US20050199376A1 - Heat sink - Google Patents

Heat sink Download PDF

Info

Publication number
US20050199376A1
US20050199376A1 US11/007,192 US719204A US2005199376A1 US 20050199376 A1 US20050199376 A1 US 20050199376A1 US 719204 A US719204 A US 719204A US 2005199376 A1 US2005199376 A1 US 2005199376A1
Authority
US
United States
Prior art keywords
dissipating device
heat
heat dissipating
heat sink
porous structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/007,192
Inventor
Yi-sheng Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Assigned to DELTA ELECTRONICS, INC. reassignment DELTA ELECTRONICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LEE, YI-SHENG
Publication of US20050199376A1 publication Critical patent/US20050199376A1/en
Priority to US11/455,727 priority Critical patent/US20060237167A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/06Hollow fins; fins with internal circuits

Definitions

  • the invention relates to a heat sink and, more particularly, to a heat sink that is able to dissipate heat quickly and efficiently.
  • the conventional method of removing heat generated from electronic components is to conduct the heat from a heat source to a heat sink and then to dissipate the heat to the surroundings through natural or forced convection to the fins of the heat sink.
  • the conventional heat sinks with fins have some problems that do affect the efficiency of heat removal. For instance, a deficiency in temperature gradient due to the temperature difference between the fin surfaces and the heat sink airflow being only 5-10 degrees Celsius; the heat resistance problems due to the material and structure of the heat sink and low fin efficiency that is less than 70%.
  • U.S. Pat. No. 6,490,160 has disclosed a heat sink composed of a vapor chamber in view of the aforementioned problems.
  • the concept of this patent is to form a single vapor chamber in a heat sink, wherein the top of the vapor chamber is composed of an array of sheet tapered hallow pins deeply mounted in the heat sink fins, and the bottom of the vapor chamber is a single chamber connected to the bottom of all sheet tapered hollow pins.
  • the heat sink according to this patent dissipates heat by having a working fluid to absorb heat and to be vaporized to the hollow pins and then to be liquefied again after exchanging heat with the outer surroundings. After the condensation, the working fluid (liquid) flows along the groove wick structure on the surface of the hollow pins and returns to the chamber from the outer wall.
  • the path for the working fluid to return to the chamber is long. Therefore, under a large heat-loading situation, there may be no condensed liquid (working fluid) in the vapor chamber and cause the chamber to dry out.
  • the single phase state (only vapor) in the heat conductive mechanism and the long return path can make the fins except the outmost fins ineffective. Under this condition, the effective dissipating surface is greatly reduced and hence lowers the effectiveness of the heat sink.
  • U.S. patent application 2002/0118511 also disclosed a method combining the two technologies by forming a porous structure inside the hollow fins, so that the working fluid can return to the chamber through the porous structure by capillary force.
  • this technology did not solve the problem that exists in the U.S. Pat. No. 6,490,160, where the dry out occurs and all but the outmost hollow fins are inoperable under a high heat-loading condition, which lowers the dissipation efficiency.
  • the present invention discloses a heat sink with high heat dissipation efficiency under any heat loading.
  • An object of the invention is to provide a heat sink with high heat dissipation efficiency under high heat loadings.
  • Another object of the invention is to provide a heat sink with high heat dissipation efficiency when installed in any direction.
  • Yet another object of the invention is to provide a heat sink which prevents dry outs and hot spots from occurring.
  • the invention discloses a heat sink including a main body and a plurality of porous structures.
  • the main body has a plurality of hollow fins and a base, the fins and the base form a closed room.
  • the porous structures are set on the interior surfaces of a different fin and are connected to the base, and each porous structure defines a vapor chamber.
  • the invention also discloses a heat sink including a main body and a plurality of porous structures with the main body having a plurality of hollow protrusions and a base.
  • the protrusions and the base form a closed room.
  • the porous structures are set on the interior surfaces of a different protrusion and are connected to the base, and each porous structure defines a vapor chamber.
  • the porous structures are wick structures; common wick structures include mesh, fiber, sintered, groove wicks, or combinations thereof.
  • the porous structures and the main body are assembled by methods such as sintering, adhering, filling, or depositing.
  • the material of the porous structures includes plastics, alloys or metals such as copper, aluminum, iron, porous non-metallic materials and mixtures thereof.
  • the porous structures contain a working fluid; the working fluid can be inorganic compounds, water, alcohols, liquid metals such as mercury, ketones, refrigerants such as HFC-134a, other organic compounds or mixtures thereof.
  • the main body can be one-piece molded or composed of several components.
  • the components are bind together by soldering, engaging, embedding, adhering, or combinations thereof. Neighboring vapor chambers are communicated with each other directly, or indirectly in fluid communication through the porous structures.
  • the vapor chambers are arranged in the closed room either in an array arrangement, a longitudinal arrangement, a parallel arrangement, or a transverse arrangement.
  • the heat sink according to the invention utilizes wick structures (porous structures) to form several small vapor chambers and/or small sectors, the wick structure of every protrusion forms an independent heat-removal cycle. So, under high heat-loading situation, the dry outs will not occur and the high heat dissipation efficiency is maintained.
  • the bottom of the small vapor chambers and/or small sectors are composed of connecting wicks (heat-absorptive portion), the working fluid in each small vapor chamber are in fluid communication, and thus the possibility of hot spots occurring is lowered, and the heat is evenly distributed to each small vapor chamber and/or small sector.
  • the return-flow mechanism of the heat sink according to the invention uses capillary force but not simply relies on gravity, the return-flow speed of the working fluid in the heat sink will not be affected by the direction for installation.
  • the vapor chamber in the heat sink according to the invention is composed of a plurality of small vapor chambers and/or small sectors, and therefore the return-flow path of the working fluid is short, and the return-flow speed and heat dissipation efficiency are enhanced.
  • FIG. 1 is a schematic diagram of a preferred embodiment of a heat sink in accordance with the invention.
  • a heat sink 100 includes a main body 102 and a plurality of porous structures 110 inside the main body 102 , wherein the main body 102 has a closed room 124 formed therein.
  • the main body 102 has a plurality of hollow protrusions 120 and a base 122 connecting to a heat source 118 .
  • the shape and/or size of the base 122 varies in accordance with the placement of the protrusions 120 and the shape of the heat source 118 .
  • Each protrusion 120 is hollow and has two ends; the end proximate the base 122 has an opening and the other end is closed.
  • the protrusions 120 are in a shape of fin, column, lamella, cone, or lump; and in a form of curve, arch, slant, vertical, or any other form.
  • the protrusions 120 and the base 122 of the main body 102 can be one-piece molded or jointed by soldering, engaging, embedding, adhering, or a combination of any of the methods listed thereof.
  • the closed room 124 can be divided into a plurality of vapor chambers 112 by the porous structures 110 .
  • the porous structures 110 are embedded on the interior surfaces of the main body 102 , and are sealed therein.
  • the porous structures 110 form a plurality of vapor chambers 112 in the main body 102 .
  • Each porous structure 110 is sectioned into two conductive portions, 104 and 106 , and a heat-absorptive portion 108 .
  • the porous structures 110 are for absorbing working fluid; the condensed working fluid flows through the conductive portion 104 , the conductive portion 106 , and into the heat-absorptive portion 108 .
  • the working fluid is of inorganic compounds, water, alcohols, liquid metals such as mercury, ketones, refrigerants such as HFC-134a, other organic compounds, or a mixture of any of the fluids listed thereof.
  • the heat-absorptive portion 108 set on the interior surfaces of the base 122 is for absorbing the working fluid.
  • the conductive portion 104 set on the interior surfaces of the protrusion 120 is for conducting the condensed working fluid to the heat-absorptive portion 108 .
  • the other conductive portion 106 is set between the heat-absorptive portion 108 and the conductive portion 104 , and connected to both portions.
  • the conductive portions 104 , 106 and the heat-absorptive portion 108 can be made of material such as copper, aluminum, iron, other metals and/or alloys, plastics, other porous non-metallic materials, or a mixture of any of the materials listed thereof.
  • the conductive portions 104 , 106 and the heat-absorptive portion 108 is required to have a porous formation such as wicking structures. Common wicking structures include mesh wicks, fiber wicks, sintered wicks, groove wicks, or other structures including a combination of any of the wicking structures listed thereof.
  • the porous structures 110 and the main body 102 are assembled by sintering, adhering, filling, or depositing.
  • the conductive portion 106 is set between neighboring protrusions 120 so that the working fluid in the conductive portion 104 can flow quickly to the heat-absorptive section 108 along the conductive portion 106 .
  • the conductive portion 106 divides the closed room 124 into a plurality of vapor chambers 112 ; each vapor chamber 112 corresponds to at least one of the protrusions 120 .
  • the conductive portion 106 can also divide the closed room 124 into a plurality of sectors; the sectors each corresponds to a protrusion 120 and the neighboring sectors are communicated with each other.
  • the vapor chambers 112 or the small sectors can be disposed in array, parallel, longitudinal, transverse, diagonal or irregular arrangements.
  • the closed room 124 has been divided into a plurality of vapor chambers 112 and/or small sectors by the conductive portions 106 , the working fluid in the heat-absorptive portion 108 on the bottom of each vapor chamber is in fluid communication with other vapor chambers.
  • the occurred probability of the partial hot spots on the heat sink 100 is reduced, and the heat is distributed evenly on the bottom of the heat sink 100 .
  • the heat sink 100 described above is used to illustrate the heat-removal mechanism used in the invention.
  • the base 122 of the heat sink 100 is installed on the heat source 118 , wherein the heat source 118 is composed of a heat-generating element 116 and a conducting structure 114 connected to the heat-generating element 116 .
  • the conducting structure 114 can be a heat-dissipating paste, or a phase-changing metal sheet;
  • the heat-generating element 116 can be a computer-processing unit (CPU), or a semi-conductor chip.
  • the protrusions 120 exemplify a fin shape in this embodiment.
  • the working fluid in the heat-absorptive portions 108 boils and evaporates, causing the pressure in the vapor chambers 112 to rise and the vapors move towards the fins quickly.
  • the heat in the fins is then dissipated by natural or forced convection; the vapors condensate into liquid on the interior surfaces of the fins and the working fluid (liquid) penetrates into the conductive portions 104 (wick structure) in the fins.
  • the capillary force drives the working fluid (liquid) to flow back to the bottom of the vapor chambers 112 and hence a heat-removal cycle is completed.
  • the return-flow speed of the working fluid is enhanced and dry out is prevented from occurring.
  • the heat sink according to the invention utilizes wick structures (porous structures) to form a plurality of small vapor chambers and/or small sectors, so that the wick structure in each protrusion forms an independent heat-removal cycle.
  • wick structures porous structures
  • the bottom of the small vapor chambers and/or small sectors are made of connecting wick structures (heat-absorptive portions), thereby the working fluid in each small vapor chamber and/or small sector is in fluid communication via the wick structures on the bottom. This in turn lowers the occurred probability of hot spots and the heat is evenly distributed to each small vapor chamber and/or small sector.
  • the heat sink according to the invention utilizes capillary force in the return-flow mechanism instead of simply relying on gravity, thus the installation direction of the heat sink will not affect the return-flow speed.
  • each small vapor chamber and/or small sector has shorter return-flow path than that of the conventional technology. Therefore, the return-flow speed of the working fluid is increased and the heat-dissipating effect is enhanced.

Abstract

A heat sink including a main body and a plurality of porous structures is disclosed. The main body has a plurality of hollow fins and a base. The fins and the base form a closed room. The porous structures are set on the interior surfaces of different fins, and are connected to the base. Each porous structure defines a vapor chamber.

Description

    BACKGROUND OF THE INVETION
  • a) Field of the Invention
  • The invention relates to a heat sink and, more particularly, to a heat sink that is able to dissipate heat quickly and efficiently.
  • b) Description of the Prior Art
  • With the advancement of electronic technology, the electronic components are miniaturized and densely packaged. However, this correspondingly produces more heat, and therefore relying on natural or forced convection is insufficient to remove heat.
  • The conventional method of removing heat generated from electronic components is to conduct the heat from a heat source to a heat sink and then to dissipate the heat to the surroundings through natural or forced convection to the fins of the heat sink. However, the conventional heat sinks with fins have some problems that do affect the efficiency of heat removal. For instance, a deficiency in temperature gradient due to the temperature difference between the fin surfaces and the heat sink airflow being only 5-10 degrees Celsius; the heat resistance problems due to the material and structure of the heat sink and low fin efficiency that is less than 70%. These problems are the root causes for the conventional heat sinks not able to increase its' heat dissipation efficiency and further unable to remove the heat produced by electronic components sufficiently.
  • Thus, U.S. Pat. No. 6,490,160 has disclosed a heat sink composed of a vapor chamber in view of the aforementioned problems. The concept of this patent is to form a single vapor chamber in a heat sink, wherein the top of the vapor chamber is composed of an array of sheet tapered hallow pins deeply mounted in the heat sink fins, and the bottom of the vapor chamber is a single chamber connected to the bottom of all sheet tapered hollow pins. The heat sink according to this patent dissipates heat by having a working fluid to absorb heat and to be vaporized to the hollow pins and then to be liquefied again after exchanging heat with the outer surroundings. After the condensation, the working fluid (liquid) flows along the groove wick structure on the surface of the hollow pins and returns to the chamber from the outer wall.
  • Nonetheless, the path for the working fluid to return to the chamber is long. Therefore, under a large heat-loading situation, there may be no condensed liquid (working fluid) in the vapor chamber and cause the chamber to dry out. In addition, the single phase state (only vapor) in the heat conductive mechanism and the long return path can make the fins except the outmost fins ineffective. Under this condition, the effective dissipating surface is greatly reduced and hence lowers the effectiveness of the heat sink.
  • Moreover, another heat sink with vapor chamber has been disclosed in U.S. patent application No. 2002/0118511. This patent application also forms a single vapor chamber in the heat sink, the chamber bottom is still a single chamber connected to all hollow pin except that a matrix arrangement of the columnar hollow pins is applied. This patent application utilizes a working fluid to absorb heat in the chamber and to be vaporized to the hollow pins. The vaporized working fluid then exchange heat with the surroundings and condenses, and then trickles down along the sidewall and back into the chamber due to gravity force. Since gravity is the return-flow mechanism used in this application, direction problems do exist. That is, when the installation direction of the heat sink changes, the return-flow mechanism becomes inoperable.
  • In regards to the foregoing statements, U.S. patent application 2002/0118511 also disclosed a method combining the two technologies by forming a porous structure inside the hollow fins, so that the working fluid can return to the chamber through the porous structure by capillary force. However, this technology did not solve the problem that exists in the U.S. Pat. No. 6,490,160, where the dry out occurs and all but the outmost hollow fins are inoperable under a high heat-loading condition, which lowers the dissipation efficiency.
  • SUMMARY OF THE INVENTION
  • To solve the abovementioned problems, the present invention discloses a heat sink with high heat dissipation efficiency under any heat loading.
  • An object of the invention is to provide a heat sink with high heat dissipation efficiency under high heat loadings.
  • Another object of the invention is to provide a heat sink with high heat dissipation efficiency when installed in any direction.
  • Yet another object of the invention is to provide a heat sink which prevents dry outs and hot spots from occurring.
  • The invention discloses a heat sink including a main body and a plurality of porous structures. The main body has a plurality of hollow fins and a base, the fins and the base form a closed room. The porous structures are set on the interior surfaces of a different fin and are connected to the base, and each porous structure defines a vapor chamber.
  • The invention also discloses a heat sink including a main body and a plurality of porous structures with the main body having a plurality of hollow protrusions and a base. The protrusions and the base form a closed room. The porous structures are set on the interior surfaces of a different protrusion and are connected to the base, and each porous structure defines a vapor chamber.
  • The porous structures are wick structures; common wick structures include mesh, fiber, sintered, groove wicks, or combinations thereof. The porous structures and the main body are assembled by methods such as sintering, adhering, filling, or depositing. The material of the porous structures includes plastics, alloys or metals such as copper, aluminum, iron, porous non-metallic materials and mixtures thereof. The porous structures contain a working fluid; the working fluid can be inorganic compounds, water, alcohols, liquid metals such as mercury, ketones, refrigerants such as HFC-134a, other organic compounds or mixtures thereof.
  • The main body can be one-piece molded or composed of several components. The components are bind together by soldering, engaging, embedding, adhering, or combinations thereof. Neighboring vapor chambers are communicated with each other directly, or indirectly in fluid communication through the porous structures.
  • The vapor chambers are arranged in the closed room either in an array arrangement, a longitudinal arrangement, a parallel arrangement, or a transverse arrangement.
  • Since the heat sink according to the invention utilizes wick structures (porous structures) to form several small vapor chambers and/or small sectors, the wick structure of every protrusion forms an independent heat-removal cycle. So, under high heat-loading situation, the dry outs will not occur and the high heat dissipation efficiency is maintained.
  • Moreover, since the bottom of the small vapor chambers and/or small sectors are composed of connecting wicks (heat-absorptive portion), the working fluid in each small vapor chamber are in fluid communication, and thus the possibility of hot spots occurring is lowered, and the heat is evenly distributed to each small vapor chamber and/or small sector.
  • Furthermore, since the return-flow mechanism of the heat sink according to the invention uses capillary force but not simply relies on gravity, the return-flow speed of the working fluid in the heat sink will not be affected by the direction for installation.
  • The vapor chamber in the heat sink according to the invention is composed of a plurality of small vapor chambers and/or small sectors, and therefore the return-flow path of the working fluid is short, and the return-flow speed and heat dissipation efficiency are enhanced.
  • The foregoing and other objectives, features, and advantages of the invention will be more readily understood upon consideration of the following detailed description of the invention, taken in conjunction with the accompanying drawings.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic diagram of a preferred embodiment of a heat sink in accordance with the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • Referring to FIG. 1, a heat sink 100 includes a main body 102 and a plurality of porous structures 110 inside the main body 102, wherein the main body 102 has a closed room 124 formed therein.
  • The main body 102 has a plurality of hollow protrusions 120 and a base 122 connecting to a heat source 118. The shape and/or size of the base 122 varies in accordance with the placement of the protrusions 120 and the shape of the heat source 118. Each protrusion 120 is hollow and has two ends; the end proximate the base 122 has an opening and the other end is closed. The protrusions 120 are in a shape of fin, column, lamella, cone, or lump; and in a form of curve, arch, slant, vertical, or any other form. The protrusions 120 and the base 122 of the main body 102 can be one-piece molded or jointed by soldering, engaging, embedding, adhering, or a combination of any of the methods listed thereof. Moreover, the closed room 124 can be divided into a plurality of vapor chambers 112 by the porous structures 110.
  • The porous structures 110 are embedded on the interior surfaces of the main body 102, and are sealed therein. The porous structures 110 form a plurality of vapor chambers 112 in the main body 102. Each porous structure 110 is sectioned into two conductive portions, 104 and 106, and a heat-absorptive portion 108. The porous structures 110 are for absorbing working fluid; the condensed working fluid flows through the conductive portion 104, the conductive portion 106, and into the heat-absorptive portion 108. The working fluid is of inorganic compounds, water, alcohols, liquid metals such as mercury, ketones, refrigerants such as HFC-134a, other organic compounds, or a mixture of any of the fluids listed thereof. Using the pressure in the vapor chambers 112 can control the boiling temperature of the working fluid. The heat-absorptive portion 108 set on the interior surfaces of the base 122 is for absorbing the working fluid. The conductive portion 104 set on the interior surfaces of the protrusion 120 is for conducting the condensed working fluid to the heat-absorptive portion 108. The other conductive portion 106 is set between the heat-absorptive portion 108 and the conductive portion 104, and connected to both portions.
  • The conductive portions 104, 106 and the heat-absorptive portion 108 can be made of material such as copper, aluminum, iron, other metals and/or alloys, plastics, other porous non-metallic materials, or a mixture of any of the materials listed thereof. The conductive portions 104, 106 and the heat-absorptive portion 108 is required to have a porous formation such as wicking structures. Common wicking structures include mesh wicks, fiber wicks, sintered wicks, groove wicks, or other structures including a combination of any of the wicking structures listed thereof. The porous structures 110 and the main body 102 are assembled by sintering, adhering, filling, or depositing.
  • The conductive portion 106 is set between neighboring protrusions 120 so that the working fluid in the conductive portion 104 can flow quickly to the heat-absorptive section 108 along the conductive portion 106. The conductive portion 106 divides the closed room 124 into a plurality of vapor chambers 112; each vapor chamber 112 corresponds to at least one of the protrusions 120. The conductive portion 106 can also divide the closed room 124 into a plurality of sectors; the sectors each corresponds to a protrusion 120 and the neighboring sectors are communicated with each other. The vapor chambers 112 or the small sectors can be disposed in array, parallel, longitudinal, transverse, diagonal or irregular arrangements.
  • Although the closed room 124 has been divided into a plurality of vapor chambers 112 and/or small sectors by the conductive portions 106, the working fluid in the heat-absorptive portion 108 on the bottom of each vapor chamber is in fluid communication with other vapor chambers. Thus the occurred probability of the partial hot spots on the heat sink 100 is reduced, and the heat is distributed evenly on the bottom of the heat sink 100.
  • The heat sink 100 described above is used to illustrate the heat-removal mechanism used in the invention. In this embodiment, the base 122 of the heat sink 100 is installed on the heat source 118, wherein the heat source 118 is composed of a heat-generating element 116 and a conducting structure 114 connected to the heat-generating element 116. The conducting structure 114 can be a heat-dissipating paste, or a phase-changing metal sheet; the heat-generating element 116 can be a computer-processing unit (CPU), or a semi-conductor chip. For illustration purpose, the protrusions 120 exemplify a fin shape in this embodiment.
  • When the bottom of the vapor chambers 112 is heated and the temperature of the working fluid raises to the boiling point, the working fluid in the heat-absorptive portions 108 boils and evaporates, causing the pressure in the vapor chambers 112 to rise and the vapors move towards the fins quickly. The heat in the fins is then dissipated by natural or forced convection; the vapors condensate into liquid on the interior surfaces of the fins and the working fluid (liquid) penetrates into the conductive portions 104 (wick structure) in the fins. Since the heat-absorptive portions 108 (wick structure) are drier than the conductive portions 104, the capillary force drives the working fluid (liquid) to flow back to the bottom of the vapor chambers 112 and hence a heat-removal cycle is completed.
  • Since the bottom edges of the fins are connected to the base 122 with the conductive portions 106 (wick structure), the return-flow speed of the working fluid is enhanced and dry out is prevented from occurring.
  • Concluding from the description above, the heat sink according to the invention utilizes wick structures (porous structures) to form a plurality of small vapor chambers and/or small sectors, so that the wick structure in each protrusion forms an independent heat-removal cycle. Thus even under high heat-loading situations, dry outs caused by the lack of working fluid will not occur and the heat-dissipating effect can be maintained.
  • Moreover, the bottom of the small vapor chambers and/or small sectors are made of connecting wick structures (heat-absorptive portions), thereby the working fluid in each small vapor chamber and/or small sector is in fluid communication via the wick structures on the bottom. This in turn lowers the occurred probability of hot spots and the heat is evenly distributed to each small vapor chamber and/or small sector.
  • Furthermore, since the heat sink according to the invention utilizes capillary force in the return-flow mechanism instead of simply relying on gravity, thus the installation direction of the heat sink will not affect the return-flow speed.
  • In addition, since the vapor chamber of the heat sink according to the invention includes a plurality of small vapor chambers and/or small sectors, each small vapor chamber and/or small sector has shorter return-flow path than that of the conventional technology. Therefore, the return-flow speed of the working fluid is increased and the heat-dissipating effect is enhanced.
  • While the invention has been described by way of example and in terms of the preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims (23)

1. A heat sink, comprising:
a main body having a plurality of hollow fins and a base, the fins and the base forming a closed room; and
a plurality of porous structures set respectively on the interior surfaces of the hollow fins and connected to the base, each porous structure defining a vapor chamber.
2. The heat sink as described in claim 1, wherein the fins are hollow and each fin has a close end and an open end facing the base.
3. The heat sink as described in claim 1, wherein the porous structures are wicks selected from the group consisting of a combination of one or more of mesh wicks, fiber wicks, sintered wicks, and groove wicks.
4. The heat sink as described in claim 1, wherein the porous structures contain a liquid selected from the group consisting of a mixture of one or more of inorganic compounds, water, alcohols, liquid metals, ketones, refrigerants, and organic compounds.
5. The heat sink as described in claim 1, wherein the material of the porous structures is selected from the group consisting of a mixture of one or more of plastics, metals, alloys, and porous non-metal materials.
6. The heat sink as described in claim 1, wherein the fins and the base are formed by a method selected from the group consisting of a combination of one or more of soldering, engaging, embedding, and adhering.
7. The heat sink as described in claim 1, wherein the main body is one-piece molded.
8. The heat sink as described in claim 1, wherein the fins are arranged in a longitudinal, parallel, transverse, diagonal, or irregular array.
9. The heat sink as described in claim 1, wherein neighboring vapor chambers are communicated with each other or in fluid communication through the porous structures.
10. A heat dissipating device, comprising:
a main body having a plurality of hollow protrusions and a base, the protrusions and the base forming a closed room; and
a plurality of porous structures set respectively on the interior surfaces of the protrusions and connected to the base, each porous structure defining a vapor chamber.
11. The heat dissipating device as described in claim 10, wherein the protrusions are hollow and each protrusion has a close end and an open end facing the base.
12. The heat dissipating device as described in claim 10, wherein one of the protrusions has a fin shape, columnar shape, lamellar shape, conical shape, or lump shape.
13. The heat dissipating device as described in claim 10, wherein the porous structures are wicks.
14. The heat dissipating device as described in claim 13, wherein the wicks are selected from the group consisting of a combination of one or more of mesh wicks, fiber wicks, sintered wicks, and groove wicks.
15. The heat dissipating device as described in claim 10, wherein the porous structures and the main body are assembled by sintering, adhering, filling, or depositing.
16. The heat dissipating device as described in claim 10, wherein the porous structures contain a liquid.
17. The heat dissipating device as described in claim 16, wherein the liquid is selected from the group consisting of a mixture of one or more of inorganic compounds, water, alcohols, liquid metals, ketones, refrigerants, and organic compounds.
18. The heat dissipating device as described in claim 10, wherein the material of the porous structures is selected from the group consisting of a mixture of one or more of plastics, metals, alloys, and porous non-metal materials.
19. The heat dissipating device as described in claim 10, wherein the main body is one-piece molded.
20. The heat dissipating device as described in claim 10, wherein the protrusions and the base are formed by soldering, engaging, embedding, or adhering.
21. The heat dissipating device as described in claim 10, wherein neighboring vapor chambers are communicated with each other.
22. The heat dissipating device as described in claim 10, wherein neighboring vapor chambers are in fluid communication through the porous structures.
23. The heat dissipating device as described in claim 10, wherein the vapor chambers of the porous structures are arranged in the closed room in a longitudinal, parallel, transverse, diagonal, or irregular array.
US11/007,192 2004-03-15 2004-12-09 Heat sink Abandoned US20050199376A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/455,727 US20060237167A1 (en) 2004-03-15 2006-06-20 Heat sink

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW93106818 2004-03-15
TW093106818A TW200530552A (en) 2004-03-15 2004-03-15 Heat sink

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/455,727 Continuation-In-Part US20060237167A1 (en) 2004-03-15 2006-06-20 Heat sink

Publications (1)

Publication Number Publication Date
US20050199376A1 true US20050199376A1 (en) 2005-09-15

Family

ID=34919207

Family Applications (2)

Application Number Title Priority Date Filing Date
US11/007,192 Abandoned US20050199376A1 (en) 2004-03-15 2004-12-09 Heat sink
US11/455,727 Abandoned US20060237167A1 (en) 2004-03-15 2006-06-20 Heat sink

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/455,727 Abandoned US20060237167A1 (en) 2004-03-15 2006-06-20 Heat sink

Country Status (2)

Country Link
US (2) US20050199376A1 (en)
TW (2) TW200530552A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246193A1 (en) * 2006-04-20 2007-10-25 Bhatti Mohinder S Orientation insensitive thermosiphon of v-configuration
US20080062651A1 (en) * 2006-09-12 2008-03-13 Reis Bradley E Base Heat Spreader With Fins
US20080170368A1 (en) * 2006-05-03 2008-07-17 International Business Machines Corporation Apparatuses for Dissipating Heat from Semiconductor Devices
EP2713132A1 (en) * 2012-09-26 2014-04-02 Alcatel Lucent A vapor-based heat transfer apparatus
US9041195B2 (en) 2012-12-31 2015-05-26 International Business Machines Corporation Phase changing on-chip thermal heat sink
EP2469214A3 (en) * 2010-12-27 2015-07-22 HS Marston Aerospace Limited Surface cooler having channeled fins
US20160003555A1 (en) * 2014-07-04 2016-01-07 Cooler Master Co., Ltd. Heat dissipater having capillary component
GB2528161A (en) * 2014-07-09 2016-01-13 Hamilton Sundstrand Corp Integrated blower diffuser-fin single phase heat exchanger
EP2271725B1 (en) 2008-05-07 2018-02-21 The Chemours Company FC, LLC Compositions comprising 2,3,3,3-tetrafluoropropene and 1,1,1-trifluoropropene
US20200281095A1 (en) * 2014-04-08 2020-09-03 General Electric Company Systems and methods for using additive manufacturing for thermal management
CN112635418A (en) * 2019-10-08 2021-04-09 全亿大科技(佛山)有限公司 Liquid cooling radiator
US20210307202A1 (en) * 2018-12-12 2021-09-30 Magna International Inc. Additive manufactured heat sink
US11454462B2 (en) * 2019-08-05 2022-09-27 Aavid Thermalloy, Llc Heat dissipating fin with thermosiphon
US11886258B2 (en) * 2020-02-06 2024-01-30 Baidu Usa Llc Hybrid heat sink for electronics cooling
WO2024061070A1 (en) * 2022-09-19 2024-03-28 Yue Zhang Plate vapor chamber array assembly

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8462508B2 (en) 2007-04-30 2013-06-11 Hewlett-Packard Development Company, L.P. Heat sink with surface-formed vapor chamber base
KR101164611B1 (en) * 2008-09-22 2012-07-13 성균관대학교산학협력단 Method for manufacturing evaporator for looped heat pipe system
CN102638905B (en) * 2012-03-28 2014-09-17 华为技术有限公司 Remote radio unit and manufacturing method thereof
US10433461B2 (en) * 2017-10-30 2019-10-01 Google Llc High-performance electronics cooling system
US10641556B1 (en) 2019-04-26 2020-05-05 United Arab Emirates University Heat sink with condensing fins and phase change material
TWI703302B (en) * 2019-07-19 2020-09-01 大陸商深圳興奇宏科技有限公司 Heat sink
US11435144B2 (en) 2019-08-05 2022-09-06 Asia Vital Components (China) Co., Ltd. Heat dissipation device
CN214950816U (en) * 2020-07-01 2021-11-30 讯凯国际股份有限公司 Heat exchanger fin
EP4050295A1 (en) * 2021-02-26 2022-08-31 Ovh Water block having hollow fins
WO2024061470A1 (en) * 2022-09-23 2024-03-28 Huawei Technologies Co., Ltd. Two-phase heat sink for cooling heat sources

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632179A (en) * 1982-09-20 1986-12-30 Stirling Thermal Motors, Inc. Heat pipe
US4785875A (en) * 1987-11-12 1988-11-22 Stirling Thermal Motors, Inc. Heat pipe working liquid distribution system
US6062302A (en) * 1997-09-30 2000-05-16 Lucent Technologies Inc. Composite heat sink
US6237223B1 (en) * 1999-05-06 2001-05-29 Chip Coolers, Inc. Method of forming a phase change heat sink
US6410982B1 (en) * 1999-11-12 2002-06-25 Intel Corporation Heatpipesink having integrated heat pipe and heat sink
US20020118511A1 (en) * 2001-02-28 2002-08-29 Dujari Prateek J. Heat dissipation device
US6490160B2 (en) * 1999-07-15 2002-12-03 Incep Technologies, Inc. Vapor chamber with integrated pin array
US20040105235A1 (en) * 2002-12-02 2004-06-03 Tai-Sol Electronics Co., Ltd. Heat sink

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7206063A (en) * 1972-05-04 1973-11-06 N.V. Philips Gloeilampenfabrieken HEATING DEVICE
US5253702A (en) * 1992-01-14 1993-10-19 Sun Microsystems, Inc. Integral heat pipe, heat exchanger, and clamping plate

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4632179A (en) * 1982-09-20 1986-12-30 Stirling Thermal Motors, Inc. Heat pipe
US4785875A (en) * 1987-11-12 1988-11-22 Stirling Thermal Motors, Inc. Heat pipe working liquid distribution system
US6062302A (en) * 1997-09-30 2000-05-16 Lucent Technologies Inc. Composite heat sink
US6237223B1 (en) * 1999-05-06 2001-05-29 Chip Coolers, Inc. Method of forming a phase change heat sink
US6490160B2 (en) * 1999-07-15 2002-12-03 Incep Technologies, Inc. Vapor chamber with integrated pin array
US6410982B1 (en) * 1999-11-12 2002-06-25 Intel Corporation Heatpipesink having integrated heat pipe and heat sink
US20020118511A1 (en) * 2001-02-28 2002-08-29 Dujari Prateek J. Heat dissipation device
US20040105235A1 (en) * 2002-12-02 2004-06-03 Tai-Sol Electronics Co., Ltd. Heat sink

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246193A1 (en) * 2006-04-20 2007-10-25 Bhatti Mohinder S Orientation insensitive thermosiphon of v-configuration
US20080170368A1 (en) * 2006-05-03 2008-07-17 International Business Machines Corporation Apparatuses for Dissipating Heat from Semiconductor Devices
US20080062651A1 (en) * 2006-09-12 2008-03-13 Reis Bradley E Base Heat Spreader With Fins
US7420810B2 (en) * 2006-09-12 2008-09-02 Graftech International Holdings, Inc. Base heat spreader with fins
EP2271725B1 (en) 2008-05-07 2018-02-21 The Chemours Company FC, LLC Compositions comprising 2,3,3,3-tetrafluoropropene and 1,1,1-trifluoropropene
US11512239B2 (en) 2008-05-07 2022-11-29 The Chemours Company Fc, Llc Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene
US11312890B2 (en) 2008-05-07 2022-04-26 The Chemours Company Fc, Llc Compositions comprising 2,3-dichloro-1,1,1 -trifluoropropane, 2-chloro-1,1,1 -trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene
US11001738B2 (en) 2008-05-07 2021-05-11 The Chemours Company Fc, Llc Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene
US10584270B2 (en) 2008-05-07 2020-03-10 The Chemours Company Fc, Llc Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2-chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene
EP2469214A3 (en) * 2010-12-27 2015-07-22 HS Marston Aerospace Limited Surface cooler having channeled fins
EP2713132A1 (en) * 2012-09-26 2014-04-02 Alcatel Lucent A vapor-based heat transfer apparatus
US9984954B2 (en) 2012-12-31 2018-05-29 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9704778B2 (en) 2012-12-31 2017-07-11 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9312147B2 (en) 2012-12-31 2016-04-12 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9911682B2 (en) 2012-12-31 2018-03-06 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9041195B2 (en) 2012-12-31 2015-05-26 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9287141B2 (en) 2012-12-31 2016-03-15 International Business Machines Corporation Phase changing on-chip thermal heat sink
US10032691B2 (en) 2012-12-31 2018-07-24 International Business Machines Corporation Phase changing on-chip thermal heat sink
US10157816B2 (en) 2012-12-31 2018-12-18 International Business Machines Corporation Phase changing on-chip thermal heat sink
US10177071B2 (en) 2012-12-31 2019-01-08 International Business Machines Corporation Phase changing on-chip thermal heat sink
US9059130B2 (en) 2012-12-31 2015-06-16 International Business Machines Corporation Phase changing on-chip thermal heat sink
US11004770B2 (en) 2012-12-31 2021-05-11 International Business Machines Corporation Phase changing on-chip thermal heat sink
US20200281095A1 (en) * 2014-04-08 2020-09-03 General Electric Company Systems and methods for using additive manufacturing for thermal management
US20160003555A1 (en) * 2014-07-04 2016-01-07 Cooler Master Co., Ltd. Heat dissipater having capillary component
US9939205B2 (en) * 2014-07-04 2018-04-10 Cooler Master Co., Ltd. Heat dissipater having capillary component
GB2528161B (en) * 2014-07-09 2020-04-29 Hamilton Sundstrand Corp Integrated blower diffuser-fin single phase heat exchanger
GB2528161A (en) * 2014-07-09 2016-01-13 Hamilton Sundstrand Corp Integrated blower diffuser-fin single phase heat exchanger
US20210307202A1 (en) * 2018-12-12 2021-09-30 Magna International Inc. Additive manufactured heat sink
US11454462B2 (en) * 2019-08-05 2022-09-27 Aavid Thermalloy, Llc Heat dissipating fin with thermosiphon
CN112635418A (en) * 2019-10-08 2021-04-09 全亿大科技(佛山)有限公司 Liquid cooling radiator
US11094611B2 (en) * 2019-10-08 2021-08-17 Champ Tech Optical (Foshan) Corporation Liquid cooled heat dissipation device
US11886258B2 (en) * 2020-02-06 2024-01-30 Baidu Usa Llc Hybrid heat sink for electronics cooling
WO2024061070A1 (en) * 2022-09-19 2024-03-28 Yue Zhang Plate vapor chamber array assembly

Also Published As

Publication number Publication date
US20060237167A1 (en) 2006-10-26
TWM309091U (en) 2007-04-01
TW200530552A (en) 2005-09-16

Similar Documents

Publication Publication Date Title
US20060237167A1 (en) Heat sink
US7293601B2 (en) Thermoduct
US7007746B2 (en) Circulative cooling apparatus
CN105264612B (en) The heat management of solid-state drive
US7331379B2 (en) Heat dissipation device with heat pipe
JP6085540B2 (en) Heat dissipation device
US7312994B2 (en) Heat dissipation device with a heat pipe
KR20040030513A (en) Heat dissipation device
JPH05243441A (en) Heat dissipating device
US7451806B2 (en) Heat dissipation device with heat pipes
US20060289149A1 (en) Heat dissipating device with heat reservoir
US20060039111A1 (en) [high-performance two-phase flow evaporator for heat dissipation]
JPH088421B2 (en) Heat dissipation device
US20080236798A1 (en) Heat dissipation device with heat pipe
US20150129175A1 (en) Thermosyphon heat sink
JPH0731027B2 (en) Heat pipes and radiators
US7234513B2 (en) Microchannel flat-plate heat pipe with parallel grooves for recycling coolant
US20110056670A1 (en) Heat sink
US20080093055A1 (en) Heat-dissipating structure
US20060164809A1 (en) Heat dissipation module
US20070056713A1 (en) Integrated cooling design with heat pipes
US20080314554A1 (en) Heat dissipation device with a heat pipe
TWM425404U (en) Light-emitting apparatus having heat pipe
US20100139888A1 (en) Heat spreader and heat dissipation device using same
KR100396655B1 (en) heat sink of calorific element

Legal Events

Date Code Title Description
AS Assignment

Owner name: DELTA ELECTRONICS, INC., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LEE, YI-SHENG;REEL/FRAME:016071/0735

Effective date: 20040607

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION