US20050171428A1 - Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures - Google Patents

Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures Download PDF

Info

Publication number
US20050171428A1
US20050171428A1 US10/895,398 US89539804A US2005171428A1 US 20050171428 A1 US20050171428 A1 US 20050171428A1 US 89539804 A US89539804 A US 89539804A US 2005171428 A1 US2005171428 A1 US 2005171428A1
Authority
US
United States
Prior art keywords
fluoroscope
ultrasound
image
data
fluoroscopy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/895,398
Inventor
Gabor Fichtinger
Tabish Mustufa
Keenan Wyrobek
E. Burdette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johns Hopkins University
Original Assignee
Johns Hopkins University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Johns Hopkins University filed Critical Johns Hopkins University
Priority to US10/895,398 priority Critical patent/US20050171428A1/en
Publication of US20050171428A1 publication Critical patent/US20050171428A1/en
Priority to US11/998,452 priority patent/US8948471B2/en
Assigned to JOHNS HOPKINS UNIVERSITY reassignment JOHNS HOPKINS UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MUSTAFA, TABISH, WYROBEK, KEENAN, FICHTINGER, GABOR
Priority to US14/613,331 priority patent/US20150216621A1/en
Assigned to NATIONAL SCIENCE FOUNDATION reassignment NATIONAL SCIENCE FOUNDATION CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: THE JOHNS HOPKINS UNIVERSITY
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1001X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy using radiation sources introduced into or applied onto the body; brachytherapy
    • A61N5/1014Intracavitary radiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4417Constructional features of apparatus for radiation diagnosis related to combined acquisition of different diagnostic modalities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/392Radioactive markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3925Markers, e.g. radio-opaque or breast lesions markers ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3937Visible markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3954Markers, e.g. radio-opaque or breast lesions markers magnetic, e.g. NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3966Radiopaque markers visible in an X-ray image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating apparatus or devices for radiation diagnosis
    • A61B6/582Calibration
    • A61B6/583Calibration using calibration phantoms

Definitions

  • the present invention relates to the registration of ultrasound and C-arm fluoroscopy imagery for the purposes of providing real-time optimization of medical procedures such as transperineal low-dose rate brachytherapy.
  • Adenocarcinoma of the prostate is the most commonly diagnosed cancer in the U.S. male population. During the last half decade, there have been approximately 200,000 new cases of prostate cancer diagnosed each year, which is comparable to breast cancer diagnosis, and there is no evidence that this number would significantly decrease in the foreseeable future. For several decades, the definitive treatment of low-risk prostate cancer was radical prostatectomy or external beam radiation. During the 90's the technique of transrectal ultrasound (TRUS) guided transperineal low dose-rate brachytherapy underwent dynamic improvement. Brachytherapy has become a well-proven treatment modality, comparable to surgery and external beam radiation therapy (EBRT) in any measurable respect.
  • TRUS transrectal ultrasound
  • EBRT external beam radiation therapy
  • brachytherapy While the technique of brachytherapy for prostate cancer has certainly evolved over the past three decades and modern local control rates have increased, the rate of rectal and urethral complications is still high if radiation implants are to potentially become a new treatment standard. The underlying reason for unsatisfactory clinical results has predominantly been lack of adequate visualization and control of the implant process leading to improperly placed sources of radiation dose. In many respects, the evolution of brachytherapy can be viewed as an evolution of noninvasive visualization and control of the actual implanted source locations. There have been advances in the ability to use different isotopes for better dose distributions; however, even the best isotope is useless without proper visualization, localization, and subsequent control of the implant. The ability to intraoperatively localize seeds in relation to the prostate is key to enabling dynamic dose calculation during the procedure. The solution of this problem would reduce the probability of faulty implants, thus presenting an opportunity for improved outcomes.
  • TRUS imaging generally provides satisfactory differentiation of relevant soft issue, but implanted brachytherapy seeds cannot be clearly identified in the TRUS images. Advancements in ultrasound equipment technology are expected to facilitate seed localization in the future, but they will not be available for the majority of prostate brachytherapy practitioners in the foreseeable future. On the other hand, currently sixty percent or more of the practitioners use intra-operative C-arm fluoroscopy as a qualitative check of the implants. While seeds can be accurately localized using X-ray techniques, projected transluminal images do not reveal soft tissue anatomy. Hence, there has been strong demand for coupling relevant information from C-arm with the TRUS-guided delivery system, in a safe, robust, and cost-efficient manner.
  • C-arm X-ray fluoroscopy may be the most widely used intra-operative imaging modality in general surgery, and approximately 60+% of the prostate brachytherapy practitioners use it for qualitative implant analysis in the operating room in non-computational qualitative manner. While C-arm fluoroscopy has been used intra-operatively, it has not been utilized in quantitative intra-operative analysis. C-arm has been used a solo guidance modality. However, since TRUS emerged as a primary image guidance modality, C-arm fluoroscopic x-ray imaging has become a secondary tool for gross visual observation. Very few attempts have been made to relate fluoroscopic images to soft tissue anatomy with little success.
  • X-ray radiography has been used extensively for post-implant brachytherapy evaluation using multi-view X-ray to recover seed locations post implant and determine gross dosimetry.
  • the fundamental problem is matching large number of seeds with their projections in multiple X-ray images when some seeds obscure each other and solid objects also can get in the way.
  • Automated methods have been explored, but they also assume conditions that most likely cannot be met on a C-arm, particularly in a realistic intra-operative scenario.
  • Such assumptions include no extrinsic object in the field, optimal beam energy, arbitrary number and orientation of X-ray shots, or unlimited processing time and computational resources—none of which is realistic in real-time image-guided surgery.
  • Calibration of a C-arm fluoroscope involves intrinsic and extrinsic imaging parameters. Intrinsic parameters correspond to image warping, focal length, pixel scaling, and image center. In most applications, it may be assumed that these parameters do not change during the procedure under different C-arm poses, but it has been reported in the literature that the focal length may vary up to several millimeters at different C-Arm poses, on certain units. For determining the focal length, pixel scaling, and image center comprehensive methods have been reported. Using fluoroscopic imaging for quantitative analysis also requires correction of spatial distortions caused by the image intensifier. Several methods have been explored for distortion correction, such as improved calibration methods involving a fixture attached to the detector.
  • C-arm calibration has been well examined, inexpensive, efficient, and robust implementations are still in paucity.
  • dewarping and calibration kits are custom designed for each C-arm, making them hard to transfer from device to another. If multiple X-ray images are used, determining the relative pose of X-ray projections is also necessary.
  • a related art solution involves external tracking with optical or electromagnetic trackers, recovering the X-ray projection geometry for three-dimensional tomographic reconstruction with an additional optical camera and comparing the results to tracking the C-arm with external navigation system.
  • Other related art approaches involve image-based method for pose estimation without an external tracking device. Such methods rely on identifying features in each X-ray image of precision-machined fiducials and computing the appropriate spatial transformation between the individual X-ray images.
  • transrectal ultrasound guided transperineal low dose-rate brachytherapy has been emerged as one of the definitive treatments of low-risk prostate cancer.
  • Ultrasound has been an excellent tool in guiding the implant needles with respect to prostate anatomy, yet it cannot show reliably the location of radioactive seeds after they are released in the prostate.
  • Intraoperative C-arm fluoroscopy can show the implanted seeds, but it cannot detect prostate anatomy.
  • Intra-operative fusion of these two complementary modalities offers significant clinical benefit by allowing for real-time optimization of the brachytherapy implant as the procedure progresses in the operating room.
  • the present invention is directed to the registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
  • An advantage of the present invention is to provide improved visualization and control during radiation implant processes.
  • Another advantage of the present invention is improved localization of radiation doses in cancer treatment.
  • Another advantage of the present invention is to enable an advantageous compromise between time, dose, and accuracy during radiation dose implant surgery.
  • Another advantage of the present invention is to better enable dynamic dose calculation during radiation implant procedures, including the ability to adjust the planned implant locations to better optimize dose as the implant progresses.
  • a system for registering ultrasound and fluoroscopy data comprises: a fluoroscope; a sheath having fiducial marks disposed on a portion of its outer surface; an ultrasound probe insertable into the sheath; a computer; and a computer readable medium encoded with a program for registering a first set of data acquired by the ultrasound probe with a second set of data acquired by the fluoroscope.
  • FIG. 1 shows an exemplary system for registering ultrasound to fluoroscopy according to the present invention
  • FIG. 2 shows an exemplary process for registering ultrasound and fluoroscopy according to the present invention
  • FIG. 3 is another depiction of an exemplary process for registering ultrasound and fluoroscopy according to the present invention
  • FIG. 4 a shows an exemplary fluoroscope dewarping kit as may be used in the present invention
  • FIG. 4 b shows an exemplary dewarping kit installed on a C-arm fluoroscope
  • FIG. 5 shows an exemplary transrectal sheath, along with an ultrasound probe, as may be used in the present invention
  • FIG. 6 shows an exemplary transrectal sheath mounted to a TRUS stepper base
  • FIG. 7 is cutaway view of a transrectal sheath, a TRUS probe, acoustically coupled according to the present invention
  • FIG. 8 shows a prostate phantom that may be used in the pre-op calibration step of the present invention.
  • FIG. 9 is an exemplary transrectal sheath, which includes air channels and X-ray and acoustic fiducials.
  • FIG. 1 shows an exemplary system 100 for registering ultrasound and C-arm fluoroscopy according to the present invention.
  • the system 100 generally comprises commercially available TRUS and C-arm fluoroscopy hardware.
  • the system 100 includes a C-arm fluoroscope 110 ; related C-arm fluoroscope signal processing hardware and software 115 ; a C-arm position controller 150 ; a transrectal sheath 120 ; a TRUS probe 130 ; a TRUS stepper; a TRUS probe position encoder 135 ; TRUS signal processing hardware and software 145 ; a data system software 155 ; and a computer 160 , which stores and executes the data system software 155 .
  • the computer 160 may comprise multiple computers, including remote databases and embedded processors. It will be apparent to one skilled in the art that the data system software 155 , and the computer 160 , may be provided in many different configurations.
  • FIG. 2 shows an exemplary process 200 for registering ultrasound and C-arm fluoroscopy according to the present invention.
  • the process 200 includes a pre-operation calibration of the C-arm fluoroscope 210 ; an image processing pipeline 220 ; a registration process 230 ; seed matching 240 ; and dosimetry computation 250 .
  • Relevant aspects of the process 200 are consistent with the use of C-arm in current clinical protocols.
  • operating room staff may perform an implant with TRUS imaging feedback as customary and use the C-arm 110 for seed reconstruction after a batch of needles, preferably after implanting a row of needles. Such a scenario seems to be a reasonable compromise considering time, dose, and accuracy.
  • pre-operative calibration 210 we attach calibration fixtures to the C-arm 110 , collect X-ray images, push them through a processing pipeline 220 , and then calculate intrinsic parameters of the C-arm 110 .
  • Process 200 involves labelling X-ray fiducials, calculating the pose of the C-arm 110 , and registering the X-ray to TRUS space. Seed clusters are delineated and seed matching performed in step 240 to reconstruct the position of individual seeds.
  • process 200 we make extensive use of prior knowledge from 3D TRUS reconstruction and registration. The end result of this process is a cloud of seeds in TRUS space that we use in dosimetric update in step 250 .
  • the key components of the system are the image processing pipeline, calibration, registration, and seed matching software modules in the data system software 155 .
  • the goal of the image processing pipeline 220 is to delineate and identify objects (seeds, needles, fiducials, etc.) in the fluoroscopic images.
  • the image processing pipeline 220 includes a chain of operators acting on the X-ray images: (1) Image Acquisition ⁇ (2) Dewarping ⁇ (3) Noise Reduction ⁇ (4) Image Normalization ⁇ (5) Background Removal ⁇ (6) Thresholding ⁇ (7) Pre-Labeling.
  • the C-arm signal processor 115 has either digital output or produces VHS signal that can be captured through frame grabbing card on the central computer.
  • a Matrox frame grabber may be used.
  • Dewarping filter helps remove the spatial distortion introduced by the image intensifier of the C-arm signal processor 115 .
  • the present invention includes a dewarping fixture and corresponding computer instructions in the data system software 155 , which is described later.
  • Noise Reduction in the static X-ray images may be achieved most effectively by averaging multiple frames taken in the same position. While this method substantially preserves image features, it also may increase radiation dose. For example, averaging five short-burst fluoro frames may give excellent noise suppression, while exposing the patient to a dose of one radiograph.
  • a preferred embodiment may use a method developed by Bzostek et al. originally developed for finding spherical beads by applying linear gradient correction followed by Gaussian filtering over the log-corrected image.
  • a preferred embodiment may use the Bzostek-Taylor algorithm for implanted spherical markers and further expand the method for line objects and seeds.
  • Background removal in step 220 may use mathematical morphology, introduced by Haralick et al.
  • Tubic fluoroscopic imaging of prostate implants by defining a chain of four basic morphological operations: erosion, dilatation, opening, and closing.
  • Thresholding may not be done statically, because the intensity of seeds and objects also depends on the thickness of bone structures.
  • the optimal threshold may be found automatically by applying entropy maximization over a two-dimensional histogram that reflects both the gray levels and spatial relationship of pixels.
  • the result of the image processing pipeline 220 includes a distortion-free binary image, in which only artificial implanted objects are present, while all details of the natural body (bone, ligaments, etc.) are removed from the picture. Subsequent labeling can be further assisted by optimizing material density of the custom-made objects (de-warp grid, calibration phantom, rectal sheath, fiducials, etc.) so that the processing pipeline can be fine-tuned to suppress or enhance these objects selectively.
  • Pre-Labeling is performed to delineate and identify all objects other than seeds, then digitally remove those from the images.
  • the data software 155 uses prior shape information about the objects in the field of view. Two sorts of dense objects may be expected in the field of view: implanted markers (needles, wire markers, spherical markers) and brachytherapy seeds. Needles and wire markers typically appear as thin lines that are typically well segmentable by Hough transform. At any given time, only a very limited number of marker objects are generally present in an X-ray field. Knowing the shape, orientation, and estimated relative positions of these objects; the data system software 155 may label them automatically, or with minimal input from the operator, in the worst case.
  • the data system software 155 may remember where they are supposed to show up the next time and how they actually look like in the images. After a marker object is positively identified, the data system software 155 calculate its 3D locations for registration purposes and then digitally remove its silhouettes from the X-ray images. This process may be repeated until only seeds are left in the images that then undergo a sophisticated pattern recognition process described below under “Seed Matching”. It should be noted that some seeds may have been obscured by marker objects and thus inadvertently removed from the images. That is why it is so important to place needles and line markers where they are the least likely to obscure seeds.
  • Calibration of the C-arm 110 in step 210 should be performed pre-operatively, before the patient is brought into the room.
  • Commercially available C-arms 110 generally apply electronic image intensifier, in which “parameter shift” may occur unexpectedly. Therefore it is recommend that calibration step 210 be performed before each procedure, even if the same C-arm 110 is being used.
  • Exemplary process 210 repeats a limited set of C-arm poses under the assumption that in a given pose the intrinsic parameters do not change during the procedure, so the dewarping grid may be removed during the implant procedure.
  • a dewarping grid is placed on the detector and the C-arm signal processor 115 process the images in these poses, in a transverse and sagittal sweep planes at approximately +30°, 0°, ⁇ 30° poses.
  • the calibration step 210 uses an image processing pipeline substantially similar to that described for step 220 , only without using the dewarping filter that is computed during calibration step 210 .
  • the system software 155 assigns labels to the beads of the dewarping grid automatically and determines the dewarping filter.
  • a calibration object may be placed in the field and the C-arm 110 is driven through the same poses as before.
  • the system software 155 processes the images through the complete pipeline 220 , now including dewarping.
  • the data system software 155 labels the calibration fixture automatically and then calculates the intrinsic C-arm 110 parameters using techniques like those described in Yao J, Taylor R H, Goldberg R P, Kumar R, Bzostek A, Van Vorhis R, Kazanzides P, Gueziec A.
  • FIG. 4 a dewarping grid structure 400 that may universally fit C-arms 110 of different detector size.
  • An adjustable band clamp 410 goes around the C-arm 110 , so that the plate 420 hooks into blocks positioned around the C-arm 110 , as shown in FIG. 4 b.
  • the plate 420 is firmly attached to image intensifier and substantially does not move during the calibration process 210 .
  • This plate 420 may be easy to install and simple to use, partly because our dewarping process does not require that the centers of the dewarping plate 420 and the intensifier be aligned.
  • the radio-opaque beads 430 may be arranged in triangular pattern.
  • the dewarping algorithm implemented by data system software 155 includes three basic steps: (1) Establish a correlation between points in the image and points in the known bead pattern 430 by using a fast crawling method that can circumvent problems caused by missing beads 430 in the image. (2) Determine the rigid body transformation and scale factor that will align the images, by using a conventional singular value decomposition method. (3) Align the images and perform least-squares polynomial fit between the point sets.
  • the data system software 155 may use nth-order Berstein polynomials to describe the patterns in the dewarping grid and then achieve deformable matching between warped and warp-free features.
  • a preferred result of registration step 230 is a 6 degree of freedom (DOF) transformation between TRUS and X-ray space.
  • DOE 6 degree of freedom
  • a preferred embodiment of the transrectal sheath 120 includes a 6-DOF external fiducial system 510 mounted on the outside of the sheath 120 , as shown in FIG. 5 , that is mounted on the base of the TRUS stepper of the implant system. Inside the sheath 120 the TRUS probe 130 can move freely without mechanical interaction with the rectum, thus the location and shape of the prostate does not change due to scanning motion of the TRUS probe 130 .
  • the sheath 120 may be made of thin plastic, mylar, polypropylene, polyethylene or similar material and fits tightly round the TRUS probe 130 . As shown in FIG. 7 , gel material 710 substantially provides ultrasonic coupling between the sheath 120 and the rectum wall.
  • multiple air channels 910 substantially provide equalized air pressure in the sheath 120 during scanning motion of the TRUS probe 130 .
  • the fiducial pattern 510 on the outer surface of the sheath 120 may contains a suitable combination of straight lines, helices, and ellipses formed by 1 mm thick Tantalum wire, as shown in FIG. 9 .
  • Other materials with good visibility under X-ray illumination, such that it makes a good X-ray contrast material, may be used in place of Tantalum.
  • the fiducial system 510 which is preferably precision-machined, that is rigidly fixed in the field of X-ray enables the determination of the relative pose of the multiple X-ray images.
  • the fiducials on the sheath provide common coordinate system for the individual X-ray shots.
  • the sheath is rigidly mounted on the base of the stepper and the motion of the TRUS probe is encoded relative to the stepper base, so there is a known spatial relationship between the TRUS probe and the fiducials at any time. Therefore, the fiducials on the sheath provide a common reference coordinate system for both X-ray and the TRUS images.
  • This frame of reference is considered to be sufficiently stationary with respect to the prostate during a registration session typically involving the acquisition of multiple X-ray shots and a TRUS volume.
  • the fiducial lines can be auto-segmented, as shown in FIG. 9 . Altogether, using rigidly mounted fiducials for pose encoding appears to be inherently reliable, robust, simple, and inexpensive.
  • reconstructing implanted seeds is complicated by a large number of seeds (sometimes as many as 150) are confined in a small volume (as small as a walnut), overlapping one another in an apparent disorder.
  • the X-ray images may also be very noisy, especially in the lateral direction where the pelvic and femur bones create a strong heterogeneous shadow over the seeds.
  • no more than three X-ray images are taken in one sweep plane.
  • the data system software 155 issues instructions to implement a technique that draws heavily on prior information from the TRUS-based implant plan and from earlier seed matching and reconstruction sessions. Having established 3D registration between X-ray and TRUS, the data system software 155 transfers spatially registered information from the TRUS space to X-ray space to assist seed segmentation and matching, by recognizing previously reconstructed seeds.
  • Method 1 Certain commercially available TRUS-based treatment planning systems, such as Interplant® made by CMS Burdette Medical Systems of Urbana-Champaign, Ill., have the capability of spatially locating an inserted needle. Although there is some tissue deformation, a good estimation is provided regarding where the seeds will end up in the prostate. By projecting the location of the needle forward onto the 2D X-ray pictures, a reasonably confined area is defined where these new seeds are supposed to show up in X-ray. Consequently, the data system software 155 can label clusters of previously implanted old seeds that could not have come from the newly implanted needles the data system software 155 updates their 3D locations and then excludes those from the seed matching process.
  • Interplant® made by CMS Burdette Medical Systems of Urbana-Champaign, Ill.
  • Method 2 It may be assumed that seeds implanted by the last fluoroscopy session have not migrated substantially within the prostate since then. By projecting the location of these previously located seeds forward onto the 2D X-ray pictures, the data system software 155 can obtain a reasonably confined area, where they are supposed to show up in the new X-ray images, then update their 3D locations and then exclude those from the seed matching process, as described above in Method 1.
  • Method 3 If the prostate did not move between imaging sessions, then subtracting the previous image from the new image taken in the same C-arm 110 pose would show the newly derived seed locations and nothing else. In reality, the prostate moves somewhat between imaging sessions and the C-arm 110 pose is generally not precisely repeatable, but still a large portion of previously implanted seeds can be excluded from the matching problem on this basis.
  • the data system software 155 can apply the images to the processing pipeline 220 and perform deformable mapping using information that is mutual between the images.
  • the data system software 155 may transform the location of seeds to TRUS space, their three-dimensional dose cloud may be computed and analyzed by the Interplant® system. The number of seeds found is likely to be different from the actual number of implanted seeds, so the activity of seeds will be adjusted so that the analysis shows the distribution of truly implanted dose. Finally, the remainder of the treatment plan is updated, in order to maintain to maintain optimal dose coverage of the prostate. For visual evaluation of the registration, fiducial objects and other reconstructed structures may be projected back to ultrasound space and superimposed in the 3D view provided by the Interplant® system. Although our present goal is to achieve intra-operative seed matching and registration, this method could be extended to post-operative care.
  • the last available implant plan would be projected onto post-operative images and the individual seeds would be matched.
  • the data system software 155 may repeat imaging sessions regularly, over an expanded period of time. As a result, it is possible to track the path of each individual seed, which could provide an insight to how the prostate changes shape, volume, and pose over time. Having collected data from a sufficiently large number of patients, the data system software 155 may predict statistical motion of seeds with respect to the relevant anatomy. This may prove to be helpful in understanding the process of post-operative edema, a crucially important issue in prostate brachytherapy.
  • the efficacy of projecting prior information to new X-ray images can be greatly facilitated by synchronizing the insertion sequence with the X-ray poses, so that the newly inserted seeds are the least likely obscure each other. This condition can be easily met if the implant is executed by rows of needles and we perform C-arm imaging after every row.

Abstract

Transrectal ultrasound guided transperineal low dose-rate brachytherapy has been emerged as one of the definitive treatments of low-risk prostate cancer. Ultrasound has been an excellent tool in guiding the implant needles with respect to prostate anatomy, yet it cannot show reliably the location of radioactive seeds after they are released in the prostate. Intraoperative C-arm fluoroscopy can show the implanted seeds, but it cannot detect prostate anatomy. Intra-operative fusion of these two complementary modalities offers significant clinical benefit by allowing for real-time optimization of the brachytherapy implant as the procedure progresses in the operating room. Disclosed is a system and method for mitigating this problem and providing registration of seeds seen by fluoroscopy with live prostate anatomy visualized by transrectal ultrasound.

Description

  • This application claims the benefit of U.S. Provisional Patent Application No. 60/488,965, filed on Jul. 21, 2003, which is hereby incorporated by reference for all purposes as if fully set forth herein.
  • Research and development efforts associated with the subject matter of this patent application was supported by the National Science Foundation under Grant No. #ERC 9731478.
  • BACKGROUND OF THE INVENTION FIELD OF THE INVENTION
  • The present invention relates to the registration of ultrasound and C-arm fluoroscopy imagery for the purposes of providing real-time optimization of medical procedures such as transperineal low-dose rate brachytherapy.
  • Adenocarcinoma of the prostate is the most commonly diagnosed cancer in the U.S. male population. During the last half decade, there have been approximately 200,000 new cases of prostate cancer diagnosed each year, which is comparable to breast cancer diagnosis, and there is no evidence that this number would significantly decrease in the foreseeable future. For several decades, the definitive treatment of low-risk prostate cancer was radical prostatectomy or external beam radiation. During the 90's the technique of transrectal ultrasound (TRUS) guided transperineal low dose-rate brachytherapy underwent dynamic improvement. Brachytherapy has become a well-proven treatment modality, comparable to surgery and external beam radiation therapy (EBRT) in any measurable respect. Reports for seven year follow-up to radiation implant therapy have demonstrated excellent local control rates, and most recent data reports excellent long-term (10-12 year) disease-free survival rates equivalent to radical prostatectomy and external beam radiotherapy. Latest results also indicate that good quality transperineal ultrasound prostatic conformal brachytherapy can be accurately reproduced in a community hospital setting and that biochemical no evidence of disease (NED) results and local control rates will be comparable to those of several of the leading authorities, the Seattle Prostate Institute, Memorial Sloan Kettering Cancer Center, NYU, and others with no unexpected urethral or rectal complications or side effects.
  • While the technique of brachytherapy for prostate cancer has certainly evolved over the past three decades and modern local control rates have increased, the rate of rectal and urethral complications is still high if radiation implants are to potentially become a new treatment standard. The underlying reason for unsatisfactory clinical results has predominantly been lack of adequate visualization and control of the implant process leading to improperly placed sources of radiation dose. In many respects, the evolution of brachytherapy can be viewed as an evolution of noninvasive visualization and control of the actual implanted source locations. There have been advances in the ability to use different isotopes for better dose distributions; however, even the best isotope is useless without proper visualization, localization, and subsequent control of the implant. The ability to intraoperatively localize seeds in relation to the prostate is key to enabling dynamic dose calculation during the procedure. The solution of this problem would reduce the probability of faulty implants, thus presenting an opportunity for improved outcomes.
  • TRUS imaging generally provides satisfactory differentiation of relevant soft issue, but implanted brachytherapy seeds cannot be clearly identified in the TRUS images. Advancements in ultrasound equipment technology are expected to facilitate seed localization in the future, but they will not be available for the majority of prostate brachytherapy practitioners in the foreseeable future. On the other hand, currently sixty percent or more of the practitioners use intra-operative C-arm fluoroscopy as a qualitative check of the implants. While seeds can be accurately localized using X-ray techniques, projected transluminal images do not reveal soft tissue anatomy. Hence, there has been strong demand for coupling relevant information from C-arm with the TRUS-guided delivery system, in a safe, robust, and cost-efficient manner.
  • DISCUSSION OF THE RELATED ART
  • C-arm X-ray fluoroscopy may be the most widely used intra-operative imaging modality in general surgery, and approximately 60+% of the prostate brachytherapy practitioners use it for qualitative implant analysis in the operating room in non-computational qualitative manner. While C-arm fluoroscopy has been used intra-operatively, it has not been utilized in quantitative intra-operative analysis. C-arm has been used a solo guidance modality. However, since TRUS emerged as a primary image guidance modality, C-arm fluoroscopic x-ray imaging has become a secondary tool for gross visual observation. Very few attempts have been made to relate fluoroscopic images to soft tissue anatomy with little success. These attempts have generally used thin metal wire inside a Foley catheter to visualize the prostatic urethra fluoroscopically in anterior-posterior and lateral projections. In other approaches, gold marker seeds have been implanted into the prostate, and the relative positions of the needles and marker seeds have been observed in fluoroscopy.
  • X-ray radiography has been used extensively for post-implant brachytherapy evaluation using multi-view X-ray to recover seed locations post implant and determine gross dosimetry. Here the fundamental problem is matching large number of seeds with their projections in multiple X-ray images when some seeds obscure each other and solid objects also can get in the way. Automated methods have been explored, but they also assume conditions that most likely cannot be met on a C-arm, particularly in a realistic intra-operative scenario. Such assumptions include no extrinsic object in the field, optimal beam energy, arbitrary number and orientation of X-ray shots, or unlimited processing time and computational resources—none of which is realistic in real-time image-guided surgery. In conclusion, “off-the-shelf” post-implant seed matching and reconstruction techniques cannot be expected to work in the operating room. Many approaches have met with great difficulty due to the inability to accurately determine the imaging angles relative to the prostate for reconstruction of the multiple projection images. This not only reduces accuracy, but makes the process too lengthy to be used intraoperatively.
  • The use of implanted needles as fiducial markers for registration of biplane TRUS data has been explored, but several key problems have been left unsolved: (1) The use of implanted needles as fiducials may not be practical, because most practitioners implant only one needle at a time and they do not use stabilizing needles. (2) The nearly parallel transperineal needles as fiducials encode weakly in the apex-base direction, with little spatial resolution. (3) As the X-ray and TRUS imaging are not simultaneous, it is imperative that the fiducials do not move relative to the prostate until both imaging sessions are complete. During TRUS scanning, however, the prostate deforms, dislocates, and the needles dislocate relative to the prostate. (4) Previous attempts did not account for the need to pre-operatively calibrate the C-arm fluoroscope, including removing image distortion and some form of intra-operative tracking to know where the multiple X-ray shots are coming with respect to one another.
  • Calibration of a C-arm fluoroscope involves intrinsic and extrinsic imaging parameters. Intrinsic parameters correspond to image warping, focal length, pixel scaling, and image center. In most applications, it may be assumed that these parameters do not change during the procedure under different C-arm poses, but it has been reported in the literature that the focal length may vary up to several millimeters at different C-Arm poses, on certain units. For determining the focal length, pixel scaling, and image center comprehensive methods have been reported. Using fluoroscopic imaging for quantitative analysis also requires correction of spatial distortions caused by the image intensifier. Several methods have been explored for distortion correction, such as improved calibration methods involving a fixture attached to the detector. In summary, although C-arm calibration has been well examined, inexpensive, efficient, and robust implementations are still in paucity. Currently known dewarping and calibration kits are custom designed for each C-arm, making them hard to transfer from device to another. If multiple X-ray images are used, determining the relative pose of X-ray projections is also necessary. A related art solution involves external tracking with optical or electromagnetic trackers, recovering the X-ray projection geometry for three-dimensional tomographic reconstruction with an additional optical camera and comparing the results to tracking the C-arm with external navigation system. Other related art approaches involve image-based method for pose estimation without an external tracking device. Such methods rely on identifying features in each X-ray image of precision-machined fiducials and computing the appropriate spatial transformation between the individual X-ray images.
  • Accordingly, transrectal ultrasound guided transperineal low dose-rate brachytherapy has been emerged as one of the definitive treatments of low-risk prostate cancer. Ultrasound has been an excellent tool in guiding the implant needles with respect to prostate anatomy, yet it cannot show reliably the location of radioactive seeds after they are released in the prostate. Intraoperative C-arm fluoroscopy can show the implanted seeds, but it cannot detect prostate anatomy. Intra-operative fusion of these two complementary modalities offers significant clinical benefit by allowing for real-time optimization of the brachytherapy implant as the procedure progresses in the operating room.
  • SUMMARY OF THE INVENTION
  • Accordingly, the present invention is directed to the registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures that substantially obviates one or more of the problems due to limitations and disadvantages of the related art.
  • An advantage of the present invention is to provide improved visualization and control during radiation implant processes.
  • Another advantage of the present invention is improved localization of radiation doses in cancer treatment.
  • Another advantage of the present invention is to enable an advantageous compromise between time, dose, and accuracy during radiation dose implant surgery.
  • Another advantage of the present invention is to better enable dynamic dose calculation during radiation implant procedures, including the ability to adjust the planned implant locations to better optimize dose as the implant progresses.
  • Additional features and advantages of the invention will be set forth in the description which follows, and in part will be apparent from the description, or may be learned by practice of the invention. The objectives and other advantages of the invention will be realized and attained by the structure particularly pointed out in the written description and claims hereof as well as the appended drawings. To achieve these and other advantages and in accordance with the purpose of the present invention, as embodied and described, a system for registering ultrasound and fluoroscopy data comprises: a fluoroscope; a sheath having fiducial marks disposed on a portion of its outer surface; an ultrasound probe insertable into the sheath; a computer; and a computer readable medium encoded with a program for registering a first set of data acquired by the ultrasound probe with a second set of data acquired by the fluoroscope.
  • It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention. In the drawings:
  • FIG. 1 shows an exemplary system for registering ultrasound to fluoroscopy according to the present invention;
  • FIG. 2 shows an exemplary process for registering ultrasound and fluoroscopy according to the present invention
  • FIG. 3 is another depiction of an exemplary process for registering ultrasound and fluoroscopy according to the present invention;
  • FIG. 4 a shows an exemplary fluoroscope dewarping kit as may be used in the present invention;
  • FIG. 4 b shows an exemplary dewarping kit installed on a C-arm fluoroscope;
  • FIG. 5 shows an exemplary transrectal sheath, along with an ultrasound probe, as may be used in the present invention;
  • FIG. 6 shows an exemplary transrectal sheath mounted to a TRUS stepper base;
  • FIG. 7 is cutaway view of a transrectal sheath, a TRUS probe, acoustically coupled according to the present invention;
  • FIG. 8 shows a prostate phantom that may be used in the pre-op calibration step of the present invention; and
  • FIG. 9 is an exemplary transrectal sheath, which includes air channels and X-ray and acoustic fiducials.
  • DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS
  • FIG. 1 shows an exemplary system 100 for registering ultrasound and C-arm fluoroscopy according to the present invention. The system 100 generally comprises commercially available TRUS and C-arm fluoroscopy hardware. The system 100 includes a C-arm fluoroscope 110; related C-arm fluoroscope signal processing hardware and software 115; a C-arm position controller 150; a transrectal sheath 120; a TRUS probe 130; a TRUS stepper; a TRUS probe position encoder 135; TRUS signal processing hardware and software 145; a data system software 155; and a computer 160, which stores and executes the data system software 155. The computer 160 may comprise multiple computers, including remote databases and embedded processors. It will be apparent to one skilled in the art that the data system software 155, and the computer 160, may be provided in many different configurations.
  • FIG. 2 shows an exemplary process 200 for registering ultrasound and C-arm fluoroscopy according to the present invention. The process 200 includes a pre-operation calibration of the C-arm fluoroscope 210; an image processing pipeline 220; a registration process 230; seed matching 240; and dosimetry computation 250. Relevant aspects of the process 200 are consistent with the use of C-arm in current clinical protocols. In process 200 operating room staff may perform an implant with TRUS imaging feedback as customary and use the C-arm 110 for seed reconstruction after a batch of needles, preferably after implanting a row of needles. Such a scenario seems to be a reasonable compromise considering time, dose, and accuracy. During pre-operative calibration 210, we attach calibration fixtures to the C-arm 110, collect X-ray images, push them through a processing pipeline 220, and then calculate intrinsic parameters of the C-arm 110.
  • Intra-operatively, we acquire C-arm images of the prostate and process them through an almost identical pipeline, this time using the intrinsic C-arm parameters computed in step 210. Process 200 involves labelling X-ray fiducials, calculating the pose of the C-arm 110, and registering the X-ray to TRUS space. Seed clusters are delineated and seed matching performed in step 240 to reconstruct the position of individual seeds. In this process 200, we make extensive use of prior knowledge from 3D TRUS reconstruction and registration. The end result of this process is a cloud of seeds in TRUS space that we use in dosimetric update in step 250. The key components of the system are the image processing pipeline, calibration, registration, and seed matching software modules in the data system software 155.
  • The goal of the image processing pipeline 220 is to delineate and identify objects (seeds, needles, fiducials, etc.) in the fluoroscopic images. The image processing pipeline 220 includes a chain of operators acting on the X-ray images: (1) Image Acquisition→(2) Dewarping→(3) Noise Reduction→(4) Image Normalization→(5) Background Removal→(6) Thresholding→(7) Pre-Labeling.
  • (1) Image Acquisition from C-arm signal processor 115 is a relatively straightforward technical issue. The C-arm signal processor 115 has either digital output or produces VHS signal that can be captured through frame grabbing card on the central computer. In a preferred embodiment, a Matrox frame grabber may be used.
  • (2) Dewarping filter helps remove the spatial distortion introduced by the image intensifier of the C-arm signal processor 115. The present invention includes a dewarping fixture and corresponding computer instructions in the data system software 155, which is described later.
  • (3) Noise Reduction in the static X-ray images may be achieved most effectively by averaging multiple frames taken in the same position. While this method substantially preserves image features, it also may increase radiation dose. For example, averaging five short-burst fluoro frames may give excellent noise suppression, while exposing the patient to a dose of one radiograph.
  • (4) Image Normalization. The intensity of X-ray falls exponentially as the ray passes through the body, and the gray level of objects depends very heavily on the thickness of other objects that the ray had to penetrate on its way. Logarithmic normalization of the image may result in simple sum of the attenuations of the seeds and body. As the implanted seeds, needles, and fiducials tend to have large attenuation compared to bone and soft tissues, they may stand out brightly in logarithmic image.
  • (5) Background Removal. Important to the accuracy of our system is its ability to find the centers and centerlines of objects in the X-ray imaging. Calculating simple weighted centroid may not suffice, because non-point like regions skew the determination of the center and centerline along the gray level gradient. A preferred embodiment may use a method developed by Bzostek et al. originally developed for finding spherical beads by applying linear gradient correction followed by Gaussian filtering over the log-corrected image. A preferred embodiment may use the Bzostek-Taylor algorithm for implanted spherical markers and further expand the method for line objects and seeds. Background removal in step 220 may use mathematical morphology, introduced by Haralick et al. in a 1987 paper, later refined and reported by Tubic D, Zaccarin A, Beaulieu L, Pouliot J. Automated seed detection and three-dimensional reconstruction. II. Reconstruction of permanent prostate implants using simulated annealing. Med Phys. November 2001; 28(11): 2272-9 (hereinafter “Tubic”), which is incorporated by reference as if fully disclosed herein, for fluoroscopic imaging of prostate implants by defining a chain of four basic morphological operations: erosion, dilatation, opening, and closing.
  • (6) Thresholding may not be done statically, because the intensity of seeds and objects also depends on the thickness of bone structures. However, the optimal threshold may be found automatically by applying entropy maximization over a two-dimensional histogram that reflects both the gray levels and spatial relationship of pixels. The result of the image processing pipeline 220 includes a distortion-free binary image, in which only artificial implanted objects are present, while all details of the natural body (bone, ligaments, etc.) are removed from the picture. Subsequent labeling can be further assisted by optimizing material density of the custom-made objects (de-warp grid, calibration phantom, rectal sheath, fiducials, etc.) so that the processing pipeline can be fine-tuned to suppress or enhance these objects selectively.
  • (7) Pre-Labeling is performed to delineate and identify all objects other than seeds, then digitally remove those from the images. In a preferred embodiment, the data software 155 uses prior shape information about the objects in the field of view. Two sorts of dense objects may be expected in the field of view: implanted markers (needles, wire markers, spherical markers) and brachytherapy seeds. Needles and wire markers typically appear as thin lines that are typically well segmentable by Hough transform. At any given time, only a very limited number of marker objects are generally present in an X-ray field. Knowing the shape, orientation, and estimated relative positions of these objects; the data system software 155 may label them automatically, or with minimal input from the operator, in the worst case. If they are labeled once, the data system software 155 may remember where they are supposed to show up the next time and how they actually look like in the images. After a marker object is positively identified, the data system software 155 calculate its 3D locations for registration purposes and then digitally remove its silhouettes from the X-ray images. This process may be repeated until only seeds are left in the images that then undergo a sophisticated pattern recognition process described below under “Seed Matching”. It should be noted that some seeds may have been obscured by marker objects and thus inadvertently removed from the images. That is why it is so important to place needles and line markers where they are the least likely to obscure seeds.
  • Calibration of the C-arm 110 in step 210 should be performed pre-operatively, before the patient is brought into the room. Commercially available C-arms 110 generally apply electronic image intensifier, in which “parameter shift” may occur unexpectedly. Therefore it is recommend that calibration step 210 be performed before each procedure, even if the same C-arm 110 is being used. Exemplary process 210 repeats a limited set of C-arm poses under the assumption that in a given pose the intrinsic parameters do not change during the procedure, so the dewarping grid may be removed during the implant procedure. During calibration step 210, a dewarping grid is placed on the detector and the C-arm signal processor 115 process the images in these poses, in a transverse and sagittal sweep planes at approximately +30°, 0°, −30° poses. Next, the calibration step 210 uses an image processing pipeline substantially similar to that described for step 220, only without using the dewarping filter that is computed during calibration step 210. In step 210, the system software 155 assigns labels to the beads of the dewarping grid automatically and determines the dewarping filter. Next, a calibration object may be placed in the field and the C-arm 110 is driven through the same poses as before. This time, however, the system software 155 processes the images through the complete pipeline 220, now including dewarping. The data system software 155 labels the calibration fixture automatically and then calculates the intrinsic C-arm 110 parameters using techniques like those described in Yao J, Taylor R H, Goldberg R P, Kumar R, Bzostek A, Van Vorhis R, Kazanzides P, Gueziec A. A C-arm fluoroscopy-guided progressive cut refinement strategy using a surgical robot. Comput Aided Surg. 2000; 5(6): 373-90, which is incorporated by reference as if fully disclosed herein.
  • FIG. 4 a dewarping grid structure 400 that may universally fit C-arms 110 of different detector size. An adjustable band clamp 410 goes around the C-arm 110, so that the plate 420 hooks into blocks positioned around the C-arm 110, as shown in FIG. 4 b. The plate 420 is firmly attached to image intensifier and substantially does not move during the calibration process 210. This plate 420 may be easy to install and simple to use, partly because our dewarping process does not require that the centers of the dewarping plate 420 and the intensifier be aligned. The radio-opaque beads 430 may be arranged in triangular pattern. The dewarping algorithm implemented by data system software 155 includes three basic steps: (1) Establish a correlation between points in the image and points in the known bead pattern 430 by using a fast crawling method that can circumvent problems caused by missing beads 430 in the image. (2) Determine the rigid body transformation and scale factor that will align the images, by using a conventional singular value decomposition method. (3) Align the images and perform least-squares polynomial fit between the point sets. The data system software 155 may use nth-order Berstein polynomials to describe the patterns in the dewarping grid and then achieve deformable matching between warped and warp-free features.
  • A preferred result of registration step 230 is a 6 degree of freedom (DOF) transformation between TRUS and X-ray space. In step 230, a set of fiducial objects are generally needed that can be seen both in TRUS and X-ray and are substantially stationary with respect to the prostate during the matching process.
  • A preferred embodiment of the transrectal sheath 120 includes a 6-DOF external fiducial system 510 mounted on the outside of the sheath 120, as shown in FIG. 5, that is mounted on the base of the TRUS stepper of the implant system. Inside the sheath 120 the TRUS probe 130 can move freely without mechanical interaction with the rectum, thus the location and shape of the prostate does not change due to scanning motion of the TRUS probe 130. The sheath 120 may be made of thin plastic, mylar, polypropylene, polyethylene or similar material and fits tightly round the TRUS probe 130. As shown in FIG. 7, gel material 710 substantially provides ultrasonic coupling between the sheath 120 and the rectum wall. The presence of sheath 120 causes some degradation of the acoustic signal, yet minimizing the thickness of the sheath and maintaining even distribution of the coupling gel mitigates this effect. As shown in FIG. 9, multiple air channels 910 substantially provide equalized air pressure in the sheath 120 during scanning motion of the TRUS probe 130.
  • The fiducial pattern 510 on the outer surface of the sheath 120 may contains a suitable combination of straight lines, helices, and ellipses formed by 1 mm thick Tantalum wire, as shown in FIG. 9. Other materials with good visibility under X-ray illumination, such that it makes a good X-ray contrast material, may be used in place of Tantalum. In order to determine the location of fiducials 510 in C-arm 110 space, the relative pose of the X-ray images must be known. The mechanical encoders supplied on the C-arm 110 are not always reliable. The fiducial system 510, which is preferably precision-machined, that is rigidly fixed in the field of X-ray enables the determination of the relative pose of the multiple X-ray images.
  • In summary, the fiducials on the sheath provide common coordinate system for the individual X-ray shots. At the same time, the sheath is rigidly mounted on the base of the stepper and the motion of the TRUS probe is encoded relative to the stepper base, so there is a known spatial relationship between the TRUS probe and the fiducials at any time. Therefore, the fiducials on the sheath provide a common reference coordinate system for both X-ray and the TRUS images. This frame of reference is considered to be sufficiently stationary with respect to the prostate during a registration session typically involving the acquisition of multiple X-ray shots and a TRUS volume. The fiducial lines can be auto-segmented, as shown in FIG. 9. Altogether, using rigidly mounted fiducials for pose encoding appears to be inherently reliable, robust, simple, and inexpensive.
  • In seed matching step 240, reconstructing implanted seeds is complicated by a large number of seeds (sometimes as many as 150) are confined in a small volume (as small as a walnut), overlapping one another in an apparent disorder. The X-ray images may also be very noisy, especially in the lateral direction where the pelvic and femur bones create a strong heterogeneous shadow over the seeds. Preferably, no more than three X-ray images are taken in one sweep plane.
  • The data system software 155 issues instructions to implement a technique that draws heavily on prior information from the TRUS-based implant plan and from earlier seed matching and reconstruction sessions. Having established 3D registration between X-ray and TRUS, the data system software 155 transfers spatially registered information from the TRUS space to X-ray space to assist seed segmentation and matching, by recognizing previously reconstructed seeds.
  • Method 1: Certain commercially available TRUS-based treatment planning systems, such as Interplant® made by CMS Burdette Medical Systems of Urbana-Champaign, Ill., have the capability of spatially locating an inserted needle. Although there is some tissue deformation, a good estimation is provided regarding where the seeds will end up in the prostate. By projecting the location of the needle forward onto the 2D X-ray pictures, a reasonably confined area is defined where these new seeds are supposed to show up in X-ray. Consequently, the data system software 155 can label clusters of previously implanted old seeds that could not have come from the newly implanted needles the data system software 155 updates their 3D locations and then excludes those from the seed matching process. When a needle is retracted from the prostate, it leaves the seeds behind along a slightly bent trajectory. Based on observations of actual implants, the bending and perturbation of seeds from the ideal curvilinear trajectory may be statistically modeled by the the data system software 155. Using this estimate in confining the newly implanted seeds can improve the efficacy of elimination of false candidates.
  • Method 2: It may be assumed that seeds implanted by the last fluoroscopy session have not migrated substantially within the prostate since then. By projecting the location of these previously located seeds forward onto the 2D X-ray pictures, the data system software 155 can obtain a reasonably confined area, where they are supposed to show up in the new X-ray images, then update their 3D locations and then exclude those from the seed matching process, as described above in Method 1.
  • Method 3: If the prostate did not move between imaging sessions, then subtracting the previous image from the new image taken in the same C-arm 110 pose would show the newly derived seed locations and nothing else. In reality, the prostate moves somewhat between imaging sessions and the C-arm 110 pose is generally not precisely repeatable, but still a large portion of previously implanted seeds can be excluded from the matching problem on this basis. The data system software 155 can apply the images to the processing pipeline 220 and perform deformable mapping using information that is mutual between the images.
  • After seed matching 240 is complete, the data system software 155 may transform the location of seeds to TRUS space, their three-dimensional dose cloud may be computed and analyzed by the Interplant® system. The number of seeds found is likely to be different from the actual number of implanted seeds, so the activity of seeds will be adjusted so that the analysis shows the distribution of truly implanted dose. Finally, the remainder of the treatment plan is updated, in order to maintain to maintain optimal dose coverage of the prostate. For visual evaluation of the registration, fiducial objects and other reconstructed structures may be projected back to ultrasound space and superimposed in the 3D view provided by the Interplant® system. Although our present goal is to achieve intra-operative seed matching and registration, this method could be extended to post-operative care. In this approach, the last available implant plan would be projected onto post-operative images and the individual seeds would be matched. The data system software 155 may repeat imaging sessions regularly, over an expanded period of time. As a result, it is possible to track the path of each individual seed, which could provide an insight to how the prostate changes shape, volume, and pose over time. Having collected data from a sufficiently large number of patients, the data system software 155 may predict statistical motion of seeds with respect to the relevant anatomy. This may prove to be helpful in understanding the process of post-operative edema, a crucially important issue in prostate brachytherapy. The efficacy of projecting prior information to new X-ray images can be greatly facilitated by synchronizing the insertion sequence with the X-ray poses, so that the newly inserted seeds are the least likely obscure each other. This condition can be easily met if the implant is executed by rows of needles and we perform C-arm imaging after every row.
  • It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.

Claims (10)

1. A system for registering ultrasound and fluoroscopy data comprising:
a fluoroscope;
a sheath having fiducial marks disposed on a portion of its outer surface;
an ultrasound probe insertable into the sheath;
a computer; and
a computer readable medium encoded with a program for registering a first set of data acquired by the ultrasound probe with a second set of data acquired by the fluoroscope.
2. The system of claim 1, wherein the ultrasonic probe includes a stepper.
3. The system of claim 1, wherein the fiducial marks comprise Tantalum.
4. The system of claim 1, wherein the fiducial marks comprise a wire including a thickness of substantially 1 mm.
5. The system of claim 1, wherein the fluoroscope is a C-arm fluoroscope comprising an image intensifier.
6. The system of claim 1, wherein the sheath comprises a thin plastic.
7. The system of claim 1, further comprising a gel material disposed between the sheath and the ultrasound probe.
8. A method for registering ultrasound to fluoroscopy comprising the steps of:
calibrating a fluoroscope;
acquiring ultrasound data using an ultrasound probe;
acquiring fluoroscopy data from the fluoroscope;
registering the ultrasound data to the fluoroscopy data to create a set of registered data;
identifying at least one radiation seed in the registered data; and
computing a radiation dose corresponding to the at least one radiation seed.
9. The method of claim 8, wherein the step of calibrating the fluoroscope comprises the steps of:
attaching a dewarping plate having a bead pattern to the fluoroscope;
acquiring calibration data from the fluoroscope;
correlating the calibration data to the bead pattern;
determining a transformation corresponding to the correlating; and
aligning the calibration data to the bead pattern.
10. The method of claim 8, wherein the step of acquiring fluoroscopy data comprises the steps of:
acquiring an image from the fluoroscope;
dewarping the image;
reducing noise in the image;
normalizing the image;
removing background from the image;
thresholding the image; and
pre-labeling the image.
US10/895,398 2003-07-21 2004-07-21 Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures Abandoned US20050171428A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/895,398 US20050171428A1 (en) 2003-07-21 2004-07-21 Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures
US11/998,452 US8948471B2 (en) 2003-07-21 2007-11-30 Image registration of multiple medical imaging modalities using a multiple degree-of-freedom-encoded fiducial device
US14/613,331 US20150216621A1 (en) 2003-07-21 2015-02-03 Image registration of multiple medical imaging modalities using a multiple degree-of-freedom-encoded fiducial device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US48896503P 2003-07-21 2003-07-21
US10/895,398 US20050171428A1 (en) 2003-07-21 2004-07-21 Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/998,452 Continuation US8948471B2 (en) 2003-07-21 2007-11-30 Image registration of multiple medical imaging modalities using a multiple degree-of-freedom-encoded fiducial device

Publications (1)

Publication Number Publication Date
US20050171428A1 true US20050171428A1 (en) 2005-08-04

Family

ID=34102810

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/895,398 Abandoned US20050171428A1 (en) 2003-07-21 2004-07-21 Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures
US11/998,452 Active 2029-11-07 US8948471B2 (en) 2003-07-21 2007-11-30 Image registration of multiple medical imaging modalities using a multiple degree-of-freedom-encoded fiducial device
US14/613,331 Abandoned US20150216621A1 (en) 2003-07-21 2015-02-03 Image registration of multiple medical imaging modalities using a multiple degree-of-freedom-encoded fiducial device

Family Applications After (2)

Application Number Title Priority Date Filing Date
US11/998,452 Active 2029-11-07 US8948471B2 (en) 2003-07-21 2007-11-30 Image registration of multiple medical imaging modalities using a multiple degree-of-freedom-encoded fiducial device
US14/613,331 Abandoned US20150216621A1 (en) 2003-07-21 2015-02-03 Image registration of multiple medical imaging modalities using a multiple degree-of-freedom-encoded fiducial device

Country Status (2)

Country Link
US (3) US20050171428A1 (en)
WO (1) WO2005009220A2 (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050203420A1 (en) * 2003-12-08 2005-09-15 Martin Kleen Method for merging medical images
US20070016029A1 (en) * 2005-07-15 2007-01-18 General Electric Company Physiology workstation with real-time fluoroscopy and ultrasound imaging
US20070016028A1 (en) * 2005-07-15 2007-01-18 General Electric Company Integrated physiology and imaging workstation
US20070043597A1 (en) * 2005-08-16 2007-02-22 General Electric Company Physiology network and workstation for use therewith
US20070270689A1 (en) * 2006-05-16 2007-11-22 Mark Lothert Respiratory gated image fusion of computed tomography 3D images and live fluoroscopy images
US20080287783A1 (en) * 2007-05-16 2008-11-20 General Electric Company System and method of tracking delivery of an imaging probe
US20080287790A1 (en) * 2007-05-16 2008-11-20 General Electric Company Imaging system and method of delivery of an instrument to an imaged subject
US20080287777A1 (en) * 2007-05-16 2008-11-20 General Electric Company System and method to register a tracking system with an intracardiac echocardiography (ice) imaging system
US20080283771A1 (en) * 2007-05-17 2008-11-20 General Electric Company System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
US20080287803A1 (en) * 2007-05-16 2008-11-20 General Electric Company Intracardiac echocardiography image reconstruction in combination with position tracking system
US20100063400A1 (en) * 2008-09-05 2010-03-11 Anne Lindsay Hall Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging
US20100198063A1 (en) * 2007-05-19 2010-08-05 The Regents Of The University Of California Multi-Modality Phantoms and Methods for Co-registration of Dual PET-Transrectal Ultrasound Prostate Imaging
WO2013016286A2 (en) * 2011-07-23 2013-01-31 Broncus Medical Inc. System and method for automatically determining calibration parameters of a fluoroscope
US20130044206A1 (en) * 2011-08-19 2013-02-21 Cognex Corporation System and Method for Aligning a Wafer for Fabrication
US20140276019A1 (en) * 2013-03-14 2014-09-18 Stanislaw Majewski PET Imaging With Partially Radiation-Transparent Probes-Inserts
US9320517B2 (en) 2012-01-12 2016-04-26 Surgical Radiation Products, Llc Targeting implant for external beam radiation
WO2016064921A1 (en) * 2014-10-20 2016-04-28 MedSight Tech Corp. Automatic detection of regions of interest in 3d space
US20170119339A1 (en) * 2012-06-21 2017-05-04 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US9943706B2 (en) 2012-01-12 2018-04-17 Surgical Radiation Products, Llc Targeting implant for external beam radiation
US10568560B2 (en) * 2013-03-14 2020-02-25 West Virginia University Endorectal prostate probe with combined PET and US modalities
US11331057B2 (en) * 2020-08-17 2022-05-17 C-Thru C-arm cap
US11373361B2 (en) 2012-11-06 2022-06-28 Koninklijke Philips N.V. Enhancing ultrasound images
US11443433B2 (en) * 2018-02-10 2022-09-13 The Trustees Of The University Of Pennsylvania Quantification and staging of body-wide tissue composition and of abnormal states on medical images via automatic anatomy recognition

Families Citing this family (84)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715602B2 (en) * 2002-01-18 2010-05-11 Orthosoft Inc. Method and apparatus for reconstructing bone surfaces during surgery
US9526587B2 (en) * 2008-12-31 2016-12-27 Intuitive Surgical Operations, Inc. Fiducial marker design and detection for locating surgical instrument in images
US9867669B2 (en) 2008-12-31 2018-01-16 Intuitive Surgical Operations, Inc. Configuration marker design and detection for instrument tracking
US7676072B2 (en) * 2005-06-15 2010-03-09 Kabushiki Kaisha Toshiba Image processing apparatus and image processing method
US8057408B2 (en) 2005-09-22 2011-11-15 The Regents Of The University Of Michigan Pulsed cavitational ultrasound therapy
US10219815B2 (en) 2005-09-22 2019-03-05 The Regents Of The University Of Michigan Histotripsy for thrombolysis
DE102006014746A1 (en) 2006-03-30 2007-10-04 Mahle International Gmbh Sealing parts connection`s function estimating method for e.g. piston, involves indicating function-disabled connection by connection point or number, when threshold value exceeds or falls below amplitude value of simple corrected function
CN101443816B (en) * 2006-05-11 2016-01-06 皇家飞利浦电子股份有限公司 For the deformable registration of images of image guided radiation therapy
US8280483B2 (en) * 2006-06-14 2012-10-02 Koninklijke Philips Electronics N.V. Multi-modality medical image viewing
EP1935342B1 (en) * 2006-12-19 2015-02-25 Brainlab AG Artefact elimination for medical technology pelvic registration with tracked pelvic support known to the system
AU2010284313B2 (en) 2009-08-17 2016-01-28 Histosonics, Inc. Disposable acoustic coupling medium container
AU2010289769B2 (en) * 2009-08-26 2016-06-30 Histosonics, Inc. Micromanipulator control arm for therapeutic and imaging ultrasound transducers
US9901753B2 (en) 2009-08-26 2018-02-27 The Regents Of The University Of Michigan Ultrasound lithotripsy and histotripsy for using controlled bubble cloud cavitation in fractionating urinary stones
US8539813B2 (en) * 2009-09-22 2013-09-24 The Regents Of The University Of Michigan Gel phantoms for testing cavitational ultrasound (histotripsy) transducers
US20120230574A1 (en) * 2009-09-29 2012-09-13 University Of Wollongong Imaging method and system
US20110081061A1 (en) * 2009-10-02 2011-04-07 Harris Corporation Medical image analysis system for anatomical images subject to deformation and related methods
US20110081055A1 (en) * 2009-10-02 2011-04-07 Harris Corporation, Corporation Of The State Of Delaware Medical image analysis system using n-way belief propagation for anatomical images subject to deformation and related methods
US20110081054A1 (en) * 2009-10-02 2011-04-07 Harris Corporation Medical image analysis system for displaying anatomical images subject to deformation and related methods
US8615127B2 (en) * 2010-01-15 2013-12-24 Vanderbilt University System and method for point-based rigid registration with anisotropic weighting
WO2011103590A2 (en) * 2010-02-22 2011-08-25 The Johns Hopkins University Method and system for detecting retained foreign bodies
EP2559256A4 (en) * 2010-04-14 2015-08-26 Ericsson Telefon Ab L M Methods and arrangements for 3d scene representation
US8738115B2 (en) * 2010-05-11 2014-05-27 Siemens Aktiengesellschaft Method and apparatus for selective internal radiation therapy planning and implementation
CA2743937A1 (en) * 2010-06-22 2011-12-22 Queen's University At Kingston C-arm pose estimation using intensity-based registration of imaging modalities
US8903144B2 (en) * 2010-12-01 2014-12-02 Olympus Corporation Endoscope apparatus and method of measuring object
JP5950619B2 (en) * 2011-04-06 2016-07-13 キヤノン株式会社 Information processing device
CN102846337B (en) * 2011-06-29 2015-09-02 清华大学 The localization method of 3 D ultrasound system and impact point thereof and device
WO2013020143A1 (en) 2011-08-04 2013-02-07 University Of Southern California Image-based crack quantification
US9144694B2 (en) 2011-08-10 2015-09-29 The Regents Of The University Of Michigan Lesion generation through bone using histotripsy therapy without aberration correction
US9482685B1 (en) * 2011-09-13 2016-11-01 BAE Systems Information and Electronic Systems Integreation Inc. On-axis mounting of an inertial measurement unit (IMU) within an optical system
US9554763B2 (en) 2011-10-28 2017-01-31 Navigate Surgical Technologies, Inc. Soft body automatic registration and surgical monitoring system
US9585721B2 (en) 2011-10-28 2017-03-07 Navigate Surgical Technologies, Inc. System and method for real time tracking and modeling of surgical site
US9566123B2 (en) 2011-10-28 2017-02-14 Navigate Surgical Technologies, Inc. Surgical location monitoring system and method
US8938282B2 (en) 2011-10-28 2015-01-20 Navigate Surgical Technologies, Inc. Surgical location monitoring system and method with automatic registration
US20140228675A1 (en) * 2011-10-28 2014-08-14 Navigate Surgical Technologies, Inc. Surgical location monitoring system and method
US11304777B2 (en) 2011-10-28 2022-04-19 Navigate Surgical Technologies, Inc System and method for determining the three-dimensional location and orientation of identification markers
US9198737B2 (en) 2012-11-08 2015-12-01 Navigate Surgical Technologies, Inc. System and method for determining the three-dimensional location and orientation of identification markers
WO2013090830A1 (en) * 2011-12-16 2013-06-20 University Of Southern California Autonomous pavement condition assessment
US9049783B2 (en) 2012-04-13 2015-06-02 Histosonics, Inc. Systems and methods for obtaining large creepage isolation on printed circuit boards
WO2013166019A1 (en) 2012-04-30 2013-11-07 The Regents Of The University Of Michigan Ultrasound transducer manufacturing using rapid-prototyping method
US9498182B2 (en) * 2012-05-22 2016-11-22 Covidien Lp Systems and methods for planning and navigation
US9439622B2 (en) * 2012-05-22 2016-09-13 Covidien Lp Surgical navigation system
US8750568B2 (en) 2012-05-22 2014-06-10 Covidien Lp System and method for conformal ablation planning
US9439627B2 (en) * 2012-05-22 2016-09-13 Covidien Lp Planning system and navigation system for an ablation procedure
US9439623B2 (en) * 2012-05-22 2016-09-13 Covidien Lp Surgical planning system and navigation system
KR101932721B1 (en) * 2012-09-07 2018-12-26 삼성전자주식회사 Method and Appartus of maching medical images
US20140100459A1 (en) 2012-10-05 2014-04-10 The Regents Of The University Of Michigan Bubble-induced color doppler feedback during histotripsy
US8843627B1 (en) * 2012-10-19 2014-09-23 Narus, Inc. System and method for extracting signatures from seeded flow groups to classify network traffic
US9489738B2 (en) * 2013-04-26 2016-11-08 Navigate Surgical Technologies, Inc. System and method for tracking non-visible structure of a body with multi-element fiducial
US9165362B2 (en) 2013-05-07 2015-10-20 The Johns Hopkins University 3D-2D image registration for medical imaging
DE102013209158A1 (en) * 2013-05-16 2014-11-20 Fiagon Gmbh Method for integrating data obtained by means of an imaging method
US10293187B2 (en) 2013-07-03 2019-05-21 Histosonics, Inc. Histotripsy excitation sequences optimized for bubble cloud formation using shock scattering
US11432900B2 (en) 2013-07-03 2022-09-06 Histosonics, Inc. Articulating arm limiter for cavitational ultrasound therapy system
CA2919165A1 (en) 2013-08-13 2015-02-19 Navigate Surgical Technologies, Inc. Method for determining the location and orientation of a fiducial reference
CA2919170A1 (en) 2013-08-13 2015-02-19 Navigate Surgical Technologies, Inc. System and method for focusing imaging devices
WO2015027164A1 (en) 2013-08-22 2015-02-26 The Regents Of The University Of Michigan Histotripsy using very short ultrasound pulses
US20160267659A1 (en) * 2013-10-25 2016-09-15 Brainlab Ag Method and device for co-registering a medical 3d image and a spatial reference
DE102013222230A1 (en) 2013-10-31 2015-04-30 Fiagon Gmbh Surgical instrument
US9877697B2 (en) 2014-04-30 2018-01-30 Emory University Systems, methods and computer readable storage media storing instructions for generating planning images based on HDR applicators
RU2683995C2 (en) * 2014-05-09 2019-04-03 Конинклейке Филипс Н.В. Therapy system containing mri module and means for determining position of rf coil
EP3286730A2 (en) * 2015-04-21 2018-02-28 Joseph Paul Robinson Culture detection and measurement over time
US9880544B2 (en) * 2015-05-01 2018-01-30 The Boeing Company Locating a workpiece using a measurement of a workpiece feature
CN108348772B (en) 2015-06-24 2020-03-03 美国密歇根州立大学试剂中心 Histotripsy therapy system and method for treating brain tissue
WO2017000988A1 (en) * 2015-06-30 2017-01-05 Brainlab Ag Medical image fusion with reduced search space
DE102015219622A1 (en) * 2015-10-09 2017-04-13 Siemens Healthcare Gmbh Reconstruct an image using one or more imaging modalities
WO2017144934A1 (en) 2016-02-26 2017-08-31 Trophy Guided surgery apparatus and method
US10716631B2 (en) 2016-03-13 2020-07-21 Vuze Medical Ltd. Apparatus and methods for use with skeletal procedures
US9931098B2 (en) * 2016-04-14 2018-04-03 Carestream Health, Inc. Post acquisition calibration
US11185305B2 (en) * 2016-06-30 2021-11-30 Koninklijke Philips N.V. Intertial device tracking system and method of operation thereof
US10492755B2 (en) * 2016-07-13 2019-12-03 Carestream Health, Inc. Calibration phantom comprising a reflectance calibration target and a plurality of radio-opaque markers
US9934592B1 (en) * 2016-11-15 2018-04-03 Carl Zeiss Industrielle Messtechnik Gmbh Method and system for determining a 6-DOF-pose of an object in space
US10922836B2 (en) 2016-11-15 2021-02-16 Carl Zeiss Industrielle Messtechnik Gmbh Method and system for determining a 3D position of an object in space
WO2019012520A1 (en) 2017-07-08 2019-01-17 Vuze Medical Ltd. Apparatus and methods for use with image-guided skeletal procedures
EP3434192A1 (en) 2017-07-26 2019-01-30 Koninklijke Philips N.V. Registration of x-ray and ultrasound images
CN107432750B (en) * 2017-07-31 2020-11-10 上海联影医疗科技股份有限公司 Method and system for calibrating an imaging system
DE102017221720B3 (en) * 2017-12-01 2019-02-07 Siemens Healthcare Gmbh Providing a patient model of a patient
US11707329B2 (en) 2018-08-10 2023-07-25 Covidien Lp Systems and methods for ablation visualization
US11813484B2 (en) 2018-11-28 2023-11-14 Histosonics, Inc. Histotripsy systems and methods
EP3719749A1 (en) 2019-04-03 2020-10-07 Fiagon AG Medical Technologies Registration method and setup
US20220296193A1 (en) * 2019-09-05 2022-09-22 The Johns Hopkins Uniersity Fast and automatic pose estimation using intraoperatively located fiducials and single-view fluoroscopy
AU2021213168A1 (en) 2020-01-28 2022-09-01 The Regents Of The University Of Michigan Systems and methods for histotripsy immunosensitization
US20230410308A1 (en) * 2021-01-12 2023-12-21 Brainlab Ag Detection of foreign objects in intraoperative images
EP4062853A1 (en) * 2021-03-23 2022-09-28 MinMaxMedical Method for locating object(s) in particular for optimal lower limb surgery planning using x-ray images
US11918304B2 (en) 2021-12-20 2024-03-05 Globus Medical, Inc Flat panel registration fixture and method of using same
KR102611061B1 (en) * 2022-05-02 2023-12-07 재단법인 아산사회복지재단 Method and apparatus for calibration of blood vessel image

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273858B1 (en) * 1998-02-10 2001-08-14 Emory University Systems and methods for providing radiation therapy and catheter guides
US6468265B1 (en) * 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US20030065260A1 (en) * 2000-04-28 2003-04-03 Alpha Intervention Technology, Inc. Identification and quantification of needle and seed displacement departures from treatment plan
US20040049109A1 (en) * 2001-06-07 2004-03-11 Thornton Kenneth B. Seed localization system for use in an ultrasound system and method of using the same
US6711429B1 (en) * 1998-09-24 2004-03-23 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
US20040092786A1 (en) * 2002-11-08 2004-05-13 Memorial Sloan-Kettering Cancer Center Intraoperative dynamic dosimetry for prostate implants
US6775399B1 (en) * 1999-11-17 2004-08-10 Analogic Corporation ROI segmentation image processing system
US7065393B2 (en) * 2002-07-11 2006-06-20 Cedara Software Corp. Apparatus, system and method of calibrating medical imaging systems
US20060241368A1 (en) * 2002-04-22 2006-10-26 Gabor Fichtinger Apparatus for insertion of a medical device during a medical imaging process
US7221733B1 (en) * 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500906A (en) * 1994-01-14 1996-03-19 Cognex Corporation Locating curvilinear objects using feathered fiducials
US6333971B2 (en) * 1995-06-07 2001-12-25 George S. Allen Fiducial marker
US6560354B1 (en) * 1999-02-16 2003-05-06 University Of Rochester Apparatus and method for registration of images to physical space using a weighted combination of points and surfaces
US6314465B1 (en) * 1999-03-11 2001-11-06 Lucent Technologies Inc. Method and apparatus for load sharing on a wide area network
US6775404B1 (en) * 1999-03-18 2004-08-10 University Of Washington Apparatus and method for interactive 3D registration of ultrasound and magnetic resonance images based on a magnetic position sensor
US7689014B2 (en) * 2000-01-18 2010-03-30 Z-Kat Inc Apparatus and method for measuring anatomical objects using coordinated fluoroscopy
JP4393016B2 (en) * 2000-06-30 2010-01-06 株式会社日立メディコ Diagnostic imaging support device
US6714810B2 (en) * 2000-09-07 2004-03-30 Cbyon, Inc. Fluoroscopic registration system and method
US7225012B1 (en) * 2000-09-18 2007-05-29 The Johns Hopkins University Methods and systems for image-guided surgical interventions
US6785571B2 (en) * 2001-03-30 2004-08-31 Neil David Glossop Device and method for registering a position sensor in an anatomical body
US7231063B2 (en) * 2002-08-09 2007-06-12 Intersense, Inc. Fiducial detection system
US7331986B2 (en) * 2002-10-09 2008-02-19 Boston Scientific Scimed, Inc. Intraluminal medical device having improved visibility
US7505809B2 (en) * 2003-01-13 2009-03-17 Mediguide Ltd. Method and system for registering a first image with a second image relative to the body of a patient
CA2526368A1 (en) * 2003-05-20 2004-12-02 Fluidigm Corporation Method and system for microfluidic device and imaging thereof
CA2532530A1 (en) * 2003-07-28 2005-02-10 Fluidigm Corporation Image processing method and system for microfluidic devices
US7864997B2 (en) * 2006-04-28 2011-01-04 Pie Medical Imaging B.V. Method, apparatus and computer program product for automatic segmenting of cardiac chambers
US7848592B2 (en) * 2006-07-31 2010-12-07 Carestream Health, Inc. Image fusion for radiation therapy

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273858B1 (en) * 1998-02-10 2001-08-14 Emory University Systems and methods for providing radiation therapy and catheter guides
US6711429B1 (en) * 1998-09-24 2004-03-23 Super Dimension Ltd. System and method for determining the location of a catheter during an intra-body medical procedure
US6468265B1 (en) * 1998-11-20 2002-10-22 Intuitive Surgical, Inc. Performing cardiac surgery without cardioplegia
US6775399B1 (en) * 1999-11-17 2004-08-10 Analogic Corporation ROI segmentation image processing system
US20030065260A1 (en) * 2000-04-28 2003-04-03 Alpha Intervention Technology, Inc. Identification and quantification of needle and seed displacement departures from treatment plan
US20040049109A1 (en) * 2001-06-07 2004-03-11 Thornton Kenneth B. Seed localization system for use in an ultrasound system and method of using the same
US7221733B1 (en) * 2002-01-02 2007-05-22 Varian Medical Systems Technologies, Inc. Method and apparatus for irradiating a target
US20060241368A1 (en) * 2002-04-22 2006-10-26 Gabor Fichtinger Apparatus for insertion of a medical device during a medical imaging process
US7065393B2 (en) * 2002-07-11 2006-06-20 Cedara Software Corp. Apparatus, system and method of calibrating medical imaging systems
US20040092786A1 (en) * 2002-11-08 2004-05-13 Memorial Sloan-Kettering Cancer Center Intraoperative dynamic dosimetry for prostate implants

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8538504B2 (en) * 2003-12-08 2013-09-17 Martin Kleen Method for merging medical images
US20050203420A1 (en) * 2003-12-08 2005-09-15 Martin Kleen Method for merging medical images
US20070016029A1 (en) * 2005-07-15 2007-01-18 General Electric Company Physiology workstation with real-time fluoroscopy and ultrasound imaging
US20070016028A1 (en) * 2005-07-15 2007-01-18 General Electric Company Integrated physiology and imaging workstation
US20070016034A1 (en) * 2005-07-15 2007-01-18 Brenda Donaldson Integrated physiology and imaging workstation
US7572223B2 (en) 2005-07-15 2009-08-11 General Electric Company Integrated physiology and imaging workstation
US7569015B2 (en) * 2005-07-15 2009-08-04 General Electric Company Integrated physiology and imaging workstation
US20070043597A1 (en) * 2005-08-16 2007-02-22 General Electric Company Physiology network and workstation for use therewith
US7467007B2 (en) 2006-05-16 2008-12-16 Siemens Medical Solutions Usa, Inc. Respiratory gated image fusion of computed tomography 3D images and live fluoroscopy images
US20070270689A1 (en) * 2006-05-16 2007-11-22 Mark Lothert Respiratory gated image fusion of computed tomography 3D images and live fluoroscopy images
US20080287803A1 (en) * 2007-05-16 2008-11-20 General Electric Company Intracardiac echocardiography image reconstruction in combination with position tracking system
US8428690B2 (en) 2007-05-16 2013-04-23 General Electric Company Intracardiac echocardiography image reconstruction in combination with position tracking system
US20080287777A1 (en) * 2007-05-16 2008-11-20 General Electric Company System and method to register a tracking system with an intracardiac echocardiography (ice) imaging system
US20080287790A1 (en) * 2007-05-16 2008-11-20 General Electric Company Imaging system and method of delivery of an instrument to an imaged subject
US8989842B2 (en) 2007-05-16 2015-03-24 General Electric Company System and method to register a tracking system with intracardiac echocardiography (ICE) imaging system
US20080287783A1 (en) * 2007-05-16 2008-11-20 General Electric Company System and method of tracking delivery of an imaging probe
US8527032B2 (en) 2007-05-16 2013-09-03 General Electric Company Imaging system and method of delivery of an instrument to an imaged subject
US20080283771A1 (en) * 2007-05-17 2008-11-20 General Electric Company System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
US8364242B2 (en) 2007-05-17 2013-01-29 General Electric Company System and method of combining ultrasound image acquisition with fluoroscopic image acquisition
US20100198063A1 (en) * 2007-05-19 2010-08-05 The Regents Of The University Of California Multi-Modality Phantoms and Methods for Co-registration of Dual PET-Transrectal Ultrasound Prostate Imaging
US9468413B2 (en) 2008-09-05 2016-10-18 General Electric Company Method and apparatus for catheter guidance using a combination of ultrasound and X-ray imaging
US20100063400A1 (en) * 2008-09-05 2010-03-11 Anne Lindsay Hall Method and apparatus for catheter guidance using a combination of ultrasound and x-ray imaging
WO2013016286A2 (en) * 2011-07-23 2013-01-31 Broncus Medical Inc. System and method for automatically determining calibration parameters of a fluoroscope
WO2013016286A3 (en) * 2011-07-23 2013-03-21 Broncus Medical Inc. System and method for automatically determining calibration parameters of a fluoroscope
US9693748B2 (en) 2011-07-23 2017-07-04 Broncus Medical Inc. System and method for automatically determining calibration parameters of a fluoroscope
US20130044206A1 (en) * 2011-08-19 2013-02-21 Cognex Corporation System and Method for Aligning a Wafer for Fabrication
US9735036B2 (en) * 2011-08-19 2017-08-15 Cognex Corporation System and method for aligning a wafer for fabrication
US9320517B2 (en) 2012-01-12 2016-04-26 Surgical Radiation Products, Llc Targeting implant for external beam radiation
US9943706B2 (en) 2012-01-12 2018-04-17 Surgical Radiation Products, Llc Targeting implant for external beam radiation
US20170119339A1 (en) * 2012-06-21 2017-05-04 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US10842461B2 (en) * 2012-06-21 2020-11-24 Globus Medical, Inc. Systems and methods of checking registrations for surgical systems
US11373361B2 (en) 2012-11-06 2022-06-28 Koninklijke Philips N.V. Enhancing ultrasound images
US20140276019A1 (en) * 2013-03-14 2014-09-18 Stanislaw Majewski PET Imaging With Partially Radiation-Transparent Probes-Inserts
US10568560B2 (en) * 2013-03-14 2020-02-25 West Virginia University Endorectal prostate probe with combined PET and US modalities
WO2016064921A1 (en) * 2014-10-20 2016-04-28 MedSight Tech Corp. Automatic detection of regions of interest in 3d space
US11443433B2 (en) * 2018-02-10 2022-09-13 The Trustees Of The University Of Pennsylvania Quantification and staging of body-wide tissue composition and of abnormal states on medical images via automatic anatomy recognition
US11331057B2 (en) * 2020-08-17 2022-05-17 C-Thru C-arm cap

Also Published As

Publication number Publication date
US20080262345A1 (en) 2008-10-23
WO2005009220A2 (en) 2005-02-03
WO2005009220A3 (en) 2005-11-17
US8948471B2 (en) 2015-02-03
US20150216621A1 (en) 2015-08-06

Similar Documents

Publication Publication Date Title
US20050171428A1 (en) Registration of ultrasound to fluoroscopy for real time optimization of radiation implant procedures
Gilhuijs et al. Automatic three‐dimensional inspection of patient setup in radiation therapy using portal images, simulator images, and computed tomography data
US7453983B2 (en) Radiation therapy method with target detection
CA2693740C (en) Marker localization using intensity-based registration of imaging modalities
US7158610B2 (en) Systems and methods for processing x-ray images
US20140051992A1 (en) Localization of a target using in vivo markers
Grimwood et al. In vivo validation of Elekta's clarity autoscan for ultrasound-based intrafraction motion estimation of the prostate during radiation therapy
EP2479708A1 (en) Systems and methods for tracking moving targets and monitoring object positions
US20050054916A1 (en) Systems and methods for gating medical procedures
Fu et al. Xsight lung tracking system: a fiducial-less method for respiratory motion tracking
GB2371964A (en) Surface imaging for patient positioning in radiotherapy
Lee et al. Intraoperative 3D reconstruction of prostate brachytherapy implants with automatic pose correction
US8233686B2 (en) Methods and systems for locating objects embedded in a body
Lee et al. Prostate brachytherapy seed reconstruction with Gaussian blurring and optimal coverage cost
Moult et al. Automatic C-arm pose estimation via 2D/3D hybrid registration of a radiographic fiducial
Kuo et al. Automatic segmentation of seeds and fluoroscope tracking (FTRAC) fiducial in prostate brachytherapy x-ray images
Ploeger et al. Feasibility of geometrical verification of patient set-up using body contours and computed tomography data
Tutar et al. Seed-based ultrasound and fluoroscopy registration using iterative optimal assignment for intraoperative prostate brachytherapy dosimetry
Brennen et al. BrachyView: Reconstruction of seed positions and volume of an LDR prostate brachytherapy patient plan using a baseline subtraction algorithm
Saw et al. Implementation of fiducial-based image registration in the Cyberknife robotic system
Goswami et al. A New Workflow for Image-Guided Intraoperative Electron Radiotherapy Using Projection-Based Pose Tracking
Moradi et al. Needle path detection for brachytherapy dosimetry based on lateral power imaging and template matching
KarimAghaloo et al. Intraoperative localization of brachytherapy implants using intensity-based registration
Gong et al. Registration of prostate brachytherapy seeds with prostate anatomy for improved patient dosimetry
Moradi et al. Towards intra-operative prostate brachytherapy dosimetry based on partial seed localization in ultrasound and registration to C-arm fluoroscopy

Legal Events

Date Code Title Description
AS Assignment

Owner name: JOHNS HOPKINS UNIVERSITY, MARYLAND

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FICHTINGER, GABOR;WYROBEK, KEENAN;MUSTAFA, TABISH;REEL/FRAME:020695/0426;SIGNING DATES FROM 20050318 TO 20050406

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: NATIONAL SCIENCE FOUNDATION, VIRGINIA

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:THE JOHNS HOPKINS UNIVERSITY;REEL/FRAME:046414/0912

Effective date: 20180716