US20050233211A1 - Surface treatment for metal-polymer laminated electrochemical cell package - Google Patents

Surface treatment for metal-polymer laminated electrochemical cell package Download PDF

Info

Publication number
US20050233211A1
US20050233211A1 US10/827,539 US82753904A US2005233211A1 US 20050233211 A1 US20050233211 A1 US 20050233211A1 US 82753904 A US82753904 A US 82753904A US 2005233211 A1 US2005233211 A1 US 2005233211A1
Authority
US
United States
Prior art keywords
metal sheet
coating
polymer
metal
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/827,539
Inventor
Edward Welker
Franklin Yarber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EnerDel Inc
Original Assignee
EnerDel Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EnerDel Inc filed Critical EnerDel Inc
Priority to US10/827,539 priority Critical patent/US20050233211A1/en
Assigned to DELPHI TECHNOLOGIES, INC. reassignment DELPHI TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: WELKER, EDWARD EARL, YARBER, FRANKLIN E.
Priority to PCT/US2005/013010 priority patent/WO2005101544A2/en
Assigned to ENERDEL, INC. reassignment ENERDEL, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DELPHI TECHNOLOGIES, INC.
Publication of US20050233211A1 publication Critical patent/US20050233211A1/en
Priority to US11/459,977 priority patent/US7867652B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/37Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also hexavalent chromium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/02Cleaning or pickling metallic material with solutions or molten salts with acid solutions
    • C23G1/12Light metals
    • C23G1/125Light metals aluminium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/22Light metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/128Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • H01M50/126Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers
    • H01M50/129Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure comprising three or more layers with two or more layers of only organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/133Thickness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/131Primary casings, jackets or wrappings of a single cell or a single battery characterised by physical properties, e.g. gas-permeability or size
    • H01M50/136Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/124Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material having a layered structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers

Abstract

A method for preparing a metal-polymer laminate packaging material, a method for preparing a metal-polymer laminated electrochemical cell package, and an electrochemical cell package, wherein adhesion of the polymer to the metal sheet used in the packaging material and/or hydrophobicity of the metal sheet are improved. In accordance with the invention, the metal sheet is subjected to a surface treatment and thereafter coated with a polymer to form a metal-polymer laminate packaging material. Exemplary surface treatments include chromate or phosphate conversion coatings, anodization, or chemically cleaning the metal sheet with a caustic solution and/or an acidic solution.

Description

    TECHNICAL FIELD
  • This invention relates to electrochemical cell packaging, such as packaging for lithium ion battery cells, and in particular, a surface treatment for metal sheet material used for metal-polymer laminated packaging material.
  • BACKGROUND OF THE INVENTION
  • The ever-increasing demand for battery-powered electronic equipment has driven the need for improved rechargeable electrochemical cells having high specific energies. The most attractive of these types of cells are the lithium-ion cells. Lithium-ion cells and batteries are secondary (i.e., rechargeable) energy storage devices well known in the art. The lithium-ion cell, known also as a rocking chair type lithium battery, typically comprises a carbonaceous negative electrode that is capable of intercalating lithium-ions, a lithium-retentive positive electrode that is also capable of intercalating lithium-ions, and a separator impregnated with non-aqueous, lithium-ion-conducting electrolyte therebetween. The electrolyte in such lithium-ion cells comprises a lithium salt dissolved in a non-aqueous solvent which may be (1) completely liquid, (2) an immobilized liquid, (e.g., gelled or entrapped in a polymer matrix), or (3) a pure polymer. The electrolyte is incorporated into the pores of the positive and negative electrode and in a separator layer between the positive and negative electrode.
  • Lithium-ion cells are often made by laminating thin films of the negative electrode, positive electrode and separator together wherein the separator layer is sandwiched between the negative electrode and positive electrode layers to form an individual cell. Conventional cells have typically been enclosed in a rigid case, typically made of stainless steel, to apply pressure to the cell components to maintain good electrical connections between the components. However, the trend is to reduce the size and weight of battery cells by replacing the rigid case with a polymer-metal laminate packaging material. The laminate packaging typically comprises a metal sheet, such as an aluminum foil, between two polymer films. One problem experienced with these laminate packaging materials is delamination of the polymer from the aluminum foil when exposed to the battery electrolyte, and subsequent corrosion of the aluminum by the corrosive electrolyte. Another problem encountered with the laminate packaging materials is a poor seal at the interface between the packaging material and the conductive leads. U.S. Patent Application Publication No. 2003/0031926 A1 provides a surface treatment for the conductive leads to provide a more reliable hermetic seal between the conductive leads and the packaging material. However, there exists a need for an improved packaging material that addresses the problem of delamination of the polymer from the metal sheet and the resulting corrosion.
  • SUMMARY OF THE INVENTION
  • The present invention provides a method for preparing a metal-polymer laminate packaging material, a method for preparing a metal-polymer laminated electrochemical cell package, and an electrochemical cell package, wherein adhesion of the polymer to the metal sheet used in the packaging and/or hydrophobicity of the metal sheet are improved, thereby addressing the problem of delamination of the polymer from the metal sheet and the resulting corrosion. To that end, a metal sheet is subjected to a surface treatment and thereafter coated with a polymer to form a metal-polymer laminate packaging material. Exemplary surface treatments in accordance with the present invention include chromate or phosphate conversion coatings, anodization, or chemically cleaning the metal sheet with a caustic solution and/or an acidic solution. To form the electrochemical cell package, an electrochemical cell is placed in a package formed of the metal-polymer laminate, and the electrochemical cell is sealed therein. In one embodiment of the present invention, the packaging of the electrochemical cell includes a protective coating that not only increases adhesion between the metal and polymer of the laminate packaging material but also seals out water vapor and prevents corrosion of the metal.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The present invention will now be described, by way of example, with reference to the accompanying drawings, in which:
  • FIG. 1 depicts a process flow for application of a chromate conversion coating to a metal sheet in accordance with one embodiment of the present invention.
  • FIG. 2 depicts a cross-sectional view of a metal-polymer laminated packaging material in accordance with one embodiment of the present invention.
  • FIG. 3 depicts a process flow for application of a phosphate conversion coating to a metal sheet in accordance with one embodiment of the present invention.
  • FIG. 4 depicts a process flow for anodizing a metal sheet in accordance with one embodiment of the present invention.
  • FIGS. 5A and 5B each depict in cross-sectional view an electrochemical cell package in accordance with one embodiment of the present invention.
  • DETAILED DESCRIPTION
  • The present invention provides an electrochemical cell package and a method for producing a metal-polymer laminated packaging material that enhances the adhesion of the polymer layers to the metal to prevent delamination and to provide corrosion protection. The adhesion of the metal-polymer laminate packaging is improved by subjecting the metal sheet to a surface treatment. Exemplary surface treatments in accordance with the present invention include chromate or phosphate conversion coatings, anodization, or chemically cleaning the metal sheet with a caustic solution and/or an acidic solution. The surface treatment provides corrosion protection from cell electrolyte and seals out water vapor, as well as improving the adhesion of the laminated polymer layers to the metal sheet. The metal-laminate packaging of the present invention may then be used to surroundingly enclose an electrochemical cell structure and hermetically seal the structure therein. In an exemplary embodiment of the present invention, the electrochemical cell structure is a lithium-ion cell, which is known in the art.
  • In its broadest form, the method of the present invention includes subjecting a metal sheet to a surface treatment to increase the polymer adhesion of the surfaces of the metal sheet and/or to increase the hydrophobicity of the surfaces of the metal sheet, and thereafter, coating the surface treated metal sheet with a polymer to form a metal-polymer laminate. An electrochemical cell may then be packaged in the metal-polymer laminate. In an exemplary embodiment of the present invention, the metal sheet is an aluminum foil. Advantageously, the metal sheet has a thickness of at least 17 μm. In another exemplary embodiment, the metal sheet is surface treated by forming a chromate or phosphate conversion coating thereon. In yet another embodiment of the present invention, the metal sheet is anodized to form a porous oxide coating. The metal sheet may also be surface treated by cleaning the surface to remove oils and/or other residues that interfere with adhesion of the polymer to the metal sheet.
  • In accordance with one embodiment of the present invention, the metal sheet used in forming the metal-polymer laminate packaging is treated to apply a chromate conversion coating to the metal sheet. “Conversion” coatings are formed in place at a substrate metal surface, incorporating metal ions dissolved from the surface. Thus, these coatings are integrally bonded to the substrate metal, as opposed to being an additive layer over the substrate metal. Chromate conversion coatings are well known in the art of metal finishing. A chromate conversion coating may be obtained either chemically or electrochemically using a mixture of hexavalent chromium and certain other compounds (e.g., sodium hexafluorosilicate and barium nitrate) resulting in a surface finish that is a complex mixture of chromium compounds. These coatings become hydrophobic, less soluble, abrasion resistant, and corrosion resistant over time.
  • A suitable coating thickness is generally on the order of a few angstroms, for example, 2-5 Å (0.2-0.5 nm), but may vary between 2 Å (0.2 nm) and 30 Å (3 nm). By way of example only, an aluminum sheet may be immersed in a bath of a solution of hexavalent chromium compounds, for example chromium trioxide, at a pH of 1.3-2.0 and at a temperature of 60-120° F. (15.5-49° C.) for 15 seconds to 6 minutes, depending on the thickness of the coating desired. It may be understood, however, that the pH of the solution, the concentration of hexavalent chromium in the solution, the time of immersion, and pre-treatments to the metal itself may be varied, as desired.
  • FIG. 1 depicts an exemplary process flow for application of a chromate conversion coating to a metal sheet material in accordance with one embodiment of the present invention. The chromate conversion coating process may be applied to an aluminum foil, or any other sheet material desired for use in the laminate packaging. It may also be appreciated that the process flow described herein below includes pre-treatments that are advantageous, but that may not be necessary for application of a functional chromate conversion coating such that variations in the parameters and pre-treatment steps may produce acceptable coatings. Prior to coating, the metal sheet is cut to a desirable size for forming the packaging. By way of example, the sheet material may have a thickness of at least 17 μm, and the length and width dimensions may vary depending on the size and format of the electrochemical cell for which it is to be used.
  • Referring to FIG. 1, the metal sheet is cleaned in step 10 in a mildly alkaline solution to remove oil, grease, and other foreign material from the surface. For example, the metal sheet may be immersed in a solution of sodium dodecylbenzene sulfonate or other suitable metal cleaning agent at a temperature of ambient to 160° F. (71° C.) for about 30 seconds to about 10 minutes. After rinsing in deionized water, the cleaned metal sheet is etched in step 12 in a strongly alkaline solution to remove light soils and provide a decorative uniform etch on the sheet surface. A suitable etching may be achieved in a bath of concentrated NaOH at ambient to 160° F. (71° C.) for 30 seconds to 10 minutes. After rinsing in water, the etched metal sheet is deoxidized in step 14 to remove smut left by cleaning and/or etching of the metal sheet. The deoxidizing may be accomplished, for example, by immersion in a solution containing sulfuric acid, iron salts soluble in nitric acid, and fluoroboric acid at a pH of 1-1.5 and an ambient temperature for 30-120 seconds. Following a further rinse with water, the chromate conversion coating is applied in step 16. As noted above, depending on the condition of the metal sheet surface, some or all of the pre-treating procedures described above may not be necessary. Pre-treating, however, ensures that the metal sheet surface is properly prepared to receive the chromate coating. In addition to the above pre-treatments, a bright finishing treatment may also be performed after deoxidation to further remove light oils, moderate to heavy oxides, mill markings and otherwise prepare the surface for the conversion coating in step 16. A bright finishing treatment, for example, may involve immersing the metal sheet in a strong acid bath, such as phosphoric acid, for 1-10 minutes at ambient temperature.
  • The chromate conversion coating in step 16 may be achieved by contacting the metal sheet with a solution of hexavalent chromium compounds, such as chromium trioxide, an inorganic fluoride such as sodium hexafluorosilicate, and barium nitrate at a pH of 1.3-2.0 and a temperature of 60-120° F. (15.5-49° C.). Contact with the solution may be made by brushing, spraying, or immersion, for example. The time of contact with the chromium solution may be from 15 seconds to 6 minutes, for example, depending on the thickness of the coating desired. Following coating, the metal sheet is rinsed in water and dried. In step 18, the conversion coated metal sheet is further coated with a polymer to form a metal-polymer laminate. Advantageously, a polymer layer is laminated to each side of the coated metal sheet to sandwich the metal sheet between the polymer layers. The lamination may be achieved, for example, by extruding a polymer film onto each side of the coated metal sheet.
  • FIG. 2 depicts a cross-sectional view of a metal-polymer laminated packaging material 20 formed by the process flow set forth in FIG. 1. Packaging material 20 includes the metal sheet 22 and a chromate conversion coating 24 thereon to form a conversion coated metal sheet 26. An inner polymer layer 28 is laminated to a first side 26 a of the conversion coated metal sheet 26, such as by extrusion, and an outer polymer layer 30 is laminated to a second side 26 b of the conversion coated metal sheet 26, such as by extrusion. The inner and outer polymer layers 28, 30 may each be composed of one or more layers of polymers, as is known in the art, and may be of any desired thickness. The metal sheet may be any metal desired and aluminum is currently standard in the lithium battery art.
  • In accordance with another embodiment of the present invention, the metal sheet used in forming the metal-polymer laminate packaging is treated to apply a phosphate conversion coating to the metal sheet. Metal phosphate coatings are insoluble in water, but soluble in mineral acids. Thus, phosphating solutions include metal phosphates dissolved in balanced solutions of phosphoric acid. As long as the acid concentration of the bath remains above a critical point, the metal phosphate remains in the solution. When a reactive metal sheet material is contacted with (e.g., immersed in) a phosphating solution, light pickling takes place and the acid concentration is reduced at the liquid-metal interface. Metal from the substrate is dissolved, hydrogen is evolved, and a phosphate coating is precipitated on the metal sheet material surface. Phosphate conversion coatings put the metal sheet surface in a water-resistant (hydrophobic), non-alkaline condition, and impose relative uniformity in surface texture. Phosphate conversion coatings also increase the surface area upon which the systems of attractive forces causing adhesion can act by creating capillaries and micro-cavities and insulate the coated metal sheet against electrochemical corrosion.
  • Phosphate conversion coatings may be applied to the metal sheet material in accordance with the present invention in any suitable manner, including by brush, spray, or immersion. In addition, several types of phosphate coatings may be used in accordance with the present invention. Exemplary phosphate conversion coating application techniques for iron, zinc and manganese phosphate conversion coatings are discussed below. Other phosphate coatings, as are known by or apparent to one skilled in the art, from the present disclosure may also be used.
  • FIG. 3 provides an exemplary general process flow for applying metal phosphate conversion coatings in accordance with the method of the present invention. In step 40, the metal sheet is phosphate conversion coated by contacting the metal sheet with a phosphating solution. The phosphated metal sheet material is then rinsed with water and treated with an acid solution rinse in step 42 for pollution reduction. After drying the coated metal sheet, a polymer coating is applied in step 44 to form the metal-polymer laminate. Again, a polymer layer is advantageously laminated to each side of the coated metal sheet, such as by extrusion, to sandwich the metal sheet between the polymer layers. The resulting structure is essentially the same as that depicted in FIG. 2, except that the coating 24 will be a metal phosphate conversion coating rather than a chromate conversion coating.
  • To form an iron phosphate conversion coating in accordance with an exemplary embodiment of the method of the present invention, step 40 simultaneously cleans the metal sheet. An iron phosphating spray may be used, for example, in which an iron phosphate solution is composed of 0.5-2 oz. of iron phosphate per gallon of water with a pH of 3.5-5.0. The solution may be sprayed at a temperature of 60-160° F. (15.5-71° C.) for 60-120 seconds. Alternatively, an iron phosphating solution dip may be used wherein the solution is composed of about 5% iron phosphate in water with a pH of 3.5-4.5. The metal sheet may be immersed in the dip having a temperature of 125-160° F. (52-71° C.) for 3-5 minutes. Step 40 may be followed by a recirculating water bath rinse at 90° F. (32° C.) for about 20 seconds, followed by an acid solution rinse in step 42.
  • To form a zinc phosphate conversion coating in accordance with an exemplary embodiment of the method of the present invention, the metal sheet may be subjected to one or more preliminary steps prior to the phosphate conversion coating in step 40. For example, the metal sheet may be pre-cleaned and rinsed with water, then treated with a sensitizing rinse. This pre-cleaning step may be conducted by spraying the sheet material with an alkaline solution of 0.5-1.0 oz. strong base, for example NaOH or KOH, per gallon of water at 100-160° F. (38-71° C.) for 30 seconds. The sheet material may then be rinsed in a re-circulating water bath at 90° F. (32° C.) for 30 seconds, followed by a sensitizing rinse of, for example, a titanium activator solution composed of 1 lb activator per 1000 gallons of water at 90° F. (32° C.) for 30 seconds. The zinc phosphate treatment of step 40 may be applied by spraying a phosphate solution composed of 2.5% by volume zinc phosphate in water (total to free acid ratio: 13:1 to 20:1) for 60 seconds at a temperature of 100-140° F. (38-60° C.). Alternatively, the phosphating treatment may include a 3-5 minutes spray at a temperature of 140-180° F. (60-82° C.) using a zinc phosphate solution composed of 4% by volume zinc phosphate in water (total to free acid ratio: 6:1 to 12:1). Step 40 may be followed by a re-circulating water bath rinse at 90° F. (32° C.) for about 20 seconds, followed by an acid solution rinse in step 42.
  • A manganese phosphate conversion coating in accordance with an exemplary embodiment of the method of the present invention may also include the pre-cleaning and sensitizing rinse steps prior to formation of the manganese phosphate conversion coating in step 40. The metal sheet may be pre-cleaned with a hot alkaline cleaner and rinsed with hot water, followed by treating the metal sheet with a hot sensitizing rinse. Step 40 advantageously includes immersion in a manganese phosphate solution at a temperature of 200-210° F. (93-99° C.) for 10-30 minutes. The phosphate coated metal sheet may then be rinsed with cold water prior to an acid solution rinse in step 42.
  • As with the chromate conversion coatings, a suitable coating thickness for phosphate conversion coatings is on the order of a few angstroms, but may vary between a few angstroms and a few tens of angstroms. More specifically, the phosphate conversion coatings may vary in thickness between 2 Å (0.2 nm) and 30 Å (3 nm). After step 40, the acid solution rinse of step 42 may, for example, be applied for 20-30 seconds using a solution of 4-12 oz. of H3PO4 per 100 gallons of water with a pH of 3.5-5.0 at a temperature of 90-160° F. (32-71° C.).
  • FIG. 4 provides an exemplary process flow for another embodiment of the present invention in which the surface treatment involves anodizing the metal sheet. As is well known in the metal finishing arts, when a metal part, such as aluminum, is made the anode in an electrolytic cell, an oxide film is formed on the metal. The oxide film grows from the base metal and imparts to the metal a hard, corrosion and abrasion resistant coating with excellent wear properties. Thus, anodizing coverts the metal surface to metal oxide. The nature of the film formed is controlled by the electrolyte and anodizing conditions used. If the coating is slightly soluble in the electrolyte, porous oxide films are formed. As the coating grows under the influence of the applied current, it also dissolves and pores develop. Without intending to be limited by theory, it is this porous property that is believed to result in a stronger bond between the metal sheet and the polymer layers of the laminate packaging material. The resulting laminate packaging structure is essentially the same as that depicted in FIG. 2, except that the coating 24 will be a porous oxide film rather than a chromate conversion coating.
  • Referring to FIG. 4, an anodizing cell is formed in step 50 using the metal sheet as the anode paired with a cathode. The cathode material may be the same as the metal sheet material, for example, aluminum. An anode/cathode ratio of approximately 3:1 is advantageous. The anodizing cell electrodes are placed in an anodizing electrolyte solution in step 52. A typical anodizing electrolyte solution is sulfuric acid at a concentration of 15 wt./vol. % (e.g., 165 gm/L). Alternatively, almost any acid solution can be used, including chromic, oxalic, and phosphoric acids. The temperature of a sulfuric acid solution may be 60-80° F. (15.5-27° C.) with a current density of 10-15 A/ft2. The anodized coating is slightly soluble in this sulfuric acid solution, thereby providing the conditions for formation of a porous oxide film in step 54. The duration of the treatment is advantageously 12-30 minutes, depending on the film thickness desired. Once the porous anodized coating is formed, the coating is sealed in step 56 to achieve the protective and corrosion resistant properties for the metal sheet. The sealing process involves immersing the anodized sheet in a solution of boiling water or other solution, such as nickel acetate, wherein the aluminum oxide is hydrated. The coated metal sheet may then be further coated with the polymer in step 58 to form the metal-polymer laminate.
  • The chromate conversion coating, phosphate conversion coating, and anodizing surface treatments described above particularly enhance adhesion of the metal sheet to the polymer in the metal-polymer laminate to prevent delamination and corrosion of the packaging material. Each treatment involves conversion of the surface into a protective coating, namely a chromate, phosphate, or porous oxide protective coating. In addition to these surface treatments, adhesion of the metal sheet to the polymer may also be improved by simply cleaning the surface of the metal sheet prior to coating the metal sheet with the polymer to form the laminate. While the bond obtained by the coating methods is superior to the bond achieved simply by surface cleaning, nevertheless, the bond achieved with surface cleaning is greater than the bond formed with an untreated metal sheet. The metal sheets used for the packaging material are typically formed using slitting and drawing operations that use machine oil. The presence of this oil can contribute to delamination. Thus, a cleaning process that removes this oil will improve the adhesion and assist in preventing delamination. Oil removal may be achieved in a number of ways, including an acid rinse, a caustic rinse, or a combination of both. Suitable cleaning acids include sulfuric acid, phosphoric acid, or gluconic acid. Suitable caustic rinses include highly alkaline salts, such as sodium hydroxide, silicates, and carbonates. In an exemplary embodiment, sodium hydroxide is the cleaning agent. Advantageously, the cleaning treatment is performed by contacting the metal sheet with the cleaning agent at an elevated temperature, for example 120-200° F. (49-93° C.) at concentrations of 0.5-2 lbs of cleaning agent per gallon of water. The cleaning agent may be applied to the sheet material by spraying, soaking, and/or electrocleaning. The cleaned sheet material is rinsed and dried prior to coating the cleaned metal sheet with the polymer to form the metal-polymer laminate.
  • FIG. 5 depicts an exemplary electrochemical cell package in accordance with one embodiment of the present invention. Electrochemical cell package 70 includes an electrochemical cell structure 72 and a metal-laminate packaging 74 surroundingly enclosing the electrochemical cell structure 72 with a metal lead 76 extending therefrom. The metal-laminate packaging 74 includes a metal sheet 78, advantageously aluminum, surface treated in accordance with the present invention. As shown in FIG. 5, a chromate or metal phosphate conversion coating 80 covers the metal sheet 78 to form a coated metal sheet 82. An inner polymer layer 84 is laminated to an inner surface 82 a of the coated metal sheet 82 to form the inside portion of package 70 adjacent the cell structure 72. An outer polymer layer 86 is laminated to an outer surface 82 b of the coated metal sheet 82 to form the outside portion of the package 70. As described in relation to FIG. 2, any known and desirable polymer or combination of polymers may be used for the inner and outer polymer layers 84, 86. The electrochemical cell package 70 of FIG. 5A may be formed by holding packaging material 20 of FIG. 2 upon itself to form the package 74 and so as to surround the electrochemical cell structure 72. To seal the package 70, the inner polymer layer 84 may be sealed to itself around the edges of the cell structure 72 so as to form a hermetic seal.
  • In an alternative embodiment of the present invention, as depicted in FIG. 5B, the inner polymer layer 84 of FIG. 5A may comprise a polymeric barrier coating 88 laminated to the inner surface 82 a of the coated metal sheet 82 and a heat sealable layer 90 applied to the polymeric barrier coating 88. When the packaging material 74 is folded upon itself, the seal at the edge portions of the electrochemical cell will be formed by sealing the heat sealable layer 90 to itself. Also shown in FIG. 5B, the outer polymer layer 86 may include an adhesive layer 92 applied to the outer surface 82 b of the coated metal sheet 82 and an outer polymer barrier coating 94 laminated to the adhesive layer 92. The inner barrier coating 88 and the outer barrier coating 94 may be extruded onto the coated metal sheet 82 or applied by any other known process for forming a metal-polymer laminate. The inner barrier coating 88 may be the same or different from the outer barrier coating 94. Also, as described above in relation to FIG. 2 and FIG. 5, any known and desirable polymer or combination of polymers may be used for the inner and outer barrier coatings 88, 94.
  • While the present invention has been illustrated by the description of one or more embodiments thereof, and while the embodiments have been described in considerable detail, they are not intended to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications will readily appear to those skilled in the art. The invention in its broader aspects is therefore not limited to the specific details, representative structure and method and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the scope or spirit of the general inventive concept.

Claims (36)

1. A method for preparing a metal-polymer laminated packaging material for use in packaging electrochemical cells, the method comprising:
subjecting a metal sheet to a surface treatment to increase at least one of hydrophobicity and polymer adhesion of the metal sheet surfaces;
thereafter, coating the surface treated metal sheet with a polymer to form a metal-polymer laminate.
2. The method of claim 1 wherein the surface treatment is selected from the group consisting of:
(a) surface cleaning with at least one of a caustic solution and an acidic solution,
(b) formation of a chromate conversion coating,
(c) formation of a phosphate conversion coating, and
(d) anodization.
3. The method of claim 2 wherein the metal sheet comprises aluminum foil.
4. The method of claim 2 wherein the metal sheet is subjected to treatment (a), and treatment (a) comprises cleaning the metal sheet with at least one acid rinse selected from the group consisting of sulfuric acid, phosphoric acid, and gluconic acid.
5. The method of claim 2 wherein the metal sheet is subjected to treatment (a), and treatment (a) comprises cleaning the metal sheet with at least one caustic rinse selected from the group consisting of sodium hydroxide, silicates, and carbonates.
6. The method of claim 2 wherein the metal sheet is subjected to treatment (b), and treatment (b) comprises cleaning the metal sheet, etching the cleaned metal sheet, deoxidizing the etched metal sheet, and contacting the deoxidized metal sheet with a chromium solution to form the conversion coating on the metal sheet.
7. The method of claim 2 wherein the metal sheet is subjected to treatment (c), and treatment (c) comprises contacting the metal sheet with a metal phosphate solution to form a phosphate conversion coating thereon selected from the group consisting of iron phosphate, zinc phosphate, and manganese phosphate, and rinsing the coated metal sheet with an acid solution.
8. The method of claim 2 wherein the metal sheet is subjected to treatment (d), and treatment (d) comprises forming an anodizing cell using the metal sheet as an anode, placing the anodizing cell in an anodizing electrolyte solution, forming a porous oxide coating on the metal sheet, and sealing the coating.
9. The method of claim 1 wherein the metal sheet comprises aluminum foil.
10. The method of claim 1 wherein the step of coating the surface treated metal sheet with a polymer comprises laminating an inner polymer layer to an inner surface of the metal sheet and laminating an outer polymer layer to an outer surface of the metal sheet.
11. The method of claim 1 wherein the step of coating the surface treated metal sheet with a polymer comprises laminating an inner polymeric barrier coating to an inner surface of the metal sheet and applying a heat sealable layer to the inner polymeric barrier coating, and applying an adhesive layer to an outer surface of the metal sheet and laminating an outer polymeric barrier coating to the adhesive layer.
12. A method for preparing a metal-polymer laminated electrochemical cell package, the method comprising:
subjecting a metal sheet to a surface treatment to increase at least one of hydrophobicity and polymer adhesion of the metal sheet surfaces;
thereafter, coating the surface treated metal sheet with a polymer to form a metal-polymer laminate;
placing an electrochemical cell in a package formed of the metal-polymer laminate; and
sealing the electrochemical cell in the metal-polymer laminate package.
13. The method of claim 12 wherein the surface treatment is selected from the group consisting of:
(a) surface cleaning with at least one of a caustic solution and an acidic solution,
(b) formation of a chromate conversion coating,
(c) formation of a phosphate conversion coating, and
(d) anodization.
14. The method of claim 13 wherein the metal sheet comprises aluminum foil.
15. The method of claim 13 wherein the metal sheet is subjected to treatment (a), and treatment (a) comprises cleaning the metal sheet with at least one acid rinse selected from the group consisting of sulfuric acid, phosphoric acid, and gluconic acid.
16. The method of claim 13 wherein the metal sheet is subjected to treatment (a), and treatment (a) comprises cleaning the metal sheet with at least one caustic rinse selected from the group consisting of sodium hydroxide, silicates, and carbonates.
17. The method of claim 13 wherein the metal sheet is subjected to treatment (b), and treatment (b) comprises cleaning the metal sheet, etching the cleaned metal sheet, deoxidizing the etched metal sheet, and contacting the deoxidized metal sheet with a chromium solution to form the conversion coating on the metal sheet.
18. The method of claim 13 wherein the metal sheet is subjected to treatment (c), and treatment (c) comprises contacting the metal sheet with a metal phosphate solution to form a phosphate conversion coating thereon selected from the group consisting of iron phosphate, zinc phosphate, and manganese phosphate, and rinsing the coated metal sheet with an acid solution.
19. The method of claim 13 wherein the metal sheet is subjected to treatment (d), and treatment (d) comprises forming an anodizing cell using the metal sheet as an anode, placing the anodizing cell in an anodizing electrolyte solution, forming a porous oxide coating on the metal sheet, and sealing the coating.
20. The method of claim 12 wherein the metal sheet comprises aluminum foil.
21. The method of claim 12 wherein the step of coating the surface treated metal sheet with a polymer comprises laminating an inner polymer layer to an inner surface of the metal sheet and laminating an outer polymer layer to an outer surface of the metal sheet.
22. The method of claim 12 wherein the step of coating the surface treated metal sheet with a polymer comprises laminating an inner polymeric barrier coating to an inner surface of the metal sheet and applying a heat sealable layer to the inner polymeric barrier coating, and applying an adhesive layer to an outer surface of the metal sheet and laminating an outer polymeric barrier coating to the adhesive layer.
23. The method of claim 22 further comprising folding the metal-polymer laminate to form the package such that the heat sealable layer forms an inside portion of the package and the outer polymeric barrier coating forms an outside portion of the package, and wherein the electrochemical cell is placed in the inside portion of the package adjacent the heat sealable layer, and the package is sealed by sealing edge portions around the electrochemical cell.
24. The method of claim 12 wherein the surface treatment includes forming a coating on the metal sheet surfaces, the coating selected from the group consisting of a chromate conversion coating and a phosphate conversion coating.
25. A method for preparing a metal-polymer laminated electrochemical cell package, the method comprising:
coating an aluminum sheet with one of a chromate conversion coating, a phosphate conversion coating, and an anodized porous oxide coating;
thereafter, further coating the coated aluminum sheet with a polymer to form an aluminum-polymer laminate;
placing an electrochemical cell in a package formed of the aluminum-polymer laminate; and
sealing the electrochemical cell in the aluminum-polymer laminate package.
26. The method of claim 25 wherein the coating is a chromate conversion coating formed by cleaning the aluminum sheet, etching the cleaned aluminum sheet, deoxidizing the etched aluminum sheet, and contacting the deoxidized aluminum sheet with a chromium solution.
27. The method of claim 25 wherein the step of further coating the coated aluminum sheet with a polymer comprises laminating a polymeric barrier coating to an inner surface of the coated aluminum sheet and applying a heat sealable layer to the polymeric barrier coating, and applying an adhesive layer to an outer surface of the coated aluminum sheet and laminating an outer polymer layer to the adhesive layer.
28. The method of claim 27 further comprising folding the aluminum-polymer laminate to form the package such that the heat sealable layer forms an inside portion of the package and the outer polymer layer forms an outside portion of the package, and wherein the electrochemical cell is placed in the inside portion of the package adjacent the heat sealable layer, and the package is sealed by sealing edge portions around the electrochemical cell.
29. The method of claim 25 wherein the coating is a phosphate conversion coating formed by contacting the aluminum sheet with a phosphating solution to form the coating and rinsing the coated aluminum sheet with an acid solution.
30. The method of claim 29 wherein the phosphating solution comprises iron phosphate, zinc phosphate or manganese phosphate.
31. The method of claim 25 wherein the coating is a porous oxide coating formed by assembling an anodizing cell using the metal sheet as an anode, placing the anodizing cell in an anodizing electrolyte solution, forming a porous oxide coating on the metal sheet, and sealing the coating.
32. An electrochemical cell package comprising:
a metal-laminate packaging material comprising a metal sheet having a protective coating thereon sandwiched between an inner polymer layer and an outer polymer layer, wherein the protective coating is selected from group consisting of a chromate conversion coating, a phosphate conversion coating, and an anodized porous oxide coating; and
an electrochemical cell structure surroundingly enclosed in the metal-laminate packaging material adjacent the inner polymer layer.
33. The package of claim 32 wherein the metal sheet comprises aluminum foil.
34. The package of claim 33 wherein the aluminum foil has a thickness of at least 17 μm.
35. The package of claim 32 wherein the inner polymer layer comprises a polymeric binder layer laminated to the metal sheet and a heat sealable layer on the binder layer.
36. The package of claim 35 wherein the outer polymer layer comprises an adhesive layer on the metal sheet and a polymeric binder layer laminated to the adhesive layer.
US10/827,539 2004-04-19 2004-04-19 Surface treatment for metal-polymer laminated electrochemical cell package Abandoned US20050233211A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/827,539 US20050233211A1 (en) 2004-04-19 2004-04-19 Surface treatment for metal-polymer laminated electrochemical cell package
PCT/US2005/013010 WO2005101544A2 (en) 2004-04-19 2005-04-19 Surface treatment for metal-polymer laminated electrochemical cell package
US11/459,977 US7867652B2 (en) 2004-04-19 2006-07-26 Surface treatment for metal-polymer laminated electrochemical cell package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/827,539 US20050233211A1 (en) 2004-04-19 2004-04-19 Surface treatment for metal-polymer laminated electrochemical cell package

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/459,977 Division US7867652B2 (en) 2004-04-19 2006-07-26 Surface treatment for metal-polymer laminated electrochemical cell package

Publications (1)

Publication Number Publication Date
US20050233211A1 true US20050233211A1 (en) 2005-10-20

Family

ID=35096650

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/827,539 Abandoned US20050233211A1 (en) 2004-04-19 2004-04-19 Surface treatment for metal-polymer laminated electrochemical cell package
US11/459,977 Expired - Fee Related US7867652B2 (en) 2004-04-19 2006-07-26 Surface treatment for metal-polymer laminated electrochemical cell package

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/459,977 Expired - Fee Related US7867652B2 (en) 2004-04-19 2006-07-26 Surface treatment for metal-polymer laminated electrochemical cell package

Country Status (2)

Country Link
US (2) US20050233211A1 (en)
WO (1) WO2005101544A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143735A2 (en) * 2007-03-05 2008-11-27 Scott Hayes Multi-layer and composite corrosion resistant coatings
CN102719817A (en) * 2012-06-28 2012-10-10 宁波拓普集团股份有限公司 Novel surface treatment method for improving corrosion resistance of aluminum casting
CN103579697A (en) * 2012-07-24 2014-02-12 罗伯特·博世有限公司 Battery package and/or battery fireproof device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090136771A1 (en) * 2007-11-28 2009-05-28 Evans Ronald J Composition for preparing a surface for coating and methods of making and using same
KR101382601B1 (en) * 2012-07-02 2014-04-17 삼성디스플레이 주식회사 Manufacturing apparatus and method of organic light emitting diode display
CN103579538B (en) * 2013-11-14 2016-04-06 东莞新能源科技有限公司 Packaging seal structure and preparation method thereof and flexible-packed battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6242131B1 (en) * 1998-08-29 2001-06-05 Samsung Sdi Co., Ltd. Case of lithium secondary battery based on a polymer coated aluminum material
US6461757B1 (en) * 1997-03-19 2002-10-08 Asahi Kasei Kogyo Kabushiki Kaisha Non-aqueous battery of a thin configuration
US20030031926A1 (en) * 2001-06-13 2003-02-13 Polystor Corporation Tab surface treatments for polymer-metal laminate electrochemical cell packages
US6797429B1 (en) * 1998-11-06 2004-09-28 Japan Storage Battery Co, Ltd. Non-aqueous electrolytic secondary cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193442C (en) * 1999-12-17 2005-03-16 大日本印刷株式会社 Packaging material for polymer cell and method for producing same
JP4736164B2 (en) * 2000-08-10 2011-07-27 大日本印刷株式会社 Battery laminated film and battery container using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6461757B1 (en) * 1997-03-19 2002-10-08 Asahi Kasei Kogyo Kabushiki Kaisha Non-aqueous battery of a thin configuration
US6242131B1 (en) * 1998-08-29 2001-06-05 Samsung Sdi Co., Ltd. Case of lithium secondary battery based on a polymer coated aluminum material
US6797429B1 (en) * 1998-11-06 2004-09-28 Japan Storage Battery Co, Ltd. Non-aqueous electrolytic secondary cell
US20030031926A1 (en) * 2001-06-13 2003-02-13 Polystor Corporation Tab surface treatments for polymer-metal laminate electrochemical cell packages

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008143735A2 (en) * 2007-03-05 2008-11-27 Scott Hayes Multi-layer and composite corrosion resistant coatings
WO2008143735A3 (en) * 2007-03-05 2009-01-29 Scott Hayes Multi-layer and composite corrosion resistant coatings
CN102719817A (en) * 2012-06-28 2012-10-10 宁波拓普集团股份有限公司 Novel surface treatment method for improving corrosion resistance of aluminum casting
CN103579697A (en) * 2012-07-24 2014-02-12 罗伯特·博世有限公司 Battery package and/or battery fireproof device

Also Published As

Publication number Publication date
WO2005101544A2 (en) 2005-10-27
US20060257572A1 (en) 2006-11-16
US7867652B2 (en) 2011-01-11
WO2005101544A3 (en) 2006-10-19

Similar Documents

Publication Publication Date Title
US20030031926A1 (en) Tab surface treatments for polymer-metal laminate electrochemical cell packages
US7867652B2 (en) Surface treatment for metal-polymer laminated electrochemical cell package
CN100530762C (en) Battery, tab of battery and method of manufacture thereof
US7169284B1 (en) High surface area cathode for electrolytic capacitors using conductive polymer
US5588971A (en) Current collector device and method of manufacturing same
KR101331344B1 (en) Anode element, method of manufacturing the same, and solid electrolytic capacitor
KR101612473B1 (en) Chemically treated current collector foil produced of aluminum or an aluminum alloy
KR20120125547A (en) Steel sheet for container and method for producing same
US20120258281A1 (en) Copper foil and method for producing copper foil
JPH0258317A (en) Manufacture of electrode foil for aluminum electrolytic capacitor
JP5278636B2 (en) Lithium battery packaging material
CN103194743B (en) Surface treatment method of nickel metal strip for lithium-ion battery negative electrode ear
JP2010003711A (en) Tab lead material and method for producing the same
CN116373410A (en) Preparation process of high-punching-depth corrosion-resistant aluminum plastic film
KR101770730B1 (en) Method for nonchromic surface treatment of the tab lead for secondary batteries
JPH11158652A (en) Production of electrode material for secondary battery
KR102002801B1 (en) Chromeless surface treatment of lead tab for improving corrosion resistance
US20210328227A1 (en) Electrode terminal having high corrosion resistance for secondary battery and method for manufacturing the same
CN104694914B (en) A kind of surface pre-treating process of lithium ion cell positive etched foil
JP4393809B2 (en) cap
US11649557B2 (en) Method for forming holes, metal product, and metal composite
WO2023169429A1 (en) Structural member and preparation method therefor, and electronic device
CN117802489A (en) Zinc foil surface treatment method for inhibiting dendrite growth
CN115216759A (en) Hydrophilic chemical conversion film forming liquid and aluminum alloy surface treatment method
JPH0774055A (en) Electrolytic capacitor and its tab terminal

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELPHI TECHNOLOGIES, INC., MICHIGAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WELKER, EDWARD EARL;YARBER, FRANKLIN E.;REEL/FRAME:015243/0627;SIGNING DATES FROM 20040318 TO 20040324

AS Assignment

Owner name: ENERDEL, INC.,FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI TECHNOLOGIES, INC.;REEL/FRAME:015972/0640

Effective date: 20041020

Owner name: ENERDEL, INC., FLORIDA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:DELPHI TECHNOLOGIES, INC.;REEL/FRAME:015972/0640

Effective date: 20041020

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION