US20050226917A1 - Multi-layer absorbent wound dressing - Google Patents

Multi-layer absorbent wound dressing Download PDF

Info

Publication number
US20050226917A1
US20050226917A1 US11/145,867 US14586705A US2005226917A1 US 20050226917 A1 US20050226917 A1 US 20050226917A1 US 14586705 A US14586705 A US 14586705A US 2005226917 A1 US2005226917 A1 US 2005226917A1
Authority
US
United States
Prior art keywords
layer
wound
absorbent
dressing
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/145,867
Inventor
Scott Burton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
3M Innovative Properties Co
Original Assignee
3M Innovative Properties Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 3M Innovative Properties Co filed Critical 3M Innovative Properties Co
Priority to US11/145,867 priority Critical patent/US20050226917A1/en
Publication of US20050226917A1 publication Critical patent/US20050226917A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/02Adhesive plasters or dressings
    • A61F13/0203Adhesive plasters or dressings having a fluid handling member
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties

Definitions

  • the present invention is directed to novel body fluid absorbing materials; and to absorbent articles used as wound dressings, including multi-layer absorbent articles having at least two absorbent layers.
  • Proper wound dressings are an essential medical supply for treating injuries. Without dressings, the wound exudate accumulates and creates breeding grounds for harmful microorganisms. Each year, sterile wound dressings are applied to millions of wounds in order to absorb wound exudate while promoting sterility.
  • absorbent materials In order to improve upon absorbency, various alternative absorbent materials have been developed. For example, hydrophilic hydrocolloids and hydrogels have been created that provide a translucent or transparent absorbent layer. Such dressings can allow for general inspection of the healing wound. Unfortunately, some such dressings have the problem that the absorbent deforms and partially disintegrates upon swelling. Specifically, as the absorbent takes in fluid, it often bends and buckles such that some of the absorbent material breaks away from the dressing and enters the wound. This absorbent material can be left in the wound upon removal of the dressing, which is undesirable for cosmetic and therapeutic reasons. In addition, such materials often have relatively high moisture content prior to application, which can limit their ability to absorb additional water after they are applied.
  • the present invention is directed to multi-layer wound dressings.
  • the multi-layer wound dressings allow for high absorbency of body fluids while providing good durability and minimal degradation during use.
  • the multi-layer wound dressings are transparent and remain transparent when wet; and the dressings can be cut by clinicians to conform to the shape and size of the wound being covered. Also described are novel compositions useful as body fluid absorbing materials.
  • the wound dressings of the invention include at least two absorbent layers: a first absorbent layer and a second absorbent layer.
  • the first absorbent layer is typically more absorbent than the second absorbent layer, and can retain a greater volume of body fluids than the second absorbent layer.
  • the second absorbent layer is positioned such that it is located between the first absorbent layer and the wound. This second absorbent layer provides integrity to the wound dressing and avoids transfer of the first absorbent layer into the wound.
  • the first absorbent layer typically contains the reaction product of a hydrophilic, ethylenically unsaturated monomer.
  • the first absorbent layer includes the reaction product of a hydrophilic, ethylenically unsaturated monomer; an acrylic acid ester of a non-tertiary alcohol having 4 to 14 carbon atoms; and a polar, ethylenically unsaturated monomer.
  • the first absorbent layer can contain the reaction product of about 50 to 80 parts by weight of the hydrophilic, ethylenically unsaturated monomer; about 5 to 30 parts by weight of the acrylic acid ester of the non-tertiary alcohol having from 4 to 14 carbon atoms; and about 10 to 40 parts by weight of the polar, ethylenically unsaturated monomer.
  • the polar, ethylenically unsaturated monomer comprises N-vinyl acetamide or partially neutralized acrylic acid in specific implementations.
  • compositions including absorbent layers and body fluid absorbing materials comprising the reaction product of various parts by weight of specific monomers that the total monomer composition is 100 parts.
  • the second absorbent layer is typically positioned in contact with the first absorbent layer and is typically less absorbent of body fluids than the first absorbent layer.
  • the second absorbent layer can also contain the reaction product of an acrylic acid ester of a non-tertiary alcohol having from 4 to 14 carbon atoms; a hydrophilic, ethylenically unsaturated monomer; and a polar, ethylenically unsaturated monomer.
  • the second absorbent layer contains the reaction product of about 45 to 80 parts by weight of the acrylic acid ester of a non-tertiary alcohol having from 4 to 14 carbon atoms; about 25 to 40 parts by weight of the hydrophilic, ethylenically unsaturated monomer; and about 2 to 20 parts by weight of the polar, ethylenically unsaturated monomer.
  • the first and second layers are usually formed such that they are in contact with one another across a large surface area.
  • the absorbent layers are formed by a simultaneous polymerization reaction.
  • the unpolymerized monomer can be deposited simultaneously or sequentially and then cured together.
  • Such simultaneously cured absorbent materials often show enhanced physical integrity because they form a strong interface. It is believed that such strength may be a result of some slight interfacial mixing of the layers prior to and during curing.
  • the second absorbent layer functions as a “barrier” between the first absorbent layer (which may partially “disintegrate” when exudate is absorbed under some conditions) and the wound.
  • the second absorbent layer has adhesive properties (or is a pressure sensitive adhesive) and functions to enhance the overall integrity of the wound dressing.
  • the second absorbent layer ties the first absorbent layer to a wound-facing layer (or to the wound itself). By having adhesive properties, this second absorbent layer not only aids in controlling the absorption of exudate, but also physically joins to other components of the dressing.
  • the first absorbent layer is typically significantly more absorbent than the second absorbent layer, and preferably has an absorbency at least 100 percent greater than the absorbency of the second absorbent layer.
  • the first absorbent layer preferably absorbs at least 400 percent of its weight after immersion in an isotonic saline solution after 24 hours at room temperature.
  • the second absorbent layer normally has an absorbency of at least about 50 percent by weight of isotonic saline solution after 24 hours.
  • the term “absorbency” in the present application refers to the percent by weight of isotonic saline solution absorbed by a material tested according to the Saline Absorbency Method described herein.
  • Additional layers such as backing layers, wound-facing layers, and adhesives are also suitable for use in certain implementations of the invention.
  • the invention is also directed to methods of making multi-layer wound dressings, including multi-layer wound dressings in which two or more layers of absorbent are simultaneously cured.
  • dressings of the invention can include various materials, the invention is also directed to specific absorbent compositions for use in wound dressings. These compositions include materials containing the reaction product of partially neutralized ethylenically unsaturated carboxylic acids and materials containing the reaction product of N-vinyl acetamide.
  • FIG. 1A is a top view of a first wound dressing constructed in accordance with the present invention.
  • FIG. 1B is a partial cross-sectional view taken along plane A-A′ of the wound dressing from FIG. 1A .
  • FIG. 1C is a partial cross-sectional view of a second wound dressing constructed in accordance with the present invention.
  • the present invention is directed to multi-layer wound dressings that allow for high absorbency of wound exudate.
  • the wound dressings contain absorbent layers that demonstrate low disintegration after absorbing body fluids such that absorbent material does not significantly enter the wound.
  • the wound dressings are substantially transparent before and after placement on a wound (with the exception of colored exudate, such as blood), and are formed such that they can be cut to custom sizes by clinicians prior to placement on a wound.
  • FIG. 1A a top view is shown of a wound dressing 10 constructed in accordance with a first implementation of the invention.
  • Wound dressing 10 is shown adhered on the surface of a patient.
  • Dressing 10 is substantially transparent, with a portion of the wound 14 visible through the top surface 16 of dressing 10 .
  • transparency refers to dressings that permit viewing of material through the dressing with sufficient clarity to perform general visual examinations.
  • the dressings are substantially transparent when the dressings are dry or wet with water or wound exudate. Such transparency typically shows some optical distortion and may include loss in detail and resolution. Also, to the extent the wound exudate is colored by blood or other fluids, the transparency of the dressing is reduced.
  • FIG. 1B is a partial cross section of the wound dressing 10 taken along plane A-A′ of FIG. 1A .
  • Wound dressing 10 includes six layers: A backing layer 20 , an adhesive layer 22 , a first absorbent layer 24 , a second absorbent layer 26 , a porous or non-continuous wound-facing layer 28 ; and a pressure sensitive adhesive 30 .
  • the first and second absorbent layers 24 , 26 are positioned only within the interior of dressing 10 , while the other four layers extend along the entire dressing 10 , and thereby form a perimeter of substantially non-absorbent material. This perimeter can be advantageous because it provides a border and frame for the absorbent layers.
  • the multiple layers of the dressing 10 extend to the edges of the dressing and thus provide a dressing that can conveniently be cut to size.
  • the second absorbent layer 26 is substantially adhesive and provides a bond between the first absorbent layer 24 and the wound-facing layer 28 .
  • the multiple layers of wound dressing 10 are held together independent of any edge or frame bonds.
  • This type of wound dressing is particularly well suited to being cut by a clinician to conform to a custom shape because the wound dressing does not delaminate, or delaminates only an acceptable amount, upon exposure to wound exudate.
  • These multi-layer wound dressings show favorable absorption of exudate from wounds while also providing an integrated dressing that avoids significant shedding of the absorbent layers into the wound dressing.
  • FIGS. 1A to 1 C depict a six-layer wound dressing, but it will be appreciated that additional layers can be incorporated. In addition, in specific implementations, fewer layers can be used. Thus, the invention is not limited to the embodiments depicted, but rather such embodiments are shown only to illustrate examples of the invention.
  • the present invention features a first absorbent layer comprised of an absorbent composition that is capable of rapidly absorbing moderate to heavy amounts of body fluids, while retaining sufficient structural integrity and transparency.
  • This first absorbent layer typically is the most absorbent material of the dressing.
  • the composition of the first absorbent layer typically includes the reaction product of:
  • alcohols having greater than 4 carbon atoms are preferred, and alcohols with from 8 to 12 carbon atoms are particularly preferred.
  • suitable acrylic and methacrylic acid ester monomers include esters prepared by reaction with alcohols, such as 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 1-hexanol, 2-hexanol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 2-ethyl-1-butanol, 3,5,5-trimethyl-1-hexanol, 3-heptanol, 1-octanol, 2-octanol, isooctanol, 2-ethyl-1-hexanol, 1-decanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, nopol, and the like, as well as combinations thereof.
  • alcohols such as 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl
  • the acrylic or methacrylic acid ester is selected from the group consisting of isooctyl acrylate, 2-ethyl hexyl acrylate, isodecyl acrylate, lauryl acrylate, nopol acrylate, and combinations thereof.
  • the amount of the acrylic or methacrylic acid ester typically is less than 80 parts by weight, preferably less than 50 parts by weight, more preferably 5 to 30 parts by weight, and most preferably 10 to 25 parts by weight.
  • hydrophilic, ethylenically unsaturated monomers examples include free radically reactive hydrophilic oligomers (a polymer having a low number of repeating units, generally 2 to 20) and/or polymers including poly(alkylene oxides) (e.g., poly(ethylene oxide)), poly(vinyl methyl ether), poly(vinyl alcohol), cellulose derivatives, and mixtures thereof.
  • hydrophilic, ethylenically unsaturated monomers include macromonomers, e.g., acrylate-terminated poly(ethylene oxide), methoxy poly(ethylene oxide) acrylate, butoxy poly(ethylene oxide) acrylate, p-vinyl benzyl-terminated poly(ethylene oxide), acrylate-terminated poly(ethylene glycol), methacrylate-terminated poly(ethylene glycol), methoxy poly(ethylene glycol) methacrylate, butoxy poly(ethylene glycol) methacrylate, p-vinyl benzyl-terminated poly(ethylene glycol), poly(ethylene oxide) diacrylate, poly(ethylene oxide) dimethacrylate, and combinations thereof.
  • macromonomers e.g., acrylate-terminated poly(ethylene oxide), methoxy poly(ethylene oxide) acrylate, butoxy poly(ethylene oxide) acrylate, p-vinyl benzyl-terminated poly(ethylene oxide), acrylate-terminated poly(ethylene glycol), methoxy
  • the hydrophilic, ethylenically unsaturated monomer can be acrylate and methacrylate esters prepared from mono-hydroxyl-terminated poly(lower alkylene oxides) such as polyethylene and polypropylene glycols commercially available under the trade designation Carbowax from Union Carbide Corp. in a variety of molecular weights (e.g., Carbowax 350, Carbowax 550, Carbowax 750, Carbowax 2000, and Carbowax 5000).
  • mono-hydroxyl-terminated poly(lower alkylene oxides) such as polyethylene and polypropylene glycols commercially available under the trade designation Carbowax from Union Carbide Corp. in a variety of molecular weights (e.g., Carbowax 350, Carbowax 550, Carbowax 750, Carbowax 2000, and Carbowax 5000).
  • the hydrophilic, ethylenically unsaturated monomer preferably is selected from the group consisting of acrylate-terminated poly(alkylene oxides) and methacrylate-terminated poly(alkylene oxides).
  • a preferred monomer is an acrylate-terminated methoxy poly(ethylene glycol) monomer.
  • the amount of the hydrophilic, ethylenically unsaturated monomer typically is between 30 and 100 parts by weight, and more typically 50 to 80 parts by weight.
  • the polar, ethylenically unsaturated monomer preferably is selected from the group consisting of partially neutralized acrylic acid, methacrylic acid, itaconic acid, N-vinyl acetamide, N-methyl-N-vinyl acetamide, N-vinyl propionamide, trialkylaminoethyl(meth)acrylate salt such as trimethylaminoethyl acrylate chloride, N-vinyl-pyrrolidone, N-vinylcaprolactam, hydroxyethyl (meth)acrylate or N-(acryloyloxyethyl)pyrrolidine; with partially neutralized acrylic acid and N-vinyl acetamide being preferred.
  • the amount of the polar, ethylenically unsaturated monomer preferably is between 0 and 40 parts by weight, more preferably 10 to 30 parts by weight, and most preferably 15 to 25 parts by weight.
  • An example of a preferred absorbent composition is one that includes the reaction product of lauryl acrylate, acrylate-terminated methoxy poly(ethylene glycol), and partially neutralized acrylic acid or N-vinyl acetamide.
  • the composition used to form the first absorbent layer preferably is tacky after curing and capable of absorbing at least about 200%, more preferably at least about 400%, and most preferably at least about 600% by weight isotonic saline after 24 hours while substantially retaining its structural integrity and transparency.
  • the first absorbent layer is highly absorbent.
  • Acrylic acid, methacrylic acid, and itaconic acid contain carboxylic acid group(s), which can react with a base such as sodium hydroxide.
  • a base such as sodium hydroxide.
  • the acrylic acid is neutralized or fully neutralized.
  • a mole of acrylic acid is partially neutralized when it reacts with less than one mole of sodium hydroxide.
  • an acid is partially neutralized when one equivalent of acid reacts with less than an equivalent of base.
  • a ethylenically unsaturated carboxylic acid containing monomer is used in a composition of this invention, it is typically partially neutralized from 1 to 49%.
  • the carboxylic acid containing monomer composition is 17% partially neutralized. Neutralization above 49% does not typically produce a clear monomer solution without the addition of a large amount of water.
  • the second absorbent layer is also typically absorbent, but less absorbent than the first layer.
  • the second layer may contain the same components as described above for the first absorbent layer, however it preferably consists of a higher concentration of the acrylic or methacrylic acid ester monomer and is more tacky.
  • the composition preferably includes the reaction product of:
  • a polar, ethylenically unsaturated monomer different from the hydrophilic, ethylenically unsaturated monomer such as partially neutralized carboxylic acid containing monomer; trialkylaminoethyl (meth)acrylates such as trimethylaminoethyl acrylate chloride; N-vinyl amides such as N-vinyl acetamide, N-methyl-N-vinyl acetamide, and N-vinyl propionamide; N-vinyl lactams such as N-vinyl pyrolidinone and N-vinylcaprolactam, hydroxyethyl acrylate, hydroxyethyl methacrylate, or N-(acryloyloxyethyl)pyrrolidinone; or combinations of these.
  • a polar, ethylenically unsaturated monomer different from the hydrophilic, ethylenically unsaturated monomer such as partially neutralized carboxylic acid containing mono
  • the composition of the second absorbent layer comprises 55 to 70 parts by weight of an acrylic or methacrylic acid ester of a non-tertiary alcohol having between 4 and 14 carbon atoms, inclusive; 30 to 35 parts by weight of a hydrophilic, ethylenically unsaturated monomer; and 4 to 15 parts by weight of a polar, ethylenically unsaturated monomer different from the hydrophilic, ethylenically unsaturated monomer.
  • the second absorbent layer preferably functions as a pressure sensitive adhesive, and can control the rate of exudate influx into the first absorbent layer.
  • the exudate absorbency of the second absorbent layer is typically lower than the exudate absorbency of the first absorbent layer.
  • the exudate absorbency of the second absorbent layer is 2-fold lower than the exudate absorbency of the first absorbent layer. More preferably, the exudate absorbency of the second absorbent layer is 3-fold lower than the exudate absorbency of the absorbent layer.
  • the first and second absorbent layers combine to provide favorable absorbency and integrity.
  • the first absorbent layer typically has the greatest capacity for absorbing exudate, but the second absorbent layer aids in providing integrity to the first absorbent layer.
  • integrity is aided depending upon the implementation, by providing a physical barrier, an absorption rate control layer, and/or a physical strengthening layer.
  • the second layer serves as a barrier because it is more durable than the first layer when fully saturated (in part because it is able to absorb less liquid).
  • the lower absorbency of the second absorbent layer helps to regulate the rate of liquid uptake in the first layer. As such, the first layer can uniformly swell and show less disintegration.
  • the second layer particularly when it has adhesive properties, secures the portions of the dressing together, thereby adding strength.
  • the first absorbent layer is typically from 5 to 100 mils thick, and more typically from 10 to 50 mils thick. In specific preferred implementations, the first absorbent layer is 20 to 30 mils thick, and more preferably about 25 mils thick.
  • the second absorbent layer is typically less than 50 mils thick, and more typically from 1 to 10 mils thick. In specific implementations, the second absorbent layer is from 2 to 4 mils thick, including implementations having a second absorbent layer that is 3 mils thick.
  • the first absorbent layer is at least as thick as the second absorbent layer, and more typically significantly thicker than the second absorbent layer.
  • the first layer can be up to 50 times thicker than the second layer in specific example embodiments.
  • the thickness of the first layer is from 2 to 15 times the thickness of the second layer, and more typically from 5 to 10 times greater.
  • the first absorbent layer is about 8 times the thickness of the second absorbent layer.
  • multifunctional crosslinking monomers may be included in the preparation of the absorbent layers.
  • multifunctional refers to crosslinking monomers which have two or more free radically polymerizable, ethylenically unsaturated groups.
  • Useful multi-functional crosslinking monomers include acrylic or methacrylic esters of diols, including 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate; acrylic or methacrylic esters of triols such as glycerol; and tetraols such as pentaerythritol.
  • polymeric multifunctional (meth) acrylates e.g., alkylene glycol-type diacrylates or dimethacrylates, such as diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, diethylene glycol dimethacrylate, polyethylene glycol 200 diacrylate, polyethylene glycol 400 diacrylate, polyethylene glycol 600 diacrylate, polyethylene glycol 200 dimethacrylate, polyethylene glycol 400 dimethacrylate, polyethylene glycol 600 dimethacrylate, polyethylene glycol 1000 dimethacrylate, polypropylene glycol 400 diacrylate, polypropylene glycol 400 dimethacrylate; polyvinylic crosslinking agents such as substituted and unsubstituted divinylbenzene; trimethylolpropane-type tri- and tetra-acrylates or tri-methacrylates, such as trimethylolpropane triacrylate, trimethylolpropane trimethacryl
  • the polymerization reaction may be initiated using various methodologies, including photoinitiation, chemical initiation (such as using peroxide), and thermoinitiation.
  • photoinitiation the amount of photoinitiator used in the monomer mixture differs according to the extinction coefficient thereof, but typically ranges from about 0.001 to about 5.0 parts by weight per 100 parts of total monomer, preferably from about 0.01 to about 5.0 parts by weight, and more preferably from about 0.05 to about 0.5 parts by weight.
  • Useful photoinitiators include acetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 1-(4-dodecylphenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)-phenyl-(2-hydroxy-2-propyl)ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane-1; substituted alpha-ketols such as 2-methyl-2-hydroxypropiophenone; benzoin photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin butyl ether, benzyl di
  • Other materials which may be added to the monomer mixture include chain transfer agents or chain stopping agents for controlling molecular weight (e.g., carbon tetrabromide, mercaptans, alcohols, methacrylates, vinyl compounds such as alpha-methyl styrene, or other monomers), tackifiers, perfumes, deodorants, and antioxidants.
  • chain transfer agents or chain stopping agents for controlling molecular weight
  • mercaptans e.g., carbon tetrabromide, mercaptans, alcohols, methacrylates, vinyl compounds such as alpha-methyl styrene, or other monomers
  • tackifiers e.g., tackifiers, perfumes, deodorants, and antioxidants.
  • the absorbent layers may also contain plasticizers.
  • plasticizers suitable for use in the present invention are low molecular weight polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, glycerol, diglycerol, 2,3-butanediol, 1,2-butanediol, 3-methyl-1,3-butanediol, 3-methyl-1,3,5-pentanetriol, 2-ethyl-1,2-hexandeiol, polyethylene glycol, methoxypolyethylene glycol, polypropylene glycol, polyoxyethylene butyl ether, polyoxyethylene, polyoxypropylene, polyoxypropylene glyceryl ether, polyoxypropylene sorbitol, and polyoxyethylene polyoxypropylene pentaerythritol ether each having an average molecular weight of 1,000 or less.
  • the plasticizers are typically selected such that they do not significantly impair transparency
  • the absorbent layers may be prepared by photoinitiated bulk polymerization according to the technique described in Martens et al., U.S. Pat. No. 4,181,752.
  • the polymerizable monomers and photoinitiator are mixed together in the absence of solvent and partially polymerized to a viscosity in the range from about 500 to about 50,000 centipoise to achieve a coatable syrup.
  • the cross-linking agent (if needed) and any other ingredients are then added to the prepolymerized syrup.
  • these ingredients can be added directly to the monomer mixture prior to pre-polymerization.
  • a backing layer may be present in embodiments of the present invention.
  • the backing layer is typically the layer farthest from the wound, and provides additional strength to the dressing.
  • Preferably the backing layer is conformable to animal anatomical surfaces, and impermeable to liquid water.
  • the backing layer can be a transparent, conformable, elastomeric, moisture vapor permeable film.
  • the backing film is preferably impermeable to liquid water and has a moisture vapor transmission rate (MVTR) of at least 300 g per 24 hr at 37° C. and 80% relative humidity. More preferably, the MVTR is at least 700 g per 24 hr at 37° C. and 80% relative humidity, and most preferable at least 2000 g per 24 hr at 37° C. and 80% relative humidity using the inverted cup method as described in U.S. Pat. No. 4,595,001.
  • the backing will allow some moisture to evaporate from the dressing while still maintaining a moist environment, will prevent the wound from drying out, and will prevent bacteria and viral ingress. It is also desirable that the backing be a low friction material, such as that disclosed in U.S. Pat. No. 5,643,187.
  • the dressing is preferably conformable to anatomical surfaces and stretches to accommodate flexion of joints and distension of skin. After the dressing stretches, ideally it has elastic properties so that the dressing returns to the same size as before stretching.
  • the backing may have a thickness of from 15 to 100 micrometers, preferably 20 to 80 micrometers and more preferably 20 to 50 micrometers.
  • the backing layer may further comprise a pressure sensitive adhesive layer to enhance adhesion to the first absorbent layer.
  • Various materials can be used as the backing material.
  • Specific examples include papers, non-woven fabrics, natural fiber (e.g., cotton) fabrics, synthetic resin fabrics, synthetic resin films, synthetic resin foams, mesh-form or network papers, woven fabrics, and knit fabrics.
  • Surgical tapes, medical pressure-sensitive adhesive sheets, pressure-sensitive adhesive dressings, constructed with the above films, foams, non-woven fabrics, woven fabrics, or knits can also be used as a backing material.
  • suitable backing materials include polyurethanes such as Estane polyurethanes (available for B.F. Goodrich, Cleveland, Ohio) including, for example, Estane 58237, Estane 58245, and Estane 58309.
  • Other suitable backing materials include elastomeric polyester such as Hytrel polyester elastomer (E.I. duPont deNemours & Co., Wilmington, Del.), blends of polyurethane and polyester, and polyvinyl chloride.
  • Thermoplastic polyether-amide block copolymers such as Pebax 2533 and Pebax 3533 (available from Atochem Co.); and polyether-ester block copolymers may also be used.
  • the wound dressing of the present invention preferably comprises a porous or non-continuous wound-facing layer to provide a fluid permeable barrier between the wound site and the absorbent layers, but may be optionally non-porous or continuous.
  • the wound-facing layer allows transport of moisture (i.e. fluid and vapor) from the wound to the absorbent layers and can help isolate the wound from other components of the dressing.
  • the wound-facing layer is preferably soft, flexible, conformable, non-irritating and non-sensitizing.
  • a variety of polymers may be used for the wound-facing layer, including polyurethane, polyethylene, polypropylene, polyamide or polyester materials.
  • the wound-facing layer may be in the form of moisture vapor permeable films, perforated films, woven-, non-woven or knit webs, or scrims.
  • a preferred wound-facing layer comprises a polyurethane film.
  • the wound-facing layer is conformable to animal (including human) anatomical surfaces, has a moisture vapor transmission rate of at least 300 grams per square meter per 24 hours at an 80% relative humidity differential at 40° C. (as described in Chen, U.S. Pat. No. 5,733,570), and contains perforations for passing wound exudate through the wound-facing layer.
  • the wound-facing layer typically does not pass liquid water under normal wound treatment conditions except at the places in the wound-facing layer which are positively perforated to allow the exudate to pass into the absorbent layer.
  • the preferred moisture vapor transmission rate of the wound-facing layer is at least 600 grams per square meter per 24 hours at an 80% relative humidity differential at 40° C.
  • the wound-facing layer may further comprise a pressure sensitive adhesive layer.
  • the adhesive coated wound-facing layer should have the aforesaid MVTR.
  • Porous or non-porous wound-facing layers such as perforated polyurethane, polyamide, polyester, polypropylene, polyethylene, polyether-amide, polyurethanes, chlorinated polyethylene, styrene/butadiene block copolymers (“Kraton” brand thermoplastic rubber, Shell Chemical Company, Houston, Tex.) and polyvinyl chloride and those described in U.S. Pat. No. 3,121,021 that are covered with a pressure sensitive adhesive that is not permeable to liquid water can be used for the wound-facing layer.
  • these films can be perforated.
  • Additional porous materials include woven, knit, and non-woven substrates. It is also desirable that the wound-facing layer be a low friction material, such as that disclosed in U.S. Pat. No. 5,643,187.
  • the wound-facing layer have the above mentioned moisture vapor or liquid permeability (1) so that maceration of the skin under the wound dressing does not occur or is minimized, (2) so that moisture build-up under the wound-facing layer does not cause the wound-facing layer and, therefore, the wound dressing to be lifted off the skin, and (3) to enhance proximation of the wound edges.
  • Preferred wound-facing layers are thin polymeric films optionally coated with pressure sensitive adhesive which, in combination, have the above characteristics.
  • the diameter of perforations or apertures in the wound-facing film are preferably less than the thickness of the two absorbent layers. More preferably, the diameter is less than 70% of the thickness of the absorbent layers. And still more preferably, the diameter is less than 60% of the thickness of the absorbent layers.
  • Percent Void Area [(average void area per aperture)*(number of apertures per unit area)*100]
  • wound-facing film with a void area between 1 and 20%, more preferably between 3 and 10%, and most preferably between 4 and 8%. If the Percent Void Area is too low, the rate of fluid absorption will be slow. If the Percent Void Area is too high, the mechanical strength of the film will diminish to an unacceptable level.
  • the wound-facing layer is normally attached to the wound site by means of an adhesive which can be continuous or non-continuous, such as pattern coated.
  • Adhesives which can be used with the wound dressings of the invention include adhesives which are applied to the skin such as those described in U.S. Pat. No. Re. 24,906 (Ulrich), particularly a copolymer of 96% iso-octyl acrylate units and 4% acrylamide units and a copolymer of 94% iso-octyl acrylate units and 6% acrylic acid units.
  • Other useful adhesives are those described in U.S. Pat. No.
  • 3,389,827 that comprise block copolymers having three or more polymer block structures having a general configuration --A--B--A-- wherein each A is a thermoplastic polymer block with a glass transition temperature above room temperature (i.e., above about 20° C.) having an average molecular weight between about 5000 and 125,000, and B is a polymer block of a conjugated diene having an average molecular weight between about 15,000 and 250,000.
  • Additional examples of useful adhesives are acrylic adhesives such as iso-octyl acrylate/N-vinyl pyrrolidone copolymer adhesives and crosslinked acrylate adhesives such as for example those described in U.S. Pat. No. 4,112,213. Inclusion in the adhesive of medicaments is useful for enhancing wound healing and the inclusion of antimicrobial agents such as iodine is useful for preventing infection.
  • the adhesive may optionally be a microsphere adhesive with low trauma properties as described in U.S. Pat. No. 5,614,310; a fibrous adhesive with low trauma properties as described in U.S. Pat. No. 6,171,985; or have especially good adhesion to wet skin, such as the adhesives described in U.S. Pat. No. 6,198,016; and PCT Publication Nos. WO 99/13866 and WO 99/13865.
  • the adhesive may be chosen to be permeable to water or wound exudate, or the adhesive may be pattern coated on the front surface of the wound dressing (i.e. the surface in contact with the wound site, whether it is the front surface of the facing or backing layers) so as to not impede the flow of exudate to the absorbent layer, i.e. the adhesive may be coated non-continuously or at the periphery of the wound dressing.
  • the adhesive layer may be perforated as described for the facing film to provide a fluid path for the exudate.
  • a release liner may be attached to the adhesive layer for ease of handling.
  • release liners are liners made of or coated with polyethylene, polypropylene and fluorocarbons and silicone coated release papers or polyester films.
  • silicone coated release papers are Polyslik S-8004, 83 pound (135.4 g/m 2 ) bleached silicone release paper supplied by H. P. Smith Co., Chicago, Ill., and 80 pound (130.5 g/m 2 ) bleached two-sided silicone coated paper (2-80-BKG-157) supplied by Daubert Chemical Co., Dixon, Ill.
  • a pressure sensitive layer may also be optionally included between the backing and the first absorbent layer and can be made from medical grade adhesives and methods that are publicly known.
  • Preferred adhesives are acrylate copolymers described in U.S. Pat. No. RE 24,906, particularly a 97:3 iso-octyl acrylate:acrylamide copolymer. Also preferred is a 70:15:15 isooctyl acrylate: methoxypolyethyleneoxide acrylate:acrylic acid terpolymer as described in U.S. Pat. No. 4,737,410 (Example 31) and U.S. Pat. No. 5,849,325.
  • Other useful adhesives are described in U.S. Pat. Nos. 3,389,827; 4,112,213; 4,310,509 and 4,323,557. If the backing extends beyond the area of the absorbent layers, the backing adhesive may also serve as a border skin contact adhesive.
  • the preferred embodiments for the facing and backing layers are thin conformable polymeric films.
  • the films are from 12 to 50 microns in thickness, preferably from 12 to 25 microns. Conformability is somewhat dependent on thickness, thus the thinner the film the more conformable the film.
  • the wound dressing of the invention may also comprise a frame or film overlay that allows the dressing to be more easily applied to the wound.
  • the frames are made of a relatively rigid material that maintains the shape of the dressing during handling and application to the wound site. Each frame is generally releasably adhered to the back surface of the backing film and is removed after application of the wound dressing. Suitable frames are described in U.S. Pat. Nos. 5,531,855 and 5,738,642 (Heinecke et al.).
  • composition of this invention may also contain one or more pharmaceutically active agents.
  • pharmaceutically active agents are antibacterial agents such as povidone iodine, iodine, silver, silver chloride, and chlorhexidine.
  • Pharmaceutically active agents can be used alone or as mixtures thereof; further, medicaments can be added before the reaction product of this invention is cured as long as they do not interfere with polymerization or the function or clarity of the finished dressing.
  • Pharmacologically active agents can also be added after the reaction product is cured as they do not interfere with the function or clarity of the finished dressing.
  • absorbent dressings are possible with the wound-facing layer, the absorbent layers and the backing layer.
  • the areas of the wound-facing layer and the backing layer are greater than that of the absorbent layers, and the wound-facing layer is bonded to the backing layer, thereby forming a pouch, with the absorbent disposed between the two.
  • the greater area of the facing or backing layer forms a periphery to which an adhesive layer and a release liner may be attached.
  • the wound-facing, absorbent and backing layers of the present invention be at least translucent and more preferably sufficiently transparent so that the wound site to which they are applied can be viewed through the dressing. It is advantageous to view and evaluate the wound and healing thereof without removal of the wound dressing to avoid unnecessary handling of the wound site and exposure of the wound to the environment, which reduces the likelihood of contamination, and avoids the need to cleanse the wound as would be the case were the dressing to be removed.
  • the dressing be both transparent and colorless so that the color of the wound, exudate, and periwound skin may also be evaluated.
  • Preferred transparent films for use as facing and backing layers that allow visual inspection of the wound site include polyurethane films, such as ESTANETM polyurethanes (B.F. Goodrich, Cleveland, Ohio); elastomeric polyesters, such as HYTRELTM polyester elastomers (E. I. duPont deNemours & Co., Wilmington, Del.) and polyether block amides (PEBAX, Elf Altochem North America, Philadelphia, Pa.).
  • Other useful films are those described in U.S. Pat. Nos. 4,499,896; 4,598,004; and 5,849,325 (Heinecke et al.).
  • the invention also features methods of treating an exuding wound that includes applying one of the above-described dressings to the wound and allowing the dressing to absorb body fluids exuded from the wound. Furthermore, the invention features transparent, elastomeric, body fluid-absorbing compositions that include the above-described reaction products and have the above-described properties.
  • the invention features methods for preparing a transparent, elastomeric, body fluid-absorbing composition that includes exposing an essentially solvent-free mixture of monomers or pre-polymeric syrup to actinic radiation to form the composition.
  • the mixture or syrup includes: (a) an acrylic or methacrylic acid ester of a non-tertiary alcohol having between 4 and 14 carbon atoms, inclusive; (b) a hydrophilic, ethylenically unsaturated monomer; and (c) a polar, ethylenically unsaturated monomer different from the hydrophilic, ethylenically unsaturated monomer.
  • the resulting composition is essentially free of hydrocolloidal gel particles and capable of absorbing moderate to heavy amounts of body fluids while retaining its structural integrity and transparency.
  • the mixture or syrup further includes a photoinitiator and is exposed to ultraviolet radiation.
  • the absorbent layers of the wound dressing can be formed separately and then adhered together either with an adhesive composition or adhered using the inherent adhesive properties of the absorbent layers, or by incorporation of an additional adhesive between the two layers.
  • the two layers are simultaneously cured together. Such simultaneous curing can be accomplished by forming layers of uncured monomer and then curing together.
  • the first layer of monomer can be deposited onto a surface, followed by deposit of the second layer of monomer, and concluded with curing of the two layers.
  • the two layers of uncured monomer can be simultaneously deposited (such as by being coextruded) and then cured.
  • a dry wound dressing sample (10 cm ⁇ 15 cm) was applied to the upper flange of a clear polycarbonate cup, similar to a Paddington cup as described in the British Pharmacopoeia, 1993, Addendum 1996, page 1943, HMSO London, England.
  • the sample was positioned over the center of the cup cavity (3.8-cm diameter, 3-cm depth, 14-ml volume capacity) and the sample was held in place by its own pressure sensitive adhesive layer.
  • the cup was then inverted and 12 g of calf bovine serum (Sigma-Aldrich Chemical Co.) was added to the cup through a port. The port was closed with a threaded plug and the cup was placed in an incubator at 40° C. and 20% RH.
  • the peel force method was used to measure the force required to remove a wound-facing layer of an adhesive dressing sample from its core layer.
  • a 2.54-cm wide double-coated adhesive tape (3M Brand Double Stick Tape, 3M Company, St. Paul, Minn.) was adhered to the full circumference of a rotatable metal wheel that was mounted on the lower jaw of an Instron machine (Model No. 1122; Instron Corp., Canton, Mass.).
  • a 2.54-cm wide polyester silicone adhesive tape No. 8402 tape, 3M Company was adhered to the double-coated tape, adhesive side out.
  • An adhesive dressing sample (2.54 cm ⁇ 10.2 cm) was placed on the silicone tape with the core layer facing against the wheel and the wound-facing layer facing the operator.
  • the wound-facing layer was lifted away from the core layer to form a tab that was clamped onto the upper jaw of the Instron machine.
  • the wound-facing layer was then peeled off of the core layer at a 90-degree angle and at a crosshead speed of 300 mm/min.
  • the peel force was recorded in grams force per 2.54-cm width as an average of three replications.
  • An adhesive dressing sample (5-cm square) was placed in a glass jar containing 50 ml of 0.9% sodium chloride solution. After 24 hours at room temperature, the pH of the solution was measured.
  • a multi-layer absorbent wound dressing having a backing layer, a first absorbent layer, a second absorbent layer, and a wound-facing layer was prepared by the following procedure.
  • the first absorbent layer precursor composition (Composition A) was prepared as follows. Acrylic acid (528 g, BASF, Mt. Olive, N.J.), 50% (w/w) sodium hydroxide solution (99 g, J. T. Baker, Philipsburg, N.J.), and 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (1.32 g, Ciba Specialty Chemicals Corp., Tarrytown, N.Y.) were added to a glass jar and mixed until dissolved. Methoxypolyethyleneglycol 400 acrylate (2470 g, “NK Ester-AM-90G”, Shin-Nakamura Chemical Co., Ltd., Japan) was added to the jar and mixed in by shaking the jar. Lauryl acrylate (198 g, Aldrich Chemical Co., Milwaukee, Wis.) and alpha-methylstyrene (3.3 g, Aldrich) were added and the entire composition was mixed by shaking the jar.
  • the second absorbent layer precursor composition (Composition B) was prepared as follows. Acrylic acid (239 g), 50 (w/w) sodium hydroxide solution (41.6 g), and 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (1.3 g) were added to a glass jar and mixed until dissolved. Methoxypolyethyleneglycol 400 acrylate (1016 g) was added to the jar and mixed in by shaking the jar. While stirring the resulting solution with a propeller, 2-ethylhexyl acrylate (1951 g, BASF Corp.) was added to provide the finished composition.
  • Compositions A and B were thickened separately to between 1000 and 2000 centipose by short exposure to UV light and an additional 3.25 g of 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone was added and mixed into each composition.
  • the thickened Composition B was knife-coated at a thickness of 3 mil (0.076 mm) onto a conventional polyester release liner, followed immediately by knife-coating of the thickened Composition A at a thickness of 25 mil (.635 mm) onto the Composition B layer.
  • a conventional polyester release liner was provided on top of the Composition A layer.
  • the coated layers were then cured under UV lamps (350BL, Sylvania Corp., Danvers, Mass.) at a peak wavelength of 350 nm and an intensity of 7.3 mW/cm 2 and a dose of 2360 mJ/cm 2 through the top release liner to make the finished core laminate of the adhesive wound dressing. Additionally, the thickened Composition B was separately knife-coated at a thickness of 25 mil (0.635 mm) onto a conventional polyester release liner for later testing.
  • UV lamps 350BL, Sylvania Corp., Danvers, Mass.
  • a wound-facing layer was prepared by perforating a TEGADERMTM dressing (3M Company) by ultrasonic means so that the dressing contained 40 holes/cm 2 with each hole having a diameter of approximately 15 mils (0.38 mm).
  • the Percent Void Area was calculated to be 4.5%.
  • the release liner was removed from the Composition A layer (first absorbent layer) side of the core laminate and to this side was laminated by hand to the adhesive side of a TEGADERMTM dressing (backing layer).
  • the release liner was then removed from the Composition B layer (second absorbent layer) side of the core laminate and to this side was laminated by hand to the non-adhesive side of the wound-facing layer.
  • the resulting completed multi-layer absorbent wound dressing material was cut into 10-cm ⁇ 15-cm samples for test evaluations. Samples were also subsequently packaged and sterilized by irradiating at approximately 30 kGy.
  • a multi-layer absorbent wound dressing was prepared as described in Example 1, except that N-vinyl acetamide was substituted for the acrylic acid/sodium hydroxide components in the first absorbent layer precursor composition (Composition A) and this composition was prepared as follows.
  • N-Vinyl acetamide 600 g, Showa Denko, Japan
  • 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone 1.2 g
  • methoxypolyethyleneglycol 400 acrylate 2183 g
  • Lauryl acrylate 210 g
  • alpha-methylstyrene 3.0 g
  • the wound-facing layer in this example contained 40 holes/cm 2 with each hole having a diameter of approximately 20 mils (0.51 mm).
  • the Percent Void Area was calculated to be 7.8%.
  • the resulting completed multi-layer absorbent wound dressing material was cut into 10-cm ⁇ 15-cm samples for test evaluations.
  • a multi-layer absorbent wound dressing was prepared as described in Example 1, except that the sodium hydroxide solution component was not added to either Composition A or Composition B.
  • the resulting completed multi-layer absorbent wound dressing material was cut into 10-cm ⁇ 15-cm samples for test evaluations.
  • a multi-layer absorbent wound dressing was prepared as described in Example 1, except that the first absorbent layer precursor composition (Composition A) was prepared as follows. 2-Hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (1.32 g) and methoxypolyethyleneglycol 400 acrylate (2995 g) were added to a glass jar and mixed by shaking the jar. Alpha-methylstyrene (3.3 g) was then added and the entire composition was mixed by shaking the jar. The resulting completed multi-layer absorbent wound dressing material was cut into 10-cm ⁇ 15-cm samples for test evaluations.
  • Composition A 2-Hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone
  • methoxypolyethyleneglycol 400 acrylate 2995 g
  • An absorbent wound dressing was prepared as described in Example 1, except that the second absorbent layer precursor composition (Composition B) was not prepared and the final wound dressing material did not contain a second absorbent layer.
  • the resulting completed absorbent wound dressing material thus comprised a single first absorbent layer (Composition A layer) sandwiched between the backing layer and the wound-facing layer. This comparative wound dressing material was cut into 10-cm ⁇ 15-cm samples for test evaluations.
  • Wound dressing samples from Examples 1 and 4, Comparative Example 1 (CE-1), and four commercial wound dressing samples were evaluated for calf bovine serum absorbency according to the test method described herein. Observations were also noted of sample residue that was present in the test cell. The results are provided in Table 2 and show that the invention wound dressing samples (Examples 1 and 4) had an increasing level of CBS absorbency between 24 and 72 hours, had a high level of absorbency (10 to 12 g) at 72 hours, and left no dressing sample residue in the test cell.
  • Comparative Example 1 lacking a second absorbent layer reached a maximum absorbency (12 g) before 24 hours and left sample residue in the test cell.
  • Samples from Examples 1 and 4, and Comparative Example 1 showed significantly higher absorbency than the four commercial wound dressing samples.
  • TABLE 2 Calf Bovine Serum Absorbency Absorbency (g) Example 24 hours 48 hours 72 hours Test Cell Residue 1 8 11 12 No CE-1 12 12 12 Yes 4 7.7 9.5 10 No TEGASORB TM 5.2 7.1 8.5 Yes COMFEEL TM 3.9 5.5 5.5 Yes CLEARSITE TM 3.3 * — No DUODERM TM 2.2 3.4 3.8 Yes *Lateral swell occurred between dressing sample and test cell; observed leaking of CBS. Peel Force Evaluation
  • Wound dressing samples from Examples 1-3 and Comparative Example 1 were evaluated for saline extract acidity according to the test method described herein.

Abstract

A multi-layer wound dressing comprising at least two absorbent layers, and materials for forming absorbent layers are provided. The absorbent layers have different absorbencies, with the layer closest to the wound having a lower absorbency than the layer furthest from the wound. The wound dressing typically contains additional non-absorbing layers, such as a backing film and wound-facing film. The dressing provides absorbency of wound exudates while preventing the absorbent material from entering the wound. In specific implementations the dressing is substantially transparent prior to application to a wound, as well as after application to the wound when body fluids have been absorbed.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application is a division of U.S. patent application Ser. No. 09/657,486, filed Sep. 8, 2000, now U.S. Pat. No. 6,903,243.
  • FIELD OF THE INVENTION
  • The present invention is directed to novel body fluid absorbing materials; and to absorbent articles used as wound dressings, including multi-layer absorbent articles having at least two absorbent layers.
  • BACKGROUND OF THE INVENTION
  • Proper wound dressings are an essential medical supply for treating injuries. Without dressings, the wound exudate accumulates and creates breeding grounds for harmful microorganisms. Each year, sterile wound dressings are applied to millions of wounds in order to absorb wound exudate while promoting sterility.
  • Traditional wound dressings have included various cloth and fiber materials as exudates absorbents, such as cotton pads. Unfortunately, these traditional dressings provide relatively limited absorbency and must be changed frequently. Their ability to preserve sterility is also limited, and scabs that form as the wounds heal tend to stick to the dressings. After the dressings are removed, these scabs are also removed, which can be painful and interfere with healing.
  • Efforts have been made to improve upon these traditional wound dressings by applying a non-stick perforated film to the wound-facing side of the dressing. These non-stick films are designed to allow wound exudate to penetrate to the absorbent, while restricting the physical contact between the absorbent and wound in an effort to reduce undesirable adherence between the two. However, these perforated films do nothing to improve on the absorbency of traditional absorbent materials used in dressings.
  • In order to improve upon absorbency, various alternative absorbent materials have been developed. For example, hydrophilic hydrocolloids and hydrogels have been created that provide a translucent or transparent absorbent layer. Such dressings can allow for general inspection of the healing wound. Unfortunately, some such dressings have the problem that the absorbent deforms and partially disintegrates upon swelling. Specifically, as the absorbent takes in fluid, it often bends and buckles such that some of the absorbent material breaks away from the dressing and enters the wound. This absorbent material can be left in the wound upon removal of the dressing, which is undesirable for cosmetic and therapeutic reasons. In addition, such materials often have relatively high moisture content prior to application, which can limit their ability to absorb additional water after they are applied.
  • Therefore, a need exists for a wound dressing that improves on existing dressing materials and technology.
  • SUMMARY OF THE INVENTION
  • The present invention is directed to multi-layer wound dressings. The multi-layer wound dressings allow for high absorbency of body fluids while providing good durability and minimal degradation during use. In addition, in specific implementations, the multi-layer wound dressings are transparent and remain transparent when wet; and the dressings can be cut by clinicians to conform to the shape and size of the wound being covered. Also described are novel compositions useful as body fluid absorbing materials.
  • The wound dressings of the invention include at least two absorbent layers: a first absorbent layer and a second absorbent layer. The first absorbent layer is typically more absorbent than the second absorbent layer, and can retain a greater volume of body fluids than the second absorbent layer. The second absorbent layer is positioned such that it is located between the first absorbent layer and the wound. This second absorbent layer provides integrity to the wound dressing and avoids transfer of the first absorbent layer into the wound.
  • The first absorbent layer typically contains the reaction product of a hydrophilic, ethylenically unsaturated monomer. In one implementation, the first absorbent layer includes the reaction product of a hydrophilic, ethylenically unsaturated monomer; an acrylic acid ester of a non-tertiary alcohol having 4 to 14 carbon atoms; and a polar, ethylenically unsaturated monomer. Specifically, the first absorbent layer can contain the reaction product of about 50 to 80 parts by weight of the hydrophilic, ethylenically unsaturated monomer; about 5 to 30 parts by weight of the acrylic acid ester of the non-tertiary alcohol having from 4 to 14 carbon atoms; and about 10 to 40 parts by weight of the polar, ethylenically unsaturated monomer. The polar, ethylenically unsaturated monomer comprises N-vinyl acetamide or partially neutralized acrylic acid in specific implementations. Unless otherwise noted, it is assumed for invention compositions (including absorbent layers and body fluid absorbing materials) comprising the reaction product of various parts by weight of specific monomers that the total monomer composition is 100 parts.
  • The second absorbent layer is typically positioned in contact with the first absorbent layer and is typically less absorbent of body fluids than the first absorbent layer. The second absorbent layer can also contain the reaction product of an acrylic acid ester of a non-tertiary alcohol having from 4 to 14 carbon atoms; a hydrophilic, ethylenically unsaturated monomer; and a polar, ethylenically unsaturated monomer. In particular implementations, the second absorbent layer contains the reaction product of about 45 to 80 parts by weight of the acrylic acid ester of a non-tertiary alcohol having from 4 to 14 carbon atoms; about 25 to 40 parts by weight of the hydrophilic, ethylenically unsaturated monomer; and about 2 to 20 parts by weight of the polar, ethylenically unsaturated monomer.
  • The first and second layers are usually formed such that they are in contact with one another across a large surface area. In particular implementations, the absorbent layers are formed by a simultaneous polymerization reaction. In such implementations, the unpolymerized monomer can be deposited simultaneously or sequentially and then cured together. Such simultaneously cured absorbent materials often show enhanced physical integrity because they form a strong interface. It is believed that such strength may be a result of some slight interfacial mixing of the layers prior to and during curing.
  • The second absorbent layer functions as a “barrier” between the first absorbent layer (which may partially “disintegrate” when exudate is absorbed under some conditions) and the wound. Preferably the second absorbent layer has adhesive properties (or is a pressure sensitive adhesive) and functions to enhance the overall integrity of the wound dressing. In this regard, the second absorbent layer ties the first absorbent layer to a wound-facing layer (or to the wound itself). By having adhesive properties, this second absorbent layer not only aids in controlling the absorption of exudate, but also physically joins to other components of the dressing.
  • As stated above, the first absorbent layer is typically significantly more absorbent than the second absorbent layer, and preferably has an absorbency at least 100 percent greater than the absorbency of the second absorbent layer. The first absorbent layer preferably absorbs at least 400 percent of its weight after immersion in an isotonic saline solution after 24 hours at room temperature. The second absorbent layer normally has an absorbency of at least about 50 percent by weight of isotonic saline solution after 24 hours. Unless otherwise stated, the term “absorbency” in the present application refers to the percent by weight of isotonic saline solution absorbed by a material tested according to the Saline Absorbency Method described herein.
  • Additional layers, such as backing layers, wound-facing layers, and adhesives are also suitable for use in certain implementations of the invention. The invention is also directed to methods of making multi-layer wound dressings, including multi-layer wound dressings in which two or more layers of absorbent are simultaneously cured. Although dressings of the invention can include various materials, the invention is also directed to specific absorbent compositions for use in wound dressings. These compositions include materials containing the reaction product of partially neutralized ethylenically unsaturated carboxylic acids and materials containing the reaction product of N-vinyl acetamide.
  • The above summary of the present invention is not intended to describe each disclosed embodiment of the present invention, but rather that is the purpose of the following disclosure and claims in addition to the summary.
  • BRIEF DESCRIPTION OF THE FIGURES
  • Other aspects and advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings in which:
  • FIG. 1A is a top view of a first wound dressing constructed in accordance with the present invention.
  • FIG. 1B is a partial cross-sectional view taken along plane A-A′ of the wound dressing from FIG. 1A.
  • FIG. 1C is a partial cross-sectional view of a second wound dressing constructed in accordance with the present invention.
  • While the invention is susceptible to various modifications and alternative forms, specifics thereof have been shown by way of example in the drawings and will be described in detail. It should be understood, however, that the intention is not to limit the invention to the particular embodiments described. On the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to multi-layer wound dressings that allow for high absorbency of wound exudate. The wound dressings contain absorbent layers that demonstrate low disintegration after absorbing body fluids such that absorbent material does not significantly enter the wound. In addition, in specific implementations, the wound dressings are substantially transparent before and after placement on a wound (with the exception of colored exudate, such as blood), and are formed such that they can be cut to custom sizes by clinicians prior to placement on a wound.
  • In reference now to FIG. 1A, a top view is shown of a wound dressing 10 constructed in accordance with a first implementation of the invention. Wound dressing 10 is shown adhered on the surface of a patient. Dressing 10 is substantially transparent, with a portion of the wound 14 visible through the top surface 16 of dressing 10. As used herein, transparency refers to dressings that permit viewing of material through the dressing with sufficient clarity to perform general visual examinations. Preferably, the dressings are substantially transparent when the dressings are dry or wet with water or wound exudate. Such transparency typically shows some optical distortion and may include loss in detail and resolution. Also, to the extent the wound exudate is colored by blood or other fluids, the transparency of the dressing is reduced.
  • A more detailed representation of this example embodiment is shown in FIG. 1B, which is a partial cross section of the wound dressing 10 taken along plane A-A′ of FIG. 1A. Wound dressing 10 includes six layers: A backing layer 20, an adhesive layer 22, a first absorbent layer 24, a second absorbent layer 26, a porous or non-continuous wound-facing layer 28; and a pressure sensitive adhesive 30. In the implementation shown, the first and second absorbent layers 24, 26 are positioned only within the interior of dressing 10, while the other four layers extend along the entire dressing 10, and thereby form a perimeter of substantially non-absorbent material. This perimeter can be advantageous because it provides a border and frame for the absorbent layers.
  • In other implementations, such as that shown in FIG. 1C, the multiple layers of the dressing 10 extend to the edges of the dressing and thus provide a dressing that can conveniently be cut to size. In the dressing 10 shown in FIG. 1C, the second absorbent layer 26 is substantially adhesive and provides a bond between the first absorbent layer 24 and the wound-facing layer 28. Thus, the multiple layers of wound dressing 10 are held together independent of any edge or frame bonds. This type of wound dressing is particularly well suited to being cut by a clinician to conform to a custom shape because the wound dressing does not delaminate, or delaminates only an acceptable amount, upon exposure to wound exudate. These multi-layer wound dressings show favorable absorption of exudate from wounds while also providing an integrated dressing that avoids significant shedding of the absorbent layers into the wound dressing.
  • The two implementations shown in FIGS. 1A to 1C depict a six-layer wound dressing, but it will be appreciated that additional layers can be incorporated. In addition, in specific implementations, fewer layers can be used. Thus, the invention is not limited to the embodiments depicted, but rather such embodiments are shown only to illustrate examples of the invention.
  • The specific materials and positions of the various layers in the wound dressings of the invention will now be described in detail.
  • A. Absorbent Layers
  • The present invention features a first absorbent layer comprised of an absorbent composition that is capable of rapidly absorbing moderate to heavy amounts of body fluids, while retaining sufficient structural integrity and transparency. This first absorbent layer typically is the most absorbent material of the dressing. The composition of the first absorbent layer typically includes the reaction product of:
  • (a) 0 to 30 parts by weight of an acrylic or methacrylic acid ester of a non-tertiary alcohol having from 4 to 14 carbon atoms;
  • (b) 30 to 100 parts by weight of a hydrophilic, ethylenically unsaturated monomer (more preferably 50 to 80 parts by weight); and
  • (c) 0 to 40 parts by weight of a polar, ethylenically unsaturated monomer different from the hydrophilic, ethylenically unsaturated monomer.
  • Although various acrylic and methacrylic acid esters of non-tertiary alcohols having 4 to 14 carbon atoms can be used, alcohols having greater than 4 carbon atoms are preferred, and alcohols with from 8 to 12 carbon atoms are particularly preferred.
  • Examples of suitable acrylic and methacrylic acid ester monomers include esters prepared by reaction with alcohols, such as 1-butanol, 2-butanol, 1-pentanol, 2-pentanol, 3-pentanol, 2-methyl-1-butanol, 1-hexanol, 2-hexanol, 2-methyl-1-pentanol, 3-methyl-1-pentanol, 2-ethyl-1-butanol, 3,5,5-trimethyl-1-hexanol, 3-heptanol, 1-octanol, 2-octanol, isooctanol, 2-ethyl-1-hexanol, 1-decanol, 1-dodecanol, 1-tridecanol, 1-tetradecanol, nopol, and the like, as well as combinations thereof. In specific embodiments, the acrylic or methacrylic acid ester is selected from the group consisting of isooctyl acrylate, 2-ethyl hexyl acrylate, isodecyl acrylate, lauryl acrylate, nopol acrylate, and combinations thereof. The amount of the acrylic or methacrylic acid ester typically is less than 80 parts by weight, preferably less than 50 parts by weight, more preferably 5 to 30 parts by weight, and most preferably 10 to 25 parts by weight.
  • Examples of suitable hydrophilic, ethylenically unsaturated monomers include free radically reactive hydrophilic oligomers (a polymer having a low number of repeating units, generally 2 to 20) and/or polymers including poly(alkylene oxides) (e.g., poly(ethylene oxide)), poly(vinyl methyl ether), poly(vinyl alcohol), cellulose derivatives, and mixtures thereof. Other suitable hydrophilic, ethylenically unsaturated monomers include macromonomers, e.g., acrylate-terminated poly(ethylene oxide), methoxy poly(ethylene oxide) acrylate, butoxy poly(ethylene oxide) acrylate, p-vinyl benzyl-terminated poly(ethylene oxide), acrylate-terminated poly(ethylene glycol), methacrylate-terminated poly(ethylene glycol), methoxy poly(ethylene glycol) methacrylate, butoxy poly(ethylene glycol) methacrylate, p-vinyl benzyl-terminated poly(ethylene glycol), poly(ethylene oxide) diacrylate, poly(ethylene oxide) dimethacrylate, and combinations thereof.
  • The hydrophilic, ethylenically unsaturated monomer can be acrylate and methacrylate esters prepared from mono-hydroxyl-terminated poly(lower alkylene oxides) such as polyethylene and polypropylene glycols commercially available under the trade designation Carbowax from Union Carbide Corp. in a variety of molecular weights (e.g., Carbowax 350, Carbowax 550, Carbowax 750, Carbowax 2000, and Carbowax 5000). An example of a preferred acrylate-terminated polyethylene glycol is commercially available from Shin-Nakamura Chemical Co., Ltd., Japan, under the designation “NK Ester AM-90G.” The hydrophilic, ethylenically unsaturated monomer preferably is selected from the group consisting of acrylate-terminated poly(alkylene oxides) and methacrylate-terminated poly(alkylene oxides). A preferred monomer is an acrylate-terminated methoxy poly(ethylene glycol) monomer. The amount of the hydrophilic, ethylenically unsaturated monomer typically is between 30 and 100 parts by weight, and more typically 50 to 80 parts by weight.
  • The polar, ethylenically unsaturated monomer preferably is selected from the group consisting of partially neutralized acrylic acid, methacrylic acid, itaconic acid, N-vinyl acetamide, N-methyl-N-vinyl acetamide, N-vinyl propionamide, trialkylaminoethyl(meth)acrylate salt such as trimethylaminoethyl acrylate chloride, N-vinyl-pyrrolidone, N-vinylcaprolactam, hydroxyethyl (meth)acrylate or N-(acryloyloxyethyl)pyrrolidine; with partially neutralized acrylic acid and N-vinyl acetamide being preferred. The amount of the polar, ethylenically unsaturated monomer preferably is between 0 and 40 parts by weight, more preferably 10 to 30 parts by weight, and most preferably 15 to 25 parts by weight. An example of a preferred absorbent composition is one that includes the reaction product of lauryl acrylate, acrylate-terminated methoxy poly(ethylene glycol), and partially neutralized acrylic acid or N-vinyl acetamide.
  • The composition used to form the first absorbent layer preferably is tacky after curing and capable of absorbing at least about 200%, more preferably at least about 400%, and most preferably at least about 600% by weight isotonic saline after 24 hours while substantially retaining its structural integrity and transparency. Thus, the first absorbent layer is highly absorbent.
  • Acrylic acid, methacrylic acid, and itaconic acid contain carboxylic acid group(s), which can react with a base such as sodium hydroxide. For example when one mole of acrylic acid reacts with one mole of sodium hydroxide, one mole of sodium acrylate and one mole of water is produced. In this case, the acrylic acid is neutralized or fully neutralized. A mole of acrylic acid is partially neutralized when it reacts with less than one mole of sodium hydroxide. In general an acid is partially neutralized when one equivalent of acid reacts with less than an equivalent of base. When a ethylenically unsaturated carboxylic acid containing monomer is used in a composition of this invention, it is typically partially neutralized from 1 to 49%. Preferably, the carboxylic acid containing monomer composition is 17% partially neutralized. Neutralization above 49% does not typically produce a clear monomer solution without the addition of a large amount of water.
  • The second absorbent layer is also typically absorbent, but less absorbent than the first layer. The second layer may contain the same components as described above for the first absorbent layer, however it preferably consists of a higher concentration of the acrylic or methacrylic acid ester monomer and is more tacky. The composition preferably includes the reaction product of:
  • (a) 45 to 75 parts by weight of an acrylic or methacrylic acid ester of a non-tertiary alcohol having between 4 and 14 carbon atoms, inclusive;
  • (b) 25 to 40 parts by weight of a hydrophilic, ethylenically unsaturated monomer; and
  • (c) 2 to 20 parts by weight of a polar, ethylenically unsaturated monomer different from the hydrophilic, ethylenically unsaturated monomer, such as partially neutralized carboxylic acid containing monomer; trialkylaminoethyl (meth)acrylates such as trimethylaminoethyl acrylate chloride; N-vinyl amides such as N-vinyl acetamide, N-methyl-N-vinyl acetamide, and N-vinyl propionamide; N-vinyl lactams such as N-vinyl pyrolidinone and N-vinylcaprolactam, hydroxyethyl acrylate, hydroxyethyl methacrylate, or N-(acryloyloxyethyl)pyrrolidinone; or combinations of these.
  • In specific implementations, the composition of the second absorbent layer comprises 55 to 70 parts by weight of an acrylic or methacrylic acid ester of a non-tertiary alcohol having between 4 and 14 carbon atoms, inclusive; 30 to 35 parts by weight of a hydrophilic, ethylenically unsaturated monomer; and 4 to 15 parts by weight of a polar, ethylenically unsaturated monomer different from the hydrophilic, ethylenically unsaturated monomer.
  • The second absorbent layer preferably functions as a pressure sensitive adhesive, and can control the rate of exudate influx into the first absorbent layer. In order for the second absorbent layer to function as an exudate rate-controlling membrane, the exudate absorbency of the second absorbent layer is typically lower than the exudate absorbency of the first absorbent layer. Preferably the exudate absorbency of the second absorbent layer is 2-fold lower than the exudate absorbency of the first absorbent layer. More preferably, the exudate absorbency of the second absorbent layer is 3-fold lower than the exudate absorbency of the absorbent layer.
  • The first and second absorbent layers combine to provide favorable absorbency and integrity. The first absorbent layer typically has the greatest capacity for absorbing exudate, but the second absorbent layer aids in providing integrity to the first absorbent layer. Such integrity is aided depending upon the implementation, by providing a physical barrier, an absorption rate control layer, and/or a physical strengthening layer. In a first regard, the second layer serves as a barrier because it is more durable than the first layer when fully saturated (in part because it is able to absorb less liquid). In a second regard, the lower absorbency of the second absorbent layer helps to regulate the rate of liquid uptake in the first layer. As such, the first layer can uniformly swell and show less disintegration. In a third regard, the second layer, particularly when it has adhesive properties, secures the portions of the dressing together, thereby adding strength.
  • The first absorbent layer is typically from 5 to 100 mils thick, and more typically from 10 to 50 mils thick. In specific preferred implementations, the first absorbent layer is 20 to 30 mils thick, and more preferably about 25 mils thick. The second absorbent layer is typically less than 50 mils thick, and more typically from 1 to 10 mils thick. In specific implementations, the second absorbent layer is from 2 to 4 mils thick, including implementations having a second absorbent layer that is 3 mils thick.
  • In most embodiments, the first absorbent layer is at least as thick as the second absorbent layer, and more typically significantly thicker than the second absorbent layer. Thus, the first layer can be up to 50 times thicker than the second layer in specific example embodiments. Generally, however, the thickness of the first layer is from 2 to 15 times the thickness of the second layer, and more typically from 5 to 10 times greater. In specific example embodiments, the first absorbent layer is about 8 times the thickness of the second absorbent layer.
  • One or more multifunctional crosslinking monomers may be included in the preparation of the absorbent layers. The term “multifunctional” as used herein refers to crosslinking monomers which have two or more free radically polymerizable, ethylenically unsaturated groups. Useful multi-functional crosslinking monomers include acrylic or methacrylic esters of diols, including 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, neopentyl glycol diacrylate, 1,6-hexanediol diacrylate, 1,6-hexanediol dimethacrylate; acrylic or methacrylic esters of triols such as glycerol; and tetraols such as pentaerythritol.
  • Other useful multifunctional crosslinking monomers include polymeric multifunctional (meth) acrylates, e.g., alkylene glycol-type diacrylates or dimethacrylates, such as diethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol diacrylate, diethylene glycol dimethacrylate, polyethylene glycol 200 diacrylate, polyethylene glycol 400 diacrylate, polyethylene glycol 600 diacrylate, polyethylene glycol 200 dimethacrylate, polyethylene glycol 400 dimethacrylate, polyethylene glycol 600 dimethacrylate, polyethylene glycol 1000 dimethacrylate, polypropylene glycol 400 diacrylate, polypropylene glycol 400 dimethacrylate; polyvinylic crosslinking agents such as substituted and unsubstituted divinylbenzene; trimethylolpropane-type tri- and tetra-acrylates or tri-methacrylates, such as trimethylolpropane triacrylate, trimethylolpropane trimethacrylate, ethoxylated trimethylolpropane triacrylate, trimethylolpropane tetraacrylate; pentaerythritol-type tri- and tetra-acrylates or tri- and tetra-methacrylates, such as pentaerythritol triacrylate, pentaerythritol tetramethacrylate; isocyanurate-type triacrylates or trimethacrylates, such as tris(acryloxyethyl) isocyanurate, tris(methacryloxyethyl) isocyanurate; and bisphenol A-type diacrylates or dimethacrylates, such as ethoxylated bisphenol A diacrylate, ethoxylated bisphenol A dimethacrylate; and difunctional urethane acrylates such as “EBECRYL” 270 and “EBECRYL” 230 (1500 weight average molecular weight and 5000 weight average molecular weight acrylated urethanes, respectively-both available from Radcure Specialties), and combinations thereof.
  • The polymerization reaction may be initiated using various methodologies, including photoinitiation, chemical initiation (such as using peroxide), and thermoinitiation. When photoinitiation is used, the amount of photoinitiator used in the monomer mixture differs according to the extinction coefficient thereof, but typically ranges from about 0.001 to about 5.0 parts by weight per 100 parts of total monomer, preferably from about 0.01 to about 5.0 parts by weight, and more preferably from about 0.05 to about 0.5 parts by weight.
  • Useful photoinitiators include acetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-(4-isopropylphenyl)-2-hydroxy-2-methylpropan-1-one, 1-(4-dodecylphenyl)-2-hydroxy-2-methylpropan-1-one, 4-(2-hydroxyethoxy)-phenyl-(2-hydroxy-2-propyl)ketone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropane-1; substituted alpha-ketols such as 2-methyl-2-hydroxypropiophenone; benzoin photopolymerization initiators such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, benzoin butyl ether, benzyl dimethyl ketal; benzophenone photopolymerization initiators such as benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3,-dimethyl-4-methoxybenzophenone; and thioxanthone photopolymerization initiators such as thioxathone, 2-chlorothioxathone, 2-methylthioxathone, 2,4-dimethylthioxane, isopropylthioxathone, 2,4-dichlorothioxathone, 2,4-diethyloxathone, and 2,4-diisopropylthioxathone.
  • Other materials which may be added to the monomer mixture (before, during or after curing) include chain transfer agents or chain stopping agents for controlling molecular weight (e.g., carbon tetrabromide, mercaptans, alcohols, methacrylates, vinyl compounds such as alpha-methyl styrene, or other monomers), tackifiers, perfumes, deodorants, and antioxidants. Preferably, these other materials do not interfere with the polymerization or the function or clarity of the finished dressing.
  • The absorbent layers may also contain plasticizers. Specific examples of plasticizers suitable for use in the present invention are low molecular weight polyhydric alcohols such as ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, glycerol, diglycerol, 2,3-butanediol, 1,2-butanediol, 3-methyl-1,3-butanediol, 3-methyl-1,3,5-pentanetriol, 2-ethyl-1,2-hexandeiol, polyethylene glycol, methoxypolyethylene glycol, polypropylene glycol, polyoxyethylene butyl ether, polyoxyethylene, polyoxypropylene, polyoxypropylene glyceryl ether, polyoxypropylene sorbitol, and polyoxyethylene polyoxypropylene pentaerythritol ether each having an average molecular weight of 1,000 or less. The plasticizers are typically selected such that they do not significantly impair transparency.
  • The absorbent layers may be prepared by photoinitiated bulk polymerization according to the technique described in Martens et al., U.S. Pat. No. 4,181,752. For example, the polymerizable monomers and photoinitiator are mixed together in the absence of solvent and partially polymerized to a viscosity in the range from about 500 to about 50,000 centipoise to achieve a coatable syrup. The cross-linking agent (if needed) and any other ingredients are then added to the prepolymerized syrup. Alternatively, these ingredients (with the exception of the cross-linking agent) can be added directly to the monomer mixture prior to pre-polymerization.
  • B. Backing Layer
  • A backing layer may be present in embodiments of the present invention. The backing layer is typically the layer farthest from the wound, and provides additional strength to the dressing. Preferably the backing layer is conformable to animal anatomical surfaces, and impermeable to liquid water.
  • The backing layer can be a transparent, conformable, elastomeric, moisture vapor permeable film. The backing film is preferably impermeable to liquid water and has a moisture vapor transmission rate (MVTR) of at least 300 g per 24 hr at 37° C. and 80% relative humidity. More preferably, the MVTR is at least 700 g per 24 hr at 37° C. and 80% relative humidity, and most preferable at least 2000 g per 24 hr at 37° C. and 80% relative humidity using the inverted cup method as described in U.S. Pat. No. 4,595,001. Preferably, the backing will allow some moisture to evaporate from the dressing while still maintaining a moist environment, will prevent the wound from drying out, and will prevent bacteria and viral ingress. It is also desirable that the backing be a low friction material, such as that disclosed in U.S. Pat. No. 5,643,187.
  • The dressing is preferably conformable to anatomical surfaces and stretches to accommodate flexion of joints and distension of skin. After the dressing stretches, ideally it has elastic properties so that the dressing returns to the same size as before stretching. The backing may have a thickness of from 15 to 100 micrometers, preferably 20 to 80 micrometers and more preferably 20 to 50 micrometers. The backing layer may further comprise a pressure sensitive adhesive layer to enhance adhesion to the first absorbent layer.
  • Various materials can be used as the backing material. Specific examples include papers, non-woven fabrics, natural fiber (e.g., cotton) fabrics, synthetic resin fabrics, synthetic resin films, synthetic resin foams, mesh-form or network papers, woven fabrics, and knit fabrics. Surgical tapes, medical pressure-sensitive adhesive sheets, pressure-sensitive adhesive dressings, constructed with the above films, foams, non-woven fabrics, woven fabrics, or knits can also be used as a backing material.
  • Examples of suitable backing materials include polyurethanes such as Estane polyurethanes (available for B.F. Goodrich, Cleveland, Ohio) including, for example, Estane 58237, Estane 58245, and Estane 58309. Other suitable backing materials include elastomeric polyester such as Hytrel polyester elastomer (E.I. duPont deNemours & Co., Wilmington, Del.), blends of polyurethane and polyester, and polyvinyl chloride. Thermoplastic polyether-amide block copolymers such as Pebax 2533 and Pebax 3533 (available from Atochem Co.); and polyether-ester block copolymers may also be used.
  • C. Wound-Facing Layer
  • The wound dressing of the present invention preferably comprises a porous or non-continuous wound-facing layer to provide a fluid permeable barrier between the wound site and the absorbent layers, but may be optionally non-porous or continuous. The wound-facing layer allows transport of moisture (i.e. fluid and vapor) from the wound to the absorbent layers and can help isolate the wound from other components of the dressing. The wound-facing layer is preferably soft, flexible, conformable, non-irritating and non-sensitizing. A variety of polymers may be used for the wound-facing layer, including polyurethane, polyethylene, polypropylene, polyamide or polyester materials. Further, the wound-facing layer may be in the form of moisture vapor permeable films, perforated films, woven-, non-woven or knit webs, or scrims. A preferred wound-facing layer comprises a polyurethane film.
  • In one useful embodiment, the wound-facing layer is conformable to animal (including human) anatomical surfaces, has a moisture vapor transmission rate of at least 300 grams per square meter per 24 hours at an 80% relative humidity differential at 40° C. (as described in Chen, U.S. Pat. No. 5,733,570), and contains perforations for passing wound exudate through the wound-facing layer. The wound-facing layer typically does not pass liquid water under normal wound treatment conditions except at the places in the wound-facing layer which are positively perforated to allow the exudate to pass into the absorbent layer. The preferred moisture vapor transmission rate of the wound-facing layer is at least 600 grams per square meter per 24 hours at an 80% relative humidity differential at 40° C.
  • The wound-facing layer may further comprise a pressure sensitive adhesive layer. The adhesive coated wound-facing layer should have the aforesaid MVTR. Porous or non-porous wound-facing layers such as perforated polyurethane, polyamide, polyester, polypropylene, polyethylene, polyether-amide, polyurethanes, chlorinated polyethylene, styrene/butadiene block copolymers (“Kraton” brand thermoplastic rubber, Shell Chemical Company, Houston, Tex.) and polyvinyl chloride and those described in U.S. Pat. No. 3,121,021 that are covered with a pressure sensitive adhesive that is not permeable to liquid water can be used for the wound-facing layer. Optionally these films can be perforated. Additional porous materials include woven, knit, and non-woven substrates. It is also desirable that the wound-facing layer be a low friction material, such as that disclosed in U.S. Pat. No. 5,643,187.
  • It is preferred that the wound-facing layer have the above mentioned moisture vapor or liquid permeability (1) so that maceration of the skin under the wound dressing does not occur or is minimized, (2) so that moisture build-up under the wound-facing layer does not cause the wound-facing layer and, therefore, the wound dressing to be lifted off the skin, and (3) to enhance proximation of the wound edges. Preferred wound-facing layers are thin polymeric films optionally coated with pressure sensitive adhesive which, in combination, have the above characteristics.
  • The diameter of perforations or apertures in the wound-facing film are preferably less than the thickness of the two absorbent layers. More preferably, the diameter is less than 70% of the thickness of the absorbent layers. And still more preferably, the diameter is less than 60% of the thickness of the absorbent layers.
  • The void area of the apertures is determined by measuring the average diameter of the apertures and then calculating the average aperture area. The number of apertures per unit area is also counted. Finally, the Percent Void Area is calculated by the equation:
    Percent Void Area=[(average void area per aperture)*(number of apertures per unit area)*100]
  • It is preferable to use wound-facing film with a void area between 1 and 20%, more preferably between 3 and 10%, and most preferably between 4 and 8%. If the Percent Void Area is too low, the rate of fluid absorption will be slow. If the Percent Void Area is too high, the mechanical strength of the film will diminish to an unacceptable level.
  • D. Adhesive Layers
  • The wound-facing layer is normally attached to the wound site by means of an adhesive which can be continuous or non-continuous, such as pattern coated. Adhesives which can be used with the wound dressings of the invention include adhesives which are applied to the skin such as those described in U.S. Pat. No. Re. 24,906 (Ulrich), particularly a copolymer of 96% iso-octyl acrylate units and 4% acrylamide units and a copolymer of 94% iso-octyl acrylate units and 6% acrylic acid units. Other useful adhesives are those described in U.S. Pat. No. 3,389,827 that comprise block copolymers having three or more polymer block structures having a general configuration --A--B--A-- wherein each A is a thermoplastic polymer block with a glass transition temperature above room temperature (i.e., above about 20° C.) having an average molecular weight between about 5000 and 125,000, and B is a polymer block of a conjugated diene having an average molecular weight between about 15,000 and 250,000. Additional examples of useful adhesives are acrylic adhesives such as iso-octyl acrylate/N-vinyl pyrrolidone copolymer adhesives and crosslinked acrylate adhesives such as for example those described in U.S. Pat. No. 4,112,213. Inclusion in the adhesive of medicaments is useful for enhancing wound healing and the inclusion of antimicrobial agents such as iodine is useful for preventing infection.
  • The adhesive may optionally be a microsphere adhesive with low trauma properties as described in U.S. Pat. No. 5,614,310; a fibrous adhesive with low trauma properties as described in U.S. Pat. No. 6,171,985; or have especially good adhesion to wet skin, such as the adhesives described in U.S. Pat. No. 6,198,016; and PCT Publication Nos. WO 99/13866 and WO 99/13865.
  • The adhesive may be chosen to be permeable to water or wound exudate, or the adhesive may be pattern coated on the front surface of the wound dressing (i.e. the surface in contact with the wound site, whether it is the front surface of the facing or backing layers) so as to not impede the flow of exudate to the absorbent layer, i.e. the adhesive may be coated non-continuously or at the periphery of the wound dressing. Alternatively the adhesive layer may be perforated as described for the facing film to provide a fluid path for the exudate.
  • A release liner may be attached to the adhesive layer for ease of handling. Examples of release liners are liners made of or coated with polyethylene, polypropylene and fluorocarbons and silicone coated release papers or polyester films. Examples of the silicone coated release papers are Polyslik S-8004, 83 pound (135.4 g/m2) bleached silicone release paper supplied by H. P. Smith Co., Chicago, Ill., and 80 pound (130.5 g/m2) bleached two-sided silicone coated paper (2-80-BKG-157) supplied by Daubert Chemical Co., Dixon, Ill.
  • A pressure sensitive layer may also be optionally included between the backing and the first absorbent layer and can be made from medical grade adhesives and methods that are publicly known. Preferred adhesives are acrylate copolymers described in U.S. Pat. No. RE 24,906, particularly a 97:3 iso-octyl acrylate:acrylamide copolymer. Also preferred is a 70:15:15 isooctyl acrylate: methoxypolyethyleneoxide acrylate:acrylic acid terpolymer as described in U.S. Pat. No. 4,737,410 (Example 31) and U.S. Pat. No. 5,849,325. Other useful adhesives are described in U.S. Pat. Nos. 3,389,827; 4,112,213; 4,310,509 and 4,323,557. If the backing extends beyond the area of the absorbent layers, the backing adhesive may also serve as a border skin contact adhesive.
  • The preferred embodiments for the facing and backing layers are thin conformable polymeric films. Generally the films are from 12 to 50 microns in thickness, preferably from 12 to 25 microns. Conformability is somewhat dependent on thickness, thus the thinner the film the more conformable the film.
  • E. Additional Materials
  • The wound dressing of the invention may also comprise a frame or film overlay that allows the dressing to be more easily applied to the wound. The frames are made of a relatively rigid material that maintains the shape of the dressing during handling and application to the wound site. Each frame is generally releasably adhered to the back surface of the backing film and is removed after application of the wound dressing. Suitable frames are described in U.S. Pat. Nos. 5,531,855 and 5,738,642 (Heinecke et al.).
  • The composition of this invention may also contain one or more pharmaceutically active agents. Examples thereof are antibacterial agents such as povidone iodine, iodine, silver, silver chloride, and chlorhexidine. Pharmaceutically active agents can be used alone or as mixtures thereof; further, medicaments can be added before the reaction product of this invention is cured as long as they do not interfere with polymerization or the function or clarity of the finished dressing. Pharmacologically active agents can also be added after the reaction product is cured as they do not interfere with the function or clarity of the finished dressing.
  • F. Arrangement of Layers
  • Many different constructions of absorbent dressings are possible with the wound-facing layer, the absorbent layers and the backing layer. In one embodiment, the areas of the wound-facing layer and the backing layer are greater than that of the absorbent layers, and the wound-facing layer is bonded to the backing layer, thereby forming a pouch, with the absorbent disposed between the two. The greater area of the facing or backing layer forms a periphery to which an adhesive layer and a release liner may be attached.
  • It is preferred that the wound-facing, absorbent and backing layers of the present invention be at least translucent and more preferably sufficiently transparent so that the wound site to which they are applied can be viewed through the dressing. It is advantageous to view and evaluate the wound and healing thereof without removal of the wound dressing to avoid unnecessary handling of the wound site and exposure of the wound to the environment, which reduces the likelihood of contamination, and avoids the need to cleanse the wound as would be the case were the dressing to be removed.
  • It is preferred that the dressing be both transparent and colorless so that the color of the wound, exudate, and periwound skin may also be evaluated. Preferred transparent films for use as facing and backing layers that allow visual inspection of the wound site include polyurethane films, such as ESTANE™ polyurethanes (B.F. Goodrich, Cleveland, Ohio); elastomeric polyesters, such as HYTREL™ polyester elastomers (E. I. duPont deNemours & Co., Wilmington, Del.) and polyether block amides (PEBAX, Elf Altochem North America, Philadelphia, Pa.). Other useful films are those described in U.S. Pat. Nos. 4,499,896; 4,598,004; and 5,849,325 (Heinecke et al.).
  • G. Methods of Making and Using Wound Dressings
  • The invention also features methods of treating an exuding wound that includes applying one of the above-described dressings to the wound and allowing the dressing to absorb body fluids exuded from the wound. Furthermore, the invention features transparent, elastomeric, body fluid-absorbing compositions that include the above-described reaction products and have the above-described properties.
  • In a further aspect, the invention features methods for preparing a transparent, elastomeric, body fluid-absorbing composition that includes exposing an essentially solvent-free mixture of monomers or pre-polymeric syrup to actinic radiation to form the composition. The mixture or syrup includes: (a) an acrylic or methacrylic acid ester of a non-tertiary alcohol having between 4 and 14 carbon atoms, inclusive; (b) a hydrophilic, ethylenically unsaturated monomer; and (c) a polar, ethylenically unsaturated monomer different from the hydrophilic, ethylenically unsaturated monomer. The resulting composition is essentially free of hydrocolloidal gel particles and capable of absorbing moderate to heavy amounts of body fluids while retaining its structural integrity and transparency. In preferred embodiments, the mixture or syrup further includes a photoinitiator and is exposed to ultraviolet radiation.
  • The absorbent layers of the wound dressing can be formed separately and then adhered together either with an adhesive composition or adhered using the inherent adhesive properties of the absorbent layers, or by incorporation of an additional adhesive between the two layers. In another implementation, the two layers are simultaneously cured together. Such simultaneous curing can be accomplished by forming layers of uncured monomer and then curing together. For example, the first layer of monomer can be deposited onto a surface, followed by deposit of the second layer of monomer, and concluded with curing of the two layers. Alternatively, the two layers of uncured monomer can be simultaneously deposited (such as by being coextruded) and then cured.
  • H. EXAMPLES
  • This invention is further illustrated by the following examples that are not intended to limit the scope of the invention. In the examples, all parts, ratios and percentages are by weight unless otherwise indicated. All materials are commercially available, for example from Aldrich Chemicals, unless otherwise indicated or described.
  • The following test protocols were followed in conducting the experiments:
  • Saline Absorbency Method
  • A dry wound dressing sample (5-cm square) was weighed (Wo) and placed in a 180-ml bottle containing 50 ml of 0.9% Sodium Chloride Irrigation (isotonic saline solution) USP (Baxter Health Care Corp., Deerfield Ill.) at room temperature. The bottle was capped and allowed to stand without agitation. The sample was removed at 24 hours, blotted dry, and weighed (W24). The percent absorbency values were calculated using the following formula and the results reported as an average of three replications:
    Saline Absorbency (%)=(W 24 −W o)×100/W o
    Calf Bovine Serum Absorbency Method
  • A dry wound dressing sample (10 cm×15 cm) was applied to the upper flange of a clear polycarbonate cup, similar to a Paddington cup as described in the British Pharmacopoeia, 1993, Addendum 1996, page 1943, HMSO London, England. The sample was positioned over the center of the cup cavity (3.8-cm diameter, 3-cm depth, 14-ml volume capacity) and the sample was held in place by its own pressure sensitive adhesive layer. The cup was then inverted and 12 g of calf bovine serum (Sigma-Aldrich Chemical Co.) was added to the cup through a port. The port was closed with a threaded plug and the cup was placed in an incubator at 40° C. and 20% RH. After 24, 48 and 72 hours the amount of unabsorbed serum was removed, weighed (Wt), and then added back into the cup. The cup plus sample was then returned to the incubator until the next sampling timepoint. The absorbency was calculated using the following formula and the results reported in grams as an average of three replications:
    Calf Bovine Serum Absorbency (g)=12 g−W t
    Peel Force Method
  • The peel force method was used to measure the force required to remove a wound-facing layer of an adhesive dressing sample from its core layer. A 2.54-cm wide double-coated adhesive tape (3M Brand Double Stick Tape, 3M Company, St. Paul, Minn.) was adhered to the full circumference of a rotatable metal wheel that was mounted on the lower jaw of an Instron machine (Model No. 1122; Instron Corp., Canton, Mass.). A 2.54-cm wide polyester silicone adhesive tape (No. 8402 tape, 3M Company) was adhered to the double-coated tape, adhesive side out. An adhesive dressing sample (2.54 cm×10.2 cm) was placed on the silicone tape with the core layer facing against the wheel and the wound-facing layer facing the operator. One end of the wound-facing layer was lifted away from the core layer to form a tab that was clamped onto the upper jaw of the Instron machine. The wound-facing layer was then peeled off of the core layer at a 90-degree angle and at a crosshead speed of 300 mm/min. The peel force was recorded in grams force per 2.54-cm width as an average of three replications.
  • Saline Extract Acidity Method
  • An adhesive dressing sample (5-cm square) was placed in a glass jar containing 50 ml of 0.9% sodium chloride solution. After 24 hours at room temperature, the pH of the solution was measured.
  • Example 1 Multi-Layer Absorbent Wound Dressing
  • A multi-layer absorbent wound dressing having a backing layer, a first absorbent layer, a second absorbent layer, and a wound-facing layer was prepared by the following procedure.
  • The first absorbent layer precursor composition (Composition A) was prepared as follows. Acrylic acid (528 g, BASF, Mt. Olive, N.J.), 50% (w/w) sodium hydroxide solution (99 g, J. T. Baker, Philipsburg, N.J.), and 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (1.32 g, Ciba Specialty Chemicals Corp., Tarrytown, N.Y.) were added to a glass jar and mixed until dissolved. Methoxypolyethyleneglycol 400 acrylate (2470 g, “NK Ester-AM-90G”, Shin-Nakamura Chemical Co., Ltd., Japan) was added to the jar and mixed in by shaking the jar. Lauryl acrylate (198 g, Aldrich Chemical Co., Milwaukee, Wis.) and alpha-methylstyrene (3.3 g, Aldrich) were added and the entire composition was mixed by shaking the jar.
  • The second absorbent layer precursor composition (Composition B) was prepared as follows. Acrylic acid (239 g), 50 (w/w) sodium hydroxide solution (41.6 g), and 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (1.3 g) were added to a glass jar and mixed until dissolved. Methoxypolyethyleneglycol 400 acrylate (1016 g) was added to the jar and mixed in by shaking the jar. While stirring the resulting solution with a propeller, 2-ethylhexyl acrylate (1951 g, BASF Corp.) was added to provide the finished composition.
  • Compositions A and B were thickened separately to between 1000 and 2000 centipose by short exposure to UV light and an additional 3.25 g of 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone was added and mixed into each composition. The thickened Composition B was knife-coated at a thickness of 3 mil (0.076 mm) onto a conventional polyester release liner, followed immediately by knife-coating of the thickened Composition A at a thickness of 25 mil (.635 mm) onto the Composition B layer. A conventional polyester release liner was provided on top of the Composition A layer. The coated layers were then cured under UV lamps (350BL, Sylvania Corp., Danvers, Mass.) at a peak wavelength of 350 nm and an intensity of 7.3 mW/cm2 and a dose of 2360 mJ/cm2 through the top release liner to make the finished core laminate of the adhesive wound dressing. Additionally, the thickened Composition B was separately knife-coated at a thickness of 25 mil (0.635 mm) onto a conventional polyester release liner for later testing.
  • A wound-facing layer was prepared by perforating a TEGADERM™ dressing (3M Company) by ultrasonic means so that the dressing contained 40 holes/cm2 with each hole having a diameter of approximately 15 mils (0.38 mm). The Percent Void Area was calculated to be 4.5%.
  • The release liner was removed from the Composition A layer (first absorbent layer) side of the core laminate and to this side was laminated by hand to the adhesive side of a TEGADERM™ dressing (backing layer). The release liner was then removed from the Composition B layer (second absorbent layer) side of the core laminate and to this side was laminated by hand to the non-adhesive side of the wound-facing layer. The resulting completed multi-layer absorbent wound dressing material was cut into 10-cm×15-cm samples for test evaluations. Samples were also subsequently packaged and sterilized by irradiating at approximately 30 kGy.
  • Example 2 Multi-Layer Absorbent Wound Dressing
  • A multi-layer absorbent wound dressing was prepared as described in Example 1, except that N-vinyl acetamide was substituted for the acrylic acid/sodium hydroxide components in the first absorbent layer precursor composition (Composition A) and this composition was prepared as follows.
  • N-Vinyl acetamide (600 g, Showa Denko, Japan), 2-hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (1.2 g), and methoxypolyethyleneglycol 400 acrylate (2183 g) were added to a glass jar and mixed by shaking the jar until the N-vinyl acetamide was dissolved. Lauryl acrylate (210 g) and alpha-methylstyrene (3.0 g) were added and the entire composition was mixed by shaking the jar.
  • Also, the wound-facing layer in this example contained 40 holes/cm2 with each hole having a diameter of approximately 20 mils (0.51 mm). The Percent Void Area was calculated to be 7.8%.
  • The resulting completed multi-layer absorbent wound dressing material was cut into 10-cm×15-cm samples for test evaluations.
  • Example 3 Multi-Layer Absorbent Wound Dressing
  • A multi-layer absorbent wound dressing was prepared as described in Example 1, except that the sodium hydroxide solution component was not added to either Composition A or Composition B. The resulting completed multi-layer absorbent wound dressing material was cut into 10-cm×15-cm samples for test evaluations.
  • Example 4 Multi-Layer Absorbent Wound Dressing
  • A multi-layer absorbent wound dressing was prepared as described in Example 1, except that the first absorbent layer precursor composition (Composition A) was prepared as follows. 2-Hydroxy-1-[4-(hydroxyethoxy)phenyl]-2-methyl-1-propanone (1.32 g) and methoxypolyethyleneglycol 400 acrylate (2995 g) were added to a glass jar and mixed by shaking the jar. Alpha-methylstyrene (3.3 g) was then added and the entire composition was mixed by shaking the jar. The resulting completed multi-layer absorbent wound dressing material was cut into 10-cm×15-cm samples for test evaluations.
  • Comparative Example 1 Absorbent Wound Dressing Without Adhesive Barrier Layer
  • An absorbent wound dressing was prepared as described in Example 1, except that the second absorbent layer precursor composition (Composition B) was not prepared and the final wound dressing material did not contain a second absorbent layer. The resulting completed absorbent wound dressing material thus comprised a single first absorbent layer (Composition A layer) sandwiched between the backing layer and the wound-facing layer. This comparative wound dressing material was cut into 10-cm×15-cm samples for test evaluations.
  • Test Evaluations
  • Saline Absorbency Evaluation
  • Wound dressing samples from Examples 1, 2 and 4, a sample of the second absorbent layer from Example 1, and a commercial wound dressing sample (CLEAR-SITE™ dressing, available from ConMed Corp., Utica, N.Y.) were evaluated for saline absorbency according to the test method described herein. Observations were also noted of sample clarity when dry and when wet. The results are provided in Table 1 and show that the invention wound dressing samples (Examples 1, 2 and 4) had high absorbency (650-680%) of saline solution over a 24-hour period and had significantly higher absorbency than either the separate barrier layer (from Example 1) or the CLEAR-SITE™ wound dressing sample. All dressing samples in this test appeared clear when wet or dry.
    TABLE 1
    Saline Absorbency
    Example Absorbency (%) Clarity (Dry) Clarity (Wet)
    1 660 Clear Clear
    Second Absorbent Layer 90 Clear Clear
    (from Ex. 1)
    2 650 Clear Clear
    CLEAR-SITE ™ 260 Clear Clear
    4 680 Clear Clear

    Calf Bovine Serum (CBS) Absorbency Evaluation
  • Wound dressing samples from Examples 1 and 4, Comparative Example 1 (CE-1), and four commercial wound dressing samples (CLEAR-SITE™ dressing; TEGASORB™ dressing, available from 3M Company; COMFEEL™ dressing, available from Coloplast, Ltd., UK; and DUODERM™ dressing, available from ConvaTech, Montreal, Canada) were evaluated for calf bovine serum absorbency according to the test method described herein. Observations were also noted of sample residue that was present in the test cell. The results are provided in Table 2 and show that the invention wound dressing samples (Examples 1 and 4) had an increasing level of CBS absorbency between 24 and 72 hours, had a high level of absorbency (10 to 12 g) at 72 hours, and left no dressing sample residue in the test cell. In contrast, Comparative Example 1 (lacking a second absorbent layer) reached a maximum absorbency (12 g) before 24 hours and left sample residue in the test cell. Samples from Examples 1 and 4, and Comparative Example 1 showed significantly higher absorbency than the four commercial wound dressing samples.
    TABLE 2
    Calf Bovine Serum Absorbency
    Absorbency (g)
    Example 24 hours 48 hours 72 hours Test Cell Residue
    1 8 11 12 No
    CE-1 12 12 12 Yes
    4 7.7 9.5 10 No
    TEGASORB ™ 5.2 7.1 8.5 Yes
    COMFEEL ™ 3.9 5.5 5.5 Yes
    CLEARSITE ™ 3.3 * No
    DUODERM ™ 2.2 3.4 3.8 Yes

    *Lateral swell occurred between dressing sample and test cell; observed leaking of CBS.

    Peel Force Evaluation
  • Wound dressing samples from Example 1 and Comparative Example 1 (CE-1) were evaluated for peel force (the force required to separate the wound-facing layer from the core layer) according to the test method described herein. The results are provided in Table 3 and show that a much greater force was required to separate the wound-facing layer from the absorbent core layer (having a second absorbent layer) of the invention wound dressing (Example 1) than from the core layer (not having a second absorbent layer) of the comparative wound dressing (Comparative Example 1).
    TABLE 3
    Peel Force
    Example Peel Force (g/2.54 cm) Standard Deviation
    1 303 ±8
    CE-1 204 ±3

    Saline Extract Acidity Evaluation
  • Wound dressing samples from Examples 1-3 and Comparative Example 1 (CE-1) were evaluated for saline extract acidity according to the test method described herein. The results showed that wound dressing samples utilizing partially neutralized acrylic acid or N-vinyl acetamide in the first absorbent layer (Examples 1-2 and Comparative Example 1) had slightly acidic extract (pH=6.1, 5.8, and 6.0, respectively), whereas the wound dressing sample utilizing non-neutralized acrylic acid in the first absorbent layer (Example 3) had much more acidic extract (pH=3.2).
  • Various modifications and alterations of this invention will become apparent to those skilled in the art without departing from the scope and principles of this invention, and it should be understood that this invention is not to be unduly limited to the illustrative embodiments set forth hereinabove. All publications and patents are incorporated herein by reference to the same extent as if each individual publication or patent was specifically and individually indicated to be incorporated by reference.

Claims (17)

1. A multi-layer wound dressing comprising:
a first absorbent layer with an absorbency greater than 300 percent; and
a second absorbent, non-disintegrating layer in contact with the first absorbent layer, wherein the wound dressing is configured to be positioned on a patient's wound such that the second absorbent layer is between the first absorbent layer and the wound; and wherein the first absorbent layer is substantially insoluble in water.
2. The multi-layer wound dressing of claim 1, wherein the first absorbent layer comprises a reaction product of a hydrophilic, ethylenically unsaturated monomer; an acrylic acid ester of a non-tertiary alcohol having 4 to 14 carbon atoms; and a polar, ethylenically unsaturated monomer.
3. The multi-layer wound dressing of claim 2, wherein the first absorbent layer comprises the reaction product of about 50 to 80 parts by weight of the hydrophilic, ethylenically unsaturated monomer; about 5 to 30 parts by weight of the acrylic acid ester of a non-tertiary alcohol having from 4 to 14 carbon atoms; and about 10 to 30 parts by weight of the polar, ethylenically unsaturated monomer.
4. The multi-layer wound dressing of claim 1, wherein the first absorbent layer has an absorbency at least 100 percent greater than the absorbency of the second absorbent, non-disintegrating layer.
5. The multi-layer wound dressing of claim 1, wherein the second absorbent layer has an absorbency of at least 50 percent.
6. The multi-layer wound dressing of claim 1, wherein the second absorbent, non-disintegrating layer is adhesive.
7. A body fluid absorbing material comprising the reaction product of:
less than about 68 parts by weight of an acrylic acid ester of a non-tertiary alcohol having from 4 to 14 carbon atoms;
greater than about 28 parts by weight of a hydrophilic, ethylenically unsaturated monomer; and
at least about 4 parts by weight of a partially neutralized ethylenically unsaturated carboxylic acid monomer.
8. The body fluid absorbing material of claim 7, wherein less than 50 percent of the carboxylic acid monomer is neutralized.
9. The body fluid absorbing material of claim 7, wherein from 10 to 35 percent of the carboxylic acid monomer is neutralized.
10. The body fluid absorbing material of claim 7, wherein the acrylic acid ester comprises a methacrylic acid ester.
11. The body fluid absorbing material of claim 7, wherein the hydrophilic, ethylenically unsaturated monomer comprises methoxy poly(ethyleneglycol) acrylate.
12. The body fluid absorbing material of claim 7, wherein the partially neutralized carboxylic acid monomer comprises from about 4 to 30 parts by weight of the body fluid absorbing material.
13. The body fluid absorbing material of claim 7, wherein less than 40 mole percent of the carboxylic acid monomer is neutralized.
14. The body fluid absorbing material of claim 7, wherein the carboxylic acid monomer is neutralized by a base selected from the group consisting of sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, triethylamine, sodium ethoxide, sodium methoxide, or combinations thereof.
15. A body fluid absorbing material comprising the reaction product of:
less than about 68 parts by weight of an acrylic acid ester of a non-tertiary alcohol having from 4 to 14 carbon atoms;
greater than about 28 parts by weight of a hydrophilic, ethylenically unsaturated monomer; and
at least about 4 parts by weight of N-vinyl acetamide.
16. The body fluid absorbing material of claim 15, wherein the acrylic acid ester comprises a methacrylic acid ester.
17. The body fluid absorbing material of claim 15, wherein the hydrophilic, ethylenically unsaturated monomer comprises methoxy poly(ethyleneglycol) acrylate.
US11/145,867 2000-09-08 2005-06-06 Multi-layer absorbent wound dressing Abandoned US20050226917A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/145,867 US20050226917A1 (en) 2000-09-08 2005-06-06 Multi-layer absorbent wound dressing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/657,486 US6903243B1 (en) 2000-09-08 2000-09-08 Multi-layer absorbent wound dressing
US11/145,867 US20050226917A1 (en) 2000-09-08 2005-06-06 Multi-layer absorbent wound dressing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/657,486 Division US6903243B1 (en) 2000-09-08 2000-09-08 Multi-layer absorbent wound dressing

Publications (1)

Publication Number Publication Date
US20050226917A1 true US20050226917A1 (en) 2005-10-13

Family

ID=24637376

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/657,486 Expired - Lifetime US6903243B1 (en) 2000-09-08 2000-09-08 Multi-layer absorbent wound dressing
US11/145,867 Abandoned US20050226917A1 (en) 2000-09-08 2005-06-06 Multi-layer absorbent wound dressing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/657,486 Expired - Lifetime US6903243B1 (en) 2000-09-08 2000-09-08 Multi-layer absorbent wound dressing

Country Status (11)

Country Link
US (2) US6903243B1 (en)
EP (1) EP1315527B1 (en)
JP (1) JP4927300B2 (en)
AT (1) ATE343402T1 (en)
AU (1) AU8684501A (en)
BR (1) BR0113719A (en)
CA (1) CA2420094A1 (en)
DE (1) DE60124118T2 (en)
ES (1) ES2275723T3 (en)
TW (1) TWI288003B (en)
WO (1) WO2002020067A2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040202703A1 (en) * 2003-04-09 2004-10-14 Bejersdorf Ag Antimicrobial wound covering article
US20050182347A1 (en) * 2004-02-13 2005-08-18 Bishop Stephen M. Multi layered wound dressing
US20080280037A1 (en) * 2007-05-11 2008-11-13 3M Innovative Properties Company Multi-layer assembly, multi-layer stretch releasing pressure-sensitive adhesive assembly, and methods of making and using the same
US20090275678A1 (en) * 2006-06-30 2009-11-05 Sadanori Kumazawa Thermoplastic resin composition and molded article thereof
US20100198177A1 (en) * 2009-02-02 2010-08-05 Kimberly-Clark Worldwide, Inc. Absorbent articles containing a multifunctional gel
US20110033515A1 (en) * 2009-08-04 2011-02-10 Rst Implanted Cell Technology Tissue contacting material
US20110280926A1 (en) * 2008-07-03 2011-11-17 Martin Junginger Wound dressing
US9072636B2 (en) 2007-08-03 2015-07-07 Kimberly-Clark Worldwide, Inc. Dynamic fitting body adhering absorbent article
EP3106139A1 (en) 2015-06-17 2016-12-21 3M Innovative Properties Company Fire wound dressing with polyamide membrane
US9579413B2 (en) 2009-12-24 2017-02-28 Paul Hartmann Ag Hydrogel matrix having improved adhesive properties
US9814632B2 (en) 2007-08-03 2017-11-14 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US9820892B2 (en) 2007-08-03 2017-11-21 Kimberly-Clark Worldwide, Inc. Packaged body adhering absorbent article
US9895274B2 (en) 2007-12-28 2018-02-20 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US11147722B2 (en) 2008-11-10 2021-10-19 Kimberly-Clark Worldwide, Inc. Absorbent article with a multifunctional acrylate skin-adhesive composition
US11351063B2 (en) 2017-06-07 2022-06-07 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US11432966B2 (en) 2017-06-07 2022-09-06 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US11471584B2 (en) 2017-06-07 2022-10-18 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US11471332B2 (en) 2017-06-07 2022-10-18 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with reduced tissue in-growth
US11576821B2 (en) 2017-06-07 2023-02-14 Kci Licensing, Inc. Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
US11607342B2 (en) 2017-06-07 2023-03-21 Kci Licensing, Inc. Peel and place dressing for negative-pressure therapy
US11819387B2 (en) 2017-06-07 2023-11-21 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7005143B2 (en) 2002-04-12 2006-02-28 3M Innovative Properties Company Gel materials, medical articles, and methods
AU2003241874A1 (en) * 2002-05-29 2003-12-12 Sekisui Chemical Co., Ltd. Bottomed tube for blood examination, stopper of bottomed tube for blood examination and blood examination container
US7805768B2 (en) * 2002-06-24 2010-10-05 Christine Martz Liquid penetration shields for outer garments
GB2393655B (en) * 2002-09-27 2005-08-24 Johnson & Johnson Medical Ltd Wound treatment device
US20040082897A1 (en) * 2002-10-23 2004-04-29 Rangel Fabio Eduardo Franca Adhesive bandage having an improved backing material
US7612248B2 (en) 2002-12-19 2009-11-03 3M Innovative Properties Company Absorbent medical articles
DE10301835A1 (en) * 2003-01-20 2004-07-29 Beiersdorf Ag Plaster for dressing wounds has clear fixing film and wound dressing with visible printing on side remote from wound, printed directly on dressing or as normal or mirror image on film bonded to dressing
US20060142684A1 (en) * 2003-04-11 2006-06-29 Shanbrom Technologies, Llc Oxygen releasing material
WO2004112852A1 (en) * 2003-06-23 2004-12-29 Beiersdorf Ag Antimicrobial wounddressing
DE10328261B4 (en) 2003-06-23 2007-10-25 Beiersdorf Ag Disinfecting coating with silver coating and its use
CN101862237B (en) * 2003-06-26 2013-03-20 株式会社瑞光 Wound coating material and wound coating material kit
CA2585633A1 (en) * 2004-10-26 2006-06-01 Reemay, Inc. Composite filtration media
CA2585468A1 (en) * 2004-10-26 2006-05-04 Reemay, Inc. Composite fabric with controlled release of functional chemicals
EP1855630A1 (en) * 2005-02-24 2007-11-21 Coloplast A/S A wound dressing
US20070083175A1 (en) * 2005-10-11 2007-04-12 Kimberly-Clark Worldwide, Inc. Transparent/translucent absorbent composites and articles
GB2432790A (en) * 2005-12-01 2007-06-06 David William Richardson A wound dressing with active ingredients
US7619131B2 (en) * 2005-12-02 2009-11-17 Kimberly-Clark Worldwide, Inc. Articles comprising transparent/translucent polymer composition
GB0606661D0 (en) 2006-04-03 2006-05-10 Brightwake Ltd Improvements relating to dressings
DE202006015547U1 (en) * 2006-04-12 2007-01-18 Riesinger, Birgit Dressing for laying around a surgically applied cord from human or animal body opening or hole has a fleece mat which is interspersed with super absorber-particle and is surrounded by a liquid-permeable covering
JP4874723B2 (en) * 2006-06-26 2012-02-15 国防部軍備局中山科学研究院 Silver nano medical poultice
CA2604623C (en) 2006-09-28 2018-10-30 Tyco Healthcare Group Lp Portable wound therapy system
EP3170396A1 (en) 2007-02-19 2017-05-24 Plurogen Therapeutics, Inc. Compositions for treating biofilms and methods for using same
US11253399B2 (en) * 2007-12-06 2022-02-22 Smith & Nephew Plc Wound filling apparatuses and methods
US20130096518A1 (en) * 2007-12-06 2013-04-18 Smith & Nephew Plc Wound filling apparatuses and methods
US9242022B2 (en) * 2008-01-18 2016-01-26 3M Innovative Properties Company Hydrogels with tapered edge
US9033942B2 (en) 2008-03-07 2015-05-19 Smith & Nephew, Inc. Wound dressing port and associated wound dressing
CN102065848A (en) * 2008-04-21 2011-05-18 3M创新有限公司 Nitric oxide-releasing compositions, devices and methods
BRPI0909570A2 (en) * 2008-05-30 2015-12-01 Kci Licensing Inc reduced pressure system for treating a linear wound in a patient, system for treating a linear wound in a patient, method of manufacturing a system for treating a linear wound in a patient
US8187237B2 (en) 2008-05-30 2012-05-29 Kci Licensing, Inc Reduced-pressure, linear wound closing bolsters and systems
US8454990B2 (en) * 2008-08-01 2013-06-04 Milliken & Company Composite article suitable for use as a wound dressing
RU2011107121A (en) * 2008-09-18 2012-10-27 КейСиАй Лайсензинг, Инк. (US) MULTI-LAYERED BANDAGES, SYSTEMS AND METHODS FOR APPLYING THE REDUCED PRESSURE AT THE FABRIC SECTION
EP2365831B2 (en) 2008-09-24 2017-01-04 3M Innovative Properties Company Hydrogels with release element
DE102008053335B4 (en) * 2008-10-27 2015-02-19 Medi-Globe Gmbh Association
US8765217B2 (en) 2008-11-04 2014-07-01 Entrotech, Inc. Method for continuous production of (meth)acrylate syrup and adhesives therefrom
GB0821702D0 (en) 2008-11-28 2008-12-31 Brightwake Ltd Process
TW201021867A (en) * 2008-12-12 2010-06-16 Ind Tech Res Inst Fluid processing system and collecting device thereof
DE102008062824A1 (en) * 2008-12-23 2010-07-01 Paul Hartmann Ag wound dressing
US8329079B2 (en) 2009-04-20 2012-12-11 Entrochem, Inc. Method and apparatus for continuous production of partially polymerized compositions and polymers therefrom
WO2010135449A1 (en) 2009-05-19 2010-11-25 Plurogen Therapeutics, Inc. Surface active agent compositions and methods for enhancing oxygenation, reducing bacteria and improving wound healing
US20100324516A1 (en) 2009-06-18 2010-12-23 Tyco Healthcare Group Lp Apparatus for Vacuum Bridging and/or Exudate Collection
MX2009007258A (en) * 2009-07-03 2011-01-24 Monterrey Inst Tecnologico Y De Estudios Superiores De Suction compress.
US8690844B2 (en) * 2009-08-27 2014-04-08 Kci Licensing, Inc. Re-epithelialization wound dressings and systems
AU2010341491B2 (en) 2009-12-22 2015-05-14 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
EP2338447A1 (en) * 2009-12-28 2011-06-29 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO A preparing process and a disinfecting bandage
USRE48117E1 (en) 2010-05-07 2020-07-28 Smith & Nephew, Inc. Apparatuses and methods for negative pressure wound therapy
CN103124555B (en) 2010-07-12 2015-08-26 帝国制药株式会社 There is the backing of three-decker and use the aqueous patch of this backing
KR101901464B1 (en) * 2010-07-12 2018-09-21 도요보 가부시키가이샤 Patch backing for water-based pasty preparation
USD714433S1 (en) 2010-12-22 2014-09-30 Smith & Nephew, Inc. Suction adapter
JP5881735B2 (en) 2010-12-22 2016-03-09 スミス アンド ネフュー インコーポレーテッド Apparatus and method for negative pressure wound therapy
GB201108229D0 (en) * 2011-05-17 2011-06-29 Smith & Nephew Tissue healing
US9237969B2 (en) 2011-07-28 2016-01-19 Matthew D. Antalek Wound barrier pad
GB2493960B (en) 2011-08-25 2013-09-18 Brightwake Ltd Non-adherent wound dressing
MX351341B (en) * 2012-06-29 2017-10-11 Ansell Ltd Wound care articles.
PL2740449T3 (en) 2012-12-10 2019-07-31 The Procter & Gamble Company Absorbent article with high absorbent material content
GB201222770D0 (en) 2012-12-18 2013-01-30 Systagenix Wound Man Ip Co Bv Wound dressing with adhesive margin
MX2016002608A (en) 2013-08-27 2016-06-17 Procter & Gamble Absorbent articles with channels.
US9987176B2 (en) 2013-08-27 2018-06-05 The Procter & Gamble Company Absorbent articles with channels
US10182945B2 (en) 2013-10-04 2019-01-22 Dristi, LLC Hybrid dressings of hydrophilic material and polymer foam
EP3191041B1 (en) 2014-09-10 2022-06-08 C. R. Bard, Inc. Protective dressing for skin-placed medical device
EP3247364A4 (en) 2015-01-20 2018-10-24 Plurogen Therapeutics, LLC Compositions and methods of treating microbes
GB201811449D0 (en) 2018-07-12 2018-08-29 Smith & Nephew Apparatuses and methods for negative pressure wound therapy
KR102633741B1 (en) * 2021-08-05 2024-02-06 주식회사 영우 Dressing material with excellent adhesion and absorption
WO2023091856A1 (en) * 2021-11-17 2023-05-25 Johnson & Johnson Consumer Inc. Curable absorbent films

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595235A (en) * 1969-05-16 1971-07-27 Georgia Pacific Corp Multilayer absorbent pad
US4146027A (en) * 1976-09-24 1979-03-27 Rohm And Haas Company Method for dressing a wound
US4867150A (en) * 1987-01-20 1989-09-19 The B. F. Goodrich Company Perforated elastomeric soft film and wound dressing made therewith
US4904247A (en) * 1984-08-31 1990-02-27 Kendall Company Pressure-sensitive hydrophilic laminate structures for use in wound dressing, transdermal and topical drug delivery
US5147698A (en) * 1986-09-30 1992-09-15 Minnesota Mining And Manufacturing Company Pressure sensitive adhesive film article having high moisture vapor transmission rate
US5270111A (en) * 1990-09-10 1993-12-14 Minnesota Mining And Manufacturing Company Water-dispersible pressure sensitive adhesive tape
US5733570A (en) * 1996-09-05 1998-03-31 Minnesota Mining And Manufacturing Company Absorbent dressing
US6060557A (en) * 1995-08-09 2000-05-09 Stockhausen Gmbh & Co. Kg Absorbing agents for water and aqueous liquids and process for their production and use
US6254990B1 (en) * 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE24906E (en) 1955-11-18 1960-12-13 Pressure-sensitive adhesive sheet material
US3339549A (en) 1959-11-02 1967-09-05 Johnson & Johnson Sanitary napkin with knitted wrapper
US3121021A (en) 1960-04-18 1964-02-11 Minnesota Mining & Mfg Breathable surgical adhesive tapes
US4112213A (en) 1964-09-28 1978-09-05 Johnson & Johnson Pressure sensitive adhesive tapes and method of making same
US3419006A (en) 1966-08-08 1968-12-31 Union Carbide Corp Novel dressing and use thereof
US3389827A (en) 1967-04-10 1968-06-25 Minnesota Mining & Mfg Easy-open container and sealing tape
US4181752A (en) 1974-09-03 1980-01-01 Minnesota Mining And Manufacturing Company Acrylic-type pressure sensitive adhesives by means of ultraviolet radiation curing
US4310509A (en) 1979-07-31 1982-01-12 Minnesota Mining And Manufacturing Company Pressure-sensitive adhesive having a broad spectrum antimicrobial therein
US4323557A (en) 1979-07-31 1982-04-06 Minnesota Mining & Manufacturing Company Pressure-sensitive adhesive containing iodine
US4324246A (en) 1980-05-12 1982-04-13 The Procter & Gamble Company Disposable absorbent article having a stain resistant topsheet
US5445604A (en) 1980-05-22 1995-08-29 Smith & Nephew Associated Companies, Ltd. Wound dressing with conformable elastomeric wound contact layer
US4860737A (en) 1981-02-13 1989-08-29 Smith And Nephew Associated Companies P.L.C. Wound dressing, manufacture and use
US4499896A (en) 1982-03-30 1985-02-19 Minnesota Mining And Manufacturing Co. Reservoir wound dressing
AU560088B2 (en) 1982-04-08 1987-03-26 Smith & Nephew Associated Companies Plc Surgical adhesive dressing
GR79380B (en) 1982-09-28 1984-10-22 Johnson & Johnson Prod Inc
EP0122085B1 (en) 1983-04-06 1987-06-24 Smith and Nephew Associated Companies p.l.c. Dressing
GB8309993D0 (en) 1983-04-13 1983-05-18 Smith & Nephew Ass Surgical adhesive dressing
US4667665A (en) 1984-08-16 1987-05-26 Colin O'D. Offenhartz Non-occlusive burn and trauma dressing
US4598004A (en) 1985-01-24 1986-07-01 Minnesota Mining And Manufacturing Company Thin film surgical dressing with delivery system
US4755413A (en) 1986-05-22 1988-07-05 Chicopee Apertured film facing and method of making the same
US4684558A (en) 1986-06-30 1987-08-04 Nepera Inc. Adhesive polyethylene oxide hydrogel sheet and its production
US4909244B1 (en) 1986-11-26 1994-07-05 Kendall & Co Hydrogel wound dressing
US4737410A (en) 1986-11-28 1988-04-12 Minnesota Mining And Manufacturing Company Polyalkyloxazoline-reinforced acrylic pressure-sensitive adhesive composition
US4784653A (en) 1987-06-22 1988-11-15 Johnson & Johnson Patient Care, Inc. Absorbent adhesive dressing
US4935087A (en) 1987-12-14 1990-06-19 The Kendall Company Method of making an absorbent dressing
US4979946A (en) 1987-12-14 1990-12-25 The Kendall Company Environmental absorbent dressing
TNSN89128A1 (en) 1988-12-02 1991-02-04 Rohn And Haas Company Independance Mall West LEATHER TREATMENT WITH SELECTED AMPHIPHITE COPOLYMERS
US5106629A (en) * 1989-10-20 1992-04-21 Ndm Acquisition Corp. Transparent hydrogel wound dressing
US5059424A (en) 1989-11-01 1991-10-22 Ndm Acquisition Corp. Hydrogel wound dressing product
JPH04346920A (en) * 1991-05-21 1992-12-02 Nitto Denko Corp Functional external preparation
DK5492A (en) 1992-01-17 1993-07-18 Coloplast As A dressing
NZ248977A (en) 1992-11-09 1995-06-27 Squibb & Sons Inc Pressure-sensitive adhesive comprising a polyurethane having excess hydroxyl functionality; medical articles comprising a layer of such adhesive
US5429590A (en) 1992-12-01 1995-07-04 Nitto Denko Corporation Medical water-absorptive polymer and dressing for wound and medical bandage using the same
DE69323975T2 (en) 1992-12-15 1999-08-19 Johnson & Johnson Consumer Hydrogel laminate, wound dressings and composite materials and processes for their manufacture
CN1222258C (en) 1993-03-22 2005-10-12 美国3M公司 Windowless frame delivered dressing and method of manufacture
JPH06315525A (en) * 1993-05-07 1994-11-15 Nitto Denko Corp Water-absorptive polymer laminate for medical use and coating material for wound by using the same
JPH0833672A (en) * 1994-07-22 1996-02-06 Terumo Corp Wound coating material
GB9421653D0 (en) 1994-10-27 1994-12-14 Innovative Tech Ltd Wound dressing
US5614310A (en) 1994-11-04 1997-03-25 Minnesota Mining And Manufacturing Company Low trauma wound dressing with improved moisture vapor permeability
DE19543368C2 (en) 1995-11-21 1998-11-26 Stockhausen Chem Fab Gmbh Water-absorbing polymers with improved properties, processes for their production and their use
DE19646484C2 (en) 1995-11-21 2000-10-19 Stockhausen Chem Fab Gmbh Liquid absorbing polymers, processes for their production and their use
US5968001A (en) 1996-05-14 1999-10-19 Bristol-Myers Squibb Company Wound dressings with leak prevention seal
US5849325A (en) 1996-10-07 1998-12-15 Minnesota Mining And Manufacturing Company Moisture-regulating adhesive dressing
GB9701178D0 (en) 1997-01-21 1997-03-12 Smith & Nephew Dressings
GB2324732B (en) 1997-05-02 2001-09-26 Johnson & Johnson Medical Absorbent wound dressings
GB9717357D0 (en) 1997-08-16 1997-10-22 Bristol Myers Squibb Co Multi layered wound dressing
FR2768341B1 (en) 1997-09-18 2000-04-14 Lab Francais Du Fractionnement LYOPHILISABLE PLACEBO PHARMACEUTICAL COMPOSITION FOR IMITATING A MEDICAMENT, IN PARTICULAR BASED ON PROTEINS OR POLYPEPTIDES
JP4467789B2 (en) 1997-09-18 2010-05-26 パシラ ファーマシューティカルズ インコーポレーテッド Sustained release liposome anesthetic composition
US6171985B1 (en) 1997-12-01 2001-01-09 3M Innovative Properties Company Low trauma adhesive article
US6277479B1 (en) 1997-12-19 2001-08-21 Kimberly-Clark Worldwide, Inc. Microporous films having zoned breathability
US6198016B1 (en) 1998-12-01 2001-03-06 3M Innovative Properties Company Wet skin adhesive article
US6566575B1 (en) 2000-02-15 2003-05-20 3M Innovative Properties Company Patterned absorbent article for wound dressing

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3595235A (en) * 1969-05-16 1971-07-27 Georgia Pacific Corp Multilayer absorbent pad
US4146027A (en) * 1976-09-24 1979-03-27 Rohm And Haas Company Method for dressing a wound
US4904247A (en) * 1984-08-31 1990-02-27 Kendall Company Pressure-sensitive hydrophilic laminate structures for use in wound dressing, transdermal and topical drug delivery
US5147698A (en) * 1986-09-30 1992-09-15 Minnesota Mining And Manufacturing Company Pressure sensitive adhesive film article having high moisture vapor transmission rate
US4867150A (en) * 1987-01-20 1989-09-19 The B. F. Goodrich Company Perforated elastomeric soft film and wound dressing made therewith
US5270111A (en) * 1990-09-10 1993-12-14 Minnesota Mining And Manufacturing Company Water-dispersible pressure sensitive adhesive tape
US6060557A (en) * 1995-08-09 2000-05-09 Stockhausen Gmbh & Co. Kg Absorbing agents for water and aqueous liquids and process for their production and use
US5733570A (en) * 1996-09-05 1998-03-31 Minnesota Mining And Manufacturing Company Absorbent dressing
US6254990B1 (en) * 1998-02-18 2001-07-03 Nippon Shokubai Co., Ltd. Surface-crosslinking process for water-absorbent resin

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060062831A1 (en) * 2003-04-09 2006-03-23 Beiersdorf Ag Polymeric composite for use in wound management products
US20040202703A1 (en) * 2003-04-09 2004-10-14 Bejersdorf Ag Antimicrobial wound covering article
US7759537B2 (en) * 2004-02-13 2010-07-20 Convatec Technologies Inc. Multi layered wound dressing
US20050182347A1 (en) * 2004-02-13 2005-08-18 Bishop Stephen M. Multi layered wound dressing
US20090275678A1 (en) * 2006-06-30 2009-11-05 Sadanori Kumazawa Thermoplastic resin composition and molded article thereof
US8193264B2 (en) * 2006-06-30 2012-06-05 Toray Industries, Inc. Thermoplastic resin composition and molded article thereof
US9045631B2 (en) 2006-06-30 2015-06-02 Toray Industries, Inc. Thermoplastic resin composition
US7833577B2 (en) * 2007-05-11 2010-11-16 3M Innovative Properties Company Methods of making a pressure-sensitive adhesive assembly
US20080280037A1 (en) * 2007-05-11 2008-11-13 3M Innovative Properties Company Multi-layer assembly, multi-layer stretch releasing pressure-sensitive adhesive assembly, and methods of making and using the same
AU2008251658B2 (en) * 2007-05-11 2011-08-18 3M Innovative Properties Company Multi-layer assembly, multi-layer stretch releasing pressure-sensitive adhesive assembly, and methods of making and using the same
KR101539786B1 (en) * 2007-05-11 2015-07-27 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Multi-layer assembly, multi-layer stretch releasing pressure-sensitive adhesive assembly, and methods of making and using the same
US9814632B2 (en) 2007-08-03 2017-11-14 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US11123233B2 (en) 2007-08-03 2021-09-21 Kimberly-Clark Worldwide, Inc. Packaged body adhering absorbent article
US9072636B2 (en) 2007-08-03 2015-07-07 Kimberly-Clark Worldwide, Inc. Dynamic fitting body adhering absorbent article
US9820892B2 (en) 2007-08-03 2017-11-21 Kimberly-Clark Worldwide, Inc. Packaged body adhering absorbent article
US9895274B2 (en) 2007-12-28 2018-02-20 Kimberly-Clark Worldwide, Inc. Body adhering absorbent article
US20110280926A1 (en) * 2008-07-03 2011-11-17 Martin Junginger Wound dressing
US10130521B2 (en) * 2008-07-03 2018-11-20 Paul Hartmann Ag Wound dressing
US11147722B2 (en) 2008-11-10 2021-10-19 Kimberly-Clark Worldwide, Inc. Absorbent article with a multifunctional acrylate skin-adhesive composition
US11285239B2 (en) 2009-02-02 2022-03-29 Kimberly-Clark Worldwide, Inc. Absorbent articles containing a multifunctional gel
US20100198177A1 (en) * 2009-02-02 2010-08-05 Kimberly-Clark Worldwide, Inc. Absorbent articles containing a multifunctional gel
US10022468B2 (en) * 2009-02-02 2018-07-17 Kimberly-Clark Worldwide, Inc. Absorbent articles containing a multifunctional gel
US20110033515A1 (en) * 2009-08-04 2011-02-10 Rst Implanted Cell Technology Tissue contacting material
US9579413B2 (en) 2009-12-24 2017-02-28 Paul Hartmann Ag Hydrogel matrix having improved adhesive properties
EP3106139A1 (en) 2015-06-17 2016-12-21 3M Innovative Properties Company Fire wound dressing with polyamide membrane
US11351063B2 (en) 2017-06-07 2022-06-07 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US11432966B2 (en) 2017-06-07 2022-09-06 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US11471584B2 (en) 2017-06-07 2022-10-18 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US11471332B2 (en) 2017-06-07 2022-10-18 Kci Licensing, Inc. Systems, apparatuses, and methods for negative-pressure treatment with reduced tissue in-growth
US11576821B2 (en) 2017-06-07 2023-02-14 Kci Licensing, Inc. Methods for manufacturing and assembling dual material tissue interface for negative-pressure therapy
US11607342B2 (en) 2017-06-07 2023-03-21 Kci Licensing, Inc. Peel and place dressing for negative-pressure therapy
US11690766B2 (en) 2017-06-07 2023-07-04 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment
US11819387B2 (en) 2017-06-07 2023-11-21 Kci Licensing, Inc. Composite dressings for improved granulation and reduced maceration with negative-pressure treatment

Also Published As

Publication number Publication date
WO2002020067A2 (en) 2002-03-14
ATE343402T1 (en) 2006-11-15
ES2275723T3 (en) 2007-06-16
EP1315527B1 (en) 2006-10-25
JP2004515267A (en) 2004-05-27
BR0113719A (en) 2003-07-29
TWI288003B (en) 2007-10-11
WO2002020067A3 (en) 2002-07-04
US6903243B1 (en) 2005-06-07
EP1315527A2 (en) 2003-06-04
AU8684501A (en) 2002-03-22
JP4927300B2 (en) 2012-05-09
DE60124118D1 (en) 2006-12-07
CA2420094A1 (en) 2002-03-14
DE60124118T2 (en) 2007-06-06

Similar Documents

Publication Publication Date Title
US6903243B1 (en) Multi-layer absorbent wound dressing
US7612248B2 (en) Absorbent medical articles
US7005143B2 (en) Gel materials, medical articles, and methods
EP1263366B1 (en) Textured absorbent article for wound dressing
EP0601463A1 (en) Medical water-absorptive polymer and dressing for wound and medical bandage using the same
AU2001286845B2 (en) Multi-layer absorbent wound dressing
JP3220700B2 (en) Medical water-absorbing polymer, wound dressing and medical external material using the same, and method for producing them
AU2001286845A1 (en) Multi-layer absorbent wound dressing

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION