2115 which spools and unspools a pair of support lines or straps 2130 to raise and lower the side skirts 105 .
  • the side skirts 2061 and spool 2125 , as well as bearings 2120 and the wires 2130 may be hidden inside a housing 2116 with an open bottom 2117 .
  • the manual or motor drive 2135 is a motor drive controlled by a controller 2121 which controls the position of the side skirts 2105 .
  • FIG. 56 is a schematic illustration of a control system for the embodiment of FIG. 55 as well as other embodiments.
  • the controller 2121 may control the side skirts automatically in response to incipient breach, for example, as described in the US patent application, “Device and Method for Controlling/Balancing Fluid Flow-Volume Rate in Flow Channels,” incorporated by reference above.
  • an incipient breach sensor 2122 may be mounted near a point where fumes may escape due to a failure of capture and containment. Examples of sensors that may be employed in that capacity are discussed below and include humidity, temperature, chemical, flow, and opacity sensors.
  • Another sensor input that may be used to control the position of the side skirts 2105 is one that indicates a current load 2124 .
  • a temperature sensor within the hood 61 a fuel flow indicator, or CO or CO2 monitor within the hood may indicate the load.
  • the side skirts 2105 may be lowered. This may be done in a progressive manner in proportion to the load. In the case of incipient breach, it may be done by means of an integral of the direct signal from the incipient breach sensor 2122 .
  • any of the above sensors (or others discussed below) may be used in combination to provide greater control, as well as individually.
  • a draft sensor 2123 such as a velocimeter or low level pressure sensor or other changes that may indicate cross currents that can disrupt the flow of fumes into the hood. These are precisely the conditions that side skirts 2105 are particularly adapted to control. Suitable transducers are known such as those used for making low level velocities and pressures. These may be located near the hood 61 to give a general indication of cross-currents. When cross-currents appear, the side skirts 2105 may be lowered.
  • the signals or the controller 2121 is operative to provide a stable output control signal as by integrating the input signal or by other means for preventing rapid cycling, which would be unsuitable for the raising and lowering of the side skirts 2105 .
  • the controller 2121 may also control the side skirts 2105 by time of day. For example, the skirts 2105 may be lowered during warm-up periods when a grill is being heated up in preparation for an expected lunchtime peak load.
  • the controller 2121 may also control an exhaust fan 2136 to control an exhaust flow rate in addition to controlling the side skirts 2105 so that during periods when unhindered access to a fume source, such as a grill, is required, the side skirts 2105 may be raised and the exhaust flow may be increased to compensate for the loss of protection otherwise offered by the side skirts 2105 .
  • the controller may be configured to execute an empirical algorithm that trades off the side skirt 2105 elevation against exhaust flow rate.
  • side skirt 2105 elevation and exhaust rate may be controlled in a master-slave manner where one variable is established, such as the side skirt 2105 elevation in response to time of day, and exhaust rate is controlled in response to one or a mix of the other sensors 2124 , 2123 , 2127 , and/or 2122 .
  • FIG. 57 is a side view illustration of a backshelf hood 2168 with a fire safety gap 2166 and movable side skirts 2172 and a movable back skirt 2188 .
  • the side skirts 2172 may be one or both sides and may be manually moved or automatically driven as discussed above with reference to FIGS. 55 and 56 .
  • the movable back skirt 2188 is located behind the appliance 2180 and is raised to block the movement of fumes due to cross drafts.
  • the back skirt amy also be attached to the hood 2168 and lowered into position. Note that the back skirt 2188 is shown in a partly extended position and may be extended variable amounts depending on the degree of shielding required.
  • any of the skirts discussed above and below may be configured based on a variety of known mechanical devices.
  • a skirt may hinged and pivoted into position. It may be have multiple segments such that is unfolds or unrolls as a roller door for example as does a metal rolling garage door.
  • FIG. 58 is a side view illustration of a canopy style hood 62 with adjustable side skirts 2210 according to another inventive embodiment.
  • the side skirts 2210 may be manually or automatically movable. There may be two, one at either of two ends of the hood 62 or there may be more or less on adjacent sides of the hood 62 , such as a back side 2216 . In some situations where most of the access required to the appliances can be accommodated on a front side 2217 of the hood 62 , it may be feasible to lower a rear skirt 218 .
  • proximity control sensors 2230 may be used to give an indication of whether access to a corresponding side of the appliance 41 is required, in a manner not unlike that of an automatic door of a public building.
  • One or more proximity sensors 2230 may be used to raise and lower the side skirts.
  • FIG. 59 is a figurative representation of a combination of horizontal 2235 and vertical 2345 jets to be generated at the edge 2340 and 2355 of a hood according to an inventive embodiment which has been shown by experiment to be advantageous in terms minimizing the exhaust flow required to obtain full capture and containment.
  • the horizontal and vertical jets are made by forming holes in a plenum, for example holes of about 3-6 mm diameter with a regular spacing so that the individual jets coalesce some distance away from the openings to form a single planar jet.
  • the initial velocities of the horizontal jets are preferably between 2 and 3.5 times the initial velocities of the vertical jets, the initial velocity in this case being the point at which individual jets coalesce into a single planar jet.
  • FIG. 60 is a figurative illustration of a plenum 2310 configured to generate the vertical 2325 and horizontal 2330 jets with diagonal horizontal jets 2315 at ends of the plenum 2310 according to an inventive embodiment.
  • most hoods 2307 have an exhaust vent portion 2306 (such as the plenum, filter, vent combination indicated at 2021 in FIG. 55 ) within the hood 2307 recess that is centrally located so that even if the hood has a large aspect ratio, at the ends, horizontal jets 2309 ( 2330 in FIG. 7A ) are more effective at capturing exhaust if they are directed toward the center of the hood near the ends 2308 of the long sides 2302 .
  • the ends 2325 of the plenum have an angled structure 2320 to project the horizontal jets diagonally inwardly as indicated at 2315 .
  • FIGS. 62A and 62B illustrate the position of the plenum 2310 of FIG. 7A as would be installed in a wall-type (backshelf) hood 2370 as well as a combination of the horizontal and vertical jets with side skirts 2365 according to another inventive embodiment.
  • This illustration shows how the plenum 210 of FIG. 7B may be mounted in a backshelf hood 2370 .
  • the figure shows the combination of the vertical and horizontal jet and the side skirts 2365 . In such a combination, the velocity of the vertical and horizontal jets may be reduced when the side skirts 2365 are lowered and increased when the side skirts are raised.
  • FIG. 62A shows the side skirts 2365 in a lowered position and FIG. 62B shows the side skirts 2365 in a raised position.
  • the plenum 2365 may be made integral to the hood and also that a similar mounting may be provided for canopy style hoods.
  • FIG. 62B also shows an alternative plenum configuration 2311 with a straight return 2385 on one side which generates vertical 2380 and horizontal 2395 jets along a side of the hood 2370 .
  • the return leg 2385 although shown on one end only may be used on both ends and is also applicable canopy style hoods with a mirror-symmetrical arrangement around the wall (not shown) to which the backshelf embodiment is referred.
  • FIGS. 63A-63C illustrate various ways of wrapping a series of horizontal jets around a corner to avoid end effects according to inventive embodiment(s). These alternative arrangements may be provided by shaping a suitable plenum as indicated by the respective profile 2405 , 2410 , 2415 .
  • Directional orifices may be created to direct flow inwardly at a corner without introducing a beveled portion 2415 A or curved portion 2410 A as indicated by arrows 2420 .
  • FIG. 9D illustrates a way of creating a directional orifice in a plenum 2450 to direct a small jet 2451 at an angle with respect to the wall of the plenum 2450 . This may done by warping the wall of the plenum 2450 as indicated or by other means as disclosed in the references incorporated herein.
  • FIG. 64A illustrates a canopy-style hood 2500 with vertical jets 2550 and a configuration that provides a vortical flow pattern 2545 that is subject to an end effects problem.
  • the end effects problem is that where the vortices meet in corners, the flow vertical flow pattern is disrupted.
  • the vortical flow pattern 2545 works with the air curtain 2550 to help ensure that fluctuating fume loads can be contained by a low average exhaust rate. But the vortex cannot make sharp right-angle bends so the quasi-stable flow is disrupted at the corners of the hood.
  • FIGS. 664B and 64C illustrate configurations of a canopy hood that reduce or eliminate the end effect problem of the configuration of FIG. 64A .
  • a round hood 2570 or one with rounded corners 2576 reduces the three-dimensional effects that can break down the stable vortex flow 2545 .
  • a toroidal vortex may be established in a curved recess 2585 or 2590 with the vertical jets following the rounded edge of the hood.
  • the section view of FIG. 64A would roughly representative of any arbitrary slice through the hoods 2576 , 2570 shown in plan view in FIGS. 64B and 64C .
  • filter banks 2580 and 2595 may be impractical to make the filter banks 2580 and 2595 rounded, but they may be piecewise rounded as shown.
  • filter-holding plenum portions 2581 may be rectangular and joined by angled plenum portions 2582 .
  • FIG. 64C illustrates a configuration of a canopy hood 615 that reduces the end effect problem of the configuration of FIG. 10 by supporting the canopy using columns 5610 at the corners that are shaped to eliminate interactions at the ends of the straight portions 5620 of the hood 5615 .
  • Vertical jets 5650 do not wrap around the hood 5615 and neither does the internal vortex (not illustrated) since there are separate vortices along each edge bounded by the columns 5610 .
  • FIG. 65A illustrates a hood configuration with a sensor that uses incipient breach control to minimize flow volume while providing capture and containment.
  • Incipient breach control is discussed in “Device and Method for Controlling/Balancing Fluid Flow-Volume Rate in Flow Channels,” incorporated by reference above. Briefly, when fumes 5725 rise from a source appliance 5711 , and there is a lack of sufficient exhaust flow or there is a cross-draft, part of the fumes may escape as indicated by arrow 5720 .
  • a sensor located at 5715 or nearby position may detect the temperature, density, or other detectable feature of the fumes to indicate the breach. The indication may be used by a controller to control exhaust flow as discussed in the above patent or others such as U.S. Pat. No. 6,170,480 entitled “Commerical Kitchen Exhaust System,” which is hereby incorporated by reference as if fully set forth herein in its entirety.
  • sensors may be used including optical, temperature, opacity, audio, and flow rate sensor in the present context. It is also proposed that chemical sensors such as carbon monoxide, carbon dioxide, and humidity may be used for breach detection.
  • an interferometric sensor may also be employed to detect an associated change, or fluctuation, in index of refraction due to escape of fumes.
  • a coherent light source 825 such as a laser diode emits a beam that is split by a beam splitter 5830 to form two beams that are incident on a photo-detector 5835 .
  • a reference beam 5831 travels directly to the detector 5835 .
  • a sample beam 5842 is guided by mirrors 5840 to a sample path 5860 that is open to the flow of ambient air or fumes.
  • the reference and sample beams 5831 and 5842 interfere in the beam splitter, affecting the intensity of the light falling on the detector 5835 .
  • the composition and temperature of the fumes creates fluctuations in the effective path length of the sample path 5860 due to a fluctuating field of varying index of refraction. This in turn causes the phase difference between the reference 5831 and sample 5860 beams to vary causing a variation in intensity at the detector 5835 .
  • the direct output of the detector 5835 may be passed through a bandpass filter 5800 , an integrator 5805 , and a slicer (threshold detector) 5810 to provide a suitable output signal.
  • a bandpass filter may be useful is to eliminate slowly varying components that could not be a result of a fumes such as a person leaning against the detector, as well as changes too rapid to be characteristic of the turbulent flow field associated with a thermal plume or draft, such as motor vibrations.
  • An integrator ensures that the momentary transients do not create false signals and the slicer provides a threshold level.
  • an alternative embodiment of a detector uses a directional coupler 2630 A instead of a beam splitter as in the previous embodiment.
  • a waveguide 2664 is used to form a sample path 2660 A.
  • a light source 2625 sends light into the direction coupler 2630 A which is split with one component going to the detector 2635 and the other passing through the sample path 2660 A and back to the direction coupler 2630 A. Fluctuations in phase of the return light from the sample path 2660 A causes variations in the intensity incident on the detector 2635 as in the previous embodiment.
  • the interferometric detector should allow gases to pass through the measurement beam without being affected unduly by viscous forces. If the sample path is confined in a narrow channel, viscous forces will dominate and the detector will be slow to respond. Also, from a practical standpoint, filtering slowly varying electrical signals may be more difficult. Also, if the sample path is too long the signal might be diminished due to an averaging effect. These effect of these considerations vary with the application. It may also be preferable for the gap to be longer than the length scale of the temperature (or species, since the fumes may be mixed with surrounding air) fluctuations to provide a distinct signature for the signal if the gap would substantially impede the flow.
  • an eddy is figuratively shown at 3900 .
  • the structure of the detector may provide a space 3918 (i.e., a sample gap 3918 ) that is large relative to the smallest substantial turbulent scale as indicated at 3912 .
  • the structure of the detector may be smaller than the smallest turbulent scale, but thin and short as indicated at 3914 in which case viscous forces may not impede greatly the variation of the constituent gases in the sample path 3910 due to turbulent convection.
  • the speed of flow, for forced convection, and the temperature differences, for natural convection determine how small the smallest turbulent eddies.
  • High turbulent energy drives the momentum effects toward smaller scales before the turbulent energy is dissipated in viscous friction.
  • Lower turbulent energy will result in larger minimum turbulent scales.
  • an interferometric detector may detect fluctuatations even when the sample gap 3918 is smaller than the smallest turbulent eddies, though the effect registered may not be as rapid or the fluctations as extreme owing to the species or temperature diffusion transport required.
  • thermo diffusivity and heat transfer coefficient which change with species, as well as temperature and velocity, all of which fluctuate in a fume driven or fume-filled turbulent flow field.
  • FIG. 66 illustrates a combination make-up air discharge register/hood combination 2787 with a control mechanism 2769 and 2770 for apportioning flow between room-mixing discharge 2786 and short-circuit discharge 2776 flows.
  • a hood 2774 has a recess through which fumes 2794 flow and are exhausted by an exhaust fan 2779 , usually located on the top of a ventilated structure.
  • a make-up air unit 2745 replaces the exhausted air by blowing it into a supply duct 2780 which vents to a combination plenum that feeds a mixed air supply register 2786 and a short-circuit supply register 2776 .
  • the fresh air supplied by the make-up air unit 2745 is apportioned between the mixed air supply register 2786 and a short-circuit supply register 2776 by a damper 2770 whose position is determined by a motor 2765 which is in turn controlled by a controller 2769 .
  • Short-circuit supply of make-up air is believed by some to offer certain efficiency advantages.
  • the controller 2769 When the outside air is at a temperature that is within the comfort zone, or when its enthalpy is lower in the cooling season or higher in the heating season, most of the make-up air should be directed by the controller 2769 into the occupied space through the mixed air supply register 2786 .
  • the controller 2769 should cause the make-up air to be vented through the short-circuit supply register 2776 .
  • FIG. 67 illustrates a combination make-up air discharge register and hood combination with a control mechanism for apportioning flow between room-mixing discharge and a direct discharge into the exhaust zone of the hood from either outdoor air, transfer air from another conditioned space, or a mixture thereof.
  • a blower 2797 brings in transfer air, which may be used to supply some of the make-up air requirement and provide a positive enthalpy contribution to the heating or cooling load.
  • the staleness of transfer air brought into the heavily ventilated environment of a kitchen is offset by the total volume of make-up (fresh) air that is required to be delivered.
  • Sensors on the outside 2775 , the occupied space 2730 , in the transfer air stream and/or the space from which transfer air is drawn 2731 may be provided to indicate the conditions of the source air streams.
  • a mixing box 2746 may be used to provide an appropriate ratio of transfer air and fresh air. The ratio will depend on the exhaust requirements of the occupied space 2796 . Control of the damper 2770 is as discussed with reference to FIG. 66 .
  • FIGS. 68A, 68B , and 70 illustrate drop-down skirts that can be manually swung out of the way and permitted to drop into place after a the lapse of a watchdog timer under control of a controller shown in FIG. 69 .
  • FIGS. 68A and 68B are side views of a drop-down skirt 915 that pivots from a hinge 905 from a magnetically suspended position over a cooking device 930 .
  • the skrit or skirts 915 is/are shown in a raised position and in FIG. 68B in a dropped position.
  • a magnetic holder/release mechanism 935 which may include an electromagnet or permanent magnet, holds the skirt panel 915 in position out of the way of an area above a fume source 930 .
  • the skirts 915 may be released after being moved up and engaged by the magnetic holder/release mechanism 935 , after a period of time by a controller 960 .
  • the controller 960 may be connected to a timer 970 , a proximity sensor 925 , and the magnetic holder/release mechanism 935 .
  • the proximity sensor 925 may be one such as used to activate automatic doors. If nothing is within view of the proximity sensor after the lapse of a certain time, the controller may release the skirt 915 .
  • the skirt 915 When released by the magnetic holder/release mechanism 935 , the skirt 915 falls into the position of FIG. 68B to block drafts. Preferably, as shown in the front view of FIG. 70 , there are multiple skirts 915 separated by gaps 916 . A passing worker may scan the area behind the skirts 915 even though they are down if the worker moves at least partly parallel to the plane of the skirts 915 .
  • the magnetic holder/release mechanism 935 may combined with the controller 960 , the timer 970 , and the proximity sensor 925 in a unitary device.
  • the skirt release mechanisms described may be actuated by video cameras linked to controllers configured or trained to recognize with events or scenes.
  • controllers configured or trained to recognize with events or scenes.
  • the very simplest of controller configurations may be provided. where a blob larger than a particular size appears or disappears within brief interval in a scene or a scene remains stationary for a given interval.
  • An example of a control flow is illustrated in FIG. 73 .
  • a controller detects the latching of the skirt as step S 900 and starts a watchdog timer at step S 905 . Control then loops through S 910 and S 915 as long as scene changes are detected.
  • step S 915 the skirt is released at step S 920 and control returns to step S 900 where the controller waits for the skirt to be latched.
  • step S 915 the skirt is released at step S 920 and control returns to step S 900 where the controller waits for the skirt to be latched.
  • step S 915 the skirt is released at step S 920 and control returns to step S 900 where the controller waits for the skirt to be latched.
  • a similar control algorithm may be used to control the automatic lowering and raising of skirts in the embodiments of FIGS. 55-58 , discussed above. Instead of releasing the skirt, the skirt would be extended into a shielding position and instead of waiting for the skirt to be latched, the a scene change would be detected and the skirt automatically retracted.
  • multiple sample gaps such as the two indicated at 4915 may be linked together under in a common light path by a light guide 4900 and a single directional couple 4830 or equivalent device.
  • a light source 4835 and detector 4825 are connected by a directional coupler 4830 with focusing optics 4862 and one or more linking light guides 4905 to provide any number of sample paths.
  • FIG. 72A shows a hood edge 4920 with multiple individual sample devices 4871 which conform to any of the descriptions above linked to a common controller. Although parallel connections are illustrated, serial connections of either fiber or conductor may be provided depending on the configuration.
  • the flow control device 120 may be set manually or periodically, but at intervals to provide the local load control without the benefit of real-time automatic control.

Abstract

An interferometric detector detects fluctuations in fluid properties in the vicinity of an exhaust hood to control protective skirts that reduce the exhaust air requirement.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority to U.S. patent application Ser. No. 10/344,505, entitled “Device and Method for Controlling/Balancing Fluid Flow-Volume Rate in Flow Channels,” filed Aug. 11, 2003; U.S. patent application Ser. No. 10/638,754, entitled “Zone Control of Space Conditioning Systems with Varied Uses,” filed Aug. 11, 2003, PCT/US03/25515, entitled “Configuration for capture and containment enhancement of exhaust hood flow by means of jets,” filed Aug. 13, 2003, and U.S. Provisional application 60/590,889, filed Jul. 23, 2004 entitled, “Automatic Side Skirt For Exhaust Hood.”
  • FIELD OF THE INVENTION
  • The present invention relates generally to flow-volume control devices. More specifically, the present invention relates to flow control devices that may be used for balancing fluid flow in a context where suspended particles are entrained in the fluid and their precipitation must be avoided, in free-flowing parts of a flow system, except during filtration.
  • Exhaust hoods are used to remove air contaminants close to the source of generation located in a conditioned space. For example, one type of exhaust hoods, kitchen range hoods, creates suction zones directly above ranges, fryers, or other sources of air contamination. Exhaust hoods tend to waste energy because they must draw some air out of a conditioned space in order to insure that all the contaminants are removed. As a result, a perennial problem with exhaust hoods is minimizing the amount of conditioned air required to achieve total capture and containment of the contaminant stream.
  • Referring to FIG. 1, a typical prior art exhaust hood 90 is located over a range 15. The exhaust hood 90 has a recess 55 with at least one vent 65 (covered by a filter 60) and an exhaust duct 30 leading to an exhaust system (not shown) that draws off contaminated air 45. The vent 65 is an opening in a barrier 35 defining a plenum 37 and a wall of the canopy recess 55. The exhaust system usually consists of external ductwork and one or more fans that pull air and contaminants out of a building and discharge them to a treatment facility or into the atmosphere. The recess 55 of the exhaust hood 90 plays an important role in capturing the contaminant because heat, as well as particulate and vapor contamination, are usually produced by the contaminant-producing processes. The heat causes its own thermal convection-driven flow or plume 10 which must be captured by the hood within its recess 55 while the contaminant is steadily drawn out of the hood. The recess creates a buffer zone to help insure that transient, or fluctuating, surges in the convection plume do not escape the steady exhaust flow through the vent. The convection-driven flow or plume 10 may form a vortical flow pattern 20 due to its momentum and confinement in the hood recess. The Coanda effect causes the thermal plume 10 to cling to the back wall. The exhaust rate in all practical applications is such that room air 5 is drawn off along with the contaminants.
  • Referring now also to FIG. 2, exhaust hoods 90, such as illustrated in FIG. 1, vary in length and can be manufactured to be very long as illustrated in FIG. 2. Here multiple vents 65 can be seen from a straight-on view from the vantage of a worker 80. The length can present a problem because the perimeter along which capture and containment must be achieved is longer near the ends than in the middle. In the middle, there is only one perimeter, the one along the forward edge indicated at 70 in FIG. 1. At the ends, this perimeter includes the side edge as well which is indicated at 75 in FIG. 1. The additional perimeter length that must be accommodated at the ends may be called an “end effect.” In other words, the hood cannot be approximated as a two-dimensional configuration because of its finite length. As a result of the increased perimeter at the ends, more air must be exhausted in the vicinity of the ends of the hood than in the middle because the perimeter at the ends consists of both the forward edge 70 of the hood adjacent the worker and end edges 75, which are perpendicular to the forward edge 70.
  • If the minimum exhaust rate for the entire hood is to be achieved, then less air should be exhausted near the middle section than near the ends. Otherwise, an excess rate of air exhaust will occur near the middle section to insure the rate at the ends is sufficient. Thus, as a result of the end effects and the requirement of full capture and containment, more air must be drawn through the middle section than necessary. In addition, a higher volume of effluent may be generated at some parts of a hood than at others. This variability leads to the same result: some parts of the hood may require a greater exhaust rate than others.
  • Referring to FIG. 3, a similar problem occurs when multiple hoods are connected to a single exhaust system. For example, the hoods may be connected to a common exhaust duct 191. Each hood must be balanced against the others so that each exhausts at the minimum rate that ensures full capture and containment of the contaminants. Again, ducts carrying grease aerosol should not have dampers because of the hazard caused by grease precipitation.
  • The particular embodiments are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention. The description, taken with the drawings, makes it apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
  • BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a side view of a canopy style wall hood according to the prior art.
  • FIG. 2 is a front view of a long canopy style hood with multiple vents.
  • FIG. 3 is a front view of multiple hoods attached to a common exhaust system.
  • FIG. 4 is a side section view of a canopy style hood according to embodiment of the invention.
  • FIG. 5A. is a section view of a canopy style hood according to the embodiment of FIG. 4.
  • FIG. 5B. is a perspective view of a shutter with an actuator mechanism according to embodiment of the invention.
  • FIG. 6 is a front view of a canopy style hood with multiple vents including the shutter mechanism of FIG. 5B.
  • FIG. 7 is a front view of multiple canopy style hoods connected to a common exhaust in which respective vents of the hoods are controlled by shutter mechanisms according to embodiment of the invention.
  • FIG. 8 is a section view of a canopy hood with a shutter according to another embodiment of the invention.
  • FIG. 9A is a side view of a centrifugal style cartridge filter used for grease extraction.
  • FIG. 9B. is a section view of a canopy style hood with a flow control mechanism according to another embodiment of the invention.
  • FIG. 10 is a side view of a canopy style hood with the flow .degree.control mechanism according to still another embodiment of the invention.
  • FIG. 11 is a front view of vents of a canopy hood or back shelf hood with rolling shutters according to yet another embodiment of the invention.
  • FIG. 12 is a section view of rolling shutter mechanism according to an embodiment of the invention.
  • FIG. 13 is a partial section view all long hood with multiple exhaust vents and corresponding flow of throttling devices according to an embodiment of the invention.
  • FIG. 14 is a sectional side view of the embodiment of FIG. 13.
  • FIG. 15 is the perspective cut away of a shutter mechanism according to embodiment of the invention.
  • FIG. 16 a perspective cut away of a shutter mechanism according to another embodiment of the invention.
  • FIG. 17 is a sectional view of a combination filter/flow throttling device according to embodiment of the invention.
  • FIG. 18 is a sectional view of a combination filter/flow throttling device according to embodiment of the invention.
  • FIG. 19 is a sectional view of a combination filter/flow throttling device of FIG. 18 in a throttle-down position.
  • FIG. 20 is the face view of the filter of FIGS. 18 and 19 shown partly in throttle-down position and partly in throttle-up position.
  • FIG. 21A is a sectional view of a combination filter/flow throttling device according to yet another embodiment of the invention.
  • FIG. 21B. is a sectional view of the filter/flow throttling device of FIG. 21 a in the throttle-up position.
  • FIG. 21C. is a front view of the filter of FIGS. 21 a and 21B.
  • FIG. 22A is a section view of a filter/flow throttling device according to another embodiment of the invention.
  • FIG. 22B. FIG. 22B is a section view of the filter of FIG. 22A in a throttle-down position.
  • FIG. 22C is a front view of the filter of FIGS. 22A. and 22B.
  • FIG. 23A is a alternative embodiment of the device of FIGS. 22A through c.
  • FIG. 23B. is an alternative embodiment of the device of FIGS. 22 a through 22C.
  • FIG. 24A. is a section view of a canopy hood with a flow throttling device including a cleaning fluid according to embodiment of the invention.
  • FIG. 24B. is a section view of the flow throttling device of FIG. 24 day in the throttle-down position.
  • FIG. 24C. is a top view of the embodiments of FIGS. 24A and 24B.
  • FIG. 25A is a section view of a flow throttling device also using A cleaning fluid according to embodiment of the invention.
  • FIG. 25B is a section view of the flow throttling device of FIG. 25 a in a throttle-down position.
  • FIG. 26 is a section view of a canopy hood showing a flow throttling device in which apply them is contracted according to embodiment of the invention.
  • FIG. 27 is a section view of the embodiment of FIG. 26 in throttle-down position.
  • FIG. 28 a business section view of the canopy hood showing a flow throttling device employing an expandable bladder according to embodiment of the invention.
  • FIG. 28B is a section view of the flow throttling device of FIG. 28 a in throttle-down position
  • FIG. 29 to section view of a canopy hood with a flow throttling device employing a flexible back wall of a plenum according to embodiment of the invention.
  • FIG. 30 is a section view of a canopy hood with a flow throttling device using a ball bowel arrangement according to embodiment of the invention.
  • FIG. 31 is a section view of a canopy hood with the flow throttling device of FIG. 30 in throttle-down position.
  • FIGS. 32A and 32B are side views of an alternative bowel arrangement suitable for use in the embodiment of FIGS. 30 and 31.
  • FIG. 33 is a section view of a flow throttling device for a hood and a throttle-up position according to an embodiment of the invention.
  • FIG. 34 is a section view of the flow throttling device of FIG. 33 in a throttle-down position.
  • FIG. 35 is a front view all long hood with multiple vents and multiple duct sections which may be selectively blocked according to embodiment of the invention.
  • FIG. 36 is a section side view of the embodiment of FIG. 35.
  • FIG. 37 is a perspective view of a cylindrical module of a combination filter/flow throttling device according to an embodiment of the invention.
  • FIG. 38 is a perspective view of a combination filter/flow throttling device employing the module of FIG. 37 and a rotating assembly.
  • FIG. 39 is a perspective view of the embodiment of FIG. 38 and a throttle-up position.
  • FIG. 40 is a section view of a canopy style hood sensors to gather data about cooking conditions.
  • FIG. 41 is a blocked side man of the controller with sensors for controlling the balance of one or more kitchen exhaust hoods.
  • FIG. 42 is a perspective view of a cooking appliance and hood showing various camera angles.
  • FIG. 43A is a side view of a hood and cooking appliance with a plume in which the exhaust rate is higher than necessary.
  • FIG. 43B is a side view of a hood and cooking appliance with a plume in which the exhaust rate is set at an optimal rate.
  • FIG. 43C is a side view of a hood and cooking appliance with a plume in which the exhaust rate is set to low.
  • FIG. 44 is a perspective view of a canopy quoted and cooking appliance showing a plume escaping containment.
  • FIG. 45 is a Schlerian photograph of the thermal plume rising from a cooking appliance into a canopy hood.
  • FIG. 46 is a section view of a canopy hood with a shutter and an actuator mechanism according to embodiment of the invention.
  • FIG. 47 is a section view of a canopy hood with a shutter and an actuator mechanism according to another embodiment of the invention.
  • FIG. 48A is a perspective view of expandable scroll module which functions as a filter/flow throttling mechanism according to an embodiment of the invention.
  • FIG. 48B is a perspective view of a set of the expandable scroll modules of FIG. 48A attached to each other such that they can expand and contract as a unit.
  • FIG. 49 is a section view of the embodiment of FIG. 48 in a throttle-up position.
  • FIG. 50 is a section view of the embodiment of FIGS. 48 and 49 in a throttle-up position.
  • FIG. 51 is a perspective view of the embodiment of FIG. 48 showing a supporting framework and actuator mechanism.
  • FIG. 52 is a section view of the embodiment of FIG. 51 showing a support feature of that embodiment.
  • FIG. 53 is a perspective view of an embodiment similar to the embodiment of FIGS. 48A and 48B in which flow exits from a central position between divided sets of scroll modules.
  • FIG. 54 shows a support structure for the embodiment of FIG. 53.
  • FIG. 55 is a side view illustration of a canopy style hood with adjustable side skirts according to a first inventive embodiment.
  • FIG. 56 is a schematic illustration of a control system for the embodiment of FIG. 3A as well as other embodiments.
  • FIG. 57 is a side view illustration of a backshelf hood with a fire gap and movable side skirts and a movable back skirt.
  • FIG. 58 is a side view illustration of a canopy style hood with adjustable side skirts according to a second inventive embodiment.
  • FIG. 59 is a figurative representation of a combination of horizontal and vertical jets to be generated at the edge of a hood according to an inventive embodiment.
  • FIG. 60 is a figurative illustration of a plenum configured to generate the vertical and horizontal jets with diagonal horizontal jets at ends of the plenum according to an inventive embodiment.
  • FIG. 61 is an illustration of a plan view of a typical hood showing a central location of the exhaust vent.
  • FIGS. 62A and 62B illustrate the position of the plenum of FIG. 7 as would be installed in a wall-type (backshelf) hood as well as a combination of the horizontal and vertical jets with side skirts according to at least one inventive embodiment.
  • FIGS. 63A-63C illustrate various ways of wrapping a series of horizontal jets around a corner to avoid end effects according to inventive embodiment(s).
  • FIG. 63D illustrates a way of creating a hole in a plenum that redirects a small jet without a separate fixture by warping the wall of the plenum.
  • FIG. 64A illustrates a canopy-style hood with vertical jets and a configuration that provides a vertical flow pattern that is subject to an end effects problem.
  • FIGS. 64B and 64C illustrate configurations of a canopy hood that reduce or eliminate the end effect problem of the configuration of FIG. 10.
  • FIG. 64D illustrates a corner shield configuration for a hood with curtain jets.
  • FIG. 65A illustrates an application for a breach detector for a hood control system.
  • FIG. 65B illustrates an interferometer sensor and a detector conditioning circuit for various embodiments of interferometer-based sensing of fume breach.
  • FIG. 65C illustrates an interferometer using a directional coupler and optical waveguides instead of beam splitter and mirrors.
  • FIG. 65D illustrates some mechanical issues concerning measurements that depend on the structure of turbulence.
  • FIG. 66 illustrates a combination make-up air discharge register and hood combination with a control mechanism for apportioning flow between room-mixing discharge and short-circuit discharge flows.
  • FIG. 67 illustrates a combination make-up air discharge register and hood combination with a control mechanism for apportioning flow between room-mixing discharge and a direct discharge into the exhaust zone of the hood from either outdoor air, transfer air from another conditioned space, or a mixture thereof.
  • FIGS. 68A and 68B illustrate drop-down skirts that can be manually swung out of the way and permitted to drop into place after a time interval.
  • FIG. 69 illustrates a control system for the device of FIGS. 68A and 68B.
  • FIG. 70 illustrates an embodiment of a device consistent with the description of FIGS. 68A and 68B.
  • FIG. 71 illustrates a multisensor configuration of an interference detector.
  • FIG. 72 illustrates another view of the multisensor configuration of FIG. 71 showing installation on a hood.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS
  • The following US patent applications are hereby incorporated by reference as if set forth in their entireties herein: U.S. patent application Ser. No. 10/344,505, entitled “Device and Method for Controlling/Balancing Fluid Flow-Volume Rate in Flow Channels,” filed Aug. 11, 2003; U.S. Pat. No. 6,851,421, entitled “Exhaust Hood with Air Curtain to Enhance Capture and Containment,” and U.S. patent application Ser. No. 10/638,754, entitled “Zone Control of Space Conditioning Systems with Varied Uses,” filed Aug. 11, 2003.
  • Referring to FIG. 4, a kitchen hood 125 has a canopy 145 positioned over a heat/contaminant source 175 (such as a grill) to capture a thermal convection plume 170 produced by the heat/contaminant source 175. The canopy 145 defines a recess 140, having an access 155. An exhaust fan (not shown) draws a flue stream 105 through an exhaust plenum 180. Negative pressure in the exhaust duct 180 in turn draws gases residing in the recess 140 through a vent 130. In the vent 130 is a mechanical grease filter 115, set in a boundary wall 120 that defines part of the recess 140. The filter reduces the mass of suspended grease particles in the resulting flue stream. The grease filter 115 may be an impingement filter or one based on cyclone type separation principles. The thermal convection plume 170 carries pollutants and air upwardly into the canopy recess 140 by buoyancy forces combined with forced convection resulting from the suction created by the exhaust fan. A combined effluent stream comprising the thermal convection plume 170 and conditioned air drawn from the space 165 in which the hood 125 is located, flows into the vortex 135. This flow is extracted from the canopy recess 140 steadily forming the effluent stream 110, which becomes the flue stream 105.
  • The kitchen hood 125 may have multiple vents 130, each connected to the exhaust plenum 180. Alternatively, multiple exhaust plenums 180 may be connected to a single exhaust duct header (not shown but as indicated at 191 in FIG. 3) supplied by a single fan (not shown) as will be appreciated by those skilled in the relevant art. The exhaust rate through the exhaust plenum 180 or exhaust duct header determines the rate of extraction of effluent and indoor air 165 by the hood 125. The determination of the optimal flow rate involves a tradeoff between energy conservation and a requirement called capture and containment. Capture and containment is the state where no pollutant from the thermal plume 170 or the buffered volume in vortex 135 escapes into the conditional space.
  • Full capture and containment requires the exhaust of at least some air 165 from the space in which the hood 125 is located. To conserve energy, the exhaust rate should be set at the lowest possible rate that still provides full capture and containment. This setting must account for the variability of the thermal plume 170, which varies with the cooking load, stage of cooking (e.g., rendering of fat which causes dripping and attendant smoke), and random variation (e.g., random dripping from fatty foods) or steam generation. Thus, not only does the exhaust load vary along the canopy 125 (in the direction into the plane of the drawing), as discussed in the background section, it also varies with time. The prior art approach has been one of setting the flow rate according to the peak expected load. This approach insures that the bulk exhaust rate is high enough to provide full capture and containment by the hood, or hood portion, requiring the greatest volume of exhaust to achieve it (capture and containment), at the times of maximum instantaneous load.
  • Again, the load can vary along the length of a long hood or from hood to hood and the balancing problem is analogous in balancing from hood portion to hood portion as it is for balancing from hood to hood.
  • In the present system, a flow control system is employed to permit modulation of the exhaust from one hood 125 to another or from one vent 120 to another along a single long hood 110. In addition, the potential exists to provide this flow control system, to be discussed hereon, with real-time control. Thus, according to the inventive system, the exhaust rate. may be controlled to achieve the lowest local (“local” referring generically to the respective hood portion or the respective each hood linked to a common exhaust) exhaust rate required for the current local, instantaneous load. This is achieved by controlling the local exhaust rate by an active flow control device 120 linked to a real-time control (discussed in greater detail much later in the present specification).
  • Referring now also to FIGS. 5A, 5B, and 6, to balance flow across a single hood 145 (FIG. 6), or across multiple hoods connected to a single exhaust system (see FIG. 7), a flow control device 120 selectively blocks a portion of an exhaust vent 130 in a boundary wall 190 of the hood 145. The flow control device 120 has a flat plate 112 partially covering the vent 130 defining an aperture 185. The flat plate 112 is selectively moved across the vent 130 which makes the aperture 185 variable-sized. The flat plate 112 may be moved by a linear actuator 119 such as a linear motor with a driver 118 and stator 117. The flat plate 112 may be guided by linear bearings 113. Note that the shape of the flow control device 120 is generally flat so that its impact on the shape of the canopy recess 140 is minimal. Thus, the flow control device 120 does not interfere with the vortical flow pattern 135. Where canopy 145 is of great length (again, “length” referring to the dimension perpendicular to the plane of the FIG. 5A drawing and best illustrated by FIG. 6), where multiple vents 130 are linked to a common exhaust duct 205, the respective flow control devices 120 may be set to provide a larger aperture 185 for the vents 130 close to the ends of the canopy 145 and to provide a smaller aperture 185 for the vents 130 near the middle of the canopy 145. Alternatively, if the type of cooking appliance or load varies along the length of the hood, the flow control devices 120 may be set accordingly. Referring now also to FIG. 7, in multiple hoods 230 linked to a common exhaust header 220 the flow control device 120 may be set to restrict flow more in those canopies 145 protecting lower loads and to restrict flow less in canopies 145 protecting higher loads. Further, real-time control, which is discussed later in the present specification, may be used to control each flow control device 120 according to an instantaneous load sensed by a smoke, temperature, image, and/or other sensor system as described below.
  • Referring to FIG. 8, the canopy recess 140 acts as a buffer to dampen the effects of temporal variability in the load. The thermal plume 170 rises at a rate that is faster than the mean rate of exhaust. In wall-type hoods as illustrated, the flow 135 circulates within the canopy recess 140 dissipating its energy in a turbulent cascade whilst the plume 170 and room air 165, drawn by negative pressure created by the exhaust fan (not shown), are tapped from the canopy recess 140 as indicated figuratively by the arrow 245. The shape of the canopy recess 140 augments the vortical pattern by guiding it in a circular path as illustrated at 135. The vortical pattern may not be present in all hoods, but all hoods have some capacity to buffer temporal variability in the load whether a stable vortex is formed or not. More complex flow patterns may arise in other hoods, depending on the load, the hood shape and other variables.
  • Referring now to FIGS. 9A, 9B, and 10, another type of flow control device provides variable control of the flow rate through certain types of filters 305. Referring momentarily to FIG. 9A in particular, in certain types of filters 305, the raw effluent stream enters as indicated at 246 and leaves at the ends of the filters as indicated at 307. Examples of this type of filter are described in U.S. Pat. No. 4,872,892, which is hereby incorporated by reference in its entirety as if fully set forth herein. Focussing again on FIG. 9B, the exit flows 307 are selectively blocked by movable plates 300 thereby providing a variable exit passage 325. In the embodiment of 9B, the plates 300 translate as indicated by arrows 308. In the embodiment of FIG. 10, movable plates 330 are pivotably mounted by hinges 335 and pivoted to provide variable exit passages 340.
  • Referring now to FIGS. 11 and 12, another embodiment of a flow control device employs scroll shutters 360 that unroll from spools 385 inside a covered compartment 265. Each shutter 360 selectively blocks a vent 370 on the canopy recess side thereby providing a variable aperture 350 respective of each vent 370. Each vent 370 may be separated by a partition portion 380 from one or two adjacent vents 370. Suitable guides and drive mechanisms are available from the field of movable shutters and may be employed to actuate the present embodiment.
  • Referring to FIGS. 13 and 14, a flow control device such as described in U.S. Patent Application 60/226,953 may be employed in a duct leading from the respective vents 420 of a single hood or from groups of vents in one or more hoods all linked to a common exhaust (not shown in this drawing). In the embodiment of FIGS. 13 and 14, a single hood is shown. A wall 425 of the recess has three vents 420 each leading to a respective plenum 430. Each plenum is connected to a duct containing a flow control device 410 having smooth walls as described in the above US patent application. Each flow control device 410 then leads to a common plenum 400 from which effluent is drawn through a common exhaust 415. By regulating each flow control device 410 separately, the flow through the respective vents 420 can be optimized as discussed above. A similar configuration may be used to balance respective hoods connected to a common exhaust.
  • Referring to FIG. 15, another type of flow control device 510 selectively blocks flow through a vent 505 (in a wall of a canopy 525) using a vertical-blind type mechanism. Louvers 515 of the flow control device 510 pivot in a manner analogous to window blinds. The louvers 515 may be oriented with their pivot axes parallel to the tangent of the vortex 135 formed within a canopy recess 500. In this orientation, the louvers 515 generate less resistance to the vortical flow. To vary the flow through the flow control device 510, the louvers 515 are pivoted about their axes in concert to vary the net flow area through the vent 505 in the canopy wall 525. Referring to FIG. 16, in flow control device 530, which is similar to that of FIG. 15, louvers 535 are located over only a portion of the vent 505, since the flow may not need to be cut off 100%. Alternatively, the louvers 515 may be as in FIG. 15, but not close 100%.
  • Referring to FIG. 17, the structure of an impingement filter 545 is varied to modulate flow therethrough. The drawing shows a split view of a single filter in two configurations. On the left side of the drawing, the concave-back plates 550 and concave forward plates 555 are close together narrowing the flow passage between the inlets 570 and the outlets 580. In the right side of the drawing, the separation distance is increase providing a larger flow passage that is correspondingly less resistant to flow therethrough. The separation distance may be varied progressively or step-wise, depending on design choice, by any suitable mechanism.
  • In the example shown, adjustable standoffs 560 are used to separate the plates 550 and 555. For example, the adjustable standoffs could be screws 560 with idle clips 565 that hold one end of the screws 560 at a fixed position along it length and threaded holes 566 that traverse the lengths of the screws 560 when it is turned. The separation device may be automatic or manual, as required.
  • Referring to FIGS. 18, 19, and 20, in a configuration of a grease filter of a type similar to those described in U.S. Pat. No. 4,872,892, modulation of the flow of exhaust through a vent of a range hood is afforded. In this embodiment, a filter is formed substantially as described in the above patent. That is, air flows into slots 620 along a face of the filter as indicated at 632 (all similar slots—only one is labeled) and exits through the ends of tubular sections 610 as indicated by the outward-facing-flow symbol 633. While travelling through each chamber tubular section 615, the flow swirls helically due to the tangential entry of the flow at each slot 620. The aperture of the slots 620 is varied by bending a flexible wall 630 of each slot by a gang pull-rod 635. When the gang pull-rod is moved as illustrated in FIG. 19, the flexible walls 630 bend narrowing the slots 620 and restricting the flow. FIG. 20 is a split view showing two configurations of the filter. The open configuration of FIG. 18 is illustrated on the left side of FIG. 20 and the closed configuration of FIG. 19 is illustrated on the right side of FIG. 20. The aperture 620 may be varied progressively or in steps.
  • Note that while in the embodiment of FIGS. 18-20, the inlet slots 620 are varied in flow area by bending a wall that forms the tubular chambers 615, it is possible to accomplish a similar result using separate blocking plate with a hinge. That is, the wall 630 may be a separate element pivotably attached to the rest of the modules 610.
  • Referring to FIGS. 21A, 21B, and 21C, based on a filter design similar to those of U.S. Pat. No. 4,872,892, flow entering the filter is selectively blocked by a movable shutter plate 660. Again each tubular chamber 650 receives air through a respective slot-shaped flow aperture 655 and delivers it through exits 649 of each of a plurality of modules 648 as indicated by the arrows 656 and 657. When the shutter plate 660 is in a relatively open position as shown in FIG. 21A, each flow aperture 655 is relatively large in area. When the shutter plate 660 is in a relatively closed position as shown in FIG. 21B, the flow aperture 655 is relatively small in area. Thus, the shutter plate 660 position may be used to control the pressure drop across the filter and consequently the flow rate across the filter.
  • All of the filters that are able to control flow may be used for hood balancing. If each filter is controlled independently, the flow rate through each vent of one or more hoods can be controlled independently. Each filter may be controlled in each hood of a system to flow-balance longer hoods and to balance hoods against each other. Alternatively, a single filter of a hood with multiple vents can be controlled leaving the other filters uncontrolled. This may allow the balancing of the entire hood against other hoods. In a longer hood, this solution may be less desirable because it would vary the exhaust rate across the length of the hood, which may produce inefficiencies as discussed above.
  • Referring to FIGS. 22A, 22B, and 22C, based on a more conventional type of filter cartridge known as an impingement filter (also discussed above), a shutter plate 653 is moved to vary the size of flow apertures 657. Effluent flows from the inlet flow apertures 657 to respective outlets 658. The selective variation of the flow apertures 657 varies the pressure drop through the flow apertures 657. Note that although in this embodiment, a shutter plate 653 is used to selectively block the aperture 657, it is clearly possible to use a shutter plate to selectively block the outlets 658 or both to achieve the same effect.
  • The shutter plate of FIGS. 21A-C and 22A-C are illustrated as having rectangular openings. Referring to FIGS. 23A and 23B, it is possible to employ other shapes to good effect. For example, in the embodiment of FIG. 23A, a shutter plate 680 has openings 675 with a curved border such that access to the middle section of the filter is blocked more than the ends. In the embodiment of FIG. 23B, the opposite is true. In the latter embodiment, a shutter plate 681 has openings 676 with a curved border such that access to the end sections is blocked more than the middle section. Either embodiment may be used with either type of filter cartridge or others not described herein, but the embodiment of FIG. 23B may be more favorable in a filter such as described in U.S. Pat. No. 4,872,892 because it favors a longer travel path of the air along the flow modules providing greater grease separation in the process.
  • Referring to FIGS. 24A and 24B, a canopy 717 has a recess 715 bounded, in part, by a flexible accordion wall 710, a filter 720, and a water tank 730. The filter 720 is partly immersed in a pool of water or other liquid 735, held by the tank 730. The exposed face of the filter is limited by the immersion of part of the filter 720 in the pool of water 735 and thus the flow area is reduced. As a result, the flow area may be modulated by varying how deeply the filter 720 is immersed. By varying this flow area, the pressure drop between the recess 715 and a plenum 725 may be selectively varied to vary the exhaust flow. To vary the depth of immersion, the filter 720 may be translated. The flexible accordion wall 710 flexes to follow the filter 720. The flexible accordion wall 710 may be made of steel or some other material. The filter may be held by a suitable engagement device (not shown) at the distal end of the flexible accordion wall 710. Cleaning solution may be used in the tank 730. During shutdown of the exhaust system, the filter 720 may be immersed more completely in the cleaning solution to clean the filter 720.
  • Referring now also to FIG. 24C, seal plates 723 prevent effluent gases from bypassing the filter 720 by going around it. The seal plates may extend from the top of the accordion wall 710 to the level of the liquid 735.
  • Referring now to FIGS. 25A and 25B, in another embodiment, a recess 745 is bounded in part by a fixed wall section 740 to which a filter 750 is connected at a distal end thereof. Seal plates (not shown) may be provided as in the embodiment of FIGS. 24A-24C. The filter is immersed partly in a tank 755 filled with water or a cleaning solution or some other liquid 760. Pressure drop between a suction-side plenum 765 and the recess 745 across the filter is governed by the level of the liquid 760 in the tank 755 which in turn controls the flow area available through the filter. In FIG. 25A, the flow area is greater than the illustration of FIG. 25B because the liquid 760 level is higher in the latter figure.
  • Referring now to FIGS. 26 and 27, a recess 788 of an exhaust hood 789 is defined in part by a pivoting wall 781 that pivots at one end 790 and is connected by a flexible wall 781 at another end. The pivoting wall 781 also defines in part a suction side plenum 775 whose flow passage is reduced in flow area by the change in the angle of pivot of the pivoting wall 781. The flow through each controlled vent 786 may be modulated by means of an independent apparatus as shown. Thus, for balancing flow through a single hood, two or more sets (“sets” may be single in number) of vents may lead into separately controlled plenums 775.
  • Referring to FIGS. 28A and 28B, a hood canopy 815 has a plenum 810 that receives exhaust air through a filter 820. The pressure drop through the plenum 810 is modulated by varying the configuration of an obstruction 805. The obstruction may, for example, be an inflatable bladder. The obstruction may be made of steel with an accordion type bellow integral thereto to permit its volume to vary. Alternatively, it may be of polymeric material or other suitable construction. The obstruction 805 is shown with a substantially pillow shape, but it is understood that it could have any shape. A shape that presents a face that is substantially parallel to the exit face of the filter 820 would be better than one that is at a substantial angle as shown so as not to favor one portion of the filter over another. Referring to FIG. 29, in a variation of the embodiments of FIGS. 28A and 28B, wall of the plenum 810 has a face 808 and accordion ribbing 807 to permit the face 808 to be pushed into the plenum 812 to vary the flow channel area and thereby the pressure drop through the plenum. The same effect would be accomplished with an obstruction as in FIGS. 28A and 28B. That is, the face angled as face 808 could be formed in the obstruction 805.
  • In the embodiments of FIGS. 28A, 28B, and 29 separate plenums 810/812 may be provided for each modulated vent 814/811. Alternatively, however, because the flow obstructor 805/808 may be made local to a respective vent 814/811, all vents may share a common plenum 810/812 for a single hood while still providing the ability to balance a single long hood. That is, a separate and independently controllable flow obstructor 805/808 may be made respective to each vent 814/811 to control each controlled vent independently of the others.
  • Referring to FIGS. 30 and 31, a hood of substantially standard construction has a suction side plenum 835 which draws air through a filter 820. An aperture 832 leads to an exhaust collar 800. The aperture 832 is selectively blocked by a smooth obstruction 830 whose distance from the aperture 832 determines the flow area for exhaust flow through the aperture. In an embodiment, the flow obstruction 830 is in the shape of a sphere. Referring to FIGS. 32A and 32B, an alternative shape for a flow obstruction 840 is a water-drop shape. For rectangular flow apertures 832, other shapes may be used. Preferably, the shape of the flow obstruction is smooth so as not to generate stable and quasi-stable or periodic flow structures that result in undue precipitation of aerosols.
  • Referring to FIGS. 33 and 34, in a rectangular exhaust collar 850 fed from a suction side plenum 860 of an exhaust hood, flexible smooth flow obstructor plates 855 are provided. By varying the shape and area of a flow channel 857, the pressure drop across the flow channel 857 is modulated providing the ability to balance suction side plenums 860 selectively. The shapes' of the obstructor plates 855 may be varied by translating tongue segments 856 accordingly. The final actuator used to vary the shape and size of the flow channel 857 may be any suitable device. Note that one side only may be translated rather than both as indicated.
  • Referring to FIGS. 35 and 36, an exhaust hood has a suction side plenum 535A divided into an upper part 535A and a lower part 535B. The upper and lower parts 535A and 535B are connected by a series of duct sections 547/548 that may be selectively covered with blanks 546 to vary the flow through each respective vent 566. In the example situation shown in FIG. 35, two of the middle-most blanks are set to block flow through ducts 547 and permit free flow through ducts 548. By selectively blocking some ducts 547 and permitting flow through other ducts 548, the relative flow of the vents 566 is altered. For example, the flow through vent 566′ would be reduced relative to the flow through adjacent vents 566 because of the presence of the blanks 546. Since no obstructions are added to a flow path, no mechanism is introduced that would cause undue precipitation.
  • Note that while in the embodiment of FIGS. 35 and 36, the blanks 546 are fixed in place, it would be possible to arrange for the blanks 546 to be selectively moved into place to provide real-time modulation of flow. Thus, in this embodiment, a movable blank 546 would either be in place blocking flow through a respective duct section 547 or it would be out of the way permitting free flow through the respective duct section 548. Also, while in the embodiment described above, it was presumed that the configuration of the plenum 535B was such that flow through the middle vent 566′ would be appreciably reduced relative to that through the other vents 566, the latter plenum may be sufficiently generously sized that the only effect of reducing the aggregate flow area by blocking ducts 547 may be to reduce the total flow for the entire hood without redistributing the flow along the hood. Thus, this design may be used to balance multiple hoods or single hoods, as may all the previous embodiments. The advantage of using this technique rather than a single flow control, however, is that it does not create any obstruction around which fumes and air must flow. Thus, it avoids the attending precipitation problems.
  • Referring to FIG. 37, a cylindrical grease filter module 580 has in inlet 588 through which raw effluent and air are drawn and an outlet 592 from which the cleansed air is extracted. A guide van 582 causes an incoming stream 584 to be directed into a helical flow 590 so that grease and other airborne particulates precipitate on its interior walls. The exit flow 586 is directed at approximately a right angle to the incoming stream 584. Functionally, the cylindrical grease filter module is similar in function to that of the filters described in U.S. Pat. No. 4,872,892. Its cylindrical walls, however, may provide lower resistance and improved cyclonic flow therewithin.
  • Referring to FIGS. 38 and 39, a filter cartridge 581 is formed from multiple cylindrical grease filter modules 580. Each cylindrical grease filter module has a lever tab 604 which is tied to a rotator bar 602 which is used to rotate the cylindrical grease filter modules 580 in concert. By rotating the cylindrical grease filter modules 580, the exposed area of the inlet 588 of each cylindrical grease filter module 580 is selectively altered. When the cylindrical grease filter modules 580 are in the positions shown in FIG. 38 the flow through the filter cartridge 581 is restricted more than when they are in the positions shown in FIG. 39. This is because the inlets 588 are increasingly blocked by partitions 606 as the cylindrical grease filter modules 580 rotate clockwise. Note that in an alternative embodiment, the cylindrical grease filter modules 580 may be set immediately adjacent to each other and the blocking function of the partition plate formed by the external surfaces of adjacent cylindrical grease filter modules 580. In this way, the partition plates 606 may be avoided.
  • Referring to FIGS. 40 and 41, various sensor mechanisms may be used to provide real time control of the flow rate through one or more hoods. For example, a controller 950 may receive input signals from one or more input devices including one or more video cameras 961, infrared video cameras 962, opacity sensors 963, temperature sensors 964, audio transducers 965 (e.g., microphones), manual switches 966, and flow rate sensors 967. Based on one or more of these inputs signals the controller may control the setting of one or more output controllers 970 connected to any of the flow control devices described previously or described later in the present specification. Video or IR cameras may be located at any desired position, examples being indicated at 920 and 935 and as discussed later in connection with FIG. 42. Opacity and temperature sensors may be located at any positions, two examples being indicated at 925/930.
  • The technology in image processing is more than adequate to detect a change in a volume of smoke or heat resulting from an increased cooking load. Optical and/or infrared images may be captured and a cooking load indicator derived therefrom. For example, an IR image processing algorithm that simply indicates the percentage of the field of view that is above a temperature threshold may thereby indicate escape of a thermal plume from a hood; i.e., a loss of capture and containment due to the thermal plume rising in front of the external edge of the hood. As such a loss of containment is approached, the hot buffer zone tends to grow from deep within the recess until it breaches the capture zone. This growth of the buffer zone can be indicated in precisely the same way: by imaging a predefined field of view and recognizing the size and/or shape of the hot zone (the latter being defined as a zone in which the imaged temperature exceeds a predefined threshold). This is discussed further below.
  • The movement of a worker, the image of the food being cooked, the presence of smoke at particular locations (such as escape of containment at the edge of the hood), the temperature of air near the hood or within the canopy recess, the proximity of a worker, etc. may all be combined to form a classification input-vector from which a condition (e.g., percentage of full-load) classification may be derived. Algorithmic, rule-based methods may be used. Bayesian networks or neural network techniques may be used. Alternatively, just one sensory indicator of load may be used to determine the current load. For example, a gas rate flow sensor for a gas grill could provide the single input signal. Many possibilities are available with current sensor, machine-classification, and control technologies.
  • Referring to FIG. 42, various camera angles may be employed in a load-classifier that employs optical or IR images. For example, a camera 982 is positioned to image a side view of a canopy 972, range, 984, and a work area between and adjacent them. Referring also to FIGS. 43A-43C and 44, in an IR-based camera, this side view can image a hot zone whose size and shape are dependent on effluent load (which includes heat) and exhaust rate. FIG. 45 is a Schlerian image, but the shape of the hot plume is essentially the same as what would be provided by a thermal camera. As the exhaust rate falls below that necessary to provide capture and containment, a hot zone image provided by the camera 982 would expand progressively as illustrated in the series of FIGS. 43A-43C. The hot zone changes from one associated with adequate capture and containment 990, to one on the verge of breaching 992, to one where capture and containment has been lost 994. The changes in the images, the rate of change of images, and the history of change of the images may be employed in a control system as described to insure that capture and containment is maintained.
  • Referring now to FIG. 44, other camera angle views such as provided by camera 980 may provide more information about the particular location of the exhaust rate deficit along the canopy 972 edge 1003. Illustrated in FIG. 44 is an oblique view of a canopy and plume 1002 showing a spillover 1001 over an edge 1003 near an end of the canopy. This image may be used to provide an adjustment to exhaust flow rate favoring the portion of the canopy 972 close to an end thereof, as illustrated. The ability to detect spillover and its position along the edge 1003 may be obtained by positioning a camera 986 looking downwardly so that it captures the entire front edge 988/1003. By taking multiple images, such as provided by cameras 974, 980, 982, and 976, it is possible to compare the shape of the three dimensional plume to determine an imminent spill. Thermal plumes have a characteristic waist 1005 that results from the increase in velocity and the draw of cooler air as they rise. This waist begins to bulge at the top as capture competency is lost. Again, the spillover can be detected as a three-dimensional model based on temperature or opacity.
  • The model or two-dimensional image(s) may be graded or thresholded. The image resolution need not be high since the structures are highly repeatable and their variability quite distinct. Thus, a relatively inexpensive imaging device may be employed with a small number of pixels. The classification process must include unrecognized classes and be capable of indicating same. For example, if the view of a camera is occasionally obstructed, the image processing process should be capable of recognizing the absence of an expected image and responding to it. Images that change suddenly or do not belong to a recognized plume shape may be classified as a bad image. The response to a bad image may be to ignore it or alternatively to ramp the exhaust rate to a design maximum until a recognized image is acquired again. Fiducial marks or particular features of the exhaust or cooking equipment may be employed to help determine if the camera view is obstructed. The lack of such features or fiducials in the image may indicate the loss of the image.
  • Activity can be indicated by live camera images, IR and optical. For example, the presence of an operator near the working area of a cooking appliance may be used as a signal indicating that the cooking load is increased. The particular activities in which the operator is engaged are likely to be highly repeatable events and readily classifiable by video classification methods as a result. For example, a particular stage of cooking may be characterized by the laying out of many pieces of meat on a hot grill. The movement of a worker's arms over the hot grill placing the meat is an activity that may be readily classified since it has distinct characteristics that distinguish it from other background activities such as cleaning or walking around the grill. Classifying the event of placing the meat on a grill may trigger a timer to anticipate when the load reaches a maximum.
  • Neural networks may be trained to classify the conditions in a kitchen using neural network techniques. The inputs from multiple devices may be combined to form a vector. The following are possible vectors.
  • 1. Cameras
  • a) Thresholded image (reduce to 1-bit map; all temperatures (radiative) or light levels above a threshold are one color and all temperatures or light levels another color. Process image to identify contiguous domains and form an area-number histogram by counting the number of domains falling within each of series of size ranges. The histogram values define a vector. The contiguous domains can be further processed to define feature points and their relationship mapped to a vector in a manner similar to optical character recognition techniques.
  • b) Thresholded image may be calibrated to provide high sensitivity to smoke or the range of radiative temperatures associated with a thermal plume characteristic of the cooking appliance. The image processing may be tuned to recognize and distinguish shapes characteristic of thermal plumes for the cooking processes being monitored. The output vector in this case would be a characterization of the particular plume state.
  • c) Camera may simply band-pass a color, luminosity, or radiative temperature range and cumulate the total of the image corresponding to that passed signal. This would be scalar. This could be done for a quad tree where the total band-passed image area for each quadrant of the image is passed as a component vector and this could be done down to multiple levels of a quad tree.
  • d) Spot temperatures of food and empty areas on a grill or other appliance may be used to predict the load. These may be derived from a single IR image and processed to report the total area, average temperature, or other lump parameters predictive of the load.
  • 2. Opacity Sensor
  • a) Opacity may be monitored between two points to detect when a plume is swelling. For example, an opacity sensor may be positioned near the inside of the edge 1003 of the canopy 972 and the opacity at that point indicated.
  • b) The opacity near multiple points may be monitored and provided as a single vector from which it is possible to deduce the scale of turbulence induced by the thermal plume. (The opacity would be expected to vary over time at different locations along the edge in response to three-dimensional turbulent gusts giving rise to temporal and spatial variability in opacity that can be resolved using multiple opacity signals spaced apart and monitored synchronously.)
  • 3. Audio
  • a) A simple frequency profile may be resolved into a histogram whose values correspond to the sound power in each of a series of ranges of audio frequency. The ranges need not be adjacent; they can amount to discrete band pass filters. Depending on the particular cooking process, the sound of frying, grilling meat, operator activity, etc. can make characteristic profiles.
  • b) A sound-signature classifier may be employed to add the temporal component to the sound classification. Depending on the type of load being monitored, certain audio signatures may be present and recognized using technology as employed in voice recognition. For example, the sound of a switch being turned on, the sounds of a spatula being used on a grill, etc. are discrete audio events that have temporal signatures that are characteristic to them.
  • 4. Temperature
  • a) Sensors placed at various locations may each provide components of a vector.
  • b) Sensors may be arrayed to provide a signal indicative of a spatial temperature profile which can be characterized by a more compact set of numbers than simply the whole series of temperatures. For example, the sharpest increases of temperature along respective dimensions may be reported to indicate the location of respective boundaries of the thermal plume 1003.
  • 5. Proximity
  • a) The presence of food or other workpieces whose presence is predictive of load, may be sensed. The proximity sensor may be provided as a single signal or multiple signals may provided from multiple sensors. Alternatively, the distance of the object may be sensed using a proximity sensor. For example, something that grows while it is heated could indicate a stage of a varying load.
  • b) The presence of an operator and the duration of the operator's presence may be used to signal the load.
  • 6. Motion
  • a) The movement of a worker, tools, and/or workpieces may be predictive of the load.
  • Referring now to FIGS. 46 and 47, a great variety of different kinds of actuators may be employed to operate the various flow control devices described above. Preferably, designs which are tolerant of grease deposition from the effluent. A couple of embodiments are shown to illustrate the range of possibilities, but these by no means are these intended to represent an exhaustive range. The prior art relating to hermetic seals, motor and actuator seals, high temperature, high corrosion environments, etc. are rich with candidate devices that may be employed. In FIG. 46 a lever formed by a first arm 1017 and a second arm 1018 connected through a top wall 1019 of a canopy. The top wall is corrugated to allow it to flex so that when an actuator 1013 pushes the first arm 1017 upwardly, the second arm 1018 moves downwardly actuating a blind mechanism 1010. The embodiment of FIG. 46 thereby provides a hermetic seal between the linear actuator 1013 and the blind mechanism 1010, which provides flow control. In FIG. 47, another actuator embodiment has a motor and cam 1021 that are mounted externally from the canopy recess 1012 which moves a blind mechanism 1022 through a seal 1030 with a bellows 1022 and pushrod 1032. Again the sensitive mechanisms are isolated outside the canopy recess 1012. Many such mechanisms may be employed and a comprehensive discussion of them is not necessary since many suitable mechanisms are described in the machine mechanism prior art.
  • Referring now to FIG. 48A, a scroll shaped module 1130 has an inlet 1132 through which air is admitted as indicated by arrows 1120, 1110 and 115. The admitted air swirls as indicated by helical arrows 1117 and 1110 and exits as indicated by arrows 1125. The helical motion is caused by the fact that the entry point 1132 is at a tangent to the cylindrical space 1131 defined by the scroll shaped module 1130. The entry point 1132 is a gap between an inside distal edge 1136 and an outside distal edge 1137 defined by the scroll shape of the scroll shaped module 1130 and can be increased and reduced in width by flexing the scroll shaped module 1130.
  • Referring to FIG. 48B, the scroll shaped module's 1130 are connected to each other to form a filter cartridge 1140. The outside distal edge 1137 of each module 1130 is connected to a middle portion 1138 of an adjacent module 1130 (except for a last module 1130′. Referring to FIGS. 49 and 50, the modules 1130 may be supported in any of a number of ways so that when they are drawn apart (as indicated by arrows 1171) as illustrated in FIG. 49, the inlet 1132 expands and the resistance to the inflow of air is reduced. When the modules 1130 are squeezed together as indicated in FIG. 50 (the force being as indicated by arrows 11, 72), the inlet 1132 contracts and resistance to the inflow of air increases. As a result, the bank of cartridges 1147 forms a combination filter and flow throttling device.
  • Referring to FIGS. 51 and 52, a support mechanism with a back plate 1180 and L-shaped lower braces 1195 support scroll-shaped modules 1130 by tongues 1148 on each module. The latter fit into channels 1147 formed in the edges of back plate 1180. A sliding L-shaped seal member 1185 is slidably attached to one of the L-shaped lower braces 1195 and moved relative to the back plate 1180 and lower braces 1195 to squeeze and expand the scroll-shaped modules 1130. A tongue 1186 of one of the L-shaped lower braces 1185 is elongated to serve as a seal when the entire device is placed in an exhaust vent.
  • Referring to FIGS. 53 and 54, in an embodiment that is similar to the previous embodiments, a set of scroll shaped modules 1270 have exits 1255 in the center thereof. Thus, functionally, they are like the modules 1230 of the previous embodiments except that their outlets are toward the middle of the filter device 1299 rather than along its edges. As in the previous embodiment, the air enters tangentially as indicated by arrows 1265 and swirls in a helical motion until it exits as indicated by arrows 1255. Because the air does not need to exit the sides, side panels 1285 may be incorporated in a support structure 1225. A single opening 1220 may be formed in the back (downstream face) of the support structure for air to exit. A similar configuration 1235 to that described in connection with the embodiment of FIG. 51 may be used to compress and expand the modules 1270.
  • FIG. 55 is a side view illustration of a canopy style hood 61 with adjustable side skirts 2105 according to a first inventive embodiment. Fumes 2035 rise from a cooking appliance 2041 into a suction zone of the hood 2026. The fumes are drawn, along with air from the surrounding conditioned space 2036 the hood 61 occupies, through exhaust vents and grease filters connected to a plenum, the combination indicated at 2021. Suction is provided by an exhaust fan (not shown in the present drawing) connected to draw through an exhaust duct collar 2011. An exhaust stream 2015 is then forced away from the occupied space.
  • At one or more sides of the exhaust hood 61 are movable side skirts 2105 which may be raised or lowered by means of a manual or motor drive 2135. The manual or motor drive 2135 rotates a shaft 2115 which spools and unspools a pair of support lines or straps 2130 to raise and lower the side skirts 105. The side skirts 2061 and spool 2125, as well as bearings 2120 and the wires 2130, may be hidden inside a housing 2116 with an open bottom 2117. In a preferred embodiment, the manual or motor drive 2135 is a motor drive controlled by a controller 2121 which controls the position of the side skirts 2105.
  • Although the above and other embodiments of the invention described below are discussed in terms of a kitchen application, it will be readily apparent to those of skill in the art that the same devices and features may be applied in other contexts. For example, industrial buildings such as factories frequently contain large numbers of exhaust hoods which exhaust fumes in a manner that are very similar to what obtains in a commercial kitchen environment. It should be apparent from the present specification how minor adjustments, such as raising or lowering the hood, adjusting proportions using conventional design criteria, and other such changes can be used to adapt the invention to other applications. The inventor(s) of the instant patent application consider these to be well within the scope of the claims below unless explicitly excluded.
  • FIG. 56 is a schematic illustration of a control system for the embodiment of FIG. 55 as well as other embodiments. The controller 2121 may control the side skirts automatically in response to incipient breach, for example, as described in the US patent application, “Device and Method for Controlling/Balancing Fluid Flow-Volume Rate in Flow Channels,” incorporated by reference above. To that end, an incipient breach sensor 2122 may be mounted near a point where fumes may escape due to a failure of capture and containment. Examples of sensors that may be employed in that capacity are discussed below and include humidity, temperature, chemical, flow, and opacity sensors.
  • Another sensor input that may be used to control the position of the side skirts 2105 is one that indicates a current load 2124. For example, a temperature sensor within the hood 61, a fuel flow indicator, or CO or CO2 monitor within the hood may indicate the load. When either of incipient breach or current load indicates a failure or threat to full capture and containment, the side skirts 2105 may be lowered. This may be done in a progressive manner in proportion to the load. In the case of incipient breach, it may be done by means of an integral of the direct signal from the incipient breach sensor 2122. Of course, any of the above sensors (or others discussed below) may be used in combination to provide greater control, as well as individually.
  • A draft sensor 2123 such as a velocimeter or low level pressure sensor or other changes that may indicate cross currents that can disrupt the flow of fumes into the hood. These are precisely the conditions that side skirts 2105 are particularly adapted to control. Suitable transducers are known such as those used for making low level velocities and pressures. These may be located near the hood 61 to give a general indication of cross-currents. When cross-currents appear, the side skirts 2105 may be lowered. Preferably the signals or the controller 2121 is operative to provide a stable output control signal as by integrating the input signal or by other means for preventing rapid cycling, which would be unsuitable for the raising and lowering of the side skirts 2105.
  • The controller 2121 may also control the side skirts 2105 by time of day. For example, the skirts 2105 may be lowered during warm-up periods when a grill is being heated up in preparation for an expected lunchtime peak load. The controller 2121 may also control an exhaust fan 2136 to control an exhaust flow rate in addition to controlling the side skirts 2105 so that during periods when unhindered access to a fume source, such as a grill, is required, the side skirts 2105 may be raised and the exhaust flow may be increased to compensate for the loss of protection otherwise offered by the side skirts 2105. The controller may be configured to execute an empirical algorithm that trades off the side skirt 2105 elevation against exhaust flow rate. Alternatively, side skirt 2105 elevation and exhaust rate may be controlled in a master-slave manner where one variable is established, such as the side skirt 2105 elevation in response to time of day, and exhaust rate is controlled in response to one or a mix of the other sensors 2124, 2123, 2127, and/or 2122.
  • FIG. 57 is a side view illustration of a backshelf hood 2168 with a fire safety gap 2166 and movable side skirts 2172 and a movable back skirt 2188. The side skirts 2172 may be one or both sides and may be manually moved or automatically driven as discussed above with reference to FIGS. 55 and 56. The movable back skirt 2188 is located behind the appliance 2180 and is raised to block the movement of fumes due to cross drafts. The back skirt amy also be attached to the hood 2168 and lowered into position. Note that the back skirt 2188 is shown in a partly extended position and may be extended variable amounts depending on the degree of shielding required.
  • Note that any of the skirts discussed above and below may be configured based on a variety of known mechanical devices. For example, a skirt may hinged and pivoted into position. It may be have multiple segments such that is unfolds or unrolls as a roller door for example as does a metal rolling garage door.
  • FIG. 58 is a side view illustration of a canopy style hood 62 with adjustable side skirts 2210 according to another inventive embodiment. The side skirts 2210 may be manually or automatically movable. There may be two, one at either of two ends of the hood 62 or there may be more or less on adjacent sides of the hood 62, such as a back side 2216. In some situations where most of the access required to the appliances can be accommodated on a front side 2217 of the hood 62, it may be feasible to lower a rear skirt 218.
  • Note that it is unnecessary to discuss the location and type of drives to be used and the precise details of manual and automatic skirts because they are well within the ken of machine design. For the same reason, as here, examples of suitable drive mechanisms are not repeated in the drawings.
  • Also shown in FIG. 58 is a suitable location for one or more proximity control sensors 2230 that be used in the present or other embodiments. Proximity sensors may be used to give an indication of whether access to a corresponding side of the appliance 41 is required, in a manner not unlike that of an automatic door of a public building. One or more proximity sensors 2230 may be used to raise and lower the side skirts.
  • As taught in U.S. Pat. No. 6,851,421 for “Exhaust Hood with Air Curtain to Enhance Capture and Containment,” incorporated by reference above, a virtual barrier may be generated to help block cross-drafts by means of a curtain jet located at an edge of the hood. FIG. 59 is a figurative representation of a combination of horizontal 2235 and vertical 2345 jets to be generated at the edge 2340 and 2355 of a hood according to an inventive embodiment which has been shown by experiment to be advantageous in terms minimizing the exhaust flow required to obtain full capture and containment. In a preferred configuration, the horizontal and vertical jets are made by forming holes in a plenum, for example holes of about 3-6 mm diameter with a regular spacing so that the individual jets coalesce some distance away from the openings to form a single planar jet. The initial velocities of the horizontal jets are preferably between 2 and 3.5 times the initial velocities of the vertical jets, the initial velocity in this case being the point at which individual jets coalesce into a single planar jet.
  • FIG. 60 is a figurative illustration of a plenum 2310 configured to generate the vertical 2325 and horizontal 2330 jets with diagonal horizontal jets 2315 at ends of the plenum 2310 according to an inventive embodiment. Referring momentarily to FIG. 61, most hoods 2307 have an exhaust vent portion 2306 (such as the plenum, filter, vent combination indicated at 2021 in FIG. 55) within the hood 2307 recess that is centrally located so that even if the hood has a large aspect ratio, at the ends, horizontal jets 2309 (2330 in FIG. 7A) are more effective at capturing exhaust if they are directed toward the center of the hood near the ends 2308 of the long sides 2302. Thus, in a preferred configuration of the plenum 2310, the ends 2325 of the plenum have an angled structure 2320 to project the horizontal jets diagonally inwardly as indicated at 2315.
  • FIGS. 62A and 62B illustrate the position of the plenum 2310 of FIG. 7A as would be installed in a wall-type (backshelf) hood 2370 as well as a combination of the horizontal and vertical jets with side skirts 2365 according to another inventive embodiment. This illustration shows how the plenum 210 of FIG. 7B may be mounted in a backshelf hood 2370. In addition, the figure shows the combination of the vertical and horizontal jet and the side skirts 2365. In such a combination, the velocity of the vertical and horizontal jets may be reduced when the side skirts 2365 are lowered and increased when the side skirts are raised. Note that although not shown in an individual drawing, the same control feature may be applied to horizontal-only jets and vertical-only jets which are discussed in “Exhaust Hood with Air Curtain to Enhance Capture and Containment,” incorporated by reference above. FIG. 62A shows the side skirts 2365 in a lowered position and FIG. 62B shows the side skirts 2365 in a raised position. Note that the plenum 2365 may be made integral to the hood and also that a similar mounting may be provided for canopy style hoods. FIG. 62B also shows an alternative plenum configuration 2311 with a straight return 2385 on one side which generates vertical 2380 and horizontal 2395 jets along a side of the hood 2370. The return leg 2385 although shown on one end only may be used on both ends and is also applicable canopy style hoods with a mirror-symmetrical arrangement around the wall (not shown) to which the backshelf embodiment is referred.
  • FIGS. 63A-63C illustrate various ways of wrapping a series of horizontal jets around a corner to avoid end effects according to inventive embodiment(s). These alternative arrangements may be provided by shaping a suitable plenum as indicated by the respective profile 2405, 2410, 2415. Directional orifices may be created to direct flow inwardly at a corner without introducing a beveled portion 2415A or curved portion 2410A as indicated by arrows 2420. FIG. 9D illustrates a way of creating a directional orifice in a plenum 2450 to direct a small jet 2451 at an angle with respect to the wall of the plenum 2450. This may done by warping the wall of the plenum 2450 as indicated or by other means as disclosed in the references incorporated herein.
  • FIG. 64A illustrates a canopy-style hood 2500 with vertical jets 2550 and a configuration that provides a vortical flow pattern 2545 that is subject to an end effects problem. The end effects problem is that where the vortices meet in corners, the flow vertical flow pattern is disrupted. As discussed in “Exhaust Hood with Air Curtain to Enhance Capture and Containment,” incorporated by reference above, the vortical flow pattern 2545 works with the air curtain 2550 to help ensure that fluctuating fume loads can be contained by a low average exhaust rate. But the vortex cannot make sharp right-angle bends so the quasi-stable flow is disrupted at the corners of the hood.
  • FIGS. 664B and 64C illustrate configurations of a canopy hood that reduce or eliminate the end effect problem of the configuration of FIG. 64A. Referring to FIGS. 64B and 64C, a round hood 2570 or one with rounded corners 2576 reduces the three-dimensional effects that can break down the stable vortex flow 2545. In either shape, a toroidal vortex may be established in a curved recess 2585 or 2590 with the vertical jets following the rounded edge of the hood. Thus the section view of FIG. 64A would roughly representative of any arbitrary slice through the hoods 2576, 2570 shown in plan view in FIGS. 64B and 64C.
  • The figures also illustrate filter banks 2580 and 2595. It may be impractical to make the filter banks 2580 and 2595 rounded, but they may be piecewise rounded as shown. Thus filter-holding plenum portions 2581 may be rectangular and joined by angled plenum portions 2582.
  • FIG. 64C illustrates a configuration of a canopy hood 615 that reduces the end effect problem of the configuration of FIG. 10 by supporting the canopy using columns 5610 at the corners that are shaped to eliminate interactions at the ends of the straight portions 5620 of the hood 5615. Vertical jets 5650 do not wrap around the hood 5615 and neither does the internal vortex (not illustrated) since there are separate vortices along each edge bounded by the columns 5610.
  • FIG. 65A illustrates a hood configuration with a sensor that uses incipient breach control to minimize flow volume while providing capture and containment. Incipient breach control is discussed in “Device and Method for Controlling/Balancing Fluid Flow-Volume Rate in Flow Channels,” incorporated by reference above. Briefly, when fumes 5725 rise from a source appliance 5711, and there is a lack of sufficient exhaust flow or there is a cross-draft, part of the fumes may escape as indicated by arrow 5720. A sensor located at 5715 or nearby position may detect the temperature, density, or other detectable feature of the fumes to indicate the breach. The indication may be used by a controller to control exhaust flow as discussed in the above patent or others such as U.S. Pat. No. 6,170,480 entitled “Commerical Kitchen Exhaust System,” which is hereby incorporated by reference as if fully set forth herein in its entirety.
  • Various sensors may be used including optical, temperature, opacity, audio, and flow rate sensor in the present context. It is also proposed that chemical sensors such as carbon monoxide, carbon dioxide, and humidity may be used for breach detection. In addition, as shown in FIG. 65B, an interferometric sensor may also be employed to detect an associated change, or fluctuation, in index of refraction due to escape of fumes.
  • Referring to FIG. 65B, a coherent light source 825 such as a laser diode emits a beam that is split by a beam splitter 5830 to form two beams that are incident on a photo-detector 5835. A reference beam 5831 travels directly to the detector 5835. A sample beam 5842 is guided by mirrors 5840 to a sample path 5860 that is open to the flow of ambient air or fumes. The reference and sample beams 5831 and 5842 interfere in the beam splitter, affecting the intensity of the light falling on the detector 5835. The composition and temperature of the fumes creates fluctuations in the effective path length of the sample path 5860 due to a fluctuating field of varying index of refraction. This in turn causes the phase difference between the reference 5831 and sample 5860 beams to vary causing a variation in intensity at the detector 5835.
  • The direct output of the detector 5835 may be passed through a bandpass filter 5800, an integrator 5805, and a slicer (threshold detector) 5810 to provide a suitable output signal. The reason a bandpass filter may be useful is to eliminate slowly varying components that could not be a result of a fumes such as a person leaning against the detector, as well as changes too rapid to be characteristic of the turbulent flow field associated with a thermal plume or draft, such as motor vibrations. An integrator ensures that the momentary transients do not create false signals and the slicer provides a threshold level.
  • Referring to FIG. 65C, an alternative embodiment of a detector uses a directional coupler 2630A instead of a beam splitter as in the previous embodiment. Rather than mirrors, a waveguide 2664 is used to form a sample path 2660A. A light source 2625 sends light into the direction coupler 2630A which is split with one component going to the detector 2635 and the other passing through the sample path 2660A and back to the direction coupler 2630A. Fluctuations in phase of the return light from the sample path 2660A causes variations in the intensity incident on the detector 2635 as in the previous embodiment.
  • Preferably, the interferometric detector should allow gases to pass through the measurement beam without being affected unduly by viscous forces. If the sample path is confined in a narrow channel, viscous forces will dominate and the detector will be slow to respond. Also, from a practical standpoint, filtering slowly varying electrical signals may be more difficult. Also, if the sample path is too long the signal might be diminished due to an averaging effect. These effect of these considerations vary with the application. It may also be preferable for the gap to be longer than the length scale of the temperature (or species, since the fumes may be mixed with surrounding air) fluctuations to provide a distinct signature for the signal if the gap would substantially impede the flow. Otherwise, the transport of temperature and species through the sample beam would be governed primarily by molecular diffusion making the variations slow, for example, if the sample beam were only exposed in a narrow opening. However, in some applications of a detector this may be desirable, but such applications are likely removed from typical commercial kitchen application. Referring to FIG. 65D, an eddy is figuratively shown at 3900. The structure of the detector may provide a space 3918 (i.e., a sample gap 3918) that is large relative to the smallest substantial turbulent scale as indicated at 3912. Alternatively, the structure of the detector may be smaller than the smallest turbulent scale, but thin and short as indicated at 3914 in which case viscous forces may not impede greatly the variation of the constituent gases in the sample path 3910 due to turbulent convection. As is known in the art, the speed of flow, for forced convection, and the temperature differences, for natural convection, determine how small the smallest turbulent eddies. High turbulent energy drives the momentum effects toward smaller scales before the turbulent energy is dissipated in viscous friction. Lower turbulent energy will result in larger minimum turbulent scales. Note that an interferometric detector may detect fluctuatations even when the sample gap 3918 is smaller than the smallest turbulent eddies, though the effect registered may not be as rapid or the fluctations as extreme owing to the species or temperature diffusion transport required.
  • Note that another alternative for measuring fluctuations in temperature, species, and or flow is a hot film or hot wire anemometer. Such devices, as is known, can have extremely sensitive response times. As is also known, they respond to thermal diffusivity and heat transfer coefficient, which change with species, as well as temperature and velocity, all of which fluctuate in a fume driven or fume-filled turbulent flow field.
  • FIG. 66 illustrates a combination make-up air discharge register/hood combination 2787 with a control mechanism 2769 and 2770 for apportioning flow between room-mixing discharge 2786 and short-circuit discharge 2776 flows. A hood 2774 has a recess through which fumes 2794 flow and are exhausted by an exhaust fan 2779, usually located on the top of a ventilated structure. A make-up air unit 2745 replaces the exhausted air by blowing it into a supply duct 2780 which vents to a combination plenum that feeds a mixed air supply register 2786 and a short-circuit supply register 2776. The fresh air supplied by the make-up air unit 2745 is apportioned between the mixed air supply register 2786 and a short-circuit supply register 2776 by a damper 2770 whose position is determined by a motor 2765 which is in turn controlled by a controller 2769.
  • When air is principally fed to the short-circuit supply register 2776, it helps to provide most of the air that is drawn into the hood 2787 along with the fumes and exhausted. Short-circuit supply of make-up air is believed by some to offer certain efficiency advantages. When the outside air is at a temperature that is within the comfort zone, or when its enthalpy is lower in the cooling season or higher in the heating season, most of the make-up air should be directed by the controller 2769 into the occupied space through the mixed air supply register 2786. When the outside air does not have an enthalpy that is useful for space-conditioning, the controller 2769 should cause the make-up air to be vented through the short-circuit supply register 2776.
  • FIG. 67 illustrates a combination make-up air discharge register and hood combination with a control mechanism for apportioning flow between room-mixing discharge and a direct discharge into the exhaust zone of the hood from either outdoor air, transfer air from another conditioned space, or a mixture thereof. A blower 2797 brings in transfer air, which may be used to supply some of the make-up air requirement and provide a positive enthalpy contribution to the heating or cooling load. The staleness of transfer air brought into the heavily ventilated environment of a kitchen is offset by the total volume of make-up (fresh) air that is required to be delivered. Sensors on the outside 2775, the occupied space 2730, in the transfer air stream and/or the space from which transfer air is drawn 2731 may be provided to indicate the conditions of the source air streams. A mixing box 2746 may be used to provide an appropriate ratio of transfer air and fresh air. The ratio will depend on the exhaust requirements of the occupied space 2796. Control of the damper 2770 is as discussed with reference to FIG. 66.
  • FIGS. 68A, 68B, and 70 illustrate drop-down skirts that can be manually swung out of the way and permitted to drop into place after a the lapse of a watchdog timer under control of a controller shown in FIG. 69. FIGS. 68A and 68B are side views of a drop-down skirt 915 that pivots from a hinge 905 from a magnetically suspended position over a cooking device 930. In 68A, the skrit or skirts 915 is/are shown in a raised position and in FIG. 68B in a dropped position. A magnetic holder/release mechanism 935, which may include an electromagnet or permanent magnet, holds the skirt panel 915 in position out of the way of an area above a fume source 930. The skirts 915 may be released after being moved up and engaged by the magnetic holder/release mechanism 935, after a period of time by a controller 960. The controller 960 may be connected to a timer 970, a proximity sensor 925, and the magnetic holder/release mechanism 935. The proximity sensor 925 may be one such as used to activate automatic doors. If nothing is within view of the proximity sensor after the lapse of a certain time, the controller may release the skirt 915. When released by the magnetic holder/release mechanism 935, the skirt 915 falls into the position of FIG. 68B to block drafts. Preferably, as shown in the front view of FIG. 70, there are multiple skirts 915 separated by gaps 916. A passing worker may scan the area behind the skirts 915 even though they are down if the worker moves at least partly parallel to the plane of the skirts 915. In an embodiment, the magnetic holder/release mechanism 935 may combined with the controller 960, the timer 970, and the proximity sensor 925 in a unitary device.
  • Note that although in the above embodiments, the discussion is primarily related to the flow of air, it is clear that principles of the invention are applicable to any fluid. Also note that instead of proximity sensors, the skirt release mechanisms described may be actuated by video cameras linked to controllers configured or trained to recognize with events or scenes. The very simplest of controller configurations may be provided. where a blob larger than a particular size appears or disappears within brief interval in a scene or a scene remains stationary for a given interval. An example of a control flow is illustrated in FIG. 73. A controller detects the latching of the skirt as step S900 and starts a watchdog timer at step S905. Control then loops through S910 and S915 as long as scene changes are detected. Again, simple blob analysis is sufficient to determine changes in a scene. Here we assume the camera is directed view the scene in front of the hood so that if a work is present and working, scene changes will continually be detected. If no scene changes are detected until the timer expires (step S915), then the skirt is released at step S920 and control returns to step S900 where the controller waits for the skirt to be latched. A similar control algorithm may be used to control the automatic lowering and raising of skirts in the embodiments of FIGS. 55-58, discussed above. Instead of releasing the skirt, the skirt would be extended into a shielding position and instead of waiting for the skirt to be latched, the a scene change would be detected and the skirt automatically retracted.
  • Referring to FIG. 71, multiple sample gaps, such as the two indicated at 4915 may be linked together under in a common light path by a light guide 4900 and a single directional couple 4830 or equivalent device. As in prior embodiments, a light source 4835 and detector 4825 are connected by a directional coupler 4830 with focusing optics 4862 and one or more linking light guides 4905 to provide any number of sample paths. FIG. 72A shows a hood edge 4920 with multiple individual sample devices 4871 which conform to any of the descriptions above linked to a common controller. Although parallel connections are illustrated, serial connections of either fiber or conductor may be provided depending on the configuration.
  • Although in the embodiments described above and elsewhere in the specification, real-time control is described, it is recognized that some of the benefits of the invention may be achieved without real-time control. For example, the flow control device 120 may be set manually or periodically, but at intervals to provide the local load control without the benefit of real-time automatic control.

Claims (1)

1. A detector for detecting fumes escaping from an exhaust hood, comprising:
an optical interferometer configured to send light through a sample path and create an interference pattern with respect to a reference beam in the vicinity of an exhaust hood;
an optical detector configured to detect fluctuations in said pattern;
a controller configured to detect said fluctuations and respond to a pattern thereof by generating a control signal for controlling a mechanism for controlling a shield that at least partly covers an access of said exhaust hood.
US10/907,300 2001-01-23 2005-03-28 Real-time control of exhaust flow Abandoned US20110005507A9 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US10/907,300 US20110005507A9 (en) 2001-01-23 2005-03-28 Real-time control of exhaust flow
US13/073,706 US20110174384A1 (en) 2001-01-23 2011-03-28 Real-time control of exhaust flow
US13/845,635 US9335057B2 (en) 2001-01-23 2013-03-18 Real-time control of exhaust flow
US15/149,305 US9909766B2 (en) 2001-01-23 2016-05-09 Real-time control of exhaust flow

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US26355701P 2001-01-23 2001-01-23
PCT/US2001/025063 WO2002014746A1 (en) 2000-08-10 2001-08-10 Device and method for controlling/balancing flow fluid flow-volume rate in flow channels
US10/344,505 US6899095B2 (en) 2000-08-10 2001-08-10 Device and method for controlling/balancing flow fluid flow-volume rate in flow channels
WOPCT/US03/25515 2003-08-13
US59088904P 2004-07-23 2004-07-23
US10/907,300 US20110005507A9 (en) 2001-01-23 2005-03-28 Real-time control of exhaust flow

Related Parent Applications (4)

Application Number Title Priority Date Filing Date
PCT/US2001/025063 Continuation-In-Part WO2002014746A1 (en) 2000-08-10 2001-08-10 Device and method for controlling/balancing flow fluid flow-volume rate in flow channels
US10344505 Continuation-In-Part 2001-08-10
US10/344,505 Continuation-In-Part US6899095B2 (en) 2000-08-10 2001-08-10 Device and method for controlling/balancing flow fluid flow-volume rate in flow channels
US10/638,754 Continuation-In-Part US7147168B1 (en) 2002-08-09 2003-08-11 Zone control of space conditioning system with varied uses

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/073,706 Continuation US20110174384A1 (en) 2001-01-23 2011-03-28 Real-time control of exhaust flow

Publications (2)

Publication Number Publication Date
US20060032492A1 true US20060032492A1 (en) 2006-02-16
US20110005507A9 US20110005507A9 (en) 2011-01-13

Family

ID=46321877

Family Applications (4)

Application Number Title Priority Date Filing Date
US10/907,300 Abandoned US20110005507A9 (en) 2001-01-23 2005-03-28 Real-time control of exhaust flow
US13/073,706 Abandoned US20110174384A1 (en) 2001-01-23 2011-03-28 Real-time control of exhaust flow
US13/845,635 Expired - Lifetime US9335057B2 (en) 2001-01-23 2013-03-18 Real-time control of exhaust flow
US15/149,305 Expired - Fee Related US9909766B2 (en) 2001-01-23 2016-05-09 Real-time control of exhaust flow

Family Applications After (3)

Application Number Title Priority Date Filing Date
US13/073,706 Abandoned US20110174384A1 (en) 2001-01-23 2011-03-28 Real-time control of exhaust flow
US13/845,635 Expired - Lifetime US9335057B2 (en) 2001-01-23 2013-03-18 Real-time control of exhaust flow
US15/149,305 Expired - Fee Related US9909766B2 (en) 2001-01-23 2016-05-09 Real-time control of exhaust flow

Country Status (1)

Country Link
US (4) US20110005507A9 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070184771A1 (en) * 2004-10-20 2007-08-09 Henry Fluhrer Ventilation device
US20080045132A1 (en) * 2004-06-22 2008-02-21 Oy Halton Group Ltd. Set And Forget Exhaust Controller
US20080146132A1 (en) * 2006-12-19 2008-06-19 Miele & Cie. Kg Exhaust hood with a vapor-collecting canopy
WO2007112301A3 (en) * 2006-03-24 2008-06-19 Duke Mfg Co Vent system for cooking appliance
US20080146134A1 (en) * 2006-12-19 2008-06-19 Miele & Cie. Kg Exhaust hood with a chimney housing and double-layered vapor-collecting canopy
US20080302247A1 (en) * 2004-03-02 2008-12-11 Oy Halton Group Limited Ultra-violet ventilation system having an improved filtering device
US20080308088A1 (en) * 2005-01-06 2008-12-18 Oy Halton Group Ltd. Low Profile Exhaust Hood
US20090002187A1 (en) * 2007-06-29 2009-01-01 Bradley Scott Kriel Automated lost load response system
US20090013989A1 (en) * 2007-05-17 2009-01-15 Brown Stephen L Lineal slot ventilator with internal cleaning system and adjustable baffle
US20090032011A1 (en) * 2004-07-23 2009-02-05 Oy Halton Group Ltd. control of exhaust systems
US20090093210A1 (en) * 2007-10-09 2009-04-09 Oy Halton Group Ltd. Damper suitable for liquid aerosol-laden flow streams
EP2072908A1 (en) * 2007-12-18 2009-06-24 Miele & Cie. KG Fume hood device
US20090199844A1 (en) * 2000-01-10 2009-08-13 Oy Halton Group Ltd. Exhaust hood with air curtain
US20090264060A1 (en) * 2006-04-18 2009-10-22 Oy Halton Group Ltd. Recirculating exhaust system
WO2010014513A2 (en) * 2008-07-29 2010-02-04 Air Dynamics Industrial Systems Corporation Range hood with liquid filter
WO2010065793A1 (en) * 2008-12-03 2010-06-10 Oy Halton Group Ltd. Exhaust flow control system and method
NL2002405C2 (en) * 2009-01-09 2010-07-13 Bos Exclusieve Fornuizen B V EXTRACTION PLANT AND METHOD FOR VARIATING A FLUID FLOW OVER THE INLET SURFACE.
US20110005507A9 (en) * 2001-01-23 2011-01-13 Rick Bagwell Real-time control of exhaust flow
US20110053483A1 (en) * 2008-04-18 2011-03-03 Oy Halton Group Ltd. Exhaust apparatus, system, and method for enhanced capture and containment
US20110094497A1 (en) * 2008-01-18 2011-04-28 Oy Halton Group Ltd. Hood devices, methods, and systems with features to enhance capture and containment
US20110114076A1 (en) * 2009-11-19 2011-05-19 Russell Robison Commercial kitchen exhaust system
US20110232625A1 (en) * 2008-12-10 2011-09-29 Electrolux Home Products Corporation N.V. Suction hood
US20110240004A1 (en) * 2008-12-10 2011-10-06 Electrolux Home Products Corporation N.V. Suction hood
US20110269386A1 (en) * 2007-05-04 2011-11-03 Current Energy Controls, Lp Automous Ventilation System
US20120055275A1 (en) * 2010-09-02 2012-03-08 Streivor Air Systems, Inc. System and Method for Smart Operation of an Exhaust Hood Using a Protected Monitoring Device
US20120247451A1 (en) * 2011-03-29 2012-10-04 Ting-Fang Chiang Teppanyaki assembly available for sucking air by multiple angles
US20130019760A1 (en) * 2011-07-19 2013-01-24 Terry John West Barbeque smoker with heated reverse flow exhaust
US8771408B2 (en) 2008-07-29 2014-07-08 Air Dynamics Industrial Systems Corporation Range hood with liquid filter
US8795040B2 (en) 2007-08-28 2014-08-05 Oy Halton Group Ltd. Autonomous ventilation system
US20140273783A1 (en) * 2013-03-15 2014-09-18 Siemens Industry, Inc. Sash position determining system
US20150101588A1 (en) * 2013-10-11 2015-04-16 Samsung Electronics Co., Ltd. Grease filter, manufacturing method thereof and cooking device having the same
US20150136430A1 (en) * 2012-06-07 2015-05-21 Oy Halton Group Ltd. Fire suppression systems, devices, and methods
US20160084508A1 (en) * 2013-05-02 2016-03-24 William B. McEvoy Tabletop cooking assembly
USD867571S1 (en) * 2017-06-20 2019-11-19 Bsh Home Appliances Corporation Ventilation hood
JP2020008187A (en) * 2018-07-04 2020-01-16 富士工業株式会社 Range hood
JP2020016412A (en) * 2018-07-26 2020-01-30 富士工業株式会社 Cooking range hood
US11454402B1 (en) 2021-12-01 2022-09-27 Mcevoy William B Tabletop cooking assembly

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG135068A1 (en) * 2006-02-21 2007-09-28 Kim Lui So Controls for ventilation and exhaust ducts and fans
US9694398B2 (en) * 2012-10-31 2017-07-04 Honeywell International Inc. Controlling a fume hood airflow using an image of a fume hood opening
WO2014152760A2 (en) 2013-03-15 2014-09-25 Oy Halton Group Ltd. Water spray fume cleansing with demand-based operation
US20230129115A1 (en) * 2013-05-03 2023-04-27 Broan-Nutone Llc Sensor-enabled range hood system and method
KR102362654B1 (en) 2015-07-03 2022-02-15 삼성전자주식회사 Oven
GB2547678A (en) * 2016-02-25 2017-08-30 Johnson Electric Sa Method of maintaining a position of an airflow-direction control element of a HVAC system
DE102016207087A1 (en) * 2016-04-26 2017-10-26 BSH Hausgeräte GmbH Kitchen appliance with hob and extractor device and method for operating a fume extraction device
CN107036139A (en) * 2017-04-13 2017-08-11 武汉理工大学 A kind of rotating jet intelligent fume exhauster
KR102372170B1 (en) * 2017-06-26 2022-03-08 삼성전자주식회사 Range hood and control method of thereof
AU2018311609B2 (en) * 2017-07-31 2021-05-20 Gd Midea Air-Conditioning Equipment Co., Ltd. Indoor air-conditioning unit
CN107908144B (en) * 2017-11-24 2020-09-18 北京小米移动软件有限公司 Method and device for controlling smoke extractor and storage medium
US10810860B1 (en) * 2018-01-03 2020-10-20 Objectvideo Labs, Llc Intelligent vent hood
CN111780292B (en) * 2019-04-03 2021-12-10 宁波方太厨具有限公司 Kitchen air conditioning system
US10969117B2 (en) * 2019-08-26 2021-04-06 Yu-Shu Chen Extendible and retractable cooking smoke shielding and guiding apparatus
BE1029128B1 (en) * 2021-02-22 2022-09-19 Miele & Cie Method for operating a cooking appliance and cooking appliance

Citations (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045705A (en) * 1955-09-12 1962-07-24 Hausammann Werner Variable nozzles, in particular laval nozzles for wind tunnels
US3323439A (en) * 1966-01-28 1967-06-06 Weaver Damper and fire control device for ventilators
US3332676A (en) * 1964-07-16 1967-07-25 Loire Atel Forges Regulation of the collection of gases from the oxygen refining pig iron
US3381134A (en) * 1964-10-05 1968-04-30 Philip C. Wolf Mass flow indicating means including an interferometer system
US3457850A (en) * 1967-12-11 1969-07-29 Elster S Air Conditioning Air curtain ventilator
US3612106A (en) * 1969-07-03 1971-10-12 Snecma Arrangement for controlling and supporting a variable-geometry duct
US3809480A (en) * 1972-07-24 1974-05-07 Gen Dynamics Corp Method and apparatus for surveying the velocities of a flow field
US3825346A (en) * 1972-04-17 1974-07-23 Secr Defence Interferometers for fluid flow measurements
US3866055A (en) * 1973-01-17 1975-02-11 Nat Res Dev Laser doppler velocimetry
US4105015A (en) * 1977-03-09 1978-08-08 William C. Isom Exhaust hood energy saving device
US4155348A (en) * 1977-10-11 1979-05-22 Ahlrich Wilard K Ventilating apparatus
US4160407A (en) * 1977-11-18 1979-07-10 Bell Telephone Laboratories, Incorporated Ventilating system
US4398415A (en) * 1981-12-10 1983-08-16 The United States Of America As Represented By The Secretary Of The Air Force Swing link flexible wind tunnel nozzle
US4475534A (en) * 1978-11-30 1984-10-09 Moriarty Daniel J Ventilating system for kitchen stove
US4497242A (en) * 1982-02-11 1985-02-05 Barber-Colman Company Ventilation control system
US4584929A (en) * 1983-09-19 1986-04-29 Ab Bahco Ventilation Exhaust device
US4706553A (en) * 1984-03-05 1987-11-17 Phoenix Controls Corp. Fume hood controller
US4781460A (en) * 1986-01-08 1988-11-01 Coulter Electronics Of New England, Inc. System for measuring the size distribution of particles dispersed in a fluid
US4872892A (en) * 1984-03-09 1989-10-10 Halton Oy Air purifier
US4878892A (en) * 1987-02-10 1989-11-07 Drug Delivery Systems Inc. Electrolytic transdermal delivery of polypeptides
US4903894A (en) * 1987-01-27 1990-02-27 Halton Oy Ventilation control procedure and ventilation control means
US4903685A (en) * 1989-01-24 1990-02-27 Melink Stephen K Variable exhaust controller for commercial kitchens
US5042456A (en) * 1988-08-19 1991-08-27 Cameron Cote Air canopy ventilation system
US5042453A (en) * 1989-09-28 1991-08-27 Rheem Manufacturing Company Compact, high efficiency heat exchanger for a fuel-fired forced air heating furnace
US5139009A (en) * 1990-10-11 1992-08-18 Walsh Leo B Exhaust ventilation control system
US5146284A (en) * 1988-03-11 1992-09-08 Werner Tabarelli Interferometer gas flow system
US5240455A (en) * 1991-08-23 1993-08-31 Phoenix Controls Corporation Method and apparatus for controlling a fume hood
US5251608A (en) * 1988-08-19 1993-10-12 Cameron Cote Air canopy ventilation system
US5268739A (en) * 1990-12-04 1993-12-07 Cise S.P.A. Laser apparatus for measuring the velocity of a fluid
US5394861A (en) * 1993-02-23 1995-03-07 Maimer Gmbh Vapor-collecting hood especially for a commercial kitchen
US5414509A (en) * 1993-03-08 1995-05-09 Associated Universities, Inc. Optical pressure/density measuring means
US5522377A (en) * 1994-05-12 1996-06-04 Randell Manufacturing, Inc. Adjustable exhaust hood
US5597354A (en) * 1995-06-13 1997-01-28 Johnson Service Company Indoor air quality control for constant volume heating, ventilating and air conditioning units
US5713346A (en) * 1993-08-11 1998-02-03 D.E.R. Investments Ltd. Apparatus and method for removing fumes from the space above a cooking appliance
US5718219A (en) * 1997-01-10 1998-02-17 Boudreault; Jean-Pierre Kitchen exhaust hood assembly
US5720274A (en) * 1994-12-05 1998-02-24 Gaggenau-Werke Haus-Und Lufttechnik Gmbh Low-noise vapor exhaust hood
US5764579A (en) * 1990-10-01 1998-06-09 American Auto-Matrix, Inc. System for controlling laboratories with fume hoods
US5779538A (en) * 1994-12-15 1998-07-14 Conseils Etudes Et Recherches En Gestion De L'air Method and device for adjusting the ventilation of premises
US5874292A (en) * 1996-07-11 1999-02-23 Mcminn, Jr.; Pearson Vernie System and method for vent hood cleaning and comprehensive bioremediation of kitchen grease
US5882254A (en) * 1997-06-09 1999-03-16 Siemens Building Technologies, Inc. Laboratory fume hood controller utilizing object detection
US5960786A (en) * 1998-01-06 1999-10-05 Gemini Steel, Inc. Adjustable cartridge filter for cartridge ventilator
US6089970A (en) * 1997-11-24 2000-07-18 The Regents Of The University Of California Energy efficient laboratory fume hood
US6170480B1 (en) * 1999-01-22 2001-01-09 Melink Corporation Commercial kitchen exhaust system
US6173710B1 (en) * 1997-02-28 2001-01-16 Vent Master (Europe) Limited Ventilation systems
US6252689B1 (en) * 1998-04-10 2001-06-26 Aircuity, Inc. Networked photonic signal distribution system
US6336451B1 (en) * 1996-04-04 2002-01-08 Roehl-Hager Hannelore Process and device for confining, retaining and sucking off fumes, dust or the like
US6351999B1 (en) * 1998-06-25 2002-03-05 Endress + Hauser Flowtec Ag Vortex flow sensor
US6428408B1 (en) * 2000-05-18 2002-08-06 The Regents Of The University Of California Low flow fume hood
US6549554B2 (en) * 2000-05-11 2003-04-15 The Furukawa Electric Co., Ltd Semiconductor laser element, semiconductor etchant, and method of fabricating the semiconductor laser element
US20030146082A1 (en) * 2002-01-16 2003-08-07 Ventmaster (Europe) Ltd. Ultra violet lamp ventilation system method and apparatus
US6645066B2 (en) * 2001-11-19 2003-11-11 Koninklijke Philips Electronics N.V. Space-conditioning control employing image-based detection of occupancy and use
US6846236B2 (en) * 2003-01-13 2005-01-25 Viron International Corporation Pivoted fume hood
US6851421B2 (en) * 2000-01-10 2005-02-08 Halton Company Exhaust hood with air curtain
US6869468B2 (en) * 2000-02-04 2005-03-22 Vent Master (Europe) Ltd. Air treatment apparatus
US6878195B2 (en) * 2000-02-04 2005-04-12 Vent Master (Europe) Ltd. Air treatment apparatus
US6899095B2 (en) * 2000-08-10 2005-05-31 Halton Company Inc. Device and method for controlling/balancing flow fluid flow-volume rate in flow channels
US6916239B2 (en) * 2002-04-22 2005-07-12 Honeywell International, Inc. Air quality control system based on occupancy
US20050229922A1 (en) * 2004-03-02 2005-10-20 Erik Magner Ultra-violet ventilation system having an improved filtering device
US20050279845A1 (en) * 2002-08-09 2005-12-22 Rick Bagwell Method and apparatus for controlling ventilation in an occupied space
US7048199B2 (en) * 2004-01-20 2006-05-23 Melink Corporation Kitchen exhaust optimal temperature span system and method
US20060219235A1 (en) * 2005-03-16 2006-10-05 Halton Oy Fume treatment method and apparatus using ultraviolet light to degrade contaminants
US20070015449A1 (en) * 2003-08-13 2007-01-18 Halton Company Exhaust hood enhanced by configuration of flow jets
US20070023349A1 (en) * 2005-08-01 2007-02-01 Pekka Kyllonen High efficiency grease filter cartridge
US20070184771A1 (en) * 2004-10-20 2007-08-09 Henry Fluhrer Ventilation device
US20080045132A1 (en) * 2004-06-22 2008-02-21 Oy Halton Group Ltd. Set And Forget Exhaust Controller
US20090032011A1 (en) * 2004-07-23 2009-02-05 Oy Halton Group Ltd. control of exhaust systems

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2054143B (en) 1979-07-11 1983-06-29 Atomic Energy Authority Uk Measurement of the size of particles dispersed in a fluid
US4346692A (en) 1980-11-26 1982-08-31 Mccauley Lewis C Make-up air device for range hood
US4617909A (en) * 1985-05-06 1986-10-21 Molitor Victor D Method of and device for preventing smoke curling from underneath the hood of a grease extraction ventilator
JPH0723242B2 (en) 1987-02-17 1995-03-15 三菱マテリアル株式会社 Sepiolite molding
JPS63204048A (en) * 1987-02-19 1988-08-23 Fujita Corp Full-automatic range hood with inverter
US4903394A (en) 1988-12-30 1990-02-27 Roberts Beverly R Method of making a window treatment crown
US5322473A (en) * 1990-05-17 1994-06-21 Quality Air Systems, Inc. Modular wall apparatus and method for its use
US5092227B1 (en) * 1990-09-28 1995-02-14 Landis & Gyr Powers Inc Apparatus for controlling the ventilation of laboratory fume hoods
FI96901C (en) 1992-04-16 1996-09-10 Halton Oy Method and apparatus for controlling and silencing an air stream
ATE190717T1 (en) * 1992-07-31 2000-04-15 Burgee Ltd LIQUID VOLUME MEASUREMENT DEVICE
US5528040A (en) * 1994-11-07 1996-06-18 Trustees Of Princeton University Ring-down cavity spectroscopy cell using continuous wave excitation for trace species detection
US5690093A (en) * 1995-01-19 1997-11-25 Nutone, Inc. Ventilator controller with variably adjustable fan and light
FR2736567B1 (en) 1995-07-13 1997-08-08 Europ Equip Menager FUME EXTRACTION SYSTEM, ESPECIALLY FOR AN EXTRACTOR HOOD
CA2169702C (en) * 1996-02-16 2001-02-13 Christian Guay Exhaust hood apparatus
WO1997048479A1 (en) 1996-06-19 1997-12-24 Halton Company Kitchen exhaust system with catalytic converter
US6062482A (en) * 1997-09-19 2000-05-16 Pentech Energy Solutions, Inc. Method and apparatus for energy recovery in an environmental control system
DE19907149A1 (en) * 1999-02-19 2000-08-24 Bsh Bosch Siemens Hausgeraete Extractor hood device for intended use above a hotplate
DE19911850B4 (en) 1999-03-17 2010-04-08 Röhl-Hager, Hannelore Method and device for delimiting, detecting and extracting pollutants, in particular for extractor hoods
US6142142A (en) * 1999-04-15 2000-11-07 Vent-A-Hood Method, apparatus and system for safely and efficiently controlling a ventilation hood
WO2001083125A1 (en) * 2000-05-01 2001-11-08 Board Of Regents Of University Of Nebraska Fume hood exhaust stack system
FR2811067B1 (en) * 2000-07-03 2002-09-27 Alain Katz FRONTAL AIR SPEED CONTROL SYSTEM AND METHOD FOR AIR EXTRACTION EQUIPMENT, IN PARTICULAR LABORATORY HOODS, AND DEVICE IMPLEMENTED
US6726111B2 (en) * 2000-08-04 2004-04-27 Tjernlund Products, Inc. Method and apparatus for centrally controlling environmental characteristics of multiple air systems
US7651034B2 (en) * 2000-08-04 2010-01-26 Tjernlund Products, Inc. Appliance room controller
US6446624B1 (en) * 2000-10-12 2002-09-10 Taiwan Sakura Corporation Smart circuit device of smoke exhauster for cooking
US20110005507A9 (en) * 2001-01-23 2011-01-13 Rick Bagwell Real-time control of exhaust flow
US6506109B1 (en) 2001-08-03 2003-01-14 Fisher Hamilton, Inc. Fume hood with air chamber
US6634939B2 (en) * 2001-08-31 2003-10-21 Thomas W. Johnson Ventilation system and method
US6943886B2 (en) * 2002-02-11 2005-09-13 Air Liquide America, L.P. Method for enhanced gas monitoring in high particle density flow streams
US6820609B2 (en) * 2002-04-03 2004-11-23 Vent-A-Hood Ltd. Low-profile ventilation hood
US6960126B2 (en) * 2002-10-10 2005-11-01 Honeywell International Inc. Wireless communication for fume hood control
US7331852B2 (en) * 2003-06-12 2008-02-19 Ezell George D Method and apparatus for sampling and controlling ventilation airflow into a structure
WO2005114059A2 (en) 2004-05-19 2005-12-01 Halton Company Ventilation register and ventilation systems
WO2006074425A1 (en) 2005-01-06 2006-07-13 Halton Oy Ventilation register and ventilation systems
WO2006074420A2 (en) 2005-01-06 2006-07-13 Halton Oy Low profile exhaust hood
JP5105376B2 (en) 2006-04-18 2012-12-26 オーワイ ハルトン グループ リミテッド Heat energy transfer method

Patent Citations (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3045705A (en) * 1955-09-12 1962-07-24 Hausammann Werner Variable nozzles, in particular laval nozzles for wind tunnels
US3332676A (en) * 1964-07-16 1967-07-25 Loire Atel Forges Regulation of the collection of gases from the oxygen refining pig iron
US3381134A (en) * 1964-10-05 1968-04-30 Philip C. Wolf Mass flow indicating means including an interferometer system
US3323439A (en) * 1966-01-28 1967-06-06 Weaver Damper and fire control device for ventilators
US3457850A (en) * 1967-12-11 1969-07-29 Elster S Air Conditioning Air curtain ventilator
US3612106A (en) * 1969-07-03 1971-10-12 Snecma Arrangement for controlling and supporting a variable-geometry duct
US3825346A (en) * 1972-04-17 1974-07-23 Secr Defence Interferometers for fluid flow measurements
US3809480A (en) * 1972-07-24 1974-05-07 Gen Dynamics Corp Method and apparatus for surveying the velocities of a flow field
US3866055A (en) * 1973-01-17 1975-02-11 Nat Res Dev Laser doppler velocimetry
US4105015A (en) * 1977-03-09 1978-08-08 William C. Isom Exhaust hood energy saving device
US4155348A (en) * 1977-10-11 1979-05-22 Ahlrich Wilard K Ventilating apparatus
US4160407A (en) * 1977-11-18 1979-07-10 Bell Telephone Laboratories, Incorporated Ventilating system
US4475534A (en) * 1978-11-30 1984-10-09 Moriarty Daniel J Ventilating system for kitchen stove
US4398415A (en) * 1981-12-10 1983-08-16 The United States Of America As Represented By The Secretary Of The Air Force Swing link flexible wind tunnel nozzle
US4497242A (en) * 1982-02-11 1985-02-05 Barber-Colman Company Ventilation control system
US4584929A (en) * 1983-09-19 1986-04-29 Ab Bahco Ventilation Exhaust device
US4706553A (en) * 1984-03-05 1987-11-17 Phoenix Controls Corp. Fume hood controller
US4706553B1 (en) * 1984-03-05 1991-07-23 Phoenix Controls Corp
US4872892A (en) * 1984-03-09 1989-10-10 Halton Oy Air purifier
US4781460A (en) * 1986-01-08 1988-11-01 Coulter Electronics Of New England, Inc. System for measuring the size distribution of particles dispersed in a fluid
US4903894A (en) * 1987-01-27 1990-02-27 Halton Oy Ventilation control procedure and ventilation control means
US4878892A (en) * 1987-02-10 1989-11-07 Drug Delivery Systems Inc. Electrolytic transdermal delivery of polypeptides
US5146284A (en) * 1988-03-11 1992-09-08 Werner Tabarelli Interferometer gas flow system
US5251608A (en) * 1988-08-19 1993-10-12 Cameron Cote Air canopy ventilation system
US5042456A (en) * 1988-08-19 1991-08-27 Cameron Cote Air canopy ventilation system
US4903685A (en) * 1989-01-24 1990-02-27 Melink Stephen K Variable exhaust controller for commercial kitchens
US5042453A (en) * 1989-09-28 1991-08-27 Rheem Manufacturing Company Compact, high efficiency heat exchanger for a fuel-fired forced air heating furnace
US5764579A (en) * 1990-10-01 1998-06-09 American Auto-Matrix, Inc. System for controlling laboratories with fume hoods
US5139009A (en) * 1990-10-11 1992-08-18 Walsh Leo B Exhaust ventilation control system
US5268739A (en) * 1990-12-04 1993-12-07 Cise S.P.A. Laser apparatus for measuring the velocity of a fluid
US5240455A (en) * 1991-08-23 1993-08-31 Phoenix Controls Corporation Method and apparatus for controlling a fume hood
US5394861A (en) * 1993-02-23 1995-03-07 Maimer Gmbh Vapor-collecting hood especially for a commercial kitchen
US5414509A (en) * 1993-03-08 1995-05-09 Associated Universities, Inc. Optical pressure/density measuring means
US5713346A (en) * 1993-08-11 1998-02-03 D.E.R. Investments Ltd. Apparatus and method for removing fumes from the space above a cooking appliance
US5522377A (en) * 1994-05-12 1996-06-04 Randell Manufacturing, Inc. Adjustable exhaust hood
US5720274A (en) * 1994-12-05 1998-02-24 Gaggenau-Werke Haus-Und Lufttechnik Gmbh Low-noise vapor exhaust hood
US5779538A (en) * 1994-12-15 1998-07-14 Conseils Etudes Et Recherches En Gestion De L'air Method and device for adjusting the ventilation of premises
US5597354A (en) * 1995-06-13 1997-01-28 Johnson Service Company Indoor air quality control for constant volume heating, ventilating and air conditioning units
US6336451B1 (en) * 1996-04-04 2002-01-08 Roehl-Hager Hannelore Process and device for confining, retaining and sucking off fumes, dust or the like
US5874292A (en) * 1996-07-11 1999-02-23 Mcminn, Jr.; Pearson Vernie System and method for vent hood cleaning and comprehensive bioremediation of kitchen grease
US5718219A (en) * 1997-01-10 1998-02-17 Boudreault; Jean-Pierre Kitchen exhaust hood assembly
US6173710B1 (en) * 1997-02-28 2001-01-16 Vent Master (Europe) Limited Ventilation systems
US5882254A (en) * 1997-06-09 1999-03-16 Siemens Building Technologies, Inc. Laboratory fume hood controller utilizing object detection
US6089970A (en) * 1997-11-24 2000-07-18 The Regents Of The University Of California Energy efficient laboratory fume hood
US5960786A (en) * 1998-01-06 1999-10-05 Gemini Steel, Inc. Adjustable cartridge filter for cartridge ventilator
US6252689B1 (en) * 1998-04-10 2001-06-26 Aircuity, Inc. Networked photonic signal distribution system
US6351999B1 (en) * 1998-06-25 2002-03-05 Endress + Hauser Flowtec Ag Vortex flow sensor
US6170480B1 (en) * 1999-01-22 2001-01-09 Melink Corporation Commercial kitchen exhaust system
US6851421B2 (en) * 2000-01-10 2005-02-08 Halton Company Exhaust hood with air curtain
US20070272230A9 (en) * 2000-01-10 2007-11-29 Halton Company Exhaust hood with air curtain
US6869468B2 (en) * 2000-02-04 2005-03-22 Vent Master (Europe) Ltd. Air treatment apparatus
US6878195B2 (en) * 2000-02-04 2005-04-12 Vent Master (Europe) Ltd. Air treatment apparatus
US6549554B2 (en) * 2000-05-11 2003-04-15 The Furukawa Electric Co., Ltd Semiconductor laser element, semiconductor etchant, and method of fabricating the semiconductor laser element
US6428408B1 (en) * 2000-05-18 2002-08-06 The Regents Of The University Of California Low flow fume hood
US6899095B2 (en) * 2000-08-10 2005-05-31 Halton Company Inc. Device and method for controlling/balancing flow fluid flow-volume rate in flow channels
US6645066B2 (en) * 2001-11-19 2003-11-11 Koninklijke Philips Electronics N.V. Space-conditioning control employing image-based detection of occupancy and use
US20030146082A1 (en) * 2002-01-16 2003-08-07 Ventmaster (Europe) Ltd. Ultra violet lamp ventilation system method and apparatus
US6916239B2 (en) * 2002-04-22 2005-07-12 Honeywell International, Inc. Air quality control system based on occupancy
US20050279845A1 (en) * 2002-08-09 2005-12-22 Rick Bagwell Method and apparatus for controlling ventilation in an occupied space
US7364094B2 (en) * 2002-08-09 2008-04-29 Oy Halton Group, Ltd. Method and apparatus for controlling space conditioning in an occupied space
US20070068509A1 (en) * 2002-08-09 2007-03-29 Halton Company Zone control of space conditioning system with varied uses
US6846236B2 (en) * 2003-01-13 2005-01-25 Viron International Corporation Pivoted fume hood
US7147168B1 (en) * 2003-08-11 2006-12-12 Halton Company Zone control of space conditioning system with varied uses
US20070015449A1 (en) * 2003-08-13 2007-01-18 Halton Company Exhaust hood enhanced by configuration of flow jets
US7048199B2 (en) * 2004-01-20 2006-05-23 Melink Corporation Kitchen exhaust optimal temperature span system and method
US20050229922A1 (en) * 2004-03-02 2005-10-20 Erik Magner Ultra-violet ventilation system having an improved filtering device
US20080045132A1 (en) * 2004-06-22 2008-02-21 Oy Halton Group Ltd. Set And Forget Exhaust Controller
US20090032011A1 (en) * 2004-07-23 2009-02-05 Oy Halton Group Ltd. control of exhaust systems
US20070184771A1 (en) * 2004-10-20 2007-08-09 Henry Fluhrer Ventilation device
US7442119B2 (en) * 2004-10-20 2008-10-28 E.G.O. Elektro-Geratebau Gmbh Ventilation device, particularly an exhaust hood with air flow control means
US20060219235A1 (en) * 2005-03-16 2006-10-05 Halton Oy Fume treatment method and apparatus using ultraviolet light to degrade contaminants
US20070023349A1 (en) * 2005-08-01 2007-02-01 Pekka Kyllonen High efficiency grease filter cartridge

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090199844A1 (en) * 2000-01-10 2009-08-13 Oy Halton Group Ltd. Exhaust hood with air curtain
US20110005507A9 (en) * 2001-01-23 2011-01-13 Rick Bagwell Real-time control of exhaust flow
US9909766B2 (en) 2001-01-23 2018-03-06 Oy Halton Group Ltd. Real-time control of exhaust flow
US20110174384A1 (en) * 2001-01-23 2011-07-21 Oy Halton Group Ltd. Real-time control of exhaust flow
US9335057B2 (en) 2001-01-23 2016-05-10 Oy Halton Group Ltd. Real-time control of exhaust flow
US20110120314A1 (en) * 2004-03-02 2011-05-26 Oy Halton Group Ltd. Ultra-violet ventilation system having an improved filtering device
US20080302247A1 (en) * 2004-03-02 2008-12-11 Oy Halton Group Limited Ultra-violet ventilation system having an improved filtering device
US20080045132A1 (en) * 2004-06-22 2008-02-21 Oy Halton Group Ltd. Set And Forget Exhaust Controller
US7775865B2 (en) 2004-06-22 2010-08-17 Oy Halton Group Ltd. Set and forget exhaust controller
US8444462B2 (en) 2004-07-23 2013-05-21 Oy Halton Group Ltd. Control of exhaust systems
US9011215B2 (en) 2004-07-23 2015-04-21 Oy Halton Group Ltd. Control of exhaust systems
US20090032011A1 (en) * 2004-07-23 2009-02-05 Oy Halton Group Ltd. control of exhaust systems
US9188354B2 (en) 2004-07-23 2015-11-17 Oy Halton Group Ltd. Control of exhaust systems
US8038515B2 (en) 2004-07-23 2011-10-18 Oy Halton Group Ltd. Control of exhaust systems
US20100294259A1 (en) * 2004-07-23 2010-11-25 Oy Halton Group Ltd. Control of exhaust systems
US20110021128A1 (en) * 2004-07-23 2011-01-27 Oy Halton Group Ltd. Control of exhaust systems
US10184669B2 (en) 2004-07-23 2019-01-22 Oy Halton Group Ltd Control of exhaust systems
US11242999B2 (en) 2004-07-23 2022-02-08 Oy Halton Group Ltd. Control of exhaust systems
US7442119B2 (en) * 2004-10-20 2008-10-28 E.G.O. Elektro-Geratebau Gmbh Ventilation device, particularly an exhaust hood with air flow control means
US20070184771A1 (en) * 2004-10-20 2007-08-09 Henry Fluhrer Ventilation device
US9239169B2 (en) 2005-01-06 2016-01-19 Oy Halton Group Ltd. Low profile exhaust hood
US20080308088A1 (en) * 2005-01-06 2008-12-18 Oy Halton Group Ltd. Low Profile Exhaust Hood
US9664395B2 (en) 2005-01-06 2017-05-30 Oy Halton Group, Ltd. Low profile exhaust hood
WO2007112301A3 (en) * 2006-03-24 2008-06-19 Duke Mfg Co Vent system for cooking appliance
US20150140913A1 (en) * 2006-04-18 2015-05-21 Oy Halton Group Ltd. Modular services supply arrangement
US10473336B2 (en) * 2006-04-18 2019-11-12 Oy Halton Group Ltd. Recirculating exhaust system
US10634365B2 (en) * 2006-04-18 2020-04-28 Oy Halton Group Ltd. Modular services supply arrangement
US11384941B2 (en) 2006-04-18 2022-07-12 Oy Halton Group Ltd. Exhaust hood
US20090264060A1 (en) * 2006-04-18 2009-10-22 Oy Halton Group Ltd. Recirculating exhaust system
EP1936284A3 (en) * 2006-12-19 2012-07-18 Miele & Cie. KG Extractor hood with a flue casing with a dual-layer moisture screen attached
EP1939535A3 (en) * 2006-12-19 2011-05-18 Miele & Cie. KG Extractor hood with a flue casing and a first pivotable moisture screen attached to the flue casing
US20080146134A1 (en) * 2006-12-19 2008-06-19 Miele & Cie. Kg Exhaust hood with a chimney housing and double-layered vapor-collecting canopy
US20080146132A1 (en) * 2006-12-19 2008-06-19 Miele & Cie. Kg Exhaust hood with a vapor-collecting canopy
US20110269386A1 (en) * 2007-05-04 2011-11-03 Current Energy Controls, Lp Automous Ventilation System
US9127848B2 (en) 2007-05-04 2015-09-08 Oy Halton Group Ltd. Autonomous ventilation system
US8734210B2 (en) * 2007-05-04 2014-05-27 Oy Halton Group Ltd. Autonomous ventilation system
US20090013989A1 (en) * 2007-05-17 2009-01-15 Brown Stephen L Lineal slot ventilator with internal cleaning system and adjustable baffle
WO2009005664A1 (en) * 2007-06-29 2009-01-08 Caterpillar Inc. Automated lost load response system
US7864066B2 (en) 2007-06-29 2011-01-04 Caterpillar Inc Automated lost load response system
US20090002187A1 (en) * 2007-06-29 2009-01-01 Bradley Scott Kriel Automated lost load response system
US9587839B2 (en) 2007-08-28 2017-03-07 Oy Halton Group Ltd. Autonomous ventilation system
US10302307B2 (en) 2007-08-28 2019-05-28 Oy Halton Group Ltd. Autonomous ventilation system
US8795040B2 (en) 2007-08-28 2014-08-05 Oy Halton Group Ltd. Autonomous ventilation system
US10480797B2 (en) 2007-10-09 2019-11-19 Oy Halton Group Ltd. Damper suitable for liquid aerosol-laden flow streams
US20090093210A1 (en) * 2007-10-09 2009-04-09 Oy Halton Group Ltd. Damper suitable for liquid aerosol-laden flow streams
US9702565B2 (en) 2007-10-09 2017-07-11 Oy Halto Group Ltd. Damper suitable for liquid aerosol-laden flow streams
US9719686B2 (en) 2007-10-09 2017-08-01 Oy Halton Group Ltd. Damper suitable for liquid aerosol-laden flow streams
EP2072908A1 (en) * 2007-12-18 2009-06-24 Miele & Cie. KG Fume hood device
US9835338B2 (en) * 2008-01-18 2017-12-05 Oy Halton Group Ltd. Hood devices, methods, and systems with features to enhance capture and containment
US20110094497A1 (en) * 2008-01-18 2011-04-28 Oy Halton Group Ltd. Hood devices, methods, and systems with features to enhance capture and containment
US9574779B2 (en) * 2008-04-18 2017-02-21 Oy Halton Group, Ltd. Exhaust apparatus, system, and method for enhanced capture and containment
US10471482B2 (en) * 2008-04-18 2019-11-12 Oy Halton Group Ltd. Exhaust apparatus, system, and method for enhanced capture and containment
US20110053483A1 (en) * 2008-04-18 2011-03-03 Oy Halton Group Ltd. Exhaust apparatus, system, and method for enhanced capture and containment
US20170144201A1 (en) * 2008-04-18 2017-05-25 Oy Halton Group Ltd. Exhaust Apparatus, System, and Method for Enhanced Capture and Containment
WO2010014513A2 (en) * 2008-07-29 2010-02-04 Air Dynamics Industrial Systems Corporation Range hood with liquid filter
US20100024655A1 (en) * 2008-07-29 2010-02-04 Air Dynamics Industrial Systems Corporation Range Hood with Liquid Filter
WO2010014513A3 (en) * 2008-07-29 2010-04-29 Air Dynamics Industrial Systems Corporation Range hood with liquid filter
US8771408B2 (en) 2008-07-29 2014-07-08 Air Dynamics Industrial Systems Corporation Range hood with liquid filter
US8012249B2 (en) 2008-07-29 2011-09-06 Air Dynamics Industrial Systems Corporation Range hood with liquid filter
US9494324B2 (en) 2008-12-03 2016-11-15 Oy Halton Group Ltd. Exhaust flow control system and method
RU2524104C2 (en) * 2008-12-03 2014-07-27 Ой Халтон Груп Лтд. Exhaust flow control system and method
WO2010065793A1 (en) * 2008-12-03 2010-06-10 Oy Halton Group Ltd. Exhaust flow control system and method
US10082299B2 (en) 2008-12-03 2018-09-25 Oy Halton Group Ltd. Exhaust flow control system and method
US9395090B2 (en) * 2008-12-10 2016-07-19 Electrolux Home Products Corporation N.V. Suction hood
US20110232625A1 (en) * 2008-12-10 2011-09-29 Electrolux Home Products Corporation N.V. Suction hood
US20110240004A1 (en) * 2008-12-10 2011-10-06 Electrolux Home Products Corporation N.V. Suction hood
NL2002405C2 (en) * 2009-01-09 2010-07-13 Bos Exclusieve Fornuizen B V EXTRACTION PLANT AND METHOD FOR VARIATING A FLUID FLOW OVER THE INLET SURFACE.
US8505530B2 (en) * 2009-11-19 2013-08-13 Itw Food Equipment Group Llc Commercial kitchen exhaust system
US8939142B2 (en) 2009-11-19 2015-01-27 Itw Food Equipment Group Llc Commercial kitchen exhaust system
US20110114076A1 (en) * 2009-11-19 2011-05-19 Russell Robison Commercial kitchen exhaust system
US20120055275A1 (en) * 2010-09-02 2012-03-08 Streivor Air Systems, Inc. System and Method for Smart Operation of an Exhaust Hood Using a Protected Monitoring Device
US20120247451A1 (en) * 2011-03-29 2012-10-04 Ting-Fang Chiang Teppanyaki assembly available for sucking air by multiple angles
US20130019760A1 (en) * 2011-07-19 2013-01-24 Terry John West Barbeque smoker with heated reverse flow exhaust
US8720322B2 (en) * 2011-07-19 2014-05-13 Terry John West Barbeque smoker with heated reverse flow exhaust
US9662519B2 (en) * 2012-06-07 2017-05-30 Oy Halton Group Ltd. Fire suppression systems, devices, and methods
US10434344B2 (en) * 2012-06-07 2019-10-08 Oy Halton Group Ltd. Fire suppression systems, devices, and methods
US20170246487A1 (en) * 2012-06-07 2017-08-31 Oy Halton Group Ltd. Fire Suppression Systems, Devices, and Methods
US20150136430A1 (en) * 2012-06-07 2015-05-21 Oy Halton Group Ltd. Fire suppression systems, devices, and methods
US10744356B2 (en) * 2012-06-07 2020-08-18 Oy Halton Group Ltd. Fire suppression systems, devices, and methods
US20200023214A1 (en) * 2012-06-07 2020-01-23 Oy Halton Group Ltd. Fire Suppression Systems, Devices, and Methods
US9541378B2 (en) * 2013-03-15 2017-01-10 Siemens Industry, Inc. Sash position determining system
US20140273783A1 (en) * 2013-03-15 2014-09-18 Siemens Industry, Inc. Sash position determining system
US20180149368A1 (en) * 2013-05-02 2018-05-31 William B. McEvoy Tabletop Cooking Assembly
US9897328B2 (en) 2013-05-02 2018-02-20 William B. McEvoy Tabletop cooking assembly
US10139113B2 (en) * 2013-05-02 2018-11-27 William B. McEvoy Tabletop cooking assembly
US9869474B2 (en) * 2013-05-02 2018-01-16 William B. McEvoy Tabletop cooking assembly
US20160084508A1 (en) * 2013-05-02 2016-03-24 William B. McEvoy Tabletop cooking assembly
US10137395B2 (en) * 2013-10-11 2018-11-27 Samsung Electronics Co., Ltd. Grease filter, manufacturing method thereof and cooking device having the same
US11135539B2 (en) 2013-10-11 2021-10-05 Samsung Electronics Co., Ltd. Grease filter, manufacturing method thereof and cooking device having the same
US20150101588A1 (en) * 2013-10-11 2015-04-16 Samsung Electronics Co., Ltd. Grease filter, manufacturing method thereof and cooking device having the same
USD867571S1 (en) * 2017-06-20 2019-11-19 Bsh Home Appliances Corporation Ventilation hood
JP2020008187A (en) * 2018-07-04 2020-01-16 富士工業株式会社 Range hood
JP2020016412A (en) * 2018-07-26 2020-01-30 富士工業株式会社 Cooking range hood
US11454402B1 (en) 2021-12-01 2022-09-27 Mcevoy William B Tabletop cooking assembly
US11739943B2 (en) 2021-12-01 2023-08-29 William B. McEvoy Tabletop cooking assembly

Also Published As

Publication number Publication date
US20110005507A9 (en) 2011-01-13
US20110174384A1 (en) 2011-07-21
US9335057B2 (en) 2016-05-10
US20160252256A1 (en) 2016-09-01
US20130213483A1 (en) 2013-08-22
US9909766B2 (en) 2018-03-06

Similar Documents

Publication Publication Date Title
US9909766B2 (en) Real-time control of exhaust flow
US6899095B2 (en) Device and method for controlling/balancing flow fluid flow-volume rate in flow channels
US11242999B2 (en) Control of exhaust systems
KR101641389B1 (en) Exhaust apparatus, system, and method for enhanced capture and containment
JP5911430B2 (en) Exhaust system
US5251608A (en) Air canopy ventilation system
CA2116134C (en) Method and apparatus for controlling a fume hood
JP5878003B2 (en) Indoor circulation range hood
WO2020202012A1 (en) Extractor unit
US6394083B1 (en) Adjustable ventilator cartridge filter
Chen Flow characteristics of an inclined air-curtain range hood in a draft
KR102477360B1 (en) Kitchen exhaust system equipped with an air curtain injection unit and its control method
Li et al. High-Performance Kitchen Ventilation
JPH09310898A (en) Cooking exhausting apparatus

Legal Events

Date Code Title Description
AS Assignment

Owner name: HALTON COMPANY, KENTUCKY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BAGWELL, RICK;SCHROCK, DEREK;LIVCHAK, ANDREY;REEL/FRAME:016741/0001

Effective date: 20051031

AS Assignment

Owner name: OY HALTON GROUP LTD., FINLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALTON COMPANY;REEL/FRAME:021333/0708

Effective date: 20080414

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION