Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050131173 A1
Publication typeApplication
Application numberUS 11/051,430
Publication date16 Jun 2005
Filing date4 Feb 2005
Priority date18 May 1998
Also published asUS6165929, US6531550, US6887819, US20030120002, US20040143078
Publication number051430, 11051430, US 2005/0131173 A1, US 2005/131173 A1, US 20050131173 A1, US 20050131173A1, US 2005131173 A1, US 2005131173A1, US-A1-20050131173, US-A1-2005131173, US2005/0131173A1, US2005/131173A1, US20050131173 A1, US20050131173A1, US2005131173 A1, US2005131173A1
InventorsMax McDaniel, Shirley Martin, Kathy Collins, Marvin Johnson
Original AssigneePhillips Petroleum Company
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Compositions that can produce polymers
US 20050131173 A1
Abstract
This invention provides compositions that are useful for polymerizing at least one monomer into at least one polymer.
Images(9)
Previous page
Next page
Claims(21)
1-25. (canceled)
26. A polymer produced using a polymerization process comprising contacting, under polymerization conditions, at least one monomer and a catalyst composition,
wherein the catalyst composition is produced by a process comprising contacting at least one organometal compound, at least one organoaluminum compound and at least one solid mixed oxide compound,
wherein the organometal compound has the following general formula

(X1)(X2)(X3)(X4)M1,
wherein
M1 is selected from titanium, zirconium, or hafnium;
(X1) is a cyclopentadienyl, an indenyl, a fluorenyl, a substituted cyclopentadienyl, a substituted indenyl, or a substituted fluorenyl;
(X3) and (X4) are independently a halide, an aliphatic group, a cyclic group, a combination of aliphatic and cyclic groups, or an organometallic group;
(X2) is a cyclopentadienyl, an indenyl, a flourenyl, a substituted cyclopentadienyl, a substituted indenyl, a substituted fluorenyl, a halide, an aliphatic group, a cyclic group, a combination of aliphatic and cyclic groups, or an organometallic group;
(X1) and (X2) are optionally joined by an aliphatic bridging group, a cyclic bridging group, a combination of aliphatic and cyclic bridging groups, or an organometallic bridging group; and
the substituents on the substituted cyclopentadienyls, substituted indenyls and substituted fluorenyls are independently an aliphatic group, a cyclic group, a combination of aliphatic and cyclic groups, an organometallic group, or hydrogen;
wherein the organoaluminum compound has the following general formula

AL(X5)n(X6)3 n,
wherein
(X5) is a hydrocarbyl having from 1-20 carbon atoms;
(X6) is a halide, hydride, or alkoxide; and
“n” is a number from 1 to 3 inclusive;
wherein the solid mixed oxide compound comprises a mixed oxide of at least two elements of group 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 of the periodic table, including lanthanides and actinides; and
wherein there is a substantial absence of aluminoxanes and borate compounds.
27. The polymer of claim 26, wherein the catalyst composition is characterized by an ethylene polymerization activity of greater than 150 gP/(gS·hr) when measured under slurry polymerization conditions, using isobutane as a diluent, at a polymerization temperature of about 90° C., and at an ethylene pressure of about 550 psig.
28. The polymer of claim 26, wherein the organometal compound is:
bis(cyclopentadienyl)hafnium dichloride;
bis(cyclopentadienyl)zirconium dichloride;
[ethyl(indenyl)2]hafnium dichloride;
[ethyl(indenyl)2]zirconium dichloride;
[ethyl(tetrahydroindenyl)2]hafnium dichloride;
[ethyl(tetrahydroindenyl)2]zirconium dichloride;
bis(n-butylcyclopentadienyl)hafnium dichloride;
bis(n-butylcyclopentadienyl)zirconium dichloride;
((dimethyl)(diindenyl)silane)zirconium dichloride;
((dimethyl)(diindenyl)silane)hafnium dichloride;
((dimethyl)(ditetrahydroindenyl)silane)zirconium dichloride;
((dimethyl)(di(2-methyl indenyl)silane)zirconium dichloride;
bis(fluorenyl)zirconium dichloride; or
any combination thereof.
29. The polymer of claim 26, wherein the organoaluminum compound is:
trimethylaluminum;
triethylaluminum;
tripropylaluminum;
diethylaluminum ethoxide;
tributylaluminum;
triisobutylaluminum;
diethylaluminum chloride; or
any combination thereof.
30. The polymer of claim 26, wherein the solid mixed oxide compound comprises a mixed oxide of at least two of Al2O3, B2O3, BeO, Bi2O3, CdO, CO3O4, Cr2O3, CuO, Fe2O3, Ga2O3, La2O3, Mn2O3, MoO3, NiO, P2O5, Sb2O5, SiO2, SnO2, SrO, ThO2, TiO2, V2O5, WO3, Y2O3, ZnO, or ZrO2.
31. The polymer of claim 26, wherein the solid mixed oxide compound comprises a mixed oxide of at least two elements from Al, B, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Mn, Mo, Ni, Sb, Si, Sn, Sr, Th, Ti, V, W, P, Y, Zn, or Zr.
32. The polymer of claim 26, wherein the solid mixed oxide compound comprises a mixed oxide of zirconium, boron, and aluminum.
33. The polymer of claim 26, wherein the solid mixed oxide compound is calcined from about 300° C. to about 900° C. from about 1 minute to about 100 hours.
34. The polymer of claim 26, wherein the catalyst composition is characterized by a substantial absence of organochromium compounds or MgCl2.
35. The polymer of claim 26, wherein the solid mixed oxide compound has a pore volume greater than about 0.01 cc/g.
36. The polymer of claim 26, wherein the solid mixed oxide compound has a surface area great than about 1 m2/g.
37. The polymer of claim 26, wherein the organometal compound comprises bis(n-butylcyclopentadienyl)zirconium dichloride, the organoaluminum compound comprises triethylaluminum, and the solid mixed oxide compound comprises a mixed oxide of zirconium, boron, and aluminum.
38. The polymer of claim 26, wherein the polymerization conditions comprise slurry polymerization conditions, gas phase polymerization conditions, or solution polymerization conditions.
39. The polymer of claim 38, wherein the slurry polymerization is conducted in a loop reactor.
40. The polymer of claim 39, wherein the monomer and catalyst system are contacted in the presence of a diluent that comprises isobutane.
41. The polymer of claim 26, wherein the solid mixed oxide compound has a size in the range of about 10 to about 1000 microns.
42. The polymer of claim 26, wherein the solid mixed oxide compound has a size in the range of about 50 to 200 microns.
43. The polymer of claim 26, wherein the monomer is ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, or any combination thereof.
44. The polymer of claim 26, wherein at least one monomer is ethylene.
45. The polymer of claim 26, wherein the monomer is ethylene and an aliphatic 1-olefin having 3 to 20 carbon atoms per molecule.
Description
    FIELD OF THE INVENTION
  • [0001]
    This invention is related to the field of compositions that can be used to polymerize monomers into at least one polymer.
  • BACKGROUND OF THE INVENTION
  • [0002]
    The production of polymers is a multi-billion dollar business. This business produces billions of pounds of polymers each year. Millions of dollars have been spent on developing technologies that can add value to this business.
  • [0003]
    One of these technologies is called metallocene catalyst technology. Metallocene catalysts have been known since about 1960, however, their low productivity did not allow them to be commercialized. About. 1975, it was discovered that contacting one part water with two parts trimethylaluminum to form methyl aluminoxane, and then contacting such methyl aluminoxane with a metallocene compound, formed a metallocene catalyst that had greater activity. However, it was soon realized that large amounts of expensive methyl aluminoxane were needed to form an active metallocene catalyst. This has been a significant impediment to the commercialization of metallocene catalysts.
  • [0004]
    Borate compounds have been use in place of large amounts of methyl aluminoxane. However, this is not satisfactory, since borate compounds are very sensitive to poisons and decomposition, and can also be very expensive.
  • [0005]
    It should also be noted that having a heterogeneous catalyst is important. This is because heterogeneous catalysts are required for most modem commercial polymerization processes. Furthermore, heterogeneous catalysts can lead to the formation of substantially uniform polymer particles that have a high bulk density. These types of substantially uniformed particles are desirable because they improve the efficiency of polymer production and transportation. Efforts have been made to produce heterogeneous metallocene catalysts, however, these catalysts have not been entirely satisfactory.
  • [0006]
    Therefore, the inventors provide this invention to solve these problems.
  • SUMMARY OF THE INVENTION
  • [0007]
    An object of this invention is to provide a process that produces a composition that can be used to polymerize monomers into at least one polymer.
  • [0008]
    Another object of this invention is to provide said composition.
  • [0009]
    Another object of this invention is to provide a process to polymerize monomers into at least one polymer using said composition.
  • [0010]
    Another object of this invention is to provide a manufacture that comprises at least one said polymer.
  • [0011]
    Another object of this invention is to provide a machine that comprises at least one said manufacture.
  • [0012]
    In accordance with one embodiment of this invention, a process to produce a composition of matter is provided. Said process comprises (or optionally, consists essentially of, or consists of) contacting an organometal compound, a solid Lewis acid compound, and an organoaluminum compound to produce said composition, wherein said composition consists essentially of (or optionally, consists of) a post-contacted organometal compound, a post-contacted solid Lewis acid compound, and optionally, a post-contacted organoaluminum compound.
  • [0013]
    In accordance with another embodiment of this invention, a composition of matter is provided. Said composition consists essentially of a post-contacted organometal compound, a post-contacted solid Lewis acid compound, and optionally, a post-contacted organoaluminum compound.
  • [0014]
    In accordance with another embodiment of this invention, a process to polymerize monomers into at least one polymer using said composition is provided. Said process comprises contacting said composition with monomers.
  • [0015]
    In accordance with another embodiment of this invention a manufacture is provided. Said manufacture comprises at least one said polymer.
  • [0016]
    In accordance with another embodiment of this invention a machine is provided. Said machine comprises at least two said manufactures.
  • [0017]
    These objects, and other objects, will become more apparent to those with ordinary skill in the art, by reading this disclosure.
  • [0018]
    It should be noted that the phrase “consisting essentially of” means that the only other items (such as, for example, process steps, and other compounds) included within the scope of the claims are those items that do not materially affect the basic and novel characteristics of the claimed invention.
  • [0019]
    It should also be noted that the phrase “consisting of” means that the no other items (such as, for example, process steps, and other compounds) are included within the scope of the claims, except items that are impurities ordinarily associated with a composition, or items that are process steps ordinarily associated with a process.
  • DETAILED DESCRIPTION OF THE INVENTION
  • [0020]
    Organometal compounds used in this invention have the following general formula.
    (X1)(X2)(X3)X4)M1  FORMULA ONE:
  • [0021]
    In this formula, M1 is selected from the group consisting of titanium, zirconium, and hafnium. Currently, it is most preferred when M1 is zirconium.
  • [0022]
    In this formula (X1) is independently selected from the group consisting of (hereafter “Group OMC-I”) cyclopentadienyls, indenyls, fluorenyls, substituted cyclopentadienyls, substituted indenyls, such as, for example, tetrahydroindenyls, and substituted fluorenyls, such as, for example, octahydrofluorenyls.
  • [0023]
    The substituents on the substituted cyclopentadienyls, substituted indenyls, and substituted fluorenyls, can be aliphatic groups, cyclic groups, combinations of aliphatic and cyclic groups, and organometallic groups, as long as these groups do not substantially, and adversely, affect the polymerization activity of the composition. Additionally, hydrogen can be a substituent.
  • [0024]
    Suitable examples of aliphatic groups are hydrocarbyls, such as, for example, paraffins and olefins. Suitable examples of cyclic groups are cycloparaffins, cycloolefins, cycloacetylenes, and arenes. Additionally, alkylsilyl groups where each alkyl contains 1-12 carbon atoms, alkyl halide groups where each alkyl contains 1-12 carbon atoms, or halides, can also be used.
  • [0025]
    Suitable examples of such substituents are methyl, ethyl, propyl, butyl, tert-butyl, isobutyl, amyl, isoamyl, hexyl, cyclohexyl, heptyl, octyl, nonyl, decyl, dodecyl, 2-ethylhexyl, pentenyl, butenyl, phenyl, chloro, bromo, and iodo.
  • [0026]
    In this formula (X3) and (X4) are independently selected from the group consisting of (hereafter “Group OMC-II”) halides, aliphatic groups, cyclic groups, combinations of aliphatic and cyclic groups, and organometallic groups, as long as these groups do not substantially, and adversely, affect the polymerization activity of the composition.
  • [0027]
    Suitable examples of aliphatic groups are hydrocarbyls, such as, for example, paraffins and olefins. Suitable examples of cyclic groups are cycloparaffins, cycloolefins, cycloacetylenes, and arenes. Currently, it is preferred when (X3) and (X4) are selected from the group consisting of halides and hydrocarbyls, where such hydrocarbyls have from 1 to 10 carbon atoms.
  • [0028]
    However, it is most preferred when (X3) and (X4) are selected from the group consisting of fluoro, chloro, and methyl.
  • [0029]
    In this formula, (X2) can be selected from either Group OMC-I or Group OMC-II.
  • [0030]
    When (X2) is selected from Group OMC-I, it should be noted that (X1) and (X2) can be joined with a bridging group, such as, for example, aliphatic bridging groups, cyclic bridging groups, combinations of aliphatic and cyclic bridging groups, and organometallic bridging groups, as long as the bridging group does not substantially, and adversely, affect the polymerization activity of the composition.
  • [0031]
    Suitable examples of aliphatic bridging groups are hydrocarbyls, such as, for example, paraffins and olefins. Suitable examples of cyclic bridging groups are cycloparaffins, cycloolefins, cycloacetylenes, and arenes. Additionally, it should be noted that silicon and germanium are also good bridging units.
  • [0032]
    Various processes are known to make these compositions. See, for example, U.S. Pat. Nos. 4,939,217; 5,210,352; 5,436,305; 5,401,817; 5,631,335, 5,571,880; 5,191,132; 5,480,848; 5,399,636; 5,565,592; 5,347,026; 5,594,078; 5,498,581; 5,496,781; 5,563,284; 5,554,795; 5,420,320; 5,451,649; 5,541,272; 5,705,478; 5,631,203; 5,654,454; 5,705,579; and 5,668,230; the entire disclosures of which are hereby incorporated by reference.
  • [0033]
    Specific examples of such compositions are as follows:
    • bis(cyclopentadienyl) hafnium dichloride;
    • bis(cyclopentadienyl) zirconium dichloride;
    • [ethyl(indenyl)2] hafnium dichloride;
    • [ethyl(indenyl)2] zirconium dichloride;
    • [ethyl(tetrahydroindenyl)2] hafnium dichloride;
    • [ethyl(tetrahydroindenyl)2] zirconium dichloride;
    • bis(n-butylcyclopentadienyl) hafnium dichloride;
    • bis(n-butylcyclopentadienyl) zirconium dichloride;
    • ((dimethyl)(diindenyl) silane) zirconium dichloride;
    • ((dimethyl)(diindenyl) silane) hafnium dichloride:
    • ((dimethyl)(ditetrahydroindenyl) silane) zirconium dichloride;
    • ((dimethyl)(di(2-methyl indenyl)) silane) zirconium dichloride; and
    • bis(fluorenyl) zirconium dichloride.
  • [0047]
    Organoaluminum compounds have the following general formula.
    A1(X5)n(X6)3-n  FORMULA TWO:
  • [0048]
    In this formula (X5) is a hydrocarbyl having from 1-20 carbon atoms. Currently, it is preferred when (X5) is an alkyl having from 1 to 10 carbon atoms. However, it is most preferred when (X5) is selected from the group consisting of methyl, ethyl, propyl, butyl, and isobutyl.
  • [0049]
    In this formula (X6) is a halide, hydride, or alkoxide. Currently, it is preferred when (X6) is independently selected from the group consisting of fluoro and chloro. However, it is most preferred when (X6) is chloro.
  • [0050]
    In this formula “n” is a number from 1 to 3 inclusive. However, it is preferred when “n” is 3.
  • [0051]
    Examples of such compounds are as follows:
      • trimethylaluminum;
      • triethylaluminum;
      • tripropylaluminum;
      • diethylaluminum ethoxide;
      • tributylaluminum;
      • triisobutylaluminum hydride;
      • triisobutylaluminum; and
      • diethylaluminum chloride.
  • [0060]
    Currently, triethylaluminum is preferred.
  • [0061]
    Solid Lewis acid compounds are compounds that have Lewis acidity. It is preferred when said solid Lewis acid compounds comprise solid mixed oxides. It is also preferred when said solid mixed oxide compounds comprise oxygen and at least two elements selected from the group consisting of groups 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 of the periodic table, including lanthanides and actinides (See Hawley's Condense Chemical Dictionary, 11th Edition). However, it is preferred when the elements are selected from the group consisting of Al, B, Be, Bi, Cd, Co, Cr, Cu, Fe, Ga, La, Mn, Mo, Ni, Sb, Si, Sn, Sr, Th, Ti, V, W, P, Y, Zn and Zr. It is important that these solid mixed oxide compounds have electron withdrawing ability, while not wanting to be bound by theory, it is believed that solid mixed oxide compounds should have high Lewis acidity. However, it is hard to accurately measure the Lewis acidity of these solid mixed oxide compounds, or other solid Lewis acid compounds, so other methods have been used. Currently, comparing the activities of solid mixed oxide compounds, or solid Lewis acid compounds, under acid catalyzed reactions is preferred.
  • [0062]
    Suitable examples of solid mixed oxide compounds include, but are not limited to, mixtures of Al2O3, B2O3, BeO, Bi2O3, CdO, Co3O4, Cr2O3, CUO, Fe2O3, Ga2O3, La2O3, Mn2O3, MoO3, NiO, P2O5, Sb2O5, SiO2, SnO2, Sro, ThO2, TiO2, V2O5, WO3, Y2O3, ZnO, and ZrO2. Currently, a solid mixed oxide compound containing three or more elements is preferred. One preferred solid mixed oxide compound comprises a mixed oxide that has oxygen bonded to Zr, B, and Al. Additionally, it should be noted that solid mixed oxide compounds that comprise Al—O and two other element-oxygen bonds are currently preferred.
  • [0063]
    It is important that the solid mixed oxide compound is calcined. This calcining can be conducted in an ambient atmosphere, preferably a dry ambient atmosphere, at a temperature in the range of about 300° C. to about 900° C., and for a time in the range of about 1 minute to about 100 hours. Currently, temperatures from about 500° C. to about 700° C. and a time in the range of about 1 hour to about 10 hours, are preferred.
  • [0064]
    Solid mixed oxide compounds, should have pore volumes greater than about 0.01 cc/g, preferably greater than about 0.1 cc/g, and most preferably, greater than about 1 cc/g.
  • [0065]
    Solid Lewis acid compounds should have surface areas greater that about 1 m2/g, preferably greater than 100 m2/g, and most preferably greater than 200 m2/g.
  • [0066]
    Solid mixed oxide compounds should have surface areas greater that about 1 m2/g, preferably greater than 100 m2/g, and most preferably greater than 200 m2/g.
  • [0067]
    Solid mixed oxide compounds can be produced in a variety of ways, such as, for example, co-gelling, or impregnation of one compound onto another.
  • [0068]
    The compositions of this invention can be produced by contacting an organometal compound, a solid Lewis acid compound, preferably a solid mixed oxide compound, and an organoaluminum compound, together. This contacting can occur in a variety of ways, such as, for example, blending. Furthermore, each of these compounds can be fed into the reactor separately, or various combinations of these compounds can be contacted together before being further contacted in the reactor, or all three compounds can be contacted together before being introduced into the reactor. Currently, one method is to first contact the organometal compound and the solid Lewis acid compound together, for about 1 minute to about 24 hours, preferably, about 1 minute to about 1 hour, at a temperature from about 10° C. to about 200° C., preferably about 25° C. to about 100° C., to form a first mixture, and then contact this first mixture with an organoaluminum compound to form the composition.
  • [0069]
    During contacting, or after contacting, the mixtures or the composition can be calcined. This calcining can be conducted in an ambient atmosphere, preferably a dry ambient atmosphere, at a temperature in the range of about 300° C. to about 900° C., and for a time in the range of about 1 minute to about 100 hours. Currently, temperatures from about 500° C. to about 700° C. and a time in the range of about 1 hour to about 10 hours, are preferred.
  • [0070]
    After contacting, the composition consists essentially of, (or consists of) a post-contacted organometal compound, a post-contacted solid Lewis acid compound, and optionally, a post-contacted organoaluminum compound. It should be noted that the post-contacted solid Lewis acid compound is the majority, by weight, of the composition. Since the exact order of contacting is not known, it is believed that this terminology best describes the composition's components.
  • [0071]
    The composition of this invention has an activity greater than a compound that uses the same organometal compound, and the same organoaluminum compound, but uses untreated Ketjen grade B alumina (see comparative examples 4, 5, and 6) instead of the solid Lewis acid compounds of this invention. This activity is measured under slurry polymerization conditions, using isobutane as the diluent, and with a polymerization temperature in the range of 50 to 150° C., and an ethylene pressure of in the range of 400 to 800 psig. However, it is preferred if the activity is greater than 100 grams polyethylene per gram of solid Lewis acid compound per hour (hereafter “gP/(gS·hr)”), more preferably greater than 150, even more preferably greater than 200, even more preferably greater than 250, and most preferably greater than 300. This activity is measured under slurry polymerization conditions, using isobutane as the diluent, and with a polymerization temperature in the range of 90° C., and an ethylene pressure of in the range of 550 psig. The reactor should have substantially no indication of any wall scale, coating or other forms of fouling.
  • [0072]
    These compositions are often sensitive to hydrogen and sometimes incorporate comonomers well, and usually produce polymers with a low HLMI/MI ratio.
  • [0073]
    One of the important aspects of this invention is that no aluminoxane needs to be used in order to form the composition. This also means that no water is needed to help form such aluminoxanes. This is beneficial because water can sometimes kill a polymerization process. Additionally, it should be noted that no borate compounds need to be used in order to form the composition. In summary, this means that the composition, which is heterogenous, and which can be used for polymerizing monomers, can be easily and inexpensively produced because of the substantial absence of any aluminooxane compounds or borate compounds. Additionally, no organochromium needs to be added, nor any MgCl2 needs to be added to form the invention.
  • [0074]
    The monomers useful in this invention, are unsaturated hydrocarbons having from 2 to 20 carbon atoms. Currently, it is preferred when the monomer is selected from the group consisting of ethylene, propylene, 1-butene, 3-methyl-1-butene, 1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 1-hexene, 3-ethyl-1-hexene, 1-heptene, 1-octene, 1-nonene, 1-decene, and mixtures thereof. However, when a homopolymer is desired, it is most preferred to use ethylene, or propylene, as the monomer. Additionally, when a copolymer is desired, it is most preferred to use ethylene and hexene as the monomers.
  • [0075]
    Processes that can polymerize monomers into polymers are known in the art, such as, for example, slurry polymerization, gas phase polymerization, and solution polymerization. It is preferred to perform a slurry polymerization in a loop reactor. Furthermore, it is even more preferred to use isobutane as the diluent in a slurry polymerization. Examples of such technology can be found in U.S. Pat. Nos. 4,424,341; 4,501,885; 4,613,484; 4,737,280; and 5,597,892; the entire disclosures of which are hereby incorporated by reference.
  • [0076]
    It should be noted that under slurry polymerization conditions these compositions polymerize ethylene alone, or ethylene with a 1-olefin, or propylene very well. In particular, the compositions used in this process produce good quality polymer particles without substantially fouling the reactor. When the composition is to be used in a loop reactor under slurry polymerization conditions, it is preferred when the particle size of the solid mixed oxide compound is in the range of about 10 to about 1000 microns, preferably 25 to 500 microns, and most preferably, about 50 to about 200 microns, for best control during polymerization.
  • [0077]
    After the polymers are produced, they can be formed into various manufactures, such as, for example, household containers and utensils, drums, fuel tanks, pipes, geomembranes, and liners. Various processes can form these manufactures. Usually, additives and modifiers are added to the polymer in order to provide desired effects. It is believed that by using the invention described herein, manufactures can be produced at a lower cost, while maintaining most, if not all, of the unique properties of polymers produced with metallocene catalysts.
  • [0078]
    Additionally, these manufactures can be part of a machine, such as, for example, a car, so that the weight of the car will be less, with the attended benefits thereof.
  • EXAMPLES
  • [0079]
    These examples provide additional information to a person skilled in the art. These examples are not meant to be construed as limiting the scope of the claims.
  • DESCRIPTION OF THE POLYMERIZATIONS RUNS
  • [0080]
    All polymerization runs were conducted in a steel reactor that had a volume of 2.2 liters. This reactor was equipped with a marine stirrer. During the polymerizations this stirrer was set to run at 400 rpm. This reactor was also surrounded by a steel jacket that was connected to a steel condenser. The steel jacket contained methanol that was boiling. The boiling point of the methanol was controlled by varying the nitrogen pressure that was applied to the steel condenser and the steel jacket. This control method permitted precise temperature control (±0.5° C.).
  • [0081]
    First, a solid oxide compound (either a solid unmixed oxide or a solid mixed oxide) was charged, under nitrogen, to the reactor, which was dry. Second, organometal compound solution was added to the reactor by syringe. Third, 0.6 liters of isobutane was charged to the reactor. Fourth, organoaluminum compound was added to the reactor. Fifth, 0.6 liters of isobutane was charged to the reactor. Sixth, ethylene was added to the reactor to equal 550 psig pressure. Seventh, the reactor was heated to 90° C. This pressure was maintained during the polymerization. During polymerization, stirring continued for the specified time. Activity was determined by recording the flow of ethylene into the reactor to maintain pressure. Seventh, after the specified time, the ethylene flow was stopped and the reactor slowly depressurized. Eighth, the reactor was opened to recover a granular polymer powder.
  • [0082]
    In all inventive runs, the reactor was clean with no indication of any wall scale, coating or other forms of fouling. The polymer powder was removed and weighed. Activity was specified as grams of polymer produced per gram of solid oxide compound charged per hour.
  • [0083]
    In some cases the solid oxide compound and the organometal compound were first pre-contacted, in the reactor, for about half an hour at 90° C. in one liter of isobutane before the organoaluminum compound and ethylene were added to the reactor.
  • PREPARATION OF SOLID OXIDES
  • [0084]
    Silica, grade 952, having a pore volume of 1.6 cc/g and a surface area of about 300 square meters per gram was obtained from W. R. Grace. About 10 grams of this material was placed in a 1.75 inch quartz tube, which was fitted at the bottom with a sintered quartz. While the silica was supported on the disk, dry air was blown up through the disk at the linear rate of about 1.6 to 1.8 standard cubic feet per hour. An electric furnace around the quartz tube was then turned on and the temperature was raised at the rate of 400° C. per hour to a temperature of 600° C. At that temperature, the silica was allowed to fluidize for three hours in the dry air. Afterward, the silica was collected and stored under dry nitrogen.
  • [0085]
    Some alumina samples were also prepared by the procedure described in the silica preparation. A commercial alumina sold as Ketjen grade B alumina was obtained, having a pore volume of about 1.78 cc/g and a-surface area of around 340 square meters per gram. The temperatures use in the preparation of these aluminas were 400° C., 600° C., and 800° C.
  • [0086]
    A silica-alumina was also obtained from W. R. Grace (MS 13-110 containing 13% alumina and 87% silica). This silica-alumina had a pore volume of 1.2 cc/g and a surface area of about 300 square meters per gram. This silica-alumina was prepared as described in the silica preparation. The temperature use in the preparation of this silica-alumina was 600° C.
  • [0087]
    A silica-titania was obtained by co-gellation as described in U.S. Pat. No. 3,887,494 (“Deitz”). Titanyl sulfate was dissolved in concentrated sulfric acid, to form a first mixture. Afterwards, a sodium silicate solution was slowly added, with vigorous stirring, to this first mixture, to form a second mixture. When the pH of the second mixture reached about 6, this second mixture gelled into a homogenous, substantially-clear first product. This first product was then aged, at 80° C. and a pH 7, for three hours, followed by washing it nine times with water, and two times in 1% ammonium nitrate, to form a second product. This second product, which was a gel, was then azeotropically dried in ethyl acetate, to form a third product. This third product contained 8% titanium. It also had a surface area of 450 square meters per gram and a pore volume of 2.0 cc/g. This silica-titania was then prepared as described in the silica preparation. The temperature use in the preparation of this silica-titania was 600° C.
  • [0088]
    An alumino-phosphate was prepared according to U.S. Pat. No. 4,364,855 (McDaniel). Aluminum nitrate (380 grams) and mono-ammonium phosphate (94 grams) was dissolved in deionized water to form a first mixture. About 170 milliliters of ammonium hydroxide was then added to this first mixture to form a second mixture. At a pH of about 8 this second mixture gelled to form a first product. This first product was then washed twice in water, and once in n-propanol, before drying overnight at 80° C. under a vacuum, to form a second product. This second product contained a phosphorus to aluminum molar ratio of 0.8, a pore volume of 2.1 cc/g, and a surface area of 250 square meters per gram. This alumino-phosphate was then prepared as described in the silica preparation. The temperature use in the preparation of this alumina-phosphate was 600° C.
  • [0089]
    Another aluminophosphate support was made according to the preparation above but the phosphorous to aluminum molar ratio was adjusted to equal 0.4. This mixed oxide had a pore volume after calcining of 2.5 cc/g and a surface area of 450 m2/g. The mixed oxide was activated by calcination at 750° C.
  • Comparative Examples 1-2
  • [0090]
    These examples demonstrate that an organometal compound contacted with an organoaluminum compound, provides little, if any, polymerization activity.
  • [0091]
    A polymerization run was made as described earlier. First, an organometal compound was added to the reactor (2 ml of bis(n-butylcyclopentadienyl) zirconium dichloride solution (0.5 grams per 100 ml of toluene)). Second, half of the isobutane was then added to the reactor. Third, 2 ml of 15 weight percent triethyl aluminum for example 1, or 2 ml of 25 weight percent ethyl aluminum dichloride (EADC) for example 2, were added to the reactor. Fourth, the other half of the isobutane was added to the reactor.
  • [0092]
    Ethylene was then added to the reactor but no polymerization activity was observed. After one hour of contacting, the reactor was depressurized and opened.
  • [0093]
    In each case, no polymer was found. These results are shown in Table-I.
  • Comparative Examples 3-6.9 and Examples 7-8
  • [0094]
    These examples demonstrate that contacting a solid oxide compound, with an organometal compound, and with an organoaluminum compound, provided little, if any, polymerization activity.
  • [0095]
    Each of the solid oxide compounds described earlier was added to the reactor, followed by an organometal compound (2 ml of bis(n-butylcyclopentadienyl) zirconium dichloride solution (0.5 grams per 100 ml of toluene), and then the organoaluminum compound (triethylaluminum). These examples are shown in Table-I.
  • [0096]
    The first two examples show that contacting an organometal compound with an organoaluminum compound provides little, if any, polymerization activity. The silica example produced almost no polymer. Alumina, which is regarded as more acidic than silica, produced more polymer, but still the activity was very low. The alumino-phosphate, silica-alumina, and silica-titania supports exhibited only marginal activity. Activity is expressed in Table-I as gP/(gS·hr).
  • Comparative Example 10 & Examples 11-12
  • [0097]
    These examples show how to produce a composition that can be used to polymerize monomers into polymers. Additionally, these examples show the importance of the organoaluminum compound.
  • [0098]
    A solid mixed oxide compound was prepared by co-gelling approximately equal mole parts of boria, alumina, and zirconia. Aluminum nitrate nonahydrate (287 grams), boric acid (35 grams), and zirconyl nitrate dihydrate (25 grams), were dissolved in deionized water (500 milliliters) to form a first mixture. This first mixture was then gelled by contacting this first mixture with concentrated (28 weight percent NH3 in water) ammonium hydroxide (210 milliliters), using a stirrer, to form a second mixture. This second mixture, which was a gel, was washed once in four liters of water, followed by filtration, and than another wash in four liters of n-propanol. After being dried overnight in a vacuum oven at 100° C., the dry gel was pushed through a 35 mesh screen. A ten gram sample was prepared as described in the silica preparation to produce a solid mixed oxide compound. The temperature use in the preparation of this sample was 600° C.
  • [0099]
    In Example 10 the activity for ethylene polymerization was zero. In Example 111 the reactor filled with polymer, giving a high activity. This polymer was found to have a melt index of 0 and a high load melt index of 1.2. In Example 12 high activity was also obtained. See Table-I
  • Comparative Example 13
  • [0100]
    Another three component solid mixed oxide compound was prepared by co-gellation of about 47.5 mole percent boria, 47.5 mole percent alumina, and 5 mole percent zirconia. Aluminum nitrate nonahydrate (187 grams), boric acid (31 grams), and zirconyl nitrate dihydrate (14 grams), were dissolved in deionized water (500 milliliters) to form a first mixture. This first mixture was then gelled by contacting this first mixture with concentrated ammonium hydroxide (130 milliliters), using a stirrer, to form a second mixture. This second mixture, which was a gel, was washed once in four liters of water, followed by filtration, and then wash in four liters of n-propanol. After being dried overnight in a vacuum oven at 100° C., the dry gel was pushed through a 35 mesh screen. A ten gram sample was prepared as described in the silica preparation to produce a solid mixed oxide compound. The temperature use in the preparation of this sample was 600° C. After calcination, the surface area was found to be 491 m2/g and the pore volume was found to be 0.86 cc/g.
  • [0101]
    In this example the compositions activity for ethylene polymerization was satisfactory. The polymer was found to have a melt index of 0.1 and a high load melt index of 3.19 giving a shear response (HLMI/MI) of 31.
  • Comparative Example 14
  • [0102]
    An aqueous cogel was made by a procedure similar to that above containing about 67 mole percent alumina and 33 mole percent zirconia. Aluminum nitrate nonahydrate (187 grams) and zirconyl nitrate dihydrate (67 grams), were dissolved in deionized water (500 milliliters) to form a first mixture. This first mixture was then gelled by contacting this first mixture with concentrated ammonium hydroxide (140 milliliters), using a stirrer, to form a second mixture. This second mixture, which was a gel, was washed once in four liters of water, followed by filtration, and then wash in four liters of n-propanol. After being dried overnight in a vacuum oven at 100° C., the dry gel was pushed through a 35 mesh screen. A ten gram sample was prepared as described in the silica preparation to produce a solid acid compound. The temperature use in the preparation of this sample was 600° C. After calcination, the surface area was found to be 319 m2/g and the pore volume was found to be 0.55 cc/g.
  • Comparative Example 15
  • [0103]
    A cogel was made anhydrously to contain about 50 mole percent alumina and 50 mole percent boria. Aluminum isopropoxide (150 grams of 33 weight percent in butanol) and boric acid (15 grams) were dissolved in n-propanol (750 milliliters) to form a first mixture. This first mixture slowly thickened. A solution of 7.5 milliliters of water combined with 7.5 milliliters of concentrated ammonium hydroxide was added to this first mixture to cause gellation. The gel was then dried in a vacuum oven at 100° C. overnight and then was ground through a 35 mesh sieve. A sample was calcined in air at 600° C. to yield a pore volume of 0.84 cc/g and a surface area of 378 square meters per gram. When tested for polymerization activity it yielded an activity of 25 g/g/h.
  • Comparative Example 16 & Example 17
  • [0104]
    Ketjen grade B alumina (13.8 grams) was impregnated with a solution of 14 milliliters of zirconium butoxide-butanol complex in 26 ml of isopropanol. This made a damp powder which was then dried in a vacuum oven overnight at 100° C., and then calcined in air at 700° C. A polymerization test delivered nine grams of polymer for an activity of 26 g/g/h.
  • [0105]
    The procedure of example 16 was followed except that the zirconia was gelled in place before calcination. Ketjen B alumina (27.4 grams) was impregnated with a solution of 27 milliliters of zirconium butoxide-butanol complex in 23 milliliters of isopropanol to make a damp powder. Then, 2 milliliters of concentrated ammonium hydroxide combined with 5 milliliters of water was also added to the dry powder after the zirconium butoxide had been added so that a zirconia gel would form within the pores of the alumina. This material was vacuum dried overnight at 100° C., pushed through a 35 mesh sieve, and calcined in air at 700° C.
  • Example 18
  • [0106]
    Alumina was impregnated with boria in this example. Boric acid (7.33 grams) was dissolved in 43 milliliters of methanol. This solution was then added to 21.8 grams of Ketjen grade B alumina. The mixture was shaken until a uniform state of wetness was achieved. Then the material was dried in a vacuum oven overnight at 90° C. and pushed through a 35 mesh screen. After being calcined in air at 600° C. the compound was found to have a pore volume of 1.02 cc/g and a surface area of 319 square meters per gram.
  • Example 19
  • [0107]
    Alumnio-phosphate with a P/Al of 0.4 was also tested after calcination at 750° C.
    TABLE I
    Ex. # A1 ° C.2 S3 OAC4 P5 T6 A7
     18 None NA 0.0000 2 TEA 0 61.1 0
     2 None NA 0.0000 2 EADC 0 28.0 0
     3 Silica 600 0.5686 2 TEA 0.65 63.0 1
     4 Alumina 800 0.6948 1 TEA 2.7 30.7 8
     5 Alumina 600 0.2361 2 TEA 6.9 60.9 29
     6 Alumina 400 0.8475 1 TEA trace 57.2 0
     7 Alumino- 600 0.8242 1 TEA 45 66.0 50
    Phosphate
     8 Silica- 600 0.3912 1 TEA 8.3 40.0 32
    Alumina
     9 Silica- 600 0.1392 2 TEA 0 60.0 0
    Titania
    10 Zr-Al-B 600 0.9462 none 0.4 46.4 0
    11 Zr-Al-B 600 1.0805 2 TEA 310.0 60.5 285
    12 Zr-Al-B 600 0.3080 2 TEA 76.4 60.0 248
    13 Zr-Al-B 600 .8742 2 TEA 262.7 60.0 301
    14 Zr-Al 600 1.5694 2 TEA 12.1 25.0 19
    15 B-Al 600 1.1408 2 TEA 10.6 22.0 25
    16 Zr-Al 700 0.9066 2 TEA 9.0 25.5 26
    17 Zr-Al 700 0.1732 2 TEA 9.0 21.2 147
    18 B-Al 600 0.8527 2 TEA 11.8 22.5 37
    19 Alumino- 750 0.1267 2 TEA 33.1 60.2 260
    Phosphate

    Table-I Notes

    1This is the solid unmixed oxide compound used, or the solid mixed oxide compound used.

    2This is the calcining temperature.

    3This is the amount of solid oxide compound, in grams, being contacted with the other compounds.

    4This is the amount, in milliliters of organoaluminum compound used and the type of organoaluminum used. The TEA was a 15 weight percent solution of triethylaluminum in heptane.

    5This is the amount of polymer produced in grams.

    6This is the amount of time used in minutes.

    7This is the activity in gP/(gS · hr).

    8The amount of organometal compound used was 25 micromoles. The type of organometal compound used was bis(n-butylcyclopentadienyl) zirconium dichloride. This organometal compound was in a solution that contained 0.5 grams of bis(n-butylcyclopentadienyl) zirconium dichloride per 100 milliliters of toluene. Additionally, these example were run at 90° C., under 550 psig ethylene, in 1.2 liters of isobutane.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4077904 *29 Jun 19767 Mar 1978Union Carbide CorporationOlefin polymerization process and catalyst therefor
US4101445 *22 Sep 197618 Jul 1978Union Carbide CorporationPreparation of modified and activated chromocene catalysts for ethylene polymerization
US4279780 *18 Apr 198021 Jul 1981Chemplex CompanyMethod of preparing catalyst supports
US4426243 *1 Dec 198117 Jan 1984Illinois Tool Works Inc.Room-temperature-curable, quick-setting acrylic/epoxy adhesives and methods of bonding
US4526942 *10 Jan 19832 Jul 1985Mobil Oil CorporationCatalyst for olefin polymerization
US4657998 *17 Mar 198614 Apr 1987Exxon Research & Engineering Co.Polyethylene with broad molecular weight distribution
US4659685 *17 Mar 198621 Apr 1987The Dow Chemical CompanyHeterogeneous organometallic catalysts containing a supported titanium compound and at least one other supported organometallic compound
US4788171 *2 Feb 198729 Nov 1988Philips Petroleum CompanyPhosphated calcined alumina
US4803253 *29 Mar 19857 Feb 1989Phillips Petroleum CompanyEthylene polymer produced using a catalyst comprising a phosphate and with a bis-(cyclopentadienyl)chromium(II) compound
US4969522 *21 Dec 198813 Nov 1990Mobil Oil CorporationPolymer-coated support and its use as sand pack in enhanced oil recovery
US5001204 *27 Jul 199019 Mar 1991Phillips Petroleum CompanyAlumina phosphated with partial ester
US5183868 *23 Jul 19902 Feb 1993Phillips Petroleum CompanyOlefin polymerization over pi-olefin complex of chromium supported on aluminophosphate
US5321105 *12 Mar 199314 Jun 1994Quantum Chemical CorporationPolymerization process using a bimodal silica gel as a catalyst support
US5332707 *31 Jul 199226 Jul 1994Amoco CorporationOlefin polymerization and copolymerization catalyst
US5401820 *18 Dec 199228 Mar 1995Phillips Petroleum CompanyOlefin polymers prepared by polymerization with treated alumina supported chromium
US5439995 *3 Feb 19948 Aug 1995Bp Chemicals LimitedCatalyst and prepolymer used for the preparation of polyolefins
US5444134 *10 Jul 199222 Aug 1995Idemitsu Kosan Co., Ltd.Process for producing olefin based polymers and olefin polymerization catalyst
US5461127 *22 Sep 199324 Oct 1995Idemitsu Kosan Co., Ltd.Polymerization catalysts and process for producing polymers
US5468702 *7 Jul 199421 Nov 1995Exxon Chemical Patents Inc.Method for making a catalyst system
US5496782 *8 Dec 19935 Mar 1996Solvay (Socie/ te/ Anonyme)Catalyst system, use of this catalyst system for the (co)polymerization of olefins, process for preparing this catalyst system and olefin (co) polymerization process
US5527867 *15 Sep 199518 Jun 1996Phillips Petroleum CompanyProcess for producing polyolefins
US5556893 *24 May 199417 Sep 1996Solvay (Soci et e Anonyme)Catalyst support and catalyst for the polymerization of alpha-olefins; processes for obtaining them and polymerization of alpha-olefins in presence of the catalyst
US5612271 *4 Jun 199318 Mar 1997Solvay (Societe Anonyme)Process for the prepration of a catalytic system, process for the (co)polymerization of olefins and (co)polymers of at least one olefin
US5643884 *9 Aug 19931 Jul 1997Glycomed IncorporatedLupane triterpenoid derivatives
US5648439 *14 Jul 199515 Jul 1997Phillips Petroleum CompanyProcess for producing polyolefins
US5670580 *24 Feb 199423 Sep 1997Idemitsu Kosan Co., Ltd.Propylene block copolymer, process for preparing same, and modified copolymer using propylene block copolymer
US6165929 *18 May 199826 Dec 2000Phillips Petroleum CompanyCompositions that can produce polymers
US6531550 *31 May 200011 Mar 2003Phillips Petroleum CompanyProcess for producing polymers
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US81134109 Feb 201114 Feb 2012Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features
US81571534 Feb 201117 Apr 2012Ethicon Endo-Surgery, Inc.Surgical instrument with force-feedback capabilities
US816197723 Sep 200824 Apr 2012Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US816718518 Nov 20101 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US81721244 Feb 20118 May 2012Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US818655531 Jan 200629 May 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US818656016 Oct 200929 May 2012Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US819679513 Aug 201012 Jun 2012Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US81967963 Feb 201112 Jun 2012Ethicon Endo-Surgery, Inc.Shaft based rotary drive system for surgical instruments
US823601023 Mar 20067 Aug 2012Ethicon Endo-Surgery, Inc.Surgical fastener and cutter with mimicking end effector
US82921552 Jun 201123 Oct 2012Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with tactile position feedback
US831707028 Feb 200727 Nov 2012Ethicon Endo-Surgery, Inc.Surgical stapling devices that produce formed staples having different lengths
US834813129 Sep 20068 Jan 2013Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical indicator to show levels of tissue compression
US836029729 Sep 200629 Jan 2013Ethicon Endo-Surgery, Inc.Surgical cutting and stapling instrument with self adjusting anvil
US836597629 Sep 20065 Feb 2013Ethicon Endo-Surgery, Inc.Surgical staples having dissolvable, bioabsorbable or biofragmentable portions and stapling instruments for deploying the same
US83979715 Feb 200919 Mar 2013Ethicon Endo-Surgery, Inc.Sterilizable surgical instrument
US839958011 Aug 201019 Mar 2013Chevron Philips Chemical Company LpAdditives to chromium catalyst mix tank
US841457719 Nov 20099 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instruments and components for use in sterile environments
US84247404 Nov 201023 Apr 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a directional switching mechanism
US845952010 Jan 200711 Jun 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US845952514 Feb 200811 Jun 2013Ethicon Endo-Sugery, Inc.Motorized surgical cutting and fastening instrument having a magnetic drive train torque limiting device
US846492328 Jan 201018 Jun 2013Ethicon Endo-Surgery, Inc.Surgical stapling devices for forming staples with different formed heights
US84799699 Feb 20129 Jul 2013Ethicon Endo-Surgery, Inc.Drive interface for operably coupling a manipulatable surgical tool to a robot
US848541229 Sep 200616 Jul 2013Ethicon Endo-Surgery, Inc.Surgical staples having attached drivers and stapling instruments for deploying the same
US849999312 Jun 20126 Aug 2013Ethicon Endo-Surgery, Inc.Surgical staple cartridge
US851724314 Feb 201127 Aug 2013Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US85345281 Mar 201117 Sep 2013Ethicon Endo-Surgery, Inc.Surgical instrument having a multiple rate directional switching mechanism
US854012811 Jan 200724 Sep 2013Ethicon Endo-Surgery, Inc.Surgical stapling device with a curved end effector
US85401308 Feb 201124 Sep 2013Ethicon Endo-Surgery, Inc.Disposable motor-driven loading unit for use with a surgical cutting and stapling apparatus
US856765628 Mar 201129 Oct 2013Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US85734619 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Surgical stapling instruments with cam-driven staple deployment arrangements
US85734659 Feb 20125 Nov 2013Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US858491914 Feb 200819 Nov 2013Ethicon Endo-Sugery, Inc.Surgical stapling apparatus with load-sensitive firing mechanism
US859076229 Jun 200726 Nov 2013Ethicon Endo-Surgery, Inc.Staple cartridge cavity configurations
US86022871 Jun 201210 Dec 2013Ethicon Endo-Surgery, Inc.Motor driven surgical cutting instrument
US86022889 Feb 201210 Dec 2013Ethicon Endo-Surgery. Inc.Robotically-controlled motorized surgical end effector system with rotary actuated closure systems having variable actuation speeds
US860804510 Oct 200817 Dec 2013Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US86164319 Feb 201231 Dec 2013Ethicon Endo-Surgery, Inc.Shiftable drive interface for robotically-controlled surgical tool
US862227414 Feb 20087 Jan 2014Ethicon Endo-Surgery, Inc.Motorized cutting and fastening instrument having control circuit for optimizing battery usage
US86361873 Feb 201128 Jan 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems that produce formed staples having different lengths
US863673614 Feb 200828 Jan 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US865212010 Jan 200718 Feb 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US865717414 Feb 200825 Feb 2014Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument having handle based power source
US86571789 Jan 201325 Feb 2014Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US866813024 May 201211 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling systems and staple cartridges for deploying surgical staples with tissue compression features
US86722085 Mar 201018 Mar 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US868425327 May 20111 Apr 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US872163023 Mar 200613 May 2014Ethicon Endo-Surgery, Inc.Methods and devices for controlling articulation
US87465292 Dec 201110 Jun 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US874653028 Sep 201210 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and remote sensor
US874723828 Jun 201210 Jun 2014Ethicon Endo-Surgery, Inc.Rotary drive shaft assemblies for surgical instruments with articulatable end effectors
US875274720 Mar 201217 Jun 2014Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US875274927 May 201117 Jun 2014Ethicon Endo-Surgery, Inc.Robotically-controlled disposable motor-driven loading unit
US87594591 Mar 201324 Jun 2014Chevron Phillips Chemical Company LpAdditives to chromium catalyst mix tank
US87638756 Mar 20131 Jul 2014Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US87638791 Mar 20111 Jul 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of surgical instrument
US87835419 Feb 201222 Jul 2014Frederick E. Shelton, IVRobotically-controlled surgical end effector system
US878974123 Sep 201129 Jul 2014Ethicon Endo-Surgery, Inc.Surgical instrument with trigger assembly for generating multiple actuation motions
US88008389 Feb 201212 Aug 2014Ethicon Endo-Surgery, Inc.Robotically-controlled cable-based surgical end effectors
US880832519 Nov 201219 Aug 2014Ethicon Endo-Surgery, Inc.Surgical stapling instrument with staples having crown features for increasing formed staple footprint
US88206031 Mar 20112 Sep 2014Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US88206059 Feb 20122 Sep 2014Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instruments
US88406033 Jun 201023 Sep 2014Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US88447899 Feb 201230 Sep 2014Ethicon Endo-Surgery, Inc.Automated end effector component reloading system for use with a robotic system
US889394923 Sep 201125 Nov 2014Ethicon Endo-Surgery, Inc.Surgical stapler with floating anvil
US88994655 Mar 20132 Dec 2014Ethicon Endo-Surgery, Inc.Staple cartridge comprising drivers for deploying a plurality of staples
US891147114 Sep 201216 Dec 2014Ethicon Endo-Surgery, Inc.Articulatable surgical device
US89257883 Mar 20146 Jan 2015Ethicon Endo-Surgery, Inc.End effectors for surgical stapling instruments
US893168227 May 201113 Jan 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US897380418 Mar 201410 Mar 2015Ethicon Endo-Surgery, Inc.Cartridge assembly having a buttressing member
US897895429 Apr 201117 Mar 2015Ethicon Endo-Surgery, Inc.Staple cartridge comprising an adjustable distal portion
US899167629 Jun 200731 Mar 2015Ethicon Endo-Surgery, Inc.Surgical staple having a slidable crown
US899167721 May 201431 Mar 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US899242227 May 201131 Mar 2015Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US899805820 May 20147 Apr 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US900523018 Jan 201314 Apr 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US902849428 Jun 201212 May 2015Ethicon Endo-Surgery, Inc.Interchangeable end effector coupling arrangement
US90285197 Feb 201112 May 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US904423013 Feb 20122 Jun 2015Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US905008323 Sep 20089 Jun 2015Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US905008423 Sep 20119 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck arrangement
US905594123 Sep 201116 Jun 2015Ethicon Endo-Surgery, Inc.Staple cartridge including collapsible deck
US906077027 May 201123 Jun 2015Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US907251525 Jun 20147 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US907253527 May 20117 Jul 2015Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US907253628 Jun 20127 Jul 2015Ethicon Endo-Surgery, Inc.Differential locking arrangements for rotary powered surgical instruments
US908460115 Mar 201321 Jul 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US909533919 May 20144 Aug 2015Ethicon Endo-Surgery, Inc.Detachable motor powered surgical instrument
US910135815 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
US910138528 Jun 201211 Aug 2015Ethicon Endo-Surgery, Inc.Electrode connections for rotary driven surgical tools
US911387424 Jun 201425 Aug 2015Ethicon Endo-Surgery, Inc.Surgical instrument system
US911965728 Jun 20121 Sep 2015Ethicon Endo-Surgery, Inc.Rotary actuatable closure arrangement for surgical end effector
US912566228 Jun 20128 Sep 2015Ethicon Endo-Surgery, Inc.Multi-axis articulating and rotating surgical tools
US913822526 Feb 201322 Sep 2015Ethicon Endo-Surgery, Inc.Surgical stapling instrument with an articulatable end effector
US914927417 Feb 20116 Oct 2015Ethicon Endo-Surgery, Inc.Articulating endoscopic accessory channel
US917991123 May 201410 Nov 2015Ethicon Endo-Surgery, Inc.End effector for use with a surgical fastening instrument
US917991227 May 201110 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US918614325 Jun 201417 Nov 2015Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US919866226 Jun 20121 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator having improved visibility
US920487814 Aug 20148 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US920487928 Jun 20128 Dec 2015Ethicon Endo-Surgery, Inc.Flexible drive member
US920488028 Mar 20128 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising capsules defining a low pressure environment
US921112028 Mar 201215 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of medicaments
US921112113 Jan 201515 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapling apparatus
US921601923 Sep 201122 Dec 2015Ethicon Endo-Surgery, Inc.Surgical stapler with stationary staple drivers
US922050028 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising structure to produce a resilient load
US922050128 Mar 201229 Dec 2015Ethicon Endo-Surgery, Inc.Tissue thickness compensators
US922675128 Jun 20125 Jan 2016Ethicon Endo-Surgery, Inc.Surgical instrument system including replaceable end effectors
US923294128 Mar 201212 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US923789127 May 201119 Jan 2016Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US924171428 Mar 201226 Jan 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator and method for making the same
US927179925 Jun 20141 Mar 2016Ethicon Endo-Surgery, LlcRobotic surgical system with removable motor housing
US92724068 Feb 20131 Mar 2016Ethicon Endo-Surgery, LlcFastener cartridge comprising a cutting member for releasing a tissue thickness compensator
US927791928 Mar 20128 Mar 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising fibers to produce a resilient load
US92829628 Feb 201315 Mar 2016Ethicon Endo-Surgery, LlcAdhesive film laminate
US92829667 Feb 201415 Mar 2016Ethicon Endo-Surgery, Inc.Surgical stapling instrument
US928297428 Jun 201215 Mar 2016Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
US928305423 Aug 201315 Mar 2016Ethicon Endo-Surgery, LlcInteractive displays
US928920615 Dec 201422 Mar 2016Ethicon Endo-Surgery, LlcLateral securement members for surgical staple cartridges
US928925628 Jun 201222 Mar 2016Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US930175228 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising a plurality of capsules
US930175328 Mar 20125 Apr 2016Ethicon Endo-Surgery, LlcExpandable tissue thickness compensator
US93017599 Feb 20125 Apr 2016Ethicon Endo-Surgery, LlcRobotically-controlled surgical instrument with selectively articulatable end effector
US930796525 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-microbial agent
US93079861 Mar 201312 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument soft stop
US930798828 Oct 201312 Apr 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US930798926 Jun 201212 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorportating a hydrophobic agent
US931424625 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US931424726 Jun 201219 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating a hydrophilic agent
US932051825 Jun 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator incorporating an oxygen generating agent
US932052019 Aug 201526 Apr 2016Ethicon Endo-Surgery, Inc.Surgical instrument system
US932052129 Oct 201226 Apr 2016Ethicon Endo-Surgery, LlcSurgical instrument
US932052328 Mar 201226 Apr 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising tissue ingrowth features
US93267671 Mar 20133 May 2016Ethicon Endo-Surgery, LlcJoystick switch assemblies for surgical instruments
US932676812 Mar 20133 May 2016Ethicon Endo-Surgery, LlcStaple cartridges for forming staples having differing formed staple heights
US93267696 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US93267706 Mar 20133 May 2016Ethicon Endo-Surgery, LlcSurgical instrument
US933297428 Mar 201210 May 2016Ethicon Endo-Surgery, LlcLayered tissue thickness compensator
US933298427 Mar 201310 May 2016Ethicon Endo-Surgery, LlcFastener cartridge assemblies
US933298714 Mar 201310 May 2016Ethicon Endo-Surgery, LlcControl arrangements for a drive member of a surgical instrument
US934547725 Jun 201224 May 2016Ethicon Endo-Surgery, LlcTissue stapler having a thickness compensator comprising incorporating a hemostatic agent
US934548113 Mar 201324 May 2016Ethicon Endo-Surgery, LlcStaple cartridge tissue thickness sensor system
US935172614 Mar 201331 May 2016Ethicon Endo-Surgery, LlcArticulation control system for articulatable surgical instruments
US935172714 Mar 201331 May 2016Ethicon Endo-Surgery, LlcDrive train control arrangements for modular surgical instruments
US935173028 Mar 201231 May 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US93580031 Mar 20137 Jun 2016Ethicon Endo-Surgery, LlcElectromechanical surgical device with signal relay arrangement
US935800522 Jun 20157 Jun 2016Ethicon Endo-Surgery, LlcEnd effector layer including holding features
US936423028 Jun 201214 Jun 2016Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotary joint assemblies
US936423328 Mar 201214 Jun 2016Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US937035819 Oct 201221 Jun 2016Ethicon Endo-Surgery, LlcMotor-driven surgical cutting and fastening instrument with tactile position feedback
US93703645 Mar 201321 Jun 2016Ethicon Endo-Surgery, LlcPowered surgical cutting and stapling apparatus with manually retractable firing system
US938698327 May 201112 Jul 2016Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US93869848 Feb 201312 Jul 2016Ethicon Endo-Surgery, LlcStaple cartridge comprising a releasable cover
US938698828 Mar 201212 Jul 2016Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US939301510 May 201319 Jul 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with cutting member reversing mechanism
US93989111 Mar 201326 Jul 2016Ethicon Endo-Surgery, LlcRotary powered surgical instruments with multiple degrees of freedom
US940262618 Jul 20122 Aug 2016Ethicon Endo-Surgery, LlcRotary actuatable surgical fastener and cutter
US940860428 Feb 20149 Aug 2016Ethicon Endo-Surgery, LlcSurgical instrument comprising a firing system including a compliant portion
US940860628 Jun 20129 Aug 2016Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US941483828 Mar 201216 Aug 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprised of a plurality of materials
US943341928 Mar 20126 Sep 2016Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a plurality of layers
US943964912 Dec 201213 Sep 2016Ethicon Endo-Surgery, LlcSurgical instrument having force feedback capabilities
US944581323 Aug 201320 Sep 2016Ethicon Endo-Surgery, LlcClosure indicator systems for surgical instruments
US94519585 Aug 201327 Sep 2016Ethicon Endo-Surgery, LlcSurgical instrument with firing actuator lockout
US94684381 Mar 201318 Oct 2016Eticon Endo-Surgery, LLCSensor straightened end effector during removal through trocar
US948047628 Mar 20121 Nov 2016Ethicon Endo-Surgery, LlcTissue thickness compensator comprising resilient members
US948621420 May 20138 Nov 2016Ethicon Endo-Surgery, LlcMotor driven surgical fastener device with switching system configured to prevent firing initiation until activated
US949216714 Mar 201315 Nov 2016Ethicon Endo-Surgery, LlcArticulatable surgical device with rotary driven cutting member
US949821930 Jun 201522 Nov 2016Ethicon Endo-Surgery, LlcDetachable motor powered surgical instrument
US951082823 Aug 20136 Dec 2016Ethicon Endo-Surgery, LlcConductor arrangements for electrically powered surgical instruments with rotatable end effectors
US951083023 Oct 20146 Dec 2016Ethicon Endo-Surgery, LlcStaple cartridge
US951706328 Mar 201213 Dec 2016Ethicon Endo-Surgery, LlcMovable member for use with a tissue thickness compensator
US95170685 Aug 201313 Dec 2016Ethicon Endo-Surgery, LlcSurgical instrument with automatically-returned firing member
US952202912 Mar 201320 Dec 2016Ethicon Endo-Surgery, LlcMotorized surgical cutting and fastening instrument having handle based power source
US95497325 Mar 201324 Jan 2017Ethicon Endo-Surgery, LlcMotor-driven surgical cutting instrument
US95547941 Mar 201331 Jan 2017Ethicon Endo-Surgery, LlcMultiple processor motor control for modular surgical instruments
US956103213 Aug 20137 Feb 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising a staple driver arrangement
US956103828 Jun 20127 Feb 2017Ethicon Endo-Surgery, LlcInterchangeable clip applier
US95660618 Feb 201314 Feb 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasably attached tissue thickness compensator
US957257422 Jun 201521 Feb 2017Ethicon Endo-Surgery, LlcTissue thickness compensators comprising therapeutic agents
US957257727 Mar 201321 Feb 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a tissue thickness compensator including openings therein
US957464430 May 201321 Feb 2017Ethicon Endo-Surgery, LlcPower module for use with a surgical instrument
US95856578 Feb 20137 Mar 2017Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US95856587 Apr 20167 Mar 2017Ethicon Endo-Surgery, LlcStapling systems
US95856638 Mar 20167 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument configured to apply a compressive pressure to tissue
US95920508 Feb 201314 Mar 2017Ethicon Endo-Surgery, LlcEnd effector comprising a distal tissue abutment member
US959205212 Mar 201414 Mar 2017Ethicon Endo-Surgery, LlcStapling assembly for forming different formed staple heights
US959205322 May 201414 Mar 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising multiple regions
US95920544 Nov 201514 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapler with stationary staple drivers
US960359528 Feb 201428 Mar 2017Ethicon Endo-Surgery, LlcSurgical instrument comprising an adjustable system configured to accommodate different jaw heights
US960359830 Aug 201328 Mar 2017Ethicon Endo-Surgery, LlcSurgical stapling device with a curved end effector
US96158268 Feb 201311 Apr 2017Ethicon Endo-Surgery, LlcMultiple thickness implantable layers for surgical stapling devices
US962962314 Mar 201325 Apr 2017Ethicon Endo-Surgery, LlcDrive system lockout arrangements for modular surgical instruments
US96296297 Mar 201425 Apr 2017Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US962981420 Mar 201425 Apr 2017Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US96491109 Apr 201416 May 2017Ethicon LlcSurgical instrument comprising a closing drive and a firing drive operated from the same rotatable output
US964911128 Jun 201216 May 2017Ethicon Endo-Surgery, LlcReplaceable clip cartridge for a clip applier
US965561411 Mar 201323 May 2017Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument with an end effector
US965562430 Aug 201323 May 2017Ethicon LlcSurgical stapling device with a curved end effector
US966211015 Sep 201530 May 2017Ethicon Endo-Surgery, LlcSurgical stapling instrument with an articulatable end effector
US967535530 Aug 201313 Jun 2017Ethicon LlcSurgical stapling device with a curved end effector
US968723014 Mar 201327 Jun 2017Ethicon LlcArticulatable surgical instrument comprising a firing drive
US96872378 Jun 201527 Jun 2017Ethicon Endo-Surgery, LlcStaple cartridge including collapsible deck arrangement
US969036226 Mar 201427 Jun 2017Ethicon LlcSurgical instrument control circuit having a safety processor
US969377724 Feb 20144 Jul 2017Ethicon LlcImplantable layers comprising a pressed region
US97003091 Mar 201311 Jul 2017Ethicon LlcArticulatable surgical instruments with conductive pathways for signal communication
US970031023 Aug 201311 Jul 2017Ethicon LlcFiring member retraction devices for powered surgical instruments
US97003178 Feb 201311 Jul 2017Ethicon Endo-Surgery, LlcFastener cartridge comprising a releasable tissue thickness compensator
US970032128 May 201411 Jul 2017Ethicon LlcSurgical stapling device having supports for a flexible drive mechanism
US970699119 Feb 201418 Jul 2017Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples including a lateral base
US972409129 Aug 20138 Aug 2017Ethicon LlcSurgical stapling device
US97240945 Sep 20148 Aug 2017Ethicon LlcAdjunct with integrated sensors to quantify tissue compression
US972409813 Nov 20148 Aug 2017Ethicon Endo-Surgery, LlcStaple cartridge comprising an implantable layer
US973069212 Mar 201315 Aug 2017Ethicon LlcSurgical stapling device with a curved staple cartridge
US973069517 Sep 201515 Aug 2017Ethicon Endo-Surgery, LlcPower management through segmented circuit
US973069723 Apr 201515 Aug 2017Ethicon Endo-Surgery, LlcSurgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US973366326 Mar 201415 Aug 2017Ethicon LlcPower management through segmented circuit and variable voltage protection
US97373015 Sep 201422 Aug 2017Ethicon LlcMonitoring device degradation based on component evaluation
US97373028 Mar 201622 Aug 2017Ethicon LlcSurgical stapling instrument having a restraining member
US973730310 Sep 201522 Aug 2017Ethicon LlcArticulating surgical stapling instrument incorporating a two-piece E-beam firing mechanism
US974392825 Mar 201429 Aug 2017Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US974392926 Mar 201429 Aug 2017Ethicon LlcModular powered surgical instrument with detachable shaft assemblies
US975049828 Sep 20155 Sep 2017Ethicon Endo Surgery, LlcDrive systems for surgical instruments
US975049926 Mar 20145 Sep 2017Ethicon LlcSurgical stapling instrument system
US975050124 May 20165 Sep 2017Ethicon Endo-Surgery, LlcSurgical stapling devices having laterally movable anvils
US97571237 Mar 201312 Sep 2017Ethicon LlcPowered surgical instrument having a transmission system
US975712424 Feb 201412 Sep 2017Ethicon LlcImplantable layer assemblies
US97571285 Sep 201412 Sep 2017Ethicon LlcMultiple sensors with one sensor affecting a second sensor's output or interpretation
US975713012 Mar 201412 Sep 2017Ethicon LlcStapling assembly for forming different formed staple heights
US97702458 Feb 201326 Sep 2017Ethicon LlcLayer arrangements for surgical staple cartridges
US977560824 Feb 20143 Oct 2017Ethicon LlcFastening system comprising a firing member lockout
US977560923 Aug 20133 Oct 2017Ethicon LlcTamper proof circuit for surgical instrument battery pack
US977561330 Aug 20133 Oct 2017Ethicon LlcSurgical stapling device with a curved end effector
US977561425 Jan 20163 Oct 2017Ethicon Endo-Surgery, LlcSurgical stapling instruments with rotatable staple deployment arrangements
US97821691 Mar 201310 Oct 2017Ethicon LlcRotary powered articulation joints for surgical instruments
US97888348 Feb 201317 Oct 2017Ethicon LlcLayer comprising deployable attachment members
US97888365 Sep 201417 Oct 2017Ethicon LlcMultiple motor control for powered medical device
US97953817 Apr 201624 Oct 2017Ethicon Endo-Surgery, LlcRobotically-controlled shaft based rotary drive systems for surgical instruments
US979538220 Aug 201324 Oct 2017Ethicon LlcFastener cartridge assembly comprising a cam and driver arrangement
US979538322 Sep 201624 Oct 2017Ethicon LlcTissue thickness compensator comprising resilient members
US979538427 Mar 201324 Oct 2017Ethicon LlcFastener cartridge comprising a tissue thickness compensator and a gap setting element
US98016269 Apr 201431 Oct 2017Ethicon LlcModular motor driven surgical instruments with alignment features for aligning rotary drive shafts with surgical end effector shafts
US980162726 Sep 201431 Oct 2017Ethicon LlcFastener cartridge for creating a flexible staple line
US980162826 Sep 201431 Oct 2017Ethicon LlcSurgical staple and driver arrangements for staple cartridges
US980163420 Oct 201431 Oct 2017Ethicon LlcTissue thickness compensator for a surgical stapler
US980461826 Mar 201431 Oct 2017Ethicon LlcSystems and methods for controlling a segmented circuit
US980824414 Mar 20137 Nov 2017Ethicon LlcSensor arrangements for absolute positioning system for surgical instruments
US98082466 Mar 20157 Nov 2017Ethicon Endo-Surgery, LlcMethod of operating a powered surgical instrument
US980824730 Jun 20157 Nov 2017Ethicon LlcStapling system comprising implantable layers
US980824923 Aug 20137 Nov 2017Ethicon LlcAttachment portions for surgical instrument assemblies
US98144609 Apr 201414 Nov 2017Ethicon LlcModular motor driven surgical instruments with status indication arrangements
US981446223 Jun 201414 Nov 2017Ethicon LlcAssembly for fastening tissue comprising a compressible layer
US20090005807 *29 Jun 20071 Jan 2009Hess Christopher JSurgical staple having a slidable crown
Classifications
U.S. Classification526/160, 526/107, 526/943, 526/97
International ClassificationC08F4/642, C08F4/02, C08F4/646, C08F4/659, C08F10/02, C08F4/6592, C08F110/02
Cooperative ClassificationY10S526/943, C08F10/02, C08F110/02, C08F4/65925, C08F4/65912
European ClassificationC08F10/02