US20060030882A1 - Transvenous staples, assembly and method for mitral valve repair - Google Patents

Transvenous staples, assembly and method for mitral valve repair Download PDF

Info

Publication number
US20060030882A1
US20060030882A1 US11/245,535 US24553505A US2006030882A1 US 20060030882 A1 US20060030882 A1 US 20060030882A1 US 24553505 A US24553505 A US 24553505A US 2006030882 A1 US2006030882 A1 US 2006030882A1
Authority
US
United States
Prior art keywords
mitral valve
tissue piercing
distance
valve annulus
leg portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/245,535
Inventor
John Adams
Scott Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US11/245,535 priority Critical patent/US20060030882A1/en
Publication of US20060030882A1 publication Critical patent/US20060030882A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/0682Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil
    • A61B17/0684Surgical staplers, e.g. containing multiple staples or clamps for applying U-shaped staples or clamps, e.g. without a forming anvil having a forming anvil staying above the tissue during stapling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00778Operations on blood vessels
    • A61B2017/00783Valvuloplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • A61B2017/22051Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation
    • A61B2017/22052Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for with an inflatable part, e.g. balloon, for positioning, blocking, or immobilisation eccentric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/24Heart valves ; Vascular valves, e.g. venous valves; Heart implants, e.g. passive devices for improving the function of the native valve or the heart muscle; Transmyocardial revascularisation [TMR] devices; Valves implantable in the body
    • A61F2/2442Annuloplasty rings or inserts for correcting the valve shape; Implants for improving the function of a native heart valve
    • A61F2/2451Inserts in the coronary sinus for correcting the valve shape

Definitions

  • the present invention generally relates to a device, assembly and method for treating dilated cardiomyopathy of a heart.
  • the present invention more particularly relates to mitral valve annulus staple devices and an assembly and method for deploying such staple device to reshape the mitral valve annulus.
  • the human heart generally includes four valves. Of these valves, a most critical one is known as the mitral valve.
  • the mitral valve is located in the left atrial ventricular opening between the left atrium and left ventricle.
  • the mitral valve is intended to prevent regurgitation of blood from the left ventricle into the left atrium when the left ventricle contracts. In preventing blood regurgitation the mitral valve must be able to withstand considerable back pressure as the left ventricle contracts.
  • the valve cusps of the mitral valve are anchored to muscular wall of the heart by delicate but strong fibrous cords in order to support the cusps during left ventricular contraction.
  • the geometry of the mitral valve ensures that the cusps overlie each other to preclude regurgitation of the blood during left ventricular contraction.
  • the normal functioning of the mitral valve in preventing regurgitation can be impaired by dilated cardiomyopathy caused by disease or certain natural defects.
  • certain diseases may cause dilation of the mitral valve annulus. This can result in deformation of the mitral valve geometry to cause ineffective closure of the mitral valve during left ventricular contraction. Such ineffective closure results in leakage through the mitral valve and regurgitation.
  • Diseases such as bacterial inflammations of the heart or heart failure can cause the aforementioned distortion or dilation of the mitral valve annulus. Needless to say, mitral valve regurgitation must not go uncorrected.
  • One method of repairing a mitral valve heaving impaired function is to completely replace the valve. This method has been found to be particularly suitable for replacing a mitral valve when one of the cusps has been severely damaged or deformed. While the replacement of the entire valve eliminates the immediate problem associated with a dilated mitral valve annulus, presently available prosthetic heart valves do not possess the same durability as natural heart valves.
  • prostheses are annular or partially annular shaped members which fit about the base of the valve annulus.
  • the annular or partially annular shaped members may be formed from a rigid material, such as a metal, or from a flexible material.
  • coronary sinus of a heart is near to and at least partially encircles the mitral valve annulus and then extends into a venous system including the great cardiac vein.
  • coronary sinus is meant to refer to not only the coronary sinus itself but in addition, the venous system associated with the coronary sinus including the great cardiac vein.
  • the therapy contemplates the use of a device introduced into the coronary sinus to reshape and advantageously effect the geometry of the mitral valve annulus.
  • the device includes a resilient member having a cross sectional dimension for being received within the coronary sinus of the heart and a longitudinal dimension having an unstressed arched configuration when placed in the coronary sinus.
  • the device partially encircles and exerts an inward pressure on the mitral valve.
  • the inward pressure constricts the mitral valve annulus, or at least a portion of it, to essentially restore the mitral valve geometry. This promotes effective valve sealing action and eliminates mitral regurgitation.
  • the device may be implanted in the coronary sinus using only percutaneous techniques similar to the techniques used to implant cardiac leads such as pacemaker leads.
  • One proposed system for implanting the device includes an elongated introducer configured for being releasably coupled to the device.
  • the introducer is preferably flexible to permit it to advance the device into the heart and into the coronary sinus through the coronary sinus ostium.
  • an elongated sheath is first advanced into the coronary sinus. Then, the device and introducer are moved through a lumen of the sheath until the device is in position within the coronary sinus. Because the device is formed of resilient material, it conforms to the curvatures of the lumen as it is advanced through the sheath.
  • the sheath is then partially retracted to permit the device to assume its unstressed arched configuration.
  • the introducer is then decoupled from the device and retracted through the sheath.
  • the procedure is then completed by the retraction of the sheath.
  • the device is left within the coronary sinus to exert the inward pressure on the mitral valve to restore mitral valve geometry.
  • mitral valve regurgitation may be treated at an early stage in the mitral regurgitation progression. Further, the device may be placed with relative ease by any minimally invasive cardiologist. Still further, since the heart remains completely intact throughout the procedure, the effectiveness of the procedure may be readily determined. Moreover, should adjustments be deemed desirable, such adjustments may be made during the procedure and before the patient is sent to recovery.
  • mitral regurgitation with a device in the coronary sinus is based upon the observation that the application of a localized force against a discrete portion of the mitral valve annulus can terminate mitral regurgitation. This suggests that mitral regurgitation may be localized and nonuniform.
  • the device applies a force to one or more discrete portions of the atrial wall of the coronary sinus to provide localized mitral valve annulus reshaping instead of generalized reshaping of the mitral valve annulus.
  • Such localized therapy would have all the benefits of the generalized therapy.
  • a localized therapy device may be easier to implant and adjust.
  • a still further approach to treat mitral regurgitation from the coronary sinus of the heart contemplates a device having a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart, a cable fixed to the first anchor and extending proximally from the first anchor within the heart, a second anchor configured to be positioned in and fixed in the heart proximal to the first anchor and arranged to slidingly receive the cable, and a lock that locks the cable on the second anchor.
  • the cable may be drawn proximally and locked on the second anchor.
  • the geometry of the mitral valve is thereby effected.
  • This approach provides flexibility in that the second anchor may be positioned and fixed in the coronary sinus or alternatively, the second anchor may be positioned and fixed in the right atrium. This approach further allows adjustments in the cable tension after implant.
  • a still further alternative for treating mitral regurgitation contemplates a device having a first anchor configured to be positioned within and anchored to the coronary sinus of the heart adjacent the mitral valve annulus within the heart.
  • a second anchor is configured to be positioned within the heart proximal to the first anchor and adjacent the mitral valve annulus within the heart.
  • a connecting member having a fixed length, is permanently attached to the first and second anchors.
  • the invention provides a device for effecting tissue geometry of an organ.
  • the device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the tissue and a final unstressed and undistorted configuration after the tissue piercing ends pierce the tissue to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
  • the present invention further provides a device for effecting mitral valve annulus geometry of a heart.
  • the device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions.
  • the connection portion has an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
  • the initial configuration of the connection portion may be a first arched configuration and the final configuration of the connection portion may be a second arched configuration, wherein the second arched configuration is arched in a direction opposite the first arched configuration.
  • the device may be configured such that when the connection portion is in the second arched configuration, the tissue piercing ends of the leg portions point toward each other.
  • the leg portions and connection portion are preferably formed of the same material stock, as from Nitinol, for example.
  • the invention further provides a device for effecting mitral valve annulus geometry of a heart.
  • the device includes first and second tissue piercing portions, each tissue piercing portion terminating in a tissue piercing end, and a connection portion extending between the first and second tissue piercing portions, the connection portion having an initial stressed and distorted configuration to separate the first and second tissue piercing portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second tissue piercing portions by a second distance, the second distance being shorter than the first distance.
  • the invention further provides an assembly for effecting mitral valve annulus geometry of a heart.
  • the assembly includes an elongated catheter being placeable in the coronary sinus of the heart adjacent the mitral valve annulus.
  • the assembly further includes at least one staple carried within the catheter, the at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
  • the assembly further includes a tool that forces the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration.
  • the at least one staple is preferably configured so that the tissue piercing ends of the first and second leg portions point away from each other when the connection portion is in the initial configuration and the tissue piercing ends of the first and second leg portions point toward each other when the connection portion is in the final configuration.
  • the catheter preferably includes a tubular wall wherein the tool forces the at least one staple through the tubular wall of the catheter.
  • the tubular wall may include a break-away slot adjacent the at least one staple that permits the at least one staple to be forced therethrough.
  • the at least one staple may comprise a plurality of staples.
  • the catheter tubular wall may in turn include a plurality of break-away slots, each slot being adjacent to a respective given one of the staples, the slots permitting the staples to be forced through the tubular wall of the catheter and into the mitral valve annulus.
  • the tool is preferably configured to force the plurality of staples from the catheter substantially simultaneously.
  • the assembly may further include an urging member that urges the catheter along and against a wall of the coronary sinus adjacent to the mitral valve annulus.
  • the urging member may be an elongated balloon carried by the catheter.
  • the invention still further provides a method of effecting mitral valve annulus geometry of a heart.
  • the method includes the steps of providing at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance, placing the at least one staple into a catheter, and locating the catheter in the coronary sinus of the heart so that the at least one staple is adjacent the mitral valve annulus.
  • the method includes the further step of releasing the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration and causing the connection portion to assume the final configuration.
  • the invention still further provides an assembly for effecting mitral valve annulus geometry of a heart.
  • the assembly includes
  • FIG. 1 is a superior view of a human heart with the atria removed;
  • FIG. 2 is a side plan view of a staple device embodying the present invention shown in an initial stressed and distorted configuration within a deployment catheter;
  • FIG. 3 is a side plan view of the staple device of FIG. 2 shown in a final unstressed and undistorted configuration
  • FIG. 4 is a side view of the deployment catheter illustrating a slot portion through which the staple device may be forced for deployment;
  • FIG. 5 is a side view illustrating the staple after being forced through the slot portion of the catheter
  • FIG. 6 is a side view of an assembly embodying the present invention shown within a coronary sinus and ready for deployment of a plurality of staple devices in accordance with the present invention
  • FIG. 7 is a superior view of a human heart similar to FIG. 1 illustrating a first step in the deployment of mitral valve staple devices embodying the present invention
  • FIG. 8 is a view similar to FIG. 7 illustrating a further step in the deployment of the staple devices.
  • FIG. 9 is a superior view of a human heart similar to FIG. 7 illustrating the mitral valve staple devices deployed in the heart.
  • FIG. 1 it is a superior view of a human heart 10 with the atria removed to expose the mitral valve 12 , the coronary sinus 14 , the coronary artery 15 , and the circumflex artery 17 of the heart 10 to lend a better understanding of the present invention. Also generally shown in FIG. 1 are the pulmonary valve 22 , the aortic valve 24 , and the tricuspid valve 26 of the heart 10 .
  • the mitral valve 12 includes an anterior cusp 16 , a posterior cusp 18 and an annulus 20 .
  • the annulus encircles the cusps 16 and 18 and maintains their spacing to provide a complete closure during a left ventricular contraction.
  • the coronary sinus 14 partially encircles the mitral valve 12 adjacent to the mitral valve annulus 20 .
  • the coronary sinus is part of the venus system of the heart and extends along the AV groove between the left atrium and the left ventricle. This places the coronary sinus essentially within the same plane as the mitral valve annulus making the coronary sinus available for placement of the mitral valve therapy staple devices of the present invention therein.
  • FIG. 2 shows a mitral valve therapy staple device 30 embodying the present invention.
  • the device 30 is shown confined within a deployment catheter 40 which will be described subsequently.
  • the device 30 includes first and second tissue piercing leg portions 32 and 34 and a connection portion 36 between the leg portions 32 and 34 .
  • the leg portions 32 and 34 terminate in tissue piercing ends 33 and 35 , respectively.
  • the device 30 is confined within the catheter 40 in a first or initial configuration.
  • the initial configuration is exhibited by the connecting member 36 having a first arcuate or arched configuration, as illustrated, with the tissue piercing ends 33 and 35 pointing away from each other.
  • the device 30 is formed of a material having shape memory so that once deployed, the connection portion 36 assumes a second or final configuration to be described with respect to FIG. 3 wherein the connection portion assumes a second arched configuration which is arched in a direction opposite than the first arched configuration illustrated in FIG. 2 .
  • the device 30 may be formed of, for example, Nitinol, a material well known for shape memory characteristics. Other suitable materials may include stainless steel or biocompatible plastic materials.
  • the connection portion 36 and leg portions 32 and 34 are formed of the same material stock as, for example, from a strip of Nitinol.
  • the device 30 When the staple device 30 is deployed in the heart, the device 30 assumes its final configuration illustrated in FIG. 3 .
  • the connection member 36 has assumed an arched configuration opposite than that shown in FIG. 2 .
  • the final configuration of the connection member 36 causes the leg portions 32 and 34 to be more closely spaced together.
  • the tissue piercing ends 33 and 35 point towards each other.
  • the deployment catheter 40 includes a tubular wall 42 in which a slot 44 is formed.
  • the staple device 30 is positioned adjacent the slot 44 to permit the staple device 30 to be forced through the tubular sidewall 42 and more particularly through the slot 44 for deployment in the heart.
  • the slot 44 preferably comprises a reduced thickness of the tubular wall 42 to provide an effective seal prior to deployment but permitting a relatively modest force to urge the device 30 through the slot 44 and into the mitral valve annulus as will be described hereinafter.
  • the slot 44 is a break-away slot providing seal integrity prior to deployment but permitting the staple 30 to be forced through the tubular wall 42 of the catheter 40 into the heart.
  • FIG. 6 is a side view showing the catheter 40 within the coronary sinus 14 . Also illustrated in FIG. 6 is a tool 50 which may be utilized for forcing the staples 30 through the tubular wall 42 of the catheter 40 . Also shown in FIG. 6 is an urging member 60 which urges the catheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus.
  • the tool 50 includes a surface contour 52 which corresponds to the contour of the staple devices 30 when in the initial configuration. Displacement of the tool 50 in a proximal direction as indicated by the arrow 54 causes the tool 50 to urge or force the staple devices 30 through the tubular wall 42 of the catheter 40 . As noted in FIG. 6 , the plurality of staple devices 30 are urged or forced through the tubular wall 42 for deployment substantially simultaneously.
  • the urging member 60 preferably takes the form of an inflatable balloon 62 .
  • the inflatable balloon 62 is inflatable by a conduit 64 and is carried by the catheter 40 .
  • the catheter 40 Prior to deployment of the staple devices 30 , the catheter 40 is placed in the coronary sinus adjacent the mitral valve annulus with the balloon 62 deflated. Thereafter, the balloon 62 is inflated so as to urge the catheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus as illustrated. Thereafter, the tool 50 may be displaced proximally to urge or force the staple devices 30 through the tubular wall 42 of the catheter 40 for deployment.
  • FIGS. 7 and 8 The deployment of the staple devices 30 is shown more particularly in FIGS. 7 and 8 .
  • FIG. 7 it can be seen that the catheter 40 is positioned within the coronary sinus 14 adjacent to the mitral valve annulus 20 .
  • the balloon 62 has been inflated so as to urge the catheter 40 against the wall of the coronary sinus 14 which is adjacent the mitral valve annulus 20 .
  • the assembly is now ready to deploy the mitral valve staple devices 30 .
  • the tool 50 is being displaced proximally and is forcing the staple devices 30 through the tubular wall 42 of the catheter 40 .
  • the leg portions are extending through the wall of the coronary sinus into the mitral valve annulus 20 or at least near to the annulus.
  • connection portions 36 of the mitral valve staple devices 30 have assumed their final configuration.
  • the tissue piercing leg portions have gathered-up mitral valve annulus tissue to tighten the mitral valve annulus. More specifically, as will be noted in FIG. 9 , the radius of curvature of the mitral valve annulus 20 in a portion designated 70 has been dramatically increased. This tightening up of the mitral valve annulus will promote more efficient mitral valve action and advantageously terminate mitral regurgitation.
  • tissue piercing leg portions are illustrated as piercing entirely through the mitral valve annulus, it will be appreciated by those skilled in the art that the mitral valve annulus wall need not necessarily be pierced entirely through and that the tissue piercing leg portions need only pierce into the mitral valve annulus.

Abstract

A mitral valve staple device treats mitral regurgitation of a heart. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions. The connection portion has an initial stressed and distorted configuration to separate the first and second leg portion by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance which is shorter than the first distance. The device is deployed within the heart transvenously through a catheter positioned in the coronary sinus adjacent the mitral valve annulus. A tool forces the mitral valve staple device through the wall of the catheter for deployment in the heart.

Description

    CROSS-REFERENCE
  • This application is a continuation application of Ser. No. 10/093,323, filed Mar. 6, 2002, which is incorporated herein by reference in its entirety and to which application we claim priority under 35 USC § 120.
  • FIELD OF THE INVENTION
  • The present invention generally relates to a device, assembly and method for treating dilated cardiomyopathy of a heart. The present invention more particularly relates to mitral valve annulus staple devices and an assembly and method for deploying such staple device to reshape the mitral valve annulus.
  • BACKGROUND OF THE INVENTION
  • The human heart generally includes four valves. Of these valves, a most critical one is known as the mitral valve. The mitral valve is located in the left atrial ventricular opening between the left atrium and left ventricle. The mitral valve is intended to prevent regurgitation of blood from the left ventricle into the left atrium when the left ventricle contracts. In preventing blood regurgitation the mitral valve must be able to withstand considerable back pressure as the left ventricle contracts.
  • The valve cusps of the mitral valve are anchored to muscular wall of the heart by delicate but strong fibrous cords in order to support the cusps during left ventricular contraction. In a healthy mitral valve, the geometry of the mitral valve ensures that the cusps overlie each other to preclude regurgitation of the blood during left ventricular contraction.
  • The normal functioning of the mitral valve in preventing regurgitation can be impaired by dilated cardiomyopathy caused by disease or certain natural defects. For example, certain diseases may cause dilation of the mitral valve annulus. This can result in deformation of the mitral valve geometry to cause ineffective closure of the mitral valve during left ventricular contraction. Such ineffective closure results in leakage through the mitral valve and regurgitation. Diseases such as bacterial inflammations of the heart or heart failure can cause the aforementioned distortion or dilation of the mitral valve annulus. Needless to say, mitral valve regurgitation must not go uncorrected.
  • One method of repairing a mitral valve heaving impaired function is to completely replace the valve. This method has been found to be particularly suitable for replacing a mitral valve when one of the cusps has been severely damaged or deformed. While the replacement of the entire valve eliminates the immediate problem associated with a dilated mitral valve annulus, presently available prosthetic heart valves do not possess the same durability as natural heart valves.
  • Various other surgical procedures have been developed to correct the deformation of the mitral valve annulus and thus retain the intact natural heart valve function. These surgical techniques involve repairing the shape of the dilated or deformed valve annulus. Such techniques, generally known as annuloplasty, require surgically restricting the valve annulus to minimize dilation. Here, a prosthesis is typically sutured about the base of the valve leaflets to reshape the valve annulus and restrict the movement of the valve annulus during the opening and closing of the mitral valve.
  • Many different types of prostheses have been developed for use in such surgery. In general, prostheses are annular or partially annular shaped members which fit about the base of the valve annulus. The annular or partially annular shaped members may be formed from a rigid material, such as a metal, or from a flexible material.
  • While the prior art methods mentioned above have been able to achieve some success in treating mitral regurgitation, they have not been without problems and potential adverse consequences. For example, these procedures require open heart surgery. Such procedures are expensive, are extremely invasive requiring considerable recovery time, and pose the concomitant mortality risks associated with such procedures. Moreover, such open heart procedures are particularly stressful on patients with a comprised cardiac condition. Given these factors, such procedures are often reserved as a last resort and hence are employed late in the mitral regurgitation progression. Further, the effectiveness of such procedures is difficult to assess during the procedure and may not be known until a much later time. Hence, the ability to make adjustments to or changes in the prostheses to obtain optimum effectiveness is extremely limited. Later corrections, if made at all, require still another open heart surgery.
  • An improved therapy to treat mitral regurgitation without resorting to open heart surgery has recently been proposed. This is rendered possible by the realization that the coronary sinus of a heart is near to and at least partially encircles the mitral valve annulus and then extends into a venous system including the great cardiac vein. As used herein, the term “coronary sinus” is meant to refer to not only the coronary sinus itself but in addition, the venous system associated with the coronary sinus including the great cardiac vein. The therapy contemplates the use of a device introduced into the coronary sinus to reshape and advantageously effect the geometry of the mitral valve annulus.
  • The device includes a resilient member having a cross sectional dimension for being received within the coronary sinus of the heart and a longitudinal dimension having an unstressed arched configuration when placed in the coronary sinus. The device partially encircles and exerts an inward pressure on the mitral valve. The inward pressure constricts the mitral valve annulus, or at least a portion of it, to essentially restore the mitral valve geometry. This promotes effective valve sealing action and eliminates mitral regurgitation.
  • The device may be implanted in the coronary sinus using only percutaneous techniques similar to the techniques used to implant cardiac leads such as pacemaker leads. One proposed system for implanting the device includes an elongated introducer configured for being releasably coupled to the device. The introducer is preferably flexible to permit it to advance the device into the heart and into the coronary sinus through the coronary sinus ostium. To promote guidance, an elongated sheath is first advanced into the coronary sinus. Then, the device and introducer are moved through a lumen of the sheath until the device is in position within the coronary sinus. Because the device is formed of resilient material, it conforms to the curvatures of the lumen as it is advanced through the sheath. The sheath is then partially retracted to permit the device to assume its unstressed arched configuration. Once the device is properly positioned, the introducer is then decoupled from the device and retracted through the sheath. The procedure is then completed by the retraction of the sheath. As a result, the device is left within the coronary sinus to exert the inward pressure on the mitral valve to restore mitral valve geometry.
  • The foregoing therapy has many advantages over the traditional open heart surgery approach. Since the device, system and method may be employed in a comparatively noninvasive procedure, mitral valve regurgitation may be treated at an early stage in the mitral regurgitation progression. Further, the device may be placed with relative ease by any minimally invasive cardiologist. Still further, since the heart remains completely intact throughout the procedure, the effectiveness of the procedure may be readily determined. Moreover, should adjustments be deemed desirable, such adjustments may be made during the procedure and before the patient is sent to recovery.
  • Another approach to treat mitral regurgitation with a device in the coronary sinus is based upon the observation that the application of a localized force against a discrete portion of the mitral valve annulus can terminate mitral regurgitation. This suggests that mitral regurgitation may be localized and nonuniform. Hence, the device applies a force to one or more discrete portions of the atrial wall of the coronary sinus to provide localized mitral valve annulus reshaping instead of generalized reshaping of the mitral valve annulus. Such localized therapy would have all the benefits of the generalized therapy. In addition, a localized therapy device may be easier to implant and adjust.
  • A still further approach to treat mitral regurgitation from the coronary sinus of the heart contemplates a device having a first anchor configured to be positioned within and fixed to the coronary sinus of the heart adjacent the mitral valve annulus within the heart, a cable fixed to the first anchor and extending proximally from the first anchor within the heart, a second anchor configured to be positioned in and fixed in the heart proximal to the first anchor and arranged to slidingly receive the cable, and a lock that locks the cable on the second anchor. When the first and second anchors are fixed within the heart, the cable may be drawn proximally and locked on the second anchor. The geometry of the mitral valve is thereby effected. This approach provides flexibility in that the second anchor may be positioned and fixed in the coronary sinus or alternatively, the second anchor may be positioned and fixed in the right atrium. This approach further allows adjustments in the cable tension after implant.
  • A still further alternative for treating mitral regurgitation contemplates a device having a first anchor configured to be positioned within and anchored to the coronary sinus of the heart adjacent the mitral valve annulus within the heart. A second anchor is configured to be positioned within the heart proximal to the first anchor and adjacent the mitral valve annulus within the heart. A connecting member, having a fixed length, is permanently attached to the first and second anchors. As a result, when the first and second anchors are within the heart with the first anchor anchored in the coronary sinus, the second anchor may be displaced proximally to effect the geometry of the mitral valve annulus and released to maintain the effect on the mitral valve geometry. The second anchor may be configured, when deployed, to anchor against distal movement but be moveable proximally within the coronary sinus. The present invention provides a still further approach for treating mitral regurgitation.
  • SUMMARY OF THE INVENTION
  • The invention provides a device for effecting tissue geometry of an organ. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the tissue and a final unstressed and undistorted configuration after the tissue piercing ends pierce the tissue to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
  • The present invention further provides a device for effecting mitral valve annulus geometry of a heart. The device includes first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions. The connection portion has an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
  • The initial configuration of the connection portion may be a first arched configuration and the final configuration of the connection portion may be a second arched configuration, wherein the second arched configuration is arched in a direction opposite the first arched configuration. The device may be configured such that when the connection portion is in the second arched configuration, the tissue piercing ends of the leg portions point toward each other. The leg portions and connection portion are preferably formed of the same material stock, as from Nitinol, for example.
  • The invention further provides a device for effecting mitral valve annulus geometry of a heart. The device includes first and second tissue piercing portions, each tissue piercing portion terminating in a tissue piercing end, and a connection portion extending between the first and second tissue piercing portions, the connection portion having an initial stressed and distorted configuration to separate the first and second tissue piercing portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second tissue piercing portions by a second distance, the second distance being shorter than the first distance.
  • The invention further provides an assembly for effecting mitral valve annulus geometry of a heart. The assembly includes an elongated catheter being placeable in the coronary sinus of the heart adjacent the mitral valve annulus. The assembly further includes at least one staple carried within the catheter, the at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance. The assembly further includes a tool that forces the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration.
  • The at least one staple is preferably configured so that the tissue piercing ends of the first and second leg portions point away from each other when the connection portion is in the initial configuration and the tissue piercing ends of the first and second leg portions point toward each other when the connection portion is in the final configuration.
  • The catheter preferably includes a tubular wall wherein the tool forces the at least one staple through the tubular wall of the catheter. To that end, the tubular wall may include a break-away slot adjacent the at least one staple that permits the at least one staple to be forced therethrough.
  • The at least one staple may comprise a plurality of staples. The catheter tubular wall may in turn include a plurality of break-away slots, each slot being adjacent to a respective given one of the staples, the slots permitting the staples to be forced through the tubular wall of the catheter and into the mitral valve annulus. The tool is preferably configured to force the plurality of staples from the catheter substantially simultaneously.
  • The assembly may further include an urging member that urges the catheter along and against a wall of the coronary sinus adjacent to the mitral valve annulus. The urging member may be an elongated balloon carried by the catheter.
  • The invention still further provides a method of effecting mitral valve annulus geometry of a heart. The method includes the steps of providing at least one staple including first and second leg portions, each leg portion terminating in a tissue piercing end, and a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance, placing the at least one staple into a catheter, and locating the catheter in the coronary sinus of the heart so that the at least one staple is adjacent the mitral valve annulus. The method includes the further step of releasing the at least one staple from the catheter to cause the tissue piercing ends of the first and second leg portions of the at least one staple to pierce the mitral valve annulus with the connection portion of the at least one staple in the initial configuration and causing the connection portion to assume the final configuration.
  • The invention still further provides an assembly for effecting mitral valve annulus geometry of a heart. The assembly includes
  • INCORPORATION BY REFERENCE
  • All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The novel features of the invention are set forth with particularity in the appended claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
  • The features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further aspects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like reference numerals identify identical elements, and wherein:
  • FIG. 1 is a superior view of a human heart with the atria removed;
  • FIG. 2 is a side plan view of a staple device embodying the present invention shown in an initial stressed and distorted configuration within a deployment catheter;
  • FIG. 3 is a side plan view of the staple device of FIG. 2 shown in a final unstressed and undistorted configuration;
  • FIG. 4 is a side view of the deployment catheter illustrating a slot portion through which the staple device may be forced for deployment;
  • FIG. 5 is a side view illustrating the staple after being forced through the slot portion of the catheter;
  • FIG. 6 is a side view of an assembly embodying the present invention shown within a coronary sinus and ready for deployment of a plurality of staple devices in accordance with the present invention;
  • FIG. 7 is a superior view of a human heart similar to FIG. 1 illustrating a first step in the deployment of mitral valve staple devices embodying the present invention;
  • FIG. 8 is a view similar to FIG. 7 illustrating a further step in the deployment of the staple devices; and
  • FIG. 9 is a superior view of a human heart similar to FIG. 7 illustrating the mitral valve staple devices deployed in the heart.
  • DETAILED DESCRIPTION OF THE INVENTION
  • While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.
  • Referring now to FIG. 1, it is a superior view of a human heart 10 with the atria removed to expose the mitral valve 12, the coronary sinus 14, the coronary artery 15, and the circumflex artery 17 of the heart 10 to lend a better understanding of the present invention. Also generally shown in FIG. 1 are the pulmonary valve 22, the aortic valve 24, and the tricuspid valve 26 of the heart 10.
  • The mitral valve 12 includes an anterior cusp 16, a posterior cusp 18 and an annulus 20. The annulus encircles the cusps 16 and 18 and maintains their spacing to provide a complete closure during a left ventricular contraction. As is well known, the coronary sinus 14 partially encircles the mitral valve 12 adjacent to the mitral valve annulus 20. As is also known, the coronary sinus is part of the venus system of the heart and extends along the AV groove between the left atrium and the left ventricle. This places the coronary sinus essentially within the same plane as the mitral valve annulus making the coronary sinus available for placement of the mitral valve therapy staple devices of the present invention therein.
  • FIG. 2 shows a mitral valve therapy staple device 30 embodying the present invention. The device 30 is shown confined within a deployment catheter 40 which will be described subsequently. The device 30 includes first and second tissue piercing leg portions 32 and 34 and a connection portion 36 between the leg portions 32 and 34. The leg portions 32 and 34 terminate in tissue piercing ends 33 and 35, respectively.
  • The device 30 is confined within the catheter 40 in a first or initial configuration. The initial configuration is exhibited by the connecting member 36 having a first arcuate or arched configuration, as illustrated, with the tissue piercing ends 33 and 35 pointing away from each other.
  • The device 30 is formed of a material having shape memory so that once deployed, the connection portion 36 assumes a second or final configuration to be described with respect to FIG. 3 wherein the connection portion assumes a second arched configuration which is arched in a direction opposite than the first arched configuration illustrated in FIG. 2. To that end, the device 30 may be formed of, for example, Nitinol, a material well known for shape memory characteristics. Other suitable materials may include stainless steel or biocompatible plastic materials. Preferably, the connection portion 36 and leg portions 32 and 34 are formed of the same material stock as, for example, from a strip of Nitinol.
  • When the staple device 30 is deployed in the heart, the device 30 assumes its final configuration illustrated in FIG. 3. Here it may be seen that the connection member 36 has assumed an arched configuration opposite than that shown in FIG. 2. The final configuration of the connection member 36 causes the leg portions 32 and 34 to be more closely spaced together. In addition, in accordance with this preferred embodiment, when the device 30 is in its final configuration, the tissue piercing ends 33 and 35 point towards each other.
  • Referring now to FIGS. 4 and 5, they illustrate the deployment catheter 40 in greater detail. Here it may be seen that the deployment catheter 40 includes a tubular wall 42 in which a slot 44 is formed. The staple device 30 is positioned adjacent the slot 44 to permit the staple device 30 to be forced through the tubular sidewall 42 and more particularly through the slot 44 for deployment in the heart. The slot 44 preferably comprises a reduced thickness of the tubular wall 42 to provide an effective seal prior to deployment but permitting a relatively modest force to urge the device 30 through the slot 44 and into the mitral valve annulus as will be described hereinafter. Hence, the slot 44 is a break-away slot providing seal integrity prior to deployment but permitting the staple 30 to be forced through the tubular wall 42 of the catheter 40 into the heart.
  • FIG. 6 is a side view showing the catheter 40 within the coronary sinus 14. Also illustrated in FIG. 6 is a tool 50 which may be utilized for forcing the staples 30 through the tubular wall 42 of the catheter 40. Also shown in FIG. 6 is an urging member 60 which urges the catheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus.
  • More specifically, the tool 50 includes a surface contour 52 which corresponds to the contour of the staple devices 30 when in the initial configuration. Displacement of the tool 50 in a proximal direction as indicated by the arrow 54 causes the tool 50 to urge or force the staple devices 30 through the tubular wall 42 of the catheter 40. As noted in FIG. 6, the plurality of staple devices 30 are urged or forced through the tubular wall 42 for deployment substantially simultaneously.
  • The urging member 60 preferably takes the form of an inflatable balloon 62. Preferably, the inflatable balloon 62 is inflatable by a conduit 64 and is carried by the catheter 40. Prior to deployment of the staple devices 30, the catheter 40 is placed in the coronary sinus adjacent the mitral valve annulus with the balloon 62 deflated. Thereafter, the balloon 62 is inflated so as to urge the catheter 40 against the wall of the coronary sinus adjacent the mitral valve annulus as illustrated. Thereafter, the tool 50 may be displaced proximally to urge or force the staple devices 30 through the tubular wall 42 of the catheter 40 for deployment.
  • The deployment of the staple devices 30 is shown more particularly in FIGS. 7 and 8. In FIG. 7, it can be seen that the catheter 40 is positioned within the coronary sinus 14 adjacent to the mitral valve annulus 20. The balloon 62 has been inflated so as to urge the catheter 40 against the wall of the coronary sinus 14 which is adjacent the mitral valve annulus 20. The assembly is now ready to deploy the mitral valve staple devices 30.
  • Referring now to FIG. 8, it will be noted that the tool 50 is being displaced proximally and is forcing the staple devices 30 through the tubular wall 42 of the catheter 40. The leg portions are extending through the wall of the coronary sinus into the mitral valve annulus 20 or at least near to the annulus. Once the mitral valve staple devices 30 have been forced through the catheter sidewall with the leg portions piercing the mitral valve annulus, the staple devices will assume their final configuration. This is shown more particularly in FIG. 9.
  • In FIG. 9, it can be seen that the connection portions 36 of the mitral valve staple devices 30 have assumed their final configuration. During the process of transitioning from the initial configuration to the final configuration, the tissue piercing leg portions have gathered-up mitral valve annulus tissue to tighten the mitral valve annulus. More specifically, as will be noted in FIG. 9, the radius of curvature of the mitral valve annulus 20 in a portion designated 70 has been dramatically increased. This tightening up of the mitral valve annulus will promote more efficient mitral valve action and advantageously terminate mitral regurgitation. While the tissue piercing leg portions are illustrated as piercing entirely through the mitral valve annulus, it will be appreciated by those skilled in the art that the mitral valve annulus wall need not necessarily be pierced entirely through and that the tissue piercing leg portions need only pierce into the mitral valve annulus.
  • While particular embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention as defined by the claims.

Claims (5)

1. A device for effecting mitral valve annulus geometry of a heart, the device comprising:
first and second leg portions, each leg portion terminating in a tissue piercing end; and
a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
2. The device of claim 1 wherein the leg portions and connection portion are formed of the same material stock.
3. The device of claim 2 wherein the leg portions and the connection portion are formed from Nitinol.
4. A device for effecting mitral valve annulus geometry of a heart, the device comprising:
first and second tissue piercing portions, each tissue piercing portion terminating in a tissue piercing end; and
a connection portion extending between the first and second tissue piercing portions, the connection portion having an initial stressed and distorted configuration to separate the first and second tissue piercing portions by a first distance when the tissue piercing ends pierce the mitral valve annulus and a final unstressed and undistorted configuration after the tissue piercing ends pierce the mitral valve annulus to separate the first and second tissue piercing portions by a second distance, the second distance being shorter than the first distance.
5. A device for effecting tissue geometry of an organ, the device comprising:
first and second leg portions, each leg portion terminating in a tissue piercing end; and
a connection portion extending between the first and second leg portions, the connection portion having an initial stressed and distorted configuration to separate the first and second leg portions by a first distance when the tissue piercing ends pierce the tissue and a final unstressed and undistorted configuration after the tissue piercing ends pierce the tissue to separate the first and second leg portions by a second distance, the second distance being shorter than the first distance.
US11/245,535 2002-03-06 2005-10-07 Transvenous staples, assembly and method for mitral valve repair Abandoned US20060030882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/245,535 US20060030882A1 (en) 2002-03-06 2005-10-07 Transvenous staples, assembly and method for mitral valve repair

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/093,323 US7004958B2 (en) 2002-03-06 2002-03-06 Transvenous staples, assembly and method for mitral valve repair
US11/245,535 US20060030882A1 (en) 2002-03-06 2005-10-07 Transvenous staples, assembly and method for mitral valve repair

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/093,323 Continuation US7004958B2 (en) 2002-03-06 2002-03-06 Transvenous staples, assembly and method for mitral valve repair

Publications (1)

Publication Number Publication Date
US20060030882A1 true US20060030882A1 (en) 2006-02-09

Family

ID=27804207

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/093,323 Expired - Lifetime US7004958B2 (en) 2002-03-06 2002-03-06 Transvenous staples, assembly and method for mitral valve repair
US11/245,535 Abandoned US20060030882A1 (en) 2002-03-06 2005-10-07 Transvenous staples, assembly and method for mitral valve repair

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/093,323 Expired - Lifetime US7004958B2 (en) 2002-03-06 2002-03-06 Transvenous staples, assembly and method for mitral valve repair

Country Status (3)

Country Link
US (2) US7004958B2 (en)
AU (1) AU2003220087A1 (en)
WO (1) WO2003075748A2 (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020161275A1 (en) * 1997-01-02 2002-10-31 Schweich Cyril J. Heart wall tension reduction apparatus and method
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20040215339A1 (en) * 2002-10-24 2004-10-28 Drasler William J. Venous valve apparatus and method
US20040220657A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US20050021121A1 (en) * 2001-11-01 2005-01-27 Cardiac Dimensions, Inc., A Delaware Corporation Adjustable height focal tissue deflector
US20050027351A1 (en) * 2001-05-14 2005-02-03 Cardiac Dimensions, Inc. A Washington Corporation Mitral valve regurgitation treatment device and method
US20050065594A1 (en) * 1999-10-21 2005-03-24 Scimed Life Systems, Inc. Implantable prosthetic valve
US20050065598A1 (en) * 2002-03-11 2005-03-24 Mathis Mark L. Device, assembly and method for mitral valve repair
US20050137685A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Reduced length tissue shaping device
US20050137451A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. A Washington Corporation Tissue shaping device with integral connector and crimp
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US20050149179A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US20050149182A1 (en) * 2001-12-05 2005-07-07 Alferness Clifton A. Anchor and pull mitral valve device and method
US20050216077A1 (en) * 2002-01-30 2005-09-29 Mathis Mark L Fixed length anchor and pull mitral valve device and method
US20050272969A1 (en) * 2001-12-05 2005-12-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US20060085066A1 (en) * 2002-04-03 2006-04-20 Boston Scientific Corporation Body lumen closure
US20060116758A1 (en) * 2003-06-05 2006-06-01 Gary Swinford Device, System and Method to Affect the Mitral Valve Annulus of a Heart
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US20060167544A1 (en) * 2005-01-20 2006-07-27 Cardiac Dimensions, Inc. Tissue Shaping Device
US20060173490A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US20060178730A1 (en) * 2005-02-07 2006-08-10 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20060178729A1 (en) * 2005-02-07 2006-08-10 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20060190074A1 (en) * 2005-02-23 2006-08-24 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060235509A1 (en) * 2005-04-15 2006-10-19 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060247672A1 (en) * 2005-04-27 2006-11-02 Vidlund Robert M Devices and methods for pericardial access
US20060253189A1 (en) * 2002-04-03 2006-11-09 Boston Scientific Corporation Artificial valve
US20060276891A1 (en) * 2003-12-19 2006-12-07 Gregory Nieminen Mitral Valve Annuloplasty Device with Twisted Anchor
US20060282157A1 (en) * 2005-06-10 2006-12-14 Hill Jason P Venous valve, system, and method
US20070055293A1 (en) * 2001-12-05 2007-03-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US20070066879A1 (en) * 2002-01-30 2007-03-22 Mathis Mark L Body lumen shaping device with cardiac leads
US20070067021A1 (en) * 2005-09-21 2007-03-22 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US20070135912A1 (en) * 2003-02-03 2007-06-14 Mathis Mark L Mitral valve device using conditioned shape memory alloy
US20070173930A1 (en) * 2006-01-20 2007-07-26 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20070239270A1 (en) * 2006-04-11 2007-10-11 Mathis Mark L Mitral Valve Annuloplasty Device with Vena Cava Anchor
US20080015407A1 (en) * 2003-05-02 2008-01-17 Mathis Mark L Device and Method for Modifying the Shape of a Body Organ
US20080021382A1 (en) * 2002-12-30 2008-01-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US20080087608A1 (en) * 2006-10-10 2008-04-17 Multiphase Systems Integration Compact multiphase inline bulk water separation method and system for hydrocarbon production
US20080126131A1 (en) * 2006-07-17 2008-05-29 Walgreen Co. Predictive Modeling And Risk Stratification Of A Medication Therapy Regimen
US20080269877A1 (en) * 2007-02-05 2008-10-30 Jenson Mark L Systems and methods for valve delivery
US20080300678A1 (en) * 2007-02-05 2008-12-04 Eidenschink Tracee E J Percutaneous valve, system and method
US20090030512A1 (en) * 2007-07-26 2009-01-29 Thielen Joseph M Circulatory valve, system and method
US20090164029A1 (en) * 2007-12-21 2009-06-25 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20090171456A1 (en) * 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US20100031793A1 (en) * 2008-08-11 2010-02-11 Hayner Louis R Catheter Cutting Tool
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US9445899B2 (en) 2012-08-22 2016-09-20 Joseph M. Arcidi Method and apparatus for mitral valve annuloplasty
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US11596771B2 (en) 2020-12-14 2023-03-07 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems

Families Citing this family (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6050936A (en) 1997-01-02 2000-04-18 Myocor, Inc. Heart wall tension reduction apparatus
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US6332893B1 (en) 1997-12-17 2001-12-25 Myocor, Inc. Valve to myocardium tension members device and method
US6260552B1 (en) 1998-07-29 2001-07-17 Myocor, Inc. Transventricular implant tools and devices
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US7811296B2 (en) 1999-04-09 2010-10-12 Evalve, Inc. Fixation devices for variation in engagement of tissue
JP4657456B2 (en) 1999-04-09 2011-03-23 イバルブ・インコーポレーテッド Method and apparatus for heart valve repair
US8216256B2 (en) 1999-04-09 2012-07-10 Evalve, Inc. Detachment mechanism for implantable fixation devices
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US7192442B2 (en) * 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
ATE381291T1 (en) * 2000-06-23 2008-01-15 Viacor Inc AUTOMATIC ANNUAL FOLDING FOR MITRAL VALVE REPAIR
US6602288B1 (en) * 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6913608B2 (en) * 2000-10-23 2005-07-05 Viacor, Inc. Automated annular plication for mitral valve repair
US7186264B2 (en) * 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
US8202315B2 (en) 2001-04-24 2012-06-19 Mitralign, Inc. Catheter-based annuloplasty using ventricularly positioned catheter
US20060069429A1 (en) * 2001-04-24 2006-03-30 Spence Paul A Tissue fastening systems and methods utilizing magnetic guidance
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US20060020336A1 (en) * 2001-10-23 2006-01-26 Liddicoat John R Automated annular plication for mitral valve repair
US6949122B2 (en) * 2001-11-01 2005-09-27 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US7311729B2 (en) * 2002-01-30 2007-12-25 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US6793673B2 (en) * 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6960229B2 (en) * 2002-01-30 2005-11-01 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7048754B2 (en) 2002-03-01 2006-05-23 Evalve, Inc. Suture fasteners and methods of use
US7004958B2 (en) 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair
US6790214B2 (en) * 2002-05-17 2004-09-14 Esophyx, Inc. Transoral endoscopic gastroesophageal flap valve restoration device, assembly, system and method
US7753924B2 (en) * 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20050216078A1 (en) * 2002-06-13 2005-09-29 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US20040243227A1 (en) * 2002-06-13 2004-12-02 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US9949829B2 (en) 2002-06-13 2018-04-24 Ancora Heart, Inc. Delivery devices and methods for heart valve repair
US7588582B2 (en) * 2002-06-13 2009-09-15 Guided Delivery Systems Inc. Methods for remodeling cardiac tissue
US20060241656A1 (en) * 2002-06-13 2006-10-26 Starksen Niel F Delivery devices and methods for heart valve repair
US20060122633A1 (en) * 2002-06-13 2006-06-08 John To Methods and devices for termination
US8287555B2 (en) * 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7666193B2 (en) 2002-06-13 2010-02-23 Guided Delivery Sytems, Inc. Delivery devices and methods for heart valve repair
US8641727B2 (en) 2002-06-13 2014-02-04 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
US7753858B2 (en) * 2002-06-13 2010-07-13 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7758637B2 (en) * 2003-02-06 2010-07-20 Guided Delivery Systems, Inc. Delivery devices and methods for heart valve repair
US7883538B2 (en) * 2002-06-13 2011-02-08 Guided Delivery Systems Inc. Methods and devices for termination
EP1530441B1 (en) 2002-06-13 2017-08-02 Ancora Heart, Inc. Devices and methods for heart valve repair
US7753922B2 (en) * 2003-09-04 2010-07-13 Guided Delivery Systems, Inc. Devices and methods for cardiac annulus stabilization and treatment
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US20050119735A1 (en) 2002-10-21 2005-06-02 Spence Paul A. Tissue fastening systems and methods utilizing magnetic guidance
JP2006503651A (en) * 2002-10-21 2006-02-02 ミトラリグン・インコーポレーテッド Method and apparatus for performing catheter-based annuloplasty surgery using plication
US7981152B1 (en) 2004-12-10 2011-07-19 Advanced Cardiovascular Systems, Inc. Vascular delivery system for accessing and delivering devices into coronary sinus and other vascular sites
US8187324B2 (en) 2002-11-15 2012-05-29 Advanced Cardiovascular Systems, Inc. Telescoping apparatus for delivering and adjusting a medical device in a vessel
US9149602B2 (en) 2005-04-22 2015-10-06 Advanced Cardiovascular Systems, Inc. Dual needle delivery system
US7335213B1 (en) 2002-11-15 2008-02-26 Abbott Cardiovascular Systems Inc. Apparatus and methods for heart valve repair
US7485143B2 (en) 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US7404824B1 (en) 2002-11-15 2008-07-29 Advanced Cardiovascular Systems, Inc. Valve aptation assist device
US20040186566A1 (en) * 2003-03-18 2004-09-23 Hindrichs Paul J. Body tissue remodeling methods and apparatus
US10646229B2 (en) 2003-05-19 2020-05-12 Evalve, Inc. Fixation devices, systems and methods for engaging tissue
US20060136053A1 (en) * 2003-05-27 2006-06-22 Rourke Jonathan M Method and apparatus for improving mitral valve function
EP1653889A4 (en) * 2003-07-23 2007-04-04 Viacor Inc Method and apparatus for improving mitral valve function
US7534204B2 (en) * 2003-09-03 2009-05-19 Guided Delivery Systems, Inc. Cardiac visualization devices and methods
US7998112B2 (en) 2003-09-30 2011-08-16 Abbott Cardiovascular Systems Inc. Deflectable catheter assembly and method of making same
US20050273138A1 (en) * 2003-12-19 2005-12-08 Guided Delivery Systems, Inc. Devices and methods for anchoring tissue
US8864822B2 (en) * 2003-12-23 2014-10-21 Mitralign, Inc. Devices and methods for introducing elements into tissue
US7431726B2 (en) * 2003-12-23 2008-10-07 Mitralign, Inc. Tissue fastening systems and methods utilizing magnetic guidance
EP2308425B2 (en) 2004-03-11 2023-10-18 Percutaneous Cardiovascular Solutions Pty Limited Percutaneous Heart Valve Prosthesis
EP3628239B1 (en) 2004-05-14 2022-04-27 Evalve, Inc. Locking mechanisms for fixation devices for engaging tissue
EP1796597B1 (en) 2004-09-14 2013-01-09 Edwards Lifesciences AG Device for treatment of heart valve regurgitation
AU2005289474B2 (en) 2004-09-27 2010-12-09 Evalve, Inc. Methods and devices for tissue grasping and assessment
US8052592B2 (en) 2005-09-27 2011-11-08 Evalve, Inc. Methods and devices for tissue grasping and assessment
US20060135966A1 (en) * 2004-11-15 2006-06-22 Laurent Schaller Catheter-based tissue remodeling devices and methods
SE531468C2 (en) * 2005-04-21 2009-04-14 Edwards Lifesciences Ag An apparatus for controlling blood flow
US8333777B2 (en) 2005-04-22 2012-12-18 Benvenue Medical, Inc. Catheter-based tissue remodeling devices and methods
US8951285B2 (en) 2005-07-05 2015-02-10 Mitralign, Inc. Tissue anchor, anchoring system and methods of using the same
US9492277B2 (en) 2005-08-30 2016-11-15 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US9101338B2 (en) * 2006-05-03 2015-08-11 Mayo Foundation For Medical Education And Research Soft body tissue remodeling methods and apparatus
US8932348B2 (en) 2006-05-18 2015-01-13 Edwards Lifesciences Corporation Device and method for improving heart valve function
CN102283721B (en) 2006-06-01 2015-08-26 爱德华兹生命科学公司 For improving the prosthetic insert of heart valve function
US20080177380A1 (en) * 2007-01-19 2008-07-24 Starksen Niel F Methods and devices for heart tissue repair
US11660190B2 (en) 2007-03-13 2023-05-30 Edwards Lifesciences Corporation Tissue anchors, systems and methods, and devices
US8911461B2 (en) * 2007-03-13 2014-12-16 Mitralign, Inc. Suture cutter and method of cutting suture
US20080228265A1 (en) * 2007-03-13 2008-09-18 Mitralign, Inc. Tissue anchors, systems and methods, and devices
US8220689B2 (en) * 2007-05-02 2012-07-17 Endogene Pty Ltd Device and method for delivering shape-memory staples
DK2142106T3 (en) * 2007-05-02 2017-01-16 Endogene Ltd Device for dispensing staples of a shape memory alloy
US20080287989A1 (en) * 2007-05-17 2008-11-20 Arch Day Design, Llc Tissue holding implants
WO2009094585A2 (en) * 2008-01-24 2009-07-30 Coherex Medical, Inc. Methods and apparatus for reducing valve prolaspe
JP2011510797A (en) 2008-02-06 2011-04-07 ガイデッド デリバリー システムズ, インコーポレイテッド Multiple window guide tunnel
US20090276040A1 (en) 2008-05-01 2009-11-05 Edwards Lifesciences Corporation Device and method for replacing mitral valve
US7954688B2 (en) * 2008-08-22 2011-06-07 Medtronic, Inc. Endovascular stapling apparatus and methods of use
US8945211B2 (en) * 2008-09-12 2015-02-03 Mitralign, Inc. Tissue plication device and method for its use
EP2349019B1 (en) 2008-10-10 2020-03-25 Ancora Heart, Inc. Termination devices and related methods
US8795298B2 (en) 2008-10-10 2014-08-05 Guided Delivery Systems Inc. Tether tensioning devices and related methods
EP2358297B1 (en) 2008-11-21 2019-09-11 Percutaneous Cardiovascular Solutions Pty Limited Heart valve prosthesis
US20100198192A1 (en) 2009-01-20 2010-08-05 Eugene Serina Anchor deployment devices and related methods
US20100261662A1 (en) * 2009-04-09 2010-10-14 Endologix, Inc. Utilization of mural thrombus for local drug delivery into vascular tissue
EP2445417A2 (en) 2009-06-26 2012-05-02 QuickRing Medical Technologies Ltd. Surgical stapler
US20110077733A1 (en) * 2009-09-25 2011-03-31 Edwards Lifesciences Corporation Leaflet contacting apparatus and method
WO2011063288A2 (en) * 2009-11-20 2011-05-26 Peter Karl Johansson Implantable tissue structure modifiers and methods for using the same
US9861350B2 (en) 2010-09-03 2018-01-09 Ancora Heart, Inc. Devices and methods for anchoring tissue
WO2012158186A1 (en) * 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Percutaneous mitral annulus mini-plication
US8814932B2 (en) 2011-05-17 2014-08-26 Boston Scientific Scimed, Inc. Annuloplasty ring with piercing wire and segmented wire lumen
EP2709559B1 (en) 2011-05-17 2015-01-21 Boston Scientific Scimed, Inc. Annuloplasty ring with anchors fixed by curing polymer
WO2012158187A1 (en) 2011-05-17 2012-11-22 Boston Scientific Scimed, Inc. Corkscrew annuloplasty device
US8945177B2 (en) 2011-09-13 2015-02-03 Abbott Cardiovascular Systems Inc. Gripper pusher mechanism for tissue apposition systems
CA2900930A1 (en) 2012-02-13 2013-08-22 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US10076414B2 (en) 2012-02-13 2018-09-18 Mitraspan, Inc. Method and apparatus for repairing a mitral valve
US10070857B2 (en) 2013-08-31 2018-09-11 Mitralign, Inc. Devices and methods for locating and implanting tissue anchors at mitral valve commissure
US10390943B2 (en) 2014-03-17 2019-08-27 Evalve, Inc. Double orifice device for transcatheter mitral valve replacement
US9572666B2 (en) 2014-03-17 2017-02-21 Evalve, Inc. Mitral valve fixation device removal devices and methods
US10188392B2 (en) 2014-12-19 2019-01-29 Abbott Cardiovascular Systems, Inc. Grasping for tissue repair
EP3265004B1 (en) 2015-03-05 2023-06-28 Ancora Heart, Inc. Devices of visualizing and determining depth of penetration in cardiac tissue
US10524912B2 (en) 2015-04-02 2020-01-07 Abbott Cardiovascular Systems, Inc. Tissue fixation devices and methods
CA2985659A1 (en) 2015-05-12 2016-11-17 Ancora Heart, Inc. Device and method for releasing catheters from cardiac structures
US10376673B2 (en) 2015-06-19 2019-08-13 Evalve, Inc. Catheter guiding system and methods
US10238494B2 (en) 2015-06-29 2019-03-26 Evalve, Inc. Self-aligning radiopaque ring
US10667815B2 (en) 2015-07-21 2020-06-02 Evalve, Inc. Tissue grasping devices and related methods
US10413408B2 (en) 2015-08-06 2019-09-17 Evalve, Inc. Delivery catheter systems, methods, and devices
US10238495B2 (en) 2015-10-09 2019-03-26 Evalve, Inc. Delivery catheter handle and methods of use
US10736632B2 (en) 2016-07-06 2020-08-11 Evalve, Inc. Methods and devices for valve clip excision
US11071564B2 (en) 2016-10-05 2021-07-27 Evalve, Inc. Cardiac valve cutting device
US10363138B2 (en) 2016-11-09 2019-07-30 Evalve, Inc. Devices for adjusting the curvature of cardiac valve structures
US10398553B2 (en) 2016-11-11 2019-09-03 Evalve, Inc. Opposing disk device for grasping cardiac valve tissue
US10426616B2 (en) 2016-11-17 2019-10-01 Evalve, Inc. Cardiac implant delivery system
WO2018094258A1 (en) 2016-11-18 2018-05-24 Ancora Heart, Inc. Myocardial implant load sharing device and methods to promote lv function
US10779837B2 (en) 2016-12-08 2020-09-22 Evalve, Inc. Adjustable arm device for grasping tissues
US10314586B2 (en) 2016-12-13 2019-06-11 Evalve, Inc. Rotatable device and method for fixing tricuspid valve tissue
US10842619B2 (en) 2017-05-12 2020-11-24 Edwards Lifesciences Corporation Prosthetic heart valve docking assembly
US11065119B2 (en) 2017-05-12 2021-07-20 Evalve, Inc. Long arm valve repair clip
CN111655199B (en) 2018-01-22 2023-09-26 爱德华兹生命科学公司 Heart-shaped maintenance anchor
US11285003B2 (en) 2018-03-20 2022-03-29 Medtronic Vascular, Inc. Prolapse prevention device and methods of use thereof
US11026791B2 (en) 2018-03-20 2021-06-08 Medtronic Vascular, Inc. Flexible canopy valve repair systems and methods of use
WO2021011659A1 (en) 2019-07-15 2021-01-21 Ancora Heart, Inc. Devices and methods for tether cutting

Citations (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055861A (en) * 1975-04-11 1977-11-01 Rhone-Poulenc Industries Support for a natural human heart valve
US4164046A (en) * 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
US4362413A (en) * 1979-12-10 1982-12-07 Exxon Production Research Co. Retrievable connector assembly
US4485816A (en) * 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4550870A (en) * 1983-10-13 1985-11-05 Alchemia Ltd. Partnership Stapling device
US4588395A (en) * 1978-03-10 1986-05-13 Lemelson Jerome H Catheter and method
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US5061277A (en) * 1986-08-06 1991-10-29 Baxter International Inc. Flexible cardiac valvular support prosthesis
US5250071A (en) * 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5261916A (en) * 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5265601A (en) * 1992-05-01 1993-11-30 Medtronic, Inc. Dual chamber cardiac pacing from a single electrode
US5350420A (en) * 1989-07-31 1994-09-27 Baxter International Inc. Flexible annuloplasty ring and holder
US5474557A (en) * 1993-09-21 1995-12-12 Mai; Christian Multibranch osteosynthesis clip with dynamic compression and self-retention
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5554177A (en) * 1995-03-27 1996-09-10 Medtronic, Inc. Method and apparatus to optimize pacing based on intensity of acoustic signal
US5562698A (en) * 1994-03-09 1996-10-08 Cook Incorporated Intravascular treatment system
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US5676671A (en) * 1995-04-12 1997-10-14 Inoue; Kanji Device for introducing an appliance to be implanted into a catheter
US5733325A (en) * 1993-11-04 1998-03-31 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
US5794701A (en) * 1996-06-12 1998-08-18 Oceaneering International, Inc. Subsea connection
US5824071A (en) * 1996-09-16 1998-10-20 Circulation, Inc. Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5908404A (en) * 1996-05-13 1999-06-01 Elliott; James B. Methods for inserting an implant
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US5984944A (en) * 1997-09-12 1999-11-16 B. Braun Medical, Inc. Introducer for an expandable vascular occlusion device
US6027517A (en) * 1994-02-24 2000-02-22 Radiance Medical Systems, Inc. Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US6077295A (en) * 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US6096064A (en) * 1997-09-19 2000-08-01 Intermedics Inc. Four chamber pacer for dilated cardiomyopthy
US6099549A (en) * 1998-07-03 2000-08-08 Cordis Corporation Vascular filter for controlled release
US6099552A (en) * 1997-11-12 2000-08-08 Boston Scientific Corporation Gastrointestinal copression clips
US6129755A (en) * 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6171320B1 (en) * 1996-12-25 2001-01-09 Niti Alloys Technologies Ltd. Surgical clip
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US6254628B1 (en) * 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US6275730B1 (en) * 1997-03-14 2001-08-14 Uab Research Foundation Method and apparatus for treating cardiac arrythmia
US20010018611A1 (en) * 1999-06-30 2001-08-30 Solem Jan Otto Method and device for treatment of mitral insufficiency
US6299613B1 (en) * 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
US20010044568A1 (en) * 2000-01-31 2001-11-22 Langberg Jonathan J. Endoluminal ventricular retention
US6342067B1 (en) * 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6345198B1 (en) * 1998-01-23 2002-02-05 Pacesetter, Inc. Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6352561B1 (en) * 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6352553B1 (en) * 1995-12-14 2002-03-05 Gore Enterprise Holdings, Inc. Stent-graft deployment apparatus and method
US6358195B1 (en) * 2000-03-09 2002-03-19 Neoseed Technology Llc Method and apparatus for loading radioactive seeds into brachytherapy needles
US20020042651A1 (en) * 2000-06-30 2002-04-11 Liddicoat John R. Method and apparatus for performing a procedure on a cardiac valve
US20020042621A1 (en) * 2000-06-23 2002-04-11 Liddicoat John R. Automated annular plication for mitral valve repair
US20020049468A1 (en) * 2000-06-30 2002-04-25 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US20020055774A1 (en) * 2000-09-07 2002-05-09 Liddicoat John R. Fixation band for affixing a prosthetic heart valve to tissue
US6395017B1 (en) * 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US20020065554A1 (en) * 2000-10-25 2002-05-30 Streeter Richard B. Mitral shield
US20020087173A1 (en) * 2000-12-28 2002-07-04 Alferness Clifton A. Mitral valve constricting device, system and method
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US20020095167A1 (en) * 2000-10-23 2002-07-18 Liddicoat John R. Automated annular plication for mitral valve repair
US6442427B1 (en) * 2000-04-27 2002-08-27 Medtronic, Inc. Method and system for stimulating a mammalian heart
US20020138044A1 (en) * 2000-10-27 2002-09-26 Streeter Richard B. Intracardiovascular access (ICVATM) system
US20020151961A1 (en) * 2000-01-31 2002-10-17 Lashinski Randall T. Medical system and method for remodeling an extravascular tissue structure
US6503271B2 (en) * 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US20030018358A1 (en) * 1999-06-25 2003-01-23 Vahid Saadat Apparatus and methods for treating tissue
US20030078465A1 (en) * 2001-10-16 2003-04-24 Suresh Pai Systems for heart treatment
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US20030088305A1 (en) * 2001-10-26 2003-05-08 Cook Incorporated Prostheses for curved lumens
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6589208B2 (en) * 2000-06-20 2003-07-08 Applied Medical Resources Corporation Self-deploying catheter assembly
US20030130730A1 (en) * 2001-10-26 2003-07-10 Cohn William E. Method and apparatus for reducing mitral regurgitation
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US20030144697A1 (en) * 2002-01-30 2003-07-31 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US6602288B1 (en) * 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6602289B1 (en) * 1999-06-08 2003-08-05 S&A Rings, Llc Annuloplasty rings of particular use in surgery for the mitral valve
US6623521B2 (en) * 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US20040039443A1 (en) * 1999-06-30 2004-02-26 Solem Jan Otto Method and device for treatment of mitral insufficiency
US6716158B2 (en) * 2001-09-07 2004-04-06 Mardil, Inc. Method and apparatus for external stabilization of the heart
US6718985B2 (en) * 2001-04-24 2004-04-13 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty using local plications
US20040073302A1 (en) * 2002-02-05 2004-04-15 Jonathan Rourke Method and apparatus for improving mitral valve function
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US6776784B2 (en) * 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6790231B2 (en) * 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US6810882B2 (en) * 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US7004958B2 (en) * 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US589882A (en) * 1897-09-14 Sheet-flue range
FR2718035B1 (en) 1994-04-05 1996-08-30 Ela Medical Sa Method for controlling a double atrial pacemaker of the triple chamber type programmable in fallback mode.
US6391038B2 (en) * 1999-07-28 2002-05-21 Cardica, Inc. Anastomosis system and method for controlling a tissue site
WO2001050985A1 (en) 2000-01-14 2001-07-19 Viacor Incorporated Tissue annuloplasty band and apparatus and method for fashioning, sizing and implanting the same
DE60004959T2 (en) * 2000-01-18 2004-03-11 Société des Produits Nestlé S.A. Process for the production of candy bars
US7296577B2 (en) * 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
WO2002062408A2 (en) 2001-02-05 2002-08-15 Viacor, Inc. Method and apparatus for improving mitral valve function
WO2002096275A2 (en) 2001-03-05 2002-12-05 Viacor, Incorporated Apparatus and method for reducing mitral regurgitation
CA2441886C (en) 2001-03-23 2009-07-21 Viacor, Incorporated Method and apparatus for reducing mitral regurgitation
US7186264B2 (en) 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
US6824562B2 (en) 2002-05-08 2004-11-30 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US6793673B2 (en) 2002-12-26 2004-09-21 Cardiac Dimensions, Inc. System and method to effect mitral valve annulus of a heart
US6797001B2 (en) 2002-03-11 2004-09-28 Cardiac Dimensions, Inc. Device, assembly and method for mitral valve repair
US8287555B2 (en) * 2003-02-06 2012-10-16 Guided Delivery Systems, Inc. Devices and methods for heart valve repair
MXPA05002284A (en) * 2002-08-29 2006-02-10 Mitralsolutions Inc Implantable devices for controlling the internal circumference of an anatomic orifice or lumen.
DE60325634D1 (en) * 2002-10-01 2009-02-12 Ample Medical Inc DEVICES AND SYSTEMS FOR FORMING A HEADLAP ANNULUS
US7247134B2 (en) * 2002-11-12 2007-07-24 Myocor, Inc. Devices and methods for heart valve treatment
US7112219B2 (en) * 2002-11-12 2006-09-26 Myocor, Inc. Devices and methods for heart valve treatment
US7485143B2 (en) * 2002-11-15 2009-02-03 Abbott Cardiovascular Systems Inc. Apparatuses and methods for heart valve repair
US20040098116A1 (en) * 2002-11-15 2004-05-20 Callas Peter L. Valve annulus constriction apparatus and method
US7316708B2 (en) * 2002-12-05 2008-01-08 Cardiac Dimensions, Inc. Medical device delivery system
US7107528B2 (en) * 2002-12-20 2006-09-12 International Business Machines Corporation Automatic completion of dates
US7314485B2 (en) * 2003-02-03 2008-01-01 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055861A (en) * 1975-04-11 1977-11-01 Rhone-Poulenc Industries Support for a natural human heart valve
US4164046A (en) * 1977-05-16 1979-08-14 Cooley Denton Valve prosthesis
US4588395A (en) * 1978-03-10 1986-05-13 Lemelson Jerome H Catheter and method
US4362413A (en) * 1979-12-10 1982-12-07 Exxon Production Research Co. Retrievable connector assembly
US4485816A (en) * 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4550870A (en) * 1983-10-13 1985-11-05 Alchemia Ltd. Partnership Stapling device
US5061277A (en) * 1986-08-06 1991-10-29 Baxter International Inc. Flexible cardiac valvular support prosthesis
US5061277B1 (en) * 1986-08-06 2000-02-29 Baxter Travenol Lab Flexible cardiac valvular support prosthesis
US4830023A (en) * 1987-11-27 1989-05-16 Medi-Tech, Incorporated Medical guidewire
US5350420A (en) * 1989-07-31 1994-09-27 Baxter International Inc. Flexible annuloplasty ring and holder
US5261916A (en) * 1991-12-12 1993-11-16 Target Therapeutics Detachable pusher-vasoocclusive coil assembly with interlocking ball and keyway coupling
US5265601A (en) * 1992-05-01 1993-11-30 Medtronic, Inc. Dual chamber cardiac pacing from a single electrode
US5250071A (en) * 1992-09-22 1993-10-05 Target Therapeutics, Inc. Detachable embolic coil assembly using interlocking clasps and method of use
US5474557A (en) * 1993-09-21 1995-12-12 Mai; Christian Multibranch osteosynthesis clip with dynamic compression and self-retention
US6077297A (en) * 1993-11-04 2000-06-20 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5733325A (en) * 1993-11-04 1998-03-31 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
US5935161A (en) * 1993-11-04 1999-08-10 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US5891193A (en) * 1993-11-04 1999-04-06 C.R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
US6027517A (en) * 1994-02-24 2000-02-22 Radiance Medical Systems, Inc. Fixed focal balloon for interactive angioplasty and stent implantation catheter with focalized balloon
US5562698A (en) * 1994-03-09 1996-10-08 Cook Incorporated Intravascular treatment system
US5514161A (en) * 1994-04-05 1996-05-07 Ela Medical S.A. Methods and apparatus for controlling atrial stimulation in a double atrial triple chamber cardiac pacemaker
US5899882A (en) * 1994-10-27 1999-05-04 Novoste Corporation Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient
US5554177A (en) * 1995-03-27 1996-09-10 Medtronic, Inc. Method and apparatus to optimize pacing based on intensity of acoustic signal
US5676671A (en) * 1995-04-12 1997-10-14 Inoue; Kanji Device for introducing an appliance to be implanted into a catheter
US5601600A (en) * 1995-09-08 1997-02-11 Conceptus, Inc. Endoluminal coil delivery system having a mechanical release mechanism
US6352553B1 (en) * 1995-12-14 2002-03-05 Gore Enterprise Holdings, Inc. Stent-graft deployment apparatus and method
US5908404A (en) * 1996-05-13 1999-06-01 Elliott; James B. Methods for inserting an implant
US5794701A (en) * 1996-06-12 1998-08-18 Oceaneering International, Inc. Subsea connection
US6077295A (en) * 1996-07-15 2000-06-20 Advanced Cardiovascular Systems, Inc. Self-expanding stent delivery system
US5824071A (en) * 1996-09-16 1998-10-20 Circulation, Inc. Apparatus for treatment of ischemic heart disease by providing transvenous myocardial perfusion
US5895391A (en) * 1996-09-27 1999-04-20 Target Therapeutics, Inc. Ball lock joint and introducer for vaso-occlusive member
US6395017B1 (en) * 1996-11-15 2002-05-28 C. R. Bard, Inc. Endoprosthesis delivery catheter with sequential stage control
US6254628B1 (en) * 1996-12-09 2001-07-03 Micro Therapeutics, Inc. Intracranial stent
US6352561B1 (en) * 1996-12-23 2002-03-05 W. L. Gore & Associates Implant deployment apparatus
US6171320B1 (en) * 1996-12-25 2001-01-09 Niti Alloys Technologies Ltd. Surgical clip
US5961545A (en) * 1997-01-17 1999-10-05 Meadox Medicals, Inc. EPTFE graft-stent composite device
US6275730B1 (en) * 1997-03-14 2001-08-14 Uab Research Foundation Method and apparatus for treating cardiac arrythmia
US5984944A (en) * 1997-09-12 1999-11-16 B. Braun Medical, Inc. Introducer for an expandable vascular occlusion device
US6096064A (en) * 1997-09-19 2000-08-01 Intermedics Inc. Four chamber pacer for dilated cardiomyopthy
US5928258A (en) * 1997-09-26 1999-07-27 Corvita Corporation Method and apparatus for loading a stent or stent-graft into a delivery sheath
US6099552A (en) * 1997-11-12 2000-08-08 Boston Scientific Corporation Gastrointestinal copression clips
US6129755A (en) * 1998-01-09 2000-10-10 Nitinol Development Corporation Intravascular stent having an improved strut configuration
US6190406B1 (en) * 1998-01-09 2001-02-20 Nitinal Development Corporation Intravascular stent having tapered struts
US6503271B2 (en) * 1998-01-09 2003-01-07 Cordis Corporation Intravascular device with improved radiopacity
US6342067B1 (en) * 1998-01-09 2002-01-29 Nitinol Development Corporation Intravascular stent having curved bridges for connecting adjacent hoops
US6345198B1 (en) * 1998-01-23 2002-02-05 Pacesetter, Inc. Implantable stimulation system for providing dual bipolar sensing using an electrode positioned in proximity to the tricuspid valve and programmable polarity
US6623521B2 (en) * 1998-02-17 2003-09-23 Md3, Inc. Expandable stent with sliding and locking radial elements
US6099549A (en) * 1998-07-03 2000-08-08 Cordis Corporation Vascular filter for controlled release
US6299613B1 (en) * 1999-04-23 2001-10-09 Sdgi Holdings, Inc. Method for the correction of spinal deformities through vertebral body tethering without fusion
US6602289B1 (en) * 1999-06-08 2003-08-05 S&A Rings, Llc Annuloplasty rings of particular use in surgery for the mitral valve
US6626899B2 (en) * 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US20030018358A1 (en) * 1999-06-25 2003-01-23 Vahid Saadat Apparatus and methods for treating tissue
US6210432B1 (en) * 1999-06-29 2001-04-03 Jan Otto Solem Device and method for treatment of mitral insufficiency
US20010018611A1 (en) * 1999-06-30 2001-08-30 Solem Jan Otto Method and device for treatment of mitral insufficiency
US20040039443A1 (en) * 1999-06-30 2004-02-26 Solem Jan Otto Method and device for treatment of mitral insufficiency
US20030069636A1 (en) * 1999-06-30 2003-04-10 Solem Jan Otto Method for treatment of mitral insufficiency
US20010044568A1 (en) * 2000-01-31 2001-11-22 Langberg Jonathan J. Endoluminal ventricular retention
US20020016628A1 (en) * 2000-01-31 2002-02-07 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US6537314B2 (en) * 2000-01-31 2003-03-25 Ev3 Santa Rosa, Inc. Percutaneous mitral annuloplasty and cardiac reinforcement
US20040176840A1 (en) * 2000-01-31 2004-09-09 Langberg Jonathan J. Percutaneous mitral annuloplasty with hemodynamic monitoring
US20020103533A1 (en) * 2000-01-31 2002-08-01 Langberg Jonathan J. Percutaneous mitral annuloplasty and cardiac reinforcement
US20020151961A1 (en) * 2000-01-31 2002-10-17 Lashinski Randall T. Medical system and method for remodeling an extravascular tissue structure
US6358195B1 (en) * 2000-03-09 2002-03-19 Neoseed Technology Llc Method and apparatus for loading radioactive seeds into brachytherapy needles
US6569198B1 (en) * 2000-03-31 2003-05-27 Richard A. Wilson Mitral or tricuspid valve annuloplasty prosthetic device
US6442427B1 (en) * 2000-04-27 2002-08-27 Medtronic, Inc. Method and system for stimulating a mammalian heart
US6589208B2 (en) * 2000-06-20 2003-07-08 Applied Medical Resources Corporation Self-deploying catheter assembly
US20020042621A1 (en) * 2000-06-23 2002-04-11 Liddicoat John R. Automated annular plication for mitral valve repair
US20020042651A1 (en) * 2000-06-30 2002-04-11 Liddicoat John R. Method and apparatus for performing a procedure on a cardiac valve
US20020049468A1 (en) * 2000-06-30 2002-04-25 Streeter Richard B. Intravascular filter with debris entrapment mechanism
US6419696B1 (en) * 2000-07-06 2002-07-16 Paul A. Spence Annuloplasty devices and related heart valve repair methods
US20020055774A1 (en) * 2000-09-07 2002-05-09 Liddicoat John R. Fixation band for affixing a prosthetic heart valve to tissue
US6602288B1 (en) * 2000-10-05 2003-08-05 Edwards Lifesciences Corporation Minimally-invasive annuloplasty repair segment delivery template, system and method of use
US6723038B1 (en) * 2000-10-06 2004-04-20 Myocor, Inc. Methods and devices for improving mitral valve function
US20020095167A1 (en) * 2000-10-23 2002-07-18 Liddicoat John R. Automated annular plication for mitral valve repair
US20020065554A1 (en) * 2000-10-25 2002-05-30 Streeter Richard B. Mitral shield
US20020138044A1 (en) * 2000-10-27 2002-09-26 Streeter Richard B. Intracardiovascular access (ICVATM) system
US20020087173A1 (en) * 2000-12-28 2002-07-04 Alferness Clifton A. Mitral valve constricting device, system and method
US6810882B2 (en) * 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
US6790231B2 (en) * 2001-02-05 2004-09-14 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
US6718985B2 (en) * 2001-04-24 2004-04-13 Edwin J. Hlavka Method and apparatus for catheter-based annuloplasty using local plications
US6800090B2 (en) * 2001-05-14 2004-10-05 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US6676702B2 (en) * 2001-05-14 2004-01-13 Cardiac Dimensions, Inc. Mitral valve therapy assembly and method
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
US6776784B2 (en) * 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US6716158B2 (en) * 2001-09-07 2004-04-06 Mardil, Inc. Method and apparatus for external stabilization of the heart
US20050197693A1 (en) * 2001-10-16 2005-09-08 Extensia Medical, Inc. Systems for heart treatment
US20050197692A1 (en) * 2001-10-16 2005-09-08 Extensia Medical, Inc. Systems for heart treatment
US20050197694A1 (en) * 2001-10-16 2005-09-08 Extensia Medical, Inc. Systems for heart treatment
US20030078465A1 (en) * 2001-10-16 2003-04-24 Suresh Pai Systems for heart treatment
US20030130730A1 (en) * 2001-10-26 2003-07-10 Cohn William E. Method and apparatus for reducing mitral regurgitation
US20030088305A1 (en) * 2001-10-26 2003-05-08 Cook Incorporated Prostheses for curved lumens
US20030083538A1 (en) * 2001-11-01 2003-05-01 Cardiac Dimensions, Inc. Focused compression mitral valve device and method
US6908478B2 (en) * 2001-12-05 2005-06-21 Cardiac Dimensions, Inc. Anchor and pull mitral valve device and method
US6764510B2 (en) * 2002-01-09 2004-07-20 Myocor, Inc. Devices and methods for heart valve treatment
US20030135267A1 (en) * 2002-01-11 2003-07-17 Solem Jan Otto Delayed memory device
US20040019377A1 (en) * 2002-01-14 2004-01-29 Taylor Daniel C. Method and apparatus for reducing mitral regurgitation
US20030144697A1 (en) * 2002-01-30 2003-07-31 Cardiac Dimensions, Inc. Fixed length anchor and pull mitral valve device and method
US20040073302A1 (en) * 2002-02-05 2004-04-15 Jonathan Rourke Method and apparatus for improving mitral valve function
US7004958B2 (en) * 2002-03-06 2006-02-28 Cardiac Dimensions, Inc. Transvenous staples, assembly and method for mitral valve repair

Cited By (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883539B2 (en) 1997-01-02 2011-02-08 Edwards Lifesciences Llc Heart wall tension reduction apparatus and method
US20020161275A1 (en) * 1997-01-02 2002-10-31 Schweich Cyril J. Heart wall tension reduction apparatus and method
US8460173B2 (en) 1997-01-02 2013-06-11 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US8267852B2 (en) 1997-01-02 2012-09-18 Edwards Lifesciences, Llc Heart wall tension reduction apparatus and method
US20100274076A1 (en) * 1997-01-02 2010-10-28 Edwards Lifesciences Llc Heart Wall Tension Reduction Apparatus and Method
US20050065594A1 (en) * 1999-10-21 2005-03-24 Scimed Life Systems, Inc. Implantable prosthetic valve
US7776053B2 (en) 2000-10-26 2010-08-17 Boston Scientific Scimed, Inc. Implantable valve system
US20050027351A1 (en) * 2001-05-14 2005-02-03 Cardiac Dimensions, Inc. A Washington Corporation Mitral valve regurgitation treatment device and method
US7828843B2 (en) 2001-05-14 2010-11-09 Cardiac Dimensions, Inc. Mitral valve therapy device, system and method
US8439971B2 (en) 2001-11-01 2013-05-14 Cardiac Dimensions, Inc. Adjustable height focal tissue deflector
US20050021121A1 (en) * 2001-11-01 2005-01-27 Cardiac Dimensions, Inc., A Delaware Corporation Adjustable height focal tissue deflector
US20100100175A1 (en) * 2001-11-01 2010-04-22 David Reuter Adjustable Height Focal Tissue Deflector
US7674287B2 (en) 2001-12-05 2010-03-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US7857846B2 (en) 2001-12-05 2010-12-28 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US8172898B2 (en) 2001-12-05 2012-05-08 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20050272969A1 (en) * 2001-12-05 2005-12-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US20050149182A1 (en) * 2001-12-05 2005-07-07 Alferness Clifton A. Anchor and pull mitral valve device and method
US20070055293A1 (en) * 2001-12-05 2007-03-08 Alferness Clifton A Device and method for modifying the shape of a body organ
US20060142854A1 (en) * 2001-12-05 2006-06-29 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20080319542A1 (en) * 2002-01-30 2008-12-25 Gregory Nieminen Tissue Shaping Device
US8974525B2 (en) 2002-01-30 2015-03-10 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US20080140191A1 (en) * 2002-01-30 2008-06-12 Cardiac Dimensions, Inc. Fixed Anchor and Pull Mitral Valve Device and Method
US20050216077A1 (en) * 2002-01-30 2005-09-29 Mathis Mark L Fixed length anchor and pull mitral valve device and method
US7828842B2 (en) 2002-01-30 2010-11-09 Cardiac Dimensions, Inc. Tissue shaping device
US10327900B2 (en) 2002-01-30 2019-06-25 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9320600B2 (en) 2002-01-30 2016-04-26 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US10206778B2 (en) 2002-01-30 2019-02-19 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US10052205B2 (en) 2002-01-30 2018-08-21 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US9956076B2 (en) 2002-01-30 2018-05-01 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9827098B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US9827100B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9827099B2 (en) 2002-01-30 2017-11-28 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US9597186B2 (en) 2002-01-30 2017-03-21 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US20070066879A1 (en) * 2002-01-30 2007-03-22 Mathis Mark L Body lumen shaping device with cardiac leads
US9408695B2 (en) 2002-01-30 2016-08-09 Cardiac Dimensions Pty. Ltd. Fixed anchor and pull mitral valve device and method
US20050065598A1 (en) * 2002-03-11 2005-03-24 Mathis Mark L. Device, assembly and method for mitral valve repair
US7682385B2 (en) 2002-04-03 2010-03-23 Boston Scientific Corporation Artificial valve
US20060085066A1 (en) * 2002-04-03 2006-04-20 Boston Scientific Corporation Body lumen closure
US20060253189A1 (en) * 2002-04-03 2006-11-09 Boston Scientific Corporation Artificial valve
US20050149180A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US8062358B2 (en) 2002-05-08 2011-11-22 Cardiac Dimensions, Inc. Body lumen device anchor, device and assembly
US20050149179A1 (en) * 2002-05-08 2005-07-07 Mathis Mark L. Body lumen device anchor, device and assembly
US9474608B2 (en) 2002-05-08 2016-10-25 Cardiac Dimensions Pty. Ltd. Body lumen device anchor, device and assembly
US20060173536A1 (en) * 2002-05-08 2006-08-03 Mathis Mark L Body lumen device anchor, device and assembly
US10456258B2 (en) 2002-05-08 2019-10-29 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US20080097594A1 (en) * 2002-05-08 2008-04-24 Cardiac Dimensions, Inc. Device and Method for Modifying the Shape of a Body Organ
US10456257B2 (en) 2002-05-08 2019-10-29 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US7828841B2 (en) 2002-05-08 2010-11-09 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20050187619A1 (en) * 2002-05-08 2005-08-25 Mathis Mark L. Body lumen device anchor, device and assembly
US20040215339A1 (en) * 2002-10-24 2004-10-28 Drasler William J. Venous valve apparatus and method
US7666224B2 (en) 2002-11-12 2010-02-23 Edwards Lifesciences Llc Devices and methods for heart valve treatment
US20110066234A1 (en) * 2002-12-05 2011-03-17 Gordon Lucas S Percutaneous Mitral Valve Annuloplasty Delivery System
US7837729B2 (en) 2002-12-05 2010-11-23 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty delivery system
US8075608B2 (en) 2002-12-05 2011-12-13 Cardiac Dimensions, Inc. Medical device delivery system
US8182529B2 (en) 2002-12-05 2012-05-22 Cardiac Dimensions, Inc. Percutaneous mitral valve annuloplasty device delivery method
US20080109059A1 (en) * 2002-12-05 2008-05-08 Cardiac Dimensions, Inc. Medical Device Delivery System
US20040111095A1 (en) * 2002-12-05 2004-06-10 Cardiac Dimensions, Inc. Medical device delivery system
US7780627B2 (en) 2002-12-30 2010-08-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US20080021382A1 (en) * 2002-12-30 2008-01-24 Boston Scientific Scimed, Inc. Valve treatment catheter and methods
US20100280602A1 (en) * 2003-02-03 2010-11-04 Cardiac Dimensions, Inc. Mitral Valve Device Using Conditioned Shape Memory Alloy
US7758639B2 (en) 2003-02-03 2010-07-20 Cardiac Dimensions, Inc. Mitral valve device using conditioned shape memory alloy
US20070135912A1 (en) * 2003-02-03 2007-06-14 Mathis Mark L Mitral valve device using conditioned shape memory alloy
US20040158321A1 (en) * 2003-02-12 2004-08-12 Cardiac Dimensions, Inc. Method of implanting a mitral valve therapy device
US20080015407A1 (en) * 2003-05-02 2008-01-17 Mathis Mark L Device and Method for Modifying the Shape of a Body Organ
US20040220657A1 (en) * 2003-05-02 2004-11-04 Cardiac Dimensions, Inc., A Washington Corporation Tissue shaping device with conformable anchors
US11452603B2 (en) 2003-05-02 2022-09-27 Cardiac Dimensions Pty. Ltd. Device and method for modifying the shape of a body organ
US20060161169A1 (en) * 2003-05-02 2006-07-20 Cardiac Dimensions, Inc., A Delaware Corporation Device and method for modifying the shape of a body organ
US11311380B2 (en) 2003-05-02 2022-04-26 Cardiac Dimensions Pty. Ltd. Device and method for modifying the shape of a body organ
US20050010240A1 (en) * 2003-06-05 2005-01-13 Cardiac Dimensions Inc., A Washington Corporation Device and method for modifying the shape of a body organ
US7887582B2 (en) 2003-06-05 2011-02-15 Cardiac Dimensions, Inc. Device and method for modifying the shape of a body organ
US20060116758A1 (en) * 2003-06-05 2006-06-01 Gary Swinford Device, System and Method to Affect the Mitral Valve Annulus of a Heart
US9301843B2 (en) 2003-12-19 2016-04-05 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US11318016B2 (en) 2003-12-19 2022-05-03 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20050137685A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Reduced length tissue shaping device
US7794496B2 (en) 2003-12-19 2010-09-14 Cardiac Dimensions, Inc. Tissue shaping device with integral connector and crimp
US20060191121A1 (en) * 2003-12-19 2006-08-31 Lucas Gordon Tissue Shaping Device with Integral Connector and Crimp
US20060276891A1 (en) * 2003-12-19 2006-12-07 Gregory Nieminen Mitral Valve Annuloplasty Device with Twisted Anchor
US7837728B2 (en) 2003-12-19 2010-11-23 Cardiac Dimensions, Inc. Reduced length tissue shaping device
US7854761B2 (en) 2003-12-19 2010-12-21 Boston Scientific Scimed, Inc. Methods for venous valve replacement with a catheter
US10449048B2 (en) 2003-12-19 2019-10-22 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US9526616B2 (en) 2003-12-19 2016-12-27 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US9956077B2 (en) 2003-12-19 2018-05-01 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US10166102B2 (en) 2003-12-19 2019-01-01 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20050137450A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc., A Washington Corporation Tapered connector for tissue shaping device
US8128681B2 (en) 2003-12-19 2012-03-06 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20110060405A1 (en) * 2003-12-19 2011-03-10 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20050137451A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. A Washington Corporation Tissue shaping device with integral connector and crimp
US7814635B2 (en) 2003-12-19 2010-10-19 Cardiac Dimensions, Inc. Method of making a tissue shaping device
US11109971B2 (en) 2003-12-19 2021-09-07 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US8721717B2 (en) 2003-12-19 2014-05-13 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US10869764B2 (en) 2003-12-19 2020-12-22 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20050137449A1 (en) * 2003-12-19 2005-06-23 Cardiac Dimensions, Inc. Tissue shaping device with self-expanding anchors
US8002824B2 (en) 2004-09-02 2011-08-23 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US8932349B2 (en) 2004-09-02 2015-01-13 Boston Scientific Scimed, Inc. Cardiac valve, system, and method
US9918834B2 (en) 2004-09-02 2018-03-20 Boston Scientific Scimed, Inc. Cardiac valve, system and method
US11033257B2 (en) 2005-01-20 2021-06-15 Cardiac Dimensions Pty. Ltd. Tissue shaping device
US20060167544A1 (en) * 2005-01-20 2006-07-27 Cardiac Dimensions, Inc. Tissue Shaping Device
US20060173490A1 (en) * 2005-02-01 2006-08-03 Boston Scientific Scimed, Inc. Filter system and method
US7854755B2 (en) 2005-02-01 2010-12-21 Boston Scientific Scimed, Inc. Vascular catheter, system, and method
US9622859B2 (en) 2005-02-01 2017-04-18 Boston Scientific Scimed, Inc. Filter system and method
US7670368B2 (en) 2005-02-07 2010-03-02 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20060178730A1 (en) * 2005-02-07 2006-08-10 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20060178729A1 (en) * 2005-02-07 2006-08-10 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US7780722B2 (en) 2005-02-07 2010-08-24 Boston Scientific Scimed, Inc. Venous valve apparatus, system, and method
US20110071625A1 (en) * 2005-02-23 2011-03-24 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9808341B2 (en) 2005-02-23 2017-11-07 Boston Scientific Scimed Inc. Valve apparatus, system and method
US7867274B2 (en) 2005-02-23 2011-01-11 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9370419B2 (en) 2005-02-23 2016-06-21 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060190074A1 (en) * 2005-02-23 2006-08-24 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US9861473B2 (en) 2005-04-15 2018-01-09 Boston Scientific Scimed Inc. Valve apparatus, system and method
US8512399B2 (en) 2005-04-15 2013-08-20 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060235509A1 (en) * 2005-04-15 2006-10-19 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20100100173A1 (en) * 2005-04-15 2010-04-22 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US7722666B2 (en) 2005-04-15 2010-05-25 Boston Scientific Scimed, Inc. Valve apparatus, system and method
US20060247672A1 (en) * 2005-04-27 2006-11-02 Vidlund Robert M Devices and methods for pericardial access
US8012198B2 (en) 2005-06-10 2011-09-06 Boston Scientific Scimed, Inc. Venous valve, system, and method
US11337812B2 (en) 2005-06-10 2022-05-24 Boston Scientific Scimed, Inc. Venous valve, system and method
US9028542B2 (en) 2005-06-10 2015-05-12 Boston Scientific Scimed, Inc. Venous valve, system, and method
US20060282157A1 (en) * 2005-06-10 2006-12-14 Hill Jason P Venous valve, system, and method
US20110230949A1 (en) * 2005-09-21 2011-09-22 Boston Scientific Scimed, Inc. Venous Valve, System, and Method With Sinus Pocket
US7951189B2 (en) 2005-09-21 2011-05-31 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8460365B2 (en) 2005-09-21 2013-06-11 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US20070067021A1 (en) * 2005-09-21 2007-03-22 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US20070129788A1 (en) * 2005-09-21 2007-06-07 Boston Scientific Scimed, Inc. Venous valve with sinus
US9474609B2 (en) 2005-09-21 2016-10-25 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US10548734B2 (en) 2005-09-21 2020-02-04 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
US8672997B2 (en) 2005-09-21 2014-03-18 Boston Scientific Scimed, Inc. Valve with sinus
US20070173930A1 (en) * 2006-01-20 2007-07-26 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US7799038B2 (en) 2006-01-20 2010-09-21 Boston Scientific Scimed, Inc. Translumenal apparatus, system, and method
US20070239270A1 (en) * 2006-04-11 2007-10-11 Mathis Mark L Mitral Valve Annuloplasty Device with Vena Cava Anchor
US11285005B2 (en) 2006-07-17 2022-03-29 Cardiac Dimensions Pty. Ltd. Mitral valve annuloplasty device with twisted anchor
US20080126131A1 (en) * 2006-07-17 2008-05-29 Walgreen Co. Predictive Modeling And Risk Stratification Of A Medication Therapy Regimen
US20080087608A1 (en) * 2006-10-10 2008-04-17 Multiphase Systems Integration Compact multiphase inline bulk water separation method and system for hydrocarbon production
US8348999B2 (en) 2007-01-08 2013-01-08 California Institute Of Technology In-situ formation of a valve
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
US20080269877A1 (en) * 2007-02-05 2008-10-30 Jenson Mark L Systems and methods for valve delivery
US9421083B2 (en) 2007-02-05 2016-08-23 Boston Scientific Scimed Inc. Percutaneous valve, system and method
US11504239B2 (en) 2007-02-05 2022-11-22 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US8470023B2 (en) 2007-02-05 2013-06-25 Boston Scientific Scimed, Inc. Percutaneous valve, system, and method
US20080300678A1 (en) * 2007-02-05 2008-12-04 Eidenschink Tracee E J Percutaneous valve, system and method
US7967853B2 (en) 2007-02-05 2011-06-28 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US10226344B2 (en) 2007-02-05 2019-03-12 Boston Scientific Scimed, Inc. Percutaneous valve, system and method
US20090030512A1 (en) * 2007-07-26 2009-01-29 Thielen Joseph M Circulatory valve, system and method
US8828079B2 (en) 2007-07-26 2014-09-09 Boston Scientific Scimed, Inc. Circulatory valve, system and method
US20110118831A1 (en) * 2007-12-21 2011-05-19 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US7892276B2 (en) 2007-12-21 2011-02-22 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20090164029A1 (en) * 2007-12-21 2009-06-25 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8414641B2 (en) 2007-12-21 2013-04-09 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US8137394B2 (en) 2007-12-21 2012-03-20 Boston Scientific Scimed, Inc. Valve with delayed leaflet deployment
US20090171456A1 (en) * 2007-12-28 2009-07-02 Kveen Graig L Percutaneous heart valve, system, and method
US8006594B2 (en) 2008-08-11 2011-08-30 Cardiac Dimensions, Inc. Catheter cutting tool
US20100031793A1 (en) * 2008-08-11 2010-02-11 Hayner Louis R Catheter Cutting Tool
US8250960B2 (en) 2008-08-11 2012-08-28 Cardiac Dimensions, Inc. Catheter cutting tool
US9668859B2 (en) 2011-08-05 2017-06-06 California Institute Of Technology Percutaneous heart valve delivery systems
US9445899B2 (en) 2012-08-22 2016-09-20 Joseph M. Arcidi Method and apparatus for mitral valve annuloplasty
US9744037B2 (en) 2013-03-15 2017-08-29 California Institute Of Technology Handle mechanism and functionality for repositioning and retrieval of transcatheter heart valves
US10390953B2 (en) 2017-03-08 2019-08-27 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US11399939B2 (en) 2017-03-08 2022-08-02 Cardiac Dimensions Pty. Ltd. Methods and devices for reducing paravalvular leakage
US11596771B2 (en) 2020-12-14 2023-03-07 Cardiac Dimensions Pty. Ltd. Modular pre-loaded medical implants and delivery systems

Also Published As

Publication number Publication date
WO2003075748A3 (en) 2003-12-31
US7004958B2 (en) 2006-02-28
WO2003075748A2 (en) 2003-09-18
AU2003220087A8 (en) 2003-09-22
US20030171776A1 (en) 2003-09-11
AU2003220087A1 (en) 2003-09-22

Similar Documents

Publication Publication Date Title
US7004958B2 (en) Transvenous staples, assembly and method for mitral valve repair
US20200008943A1 (en) Tissue shaping device
US7364588B2 (en) Device, assembly and method for mitral valve repair
US9956076B2 (en) Tissue shaping device
US6908478B2 (en) Anchor and pull mitral valve device and method
US7608102B2 (en) Focused compression mitral valve device and method

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION