US20050099963A1 - Data transfer and synchronization system - Google Patents

Data transfer and synchronization system Download PDF

Info

Publication number
US20050099963A1
US20050099963A1 US10/976,584 US97658404A US2005099963A1 US 20050099963 A1 US20050099963 A1 US 20050099963A1 US 97658404 A US97658404 A US 97658404A US 2005099963 A1 US2005099963 A1 US 2005099963A1
Authority
US
United States
Prior art keywords
data
information
application
server
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/976,584
Inventor
David Multer
Robert Garner
Leighton Ridgard
Liam Stannard
Donald Cash
Richard Onyon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/976,584 priority Critical patent/US20050099963A1/en
Publication of US20050099963A1 publication Critical patent/US20050099963A1/en
Priority to US12/037,609 priority patent/US8315976B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/10File systems; File servers
    • G06F16/17Details of further file system functions
    • G06F16/178Techniques for file synchronisation in file systems

Definitions

  • the invention relates to the transference of data between two systems independent of the form in which the data is kept on the respective systems, and in particular to providing an efficient means of communicating data between systems and devices.
  • computing-related devices has not been limited to personal computers or work stations.
  • the number of personal computing devices has grown substantially in both type and format.
  • Small, hand-held computers carry a multitude of contact, personal, document, and other information and are sophisticated enough to allow a user to fax, send e-mails, and communicate in other ways wirelessly.
  • Even advanced cellular phones carry enough memory and processing power to store contact information, surf the web, and provide text messaging.
  • the need to transfer information between them has grown significantly as well.
  • 3Com Palm® OS-based organizer such as the 3Com Palm® series of computing devices, which uses its own calendaring system, yet lets users synchronize the data therein with a variety of different personal information manager software packages, such as Symantec's ACT!TM, Microsoft's Outlook®, and other systems.
  • an intermediary synchronization program such as Puma Technology, Inc.'s Intellisync® is required.
  • Intellisync® is an application program which runs on both the hand-held device and the computer which stores the information data and maps data systems between non-uniform data records.
  • One component of these synchronization systems is that the synchronization process must be able to delineate between when changes are made to specific databases and must make a decision about whether to replace the changed field. Normally, this is measured by a change in one database, and no-change in a second database. In some cases, both databases will have changed between syncs. In this case, the sync operation must determine which of the two changes which has been made is to “win” and replace the other during the sync. Generally, this determinant of whether a conflict exists allows some means for letting the user resolve the conflict.
  • synchronization in this manner is generally accomplished by the copying of full records between systems.
  • a user is generally required to map data fields from one application to another and specify which data fields are assigned to which corresponding field in a different device. Less mapping is required where developers more robustly support various platforms of applications.
  • the data to be synchronized is generally in the form of text data such as records of addresses, contact information, calendar information, notes and other types of contact information.
  • data to be synchronized will be binary format of executable files or word processor-specific documents.
  • the synchronization routine simply determines whether or not the documents in question have changed, and uses a time-based representation to determine which of the two files is newer, and replaces the older file with the newer file to achieve synchronization, as long as the older of the two files was in fact not changed. This is the model used in the familiar “Briefcase” function in Microsoft Windows-based systems. If both files have changed, then the synchronization routine presents the option of conflict resolution to the user.
  • Such synchronization schemes are generally relatively inefficient since they require full band-width of the document or binary file to be transferred via the synchronization link.
  • the synchronization programs require interaction by the user to map certain fields between different programs.
  • synchronization programs generally require certain functions in order to be viable for widespread usage.
  • synchronization programs must work with popular applications on various platforms.
  • Sync applications must allow for conflicts resolution when changes are made to the same information on different devices between syncing events. They must provide synchronization for all types of formats of data, whether it be text data in the form of contacts, e-mails, calendar information, memos or other documents, or binary data in the form of documents or programs in particular types of formats.
  • applications which efficiently synchronize data between disparate types of devices can provide advantages in applications beyond synchronizing individual, personal information between, for example, a personal information manager hardware device such as a Palm® computing device, and a personal computer.
  • a personal information manager hardware device such as a Palm® computing device
  • PIM personal information management
  • desktop systems lend themselves to furthering applications requiring data transfer between other types of devices, on differing platforms. These objectives include speed, low bandwidth, accuracy, and platform independence.
  • the invention comprises a data transmission system which optimizes transfer and updates of information between systems by providing difference information between the systems.
  • Information transfer can occur one way (broadcast) or two-way (sync).
  • the invention comprises a data transmission system.
  • the system includes a differencing transmitter transmitting at least one set of difference transactions and a differencing receiver receiving said at least one set of difference transactions.
  • the differencing transmitter of the data transmission system may comprise a difference source interface, a copy of a previous state of said difference source, and a difference transaction generator.
  • the differencing receiver of the data transmission system comprises a difference destination interface, a copy of a previous state of said difference destination, and a destination data constructor.
  • the difference source interface converts difference source data to a universal format.
  • the differencing transmitter and differencing receiver may be coupled to a storage server, and said difference information is transmitted to said storage server by said differencing transmitter and retrieved from said storage server by said differencing receiver.
  • the data transmission system further includes a management server communicating with said differencing transmitter and said differencing receiver.
  • the data transmission system is coupled to a network.
  • the system includes a differencing transmitter the transmitting at least one set of change transactions reflecting changes to a data source to the network, and a plurality of differencing receivers coupled to the network receiving said at least one set of change transactions from the network.
  • the invention comprises a data synchronization system for a first system having a plurality of data sources each with a data source format, and a second system having a plurality of data sources each with a data source format.
  • the data sync system comprises a first data synchronizer on the first system transmitting at least one set of difference information to an output, and a second data synchronizer on the second system coupled to the first system receiving said at least one set of difference information from the first system.
  • the invention comprises a data synchronization system which includes a server.
  • a first system having a plurality of data file types on the system is coupled to the server.
  • the first system includes a differencing synchronizer on the first system extracting a first set of differencing data from the data files on the first system when the data files on the system are changed, outputting the differencing data to the server, and retrieving differencing data from the server and applying it to selected data files on the first system.
  • the system includes at least one second system having a second plurality of data file types on the second system and a differencing synchronizer on the second system extracting the differencing data from the data files on the second system when the data files on the system are changed, outputting the differencing data to the server, and retrieving the first set of differencing data from the server and applying it to selected data files on the second system.
  • a method for synchronizing at least a first file and a second file resident on a first and a second systems, respectively comprises the steps of: determining difference data resulting from changes to a first file on the first system; transmitting the difference information to a second system; applying the difference information to generate change data for the second file; and updating the second file on the second system with the difference data.
  • FIGS. 1-7 are block diagrams of various configurations of the system of the present invention utilizing the differencing routines of the present invention.
  • FIG. 8 is an overview of one embodiment of the system architecture in accordance with the present invention.
  • FIG. 9A is a block diagram of the desktop device engine of the present invention.
  • FIG. 9B is a block diagram of the configuration of server side device engines utilized in accordance with the present invention.
  • FIG. 10 is a block diagram of one embodiment of the device engine in an operating system such as Windows.
  • FIG. 11 is a block diagram of an application object incorporated into the device engine of the present invention.
  • FIG. 12 is a diagram of storage object hierarchy of a universal data format utilized with the system of the present invention.
  • FIG. 13 is a listing of exemplary item objects used in accordance with the routines of the present invention.
  • FIG. 14 is a block diagram of a management storage server architecture for used in the system of the present invention.
  • FIG. 15 is a flow diagram illustrating a pull synchronization in accordance with the system of the present invention.
  • FIG. 16 is a flow diagram illustrating a push synchronization in accordance with the system of the present invention.
  • FIG. 17 is a diagram of the management server architecture in accordance with the present invention.
  • the present invention includes a system and a method for transferring data between two devices which require information to be shared between them.
  • a “device” is defined as a collection of elements or components organized for a common purpose, and may include hardware components of a computer system, personal information devices, hand-held computers, notebooks, or any combination of hardware which may include a processor and memory which is adapted to receive or provide information to another device; or any software containing such information residing on a single collection of hardware or on different collections of hardware.
  • Such software might include applications such as personal information managers, which include contact data and other such information, e-mail systems, and file systems, such as those utilized by Microsoft Windows NT operating systems, Unix operating systems, Linux operating systems, or other systems capable of storing file types having binary formats which translate to application formats of differing types.
  • the invention comprises a set of programs specifically designed to transmit and/or receive differencing data from one device to another device, irrespective of the type of file system, data, content, or system hardware configuration.
  • the system comprises store and forward technology which utilizes the differencing technology to implement services via a public or private network, such as the Internet.
  • the system of the present invention finds particular usages in synchronizing personal contact information between different systems, but it will be readily apparent to one of average skill in the art that the present invention provides advantages having broader applicability than merely synchronizing various types of systems. For example, replying and forwarding e-mail can be made more efficient by forwarding only the differences in e-mails between systems. As a further example, updates to systems software via a network can be made more efficient where, for example, instead of completely replacing different modules of an application, only the differences of the modules need be forwarded, resulting in more efficient use of existing bandwidth.
  • FIGS. 1-7 show various configuration alternatives of the present invention.
  • FIG. 1 shows an embodiment of the present invention in a basic configuration.
  • a first system or device, system A, and a second system or device, system B are coupled by a communication line 110 .
  • communication line may be any direct coupling of the two systems which allows data to pass between the systems such as, for example, by means of serial ports, parallel ports, an Ethernet connection or other type of network, or an infrared link, or the like.
  • System A includes a functional block 100 representing a differencing transmitter in accordance with the present invention.
  • System B includes a functional block 102 representing the differencing receiver in accordance with the present invention.
  • the differencing transmitter 100 upon receipt of a control signal enabling operation of the transmitter, examines a specified data structure of information which is to be transmitted to system B. Differencing transmitter 100 extracts such information from System A and converts the information extracted into difference information ⁇ . Difference information ⁇ comprises only the changes to System B's data which have occurred on System B and instructions for implementing those changes. Hence, if the data to be transferred is a change to a file which exists on system B, difference information ⁇ comprises only the differences in such file and where such differences occur. If the data does not exist at all on System B, the difference information ⁇ will be the entire file. Difference information ⁇ received by differencing receiver 102 at System B is reconstructed at System B, and the changes reflected therein are updated on System B.
  • the differencing transmitter on System A will extract the differences in the file known to exist on System B and any new files, and transmit only those differences (an instructions for where to insert those differences) to the differencing receiver 102 .
  • Differencing receiver 102 will interpret the difference information ( ⁇ ) and reconstruct the binary files on System B. In this manner, the information on System B is updated without the need to transfer the entire binary files between the Systems.
  • FIG. 2 shows a second example of the system of the present invention.
  • both System A and System B include functional blocks 104 , each representing a differencing synchronizer.
  • the function of the synchronizer 104 is similar to that of the transmitter and receiver combined; the synchronizer will allow difference information ⁇ to be both transmitted and received.
  • System A and System B are a portable computer and a desktop computer, respectively, where information such as contact information needs to be synchronized between the two, the differencing synchronizer 104 will extract changes made to the contact information on either System A or System B and at predetermined times, transmit the information ⁇ between the systems, and reconstruct the data on the receiving system to update information from the sending system, in order to ensure that both systems contain the same data.
  • FIG. 3 shows yet another alternative embodiment of the system of the present invention.
  • System A again includes a differencing transmitter and System B includes a differencing receiver 102 .
  • a storage server 300 is coupled between System A and System B.
  • Storage server 300 may store a separate database of the difference information ⁇ provided by System A, which allows System A to provide its difference information ⁇ to the storage server 300 at a first point in time, and storage server 300 to provide the same difference information ⁇ to System B at a second point in time, but not the same as the first point in time.
  • multiple sets of difference information ⁇ may be provided at different points in time, and stored for later retrieval by System B.
  • the difference information sets may be maintained on server 300 to allow data on either System A or System B to be returned to a previous state.
  • Storage server 300 is coupled by a direct connection 110 to both System A and System B.
  • Storage server 300 may be a server specifically adapted to receive differencing information ⁇ from the receiver 100 and provide it to the transmitter 102 .
  • server 300 includes specific functional routines for enabling this transfer.
  • server 300 comprises standard information server types which respond to standard Internet communication protocols such as file transfer protocol (FTP), or hypertext transfer protocol (HTTP).
  • FTP file transfer protocol
  • HTTP hypertext transfer protocol
  • FIG. 4 shows yet another alternative embodiment of the system of the present invention wherein System A and System B, once again coupled directly to a storage server 300 by a direct connection line 110 , each include a differencing synchronizer 104 .
  • Difference information ⁇ can be passed to and from System A through synchronizer 104 to and from the storage server 300 at a first point in time, and to and from System B at a second point in time.
  • storage server 300 may include routines, described below, for resolving conflicts between data which has changed on both System A and System B independently after the last point in times when the systems were synchronized.
  • FIG. 5 shows yet another alternative embodiment of the present invention including four systems: System A which includes a differencing synchronizer 104 ; System B which includes a differencing receiver 102 ; System C which also includes a differencing synchronizer 104 ; and System D which includes a differencing transmitter 100 .
  • System A which includes a differencing synchronizer 104
  • System B which includes a differencing receiver 102
  • System C which also includes a differencing synchronizer 104
  • System D which includes a differencing transmitter 100 .
  • Each is directly coupled to a storage server 300 , allowing control of transmission of differencing data A between the various systems.
  • Server 300 may include routines, described in further detail below, to track the various types of systems which comprise System A through System D, and which control the transmission of various components of the difference information ⁇ to each of the various systems.
  • the difference information ⁇ 2 which is provided to it may be a sub-component of that which is transferred between System A in the storage server 300 , or may be simply receiving broadcast information ⁇ 4 from System D.
  • server 300 does not itself route the difference information derived from each receiver/transmitter/synchronizer.
  • Server 300 acts as a repository for the information, and the determination of which difference information ⁇ is attributed to which receiver/transmitter/synchronizer is made by each receiver/transmitter/synchronizer.
  • FIG. 6 shows yet another alternative embodiment of the present invention.
  • a synchronizer is provided in storage server 300 .
  • a forwarder and/or receiver may be provided in server 300 as well.
  • the particular embodiment shown herein may be advantageous where device processing power and memory are limited, such as cases where the device is a cell phone.
  • the data transferred between system A and the device engine 104 a in such an embodiment may or may not be difference information, depending on whether System A has the capacity to detect and output difference information.
  • Each of the devices may include a differencing receiver, a differencing transmitter, or a differencing synchronizer. It should be understood that a portion of the differencing synchronizer 104 a may reside on System A and another portion may reside on server 300 .
  • FIG. 7 shows yet another alternative embodiment of the present invention wherein the devices shown in FIG. 6 may be coupled to a combination of public or private networks 700 such as, for example, the Internet.
  • the network 700 may include one or more storage servers 300 1 , 300 2 , and in such cases the difference information ⁇ transmitted between each such device 602 - 610 via intermediate storage on one of such servers.
  • Network 700 may couple the devices to one or more specialized function servers, such as servers specifically designed to include a differencing forwarder, receiver or synchronizer.
  • Such devices may comprise, by way of example and without limitation, a personal office PC 602 , a smart telephone 604 , a user's office PC 606 , a personal information Palm® computing device 608 , a telephone or cellular phone 604 , a home personal computer 606 , or a web browser 610 .
  • Each differencing receiver, differencing transmitter, or differencing synchronizer present in devices 602 - 610 includes means to poll the data stored on storage servers 300 1 , 300 2 to determine whether the data present at storage server 300 1 , 300 2 includes difference information which the particular receiver or synchronizer is required to have to synchronize the data on the device on which it resides.
  • the differencing receiver, transmitter, and synchronizer are described will be discussed with respect to its use in synchronizing contact information, calendar information, and binary file information between a plurality of different devices in the context of data synchronization.
  • the system of the present invention is not limited to synchronization applications, or applications dependent upon specific types of data, such as contact information or scheduling information.
  • the transmission of data comprising only the differences in data between two systems via routines which extract the data and reassemble data on the various systems, represents a significant advancement in the efficient transmission of data.
  • the present invention allows for optimization in terms of a reduction in the bandwidth utilized to transmit data between two systems, since only changes to data are transferred. This consequently increases the speed at which such transactions can take place since the data which needs to be transmitted is substantially smaller than it would be were entire files transferred between the systems.
  • the ability of devices to connect to the Internet is leveraged to manage data transfer between the systems.
  • each particular device which requires information access which can connect to the Internet may become part of the system of the present invention, and synchronize its data with other devices defined by a user as being part of the system.
  • the system comprises client software which provides the functions of the differencing transmitter 100 , differencing receiver 102 , and differencing synchronizer 104 in the form of a device engine.
  • the device engine includes at least one component particular to the type of device on which the device engine runs, which enables extraction of information from the device and conversion of the information to difference information, and transmission of the difference information to the storage server. This allows the replication of information across all systems coupled to the system of the present invention.
  • the storage servers 300 utilized in the system of the present invention may be any type of storage server, such as an Internet server or an FTP server, and may be provided from any source, such as any Internet service provider (ISP), particular aspects of a storage server which may be useful and which may be customized to optimize transfer of information between systems coupled as part of the present invention will be described below. Synchronization of devices utilizing the synchronization system of the present invention is possible as long as an Internet connection between the devices is available.
  • ISP Internet service provider
  • the Internet connection between the devices or between the devices and a server need not exist at the same point in time, and new devices may be added to the system of the present invention at any point in time without the loss of information.
  • the system provides totally transparent access to information and the device engine on each device provides an operating system independent extension which allows seamless integration of the personal information services in accordance with the present invention.
  • FIG. 8 shows an overview of the architecture of the system of the present invention utilized for synchronizing or “syncing” information on different types of devices.
  • the system of the present invention allows the coupling of a collection of personal devices and applications one uses when working with personal information. Nevertheless, the system may be used to broadcast public or private information to various device types.
  • System software in the form of a device engine for each device which is declared a part of the system of the invention is distributed across the collection of devices to enable synchronization. Distribution of the device engines may occur via, for example, an installation package forwarded over an Internet connection.
  • the device engine software of the present invention forms a distributed processing network which maintains consummate synchronization of all information in the system. The processing load associated with delivering this service is pushed to the end-point devices which provides for easy scaling of the system to ever-larger applications.
  • the present invention contemplates the use of two types of device engine: one totally embodied on the server which outputs change data to the server; and a second totally embodied on the server receiving device generated change information from the device.
  • a hybrid of the two having a portion of the device engine on the device and a portion on the server, is disclosed.
  • a telephone 802 may comprise a cellular phone or a standard POTS-connected telephone.
  • Telephone 802 may include contact information and, as is supported with a newer generation of cellular telephones, appointments and task data stored in a data structure 812 .
  • the application 812 which utilizes the application data 822 comprising such information is all stored in the telephone unit 802 .
  • a personal digital assistant such as a Palm® computing device 804 includes application 814 and application data 824 which may include information such as contacts, appointments and tasks, and may also include file information such as documents which are created and stored on the PDA 804 .
  • Device 806 is represented as a Windows personal computer running an operating system such as Microsoft Windows 95, 98, NT or 2000.
  • Applications 816 which may be running on device 806 include the Windows operating system itself, Microsoft Outlook, Symantec's ACT Personal Information Manager, Goldmine Software's Goldmine, Lotus Organizer, Microsoft's Internet Explorer web browser, Netscape's Communicator Suite, Qualcomm's Eudora e-mail, and various other programs, each of which has its own set of application data 826 which is required to be synchronized not only with devices outside the system 806 , but also between devices and applications within the system itself.
  • a dedicated web browser client 808 is shown which couples via the Internet to web portal applications 816 which have their own set of application data 828 .
  • web portal applications are provided on a separate server and provided to browser 808 via an Internet connection.
  • the web portal application stored on the portal application provider includes a set of application data 828 which a user may wish to synchronize.
  • a large web portal such as Yahoo! and Snap.com provide services such as free e-mail and contact storage to their users. A user may wish to synchronize this with applications running on their cellular phone, PDA, or Windows devices.
  • a device engine is associated with each type of device.
  • a cellular device engine 862 communicates and incorporates itself with the application data 822 of the cellular phone.
  • a PDA device engine 864 is provided, which may be based on either the Palm® operating system, Windows CE operating system, or other PDA-type operating systems as necessary.
  • a Windows-based device engine 866 includes a mechanism, discussed below, for extracting application data 826 from supported Windows applications 816 , and a web services device engine 868 incorporates to extract application data 828 from web portal applications 818 .
  • some device engines are provided entirely on the device (and are referred to herein as desktop device engines), while others include components a the back end server (which may comprise storage server 850 or a specialized server, as shown in FIG. 9B .) This is illustrated generally by lines 832 , 834 , 836 , and 838 in FIG. 8 . Also, in FIG. 8 , elements above dashed line 855 are provided by an administrator or service provider of the system of the present invention.
  • Each of the device engines 862 , 864 , 866 and 868 is configured relative to the type of device on which it resides. For example, the Cell phone device engine 862 includes one or more components arranged on the phone while others are on server 850 . Conversely, device engine 866 resides entirely on the windows device 806 .
  • Storage server 850 may be a generic storage server or it may be a storage server specifically adapted for use with the system of the present invention as discussed below.
  • One or more of the storage servers 850 are used to communicate transactions amongst the collection of systems 802 , 804 , 806 , 808 . It should be readily recognized that any number of different types of systems 802 , 804 , 806 , 808 may be provided in accordance with the present invention and incorporated into the system. However, for brevity, not all the different types of commercially available computing devices which are currently in use or in development, in which the system of the present invention may be incorporated, are listed.
  • the storage server 850 is simply a dumb storage server and each of the device engines transmits only difference information thereto to be stored in a particular location accessible by other device engines in the system.
  • each device engine implements all processing required to keep all the systems fully synchronized. Only one device engine needs to be coupled to the storage server 850 at one particular point in time. This permits synchronization of multiple systems in a disconnected fashion. Each device engine will download all transactions encapsulating changes that have occurred since the last synchronization from the server and apply them to the particular device.
  • the change or difference information ( ⁇ ) is provided in one or more data packages, the structure of which is described herein.
  • Each data package describes changes to any and all transfer information across all device engines, including but not limited to application data, files, folders, application settings, and the like.
  • Each device engine can control the download of data packages that include classes of information that apply to the specified local device 802 , 804 , 806 or 808 attached to that specific device engine.
  • device engine 862 will only need to work with changes to information describing contact names and phone numbers in application data 822
  • device engine 866 will be required to work with changes to e-mail, changes to document files, notes, as well as contact and address information since the application data 826 is much more extensive than application data 822 .
  • Each device engine includes compression/decompression and encryption/decryption components which allow encryption and/or compression of the data packages transmitted across Internet connection 710 . It should be recognized that compression and encryption of the data packages may be optionally provided. It is not required in accordance with the present invention.
  • Each device engine performs mapping and translation steps necessary for applying the data packages to the local format required for that type of information in the application data stores 822 - 828 .
  • the device engine also includes components which allow it to track ambiguous updates in cases where users have changed data to a particular data field on two different systems simultaneously since the last update. In this case, the device engine includes a mechanism for drawing this to the attention of the user and allowing the user to resolve the conflict.
  • FIG. 9A illustrates a single device engine utilized with a generic application 810 and a generic storage server 850 .
  • FIG. 9A illustrates a desktop device engine, since all processing occurs on the device and only difference information is transmitted to server 850 . Nevertheless, an understanding of the desktop device engine will aid in understanding server side devices engines, hereinafter described. Shown in FIG. 9 are the functional components of a device engine in block form and their interrelationship to each other.
  • the device engine 860 is equivalent to the functional block of a differencing sequencer 104 shown in FIGS. 1-7 .
  • each device engine 860 includes an application object 910 .
  • the application object is specific to each particular application 810 and provides a standard interface between the device engine and the balance of the data transmission system of the invention, and the application 810 . Details of the application object will be described in further detail below.
  • the application object is a pluggable architecture which supports a wide variety of vendor-unique applications.
  • the job of the application object is to map data from the application into a temporary or “universal” data structure by connecting to the application via any number of standard interfaces to gain access to the applications data.
  • the data structure of the application object puts the data in a generic or “universal data” format which may be used by the device engine components to generate data packages for provision to the storage server.
  • AOS application object store
  • Application object store 920 which includes a copy of the device's data at a point just after the previous data extraction and synchronization occurred.
  • Application object store 920 is a mirrored interface which stores a snapshot of the previous state of the data from the application object 910 in the device engine. The size of the AOS will depend on the data being collected by each device engine.
  • Delta module 950 is a differencing engine which calculates differences in data between the output of the application object 910 and the copy of the data which is provided in an application object store (AOS) 920 .
  • the actual differencing and patch routine can comprise a routine such as XDelta or YDelta.
  • the delta module 950 will be referred to herein alternatively in certain portions of the description as “CStructuredDelta.”
  • the difference information is alternatively referred to herein as a “change log.”
  • Each change log (or set of difference information) is a self describing series of sync transactions. As described below, the change log may be encrypted and compressed before output to the network.
  • the Application Object will, using a mechanism discussed below, extract the data of each application in the device and convert it to a universal data format.
  • the delta module will then generate a difference set by comparing the output of the Application Object and the AOS.
  • This difference information is forwarded to the encryption and compression routines for output to the storage server 850 in the form of a data package.
  • the data from one application can be used to synchronize to data in another application in, for example, a windows environment, as shown by arrow 1050 in FIG. 10 .
  • the application object may interface directly unstructured binary data or with structured application data.
  • the differencing routine supports both uses of the delta module 950 in comparison generation.
  • operation of the application object and delta module is simplified by the fact that some applications, such as PDA's, have the ability to output changes to its data.
  • the delta module 950 need only provide the data into the data package, since comparison to an AOS is not required—the application already includes a mechanism for tracking changes made to its own data.
  • the applications provide, at most, a standard interface to access the data, such as Microsoft's OBDC interface, the Microsoft standard Application Programming Interface (API), or other similar standard interfaces.
  • Device engine 860 further includes a versioning module which applies a version number per object in the data package.
  • each object in the data package is assigned a universally unique ID (UUID).
  • UUID universally unique ID
  • Versioning module 915 allows each device engine to check the state of the last synchronization against data packs which have been provided to the storage server to determine which data packages to apply. This allows the device engine to sync itself independently of the number of times another device engine uploads changes to the storage server. In other words, a first device engine does not care how many times a second device engine uploads data packages to the server.
  • An events module 925 controls synchronization initialization events. Items such as when to sync, how to sync, trigger the delta module 950 to perform a synchronization operation.
  • a user interface 930 is provided to allow additional functional features to a system user of the particular device to which the device engine 860 is coupled.
  • the user interface is coupled to a conflict resolution module 940 , a filtering module 945 , and a field mapping module 935 .
  • Each of the modules provides the functionality both necessary for all synchronization programs, and which users have come to expect.
  • Filtering module 945 allows filtering for types of content based on, for example, a field level content search.
  • the field mapping module 935 allows for the user to re-map certain interpretations of items which were provided in the document stream. For example, if the device engine 860 is operating on a personal computer, and a synchronization is occurring between the personal computer and a notebook computer, and the user has a “my documents” directory on the personal computer which he wishes to map to a different directory on the notebook computer, the field mapping module 935 allows for this re-mapping to occur. It should be recognized that the field mapping module allows for changes in directing the output of the data package.
  • the field mapping module 935 is not necessary to map particular data fields of, for example, contact information from one application, such as Microsoft Outlook, to a different application, such as Symantec's ACT, as is the traditional use of field mapping and synchronizing applications.
  • Delta module 950 is further coupled to a compression module 970 and an encryption module 960 .
  • compression encryption modules need not be enabled. Any type of compression module 970 , such as the popular PK Zip or Winzip modules, or those available from HiFn Corporation may be utilized in accordance with the invention. Moreover, any type of encryption algorithms, such as MD5, RCH 6, Two Fish, or Blowfish, or any other symmetric encryption algorithm, may be utilized. In one embodiment of the invention, encryption without compression is used. In a second embodiment of the invention, compression without encryption is used. In a third embodiment of the invention, neither compression or encryption is used, and in a fourth embodiment of the invention, both compression and encryption are used.
  • Versioning module 915 also allows the device engine 860 to support multiple users with distinct synchronization profiles. This allows multiple users accessing the same machine to each synchronize their own data set using the same device engine. For example, if the application 810 on a particular device comprises Microsoft Outlook on a personal computer, coupled to a Microsoft Exchange server, and Outlook is configured to have multiple user profiles, versioning module 915 will track the data applied through the device engine when a sync request occurs. This allows two users of the same Outlook client software which access different data sets, either in the client computer or on a separate server, to utilize the same device engine and the system of the present invention via the same machine. In a further embodiment, a particular device engine supports the use of foreign devices accessing the system via the same connection.
  • Palm® devices for example, use a cradle to connect to a computer and/or Internet connection. If a particular user wishes to allow another user to use his Palm® pilot cradle connection to synchronize the other user's Palm® pilot, the device engine can generate data packages to update the local application object store for the foreign device.
  • the application object store can therefore be used as a temporary storage for cases allowing synchronization of foreign devices.
  • the output of the device engine 900 comprises a data package which is output to storage server 850 .
  • the data package can be stored on the storage server 850 until a request is made to a particular location of the storage server by another device engine.
  • delta engine 900 can query alternative locations on the storage server for access to synchronized data within the system of the present invention. Access to areas of the storage server is controlled by a management server (MS) described more fully below.
  • MS management server
  • each sync operation requires that the device engine for each device login to the management server to authenticate the device and provide the device engine with the location of the individual device's data packages on the storage server.
  • Data packages may be advantageously provided to the device engine from the storage server in a streaming format, allowing processing to occur using a minimum of bandwidth and storage in the devices.
  • the device engine 860 and particularly the delta module 950 interpret data packages based on the versioning information and the mirrored data present in the application object store 920 .
  • the delta module returns differenced data to the application object 910 for the particular application which then translates the delta information into the particular interface utilized for application 810 .
  • the device engine uses the local application object store 920 to keep track of the last synchronized version of each application's actual data, which is then used for the next data comparison by the delta module on the next sync request.
  • Generated data packages can include operations and encode changes generated from resolving ambiguous cases as described above.
  • FIG. 9B depicts how server based device engines may be provided in the system of the present invention.
  • the Palm® device example is shown in this embodiment, where the Palm® device has the capability of connecting directly to the Internet and a service provider's data center 900 .
  • the data center includes a firewall 975 to prevent unauthorized communications with servers resident in the data center 900 and protect integrity of the data.
  • the storage server 850 may communicate directly through the firewall as may the management server (MS) 1410 .
  • MS management server
  • sync servers 982 and 984 are shown therein.
  • Sync server 982 is dedicated to the Palm® device, while sync server 980 is dedicated to, for example, a portal application (Portal1).
  • Palm® Device 804 a since the Palm® Device 804 a includes a mechanism for transmitting changes to its data directly, data may be transmitted using HTTP request and response via the firewall 975 to the sync server 982 where differencing and updating of data in the AOS can occur, after which changes can be downloaded to the Palm® 804 a.
  • the synchronization server is an application handles concurrent synchronization of user's data.
  • Each Sync Server includes plug-in support for multiple devices to be synchronized using the same sync server executable.
  • Each device type has it's own device name that identifies which AO/AOS components will be used during the sync.
  • the sync server uses the concept of a universal data record in its internal sync differencing engine and when sending data to and retrieving from external entities such as the AOS and AO.
  • the job of a server AO is simply to take the device-specific format of its record and convert into a universal record format.
  • the Sync Server has a plug-in architecture so that 3rd party application partners can easily add their services into the server.
  • the sync server discovers the sync components via the Windows NT registry.
  • this function is performed in a Component Manger which operates on each sync server to manage processing by each of the AO and AOS on the server.
  • Each AO and AOS are implemented as a stand-alone DLL that the Sync Server loads at initialization time, or when adding a new component via the Component Manager.
  • Each sync server is shown as dedicated to a single application. However, a sync server may handle multiple device types.
  • the Palm®'s AO data store 1050 resides on the Palm® device 804 a itself and a separate AOS data store 1052 exists for this configuration (an Oracle database).
  • the AOS and AO use the data store 1054 .
  • Device engines can generate additional data packages intended to resolve synchronization problems in other systems. For example, interfacing with the conflict resolution module 940 , if the user makes a change to a particular data store on an application object on his Palm® pilot, then makes an additional change to a personal information manager (PIM) application on his personal computer, the user can specify that the change made on the personal computer will “win” when the conflict is detected by the A engine and the versioning information between the two devices. This is essentially a definition that one particular set of data is correct and should replace the second set of data.
  • PIM personal information manager
  • FIG. 10 shows a specific embodiment of a desktop device engine utilized in, for example, a Microsoft Windows-based operating system environment.
  • a Windows operating system may have at least three specific applications which may require synchronization.
  • the system includes Netscape Communicator application 1040 having data such as bookmarks 1021 , contacts 1022 , and e-mail 1023 ; a Microsoft Outlook application 1042 which includes contact information 1024 , calendar information 1025 , e-mail information 1026 , note information 1027 , and tasks information 1028 ; and Windows operating system 1044 information including Favorites data 1029 , file system information 1030 , and individual files 1031 .
  • Each particular application 1040 , 1042 , 1044 has an associated application object 1010 , 1012 , 1014 .
  • Each of the respective application objects provides data back to delta module 950 in a generic format which is usable by the delta module in accordance with the foregoing description of the apparatus shown in FIG. 9A . From FIG. 10 , it will be additionally seen how the delta module 950 may be utilized to synchronize data between applications running on the same particular server.
  • the device engine hence does an intra-system sync such as, for example, between the contact information 1022 from Netscape and the contact information 1024 from Outlook.
  • FIG. 10 further illustrates the modularity of the system of the present invention allowing the device engine to include any number of different application objects to be provided on a single device to incorporate all applications run on that device.
  • the installation program may be tailored to provide application objects which may be present on a given system.
  • the installation program for a Windows machine will carry any number of application objects for systems and applications which may be present on a Windows machine.
  • the installer will check for the presence of given applications, and allow the user to add additional applications which may be installed in locations that are not the normal default installation areas for application support by the application objects which the installer is carrying, or de-select certain applications which, for one reason or another, the user may not wish to install an application object for and render a part of the system of the present invention.
  • FIG. 11 is a conceptual depiction of the structure of an application object.
  • the application object is a pluggable architecture which supports a wide variety of vendor-unique applications.
  • the consistent and scalable architecture of the system of the present invention for device engines is maintained by encapsulating system-dependent knowledge in a single component, i.e. the application object.
  • every application object supports a standard set of interfaces that every device engine understands.
  • Each application object maps these standard interfaces of the capabilities of a particular vendor application. Hence, there will be as many application objects as there are application types.
  • server and desktop device engines there are different types of server and desktop device engines, some having application objects entirely on the server, while others have application objects entirely on the desktop.
  • Each application object will include a connector 1110 which may comprise a generic interface to the particular application for which the application object store has been designed.
  • the connector when connecting to a Palm® device, the connector will be an HTTP protocol request routine which interfaces with the Palm® device's own built-in synchronization manager, which provides an output of records which have been changed on the Palm® device.
  • the Palm® since the Palm® outputs all the changes to its data via its own sync manager, in the Palm® application, the job of a server AO is simply to take the device-specific format of its record and convert into a universal record format.
  • the connector provides access for the application object to remove the data field from a particular application and convert it to a universal record structure.
  • the connector may be the Windows API and the job of the AO will be to translate data from, for example, the windows file system to a universal data format.
  • This universal data structure is then used by the delta module 950 to build data packages to be used in synchronization between components of the systems provided in the network system of the present invention.
  • Universal data structure mapping used on desktop application objects
  • universal data record mapping used by the server device engines
  • Each Application Object is a software component that interfaces with the third party application APIs (Application Programming Interface) to provide the programming services to the delta module for extraction and deposition of information data from and to the third party application domain during synchronization.
  • the AO maps the third party application data fields to system's domain.
  • the AO service is a collection of COM (Component Object Model) objects that can be developed in conjunction with the third party Windows application APIs as a form of a DLL (Dynamic Linked Library) in C or C++.
  • the DLL is loaded on demand at runtime during synchronization. It should be recognized that the application object need not be implemented using the COM model, but may be developed with other distributed object models.
  • Each AO has a COM interface-based design built-in. That is, instead of providing a set of traditional APIs as programming services, it provides a set of interface-based objects as programming services.
  • StructuredDelta the delta module, the primary intended user of each AO. StructuredDelta instantiates these COM objects and uses them throughout the synchronization session exclusively through the COM interfaces on those objects to interface with the third party application database.
  • Each AO component consists of a set of objects that translate the third party application data into the universal data middle format which underpins the entire spectrum of PIM data regardless of which third-party application the data comes from.
  • the objects in universal data format are device, (application) data class, store, folder, item, and data fields.
  • the AO digests the third party application data of any kind and reduces it into a few handful simple objects and field types. These objects and field types are fed into StructuredDelta engine and are compared by StructuredDelta in order of their hierarchy. The resulting differences (add, delete, modify) are logged as transactions in the difference information.
  • the data packs are transported to a storage server that may be actively managed by a management server for each individual user account and devices.
  • StructuredDelta uses AO objects to access and modify the individual AO objects and data fields.
  • AO objects serve as a buffer between individual application data and StructuredDelta so that StructuredDelta does not require knowledge of each application and database. All AO objects are temporary and created in the space of each AO by StructuredDelta through COM interfaces. AO objects are referenced when they are in use and they are freed when StructuredDelta stops using them.
  • AppObj is a root object of each AO component and there is one and only one per AO. AppObj provides an entry point into the individual application's database. StructuredDelta instantiates it and holds it on during the entire synchronization session and releases it afterward. AppObj offers a number of services such as what class of data it supports.
  • class CMyF1AppObj public Item, public AppObj, protected ModuleIdentity, protected DataClassInfo, protected ItemTypeInfo, protected ItemFieldMap, protected FolderInfo, protected DataFileInfo, protected SynchNotify, protected ErrorMsg, protected EnumItems, protected FindItem, protected ModifyItem
  • AppObj can contain children objects. They are Store objects. EnumItems interface is used to enumerate Store objects. FindItem interface is used to find the contained objects. ModifyItem interface enables AppObj to create a new Store object. AppObj is created by StructuredDelta calling CreateAppObject(HWND hWndParent, AppObj **ppObj).
  • the Store object represents a database of the individual application information. If the individual application can handle multiple databases at same time, one needs multiple Store objects.
  • Store object One can think of Store object as a specialized Folder object, the root folder of each particular application data domain.
  • the C++ example of Store's definition is shown below: class CMyStore : public Item, public ItemContainer, protected EnumItems, protected FindItem, protected FindItemByData, protected ModifyItem, protected ReadWrite ⁇ CMyStore( ); ⁇ CMyStore( ); ⁇ ;
  • EnumItems interface enables the enumeration of its contained folders while FindItem and FindItemByData interface is used to find contained Folders or Item objects.
  • ModifyItem and ReadWrite interface enables the modification of each application database.
  • Folder object is a specific data class of each individual application such as a table in the relational database or a collection of data records in each application.
  • the applications contact collection can be thought as a Folder object.
  • the C++ example of Folder's definition is shown below: class CMyFolder : public Item, public ItemContainer, protected EnumItems, protected FindItem, protected FindItemByData, protected ModifyItem, protected ReadWrite ⁇ public: CMyFolder( ); ⁇ CMyFolder( ); ⁇ ;
  • Folder object is also container. It can contain Item objects as well as Folder objects. EnumItem interface allows the enumeration of either Folder objects or Item objects or both. FindItem and FindItemByData interface is used to find contained Folder objects or Item objects. ModifyItem and ReadWrite interface enables the modification of an application's data tables.
  • Item object represents an individual entity of each application's domain specific data. Item object can be thought as a record of each application's relational table. For example, a contact, email, calendar, to-do item in the particular application can be thought of as an Item object.
  • the C++ example of Item's definition is shown below: class CMyItem : public Item, protected EnumItems, protected FindItem, protected ModifyItem, protected ReadWrite ⁇ public: CMyItem( ); ⁇ CMyItem( ); ⁇ ;
  • Item can contain Attachment objects only.
  • EnumItems interface enables the enumeration of Attachment objects if any.
  • ModifyItem and ReadWrite interface enables the modification of an application's records or data fields.
  • Attachment object is a specialized Item object that encapsulates an attachment data or relationship. Only Item can have Attachment objects. Attachment object can be thought as attachment data such as attached-email files. Attachment can also be thought as attachment relationship to other Item objects. The example of that is the distribution list (Item object) can contain contacts (Item objects).
  • the C++ example of Item's definition is shown below: class CMyItemAttachment : public Item, protected ReadWrite, protected ModifyItem ⁇ public: CMyItemAttachment( ); ⁇ CMyItemAttachment( ); ⁇ ;
  • Variant object represents a data field of each particular application data. For example, a ‘first name’ of a contact or the birthday date of a contact can be thought as Variant object. StructuredDelta only understands Variant object and the types of data fields it encapsulated.
  • Variant object can contain any one of the following data field type: struct Variant ⁇ enumFieldTag tag; enumFieldDataFlag flag; // flags item fields as not known or otherwise special union ⁇ short int i; // eFieldType_WORD LONG l; // eFieldType_LONG DWORD dw; // eFieldType_DWORD unsigned_int64 qw; // eFieldType_QWORD UUID uuid; // eFieldType_UUID DATE time; // eFieldType_DATE LPTSTR psz; // eFieldType_String Binary bin; // eFieldType_Binary Float flt; // eFieldType_Float Double dbl; // eFieldType_Double F1Collection coll; // eFieldType_Collection ⁇ Value; Stream* strm; // eFieldType_Stream ⁇ ;
  • Variant::tag is an identification tag of data field and variant::flag specifies the type of data field while Variant::value member variable stores each application's field value.
  • Collection is an array of Variant objects. It can be used to represent a compound data fields. struct Collection ⁇ ULONG cValues; struct_Variant** paVar; // This array really contains cValues entries ⁇ ;
  • Binary object can be used to represent a binary data as it is. struct Binary ⁇ ULONG cb; LPBYTE lpb; ⁇ ;
  • Each AO object has an AO COM interface. Each object must implement some of those interfaces to create certain capability or desired behavior that are expected by StructuredDelta.
  • the unique ID is a unique string only in a given device. It is not persistent cross the Internet to other devices. The ID usually comes from the third party application database domain such a unique ID of a record.
  • interface IItemContainer IItem ⁇ STDMETHOD_(BOOL, ContainsItemType) ( enumItemType eItemType ) PURE; STDMETHOD_(BOOL, ContainsDataClass) ( enumDataClass eDataClass ) PURE; STDMETHOD_(enumSpecialFolderType, GetSpecialFolderType) ( ) PURE; STDMETHOD_(GUID, GetMappingGUID) ( ) PURE; ⁇ ;
  • IErrorMsg IUnknown ⁇ STDMETHOD(GetErrorString) ( LPTSTR pszError, int iBufLen ) const PURE; ⁇ ;
  • IEItemEnumFlags eItemEnumFlags_FOLDER, eItemEnumFlags_ITEM, and eItemEnumFlags_ATTACHMENT
  • IEItemEnumFlags is used to enumerate only the requested type of objects.
  • IFindItem IUnknown ⁇ STDMETHOD(FindStoreByID) ( LPCTSTR pszUniqueID, ItemContainer **ppFolder ) PURE; STDMETHOD(FindFolderByID) ( LPCTSTR pszUniqueID, ItemContainer **ppFolder ) PURE; STDMETHOD(FindItemByID) ( LPCTSTR pszUniqueID, Item **ppItem ) PURE; ⁇ ;
  • the search criteria are represented as Collection that allows the multiple search field keys to be used during the search.
  • the multiple objects may be found that match the search criteria.
  • the interface also provides enumeration capability of the search results.
  • IFindItemByData IUnknown ⁇ STDMETHOD(FindByDataStart) ( enumItemType type, Variant* pSearchKey, int* pnFound ) PURE; STDMETHOD(FindByDataNext) ( LPTSTR pszEntryID, int cbBufSize ) PURE; STDMETHOD(FindByDataFinish) ( ) PURE; ⁇ ;
  • interface IModifyItem IUnknown ⁇ STDMETHOD(Add) ( BOOL bFolder, enumItemType type, Item **ppItem ) PURE; STDMETHOD(Delete) ( ) PURE; STDMETHOD(Move) ( ItemContainer * pDestFolder ) PURE; ⁇ ;
  • IReadWrite IUnknown ⁇ STDMETHOD(Read) ( ) PURE; STDMETHOD(Commit) ( ) PURE; STDMETHOD(GetFieldData) ( enumFieldTag fieldTag, Variant **ppVariant ) PURE; STDMETHOD(ReleaseFieldData) ( Variant *pVariant ) PURE; STDMETHOD(SetFieldData) ( const Variant *pVariant ) PURE; ⁇ ;
  • the data class filter mechanism is used by StructuredDelta to filter the enumeration of contained data classes (eDataClass_CONTACT, eDataClass_CALENDAR, etc).
  • IAppObj IUnknown ⁇ STDMETHOD(Logon) ( HWND hWndParent ) PURE; STDMETHOD(Logoff) ( ) PURE; STDMETHOD(SetFilter) ( const VOID* pFilter, int BufLen ) PURE; STDMETHOD_(int, GetFilter) ( VOID* pFilter, int BufLen ) PURE; ⁇ ;
  • interface IModuleIdentity IUnknown ⁇ STDMETHOD(GetName) ( LPTSTR pszName, int iBufLen ) const PURE; STDMETHOD(GetAppl) ( Appl *pAppl ) const PURE; STDMETHOD(IsInstalled) ( BOOL *bIsInstalled ) const PURE; ⁇ ;
  • interface IItemTypeInfo IUnknown ⁇ STDMETHOD(GetSupportedTypesCount) ( int &iCount ) PURE; STDMETHOD(GetSupportedTypeInfo) ( int iIndex, enumItemType &type, LPTSTR pszTypeName, int iBufLen ) PURE; STDMETHOD (GetItemTypeCaps) ( enumItemType type, DWORD &dwFlags ) PURE; ⁇ ;
  • IDataClassInfo IUnknown ⁇ STDMETHOD(GetCount) ( int *piCount ) PURE; STDMETHOD(GetDataClass) ( int iIndex, enumDataClass *peDataClass ) PURE; ⁇ ;
  • IDataFileInfo IUnknown ⁇ STDMETHOD(GetDataFileCount) ( int *piCount ) PURE; STDMETHOD(GetDataFilePath) ( int iIndex, LPTSTR pszFilePath, int iBufLen ) PURE; ⁇ ;
  • eItemType_CONTACT? interface IItemFieldMap IUnknown ⁇ STDMETHOD(FieldQueryStart) ( const enumItemType &type, int &iCount ) PURE; STDMETHOD(FieldQueryNext) ( enumFieldTag &field, LPTSTR pszName, int iBufLen, LPTSTR pszType, int iTypeBufLen ) PURE; STDMETHOD(FieldQueryFinish) ( ) PURE; ⁇ ;
  • interface IFolderInfo IUnknown ⁇ STDMETHOD(GetSpecialFolderID) ( enumSpecialFolderType eFolder, LPTSTR pszUniqueID, int iBufLen ) PURE; STDMETHOD(GetDefaultFolderID) ( enumItemType type.
  • FastSync is a DLL component that is written using the third party APIs and loaded into the third party application to receive the changes in database while users are operating the application. It is used to speed up the synchronization performance by syncing only the objects that are known to IFastSync component.
  • interface IFastSync IUnknown ⁇ STDMETHOD(GetFastSync) ( enumDataClass eDataClass, BOOL* pbFastSync ) PURE; ⁇ ;
  • interface ISynchNotify IUnknown ⁇ STDMETHOD(SynchNotify) ( enumSynchNotify eNotify ) PURE; ⁇ ;
  • Server Application Objects share many characteristics with desktop application objects, including support for reading and mapping to the universal record structure set forth above.
  • each application object database will be quite different.
  • the Palm® database on the device is really just a memory space with records laid out sequentially in memory.
  • the application object may be an Oracle database.
  • Server application objects may generally have less difficult tasks since the applications supported are generally either devices providing their own change data output, (such as Palm®-type PDA's), or which do not have a great deal of data to export (such as cell phones, having only name and number information).
  • each application object must support all calls defined in a class interface definition as follows: FUNCTION DESCRIPTION Open Perform an initialization of the device before data retrieval functions are called. Close Done with database calls, cleanup if necessary. Get First Modified Record Get the first modified record from the device and insert into application object. Get Next Modified Record Get the next modified record from the device and insert into the application object. Add Record Add a record into the application object database. Update Record Update a record. Delete Record Delete a record in the application object database. Set Device Records A function called during the synchronization manager to send a bytestream to the application object for interpretation. The bytestream will contain a list of records to add to the application object modified records list.
  • Get Device Records For records bound to the device, this call gets a bytestream that contains a list of records to add back to the device. There is an outbound record list that is saved until this call is finished, at which time the sync server will be finished with the application object.
  • Set Device Response A function used to modify or repair a record input saved in the application object store that was sent to the device in the Get Device Records call, such as a record ID for a record. If 10 records were sent to the device during the Get Device Records call, one would expect to see 10 records coming back in during this function call.
  • the calling convention for a Palm® device's sync manager application object is given in the following pseudo-code: Call AO::Open Call AO::WriteRecords Start synchronization process While more records in AO Data Object Call AO::GetFirstModifiedRecord( ) Call AO::GetNextModifiedRecord( ) END IF new records THEN Call AO::AddRecord( ) IF deleted records THEN Call AO::DeleteRecord( ) IF update record THEN CALL AO::UpdateRecord( ) Call AO::Close As shown therein, the calling convention is designed to be integrated with the Palm's® own sync manager.
  • mappingItem CContactTable::m_FieldMap[ ] ⁇ ⁇ 1, eFieldTag_Contact_FirstName, “firstname” ⁇ , ⁇ 1, eFieldTag_Contact_MiddleName, “middlename” ⁇ , ⁇ 1 eFieldTag_Contact_LastName, “lastname” ⁇ , ⁇ 1 eFieldTag_Contact_Title, “title” ⁇ , ⁇ 1 eFieldTag_Contact_Suffix, “suffix” ⁇ , ⁇ 1 eFieldTag_Contact_Anniversary, “anniversary” ⁇ , ⁇ 1 eFieldTag_Contact_Birthday, “birthday” ⁇ , ⁇ 1 eFieldTag_Contact_AssistantName, “assistantname” ⁇ , ⁇ 1 eFieldTag_Contact_Children, “children” ⁇ , ⁇ 1 eFieldTag_Contact_Compan
  • mapping the contact field files maps contact fields from a particular web contact information database to fields in the universal record format from the master list header file (pio_types.h) in the system of the present invention.
  • This mapping is for a specific contact table and it should be understood that other information, such as phone numbers, e-mail addresses, and other contact information may be stored in a separate table.
  • the server application object must then convert the information into the universal record format which can be utilized by other server device engines to take content information into their own particular application.
  • the universal record format is used by each server device engine to handle various tasks of encapsulating records in a common format, comparing records, creating and holding differences between records, and other tasks of synchronization.
  • the universal record format allows the application objects to support a wide range of extensible application item types such as contacts, calendar, mail, bookmarks, and the like. Flexible type name and value associations permit synchronization without regard to individual vendor application information formats.
  • Each application object encapsulates mapped knowledge from the vendor unique format to the universal format of the present invention.
  • an application object can be designed to support any combination of application and binary information types.
  • application objects can be designed to support a vendor application using only binary file synchronization if the internal format of the application is not known.
  • Server application objects can also be designed to create collections. For example, if the user wishes to create a “my pictures” collection which consists of some collection of information and synchronize this collection of information, such an arbitrary grouping of classes of information into appropriate representations is supported.
  • application access methods can include, but are not limited to, disk or database access, network protocols, wireless device protocols, and the like.
  • the Universal Records Format and the Universal Field Format class definitions are given below: typedef map ⁇ enumFieldTag, CUniversalField, less_enumFieldTag > UniversalRecordMap; typedef UniversalRecordMap::value_type UniversalRecordPair; typedef UniversalRecordMap::iterator UniversalRecordIterator; typedef UniversalRecordMap::const_iterator ConstUniversalRecordIterator; class CUniversalRecord ⁇ private: UniversalRecordMap recordMap_; public: bool conflicts(const CUniversalRecord& rhs); bool add(const CUniversalRecord &rhs); bool subtract(const CUniversalRecord& rhs); CUniversalRecord( ); CUniversalRecord( const CuniversalRecord& rhs ); virtual ⁇ CUniversalRecord( ); // add this element HRESULT insert( enumFieldTag eId, long value, enumFieldDataF
  • a management server may be provided in the system of the present invention.
  • the management server is a centralized server which controls behavior and characteristics of the entire network of device engines across all users.
  • FIG. 14 shows the general representation of how a management server 1410 integrates itself into the system of the present invention.
  • an exemplary device engine 1450 which has HTTP links to both a management server 1410 , a storage server 1415 , and a generic FTP server 1420 .
  • the management server interacts with the device engine to control authorized access to information on the storage server, or a generic FTP server 1420 , 1425 to access device-specific information storage 1430 in accordance with the system of the present invention. This allows any device coupling to the Internet to have access to management protocols and to retain user information across all platforms which the data which is being synched by the system of the present invention must access.
  • the management server communicates using hypertext transfer protocol (HTTP) which may be implemented with a secure sockets layer (SSL) to ensure security.
  • HTTP hypertext transfer protocol
  • SSL secure sockets layer
  • the management server supports an authentication interface that requires each device engine to authenticate with the management server before performing synchronization.
  • Certain storage server implementations may utilize locking semantics to control read and write access to storage for multiple device engines. For example, in a generic FTP request, if two device engines attempt to connect to the same data at the same time, there must be some form of locking control to prevent device engines accessing the same data at the same time. In this instance, the management server controls the device engine acquisition, renewal, and releasing of locks against data stored in the network.
  • Each device engine is uniquely identified and tracked by the management server. This allows for tailoring behavior between the management server and specific types of storage systems and device engine components. All device engine components are tagged and version stamped for management via the management server.
  • Device actions can request updated copies of individual device engine components, permitting self-update and configuration of device engine systems. This permits minimal download designs for device engines that are on low bandwidth connections enabling the device engines to download additional required components at a later time.
  • a value added component may be provided where the management server can support client's advertising mechanisms, enabling the display of banner or similar advertising on a device engine system without the need for a web browser. Cycling of advertisements, statistic collection, and the like, are managed via management server protocols. Online purchase and subscription mechanisms are also supported using the management server protocol.
  • the management server further supports the accounting, sign-up registration, device edition, storage server selection, and similar functions for each user in the system.
  • the management server may retain password and encryption information for a given user account. In a second embodiment, such information is not retained. The second embodiment provides the advantage that users may feel more secure if the maintainer of the management server is not in possession of the password to access data in the user's account.
  • FIG. 17 shows a general depiction of the data flow and the functional specification of the management server utilized in accordance with the present invention.
  • a user is allowed to sign out which enables an add user module 1712 , and subsequently enables an add device module 1714 . If sign-up is not requested, information may be provided via module 1718 .
  • the add user module 1712 adds user records to the user in device database 1750 .
  • the add device module 1714 adds users and devices to the user device database 1750 .
  • a device list 1720 and a device engine download and update database 1722 , provide selection data for the add device module 1714 .
  • the account authentication module 1724 receives input both directly from a user log-in from the welcome screen at 1710 and from the add device module 1714 .
  • the administrator of the system of the present invention having a private data store at 1770 may choose to provide a web desktop 1754 which allows access to a user's records such as file 1756 , e-mail 1758 , calendar 1760 , contacts 1762 , notes 1764 , and tasks 1766 .
  • the information will be culled from a provider database 1752 which will be synched in accordance with the system of the present invention as previously described.
  • the provider database 1752 accesses data from the device engines 1780 , which include, as discussed above, the storage server, each individual device engine 1785 , and a settings database 1787 .
  • management server includes the locking modules for beginning a sync 1732 , continuing a sync 1734 , and ending a sync 1736 , and for updating user information including modifying a user 1742 , adding devices 1744 , removing devices 1746 , and modifying devices 1748 .
  • storage server 1415 Shown in FIG. 14 is the storage server 1415 . While storage server 1415 may include a generic storage model accessible through any number of standard Internet protocols, in accordance with the present invention, a flexible storage architecture is provided that permits various standard implementations of the system of the present invention. This allows deployment of network services without installation of new server applications and can be responsible for communicating change information between multiple device engines in a consistent fashion.
  • One or more storage servers 1415 may be used to communicate transaction amongst a collection of devices. Each user's personal information network is represented by a unique account within its own data package storage section.
  • the storage server 1415 maintains persistent store collection of data packages which is, at a minimum, enough data packages to be capable of synchronizing the most out-of-date system in a user's given information network or add information to new devices which are provided in the network. Additional data packages can be maintained to permit rollback of previous versions of information.
  • the storage server can automatically dispose of older data package storage and can support aging of an inactive accounts.
  • Each storage server 1415 may be implemented using a variety of implementations including a standard FTP server for any operating system platform.
  • the storage server can be implemented using HTTP protocols for increased efficiency and firewall avoidance.
  • the storage server may be implemented using techniques for local storage such as database access or single file storage of a user's entire file system tree.
  • the storage server 1415 may utilize the stored foreign protocol model for moving copies of data packages to other storage servers in the system.
  • the storage server can allow tunneling of information using an alternative protocol to other storage servers in cases where firewall prevents originating protocol.
  • a storage server can relay an FTP traffic inside an HTTP protocol.
  • Storage servers may include their own locking semantics to arbitrate multiple device engine access to the same server without the need for a separate management server. Each device engine can access only a specific user's data package storage area even though the storage server 1415 may maintain a larger number of data packages across a large number of users. This allows for increased scaling when the storage server is implemented using file system techniques.
  • the storage server is implemented using standard FTP or HTTP connections for each operation.
  • HTTP is composed of request response pairs. All requests are supposed to be posting commands. Parameters can be set in the form known as “application/X-WWW-form-URLENCODED”. The encoding is specified as in RFC1866.
  • Functions for the storage server include testing if the storage server can reach other users which will retrieve a simple text string, a “get” command which transfers the contents of a file as in a binary stream of byes; a put command as a binary stream of data to the storage server, a directory listing command, a remove command, a rename command, an exist command, and the like.
  • FIG. 15 represents a “pull” synchronization process in accordance with the present invention. Both the pull synchronization illustrated in FIG. 15 and the push synchronization illustrated in FIG. 16 are done from the perspective of the device engine.
  • a pull synchronization as illustrated in FIG. 15 is always performed prior to a push synchronization. This allows the device engine to know whether synchronization of its own data is necessary.
  • Each device has its own triggering mechanism for initiating synchronization. Some devices, such as Windows clients and Palm® pilots are triggered manually when the user presses a “sync” button. Other devices, such as a cellular telephone, may be triggered automatically after another device completes a sync. Regular, time-based triggers are supported as well.
  • a web-based application portal will sync when a user logs into the website security authorization mechanism, and may optionally sync on a log-out of the user or on the session time-out, but only if the user has changed data during the session.
  • the triggering event specifies which application types are to sync for the device. This enables a triggering event to trigger only a sync for a particular application type.
  • the management server can specify that no sync is needed for a particular type of application to minimize traffic to the storage server.
  • Syncs may be triggered via an HTTP request to the server. This request holds information about which device to sync and the user log-in information is bounced to the management server for authorization and validation. Syncs may be triggered by sending an HTTP request to the server and passing the authentication information in the data portion of the request to the management server.
  • Each device may include a servlet that is responsible for retrieving the request and ensuring its proper format before passing the synchronization request on to the server.
  • the device name and device class uniquely identify a particular device type that is being synchronized, and is contained in the management server.
  • Each user has one or more device entries in the management server authorization records and each device name is unique for this user's space. For example, if a user has five devices with his or her own personal identification number, there will be five authorization records. There may be two Windows devices, two different Palm® devices and a web service portal, each having their own personal identification number.
  • the pull synchronization process starts at an idle state 1405 when the triggering event, described above, triggers a synchronization request.
  • the synchronization request is confirmed at 1410 and if the request is verified, a connection is made to the storage server at step 1415 .
  • the connection to the management server is made at step 1420 to authenticate the user identification via the management server. If authentication is successful, the management server may initiate a management server lock on the storage server so that no conflicting device engines may couple to the same data at the same time.
  • a failure at any of the steps 1410 - 1425 will return the system to its idle state 1405 .
  • the storage server Once the engine server lock is acquired, the storage server will be checked to determine whether a new version of the data exists on the storage server at step 1430 . If no new version exists, the synchronization process ends.
  • the device engine will retrieve the difference information at step 1435 “to get ⁇ .”
  • the resolve conflicts step allows a user to resolve conflicts to multiple types of data which have been changed on both the server portion of the device and in the local data.
  • the ⁇ 's are applied at step 1455 .
  • the apply ⁇ step 1455 allows for filters and mappings to be accounted for on the local device engine side of the system.
  • the ⁇ may include updates at the item level 1460 , application level 1465 , device level 1470 , or network level 1475 .
  • a loop back to the ⁇ retrieval step 1435 is provided.
  • the management server lock is released at step 1440 .
  • strChangeLogFile // See details below FTP it back up to Storage Server Update the local version number end // SymbolicSyncEngine::SyncSymbolicApp end // CFDESymbolicSyncEngine::Sync CStructuredDelta::ApplyChangeLog Set up m_pAppObj; // IFAO pointer Set up m_pAOS; // IAOS pointer Other set up (statistics, time to complete, etc.) Read the change log and ...
  • FIG. 16 shows a push synchronization in accordance with the system and method of the present invention.
  • a synchronization event occurs and if confirmed at step 1510 , ⁇ 's are checked at step 1515 .
  • a network ⁇ 1520 , device ⁇ 1525 , location ⁇ 1530 , or item ⁇ 1535 will be created.
  • step 1540 enables a connection to a storage server.
  • a further connection to management server 1545 will occur to authenticate the user in the system. Failure at any of the aforementioned points will result in returning to idle state 1505 .
  • a management server lock is enabled to ensure that multiple device engines do not connect to the same data at the same time.
  • ⁇ 's are uploaded to the system. As shown, this may include uploading an item ⁇ 1575 , an application ⁇ 1570 , uploading a device ⁇ 1565 , or a network ⁇ 1560 .
  • management lock server 1580 is released, and the connection to the storage server is terminated at step 1585 .
  • the device engine organizes the format into a data package.
  • Each data package thus includes a description of changes to any and all information for particular application, and a collection of data packages describes changes across all device engines including all different types of data.
  • data packages can become very compact to minimize bandwidth and storage requirements across the system of the present invention.
  • encoding of the data packages may be provided in a streaming format to allow processing by the device engines with minimal storage and memory configuration at the device engine level.
  • the device engine can read the stream and determine which records from which applications it needs to update the particular information present on the system on which it resides.
  • Data packages can be provided in a binary data format. This allows data packages to encode changes to non-application data at a bite level. Hence, if a single bit on a system changes, the system of the present invention allows synchronization of that bit on another system. Changes are described as a sequence of bite-level change operations. One such encoding is using a sequence of insert and copy operations. Insert and copy operations generally define a particular “insertion” of a number of bites from a source file, then how many bites of a changed source file must be inserted to a particular file, then how many bites to insert from a particular new file, with a differencing engine taking the bites in the stream and inserting them into the new file to create the new version of the file.
  • this allows a user to, for example, change a binary file such as a word processing document or other type of attachment, and synchronize such an attachment at the binary level.
  • a binary file such as a word processing document or other type of attachment
  • the second individual modifies it and wishes to return this document with modifications to the first individual, because the first individual has the original file on his system
  • the second system need only send the changes or the difference information back to the first system in order for the first system to reconstruct the document on the second system using this change data to create the document as intended by the second user.
  • data packages can be merged into larger meta-data packages.
  • meta-data information such as the organization of multiple device packages, may be encoded into a larger system package.
  • Each system package is essentially an encoded sequence of data packages.
  • FIG. 12 shows the general format of the data package and universal data format an object stream hierarchy used in accordance with the present invention.
  • each item in a particular application data structure will have a particular classification, such as a file, folder, contact, e-mail, calendar, etc. as shown in FIG. 13 .
  • the universal data structure contains a mapped item field for each type of data possible from each application supported by the system. Hence a “master” list of every data field mapping possible will contain a large number of items.
  • Each application object requires a subset of such fields.
  • One exception is an application object used for a Web portal application which provides access to all information available on all devices, including other Web portals.
  • FIG. 13 Particular examples of item fields 1260 which may be included for any given item 1250 are shown in FIG. 13 .
  • These exemplary item objects may, for example, be from an allocation such as Microsoft Outlook.
  • Outlook allows for note items 1310 , e-mail items 1320 , task items 1330 , calendar items 1340 , bookmark items 1350 , file items 1360 , channel items 1370 , folder items 1380 , and contact items 1390 , all of which have fields such as those represented in FIG. 13 .
  • the data format also contains folder information 1240 which allows the classification of items and consequently their associated item fields into particular categories.
  • Application objects 1230 include information on the types of applications from which information in the stream is included.
  • Device objects 1220 include information on the origin type of device which the information is originating from.
  • Network objects 1210 include information on a user level to define that the information in the data stream is coming from a particular user.
  • each application object supports a folder store interface that permits management of collections of information on a folder level, and permits management of folder hierarchies of information.
  • the application object also includes an item interface that permits management of individual information entries such as records or files or components of information entries such as fields within records.
  • Each application object further supports an interface for detection of a vendor application.
  • a DataPack essentially contains a sequence of transactions describing changes to information. This information can span two basic types: structured or application data, and unstructured or binary file data.
  • Transactions are encoded using an efficient streaming format with tags to represent the actual content objects. This technique permits the continuous extension of the DataPack format as new content is supported.
  • the general architecture of the package provides for transactions, application data, file data, files, objects and identifiers to be carried in the data package.
  • transactions, application data, file data, and files have previously been described.
  • the first portion of the data package will be the data package identifier.
  • Each transaction has a basic architecture of objects and operations. Each piece of content is referred to as an object and is uniquely represented with a Universally Unique Identifier (UUID). Objects typically are represented by a dynamically generated UUID, but more common objects are represented by static UUIDs.
  • Each UUID has a unique 128 bit value which may be assigned by the system provider.
  • Transactions are broken down into manageable blocks in the form of individual files. These files are then optionally compressed and encrypted and prefixed with appropriate headers. Transactions are grouped into specific files based on the following rules:
  • a DataPack file is identified using specific rules based on the file name.
  • the file name is of the form “UUID.VER” where UUID is the identifier for the specific object and VER is the transaction version number.
  • the version number is of the form “D0001” with additional digits used for large version numbers.
  • the “D000” value may be reserved for the base version for the object.
  • the UUID for the user account is generated by the Management Server (MS).
  • MS also maintains a current table of UUID values and version numbers that provides the root structure for understanding the DataPack files within a user account.
  • the MS also provides necessary locking semantics needed to maintain consistency when multiple device engines attempt to synchronize.
  • All DataPacks are prefixed with a standardized header that provides basic content information regarding the DataPack. Compression and encryption headers follow the DataPack header if needed.
  • the data package header information will include version signature, applied versioning information, content type, A engine type, compression type, encryption type, applied size, encrypted size, compressed size, raw data size, and other data useful for the device engine in decrypting the data stream to provide the data into a format usable for the application.
  • the header may optimally have the format: Type Bytes Version 4 Signature 4 AppliedVersion 8 ContentType 4 DeltaType 4 CompressionType 4 EncryptionType 4 AppliedSize 4 EncryptedSize 4 CompressedSize 4 RawSize 4 Reserved TBD
  • the DeltaType encodes the type of binary file differencing used.
  • the following DeltaType values are permissible using DataPackageDeltaType: Field Comment PackageDeltaTypeUninitialized Uninitialized PackageDeltaTypeRawData Raw binary data
  • the compression type specifies whether the DataPack has been compressed.
  • a DataPack compression header follows the DataPack header if a compression type is specified.
  • the following CompressionType values are permissible using DataPackageCompressionType: Field Comment PackageCompressionTypeUninitialized Uninitialized PackageCompressionTypeNone None PackageCompressionTypePK PKZip format PackageCompressionTypeLZS LZS format
  • the encryption type specifies whether the DataPack has been encrypted.
  • a DataPack encryption header follows the DataPack header if an encryption type is specified.
  • the following EncryptionType values are permissible using DataPackageEncryptionType: Field Comment PackageEncryptionTypeUninitialized Uninitialized PackageEncryptionTypeNone None PackageEncryptionTypeXORTest XOR masked data PackageEncryptionTypeBlowFish Blowfish PackageEncryptionTypeTwoFish Twofish
  • HeaderType values are permissible using DataPackageHeaderType: Field Comment HeaderTypeUninitialized Uninitialized HeaderTypeEncryption Encryption header HeaderTypeCompression Compression header HeaderTypeRaw Raw header
  • All DataPack encryption headers are encoded using the following format: Field Size (bytes) Comment Size 4 Size of data including this header Version 4 Version (6) Signature 4 Signature (4270) HeaderType 4 Header type (HeaderTypeEncryption) Reserved 12 Reserved DecryptedSize 4 Decrypted size InitValue 16 TBD KeyLength 4 TBD ClearTextKeyBits 4 TBD Salt 4 TBD PadBytes 4 TBD HMAC 20 TBD Reserved 12 Reserved
  • the data package transaction format may take a number of forms.
  • Header + InfoList + TransactionList fileData:: raw binary file data
  • An account is the root structure, which identifies information about the user's account. It may have exemplary field tags (eFieldTag_[NAME]) such as Name, Password, UserName and Version.
  • the FieldTag ItemType value is specified as ItemType_PIN using enumItemType.
  • a device is a system identified as part of an account. Examples include PCs, handhelds, Web sites, and so on. It may have tags (eFieldTag_[Name]) such as: “name” and “type” and item type values (eDevice_[Name]) such as Portal, Palm, Windows, CellPhone.
  • tags eFieldTag_[Name]
  • eDevice_[Name] item type values
  • a data class is a grouping of similar information types. Many data classes may be represented for a particular account.
  • the data class may contain field tags (eFieldTag_[Name]) such as: Name; ItemType; SubType; IsManaged; Provider; Filter and Version.
  • ItemType values are permissible using enumDataClass (eDataClass_[Name]): Tag Description UNKNOWN Unknown CONTACT Contact/address book EMAIL Electronic mail CALENDAR Calendar TASK Task/to do NOTE Note/memo JOURNAL Journal BROWSER Web browser favorites, cookies, etc. FILESET Collection of files PIN Account information DEVICE Device information FILEBODY Contents of file
  • a Provider is the application that maintains specific information within a data class.
  • Field tags include: Name, AppObjID, Password, Username and Version.
  • Examples of provider tags permissible for the provider include: Portal, Palm®, MicrosoftOutlook®, Lotus Organizer, Microsoft Internet Explorer, Microsoft Windows, and so on.
  • Data stores are the containers for storing information within a provider. There can be more than one data store for a particular provider. Folders represent structural organization of information within a data store.
  • Tags (eFieldTag_[Name]) supported for each data store include: Name, ItemType, IsManaged and Original Path. Item types permissible for the data store include: unknown; Folder; MAPI; Database and Store_File.
  • Folders represent structural organization of information within a data store. Data stores are not required to support folders.
  • a folder is represented by a UUID and may contain any of the following field tags (eFieldTag_[Name]): Name; ItemType; IsManaged; FileAttributes; CreationDate; ModificationDate; AccessDate; SpecialFolderType.
  • the eFieldTag_ItemType value is specified as eItemType_FOLDER using enumItemtype.
  • Items are individual informational components consisting of the actual user data. They may contain field tags such as: Name, ItemType, IsManaged, and Version.
  • File items typically have the following additional field tags (eFieldTag_[Name]): FileAttributes CreationDate ModificationDate AccessDate FileSize FileBody DeltaSize Hash
  • Item types may take the format (eItemType_[Name]) and may include: extended; folder; attachment; contact; distlist; email; calendar; task; call; note; post; journal; form; script; rule; favorites; subscription; common_favorites; desktop; common_desktop; startmenu; common_startmenu; channels; cookies; programs; common_programs; startup; common_startup; sendto; recent; internet_cache; history; mapped_drives; printers; docs; doctemplates; fonts; window_settings; app_data_folder; app_settings; fileset; pin; device; data_store; file; provider; and data_class; internal.
  • a field is based on one of a set of base type definitions. All field tag information is encoded using the following format: Field Size (bits) Comment FieldTag 16 Unique tag number FieldType 6 Field base type FieldSubType 10 Field sub-type
  • a number of Field types are possible, including: unknown; long; dword; date; string; binary; float; double; collection; uniqueid; qword; uuid; file; invalid.
  • LONG is a four byte value encoded in big-endian format.
  • FieldType DWORD is a four byte value encoded in big-endian format.
  • FieldType String is a sequence of Unicode characters followed by a single NULL byte. Interfaces are provided with an MBCS value.
  • FieldType Binary is a sequence of bytes.
  • FieldType UniqueID is a sequence of bytes as defined by the Universally Unique Identifier (UUID) standard.
  • AO interfaces are provided with a Locally Unique Identifier (LUID) value
  • FieldType QWORD is an eight byte value encoded in big-endian format.
  • FieldType File is a UUID that references a separate DataPack containing the file body data.
  • AO interfaces are provided with a sequence of Unicode characters followed by a single NULL byte that describes the full path name for the file.
  • Each of the sub-types includes all of the possible data types from all of the supported user applications. As should be well understood, the possibilities in the number of sub-types is quite large, and dynamic as each new application supported by the system of the present invention is added.
  • sub-types include: SubField Description Description Base No sub-type specified EmailAddress Email address EmailAddressList Email address list SearchKey Search key CategoryList Category list StringList String list DistributionList Distribution list Gender Gender (enumGender) TimeZone Time zone (enumTimeZone) Boolean Boolean (TBD) NonZeroBool Boolean with non-zero value (enumNonZeroBool) Priority Priority Sensitivity Sensitivity (enumSensitivity) Importance Importance (enumImportance) SelectedMailingAddr Selected mailing address (enumSelectedMailingAddr) TaskStatus Task status (enumTaskStatus) FlagStatus Flag status (enumFlagStatus) RecurrenceType Recurrence type (enumRecurrenceType) DayOfWeek Day of week (enumDayOfWeek) DayOfMonth Day of month (1 through 31) InstanceOf
  • the aforementioned invention provides a user-centric model of communication to deliver personal information via network services.
  • This model accommodates devices that are disconnected from the network, such as the Internet, at various times.
  • Personal information can continue to exist locally rather than imposing a server-centric model on existing information.
  • a store and forward information broadcast is utilized. Changes to existing information are replicated to an Internet storage server and changes are then retrieved by other devices on the network at device-specific times. In this manner, direct client communication is accomplished without requiring one-to-one communication. While one communication is supported by the system of the present invention, it need not be required.
  • the present invention has been presented in the form of an Internet store and forward broadcast for the purposes of synchronizing personal information amongst various types of devices, it will be readily recognized that synchronization need not be accomplished as the only application for the aforementioned system.
  • the system can be utilized to efficiently broadcast changes to information in so-called “push” type information applications where only portions of the data need to be changed on a client application.
  • a client application implementing the aforementioned technology can be updated by only changing specific portions of the data in the client application relative to that particular stock price. This can be done using a smaller bandwidth than has previously been determined with other devices.

Abstract

A data transmission system which optimizes transfer and updates of information between systems by providing difference information between the systems is disclosed. Information transfer can occur one way (broadcast) or two-way (sync). In a first aspect, the system includes a differencing transmitter transmitting at least one set of difference transactions and a differencing receiver receiving said at least one set of difference transactions. The differencing transmitter of the data transmission system may comprise a difference source interface, a copy of a previous state of said difference source, and a difference transaction generator. The differencing receiver of the data transmission system comprises a difference destination interface, a copy of a previous state of said difference destination, and a destination data constructor. In a further embodiment, the data transmission system is coupled to a network. The system includes a differencing transmitter the transmitting at least one set of change transactions reflecting changes to a data source to the network, and a plurality of differencing receivers coupled to the network receiving said at least one set of change transactions from the network. A method for synchronizing at least a first file and a second file resident on a first and a second systems, respectively, is provided. The method comprises the steps of: determining difference data resulting from changes to a first file on the first system; transmitting the difference information to a second system; applying the difference information to generate change data for the second file; and updating the second file on the second system with the difference data.

Description

    LIMITED COPYRIGHT WAIVER
  • A portion of the disclosure of this patent document contains material to which the claim of copyright protection is made. The copyright owner has no objection to the facsimile reproduction by any person of the patent document or the patent disclosure, as it appears in the U.S. Patent and Trademark Office file or records, but reserves all other rights whatsoever.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The invention relates to the transference of data between two systems independent of the form in which the data is kept on the respective systems, and in particular to providing an efficient means of communicating data between systems and devices.
  • 2. Description of the Related Art
  • The growth of computing-related devices has not been limited to personal computers or work stations. The number of personal computing devices has grown substantially in both type and format. Small, hand-held computers carry a multitude of contact, personal, document, and other information and are sophisticated enough to allow a user to fax, send e-mails, and communicate in other ways wirelessly. Even advanced cellular phones carry enough memory and processing power to store contact information, surf the web, and provide text messaging. Along with the growth in the sophistication of these devices, the need to transfer information between them has grown significantly as well.
  • With a multitude of different device types on the market, keeping information between the different devices synchronized has become increasingly problematic. For example, if an individual keeps a calendar of information on a personal computer in his or her office using a particular personal information manager application, the individual would generally like to have the same information available in a cellular phone, hand-held organizer, and perhaps a home personal computer. The individual may additionally have a notebook computer which requires synchronizing file data such as presentations or working documents between the notebook and the office computer.
  • Until now, synchronization between both documents and personal information managers has occurred through direct connection between the devices, and generally directly between applications such as a personal information manager in one device and a personal information manager in another device or using an intermediary sync-mapping program.
  • One example of this is the prevalent use of the 3Com Palm® OS-based organizer, such as the 3Com Palm® series of computing devices, which uses its own calendaring system, yet lets users synchronize the data therein with a variety of different personal information manager software packages, such as Symantec's ACT!™, Microsoft's Outlook®, and other systems. In this example, an intermediary synchronization program such as Puma Technology, Inc.'s Intellisync® is required. Intellisync® is an application program which runs on both the hand-held device and the computer which stores the information data and maps data systems between non-uniform data records. In other cases, direct transfer between applications such as transfer between Microsoft's Outlook® computer-based client and Microsoft's Windows CE “Pocket Outlook” application, is possible. Nevertheless, in both cases, synchronization occurs through direct connection between a personal computer and the personal computing device. While this connection is generally via a cable directly connecting, for example, Palm® device in a cradle to the personal computer, the connection may be wireless as well.
  • One component of these synchronization systems is that the synchronization process must be able to delineate between when changes are made to specific databases and must make a decision about whether to replace the changed field. Normally, this is measured by a change in one database, and no-change in a second database. In some cases, both databases will have changed between syncs. In this case, the sync operation must determine which of the two changes which has been made is to “win” and replace the other during the sync. Generally, this determinant of whether a conflict exists allows some means for letting the user resolve the conflict.
  • In a technical sense, synchronization in this manner is generally accomplished by the copying of full records between systems. At some level, a user is generally required to map data fields from one application to another and specify which data fields are assigned to which corresponding field in a different device. Less mapping is required where developers more robustly support various platforms of applications.
  • In many instances, the data to be synchronized is generally in the form of text data such as records of addresses, contact information, calendar information, notes and other types of contact information. In certain instances, data to be synchronized will be binary format of executable files or word processor-specific documents. In many cases where document synchronization is required, the synchronization routine simply determines whether or not the documents in question have changed, and uses a time-based representation to determine which of the two files is newer, and replaces the older file with the newer file to achieve synchronization, as long as the older of the two files was in fact not changed. This is the model used in the familiar “Briefcase” function in Microsoft Windows-based systems. If both files have changed, then the synchronization routine presents the option of conflict resolution to the user.
  • Such synchronization schemes are generally relatively inefficient since they require full band-width of the document or binary file to be transferred via the synchronization link. In addition, at some level the synchronization programs require interaction by the user to map certain fields between different programs.
  • One of the difficulties in providing synchronization between different computing devices is that the applications and platforms are somewhat diverse.
  • Nevertheless, all synchronization programs generally require certain functions in order to be viable for widespread usage. In particular, synchronization programs must work with popular applications on various platforms. Sync applications must allow for conflicts resolution when changes are made to the same information on different devices between syncing events. They must provide synchronization for all types of formats of data, whether it be text data in the form of contacts, e-mails, calendar information, memos or other documents, or binary data in the form of documents or programs in particular types of formats.
  • In a broader sense, applications which efficiently synchronize data between disparate types of devices can provide advantages in applications beyond synchronizing individual, personal information between, for example, a personal information manager hardware device such as a Palm® computing device, and a personal computer. The same objectives which are prevalent in developing data transfer between personal information management (PIM) devices and desktop systems lend themselves to furthering applications requiring data transfer between other types of devices, on differing platforms. These objectives include speed, low bandwidth, accuracy, and platform independence.
  • For example, current e-mail systems use a system which is somewhat akin to the synchronization methods used for disparate devices in that an entire message or file is transferred as a whole between different systems. When a user replies to an e-mail, generally the entire text of the original message is returned to the sender, who now has two copies of the e-mail text he/she originally sent out. The same is true if an e-mail attachment is modified and returned. All of the text which is the same between both systems is essentially duplicated on the originator's system.
  • SUMMARY OF THE INVENTION
  • The invention comprises a data transmission system which optimizes transfer and updates of information between systems by providing difference information between the systems. Information transfer can occur one way (broadcast) or two-way (sync).
  • The invention, roughly described, comprises a data transmission system. In a first aspect, the system includes a differencing transmitter transmitting at least one set of difference transactions and a differencing receiver receiving said at least one set of difference transactions. The differencing transmitter of the data transmission system may comprise a difference source interface, a copy of a previous state of said difference source, and a difference transaction generator. The differencing receiver of the data transmission system comprises a difference destination interface, a copy of a previous state of said difference destination, and a destination data constructor. The difference source interface converts difference source data to a universal format. The differencing transmitter and differencing receiver may be coupled to a storage server, and said difference information is transmitted to said storage server by said differencing transmitter and retrieved from said storage server by said differencing receiver. The data transmission system further includes a management server communicating with said differencing transmitter and said differencing receiver.
  • In a further embodiment, the data transmission system is coupled to a network. The system includes a differencing transmitter the transmitting at least one set of change transactions reflecting changes to a data source to the network, and a plurality of differencing receivers coupled to the network receiving said at least one set of change transactions from the network.
  • In another embodiment, the invention comprises a data synchronization system for a first system having a plurality of data sources each with a data source format, and a second system having a plurality of data sources each with a data source format. The data sync system comprises a first data synchronizer on the first system transmitting at least one set of difference information to an output, and a second data synchronizer on the second system coupled to the first system receiving said at least one set of difference information from the first system.
  • In yet another embodiment, the invention comprises a data synchronization system which includes a server. A first system having a plurality of data file types on the system is coupled to the server. The first system includes a differencing synchronizer on the first system extracting a first set of differencing data from the data files on the first system when the data files on the system are changed, outputting the differencing data to the server, and retrieving differencing data from the server and applying it to selected data files on the first system. The system includes at least one second system having a second plurality of data file types on the second system and a differencing synchronizer on the second system extracting the differencing data from the data files on the second system when the data files on the system are changed, outputting the differencing data to the server, and retrieving the first set of differencing data from the server and applying it to selected data files on the second system.
  • In a still further aspect of the invention, a method for synchronizing at least a first file and a second file resident on a first and a second systems, respectively, is provided. The method comprises the steps of: determining difference data resulting from changes to a first file on the first system; transmitting the difference information to a second system; applying the difference information to generate change data for the second file; and updating the second file on the second system with the difference data.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will be described with respect to the particular embodiments thereof. Other objects, features, and advantages of the invention will become apparent with reference to the specification and drawings in which:
  • FIGS. 1-7 are block diagrams of various configurations of the system of the present invention utilizing the differencing routines of the present invention.
  • FIG. 8 is an overview of one embodiment of the system architecture in accordance with the present invention.
  • FIG. 9A is a block diagram of the desktop device engine of the present invention.
  • FIG. 9B is a block diagram of the configuration of server side device engines utilized in accordance with the present invention.
  • FIG. 10 is a block diagram of one embodiment of the device engine in an operating system such as Windows.
  • FIG. 11 is a block diagram of an application object incorporated into the device engine of the present invention.
  • FIG. 12 is a diagram of storage object hierarchy of a universal data format utilized with the system of the present invention.
  • FIG. 13 is a listing of exemplary item objects used in accordance with the routines of the present invention.
  • FIG. 14 is a block diagram of a management storage server architecture for used in the system of the present invention.
  • FIG. 15 is a flow diagram illustrating a pull synchronization in accordance with the system of the present invention.
  • FIG. 16 is a flow diagram illustrating a push synchronization in accordance with the system of the present invention.
  • FIG. 17 is a diagram of the management server architecture in accordance with the present invention.
  • DETAILED DESCRIPTION
  • The present invention includes a system and a method for transferring data between two devices which require information to be shared between them. In accordance with the discussion herein, a “device” is defined as a collection of elements or components organized for a common purpose, and may include hardware components of a computer system, personal information devices, hand-held computers, notebooks, or any combination of hardware which may include a processor and memory which is adapted to receive or provide information to another device; or any software containing such information residing on a single collection of hardware or on different collections of hardware. Such software might include applications such as personal information managers, which include contact data and other such information, e-mail systems, and file systems, such as those utilized by Microsoft Windows NT operating systems, Unix operating systems, Linux operating systems, or other systems capable of storing file types having binary formats which translate to application formats of differing types.
  • In one embodiment, the invention comprises a set of programs specifically designed to transmit and/or receive differencing data from one device to another device, irrespective of the type of file system, data, content, or system hardware configuration.
  • In a further aspect, the system comprises store and forward technology which utilizes the differencing technology to implement services via a public or private network, such as the Internet.
  • The system of the present invention finds particular usages in synchronizing personal contact information between different systems, but it will be readily apparent to one of average skill in the art that the present invention provides advantages having broader applicability than merely synchronizing various types of systems. For example, replying and forwarding e-mail can be made more efficient by forwarding only the differences in e-mails between systems. As a further example, updates to systems software via a network can be made more efficient where, for example, instead of completely replacing different modules of an application, only the differences of the modules need be forwarded, resulting in more efficient use of existing bandwidth.
  • System Overview
  • FIGS. 1-7 show various configuration alternatives of the present invention.
  • FIG. 1 shows an embodiment of the present invention in a basic configuration. In FIG. 1, a first system or device, system A, and a second system or device, system B, are coupled by a communication line 110. It should be readily understood that communication line may be any direct coupling of the two systems which allows data to pass between the systems such as, for example, by means of serial ports, parallel ports, an Ethernet connection or other type of network, or an infrared link, or the like. System A includes a functional block 100 representing a differencing transmitter in accordance with the present invention. System B includes a functional block 102 representing the differencing receiver in accordance with the present invention.
  • The differencing transmitter 100, upon receipt of a control signal enabling operation of the transmitter, examines a specified data structure of information which is to be transmitted to system B. Differencing transmitter 100 extracts such information from System A and converts the information extracted into difference information Δ. Difference information Δ comprises only the changes to System B's data which have occurred on System B and instructions for implementing those changes. Hence, if the data to be transferred is a change to a file which exists on system B, difference information Δ comprises only the differences in such file and where such differences occur. If the data does not exist at all on System B, the difference information Δ will be the entire file. Difference information Δ received by differencing receiver 102 at System B is reconstructed at System B, and the changes reflected therein are updated on System B.
  • For example, if System A and System B are two computers and an update for certain binary files on System A is required, the differencing transmitter on System A will extract the differences in the file known to exist on System B and any new files, and transmit only those differences (an instructions for where to insert those differences) to the differencing receiver 102. Differencing receiver 102 will interpret the difference information (Δ) and reconstruct the binary files on System B. In this manner, the information on System B is updated without the need to transfer the entire binary files between the Systems.
  • FIG. 2 shows a second example of the system of the present invention. In FIG. 2, both System A and System B include functional blocks 104, each representing a differencing synchronizer. The function of the synchronizer 104 is similar to that of the transmitter and receiver combined; the synchronizer will allow difference information Δ to be both transmitted and received. For example, System A and System B are a portable computer and a desktop computer, respectively, where information such as contact information needs to be synchronized between the two, the differencing synchronizer 104 will extract changes made to the contact information on either System A or System B and at predetermined times, transmit the information Δ between the systems, and reconstruct the data on the receiving system to update information from the sending system, in order to ensure that both systems contain the same data.
  • FIG. 3 shows yet another alternative embodiment of the system of the present invention. In FIG. 3, System A again includes a differencing transmitter and System B includes a differencing receiver 102. In this embodiment, a storage server 300 is coupled between System A and System B. Storage server 300 may store a separate database of the difference information Δ provided by System A, which allows System A to provide its difference information Δ to the storage server 300 at a first point in time, and storage server 300 to provide the same difference information Δ to System B at a second point in time, but not the same as the first point in time. In addition, multiple sets of difference information Δ may be provided at different points in time, and stored for later retrieval by System B. Still further, the difference information sets may be maintained on server 300 to allow data on either System A or System B to be returned to a previous state.
  • Once again, the storage server 300 is coupled by a direct connection 110 to both System A and System B. Storage server 300 may be a server specifically adapted to receive differencing information Δ from the receiver 100 and provide it to the transmitter 102. In one embodiment, server 300 includes specific functional routines for enabling this transfer. Alternatively, server 300 comprises standard information server types which respond to standard Internet communication protocols such as file transfer protocol (FTP), or hypertext transfer protocol (HTTP).
  • FIG. 4 shows yet another alternative embodiment of the system of the present invention wherein System A and System B, once again coupled directly to a storage server 300 by a direct connection line 110, each include a differencing synchronizer 104. Difference information Δ can be passed to and from System A through synchronizer 104 to and from the storage server 300 at a first point in time, and to and from System B at a second point in time. In this embodiment, storage server 300 may include routines, described below, for resolving conflicts between data which has changed on both System A and System B independently after the last point in times when the systems were synchronized.
  • FIG. 5 shows yet another alternative embodiment of the present invention including four systems: System A which includes a differencing synchronizer 104; System B which includes a differencing receiver 102; System C which also includes a differencing synchronizer 104; and System D which includes a differencing transmitter 100. Each is directly coupled to a storage server 300, allowing control of transmission of differencing data A between the various systems. Server 300 may include routines, described in further detail below, to track the various types of systems which comprise System A through System D, and which control the transmission of various components of the difference information Δ to each of the various systems. For example, since System B includes only differencing receiver 102, the difference information Δ2 which is provided to it may be a sub-component of that which is transferred between System A in the storage server 300, or may be simply receiving broadcast information Δ4 from System D. In one embodiment of the system of the present invention, server 300 does not itself route the difference information derived from each receiver/transmitter/synchronizer. Server 300 acts as a repository for the information, and the determination of which difference information Δ is attributed to which receiver/transmitter/synchronizer is made by each receiver/transmitter/synchronizer.
  • FIG. 6 shows yet another alternative embodiment of the present invention. In FIG. 6, a synchronizer is provided in storage server 300. It should be recognized that a forwarder and/or receiver may be provided in server 300 as well. The particular embodiment shown herein may be advantageous where device processing power and memory are limited, such as cases where the device is a cell phone. It should be noted that the data transferred between system A and the device engine 104 a in such an embodiment may or may not be difference information, depending on whether System A has the capacity to detect and output difference information. Each of the devices may include a differencing receiver, a differencing transmitter, or a differencing synchronizer. It should be understood that a portion of the differencing synchronizer 104 a may reside on System A and another portion may reside on server 300.
  • FIG. 7 shows yet another alternative embodiment of the present invention wherein the devices shown in FIG. 6 may be coupled to a combination of public or private networks 700 such as, for example, the Internet. The network 700 may include one or more storage servers 300 1,300 2, and in such cases the difference information Δ transmitted between each such device 602-610 via intermediate storage on one of such servers. Network 700 may couple the devices to one or more specialized function servers, such as servers specifically designed to include a differencing forwarder, receiver or synchronizer. Such devices may comprise, by way of example and without limitation, a personal office PC 602, a smart telephone 604, a user's office PC 606, a personal information Palm® computing device 608, a telephone or cellular phone 604, a home personal computer 606, or a web browser 610. Each differencing receiver, differencing transmitter, or differencing synchronizer present in devices 602-610 includes means to poll the data stored on storage servers 300 1,300 2 to determine whether the data present at storage server 300 1,300 2 includes difference information which the particular receiver or synchronizer is required to have to synchronize the data on the device on which it resides.
  • In the following description, an embodiment wherein the differencing receiver, transmitter, and synchronizer are described will be discussed with respect to its use in synchronizing contact information, calendar information, and binary file information between a plurality of different devices in the context of data synchronization. It will be readily understood that the system of the present invention is not limited to synchronization applications, or applications dependent upon specific types of data, such as contact information or scheduling information. In particular, it will be readily understood that the transmission of data comprising only the differences in data between two systems via routines which extract the data and reassemble data on the various systems, represents a significant advancement in the efficient transmission of data. The present invention allows for optimization in terms of a reduction in the bandwidth utilized to transmit data between two systems, since only changes to data are transferred. This consequently increases the speed at which such transactions can take place since the data which needs to be transmitted is substantially smaller than it would be were entire files transferred between the systems.
  • In a particular embodiment of the present invention, the ability of devices to connect to the Internet is leveraged to manage data transfer between the systems. In essence, each particular device which requires information access which can connect to the Internet may become part of the system of the present invention, and synchronize its data with other devices defined by a user as being part of the system.
  • Generally, the system comprises client software which provides the functions of the differencing transmitter 100, differencing receiver 102, and differencing synchronizer 104 in the form of a device engine. The device engine includes at least one component particular to the type of device on which the device engine runs, which enables extraction of information from the device and conversion of the information to difference information, and transmission of the difference information to the storage server. This allows the replication of information across all systems coupled to the system of the present invention. Although the storage servers 300 utilized in the system of the present invention may be any type of storage server, such as an Internet server or an FTP server, and may be provided from any source, such as any Internet service provider (ISP), particular aspects of a storage server which may be useful and which may be customized to optimize transfer of information between systems coupled as part of the present invention will be described below. Synchronization of devices utilizing the synchronization system of the present invention is possible as long as an Internet connection between the devices is available.
  • In a key aspect of the invention, the Internet connection between the devices or between the devices and a server, need not exist at the same point in time, and new devices may be added to the system of the present invention at any point in time without the loss of information. The system provides totally transparent access to information and the device engine on each device provides an operating system independent extension which allows seamless integration of the personal information services in accordance with the present invention.
  • In a particular unique aspect of the present invention, only those changes to the information which are required to be forwarded to other systems on the system of the present invention are transmitted to enable exceptionally fast response times. In a still further aspect of the invention, information which is transferred in this manner is encrypted to ensure security over the public portions of the Internet.
  • Architecture Overview
  • FIG. 8 shows an overview of the architecture of the system of the present invention utilized for synchronizing or “syncing” information on different types of devices. In the embodiment hereinafter described, the system of the present invention allows the coupling of a collection of personal devices and applications one uses when working with personal information. Nevertheless, the system may be used to broadcast public or private information to various device types. System software in the form of a device engine for each device which is declared a part of the system of the invention is distributed across the collection of devices to enable synchronization. Distribution of the device engines may occur via, for example, an installation package forwarded over an Internet connection. In essence, the device engine software of the present invention forms a distributed processing network which maintains consummate synchronization of all information in the system. The processing load associated with delivering this service is pushed to the end-point devices which provides for easy scaling of the system to ever-larger applications.
  • The present invention contemplates the use of two types of device engine: one totally embodied on the server which outputs change data to the server; and a second totally embodied on the server receiving device generated change information from the device. In addition, a hybrid of the two, having a portion of the device engine on the device and a portion on the server, is disclosed.
  • As shown in FIG. 8, any number and type of devices 802-808 may be utilized in accordance with the system of the present invention. A telephone 802 may comprise a cellular phone or a standard POTS-connected telephone. Telephone 802 may include contact information and, as is supported with a newer generation of cellular telephones, appointments and task data stored in a data structure 812. The application 812 which utilizes the application data 822 comprising such information is all stored in the telephone unit 802. Likewise, a personal digital assistant such as a Palm® computing device 804 includes application 814 and application data 824 which may include information such as contacts, appointments and tasks, and may also include file information such as documents which are created and stored on the PDA 804. Device 806 is represented as a Windows personal computer running an operating system such as Microsoft Windows 95, 98, NT or 2000. Applications 816 which may be running on device 806 include the Windows operating system itself, Microsoft Outlook, Symantec's ACT Personal Information Manager, Goldmine Software's Goldmine, Lotus Organizer, Microsoft's Internet Explorer web browser, Netscape's Communicator Suite, Qualcomm's Eudora e-mail, and various other programs, each of which has its own set of application data 826 which is required to be synchronized not only with devices outside the system 806, but also between devices and applications within the system itself. Finally, a dedicated web browser client 808 is shown which couples via the Internet to web portal applications 816 which have their own set of application data 828. Unlike devices 806 which store the application and application data substantially in their own hardware, web portal applications are provided on a separate server and provided to browser 808 via an Internet connection. Nevertheless, the web portal application stored on the portal application provider includes a set of application data 828 which a user may wish to synchronize. For example, a large web portal such as Yahoo! and Snap.com provide services such as free e-mail and contact storage to their users. A user may wish to synchronize this with applications running on their cellular phone, PDA, or Windows devices.
  • In order to access the specific application data of each of the systems shown in FIG. 8, a device engine is associated with each type of device. A cellular device engine 862 communicates and incorporates itself with the application data 822 of the cellular phone. Likewise, a PDA device engine 864 is provided, which may be based on either the Palm® operating system, Windows CE operating system, or other PDA-type operating systems as necessary. A Windows-based device engine 866 includes a mechanism, discussed below, for extracting application data 826 from supported Windows applications 816, and a web services device engine 868 incorporates to extract application data 828 from web portal applications 818.
  • As shown in FIG. 8, some device engines are provided entirely on the device (and are referred to herein as desktop device engines), while others include components a the back end server (which may comprise storage server 850 or a specialized server, as shown in FIG. 9B.) This is illustrated generally by lines 832, 834,836, and 838 in FIG. 8. Also, in FIG. 8, elements above dashed line 855 are provided by an administrator or service provider of the system of the present invention. Each of the device engines 862, 864, 866 and 868 is configured relative to the type of device on which it resides. For example, the Cell phone device engine 862 includes one or more components arranged on the phone while others are on server 850. Conversely, device engine 866 resides entirely on the windows device 806.
  • Data from each of the devices is coupled via an Internet connection 710 with a storage server 850. As noted above, storage server 850 may be a generic storage server or it may be a storage server specifically adapted for use with the system of the present invention as discussed below. One or more of the storage servers 850 are used to communicate transactions amongst the collection of systems 802, 804, 806, 808. It should be readily recognized that any number of different types of systems 802, 804, 806, 808 may be provided in accordance with the present invention and incorporated into the system. However, for brevity, not all the different types of commercially available computing devices which are currently in use or in development, in which the system of the present invention may be incorporated, are listed.
  • In its simplest embodiment, the storage server 850 is simply a dumb storage server and each of the device engines transmits only difference information thereto to be stored in a particular location accessible by other device engines in the system. In one embodiment, each device engine implements all processing required to keep all the systems fully synchronized. Only one device engine needs to be coupled to the storage server 850 at one particular point in time. This permits synchronization of multiple systems in a disconnected fashion. Each device engine will download all transactions encapsulating changes that have occurred since the last synchronization from the server and apply them to the particular device.
  • The change or difference information (Δ) is provided in one or more data packages, the structure of which is described herein. Each data package describes changes to any and all transfer information across all device engines, including but not limited to application data, files, folders, application settings, and the like. Each device engine can control the download of data packages that include classes of information that apply to the specified local device 802, 804, 806 or 808 attached to that specific device engine. For example, device engine 862 will only need to work with changes to information describing contact names and phone numbers in application data 822, while device engine 866 will be required to work with changes to e-mail, changes to document files, notes, as well as contact and address information since the application data 826 is much more extensive than application data 822.
  • Each device engine includes compression/decompression and encryption/decryption components which allow encryption and/or compression of the data packages transmitted across Internet connection 710. It should be recognized that compression and encryption of the data packages may be optionally provided. It is not required in accordance with the present invention. Each device engine performs mapping and translation steps necessary for applying the data packages to the local format required for that type of information in the application data stores 822-828. The device engine also includes components which allow it to track ambiguous updates in cases where users have changed data to a particular data field on two different systems simultaneously since the last update. In this case, the device engine includes a mechanism for drawing this to the attention of the user and allowing the user to resolve the conflict.
  • Device Engine Architecture
  • FIG. 9A illustrates a single device engine utilized with a generic application 810 and a generic storage server 850. FIG. 9A illustrates a desktop device engine, since all processing occurs on the device and only difference information is transmitted to server 850. Nevertheless, an understanding of the desktop device engine will aid in understanding server side devices engines, hereinafter described. Shown in FIG. 9 are the functional components of a device engine in block form and their interrelationship to each other. The device engine 860 is equivalent to the functional block of a differencing sequencer 104 shown in FIGS. 1-7.
  • While the invention will be described with respect to the embodiment of the invention as a differencing synchronizer 104, it will be readily understood that portions of the functionality are utilized as needed in a forward-only (a differencing transmitter) or a receive-only (a differencing receiver) capacity as required by the particular application.
  • As noted above, a device engine exists for each and every device that makes up a user's personal information network of devices in the system. As shown in FIG. 9A, each device engine 860 includes an application object 910. The application object is specific to each particular application 810 and provides a standard interface between the device engine and the balance of the data transmission system of the invention, and the application 810. Details of the application object will be described in further detail below. The application object is a pluggable architecture which supports a wide variety of vendor-unique applications. The job of the application object is to map data from the application into a temporary or “universal” data structure by connecting to the application via any number of standard interfaces to gain access to the applications data. The data structure of the application object puts the data in a generic or “universal data” format which may be used by the device engine components to generate data packages for provision to the storage server.
  • Also provided is an application object store (AOS) 920 which includes a copy of the device's data at a point just after the previous data extraction and synchronization occurred. Application object store 920 is a mirrored interface which stores a snapshot of the previous state of the data from the application object 910 in the device engine. The size of the AOS will depend on the data being collected by each device engine.
  • The generic output of the application object is provided to a delta module 950. Delta module 950 is a differencing engine which calculates differences in data between the output of the application object 910 and the copy of the data which is provided in an application object store (AOS) 920. The actual differencing and patch routine can comprise a routine such as XDelta or YDelta. The delta module 950 will be referred to herein alternatively in certain portions of the description as “CStructuredDelta.” In addition, the difference information is alternatively referred to herein as a “change log.” Each change log (or set of difference information) is a self describing series of sync transactions. As described below, the change log may be encrypted and compressed before output to the network.
  • Hence, during a sync, the Application Object will, using a mechanism discussed below, extract the data of each application in the device and convert it to a universal data format. The delta module will then generate a difference set by comparing the output of the Application Object and the AOS. This difference information is forwarded to the encryption and compression routines for output to the storage server 850 in the form of a data package. Alternatively, the data from one application can be used to synchronize to data in another application in, for example, a windows environment, as shown by arrow 1050 in FIG. 10.
  • It should be specifically noted that the application object may interface directly unstructured binary data or with structured application data. The differencing routine supports both uses of the delta module 950 in comparison generation.
  • In some cases, operation of the application object and delta module is simplified by the fact that some applications, such as PDA's, have the ability to output changes to its data. In such cases, the delta module 950 need only provide the data into the data package, since comparison to an AOS is not required—the application already includes a mechanism for tracking changes made to its own data. However, in many cases the applications provide, at most, a standard interface to access the data, such as Microsoft's OBDC interface, the Microsoft standard Application Programming Interface (API), or other similar standard interfaces.
  • Device engine 860 further includes a versioning module which applies a version number per object in the data package. As explained further below, each object in the data package is assigned a universally unique ID (UUID). Hence, unlike many prior synchronization systems, the system of the present invention does not sync data solely by comparing time stamps of two sets of data. Versioning module 915 allows each device engine to check the state of the last synchronization against data packs which have been provided to the storage server to determine which data packages to apply. This allows the device engine to sync itself independently of the number of times another device engine uploads changes to the storage server. In other words, a first device engine does not care how many times a second device engine uploads data packages to the server.
  • An events module 925 controls synchronization initialization events. Items such as when to sync, how to sync, trigger the delta module 950 to perform a synchronization operation.
  • A user interface 930 is provided to allow additional functional features to a system user of the particular device to which the device engine 860 is coupled. The user interface is coupled to a conflict resolution module 940, a filtering module 945, and a field mapping module 935. Each of the modules provides the functionality both necessary for all synchronization programs, and which users have come to expect.
  • Filtering module 945 allows filtering for types of content based on, for example, a field level content search. The field mapping module 935 allows for the user to re-map certain interpretations of items which were provided in the document stream. For example, if the device engine 860 is operating on a personal computer, and a synchronization is occurring between the personal computer and a notebook computer, and the user has a “my documents” directory on the personal computer which he wishes to map to a different directory on the notebook computer, the field mapping module 935 allows for this re-mapping to occur. It should be recognized that the field mapping module allows for changes in directing the output of the data package. The field mapping module 935 is not necessary to map particular data fields of, for example, contact information from one application, such as Microsoft Outlook, to a different application, such as Symantec's ACT, as is the traditional use of field mapping and synchronizing applications.
  • Delta module 950 is further coupled to a compression module 970 and an encryption module 960. It should be recognized that the compression encryption modules need not be enabled. Any type of compression module 970, such as the popular PK Zip or Winzip modules, or those available from HiFn Corporation may be utilized in accordance with the invention. Moreover, any type of encryption algorithms, such as MD5, RCH 6, Two Fish, or Blowfish, or any other symmetric encryption algorithm, may be utilized. In one embodiment of the invention, encryption without compression is used. In a second embodiment of the invention, compression without encryption is used. In a third embodiment of the invention, neither compression or encryption is used, and in a fourth embodiment of the invention, both compression and encryption are used.
  • Versioning module 915 also allows the device engine 860 to support multiple users with distinct synchronization profiles. This allows multiple users accessing the same machine to each synchronize their own data set using the same device engine. For example, if the application 810 on a particular device comprises Microsoft Outlook on a personal computer, coupled to a Microsoft Exchange server, and Outlook is configured to have multiple user profiles, versioning module 915 will track the data applied through the device engine when a sync request occurs. This allows two users of the same Outlook client software which access different data sets, either in the client computer or on a separate server, to utilize the same device engine and the system of the present invention via the same machine. In a further embodiment, a particular device engine supports the use of foreign devices accessing the system via the same connection. Palm® devices, for example, use a cradle to connect to a computer and/or Internet connection. If a particular user wishes to allow another user to use his Palm® pilot cradle connection to synchronize the other user's Palm® pilot, the device engine can generate data packages to update the local application object store for the foreign device. The application object store can therefore be used as a temporary storage for cases allowing synchronization of foreign devices.
  • The output of the device engine 900 comprises a data package which is output to storage server 850. As noted above, only one device engine need be connected to the storage server 850 at a given time. The data package can be stored on the storage server 850 until a request is made to a particular location of the storage server by another device engine. Likewise, delta engine 900 can query alternative locations on the storage server for access to synchronized data within the system of the present invention. Access to areas of the storage server is controlled by a management server (MS) described more fully below. In one embodiment, each sync operation requires that the device engine for each device login to the management server to authenticate the device and provide the device engine with the location of the individual device's data packages on the storage server.
  • Data packages may be advantageously provided to the device engine from the storage server in a streaming format, allowing processing to occur using a minimum of bandwidth and storage in the devices. The device engine 860 and particularly the delta module 950 interpret data packages based on the versioning information and the mirrored data present in the application object store 920. When data is returned to the delta module 950 from the storage server 850, the delta module returns differenced data to the application object 910 for the particular application which then translates the delta information into the particular interface utilized for application 810. Once a device engine has been fully applied all data packages from an input stream, it generates a series of data packages that describe the changes made on the local system. The device engine uses the local application object store 920 to keep track of the last synchronized version of each application's actual data, which is then used for the next data comparison by the delta module on the next sync request. Generated data packages can include operations and encode changes generated from resolving ambiguous cases as described above.
  • FIG. 9B depicts how server based device engines may be provided in the system of the present invention. The Palm® device example is shown in this embodiment, where the Palm® device has the capability of connecting directly to the Internet and a service provider's data center 900. The data center includes a firewall 975 to prevent unauthorized communications with servers resident in the data center 900 and protect integrity of the data. The storage server 850 may communicate directly through the firewall as may the management server (MS) 1410.
  • Shown therein are two sync servers 982 and 984 each of which is dedicated to syncing one particular type of application. Sync server 982 is dedicated to the Palm® device, while sync server 980 is dedicated to, for example, a portal application (Portal1).
  • Since the Palm® Device 804 a includes a mechanism for transmitting changes to its data directly, data may be transmitted using HTTP request and response via the firewall 975 to the sync server 982 where differencing and updating of data in the AOS can occur, after which changes can be downloaded to the Palm® 804 a.
  • The synchronization server is an application handles concurrent synchronization of user's data. Each Sync Server includes plug-in support for multiple devices to be synchronized using the same sync server executable. Each device type has it's own device name that identifies which AO/AOS components will be used during the sync.
  • The sync server uses the concept of a universal data record in its internal sync differencing engine and when sending data to and retrieving from external entities such as the AOS and AO. Hence, in the Palm® application, the job of a server AO is simply to take the device-specific format of its record and convert into a universal record format.
  • The Sync Server has a plug-in architecture so that 3rd party application partners can easily add their services into the server. Currently, if the server is operated in a Microsoft Windows NT Server, the sync server discovers the sync components via the Windows NT registry. In alternative embodiments, this function is performed in a Component Manger which operates on each sync server to manage processing by each of the AO and AOS on the server. Each AO and AOS are implemented as a stand-alone DLL that the Sync Server loads at initialization time, or when adding a new component via the Component Manager.
  • Each sync server is shown as dedicated to a single application. However, a sync server may handle multiple device types.
  • In the embodiment of FIG. 9B, it should be noted that, depending on the device type, there are different configurations for the AOS and AO's. For example, the Palm®'s AO data store 1050 resides on the Palm® device 804 a itself and a separate AOS data store 1052 exists for this configuration (an Oracle database). In the case of Portal1, the AOS and AO use the data store 1054.
  • Device engines can generate additional data packages intended to resolve synchronization problems in other systems. For example, interfacing with the conflict resolution module 940, if the user makes a change to a particular data store on an application object on his Palm® pilot, then makes an additional change to a personal information manager (PIM) application on his personal computer, the user can specify that the change made on the personal computer will “win” when the conflict is detected by the A engine and the versioning information between the two devices. This is essentially a definition that one particular set of data is correct and should replace the second set of data.
  • FIG. 10 shows a specific embodiment of a desktop device engine utilized in, for example, a Microsoft Windows-based operating system environment.
  • As shown in FIG. 10, a Windows operating system may have at least three specific applications which may require synchronization. In FIG. 10, the system includes Netscape Communicator application 1040 having data such as bookmarks 1021, contacts 1022, and e-mail 1023; a Microsoft Outlook application 1042 which includes contact information 1024, calendar information 1025, e-mail information 1026, note information 1027, and tasks information 1028; and Windows operating system 1044 information including Favorites data 1029, file system information 1030, and individual files 1031.
  • Each particular application 1040, 1042, 1044 has an associated application object 1010, 1012, 1014. Each of the respective application objects provides data back to delta module 950 in a generic format which is usable by the delta module in accordance with the foregoing description of the apparatus shown in FIG. 9A. From FIG. 10, it will be additionally seen how the delta module 950 may be utilized to synchronize data between applications running on the same particular server. The device engine hence does an intra-system sync such as, for example, between the contact information 1022 from Netscape and the contact information 1024 from Outlook.
  • FIG. 10 further illustrates the modularity of the system of the present invention allowing the device engine to include any number of different application objects to be provided on a single device to incorporate all applications run on that device.
  • In operation, during an installation of a device engine into a particular system, the installation program may be tailored to provide application objects which may be present on a given system. For example, and with reference to FIG. 10, the installation program for a Windows machine will carry any number of application objects for systems and applications which may be present on a Windows machine. The installer will check for the presence of given applications, and allow the user to add additional applications which may be installed in locations that are not the normal default installation areas for application support by the application objects which the installer is carrying, or de-select certain applications which, for one reason or another, the user may not wish to install an application object for and render a part of the system of the present invention.
  • Application Object Structure
  • FIG. 11 is a conceptual depiction of the structure of an application object. As noted above, the application object is a pluggable architecture which supports a wide variety of vendor-unique applications. The consistent and scalable architecture of the system of the present invention for device engines is maintained by encapsulating system-dependent knowledge in a single component, i.e. the application object. As noted above, every application object supports a standard set of interfaces that every device engine understands. Each application object maps these standard interfaces of the capabilities of a particular vendor application. Hence, there will be as many application objects as there are application types.
  • As noted above, there are different types of server and desktop device engines, some having application objects entirely on the server, while others have application objects entirely on the desktop.
  • Each application object will include a connector 1110 which may comprise a generic interface to the particular application for which the application object store has been designed. For example, when connecting to a Palm® device, the connector will be an HTTP protocol request routine which interfaces with the Palm® device's own built-in synchronization manager, which provides an output of records which have been changed on the Palm® device. As in FIG. 9B, since the Palm® outputs all the changes to its data via its own sync manager, in the Palm® application, the job of a server AO is simply to take the device-specific format of its record and convert into a universal record format.
  • The connector provides access for the application object to remove the data field from a particular application and convert it to a universal record structure. In the desktop AO, where, for example the application object is designed for a Windows interface, the connector may be the Windows API and the job of the AO will be to translate data from, for example, the windows file system to a universal data format. This universal data structure is then used by the delta module 950 to build data packages to be used in synchronization between components of the systems provided in the network system of the present invention.
  • Universal data structure mapping, used on desktop application objects, and universal data record mapping, used by the server device engines, is further detailed below.
  • Desktop Application Object
  • Each Application Object (AO) is a software component that interfaces with the third party application APIs (Application Programming Interface) to provide the programming services to the delta module for extraction and deposition of information data from and to the third party application domain during synchronization. In addition, the AO maps the third party application data fields to system's domain.
  • The AO service is a collection of COM (Component Object Model) objects that can be developed in conjunction with the third party Windows application APIs as a form of a DLL (Dynamic Linked Library) in C or C++. The DLL is loaded on demand at runtime during synchronization. It should be recognized that the application object need not be implemented using the COM model, but may be developed with other distributed object models.
  • There are a number of the related subsystems and documents that the developer must be familiar with and this document has made many references to those subsystems during the course of presenting the AO.
      • Change Log (CL) (or differencing information), a data file which contains a series of synchronization transactions.
      • DataPack, a compacted and encrypted Change Log.
      • StructuredDelta, the delta module differentiation engine that generates differences between Application Objects and Change Log and AOS.
      • AOS, a database which resides locally on, for example; a windows machine.
      • MS, a management server that manages users' accounts.
      • SS, an FTP or storage server that manages data packs.
      • User Manager, a standalone Windows client UI program that manages the synchronization process.
      • ePortal, a web-based PIM portal site.
      • pio_types.h, a header file which contains the definitions of the system's supported data fields known as tags.
      • Def.h, a header file contains the definitions of the system's constants.
      • interfaces.h, a COM interface file contains AO interface definitions.
  • Each AO has a COM interface-based design built-in. That is, instead of providing a set of traditional APIs as programming services, it provides a set of interface-based objects as programming services.
  • StructuredDelta, the delta module, the primary intended user of each AO. StructuredDelta instantiates these COM objects and uses them throughout the synchronization session exclusively through the COM interfaces on those objects to interface with the third party application database.
  • Each AO component consists of a set of objects that translate the third party application data into the universal data middle format which underpins the entire spectrum of PIM data regardless of which third-party application the data comes from. The objects in universal data format are device, (application) data class, store, folder, item, and data fields. The AO digests the third party application data of any kind and reduces it into a few handful simple objects and field types. These objects and field types are fed into StructuredDelta engine and are compared by StructuredDelta in order of their hierarchy. The resulting differences (add, delete, modify) are logged as transactions in the difference information. The data packs are transported to a storage server that may be actively managed by a management server for each individual user account and devices.
  • StructuredDelta uses AO objects to access and modify the individual AO objects and data fields. AO objects serve as a buffer between individual application data and StructuredDelta so that StructuredDelta does not require knowledge of each application and database. All AO objects are temporary and created in the space of each AO by StructuredDelta through COM interfaces. AO objects are referenced when they are in use and they are freed when StructuredDelta stops using them. One can think of AO objects as merely placeholders of each application objects for StructuredDelta to access. Once StructuredDelta has a particular Application's data, StructuredDelta would free AO objects immediately without storing them internally.
  • AppObj
  • AppObj is a root object of each AO component and there is one and only one per AO. AppObj provides an entry point into the individual application's database. StructuredDelta instantiates it and holds it on during the entire synchronization session and releases it afterward. AppObj offers a number of services such as what class of data it supports. The C++ example of AppObj's definition is shown below:
    class CMyF1AppObj :
    public Item,
    public AppObj,
    protected ModuleIdentity,
    protected DataClassInfo,
    protected ItemTypeInfo,
    protected ItemFieldMap,
    protected FolderInfo,
    protected DataFileInfo,
    protected SynchNotify,
    protected ErrorMsg,
    protected EnumItems,
    protected FindItem,
    protected ModifyItem
    {
    public:
    CMyAppObj( HWND hWndParent );
    ˜CMyFppObj( );
    };
  • AppObj can contain children objects. They are Store objects. EnumItems interface is used to enumerate Store objects. FindItem interface is used to find the contained objects. ModifyItem interface enables AppObj to create a new Store object. AppObj is created by StructuredDelta calling CreateAppObject(HWND hWndParent, AppObj **ppObj).
  • Store
  • The Store object represents a database of the individual application information. If the individual application can handle multiple databases at same time, one needs multiple Store objects. One can think of Store object as a specialized Folder object, the root folder of each particular application data domain. The C++ example of Store's definition is shown below:
    class CMyStore :
    public Item,
    public ItemContainer,
    protected EnumItems,
    protected FindItem,
    protected FindItemByData,
    protected ModifyItem,
    protected ReadWrite
    {
    CMyStore( );
    ˜CMyStore( );
    };
  • Store is a container of Folder objects. EnumItems interface enables the enumeration of its contained folders while FindItem and FindItemByData interface is used to find contained Folders or Item objects. ModifyItem and ReadWrite interface enables the modification of each application database.
  • Folder
  • Folder object is a specific data class of each individual application such as a table in the relational database or a collection of data records in each application. For example, the applications contact collection can be thought as a Folder object. The C++ example of Folder's definition is shown below:
    class CMyFolder :
    public Item,
    public ItemContainer,
    protected EnumItems,
    protected FindItem,
    protected FindItemByData,
    protected ModifyItem,
    protected ReadWrite
    {
    public:
    CMyFolder( );
    ˜CMyFolder( );
    };
  • Folder object is also container. It can contain Item objects as well as Folder objects. EnumItem interface allows the enumeration of either Folder objects or Item objects or both. FindItem and FindItemByData interface is used to find contained Folder objects or Item objects. ModifyItem and ReadWrite interface enables the modification of an application's data tables.
  • Item
  • Item object represents an individual entity of each application's domain specific data. Item object can be thought as a record of each application's relational table. For example, a contact, email, calendar, to-do item in the particular application can be thought of as an Item object. The C++ example of Item's definition is shown below:
    class CMyItem :
    public Item,
    protected EnumItems,
    protected FindItem,
    protected ModifyItem,
    protected ReadWrite
    {
    public:
    CMyItem( );
    ˜CMyItem( );
    };
  • Item can contain Attachment objects only. EnumItems interface enables the enumeration of Attachment objects if any. ModifyItem and ReadWrite interface enables the modification of an application's records or data fields.
  • Attachment
  • Attachment object is a specialized Item object that encapsulates an attachment data or relationship. Only Item can have Attachment objects. Attachment object can be thought as attachment data such as attached-email files. Attachment can also be thought as attachment relationship to other Item objects. The example of that is the distribution list (Item object) can contain contacts (Item objects). The C++ example of Item's definition is shown below:
    class CMyItemAttachment :
    public Item,
    protected ReadWrite,
    protected ModifyItem
    {
    public:
    CMyItemAttachment( );
    ˜CMyItemAttachment( );
    };
  • Variant
  • Variant object represents a data field of each particular application data. For example, a ‘first name’ of a contact or the birthday date of a contact can be thought as Variant object. StructuredDelta only understands Variant object and the types of data fields it encapsulated. Variant object can contain any one of the following data field type:
    struct Variant
    {
    enumFieldTag tag;
    enumFieldDataFlag flag; // flags item fields as not
    known or otherwise special
    union
    {
    short int i; // eFieldType_WORD
    LONG l; // eFieldType_LONG
    DWORD dw; // eFieldType_DWORD
    unsigned_int64 qw; // eFieldType_QWORD
    UUID uuid; // eFieldType_UUID
    DATE time; // eFieldType_DATE
    LPTSTR psz; //
    eFieldType_String
    Binary bin;  // eFieldType_Binary
    Float flt; // eFieldType_Float
    Double dbl; //
    eFieldType_Double
    F1Collection coll; //
    eFieldType_Collection
    } Value;
    Stream* strm; // eFieldType_Stream
    };
  • Variant::tag is an identification tag of data field and variant::flag specifies the type of data field while Variant::value member variable stores each application's field value. One data field type is Collection. Collection object is an array of Variant objects. It can be used to represent a compound data fields.
    struct Collection
    {
    ULONG cValues;
    struct_Variant** paVar; // This array really
    contains cValues entries
    };
  • Another data field type that is worth exploring is Binary. Binary object can be used to represent a binary data as it is.
    struct Binary
    {
    ULONG cb;
    LPBYTE lpb;
    };
  • AO Interfaces
  • Each AO object has an AO COM interface. Each object must implement some of those interfaces to create certain capability or desired behavior that are expected by StructuredDelta.
  • IItem
  • This is the base interface of all application objects. It provides the identification service to StructuredDelta. Every object must have a unique ID, parent unique ID, display name, and item type information (eItemType_FOLDER, eItemType_CONTACT, etc). The unique ID is a unique string only in a given device. It is not persistent cross the Internet to other devices. The ID usually comes from the third party application database domain such a unique ID of a record.
    interface IItem : IUnknown
    {
    STDMETHOD_(LPCTSTR, GetUniqueID) ( ) const PURE;
    STDMETHOD_(LPCTSTR, GetParentUniqueID) ( ) const PURE;
    STDMETHOD_(LPCTSTR, GetDisplayName) ( ) const PURE;
    STDMETHOD_(enumItemType, GetItemType) ( ) const PURE;
    STDMETHOD_(BOOL, IsContainer) ( ) const PURE;
    STDMETHOD_(DATE, GetLastModificationTime) ( ) const PURE;
    STDMETHOD_(QWORD, GetSize) ( ) const PURE;
    STDMETHOD_(DWORD, GetFlags) ( ) const PURE;
    };
  • IItemContainer
  • This is the base interface of all application container objects (store, folder). These container objects must have this interface implemented so that StructuredDelta would recursively descend in them if they have IItemContainer capability.
    interface IItemContainer : IItem
    {
    STDMETHOD_(BOOL, ContainsItemType) ( enumItemType eItemType ) PURE;
    STDMETHOD_(BOOL, ContainsDataClass) ( enumDataClass eDataClass )
    PURE;
    STDMETHOD_(enumSpecialFolderType, GetSpecialFolderType) ( ) PURE;
    STDMETHOD_(GUID, GetMappingGUID) ( ) PURE;
    };
  • IErrorMsg
  • This is an error-reporting interface for every application object. It is used by StructuredDelta to query the error string after a failure. The AO should implement this on every object after the error occurs and before returning the control to StructuredDelta.
    interface IErrorMsg : IUnknown
    {
    STDMETHOD(GetErrorString) ( LPTSTR pszError, int iBufLen
    ) const PURE;
    };
  • IEnumItems
  • This is an interface for collection enumeration, used by StructuredDelta to enumerate the objects of the third party application database. IEItemEnumFlags (eItemEnumFlags_FOLDER, eItemEnumFlags_ITEM, and eItemEnumFlags_ATTACHMENT) is used to enumerate only the requested type of objects.
    interface IEnumItems : IUnknown
    {
    STDMETHOD(ItemQueryStart) ( enumItemType type, long
    &lCount, eItemEnumFlags dwFlags ) PURE;
    STDMETHOD(ItemQueryNext) ( Item **ppItem ) PURE;
    STDMETHOD(ItemQueryFinish) ( ) PURE;
    };
  • IFindItem
  • This is an interface for recursively finding object within the third party application database, used by StructuredDelta to find application object by its unique ID.
    interface IFindItem : IUnknown
    {
    STDMETHOD(FindStoreByID) ( LPCTSTR
    pszUniqueID, ItemContainer
    **ppFolder ) PURE;
    STDMETHOD(FindFolderByID) ( LPCTSTR
    pszUniqueID, ItemContainer
    **ppFolder ) PURE;
    STDMETHOD(FindItemByID) ( LPCTSTR
    pszUniqueID, Item **ppItem )
    PURE;
    };
  • IFindItemByData
  • This is an interface for recursively finding the object that matches the search criteria data. The search criteria are represented as Collection that allows the multiple search field keys to be used during the search. The multiple objects may be found that match the search criteria. The interface also provides enumeration capability of the search results.
    interface IFindItemByData : IUnknown
    {
    STDMETHOD(FindByDataStart) ( enumItemType type, Variant*
    pSearchKey, int* pnFound ) PURE;
    STDMETHOD(FindByDataNext) ( LPTSTR pszEntryID, int
    cbBufSize ) PURE;
    STDMETHOD(FindByDataFinish) ( ) PURE;
    };
  • IModifyItem
  • This is an interface for StructuredDelta to add, delete, and re-parent application data in the third party database during synchronization.
    interface IModifyItem : IUnknown
    {
    STDMETHOD(Add) ( BOOL bFolder, enumItemType type, Item
    **ppItem ) PURE;
    STDMETHOD(Delete) ( ) PURE;
    STDMETHOD(Move) ( ItemContainer * pDestFolder ) PURE;
    };
  • IReadWrite
  • This is an interface for accessing, writing, and mapping the third party application data fields by StructuredDelta. It provides the capability of read and write data fields from and to the third party application database and the capability of mapping data field of the third party application to universal data format of the system of the present invention. Any object that has data fields and require field level synchronization must implement this interface.
    interface IReadWrite : IUnknown
    {
    STDMETHOD(Read) ( ) PURE;
    STDMETHOD(Commit) ( ) PURE;
    STDMETHOD(GetFieldData) ( enumFieldTag fieldTag, Variant
    **ppVariant ) PURE;
    STDMETHOD(ReleaseFieldData) ( Variant *pVariant ) PURE;
    STDMETHOD(SetFieldData) ( const Variant *pVariant )
    PURE;
    };
  • IAppObj
  • This is an AppObj only interface. It provides the capability of logon and logoff to the third party applications during synchronization. The data class filter mechanism is used by StructuredDelta to filter the enumeration of contained data classes (eDataClass_CONTACT, eDataClass_CALENDAR, etc).
    interface IAppObj : IUnknown
    {
    STDMETHOD(Logon) ( HWND hWndParent ) PURE;
    STDMETHOD(Logoff) ( ) PURE;
    STDMETHOD(SetFilter) ( const VOID* pFilter, int BufLen )
    PURE;
    STDMETHOD_(int, GetFilter) ( VOID* pFilter, int BufLen )
    PURE;
    };
  • IModuleIdentity
  • This is an AppObj only interface. It provides DLL module identification information to the Manager object such as the name of the third party application, enum ID of this application, and the application installation detection support.
    interface IModuleIdentity : IUnknown
    {
    STDMETHOD(GetName) ( LPTSTR pszName, int iBufLen ) const
    PURE;
    STDMETHOD(GetAppl) ( Appl *pAppl ) const PURE;
    STDMETHOD(IsInstalled) ( BOOL *bIsInstalled ) const
    PURE;
    };
  • IItemTypeInfo
  • This is an AppObj only interface. It provides the information on the number of item types supported by AO, what type items are supported and the capabilities for a specific item type. This returns a DWORD containing bits set.
    interface IItemTypeInfo : IUnknown
    {
    STDMETHOD(GetSupportedTypesCount) ( int &iCount ) PURE;
    STDMETHOD(GetSupportedTypeInfo) ( int iIndex,
    enumItemType &type, LPTSTR pszTypeName, int iBufLen ) PURE;
    STDMETHOD (GetItemTypeCaps) ( enumItemType type, DWORD
    &dwFlags ) PURE;
    };
  • IDataClassInfo
  • This is a CAppObj only interface. It provides the information on the number of data classes that are supported by the application object and what the data classes are supported.
    interface IDataClassInfo : IUnknown
    {
    STDMETHOD(GetCount) ( int *piCount ) PURE;
    STDMETHOD(GetDataClass) ( int iIndex, enumDataClass
    *peDataClass ) PURE;
    };
  • IDataFileInfo
  • This is a CAppObj only interface, it provides information on the number of database files and database filenames supported by AO to avoid being synched twice by application sync and file-set sync.
    interface IDataFileInfo : IUnknown
    {
    STDMETHOD(GetDataFileCount) ( int *piCount ) PURE;
    STDMETHOD(GetDataFilePath) ( int iIndex, LPTSTR
    pszFilePath, int iBufLen ) PURE;
    };
  • IItemFieldMap
  • This is a CAppObj only interface that is used by StructuredDelta to query the data fields of given application object. For example, what are data fields in application object called eItemType_CONTACT?
    interface IItemFieldMap : IUnknown
    {
    STDMETHOD(FieldQueryStart) ( const enumItemType &type,
    int &iCount ) PURE;
    STDMETHOD(FieldQueryNext) ( enumFieldTag &field, LPTSTR
    pszName, int iBufLen, LPTSTR pszType, int iTypeBufLen ) PURE;
    STDMETHOD(FieldQueryFinish) ( ) PURE;
    };
  • IFolderInfo
  • This is a CAppObj only interface, used by StructuredDelta to obtain the special and default folders' unique IDs and UUIDs.
    interface IFolderInfo : IUnknown
    {
    STDMETHOD(GetSpecialFolderID) ( enumSpecialFolderType
    eFolder, LPTSTR pszUniqueID, int iBufLen ) PURE;
    STDMETHOD(GetDefaultFolderID) ( enumItemType type.
    LPTSTR pszUniqueID, int iBufLen ) PURE;
    STDMETHOD(MapFolderGUID) ( UUID uuidFolder, LPTSTR
    pszUniqueID, int iBufLen ) PURE;
    };
  • IFastSync
  • This is a CAppObj only interface that is used by StructuredDelta to query if the given AO also provides FastSync service or not. FastSync is a DLL component that is written using the third party APIs and loaded into the third party application to receive the changes in database while users are operating the application. It is used to speed up the synchronization performance by syncing only the objects that are known to IFastSync component.
    interface IFastSync : IUnknown
    {
    STDMETHOD(GetFastSync) ( enumDataClass eDataClass, BOOL*
    pbFastSync ) PURE;
    };
  • SynchNotify
  • This is a CAppObj only interface that is called by Manager to notify the third party application the state of synchronization: start, finished, or reset so that the application can prepare itself accordingly.
    interface ISynchNotify : IUnknown
    {
    STDMETHOD(SynchNotify) ( enumSynchNotify eNotify ) PURE;
    };
  • Server AO
  • Server Application Objects share many characteristics with desktop application objects, including support for reading and mapping to the universal record structure set forth above.
  • Nevertheless, among various devices incorporated into the system of the present invention, each application object database will be quite different. For example, the Palm® database on the device is really just a memory space with records laid out sequentially in memory. In a web portal-type application, the application object may be an Oracle database. Server application objects may generally have less difficult tasks since the applications supported are generally either devices providing their own change data output, (such as Palm®-type PDA's), or which do not have a great deal of data to export (such as cell phones, having only name and number information).
  • Nevertheless, each application object must support all calls defined in a class interface definition as follows:
    FUNCTION DESCRIPTION
    Open Perform an initialization of the device
    before data retrieval functions are called.
    Close Done with database calls, cleanup if
    necessary.
    Get First Modified Record Get the first modified record from the
    device and insert into application object.
    Get Next Modified Record Get the next modified record from the
    device and insert into the application
    object.
    Add Record Add a record into the application object
    database.
    Update Record Update a record.
    Delete Record Delete a record in the application object
    database.
    Set Device Records A function called during the synchronization
    manager to send a bytestream to the
    application object for interpretation. The
    bytestream will contain a list of records to
    add to the application object modified
    records list. At a later point in time, such
    records will be retrieved by the Get First
    Modified Record/Get Next Modified Record
    functions.
    Get Device Records For records bound to the device, this call
    gets a bytestream that contains a list of
    records to add back to the device. There is
    an outbound record list that is saved until
    this call is finished, at which time the sync
    server will be finished with the application
    object.
    Set Device Response A function used to modify or repair a record
    input saved in the application object store
    that was sent to the device in the Get
    Device Records call, such as a record ID
    for a record. If 10 records were sent to the
    device during the Get Device Records call,
    one would expect to see 10 records coming
    back in during this function call.
  • As noted above, because each application object database is different, the calling convention and the application object itself will likewise be different. The calling convention for a Palm® device's sync manager application object is given in the following pseudo-code:
    Call AO::Open
    Call AO::WriteRecords
    Start synchronization process
    While more records in AO Data Object
    Call AO::GetFirstModifiedRecord( )
    Call AO::GetNextModifiedRecord( )
    END
    IF new records THEN
    Call AO::AddRecord( )
    IF deleted records THEN
    Call AO::DeleteRecord( )
    IF update record THEN
    CALL AO::UpdateRecord( )
    Call AO::Close

    As shown therein, the calling convention is designed to be integrated with the Palm's® own sync manager.
  • A second example provided below shows mapping of a portion of a web portal's contact database:
    MappingItem CContactTable::m_FieldMap[ ] =
    {
    {1, eFieldTag_Contact_FirstName, “firstname”},
    {1, eFieldTag_Contact_MiddleName, “middlename”},
    {1 eFieldTag_Contact_LastName, “lastname”},
    {1 eFieldTag_Contact_Title, “title”},
    {1 eFieldTag_Contact_Suffix, “suffix”},
    {1 eFieldTag_Contact_Anniversary, “anniversary”},
    {1 eFieldTag_Contact_Birthday, “birthday”},
    {1 eFieldTag_Contact_AssistantName, “assistantname”},
    {1 eFieldTag_Contact_Children, “children”},
    {1 eFieldTag_Contact_CompanyName, “companyname”},
    {1 eFieldTag_Contact_Department, “department”},
    {1 eFieldTag_Contact_FTPSite, “ftpsite”},
    {1 eFieldTag_Contact_Gender, “gender”},
    {1 eFieldTag_Contact_JobTitle, “jobtitle”},
    {1 eFieldTag_Contact_ManagerName, “managername”},
    {1 eFieldTag_Contact_NickName, “nickname”},
    {1 eFieldTag_Contact_Office, “office”},
    {1 eFieldTag_Contact_Profession, “profession”},
    {1 eFieldTag_Contact_Spouse, “spouse”},
    {1, eFieldTag_Contact_SelectedMailingAddress,
    “selectedmailingaddress”}
    };
    int CContactTable::m_nNumFields =
    sizeof(m_FieldMap)/sizeof(MappingItem);
    HRESULT CPortalAddrOCI::InsertRecord( MappingItem theMap[ ], int
    numFields, CDataAccessor *pInsertItem, CF1ItemUniversal *pUnivItem,
    bool bForceCreate )
    {
    bool bHasData = SetRecordFields( theMap, numFields,
    pInsertItem, pUnivItem );
    if( bHasData || bForceCreate )
    {
    // Insert the record into the database and execute the command
    pInsertItem−>InsertRow(0);
    pInsertItem−>Exec( );
    }
    return S_OK;
    }
  • The above example of mapping the contact field files maps contact fields from a particular web contact information database to fields in the universal record format from the master list header file (pio_types.h) in the system of the present invention. This mapping is for a specific contact table and it should be understood that other information, such as phone numbers, e-mail addresses, and other contact information may be stored in a separate table.
  • Once data is extracted from a particular application, the server application object must then convert the information into the universal record format which can be utilized by other server device engines to take content information into their own particular application.
  • Universal Record Format
  • The universal record format is used by each server device engine to handle various tasks of encapsulating records in a common format, comparing records, creating and holding differences between records, and other tasks of synchronization.
  • The universal record format allows the application objects to support a wide range of extensible application item types such as contacts, calendar, mail, bookmarks, and the like. Flexible type name and value associations permit synchronization without regard to individual vendor application information formats. Each application object encapsulates mapped knowledge from the vendor unique format to the universal format of the present invention. As such, an application object can be designed to support any combination of application and binary information types. In essence, application objects can be designed to support a vendor application using only binary file synchronization if the internal format of the application is not known.
  • Server application objects can also be designed to create collections. For example, if the user wishes to create a “my pictures” collection which consists of some collection of information and synchronize this collection of information, such an arbitrary grouping of classes of information into appropriate representations is supported.
  • Because the connector layer of the interfaces to the actual storage with a vendor application varies with application type, application access methods can include, but are not limited to, disk or database access, network protocols, wireless device protocols, and the like.
  • The Universal Records Format and the Universal Field Format class definitions are given below:
    typedef map < enumFieldTag, CUniversalField, less_enumFieldTag >
    UniversalRecordMap;
    typedef UniversalRecordMap::value_type UniversalRecordPair;
    typedef UniversalRecordMap::iterator UniversalRecordIterator;
    typedef UniversalRecordMap::const_iterator
    ConstUniversalRecordIterator;
    class CUniversalRecord
    {
    private:
    UniversalRecordMap recordMap_;
    public:
    bool conflicts(const CUniversalRecord& rhs);
    bool add(const CUniversalRecord &rhs);
    bool subtract(const CUniversalRecord& rhs);
    CUniversalRecord( );
    CUniversalRecord( const CuniversalRecord& rhs );
    virtual ˜CUniversalRecord( );
    // add this element
    HRESULT insert( enumFieldTag eId, long value,
    enumFieldDataFlag flag = eFieldDataFlag_Normal);
    HRESULT insert( enumFieldTag eId, LPCTSTR value,
    enumFieldDataFlag flag = eFieldDataFlag_Normal);
    HRESULT insert( enumFieldTag eId, DATE value,
    enumFieldDataFlag flag = eFieldDataFlag_Normal);
    HRESULT insert( enumFieldTag eId, string value,
    enumFieldDataFlag flag = eFieldDataFlag_Normal);
    HRESULT insert( UniversalRecordPair p );
    CUniversalRecord exclusiveLeftWins( CUniversalRecord& rhs );
    CUniversalRecord inclusiveLeftWins( CUniversalRecord& rhs );
    bool removeSame(const CUniversalRecord &rhs);
    bool Find( const enumFieldTag eId, CUniversalField &field );
    UniversalRecordMap::iterator find( const enumFieldTag eId ) {
    return recordMap_.find(eId); }
    UniversalRecordMap::iterator begin( ) { return
    recordMap_.begin( ); }
    UniversalRecordMap::iterator end( ) { return
    recordMap_.end( ); }
    bool empty( ) { return
    recordMap_.empty( ); }
    long size( ) { return
    recordMap_.size( ); }
    UniversalRecordMap::iterator erase(UniversalRecordMap::iterator&
    it)
    { return recordMap_.erase(it); }
    void clear( ) { recordMap_.clear( ); }
    };
  • The UniversalField Structure
    class CUniversalField
    {
    public:
    enum eUniversalField
    {
    eUF_Unknown,
    eUF_Long,
    eUF_String,
    eUF_Date,
    eUF_Blob
    };
    protected:
    eUniversalField typeId_;
    enumFieldTag fieldId_;
    enumFieldDataFlag flag_;
    size_t len_;
    union
    {
    long l;
    DATE d;
    TCHAR* pCh;
    } value_;
    public:
    CUniversalField( );
    CUniversalField( const CUniversalField& rhs );
    CUniversalField( enumFieldTag itemId, long value,
    enumFieldDataFlag flag = eFieldDataFlag_Normal);
    CUniversalField( enumFieldTag itemId, DATE value,
    enumFieldDataFlag flag = eFieldDataFlag_Normal);
    CUniversalField( enumFieldTag itemId, LPCTSTR value,
    enumFieldDataFlag flag = eFieldDataFlag Normal);
    CUniversalField( enumFieldTag itemId, string blob,
    enumFieldDataFlag flag = eFieldDataFlag Normal);
    ˜CUniversalField( );
    bool operator==( const CUniversalField& rhs ) const;
    bool operator!=( const CUniversalField& rhs ) const { return
    !operator==(rhs); }
    CUniversalField& operator=( const CUniversalField& rhs);
    eUniversalField getType( ) const { return typeId_; }
    enumFieldTag getFieldID( ) const { return fieldId_; }
    enumFieldDataFlag getFlag( ) const { return flag_; }
    size_t getLength( ) const {return len_; }
    LPCTSTR getString( ) const { ASSERT ( eUF_String ==
    typeId_); return value_.pCh; }
    long getLong( ) const { ASSERT ( eUF_Long ==
    typeId_); return value_.l; }
    DATE getDate( ) const { ASSERT ( eUF_Date ==
    typeId_); return value_.d; }
    string getBlob( ) const { ASSERT ( eUF_Blob ==
    typeId_); return string (value .pCh,len_); }
    void get( LPCTSTR& p ) const { ASSERT ( eUF_String ==
    typeId_); p = value_.pCh; }
    void get( long& l) const { ASSERT ( eUF_Long ==
    typeId_); l = value_.l; }
    void get( DATE& d) const { ASSERT ( eUF_Date ==
    typeId_); d = value_.d; }
    void get( string& b) const{ ASSERT { eUF_Blob ==
    typeId_); b.assign(value_.pCh,len_); }
    bool isString( ) const { return typeId ==
    eUF_String; )
    bool isLong( ) const { return typeId_== eUF_Long; }
    bool isDate( ) const { return typeId_== eUF_Date; }
    bool isBlob( ) const { return typeId_== eUF_Blob; }
    };
  • EXAMPLE
  • An example of how data is removed from one particular application data type and converted into the universal record format is given below for an Oracle database:
    #include “stdafx.h”
    #include <string>
    using namespace std;
    #include “F1ItemUniversal.h”
    #include “oci.h”
    #include “OCIDefs.h”
    #include “OCIConnect.h”
    #include “OCISession.h”
    #include “OCIColumn.h”
    #include “OCICursor.h”
    #include “DataAccessor.h”
    #include “UniversalMapper.h”
    #include “UniversalRecord.h”
    #include “F1Util.h”
    #include “BaseAOSTableOCI.h”
    /*
     * Function: MapFields
     * Description: Map fields from an Oracle database record into an
    UniversalRecord format.
     */
    void CBaseAOSTableOCI::MapFields( CDataAccessor *pAccessor, MappingItem
    theMap[ ], int numFields, CUniversalRecord &univRec )
    {
    string sValue;
    DATE dtValue;
    LONG lValue;
    double dValue;
    for( int inx=0; inx<numFields; inx++ )
    {
    enumFieldTag fieldID = theMap[inx].m_universalFieldID;
    switch( F1PropType( fieldID ) )
    {
    case eFieldType_Binary:
    {
    // to fill properly, 1st name and last name should already be assigned
    CUniversalField emailField;
    string sValue;
    if ( SUCCEEDED(BuildEmailField( pAccessor,
    sValue, emailField )) )
    univRec.insert( fieldID,
    emailField.getBlob( ) );
    break;
    }
    case eFieldType_String:
    if( pAccessor−>GetFieldValue( fieldID, sValue
    ) )
    {
    if ( 0 == ::_tcslen(sValue.c_str( )) )
    continue;
    univRec.insert( fieldID, sValue.c_str( )
    );
    }
    break;
    case eFieldType_DATE:
    if( pAccessor−>GetFieldValue( fieldID, dtValue
    ) )
    univRec.insert( fieldID, dtValue );
    break;
    case eFieldType_DWORD:
    if ( pAccessor−>GetFieldValue( fieldID, lvalue
    ) )
    univRec.insert( fieldID, lvalue );
    break;
    case eFieldType_Double:
    if( pAccessor−>GetFieldValue( fieldID, dValue
    ) )
    univRec.insert( fieldID, dValue );
    break;
    }
    }
    }
    HRESULT CBaseAOSTableOCI::InsertRecord( MappingItem theMap[ ], int
    numFields, CDataAccessor *pInsertItem, CF1ItemUniversal *pUnivItem, bool
    bForceCreate )
    {
    bool bHasData = SetRecordFields( theMap, numFields, pInsertItem,
    pUnivItem );
    if ( bHasData || bForceCreate )
    {
    pInsertItem−>InsertRow(0);
    pInsertItem−>Exec( );
    }
    return S_OK;
    }
    /*
     * Function: SetRecordFields
     * Description: Map fields from an UniversalRecord format into an
    Oracle database record (pInsertItem)
     */
    bool CBaseAOSTableOCI::SetRecordFields( MappingItem theMap[ ], int
    numFields, CDataAccessor *pInsertItem, CF1ItemUniversal *pUnivItem }
    {
    bool bHasData = false;
    CUniversalField field;
    for( int inx=0; inx<numFields; inx++ )
    {
    enumFieldTag fieldID = theMap[inx].m_universalFieldID;
    BOOL bExists = pUnivItem−>m_record.Find( fieldID, field );
    if( bExists )
    {
    bHasData = true;
    if( field.isBlob( ) )
    {
    string blob = field.getBlob( );
    LPCTSTR szEmailAddr =
    GetAddressFromRecipients((F1RECIPIENTS*)blob.c_str( ));
    if( szEmailAddr && *szEmailAddr != NULL )
    pInsertItem−>SetFieldValue( fieldID,
    (string)szEmailAddr );
    else
    {
    bHasData = false;
    continue;
    }
    }
    else if( field.isString( ) )
    {
    string sValue = field.getString( );
    if( !sValue.empty( ) )
    pInsertItem−>SetFieldValue ( fieldID,
    sValue );
    }
    else if( field.isLong( ) )
    {
    LONG nValue = field.getLong( );
    pInsertItem−>SetFieldValue( fieldID, nValue);
    }
    else if( field.isDate( ) )
    {
    DATE dValue = field.getDate( );
    if( dValue )
    pInsertItem−>SetFieldValue ( fieldID,
    dValue );
    }
    } // if( bExists )
    } // For all fields
    return bHasData;
    }
  • While the above-identified code is specific to, for example, an Oracle database, one of average skill in the art will readily recognize that the technique utilized above may be adapted to other types of databases containing records and fields of interest. In the above code examples, all fields which are mapped from a particular application are mapped to fields in the master mapping file.
  • Management Server
  • In order to provide security and identification of particular users in an Internet-implemented synchronization system, a management server may be provided in the system of the present invention. The management server is a centralized server which controls behavior and characteristics of the entire network of device engines across all users.
  • FIG. 14 shows the general representation of how a management server 1410 integrates itself into the system of the present invention. Shown in FIG. 14 is an exemplary device engine 1450 which has HTTP links to both a management server 1410, a storage server 1415, and a generic FTP server 1420. As will be discussed hereinafter with reference to the process of the present invention, and the specific implementation of the data below shown in FIGS. 15-17, the management server interacts with the device engine to control authorized access to information on the storage server, or a generic FTP server 1420,1425 to access device-specific information storage 1430 in accordance with the system of the present invention. This allows any device coupling to the Internet to have access to management protocols and to retain user information across all platforms which the data which is being synched by the system of the present invention must access.
  • The management server communicates using hypertext transfer protocol (HTTP) which may be implemented with a secure sockets layer (SSL) to ensure security.
  • In particular, the management server supports an authentication interface that requires each device engine to authenticate with the management server before performing synchronization. Certain storage server implementations may utilize locking semantics to control read and write access to storage for multiple device engines. For example, in a generic FTP request, if two device engines attempt to connect to the same data at the same time, there must be some form of locking control to prevent device engines accessing the same data at the same time. In this instance, the management server controls the device engine acquisition, renewal, and releasing of locks against data stored in the network.
  • Each device engine is uniquely identified and tracked by the management server. This allows for tailoring behavior between the management server and specific types of storage systems and device engine components. All device engine components are tagged and version stamped for management via the management server.
  • Device actions can request updated copies of individual device engine components, permitting self-update and configuration of device engine systems. This permits minimal download designs for device engines that are on low bandwidth connections enabling the device engines to download additional required components at a later time.
  • In a further aspect of the system, a value added component may be provided where the management server can support client's advertising mechanisms, enabling the display of banner or similar advertising on a device engine system without the need for a web browser. Cycling of advertisements, statistic collection, and the like, are managed via management server protocols. Online purchase and subscription mechanisms are also supported using the management server protocol.
  • The management server further supports the accounting, sign-up registration, device edition, storage server selection, and similar functions for each user in the system. In one embodiment, the management server may retain password and encryption information for a given user account. In a second embodiment, such information is not retained. The second embodiment provides the advantage that users may feel more secure if the maintainer of the management server is not in possession of the password to access data in the user's account.
  • Further information with respect to the management server and the data flow from the management server to other components of the system of the present invention will become apparent with respect to the discussion of the process flow and data flow diagrams in FIGS. 15-17.
  • FIG. 17 shows a general depiction of the data flow and the functional specification of the management server utilized in accordance with the present invention.
  • As shown in FIG. 17, following a welcome request 1710, a user is allowed to sign out which enables an add user module 1712, and subsequently enables an add device module 1714. If sign-up is not requested, information may be provided via module 1718.
  • As indicated in FIG. 17, the add user module 1712 adds user records to the user in device database 1750. Additionally, the add device module 1714 adds users and devices to the user device database 1750. A device list 1720, and a device engine download and update database 1722, provide selection data for the add device module 1714. The account authentication module 1724 receives input both directly from a user log-in from the welcome screen at 1710 and from the add device module 1714.
  • Once an account is authenticated and confirmed, the administrator of the system of the present invention having a private data store at 1770 may choose to provide a web desktop 1754 which allows access to a user's records such as file 1756, e-mail 1758, calendar 1760, contacts 1762, notes 1764, and tasks 1766. The information will be culled from a provider database 1752 which will be synched in accordance with the system of the present invention as previously described. In essence, the provider database 1752 accesses data from the device engines 1780, which include, as discussed above, the storage server, each individual device engine 1785, and a settings database 1787.
  • Other portions of the management server include the locking modules for beginning a sync 1732, continuing a sync 1734, and ending a sync 1736, and for updating user information including modifying a user 1742, adding devices 1744, removing devices 1746, and modifying devices 1748.
  • Storage Server
  • Shown in FIG. 14 is the storage server 1415. While storage server 1415 may include a generic storage model accessible through any number of standard Internet protocols, in accordance with the present invention, a flexible storage architecture is provided that permits various standard implementations of the system of the present invention. This allows deployment of network services without installation of new server applications and can be responsible for communicating change information between multiple device engines in a consistent fashion.
  • One or more storage servers 1415 may be used to communicate transaction amongst a collection of devices. Each user's personal information network is represented by a unique account within its own data package storage section. The storage server 1415 maintains persistent store collection of data packages which is, at a minimum, enough data packages to be capable of synchronizing the most out-of-date system in a user's given information network or add information to new devices which are provided in the network. Additional data packages can be maintained to permit rollback of previous versions of information. The storage server can automatically dispose of older data package storage and can support aging of an inactive accounts.
  • Each storage server 1415 may be implemented using a variety of implementations including a standard FTP server for any operating system platform. The storage server can be implemented using HTTP protocols for increased efficiency and firewall avoidance. The storage server may be implemented using techniques for local storage such as database access or single file storage of a user's entire file system tree. The storage server 1415 may utilize the stored foreign protocol model for moving copies of data packages to other storage servers in the system. In one embodiment, the storage server can allow tunneling of information using an alternative protocol to other storage servers in cases where firewall prevents originating protocol. For example, a storage server can relay an FTP traffic inside an HTTP protocol. Storage servers may include their own locking semantics to arbitrate multiple device engine access to the same server without the need for a separate management server. Each device engine can access only a specific user's data package storage area even though the storage server 1415 may maintain a larger number of data packages across a large number of users. This allows for increased scaling when the storage server is implemented using file system techniques.
  • In one aspect, the storage server is implemented using standard FTP or HTTP connections for each operation. HTTP is composed of request response pairs. All requests are supposed to be posting commands. Parameters can be set in the form known as “application/X-WWW-form-URLENCODED”. The encoding is specified as in RFC1866. Functions for the storage server include testing if the storage server can reach other users which will retrieve a simple text string, a “get” command which transfers the contents of a file as in a binary stream of byes; a put command as a binary stream of data to the storage server, a directory listing command, a remove command, a rename command, an exist command, and the like.
  • Pull Synchronization
  • FIG. 15 represents a “pull” synchronization process in accordance with the present invention. Both the pull synchronization illustrated in FIG. 15 and the push synchronization illustrated in FIG. 16 are done from the perspective of the device engine.
  • A pull synchronization as illustrated in FIG. 15 is always performed prior to a push synchronization. This allows the device engine to know whether synchronization of its own data is necessary.
  • Each device has its own triggering mechanism for initiating synchronization. Some devices, such as Windows clients and Palm® pilots are triggered manually when the user presses a “sync” button. Other devices, such as a cellular telephone, may be triggered automatically after another device completes a sync. Regular, time-based triggers are supported as well. A web-based application portal will sync when a user logs into the website security authorization mechanism, and may optionally sync on a log-out of the user or on the session time-out, but only if the user has changed data during the session.
  • For each sync, the triggering event specifies which application types are to sync for the device. This enables a triggering event to trigger only a sync for a particular application type. The management server can specify that no sync is needed for a particular type of application to minimize traffic to the storage server. Syncs may be triggered via an HTTP request to the server. This request holds information about which device to sync and the user log-in information is bounced to the management server for authorization and validation. Syncs may be triggered by sending an HTTP request to the server and passing the authentication information in the data portion of the request to the management server. Each device may include a servlet that is responsible for retrieving the request and ensuring its proper format before passing the synchronization request on to the server.
  • The device name and device class uniquely identify a particular device type that is being synchronized, and is contained in the management server. Each user has one or more device entries in the management server authorization records and each device name is unique for this user's space. For example, if a user has five devices with his or her own personal identification number, there will be five authorization records. There may be two Windows devices, two different Palm® devices and a web service portal, each having their own personal identification number.
  • As shown in FIG. 15, the pull synchronization process starts at an idle state 1405 when the triggering event, described above, triggers a synchronization request. The synchronization request is confirmed at 1410 and if the request is verified, a connection is made to the storage server at step 1415. Once a connection is established, the connection to the management server is made at step 1420 to authenticate the user identification via the management server. If authentication is successful, the management server may initiate a management server lock on the storage server so that no conflicting device engines may couple to the same data at the same time. A failure at any of the steps 1410-1425 will return the system to its idle state 1405. Once the engine server lock is acquired, the storage server will be checked to determine whether a new version of the data exists on the storage server at step 1430. If no new version exists, the synchronization process ends.
  • If a new version of the data exists, the device engine will retrieve the difference information at step 1435 “to get Δ.”
  • Once a Δ is retrieved, conflicts are resolved at step 1450. The resolve conflicts step allows a user to resolve conflicts to multiple types of data which have been changed on both the server portion of the device and in the local data.
  • Once the conflicts have been resolved at step 1450, the Δ's are applied at step 1455. The apply Δ step 1455 allows for filters and mappings to be accounted for on the local device engine side of the system. As shown at steps 1460, 1465, 1470, and 1475, the Δ may include updates at the item level 1460, application level 1465, device level 1470, or network level 1475. In each of the aforementioned steps, a loop back to the Δ retrieval step 1435 is provided. When no further Δ's are available, the management server lock is released at step 1440.
  • The foregoing description of a pull synchronization is further described in the following pseudo-code:
    *SymbolicSyncEngine::Sync
    Download Remote File System
    For each Symbolic app in the file system's list of symbolic apps
    CFDESymbolicSyncEngine::SyncSymbolicApp
    Create a structured delta object -- CStructuredDelta
    delta(...)
    Compare local and remote versions of deltas SODs),
    if not the same then
    while localVersion != remoteVersion
    download remote version
    // apply delta (change log)
    delta.ApplyChangeLog
    // See details below
    increment local version
    end while
    else
    nothing to do
    end if
    if any local items (change logs) are unsent then
    delta−>ApplyUnsentItems (Reads the changes
    [JCL where applied?]
    end if
    // Generate a new change log for the device:
    delta−>delta.GenerateChangeLog(... strChangeLogFile
    ...)  // See details below
    FTP it back up to Storage Server
    Update the local version number
    end // SymbolicSyncEngine::SyncSymbolicApp
    end // CFDESymbolicSyncEngine::Sync
    CStructuredDelta::ApplyChangeLog
    Set up m_pAppObj; // IFAO pointer
    Set up m_pAOS; // IAOS pointer
    Other set up (statistics, time to complete, etc.)
    Read the change log and ...
    ApplyChangeListToAOS(f1Changes)
    for each itme in list
    ApplyItemToAOS // (Does
    m_pAOS...AddRecord/UpdateRecord/DeleteRecord)
    end for
    end // ApplyChangeListToAOS
    If not doing a full sync, also add changes from this file to
    apply these to m_F1Changes
    end //CStructuredDelta::ApplyChangeLog
    CStructuredDelta::GenerateChangeLog
    Set up m_pAppObj; // IFAO pointer
    Set up m_pAOS; // IAOS pointer
    Other set up (statistics, time to complete, etc.)
    // Set up m_deviceChanges by call to:
    CStructuredDelta::CreateDeviceChangeList
    Create a CF1Item* pItem
    // Iterate FAO modifications:
    for (m_pAppObj−>GetFirstModified(pItem),
    m_pAppObj−>GetNextModified(pItem))
    cast pItem to --> CF1ItemUniversal* pUniItem
    // Do certain things based on whether the operation
    is an add, delete, or update.
    // Then in each case, call:
    CStructuredDelta::GetMatchingItemFromAOS
    // First get by F1ID
    m_pAOS−>GetRecordByF1ID
    // See if we have an AppID, if so:
    m_pAOS−>GetRecordByAppID
    // If we can build search key on it
    iterate m_pAOS−>GetFirstMatchingRecord
    / m_pAOS−>GetNextMatchingRecord
    end //
    CStructuredDelta::GetMatchingItemFromAOS
    end for
    end // CStructuredDelta::CreateDeviceChangeList
    if m_deviceChanges is not empty
    // reconcile (compare) change lists while writing to AOS
    CStructuredDelta::ReconcileChangeLists
    For each item in m_deviceChanges...
    If we can find it in m_F1Changes
    Reconcile the device item and the f1
    item
    end if
    ApplyItemToAOS // (Does
    m_pAOS...AddRecord/UpdateRecord/DeleteRecord)
    end for
    end // CStructuredDelta::ReconcileChangeLists
    // Create a new change log (F1 delta package)
    ApplyChangeListToF1(m_deviceChanges)
    m_deviceChange.Store
    // Fires off its own whole world, see
    F1ItemList.cpp
    end // m_deviceChange.Store
    end // ApplyChangeListToF1(m_deviceChanges)
    report stats
    end if
    // Switch (SyncMode)
    If SyncMode == full
    ApplyAOSToDevice
    iterate
    m_pAOS−>GetFirstRecord...m_pAOS−>GetNextRecord
    Add or update the corresponding FAO record.
    (Note. Never delete based on what's in AOS, apparently).
    end // ApplyAOSToDevied
    else
    ApplyChangeListToDevice(m_f1Changes);
    End // CStructuredDelta::GenerateChangeLog

    Push Synchronization
  • FIG. 16 shows a push synchronization in accordance with the system and method of the present invention. Beginning at idle state 1505, a synchronization event occurs and if confirmed at step 1510, Δ's are checked at step 1515. Depending on which type of changes occurred, a network Δ 1520, device Δ 1525, location Δ 1530, or item Δ 1535 will be created.
  • Once the Δ's for a given application have been created, the method of the present invention continues at step 1540, which enables a connection to a storage server. Upon connection to the storage server, a further connection to management server 1545 will occur to authenticate the user in the system. Failure at any of the aforementioned points will result in returning to idle state 1505. Upon authentication, a management server lock is enabled to ensure that multiple device engines do not connect to the same data at the same time.
  • Once a lock is acquired at step 1555, Δ's are uploaded to the system. As shown, this may include uploading an item Δ 1575, an application Δ 1570, uploading a device Δ 1565, or a network Δ 1560. Once Δ's have been uploaded to the server, management lock server 1580 is released, and the connection to the storage server is terminated at step 1585.
  • It should be recognized that such a push synchronization need not occur directly to a server, but may occur directly to a second device engine in accordance with the depiction of the multiple embodiments of the invention in FIGS. 1-7.
  • Data Package Specification
  • Once information is provided into the universal data format, the device engine organizes the format into a data package. Each data package thus includes a description of changes to any and all information for particular application, and a collection of data packages describes changes across all device engines including all different types of data. With encoding and compression, data packages can become very compact to minimize bandwidth and storage requirements across the system of the present invention.
  • In one particular aspect of the present invention, encoding of the data packages may be provided in a streaming format to allow processing by the device engines with minimal storage and memory configuration at the device engine level.
  • The device engine can read the stream and determine which records from which applications it needs to update the particular information present on the system on which it resides.
  • Data packages can be provided in a binary data format. This allows data packages to encode changes to non-application data at a bite level. Hence, if a single bit on a system changes, the system of the present invention allows synchronization of that bit on another system. Changes are described as a sequence of bite-level change operations. One such encoding is using a sequence of insert and copy operations. Insert and copy operations generally define a particular “insertion” of a number of bites from a source file, then how many bites of a changed source file must be inserted to a particular file, then how many bites to insert from a particular new file, with a differencing engine taking the bites in the stream and inserting them into the new file to create the new version of the file.
  • As will be readily understood by one of average skill in the art, this allows a user to, for example, change a binary file such as a word processing document or other type of attachment, and synchronize such an attachment at the binary level. Specifically, if one forwards an e-mail of a word document to a second individual, the second individual modifies it and wishes to return this document with modifications to the first individual, because the first individual has the original file on his system, if both systems are enabled in the system of the present invention, the second system need only send the changes or the difference information back to the first system in order for the first system to reconstruct the document on the second system using this change data to create the document as intended by the second user.
  • Multiple caching of both the generation and application of data packages can be utilized to deal with communication issues in accordance with the system of the present invention. It should be further recognized that data packages can be merged into larger meta-data packages. Such meta-data information, such as the organization of multiple device packages, may be encoded into a larger system package. Each system package is essentially an encoded sequence of data packages.
  • FIG. 12 shows the general format of the data package and universal data format an object stream hierarchy used in accordance with the present invention. With reference to FIGS. 11 and 12, one will note that each item in a particular application data structure will have a particular classification, such as a file, folder, contact, e-mail, calendar, etc. as shown in FIG. 13. The universal data structure contains a mapped item field for each type of data possible from each application supported by the system. Hence a “master” list of every data field mapping possible will contain a large number of items. Each application object requires a subset of such fields. One exception is an application object used for a Web portal application which provides access to all information available on all devices, including other Web portals.
  • Particular examples of item fields 1260 which may be included for any given item 1250 are shown in FIG. 13. These exemplary item objects may, for example, be from an allocation such as Microsoft Outlook. Outlook allows for note items 1310, e-mail items 1320, task items 1330, calendar items 1340, bookmark items 1350, file items 1360, channel items 1370, folder items 1380, and contact items 1390, all of which have fields such as those represented in FIG. 13.
  • The data format also contains folder information 1240 which allows the classification of items and consequently their associated item fields into particular categories.
  • Application objects 1230 include information on the types of applications from which information in the stream is included. Device objects 1220 include information on the origin type of device which the information is originating from. Network objects 1210 include information on a user level to define that the information in the data stream is coming from a particular user.
  • As detailed above, each application object supports a folder store interface that permits management of collections of information on a folder level, and permits management of folder hierarchies of information. The application object also includes an item interface that permits management of individual information entries such as records or files or components of information entries such as fields within records. Each application object further supports an interface for detection of a vendor application.
  • A DataPack essentially contains a sequence of transactions describing changes to information. This information can span two basic types: structured or application data, and unstructured or binary file data.
  • Transactions are encoded using an efficient streaming format with tags to represent the actual content objects. This technique permits the continuous extension of the DataPack format as new content is supported.
  • The general architecture of the package provides for transactions, application data, file data, files, objects and identifiers to be carried in the data package. Generally, transactions, application data, file data, and files have previously been described.
  • The first portion of the data package will be the data package identifier. Each transaction has a basic architecture of objects and operations. Each piece of content is referred to as an object and is uniquely represented with a Universally Unique Identifier (UUID). Objects typically are represented by a dynamically generated UUID, but more common objects are represented by static UUIDs. The following static UUIDs are defined:
    UUID_GenericDefaultFolder
    UUID_DefaultContactFolder
    UUID_DefaultInboxFolder
    UUID_DefaultOutboxFolder
    UUID_DefaultDraftsFolder
    UUID_DefaultTrashFolder
    UUID_DefaultSentFolder
    UUID_DefaultCalendarFolder
    UUID_DefaultTaskFolder
    UUID_DefaultNoteFolder
    UUID_DefaultJournalFolder
    UUID_DefaultFavoriteFolder
    UUID_DefaultCookieFolder
    UUID_DefaultHistoryFolder
    UUID_DefaultChannelFolder
    UUID_DefaultFileFolder
    UUID_DefaultCallFolder
  • Each UUID has a unique 128 bit value which may be assigned by the system provider.
  • Transactions are broken down into manageable blocks in the form of individual files. These files are then optionally compressed and encrypted and prefixed with appropriate headers. Transactions are grouped into specific files based on the following rules:
      • Transactions related to account information are grouped into a DataPack file.
      • Transactions related to a specific data class are grouped into a DataPack file.
      • Transactions referring to binary data are grouped into separate DataPack files for each file object.
  • A DataPack file is identified using specific rules based on the file name. The file name is of the form “UUID.VER” where UUID is the identifier for the specific object and VER is the transaction version number. The version number is of the form “D0001” with additional digits used for large version numbers. The “D000” value may be reserved for the base version for the object.
  • The UUID for the user account is generated by the Management Server (MS). The MS also maintains a current table of UUID values and version numbers that provides the root structure for understanding the DataPack files within a user account. The MS also provides necessary locking semantics needed to maintain consistency when multiple device engines attempt to synchronize.
  • All DataPacks are prefixed with a standardized header that provides basic content information regarding the DataPack. Compression and encryption headers follow the DataPack header if needed.
  • The data package header information will include version signature, applied versioning information, content type, A engine type, compression type, encryption type, applied size, encrypted size, compressed size, raw data size, and other data useful for the device engine in decrypting the data stream to provide the data into a format usable for the application.
  • The header may optimally have the format:
    Type Bytes
    Version
    4
    Signature 4
    AppliedVersion 8
    ContentType 4
    DeltaType 4
    CompressionType 4
    EncryptionType 4
    AppliedSize 4
    EncryptedSize 4
    CompressedSize 4
    RawSize 4
    Reserved TBD
  • The following ContentType values are permissible:
    Field Comment
    DP_CONTENT_RAW Raw
    DP_CONTENT_COMPRESSED Compressed
    DP_CONTENT_ENCRYPTED Encrypted
  • The DeltaType encodes the type of binary file differencing used. The following DeltaType values are permissible using DataPackageDeltaType:
    Field Comment
    PackageDeltaTypeUninitialized Uninitialized
    PackageDeltaTypeRawData Raw binary data
    PackageDeltaTypeDeltaXDelta Xdelta binary difference
    PackageDeltaTypeDeltaBDiff Bdiff binary difference
  • The compression type specifies whether the DataPack has been compressed. A DataPack compression header follows the DataPack header if a compression type is specified. The following CompressionType values are permissible using DataPackageCompressionType:
    Field Comment
    PackageCompressionTypeUninitialized Uninitialized
    PackageCompressionTypeNone None
    PackageCompressionTypePK PKZip format
    PackageCompressionTypeLZS LZS format
  • The encryption type specifies whether the DataPack has been encrypted. A DataPack encryption header follows the DataPack header if an encryption type is specified. The following EncryptionType values are permissible using DataPackageEncryptionType:
    Field Comment
    PackageEncryptionTypeUninitialized Uninitialized
    PackageEncryptionTypeNone None
    PackageEncryptionTypeXORTest XOR masked data
    PackageEncryptionTypeBlowFish Blowfish
    PackageEncryptionTypeTwoFish Twofish
  • All DataPack compression headers are encoded using the following format:
    Size
    Field (bytes) Comment
    Size
    4 Size of data including this header
    Version
    4 Version (1)
    Signature 4 Signature (4271)
    HeaderType 4 Header type (HeaderTypeCompression)
    Reserved 12 Reserved
    DecompressedSize
    4 Decompressed size
    Reserved 50 Reserved
    Reserved 12 Reserved
  • The following HeaderType values are permissible using DataPackageHeaderType:
    Field Comment
    HeaderTypeUninitialized Uninitialized
    HeaderTypeEncryption Encryption header
    HeaderTypeCompression Compression header
    HeaderTypeRaw Raw header
  • All DataPack encryption headers are encoded using the following format:
    Field Size (bytes) Comment
    Size
    4 Size of data including this header
    Version
    4 Version (6)
    Signature 4 Signature (4270)
    HeaderType 4 Header type (HeaderTypeEncryption)
    Reserved 12 Reserved
    DecryptedSize
    4 Decrypted size
    InitValue 16 TBD
    KeyLength
    4 TBD
    ClearTextKeyBits
    4 TBD
    Salt
    4 TBD
    PadBytes
    4 TBD
    HMAC 20 TBD
    Reserved 12 Reserved
  • The data package transaction format may take a number of forms. One example is the following:
    DataPack transaction format - header - info - objects and operations
    Diagram
    transaction ::= fileData | Header + InfoList + TransactionList
    fileData::= raw binary file data | binary difference data
    Header ::= ID + DataPackID + DataPackVersion
    ID ::= FUSE
    DataPackID ::= CLOG
    InfoList ::= FieldList
    TransactionList ::= Operation + [ItemInfo + [FieldList]]
    Operation ::= see table below
    ItemInfo ::= ItemType + ItemFlags + EntryID + ParentEntryID
    ItemType ::= same as enumItemType
    ItemFlags ::= same as enunF1ItemFlags
    EntryID ::= UUID
    ParentEntryID ::= UUID
    UUID ::= 128-bit UUID as defined by standard
    FieldList ::= {FieldTag + FieldData} + ListEnd
    FieldTag ::= same as enumFieldTag
    FieldData ::= FieldDataType + [FieldDataLen + [FieldDataData]]
    FieldDataType ::= see below
    FieldDataLen ::= length as required by FieldDataType
    FieldDataData ::= data as required by FieldDataType
    ListEnd ::= DWORD(0)
  • The following Operation values are permissible using the Operation class:
    Field Comment
    clNop None
    clAdd Add
    clDelete Delete
    clChange Change
    clMove Move
    clRename Rename
    clForceChange Force change without conflict
  • The following FieldDataType values are permissible using cIDataType:
    Field Comment
    clInvalidType TBD
    clString Unicode String bytes with a 32-bit length prefix
    clString8 Unicode String bytes with an 8-bit length prefix
    clString16 Unicode String bytes with a 16-bit length prefix
    clEmpty String TBD
    clBlob 32-bit length followed by a byte stream
    clBlob8 8-bit length followed by a byte stream
    clBlob16 16-bit length followed by a byte stream
    clEmptyBlob TBD
    clByte 8-bit value
    clShort 16-bit value
    clDword 32-bit value
    clQword 64-bit value
    clDate DATE type (double)
    clDouble 8 byte real
    clFloat
    4 byte real
    clUuid 16 byte uuid
    clZero Zero value
    clOne One value
    clUnspecified Unspecified value
    clDefault Default value
    clCollection Collection with 32-bit length
    clCollection8 Collection with 8-bit length
    clCollection 16 Collection with 16-bit length
    clEmptyCollection Collection with no length
  • Data package objects are organized into a hierarchy as follows:
    Account::= DeviceList + DataClassList
    DeviceList::= {Device}
    DataClassList::= {DataClass} + ProviderList
    ProviderList::= {Provider} + DataStoreList
    DataStoreList::= {Folder} + ItemList
    ItemList::= {Item} + FieldList
    FieldList::= {Field}
  • An account is the root structure, which identifies information about the user's account. It may have exemplary field tags (eFieldTag_[NAME]) such as Name, Password, UserName and Version. The FieldTag ItemType value is specified as ItemType_PIN using enumItemType.
  • A device is a system identified as part of an account. Examples include PCs, handhelds, Web sites, and so on. It may have tags (eFieldTag_[Name]) such as: “name” and “type” and item type values (eDevice_[Name]) such as Portal, Palm, Windows, CellPhone.
  • A data class is a grouping of similar information types. Many data classes may be represented for a particular account. The data class may contain field tags (eFieldTag_[Name]) such as: Name; ItemType; SubType; IsManaged; Provider; Filter and Version.
  • The following ItemType values are permissible using enumDataClass (eDataClass_[Name]):
    Tag Description
    UNKNOWN Unknown
    CONTACT Contact/address book
    EMAIL Electronic mail
    CALENDAR Calendar
    TASK Task/to do
    NOTE Note/memo
    JOURNAL Journal
    BROWSER Web browser favorites, cookies, etc.
    FILESET Collection of files
    PIN Account information
    DEVICE Device information
    FILEBODY Contents of file
  • A Provider is the application that maintains specific information within a data class. There can be more than one provider for a particular data class. Field tags include: Name, AppObjID, Password, Username and Version. Examples of provider tags permissible for the provider (eProvider[Name]) include: Portal, Palm®, MicrosoftOutlook®, Lotus Organizer, Microsoft Internet Explorer, Microsoft Windows, and so on.
  • Data stores are the containers for storing information within a provider. There can be more than one data store for a particular provider. Folders represent structural organization of information within a data store.
  • Data stores are not required to support folders. Tags (eFieldTag_[Name]) supported for each data store include: Name, ItemType, IsManaged and Original Path. Item types permissible for the data store include: unknown; Folder; MAPI; Database and Store_File.
  • Folders represent structural organization of information within a data store. Data stores are not required to support folders. A folder is represented by a UUID and may contain any of the following field tags (eFieldTag_[Name]): Name; ItemType; IsManaged; FileAttributes; CreationDate; ModificationDate; AccessDate; SpecialFolderType.
  • The eFieldTag_ItemType value is specified as eItemType_FOLDER using enumItemtype.
  • Items are individual informational components consisting of the actual user data. They may contain field tags such as: Name, ItemType, IsManaged, and Version.
  • File items typically have the following additional field tags (eFieldTag_[Name]):
    FileAttributes
    CreationDate
    ModificationDate
    AccessDate
    FileSize
    FileBody
    DeltaSize
    Hash
  • Item types may take the format (eItemType_[Name]) and may include: extended; folder; attachment; contact; distlist; email; calendar; task; call; note; post; journal; form; script; rule; favorites; subscription; common_favorites; desktop; common_desktop; startmenu; common_startmenu; channels; cookies; programs; common_programs; startup; common_startup; sendto; recent; internet_cache; history; mapped_drives; printers; docs; doctemplates; fonts; window_settings; app_data_folder; app_settings; fileset; pin; device; data_store; file; provider; and data_class; internal.
  • A field is based on one of a set of base type definitions. All field tag information is encoded using the following format:
    Field Size (bits) Comment
    FieldTag 16 Unique tag number
    FieldType
    6 Field base type
    FieldSubType 10 Field sub-type
  • A number of Field types are possible, including: unknown; long; dword; date; string; binary; float; double; collection; uniqueid; qword; uuid; file; invalid. LONG is a four byte value encoded in big-endian format. FieldType DWORD is a four byte value encoded in big-endian format. FieldType String is a sequence of Unicode characters followed by a single NULL byte. Interfaces are provided with an MBCS value. FieldType Binary is a sequence of bytes. FieldType UniqueID is a sequence of bytes as defined by the Universally Unique Identifier (UUID) standard. AO interfaces are provided with a Locally Unique Identifier (LUID) value FieldType QWORD is an eight byte value encoded in big-endian format. FieldType File is a UUID that references a separate DataPack containing the file body data. AO interfaces are provided with a sequence of Unicode characters followed by a single NULL byte that describes the full path name for the file.
  • Any number of filed sub types are possible. Each of the sub-types includes all of the possible data types from all of the supported user applications. As should be well understood, the possibilities in the number of sub-types is quite large, and dynamic as each new application supported by the system of the present invention is added. Examples of sub-types include:
    SubField Description Description
    Base No sub-type specified
    EmailAddress Email address
    EmailAddressList Email address list
    SearchKey Search key
    CategoryList Category list
    StringList String list
    DistributionList Distribution list
    Gender Gender (enumGender)
    TimeZone Time zone (enumTimeZone)
    Boolean Boolean (TBD)
    NonZeroBool Boolean with non-zero value
    (enumNonZeroBool)
    Priority Priority
    Sensitivity Sensitivity (enumSensitivity)
    Importance Importance (enumImportance)
    SelectedMailingAddr Selected mailing address
    (enumSelectedMailingAddr)
    TaskStatus Task status (enumTaskStatus)
    FlagStatus Flag status (enumFlagStatus)
    RecurrenceType Recurrence type (enumRecurrenceType)
    DayOfWeek Day of week (enumDayOfWeek)
    DayOfMonth Day of month (1 through 31)
    InstanceOfMonth Instance of month
    (enumInstanceOfMonth)
    MonthOfYear Month of year (enumMonthOfYear)
    BusyStatus Busy status (enumBusyStatus)
    AttachmentType Attachment type (enumAttachmentType)
    MailBodyType Mail body type (enumMailBodyType)
    RGB RGB color value
    ManagedState Managed state (enumManagedState)
    FaoId FAO ID for provider
    SpecialFolderType Special folder type
    (enumSpecialFolderType)
    ResponseState Response state (TBD)
    ResponseStatus Response status (TBD)
    JournalStatus Journal status
    PageStyle Page style
    PageNumberMethod Page number method
    DelegationState Delegation state
    MeetingStatus Meeting status
    MeetingInvitation Meeting invitation
    CalendarType Calendar type
    DateOnly Date only
    TimeOnly Time only
    PhoneNumber Phone number
    URL URL
    FilePath File path
    PopMessageID POP message ID
    MIMEType MIME type
    INVALID All values must be below this
  • The aforementioned invention provides a user-centric model of communication to deliver personal information via network services. This model accommodates devices that are disconnected from the network, such as the Internet, at various times. Personal information can continue to exist locally rather than imposing a server-centric model on existing information.
  • In accordance with the foregoing, a store and forward information broadcast is utilized. Changes to existing information are replicated to an Internet storage server and changes are then retrieved by other devices on the network at device-specific times. In this manner, direct client communication is accomplished without requiring one-to-one communication. While one communication is supported by the system of the present invention, it need not be required.
  • Although the present invention has been presented in the form of an Internet store and forward broadcast for the purposes of synchronizing personal information amongst various types of devices, it will be readily recognized that synchronization need not be accomplished as the only application for the aforementioned system. In particular, the system can be utilized to efficiently broadcast changes to information in so-called “push” type information applications where only portions of the data need to be changed on a client application. For example, in a system where information such as changes in a stock price need to be broadcast to a plurality of users, a client application implementing the aforementioned technology can be updated by only changing specific portions of the data in the client application relative to that particular stock price. This can be done using a smaller bandwidth than has previously been determined with other devices.
  • The many objects and advantages of the present invention will be readily apparent to one of average skill in the art. All such objects and advantages are intended to be within the scope of the invention as defined by the written description and drawings presented herein.

Claims (2)

1. A data transmission system, comprising:
a differencing transmitter transmitting at least one set of difference transactions; and
a differencing receiver receiving said at least one set of difference transactions.
2-75. (canceled)
US10/976,584 2000-01-26 2004-10-28 Data transfer and synchronization system Abandoned US20050099963A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/976,584 US20050099963A1 (en) 2000-01-26 2004-10-28 Data transfer and synchronization system
US12/037,609 US8315976B2 (en) 2000-01-26 2008-02-26 Data transfer and synchronization system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/491,675 US8156074B1 (en) 2000-01-26 2000-01-26 Data transfer and synchronization system
US10/976,584 US20050099963A1 (en) 2000-01-26 2004-10-28 Data transfer and synchronization system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/491,675 Continuation US8156074B1 (en) 2000-01-25 2000-01-26 Data transfer and synchronization system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/037,609 Division US8315976B2 (en) 2000-01-26 2008-02-26 Data transfer and synchronization system

Publications (1)

Publication Number Publication Date
US20050099963A1 true US20050099963A1 (en) 2005-05-12

Family

ID=23953179

Family Applications (3)

Application Number Title Priority Date Filing Date
US09/491,675 Active 2025-01-25 US8156074B1 (en) 2000-01-25 2000-01-26 Data transfer and synchronization system
US10/976,584 Abandoned US20050099963A1 (en) 2000-01-26 2004-10-28 Data transfer and synchronization system
US12/037,609 Expired - Lifetime US8315976B2 (en) 2000-01-26 2008-02-26 Data transfer and synchronization system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/491,675 Active 2025-01-25 US8156074B1 (en) 2000-01-25 2000-01-26 Data transfer and synchronization system

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/037,609 Expired - Lifetime US8315976B2 (en) 2000-01-26 2008-02-26 Data transfer and synchronization system

Country Status (2)

Country Link
US (3) US8156074B1 (en)
JP (1) JP2001356949A (en)

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020178229A1 (en) * 2001-04-23 2002-11-28 Pradeep Sinha Methods, systems, and emails to link emails to matters and organizations
US20020184234A1 (en) * 2001-06-01 2002-12-05 Lundberg Steven W. Internet-based patent and trademark applicaton management system
US20030167181A1 (en) * 2002-03-01 2003-09-04 Schwegman, Lundberg, Woessner & Kluth, P.A. Systems and methods for managing information disclosure statement (IDS) references
US20030226106A1 (en) * 2002-05-31 2003-12-04 Mckellar Brian Document structures for delta handling in server pages
US20030225826A1 (en) * 2002-04-19 2003-12-04 Mckellar Brian Delta handling in server pages
US20040103141A1 (en) * 2002-11-19 2004-05-27 Miller Quentin S. Atomic message division
US20040186916A1 (en) * 2003-03-03 2004-09-23 Bjorner Nikolaj S. Interval vector based knowledge synchronization for resource versioning
US20050050053A1 (en) * 2003-08-21 2005-03-03 Microsoft Corporation. Systems and methods for the implementation of a core schema for providing a top-level structure for organizing units of information manageable by a hardware/software interface system
US20050262371A1 (en) * 2004-05-03 2005-11-24 Microsoft Corporation Systems and methods for the implementation of a peer-to-peer rule-based pull autonomous synchronization system
US20060149794A1 (en) * 2004-12-10 2006-07-06 Seven Networks International Oy Database synchronization
US20060184591A1 (en) * 2004-12-29 2006-08-17 Seven Networks International Oy Database synchronization via a mobile network
US20060259517A1 (en) * 2005-05-10 2006-11-16 Siemens Communications, Inc. Data synchronizer with failover facility
US20070070999A1 (en) * 2005-08-02 2007-03-29 Black Jeffrey T Synchronization of historical data without retransmission
US20070088724A1 (en) * 2003-08-21 2007-04-19 Microsoft Corporation Systems and methods for extensions and inheritance for units of information manageable by a hardware/software interface system
US20070168516A1 (en) * 2005-12-05 2007-07-19 Microsoft Corporation Resource freshness and replication
US20070234342A1 (en) * 2006-01-25 2007-10-04 Flynn John T Jr System and method for relocating running applications to topologically remotely located computing systems
US20080077634A1 (en) * 2006-09-27 2008-03-27 Gary Lee Quakenbush Clone file system data
US7587446B1 (en) * 2000-11-10 2009-09-08 Fusionone, Inc. Acquisition and synchronization of digital media to a personal information space
US7594138B2 (en) 2007-01-31 2009-09-22 International Business Machines Corporation System and method of error recovery for backup applications
US7613749B2 (en) 2006-04-12 2009-11-03 International Business Machines Corporation System and method for application fault tolerance and recovery using topologically remotely located computing devices
US7653631B1 (en) * 2001-05-10 2010-01-26 Foundationip, Llc Method for synchronizing information in multiple case management systems
US7660833B2 (en) 2003-07-10 2010-02-09 Microsoft Corporation Granular control over the authority of replicated information via fencing and unfencing
US7703015B2 (en) 2002-04-30 2010-04-20 Sap Aktiengesellschaft Delta-handling in server-pages
US7908302B1 (en) * 2004-09-17 2011-03-15 Symantec Operating Corporation In-place splitting and merging of files
US20110154207A1 (en) * 2005-03-31 2011-06-23 At&T Intellectual Property I, L.P. Methods, Systems, and Products for Calendaring Applications
US8046424B2 (en) 2003-08-21 2011-10-25 Microsoft Corporation Systems and methods for the utilization of metadata for synchronization optimization
US8166101B2 (en) 2003-08-21 2012-04-24 Microsoft Corporation Systems and methods for the implementation of a synchronization schemas for units of information manageable by a hardware/software interface system
US8181111B1 (en) 2007-12-31 2012-05-15 Synchronoss Technologies, Inc. System and method for providing social context to digital activity
US20120179867A1 (en) * 2010-11-09 2012-07-12 Tridib Chakravarty Tape data management
US8238696B2 (en) 2003-08-21 2012-08-07 Microsoft Corporation Systems and methods for the implementation of a digital images schema for organizing units of information manageable by a hardware/software interface system
US8255006B1 (en) 2009-11-10 2012-08-28 Fusionone, Inc. Event dependent notification system and method
US8315976B2 (en) 2000-01-26 2012-11-20 Synchronoss Technologies, Inc. Data transfer and synchronization system
US8442943B2 (en) 2000-01-26 2013-05-14 Synchronoss Technologies, Inc. Data transfer and synchronization between mobile systems using change log
US8543540B1 (en) 2012-05-09 2013-09-24 Bertec Corporation System and method for the merging of databases
US8621075B2 (en) 2011-04-27 2013-12-31 Seven Metworks, Inc. Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US8620286B2 (en) 2004-02-27 2013-12-31 Synchronoss Technologies, Inc. Method and system for promoting and transferring licensed content and applications
US8645471B2 (en) 2003-07-21 2014-02-04 Synchronoss Technologies, Inc. Device message management system
US8700569B1 (en) 2012-05-09 2014-04-15 Bertec Corporation System and method for the merging of databases
US8700728B2 (en) 2010-11-01 2014-04-15 Seven Networks, Inc. Cache defeat detection and caching of content addressed by identifiers intended to defeat cache
US8750123B1 (en) 2013-03-11 2014-06-10 Seven Networks, Inc. Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network
US8761756B2 (en) 2005-06-21 2014-06-24 Seven Networks International Oy Maintaining an IP connection in a mobile network
US8775631B2 (en) 2012-07-13 2014-07-08 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
US8774844B2 (en) 2007-06-01 2014-07-08 Seven Networks, Inc. Integrated messaging
US8799410B2 (en) 2008-01-28 2014-08-05 Seven Networks, Inc. System and method of a relay server for managing communications and notification between a mobile device and a web access server
US8811952B2 (en) 2002-01-08 2014-08-19 Seven Networks, Inc. Mobile device power management in data synchronization over a mobile network with or without a trigger notification
US8812695B2 (en) 2012-04-09 2014-08-19 Seven Networks, Inc. Method and system for management of a virtual network connection without heartbeat messages
US8832228B2 (en) 2011-04-27 2014-09-09 Seven Networks, Inc. System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
US8839412B1 (en) * 2005-04-21 2014-09-16 Seven Networks, Inc. Flexible real-time inbox access
US8838783B2 (en) 2010-07-26 2014-09-16 Seven Networks, Inc. Distributed caching for resource and mobile network traffic management
US8843153B2 (en) 2010-11-01 2014-09-23 Seven Networks, Inc. Mobile traffic categorization and policy for network use optimization while preserving user experience
US8862657B2 (en) 2008-01-25 2014-10-14 Seven Networks, Inc. Policy based content service
US8868753B2 (en) 2011-12-06 2014-10-21 Seven Networks, Inc. System of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation
US8874761B2 (en) 2013-01-25 2014-10-28 Seven Networks, Inc. Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
US8903954B2 (en) 2010-11-22 2014-12-02 Seven Networks, Inc. Optimization of resource polling intervals to satisfy mobile device requests
US8909759B2 (en) 2008-10-10 2014-12-09 Seven Networks, Inc. Bandwidth measurement
US8934414B2 (en) 2011-12-06 2015-01-13 Seven Networks, Inc. Cellular or WiFi mobile traffic optimization based on public or private network destination
US8943428B2 (en) 2010-11-01 2015-01-27 Synchronoss Technologies, Inc. System for and method of field mapping
US9002828B2 (en) 2007-12-13 2015-04-07 Seven Networks, Inc. Predictive content delivery
US9009250B2 (en) 2011-12-07 2015-04-14 Seven Networks, Inc. Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation
US9021021B2 (en) 2011-12-14 2015-04-28 Seven Networks, Inc. Mobile network reporting and usage analytics system and method aggregated using a distributed traffic optimization system
US9043433B2 (en) 2010-07-26 2015-05-26 Seven Networks, Inc. Mobile network traffic coordination across multiple applications
US9043278B1 (en) 2012-05-09 2015-05-26 Bertec Corporation System and method for the merging of databases
US9065765B2 (en) 2013-07-22 2015-06-23 Seven Networks, Inc. Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
US9084105B2 (en) 2011-04-19 2015-07-14 Seven Networks, Inc. Device resources sharing for network resource conservation
US9173128B2 (en) 2011-12-07 2015-10-27 Seven Networks, Llc Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
US9325662B2 (en) 2011-01-07 2016-04-26 Seven Networks, Llc System and method for reduction of mobile network traffic used for domain name system (DNS) queries
US20160188641A1 (en) * 2014-12-29 2016-06-30 Here Global B.V. Updates for Navigational Map Data Organized in Lists
US9542076B1 (en) 2004-05-12 2017-01-10 Synchronoss Technologies, Inc. System for and method of updating a personal profile
US10129231B2 (en) * 2016-12-08 2018-11-13 Oath Inc. Computerized system and method for automatically sharing device pairing credentials across multiple devices
US10423291B2 (en) 2005-02-28 2019-09-24 At&T Intellectual Property I, L.P. Methods, systems, and products for calendaring applications
US10496608B2 (en) * 2009-10-28 2019-12-03 Sandisk Il Ltd. Synchronizing changes in a file system which are initiated by a storage device and a host device
US11178121B2 (en) * 2005-07-26 2021-11-16 Apple Inc. Secure software updates
CN116319836A (en) * 2023-05-22 2023-06-23 江苏物润船联网络股份有限公司 Service flow data synchronous processing method and system, electronic equipment and storage medium

Families Citing this family (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4311903B2 (en) * 2000-04-04 2009-08-12 スンハン ソン Information management system and method using portable communication mechanism and wired / wireless internet
US7197541B1 (en) 2001-06-18 2007-03-27 Palm, Inc. Method and apparatus for automated personality transfer for a wireless enabled handheld device
US7853563B2 (en) 2005-08-01 2010-12-14 Seven Networks, Inc. Universal data aggregation
US7917468B2 (en) 2005-08-01 2011-03-29 Seven Networks, Inc. Linking of personal information management data
US8468126B2 (en) 2005-08-01 2013-06-18 Seven Networks, Inc. Publishing data in an information community
US9105032B2 (en) 2007-05-03 2015-08-11 Yellowpages.Com Llc Systems and methods to provide advertisements for real time communications
US7505443B2 (en) * 2004-06-24 2009-03-17 Kapsch Trafficcom Inc. System and method for broadcasting application-specific information in wireless local area networks
US8010082B2 (en) 2004-10-20 2011-08-30 Seven Networks, Inc. Flexible billing architecture
US7441271B2 (en) 2004-10-20 2008-10-21 Seven Networks Method and apparatus for intercepting events in a communication system
US7706781B2 (en) 2004-11-22 2010-04-27 Seven Networks International Oy Data security in a mobile e-mail service
US7643818B2 (en) * 2004-11-22 2010-01-05 Seven Networks, Inc. E-mail messaging to/from a mobile terminal
FI117152B (en) 2004-12-03 2006-06-30 Seven Networks Internat Oy E-mail service provisioning method for mobile terminal, involves using domain part and further parameters to generate new parameter set in list of setting parameter sets, if provisioning of e-mail service is successful
US7996493B2 (en) * 2005-03-10 2011-08-09 Microsoft Corporation Framework for managing client application data in offline and online environments
US7752633B1 (en) 2005-03-14 2010-07-06 Seven Networks, Inc. Cross-platform event engine
US7796742B1 (en) 2005-04-21 2010-09-14 Seven Networks, Inc. Systems and methods for simplified provisioning
WO2006136661A1 (en) * 2005-06-21 2006-12-28 Seven Networks International Oy Network-initiated data transfer in a mobile network
US8069166B2 (en) 2005-08-01 2011-11-29 Seven Networks, Inc. Managing user-to-user contact with inferred presence information
CN100493090C (en) * 2006-01-25 2009-05-27 中国移动通信集团公司 Method of data synchronization between mobile terminal and server
US7769395B2 (en) 2006-06-20 2010-08-03 Seven Networks, Inc. Location-based operations and messaging
US7603435B2 (en) 2006-11-15 2009-10-13 Palm, Inc. Over-the-air device kill pill and lock
US20080115152A1 (en) 2006-11-15 2008-05-15 Bharat Welingkar Server-controlled heartbeats
US8693494B2 (en) 2007-06-01 2014-04-08 Seven Networks, Inc. Polling
US8364181B2 (en) 2007-12-10 2013-01-29 Seven Networks, Inc. Electronic-mail filtering for mobile devices
US8793305B2 (en) 2007-12-13 2014-07-29 Seven Networks, Inc. Content delivery to a mobile device from a content service
US8107921B2 (en) 2008-01-11 2012-01-31 Seven Networks, Inc. Mobile virtual network operator
US7747784B2 (en) * 2008-03-04 2010-06-29 Apple Inc. Data synchronization protocol
US8423592B2 (en) * 2008-04-11 2013-04-16 Sandisk Technologies Inc. Method and system for accessing a storage system with multiple file systems
US9047591B2 (en) 2008-06-06 2015-06-02 Yellowpages.Com Llc Systems and methods to plan events at different locations
US9043431B2 (en) 2008-06-06 2015-05-26 Yellowpages.Com Llc Systems and methods to plan events at different locations
US8787947B2 (en) 2008-06-18 2014-07-22 Seven Networks, Inc. Application discovery on mobile devices
US8078158B2 (en) 2008-06-26 2011-12-13 Seven Networks, Inc. Provisioning applications for a mobile device
US20100057742A1 (en) * 2008-08-28 2010-03-04 Visa Usa, Inc. Mrw interface and method for support of merchant data processing
US8744998B2 (en) * 2008-08-28 2014-06-03 Visa Usa, Inc. FTP device and method for merchant data processing
US8527474B2 (en) * 2008-08-28 2013-09-03 Visa Usa, Inc. Acquirer device and method for support of merchant data processing
US8655840B2 (en) * 2008-12-03 2014-02-18 Nokia Corporation Method, apparatus and computer program product for sub-file level synchronization
US8825597B1 (en) * 2009-08-13 2014-09-02 Dropbox, Inc. Network folder synchronization
TW201209697A (en) 2010-03-30 2012-03-01 Michael Luna 3D mobile user interface with configurable workspace management
CN102271347A (en) * 2010-06-01 2011-12-07 宏达国际电子股份有限公司 Communication apparatus and method thereof
CA2857458A1 (en) 2010-07-26 2012-02-09 Michael Luna Mobile application traffic optimization
US9077630B2 (en) 2010-07-26 2015-07-07 Seven Networks, Inc. Distributed implementation of dynamic wireless traffic policy
US9060032B2 (en) 2010-11-01 2015-06-16 Seven Networks, Inc. Selective data compression by a distributed traffic management system to reduce mobile data traffic and signaling traffic
US8484314B2 (en) 2010-11-01 2013-07-09 Seven Networks, Inc. Distributed caching in a wireless network of content delivered for a mobile application over a long-held request
US8166164B1 (en) 2010-11-01 2012-04-24 Seven Networks, Inc. Application and network-based long poll request detection and cacheability assessment therefor
US8190701B2 (en) 2010-11-01 2012-05-29 Seven Networks, Inc. Cache defeat detection and caching of content addressed by identifiers intended to defeat cache
US9330196B2 (en) 2010-11-01 2016-05-03 Seven Networks, Llc Wireless traffic management system cache optimization using http headers
WO2012061430A2 (en) 2010-11-01 2012-05-10 Michael Luna Distributed management of keep-alive message signaling for mobile network resource conservation and optimization
GB2499534B (en) 2010-11-01 2018-09-19 Seven Networks Llc Caching adapted for mobile application behavior and network conditions
CN103404193B (en) 2010-11-22 2018-06-05 七网络有限责任公司 The connection that adjustment data transmission is established with the transmission being optimized for through wireless network
US8843440B2 (en) * 2011-01-21 2014-09-23 Microsoft Corporation Synchronizing database projects with partner projects
JP2012208812A (en) * 2011-03-30 2012-10-25 Buffalo Inc Data management apparatus and data management method
US9489325B2 (en) * 2011-04-28 2016-11-08 Sandeep Jain Method and a system for polling and processing data
US8589363B2 (en) * 2011-07-19 2013-11-19 Exagrid Systems, Inc. Systems and methods for managing delta version chains
US8984581B2 (en) 2011-07-27 2015-03-17 Seven Networks, Inc. Monitoring mobile application activities for malicious traffic on a mobile device
CN102955816B (en) * 2011-08-30 2016-04-20 国际商业机器公司 String matching is utilized to carry out the method and system of data syn-chronization
US8225191B1 (en) * 2011-11-07 2012-07-17 Google Inc. Synchronizing web browsers
WO2013090821A1 (en) 2011-12-14 2013-06-20 Seven Networks, Inc. Hierarchies and categories for management and deployment of policies for distributed wireless traffic optimization
US9832095B2 (en) 2011-12-14 2017-11-28 Seven Networks, Llc Operation modes for mobile traffic optimization and concurrent management of optimized and non-optimized traffic
WO2013103988A1 (en) 2012-01-05 2013-07-11 Seven Networks, Inc. Detection and management of user interactions with foreground applications on a mobile device in distributed caching
US9203864B2 (en) 2012-02-02 2015-12-01 Seven Networks, Llc Dynamic categorization of applications for network access in a mobile network
WO2013116852A1 (en) 2012-02-03 2013-08-08 Seven Networks, Inc. User as an end point for profiling and optimizing the delivery of content and data in a wireless network
US20130238720A1 (en) * 2012-03-09 2013-09-12 Research In Motion Limited Method for sharing a file when multiple versions exist
US9824131B2 (en) 2012-03-15 2017-11-21 Hewlett Packard Enterprise Development Lp Regulating a replication operation
US9678921B2 (en) * 2012-03-21 2017-06-13 Owl Computing Technologies, Llc Method and apparatus for data transfer reconciliation
US20130268656A1 (en) 2012-04-10 2013-10-10 Seven Networks, Inc. Intelligent customer service/call center services enhanced using real-time and historical mobile application and traffic-related statistics collected by a distributed caching system in a mobile network
US9244673B2 (en) 2012-06-08 2016-01-26 Apple Inc. System and method for updating application archive files
US9176828B2 (en) * 2012-09-04 2015-11-03 Opshub, Inc. System and method for merging results from multiple runs based on run inputs
US9161258B2 (en) 2012-10-24 2015-10-13 Seven Networks, Llc Optimized and selective management of policy deployment to mobile clients in a congested network to prevent further aggravation of network congestion
US9307493B2 (en) 2012-12-20 2016-04-05 Seven Networks, Llc Systems and methods for application management of mobile device radio state promotion and demotion
US11003711B2 (en) * 2013-01-04 2021-05-11 Dropbox, Inc. Accessing audio files from an online content management system
US9398090B2 (en) 2013-01-07 2016-07-19 Dropbox, Inc. Synchronized content library
US9271238B2 (en) 2013-01-23 2016-02-23 Seven Networks, Llc Application or context aware fast dormancy
US9977820B1 (en) * 2013-03-15 2018-05-22 Tasktop Technologies, Incorporated System and method for synchronizing states in associated data records
US9342512B1 (en) 2013-03-15 2016-05-17 Tasktop Technologies, Incorporated System and method for repairing data synchronization links
US9582560B2 (en) * 2013-03-15 2017-02-28 Sugarcrm Inc. Partnership relationship management system to system data synchronization
US10496490B2 (en) 2013-05-16 2019-12-03 Hewlett Packard Enterprise Development Lp Selecting a store for deduplicated data
EP2997497B1 (en) 2013-05-16 2021-10-27 Hewlett Packard Enterprise Development LP Selecting a store for deduplicated data
US9892184B1 (en) 2013-08-29 2018-02-13 Servpro Industries, Inc. System and method for synchronizing incident response profiles across distinct computing platforms
US9336227B2 (en) * 2013-10-07 2016-05-10 Sap Se Selective synchronization in a hierarchical folder structure
US8924510B1 (en) * 2013-12-30 2014-12-30 CSG Media, LLC Digital content management system and process for the personalized search and browse of a digital content catalog
US10050888B2 (en) * 2014-01-10 2018-08-14 Appex Networks Holding Limited System and method for compression and decompression devices discovery and handshake
US9959284B2 (en) * 2014-01-10 2018-05-01 Appex Networks Holding Limited System and method for synchronizing history data for compression and decompression
US9898520B2 (en) 2014-03-25 2018-02-20 Open Text Sa Ulc Systems and methods for seamless access to remotely managed documents using synchronization of locally stored documents
FR3024869B1 (en) * 2014-08-14 2016-08-26 Zodiac Aero Electric ELECTRICAL DISTRIBUTION SYSTEM FOR AN AIRCRAFT AND CORRESPONDING CONTROL METHOD
JP2016056635A (en) * 2014-09-11 2016-04-21 美和ロック株式会社 Key data control system in telecommunication line
CN105468659B (en) * 2014-09-28 2019-01-04 阿里巴巴集团控股有限公司 A kind of method of data synchronization and device
US9459839B2 (en) * 2014-12-15 2016-10-04 Tasktop Technologies, Incorporated Systems and methods to synchronize artifact relationships across a plurality of repositories
US10831715B2 (en) 2015-01-30 2020-11-10 Dropbox, Inc. Selective downloading of shared content items in a constrained synchronization system
US9361349B1 (en) 2015-01-30 2016-06-07 Dropbox, Inc. Storage constrained synchronization of shared content items
US10678762B2 (en) 2015-05-01 2020-06-09 Microsoft Technology Licensing, Llc Isolating data to be moved across boundaries
US10261943B2 (en) 2015-05-01 2019-04-16 Microsoft Technology Licensing, Llc Securely moving data across boundaries
US10229124B2 (en) 2015-05-01 2019-03-12 Microsoft Technology Licensing, Llc Re-directing tenants during a data move
WO2017048343A1 (en) * 2015-09-16 2017-03-23 eBackpack, Inc. Gradebook clearinghouse
US10049145B2 (en) 2016-04-25 2018-08-14 Dropbox, Inc. Storage constrained synchronization engine
US10719532B2 (en) * 2016-04-25 2020-07-21 Dropbox, Inc. Storage constrained synchronization engine
US9934303B2 (en) 2016-04-25 2018-04-03 Dropbox, Inc. Storage constrained synchronization engine
US10216379B2 (en) 2016-10-25 2019-02-26 Microsoft Technology Licensing, Llc User interaction processing in an electronic mail system
US11003632B2 (en) 2016-11-28 2021-05-11 Open Text Sa Ulc System and method for content synchronization
US11301431B2 (en) 2017-06-02 2022-04-12 Open Text Sa Ulc System and method for selective synchronization
US11086757B1 (en) * 2019-06-12 2021-08-10 Express Scripts Strategic Development, Inc. Systems and methods for providing stable deployments to mainframe environments
US11720347B1 (en) 2019-06-12 2023-08-08 Express Scripts Strategic Development, Inc. Systems and methods for providing stable deployments to mainframe environments
US11086853B1 (en) * 2020-10-12 2021-08-10 iodyne, LLC Method and system for streaming data from portable storage devices

Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392390A (en) * 1992-04-10 1995-02-21 Intellilink Corp. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5519606A (en) * 1992-01-21 1996-05-21 Starfish Software, Inc. System and methods for appointment reconciliation
US5574906A (en) * 1994-10-24 1996-11-12 International Business Machines Corporation System and method for reducing storage requirement in backup subsystems utilizing segmented compression and differencing
US5628005A (en) * 1995-06-07 1997-05-06 Microsoft Corporation System and method for providing opportunistic file access in a network environment
US5630081A (en) * 1995-09-07 1997-05-13 Puma Technology, Inc. Connection resource manager displaying link-status information using a traffic light iconic representation
US5682524A (en) * 1995-05-26 1997-10-28 Starfish Software, Inc. Databank system with methods for efficiently storing non-uniform data records
US5684990A (en) * 1995-01-11 1997-11-04 Puma Technology, Inc. Synchronization of disparate databases
US5710922A (en) * 1993-06-02 1998-01-20 Apple Computer, Inc. Method for synchronizing and archiving information between computer systems
US5727202A (en) * 1995-10-18 1998-03-10 Palm Computing, Inc. Method and apparatus for synchronizing information on two different computer systems
US5729743A (en) * 1995-11-17 1998-03-17 Deltatech Research, Inc. Computer apparatus and method for merging system deltas
US5742792A (en) * 1993-04-23 1998-04-21 Emc Corporation Remote data mirroring
US5745906A (en) * 1995-11-14 1998-04-28 Deltatech Research, Inc. Method and apparatus for merging delta streams to reconstruct a computer file
US5768597A (en) * 1996-05-02 1998-06-16 Starfish Software, Inc. System and methods for improved installation of compressed software programs
US5771354A (en) * 1993-11-04 1998-06-23 Crawford; Christopher M. Internet online backup system provides remote storage for customers using IDs and passwords which were interactively established when signing up for backup services
US5787247A (en) * 1996-07-12 1998-07-28 Microsoft Corporation Replica administration without data loss in a store and forward replication enterprise
US5787262A (en) * 1996-06-26 1998-07-28 Microsoft Corporation System and method for distributed conflict resolution between data objects replicated across a computer network
US5812773A (en) * 1996-07-12 1998-09-22 Microsoft Corporation System and method for the distribution of hierarchically structured data
US5812793A (en) * 1996-06-26 1998-09-22 Microsoft Corporation System and method for asynchronous store and forward data replication
US5884323A (en) * 1995-10-13 1999-03-16 3Com Corporation Extendible method and apparatus for synchronizing files on two different computer systems
US5943676A (en) * 1996-11-13 1999-08-24 Puma Technology, Inc. Synchronization of recurring records in incompatible databases
US5961590A (en) * 1997-04-11 1999-10-05 Roampage, Inc. System and method for synchronizing electronic mail between a client site and a central site
US5968131A (en) * 1997-04-11 1999-10-19 Roampage, Inc. System and method for securely synchronizing multiple copies of a workspace element in a network
US6006274A (en) * 1997-01-30 1999-12-21 3Com Corporation Method and apparatus using a pass through personal computer connected to both a local communication link and a computer network for indentifying and synchronizing a preferred computer with a portable computer
US6012063A (en) * 1998-03-04 2000-01-04 Starfish Software, Inc. Block file system for minimal incremental data transfer between computing devices
US6016478A (en) * 1996-08-13 2000-01-18 Starfish Software, Inc. Scheduling system with methods for peer-to-peer scheduling of remote users
US6023708A (en) * 1997-05-29 2000-02-08 Visto Corporation System and method for using a global translator to synchronize workspace elements across a network
US6023723A (en) * 1997-12-22 2000-02-08 Accepted Marketing, Inc. Method and system for filtering unwanted junk e-mail utilizing a plurality of filtering mechanisms
US6044381A (en) * 1997-09-11 2000-03-28 Puma Technology, Inc. Using distributed history files in synchronizing databases
US6061790A (en) * 1996-11-20 2000-05-09 Starfish Software, Inc. Network computer system with remote user data encipher methodology
US6131096A (en) * 1998-10-05 2000-10-10 Visto Corporation System and method for updating a remote database in a network
US6131116A (en) * 1996-12-13 2000-10-10 Visto Corporation System and method for globally accessing computer services
US6141011A (en) * 1997-08-04 2000-10-31 Starfish Software, Inc. User interface methodology supporting light data entry for microprocessor device having limited user input
US6141664A (en) * 1996-11-13 2000-10-31 Puma Technology, Inc. Synchronization of databases with date range
US6151606A (en) * 1998-01-16 2000-11-21 Visto Corporation System and method for using a workspace data manager to access, manipulate and synchronize network data
US6182117B1 (en) * 1995-05-31 2001-01-30 Netscape Communications Corporation Method and apparatus for workgroup information replication
US6202085B1 (en) * 1996-12-06 2001-03-13 Microsoft Corportion System and method for incremental change synchronization between multiple copies of data
US6205448B1 (en) * 1998-01-30 2001-03-20 3Com Corporation Method and apparatus of synchronizing two computer systems supporting multiple synchronization techniques
US6226650B1 (en) * 1998-09-17 2001-05-01 Synchrologic, Inc. Database synchronization and organization system and method
US6275831B1 (en) * 1997-12-16 2001-08-14 Starfish Software, Inc. Data processing environment with methods providing contemporaneous synchronization of two or more clients
US6295541B1 (en) * 1997-12-16 2001-09-25 Starfish Software, Inc. System and methods for synchronizing two or more datasets
US6397307B2 (en) * 1999-02-23 2002-05-28 Legato Systems, Inc. Method and system for mirroring and archiving mass storage
US6401104B1 (en) * 1999-07-03 2002-06-04 Starfish Software, Inc. System and methods for synchronizing datasets using cooperation among multiple synchronization engines
US6405218B1 (en) * 1996-11-13 2002-06-11 Pumatech, Inc. Synchronizing databases
US6694335B1 (en) * 1999-10-04 2004-02-17 Microsoft Corporation Method, computer readable medium, and system for monitoring the state of a collection of resources

Family Cites Families (473)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4887212A (en) 1986-10-29 1989-12-12 International Business Machines Corporation Parser for natural language text
JP2718031B2 (en) 1987-07-17 1998-02-25 株式会社日立製作所 History information acquisition method
US5111398A (en) 1988-11-21 1992-05-05 Xerox Corporation Processing natural language text using autonomous punctuational structure
US5146221A (en) 1989-01-13 1992-09-08 Stac, Inc. Data compression apparatus and method
NO168860C (en) 1989-11-13 1992-04-08 Alcatel Stk As COMMUNICATION NETWORK
US5130993A (en) 1989-12-29 1992-07-14 Codex Corporation Transmitting encoded data on unreliable networks
US5129152A (en) 1990-12-20 1992-07-14 Hughes Aircraft Company Fast contact measuring machine
JP2721600B2 (en) 1991-08-22 1998-03-04 ローム株式会社 Data backup device for telephone
US5519433A (en) 1991-11-20 1996-05-21 Zing Systems, L.P. Interactive television security through transaction time stamping
US5640577A (en) 1991-12-30 1997-06-17 Davox Corporation Data processing system with automated at least partial forms completion
US5418854A (en) 1992-04-28 1995-05-23 Digital Equipment Corporation Method and apparatus for protecting the confidentiality of passwords in a distributed data processing system
US5907793A (en) 1992-05-01 1999-05-25 Reams; David A. Telephone-based interactive broadcast or cable radio or television methods and apparatus
JP2756392B2 (en) 1992-08-27 1998-05-25 富士通株式会社 Computer with the function of linking e-mail and telephone
US5418908A (en) 1992-10-15 1995-05-23 International Business Machines Corporation System for automatically establishing a link between an electronic mail item and a remotely stored reference through a place mark inserted into the item
US5329619A (en) 1992-10-30 1994-07-12 Software Ag Cooperative processing interface and communication broker for heterogeneous computing environments
US5579489A (en) 1993-02-10 1996-11-26 Elonex I.P. Holdings, Ltd. Hand-held portable computer having capability for external expansion of an internal bus
US6523079B2 (en) 1993-02-19 2003-02-18 Elonex Ip Holdings Ltd Micropersonal digital assistant
US5794228A (en) 1993-04-16 1998-08-11 Sybase, Inc. Database system with buffer manager providing per page native data compression and decompression
JP3227272B2 (en) 1993-05-28 2001-11-12 アイシン・エィ・ダブリュ株式会社 Navigation device
US5689641A (en) 1993-10-01 1997-11-18 Vicor, Inc. Multimedia collaboration system arrangement for routing compressed AV signal through a participant site without decompressing the AV signal
US5561446A (en) 1994-01-28 1996-10-01 Montlick; Terry F. Method and apparatus for wireless remote information retrieval and pen-based data entry
US5588009A (en) 1994-02-03 1996-12-24 Will; Craig A. Personal paging, communications, and locating system
US5644709A (en) 1994-04-21 1997-07-01 Wisconsin Alumni Research Foundation Method for detecting computer memory access errors
JPH07295815A (en) 1994-04-26 1995-11-10 Internatl Business Mach Corp <Ibm> Mapping system and method of permanence object
JPH07303146A (en) 1994-05-10 1995-11-14 Matsushita Electric Ind Co Ltd Caller information notifying system
US6356961B1 (en) 1994-06-03 2002-03-12 Motorola, Inc. Method and apparatus for minimizing an amount of data communicated between devices and necessary to modify stored electronic documents
US5543789A (en) 1994-06-24 1996-08-06 Shields Enterprises, Inc. Computerized navigation system
US5999711A (en) 1994-07-18 1999-12-07 Microsoft Corporation Method and system for providing certificates holding authentication and authorization information for users/machines
US5897640A (en) 1994-08-08 1999-04-27 Microsoft Corporation Method and system of associating, synchronizing and reconciling computer files in an operating system
US6209034B1 (en) 1994-09-02 2001-03-27 Nec Corporation Remote keyboard macros activated by hot icons
JP3593366B2 (en) 1994-09-19 2004-11-24 株式会社日立製作所 Database management method
DE69524791T2 (en) 1994-09-27 2002-07-18 Sony Corp selective
US5768480A (en) 1994-10-21 1998-06-16 Lucent Technologies Inc. Integrating rules into object-oriented programming systems
US5485161A (en) 1994-11-21 1996-01-16 Trimble Navigation Limited Vehicle speed control based on GPS/MAP matching of posted speeds
US6460036B1 (en) 1994-11-29 2002-10-01 Pinpoint Incorporated System and method for providing customized electronic newspapers and target advertisements
CA2137492C (en) 1994-12-07 1998-07-28 Lenny Kwok-Ming Hon System for and method of providing delta-versioning of the contents of pcte file objects
US5592470A (en) 1994-12-21 1997-01-07 At&T Broadband wireless system and network architecture providing broadband/narrowband service with optimal static and dynamic bandwidth/channel allocation
US5729735A (en) 1995-02-08 1998-03-17 Meyering; Samuel C. Remote database file synchronizer
US5623406A (en) 1995-03-06 1997-04-22 Jean D. Ichbiah Method and system for entering text in computer equipment
US5666397A (en) 1995-03-07 1997-09-09 Clearwave Communications, Inc. Individual telephone line call event buffering system
US5826245A (en) 1995-03-20 1998-10-20 Sandberg-Diment; Erik Providing verification information for a transaction
US5706509A (en) 1995-04-28 1998-01-06 Intel Corporation Application independent record level synchronization
US5758354A (en) 1995-04-28 1998-05-26 Intel Corporation Application independent e-mail synchronization
US5650800A (en) 1995-05-15 1997-07-22 Inelec Corporation Remote sensor network using distributed intelligent modules with interactive display
US5649195A (en) 1995-05-22 1997-07-15 International Business Machines Corporation Systems and methods for synchronizing databases in a receive-only network
US5694596A (en) 1995-05-25 1997-12-02 Kangaroo, Inc. On-line database updating network system and method
JP3181809B2 (en) 1995-05-31 2001-07-03 シャープ株式会社 Decompression circuit of compressed code for data compression
US5935262A (en) 1995-06-09 1999-08-10 Canon Information Systems, Inc. Outputting a network device log file
US5818437A (en) 1995-07-26 1998-10-06 Tegic Communications, Inc. Reduced keyboard disambiguating computer
US5647002A (en) 1995-09-01 1997-07-08 Lucent Technologies Inc. Synchronization of mailboxes of different types
US5864864A (en) 1995-09-27 1999-01-26 Sun Microsystems, Inc. Method and apparatus for providing transparent persistent data support to foreign data types
US5778361A (en) 1995-09-29 1998-07-07 Microsoft Corporation Method and system for fast indexing and searching of text in compound-word languages
US5758150A (en) 1995-10-06 1998-05-26 Tele-Communications, Inc. System and method for database synchronization
US5819020A (en) 1995-10-16 1998-10-06 Network Specialists, Inc. Real time backup system
US5699255A (en) 1995-10-18 1997-12-16 Trimble Navigation Limited Map transmission for in-vehicle navigation system with dynamic scale/detail adjustment
US5764899A (en) 1995-11-13 1998-06-09 Motorola, Inc. Method and apparatus for communicating an optimized reply
US6212556B1 (en) 1995-11-13 2001-04-03 Webxchange, Inc. Configurable value-added network (VAN) switching
US5778367A (en) 1995-12-14 1998-07-07 Network Engineering Software, Inc. Automated on-line information service and directory, particularly for the world wide web
US5745750A (en) 1995-12-15 1998-04-28 International Business Machines Corporation Process and article of manufacture for constructing and optimizing transaction logs for mobile file systems
US5903723A (en) 1995-12-21 1999-05-11 Intel Corporation Method and apparatus for transmitting electronic mail attachments with attachment references
US5781901A (en) 1995-12-21 1998-07-14 Intel Corporation Transmitting electronic mail attachment over a network using a e-mail page
US5898830A (en) 1996-10-17 1999-04-27 Network Engineering Software Firewall providing enhanced network security and user transparency
US6189030B1 (en) 1996-02-21 2001-02-13 Infoseek Corporation Method and apparatus for redirection of server external hyper-link references
US6076109A (en) 1996-04-10 2000-06-13 Lextron, Systems, Inc. Simplified-file hyper text protocol
US6553410B2 (en) 1996-02-27 2003-04-22 Inpro Licensing Sarl Tailoring data and transmission protocol for efficient interactive data transactions over wide-area networks
US5804803A (en) 1996-04-02 1998-09-08 International Business Machines Corporation Mechanism for retrieving information using data encoded on an object
US5835718A (en) 1996-04-10 1998-11-10 At&T Corp URL rewriting pseudo proxy server
US5845283A (en) 1996-04-24 1998-12-01 Lingua Teq, Inc. Method and apparatus for rationalizing different data formats in a data management system
US5727950A (en) 1996-05-22 1998-03-17 Netsage Corporation Agent based instruction system and method
US5740432A (en) 1996-05-28 1998-04-14 Sun Microsystems, Inc. Log file optimization in a client/server computing system
US5923848A (en) 1996-05-31 1999-07-13 Microsoft Corporation System and method for resolving names in an electronic messaging environment
US5933653A (en) 1996-05-31 1999-08-03 Emc Corporation Method and apparatus for mirroring data in a remote data storage system
US5933778A (en) 1996-06-04 1999-08-03 At&T Wireless Services Inc. Method and apparatus for providing telecommunication services based on a subscriber profile updated by a personal information manager
US6145088A (en) 1996-06-18 2000-11-07 Ontrack Data International, Inc. Apparatus and method for remote data recovery
WO1997049047A1 (en) 1996-06-21 1997-12-24 Appintec Corporation Method and apparatus for improved contact and activity management and planning
US5832520A (en) 1996-07-03 1998-11-03 Miller, Call, Plauck And Miller Automatic file differencing and updating system
US6141621A (en) 1996-08-02 2000-10-31 Magellan Dis, Inc. Method of providing a textual description of a remote vehicle location
US5974238A (en) 1996-08-07 1999-10-26 Compaq Computer Corporation Automatic data synchronization between a handheld and a host computer using pseudo cache including tags and logical data elements
US5758355A (en) 1996-08-07 1998-05-26 Aurum Software, Inc. Synchronization of server database with client database using distribution tables
FI102923B (en) 1996-08-08 1999-03-15 Nokia Mobile Phones Ltd Information printing system, procedure for printing information and terminals for printing information
US5859973A (en) 1996-08-21 1999-01-12 International Business Machines Corporation Methods, system and computer program products for delayed message generation and encoding in an intermittently connected data communication system
US6202023B1 (en) 1996-08-22 2001-03-13 Go2 Systems, Inc. Internet based geographic location referencing system and method
JP3245364B2 (en) 1996-09-02 2002-01-15 株式会社日立製作所 Method and system for sharing a storage device via different interfaces
US5905777A (en) 1996-09-27 1999-05-18 At&T Corp. E-mail paging system
US6112024A (en) 1996-10-02 2000-08-29 Sybase, Inc. Development system providing methods for managing different versions of objects with a meta model
JPH10111727A (en) 1996-10-03 1998-04-28 Toshiba Corp Information equipment having telephone function and security rearising method therefor
US5946615A (en) 1996-10-08 1999-08-31 At&T Wireless Mobile network geographic address translation
US5926816A (en) 1996-10-09 1999-07-20 Oracle Corporation Database Synchronizer
JPH10124345A (en) 1996-10-09 1998-05-15 Hewlett Packard Co <Hp> Method for protecting remote computer
US5884325A (en) 1996-10-09 1999-03-16 Oracle Corporation System for synchronizing shared data between computers
US5933816A (en) 1996-10-31 1999-08-03 Citicorp Development Center, Inc. System and method for delivering financial services
US5970490A (en) 1996-11-05 1999-10-19 Xerox Corporation Integration platform for heterogeneous databases
US6167120A (en) 1996-11-06 2000-12-26 Lextron Systems, Inc. Apparatus and methods for home networking
US5944769A (en) 1996-11-08 1999-08-31 Zip2 Corporation Interactive network directory service with integrated maps and directions
US6330568B1 (en) 1996-11-13 2001-12-11 Pumatech, Inc. Synchronization of databases
US6212529B1 (en) 1996-11-13 2001-04-03 Puma Technology, Inc. Synchronization of databases using filters
US7080260B2 (en) 1996-11-19 2006-07-18 Johnson R Brent System and computer based method to automatically archive and retrieve encrypted remote client data files
US5970149A (en) 1996-11-19 1999-10-19 Johnson; R. Brent Combined remote access and security system
US6499108B1 (en) 1996-11-19 2002-12-24 R. Brent Johnson Secure electronic mail system
US6578146B2 (en) 1996-11-19 2003-06-10 R. Brent Johnson System, method and article of manufacture to remotely configure and utilize an emulated device controller via an encrypted validation communication protocol
JP3217002B2 (en) 1996-11-19 2001-10-09 株式会社日立製作所 Digital studio apparatus and control method thereof
US6038665A (en) 1996-12-03 2000-03-14 Fairbanks Systems Group System and method for backing up computer files over a wide area computer network
US6012088A (en) 1996-12-10 2000-01-04 International Business Machines Corporation Automatic configuration for internet access device
US6182141B1 (en) 1996-12-20 2001-01-30 Intel Corporation Transparent proxy server
JP2912274B2 (en) 1996-12-20 1999-06-28 静岡日本電気株式会社 Radio selective call receiver
JP3507307B2 (en) 1996-12-27 2004-03-15 キヤノン株式会社 Information processing apparatus, network print system, control method therefor, and storage medium storing program
US5875296A (en) 1997-01-28 1999-02-23 International Business Machines Corporation Distributed file system web server user authentication with cookies
US6374250B2 (en) 1997-02-03 2002-04-16 International Business Machines Corporation System and method for differential compression of data from a plurality of binary sources
US5923756A (en) 1997-02-12 1999-07-13 Gte Laboratories Incorporated Method for providing secure remote command execution over an insecure computer network
US6173311B1 (en) 1997-02-13 2001-01-09 Pointcast, Inc. Apparatus, method and article of manufacture for servicing client requests on a network
US5941944A (en) 1997-03-03 1999-08-24 Microsoft Corporation Method for providing a substitute for a requested inaccessible object by identifying substantially similar objects using weights corresponding to object features
IL131553A0 (en) 1997-03-06 2001-01-28 Software And Systems Engineeri System and method for gaining access to information in a distributed computer system
US5987381A (en) 1997-03-11 1999-11-16 Visteon Technologies, Llc Automobile navigation system using remote download of data
US5948066A (en) 1997-03-13 1999-09-07 Motorola, Inc. System and method for delivery of information over narrow-band communications links
EP0864969A1 (en) 1997-03-14 1998-09-16 Alcatel A method to provide a software package and a provider station and a user station realising the method
US5961572A (en) 1997-04-01 1999-10-05 Bellsouth Intellectual Property Corporation System and method for identifying the geographic region of a geographic area which contains a geographic point associated with a location
US5944787A (en) 1997-04-21 1999-08-31 Sift, Inc. Method for automatically finding postal addresses from e-mail addresses
FR2762462B1 (en) 1997-04-21 1999-05-28 Alsthom Cge Alcatel SYSTEM WITH DATA RECEIVING STATIONS INSTALLED IN A NETWORK
US6333973B1 (en) 1997-04-23 2001-12-25 Nortel Networks Limited Integrated message center
US6286029B1 (en) 1997-04-28 2001-09-04 Sabre Inc. Kiosk controller that retrieves content from servers and then pushes the retrieved content to a kiosk in the order specified in a run list
US6292905B1 (en) 1997-05-13 2001-09-18 Micron Technology, Inc. Method for providing a fault tolerant network using distributed server processes to remap clustered network resources to other servers during server failure
US5999947A (en) 1997-05-27 1999-12-07 Arkona, Llc Distributing database differences corresponding to database change events made to a database table located on a server computer
US7103794B2 (en) 1998-06-08 2006-09-05 Cacheflow, Inc. Network object cache engine
US6009462A (en) 1997-06-16 1999-12-28 Digital Equipment Corporation Replacing large bit component of electronic mail (e-mail) message with hot-link in distributed computer system
US6219680B1 (en) 1997-06-19 2001-04-17 International Business Machines Corporation System and method for building a web site for use in E-commerce with user specific pricing
US6243760B1 (en) 1997-06-24 2001-06-05 Vistar Telecommunications Inc. Information dissemination system with central and distributed caches
US6064880A (en) 1997-06-25 2000-05-16 Nokia Mobile Phones Limited Mobile station having short code memory system-level backup and restoration function
JP3306651B2 (en) 1997-07-07 2002-07-24 吉田 富貴子 Remote power switching equipment
US5897642A (en) 1997-07-14 1999-04-27 Microsoft Corporation Method and system for integrating an object-based application with a version control system
IL134231A0 (en) * 1997-07-30 2001-04-30 Visto Corp System and method for globally and securely accessing unifiled information in a computer network
US6195794B1 (en) 1997-08-12 2001-02-27 International Business Machines Corporation Method and apparatus for distributing templates in a component system
US6061796A (en) 1997-08-26 2000-05-09 V-One Corporation Multi-access virtual private network
US6058399A (en) 1997-08-28 2000-05-02 Colordesk, Ltd. File upload synchronization
US6049776A (en) 1997-09-06 2000-04-11 Unisys Corporation Human resource management system for staffing projects
US6886013B1 (en) 1997-09-11 2005-04-26 International Business Machines Corporation HTTP caching proxy to filter and control display of data in a web browser
US6016394A (en) 1997-09-17 2000-01-18 Tenfold Corporation Method and system for database application software creation requiring minimal programming
US6108330A (en) 1997-09-26 2000-08-22 3Com Corporation Apparatus and methods for use therein for an ISDN LAN modem that selects among a plurality of DNS servers for responding to a DNS query
US6169911B1 (en) 1997-09-26 2001-01-02 Sun Microsystems, Inc. Graphical user interface for a portable telephone
US6163779A (en) 1997-09-29 2000-12-19 International Business Machines Corporation Method of saving a web page to a local hard drive to enable client-side browsing
JP3489416B2 (en) 1997-10-17 2004-01-19 トヨタ自動車株式会社 In-vehicle equipment control system and in-vehicle equipment control device
US6418309B1 (en) 1997-10-22 2002-07-09 Ericsson Inc. Apparatus and method for configuring settings of a portable intelligent communications device during a meeting
US6052735A (en) 1997-10-24 2000-04-18 Microsoft Corporation Electronic mail object synchronization between a desktop computer and mobile device
US6272545B1 (en) 1997-10-24 2001-08-07 Microsoft Corporation System and method for interaction between one or more desktop computers and one or more mobile devices
US5896321A (en) 1997-11-14 1999-04-20 Microsoft Corporation Text completion system for a miniature computer
US6034621A (en) 1997-11-18 2000-03-07 Lucent Technologies, Inc. Wireless remote synchronization of data between PC and PDA
JP3337062B2 (en) 1997-11-21 2002-10-21 日本電気株式会社 Wireless data transfer method and system
US5951636A (en) 1997-12-04 1999-09-14 International Business Machines Corp. Accessing a post office system from a client computer using applets
US6310944B1 (en) 1997-12-17 2001-10-30 Nortel Networks Limited Method for adding context to communications
US6157630A (en) 1998-01-26 2000-12-05 Motorola, Inc. Communications system with radio device and server
IL123129A (en) 1998-01-30 2010-12-30 Aviv Refuah Www addressing
US6216131B1 (en) 1998-02-06 2001-04-10 Starfish Software, Inc. Methods for mapping data fields from one data set to another in a data processing environment
US6282698B1 (en) 1998-02-09 2001-08-28 Lucent Technologies Inc. Detecting similarities in Java sources from bytecodes
US6092074A (en) 1998-02-10 2000-07-18 Connect Innovations, Inc. Dynamic insertion and updating of hypertext links for internet servers
US6185598B1 (en) 1998-02-10 2001-02-06 Digital Island, Inc. Optimized network resource location
US6233565B1 (en) 1998-02-13 2001-05-15 Saranac Software, Inc. Methods and apparatus for internet based financial transactions with evidence of payment
JPH11249874A (en) 1998-02-27 1999-09-17 Toshiba Corp Computer system and its synchronous processing method and recording medium
US6304881B1 (en) 1998-03-03 2001-10-16 Pumatech, Inc. Remote data access and synchronization
US6065018A (en) 1998-03-04 2000-05-16 International Business Machines Corporation Synchronizing recovery log having time stamp to a remote site for disaster recovery of a primary database having related hierarchial and relational databases
US6026414A (en) 1998-03-05 2000-02-15 International Business Machines Corporation System including a proxy client to backup files in a distributed computing environment
US6925477B1 (en) 1998-03-31 2005-08-02 Intellisync Corporation Transferring records between two databases
US6360330B1 (en) 1998-03-31 2002-03-19 Emc Corporation System and method for backing up data stored in multiple mirrors on a mass storage subsystem under control of a backup server
US6173316B1 (en) 1998-04-08 2001-01-09 Geoworks Corporation Wireless communication device with markup language based man-machine interface
US6247048B1 (en) 1998-04-30 2001-06-12 Openwave Systems Inc Method and apparatus for transcoding character sets between internet hosts and thin client devices over data networks
US6163773A (en) 1998-05-05 2000-12-19 International Business Machines Corporation Data storage system with trained predictive cache management engine
US6189096B1 (en) 1998-05-06 2001-02-13 Kyberpass Corporation User authentification using a virtual private key
US6141659A (en) 1998-05-12 2000-10-31 International Businss Machines Corporation Systems, methods and computer program products for retrieving documents from multiple document servers via a single client session
US6073133A (en) 1998-05-15 2000-06-06 Micron Electronics Inc. Electronic mail attachment verifier
CA2332413A1 (en) 1998-05-15 1999-11-25 Rick W. Landsman A technique for implementing browser-initiated network-distributed advertising and for interstitially displaying an advertisement
US6219694B1 (en) 1998-05-29 2001-04-17 Research In Motion Limited System and method for pushing information from a host system to a mobile data communication device having a shared electronic address
US6252547B1 (en) 1998-06-05 2001-06-26 Decisionmark Corp. Method and apparatus for limiting access to signals delivered via the internet
US6338096B1 (en) 1998-06-10 2002-01-08 International Business Machines Corporation System uses kernals of micro web server for supporting HTML web browser in providing HTML data format and HTTP protocol from variety of data sources
US6101480A (en) 1998-06-19 2000-08-08 International Business Machines Electronic calendar with group scheduling and automated scheduling techniques for coordinating conflicting schedules
US6396482B1 (en) 1998-06-26 2002-05-28 Research In Motion Limited Hand-held electronic device with a keyboard optimized for use with the thumbs
US6286053B1 (en) 1998-06-30 2001-09-04 Motorola Inc. Method, client device, server and article of manufacture for compressing universal resource indicators using partitioned left/right string substitution
US6078960A (en) 1998-07-03 2000-06-20 Acceleration Software International Corporation Client-side load-balancing in client server network
JP2000031882A (en) 1998-07-10 2000-01-28 Mitsubishi Electric Corp Portable information device system
US6108703A (en) 1998-07-14 2000-08-22 Massachusetts Institute Of Technology Global hosting system
US6535743B1 (en) 1998-07-29 2003-03-18 Minorplanet Systems Usa, Inc. System and method for providing directions using a communication network
US6233589B1 (en) 1998-07-31 2001-05-15 Novell, Inc. Method and system for reflecting differences between two files
US6549933B1 (en) 1998-08-04 2003-04-15 International Business Machines Corporation Managing, accessing, and retrieving networked information using physical objects associated with the networked information
US6356910B1 (en) 1998-08-07 2002-03-12 Paul Zellweger Method and apparatus for a self-service content menu
US6260124B1 (en) 1998-08-13 2001-07-10 International Business Machines Corporation System and method for dynamically resynchronizing backup data
US6963914B1 (en) 1998-09-01 2005-11-08 Lucent Technologies Inc. Method and apparatus for retrieving a network file using a logical reference
GB9909825D0 (en) 1998-09-08 1999-06-23 Airnet Global Holdings Limited Communications system for aircraft
EP0986225A1 (en) 1998-09-11 2000-03-15 Visto Corporation System and method for securely synchronizing multiple copies of a workspace element in a network
US6917965B2 (en) 1998-09-15 2005-07-12 Microsoft Corporation Facilitating annotation creation and notification via electronic mail
US6289212B1 (en) 1998-09-16 2001-09-11 Openwave Systems Inc. Method and apparatus for providing electronic mail services during network unavailability
US6397351B1 (en) 1998-09-28 2002-05-28 International Business Machines Corporation Method and apparatus for rapid data restoration including on-demand output of sorted logged changes
US7813725B2 (en) 1998-10-01 2010-10-12 Onepin, Llc Wireless data exchange
US6546425B1 (en) 1998-10-09 2003-04-08 Netmotion Wireless, Inc. Method and apparatus for providing mobile and other intermittent connectivity in a computing environment
AU6410699A (en) 1998-10-13 2000-05-01 Chris Cheah Method and system for controlled distribution of information over a network
US6324544B1 (en) 1998-10-21 2001-11-27 Microsoft Corporation File object synchronization between a desktop computer and a mobile device
US6532588B1 (en) 1998-10-21 2003-03-11 Xoucin, Inc. User centric program product distribution
US6195695B1 (en) 1998-10-27 2001-02-27 International Business Machines Corporation Data processing system and method for recovering from system crashes
JP2002528819A (en) 1998-10-28 2002-09-03 バーティカルワン コーポレイション Automatic aggregation device and method, device and method for delivering electronic personal information or data, and transaction involving electronic personal information or data
US6449622B1 (en) * 1999-03-08 2002-09-10 Starfish Software, Inc. System and methods for synchronizing datasets when dataset changes may be received out of order
US6453392B1 (en) 1998-11-10 2002-09-17 International Business Machines Corporation Method of and apparatus for sharing dedicated devices between virtual machine guests
US6516314B1 (en) 1998-11-17 2003-02-04 Telefonaktiebolaget L M Ericsson (Publ) Optimization of change log handling
US6462644B1 (en) 1998-11-19 2002-10-08 The Coca-Cola Company Network of vending machines connected interactively to data-base building host
US6553375B1 (en) 1998-11-25 2003-04-22 International Business Machines Corporation Method and apparatus for server based handheld application and database management
US6332158B1 (en) 1998-12-03 2001-12-18 Chris Risley Domain name system lookup allowing intelligent correction of searches and presentation of auxiliary information
US6636894B1 (en) 1998-12-08 2003-10-21 Nomadix, Inc. Systems and methods for redirecting users having transparent computer access to a network using a gateway device having redirection capability
US6389462B1 (en) 1998-12-16 2002-05-14 Lucent Technologies Inc. Method and apparatus for transparently directing requests for web objects to proxy caches
US6516327B1 (en) 1998-12-24 2003-02-04 International Business Machines Corporation System and method for synchronizing data in multiple databases
JP2000196677A (en) 1998-12-28 2000-07-14 Fujitsu Ltd Repeater used for network system
US6718390B1 (en) 1999-01-05 2004-04-06 Cisco Technology, Inc. Selectively forced redirection of network traffic
US6292743B1 (en) 1999-01-06 2001-09-18 Infogation Corporation Mobile navigation system
JP2000200886A (en) 1999-01-07 2000-07-18 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
US7030730B1 (en) 1999-01-15 2006-04-18 International Business Machines Corporation System and method for formatting an electronic message
US6324526B1 (en) 1999-01-15 2001-11-27 D'agostino John System and method for performing secure credit card purchases
GB2345987B (en) 1999-01-19 2003-08-06 Advanced Risc Mach Ltd Memory control within data processing systems
CN1262481A (en) 1999-01-27 2000-08-09 电话通有限公司 Method and device for synchronizing multiple data base
JP2000232680A (en) 1999-02-09 2000-08-22 Nec Corp Mobile communication terminal, communication network and user authentication method
JP2002537620A (en) 1999-02-11 2002-11-05 スマートアイエヌティー カンパニー リミティッド Simplified information and detailed information exchange system between users and information communication terminal suitable for the system
US6247135B1 (en) 1999-03-03 2001-06-12 Starfish Software, Inc. Synchronization process negotiation for computing devices
US20050210101A1 (en) 1999-03-04 2005-09-22 Universal Electronics Inc. System and method for providing content, management, and interactivity for client devices
DE60027499T2 (en) 1999-03-05 2006-11-16 Hitachi, Ltd. Information presentation system for mobile units
US6434627B1 (en) 1999-03-15 2002-08-13 Cisco Technology, Inc. IP network for accomodating mobile users with incompatible network addressing
US6081900A (en) 1999-03-16 2000-06-27 Novell, Inc. Secure intranet access
US6173310B1 (en) 1999-03-23 2001-01-09 Microstrategy, Inc. System and method for automatic transmission of on-line analytical processing system report output
US6434621B1 (en) 1999-03-31 2002-08-13 Hannaway & Associates Apparatus and method of using the same for internet and intranet broadcast channel creation and management
US6591306B1 (en) 1999-04-01 2003-07-08 Nec Corporation IP network access for portable devices
US6542933B1 (en) 1999-04-05 2003-04-01 Neomedia Technologies, Inc. System and method of using machine-readable or human-readable linkage codes for accessing networked data resources
US6457062B1 (en) 1999-04-08 2002-09-24 Palm, Inc. System and method for synchronizing multiple calendars over wide area network
US6816481B1 (en) 1999-04-09 2004-11-09 Sbc Technology Resources, Inc. Internet caller identification system and method
US7023868B2 (en) 1999-04-13 2006-04-04 Broadcom Corporation Voice gateway with downstream voice synchronization
US6757698B2 (en) 1999-04-14 2004-06-29 Iomega Corporation Method and apparatus for automatically synchronizing data from a host computer to two or more backup data storage locations
US6349336B1 (en) 1999-04-26 2002-02-19 Hewlett-Packard Company Agent/proxy connection control across a firewall
US20010056473A1 (en) 1999-04-26 2001-12-27 Kenneth Arneson Information retrieval system and method
WO2000066975A1 (en) 1999-04-28 2000-11-09 Equos Research Co., Ltd. Route guide system
JP3308930B2 (en) 1999-04-28 2002-07-29 埼玉日本電気株式会社 Transfer device for transferring supplementary services to mobile phones
US6654746B1 (en) 1999-05-03 2003-11-25 Symantec Corporation Methods and apparatuses for single-connection file synchronization workgroup file update
US20030069874A1 (en) 1999-05-05 2003-04-10 Eyal Hertzog Method and system to automate the updating of personal information within a personal information management application and to synchronize such updated personal information management applications
US7315826B1 (en) 1999-05-27 2008-01-01 Accenture, Llp Comparatively analyzing vendors of components required for a web-based architecture
US6473621B1 (en) 1999-05-28 2002-10-29 Nokia Inc. Method and apparatus for entering shortcut messages
US6539494B1 (en) 1999-06-17 2003-03-25 Art Technology Group, Inc. Internet server session backup apparatus
US6597700B2 (en) 1999-06-30 2003-07-22 Nortel Networks Limited System, device, and method for address management in a distributed communication environment
US7356559B1 (en) 1999-07-01 2008-04-08 Affinity Internet, Inc. Integrated platform for developing and maintaining a distributed multiapplication online presence
US6507891B1 (en) 1999-07-22 2003-01-14 International Business Machines Corporation Method and apparatus for managing internal caches and external caches in a data processing system
US6317755B1 (en) 1999-07-26 2001-11-13 Motorola, Inc. Method and apparatus for data backup and restoration in a portable data device
US6567857B1 (en) 1999-07-29 2003-05-20 Sun Microsystems, Inc. Method and apparatus for dynamic proxy insertion in network traffic flow
US6781575B1 (en) 2000-09-21 2004-08-24 Handspring, Inc. Method and apparatus for organizing addressing elements
US6523063B1 (en) 1999-08-30 2003-02-18 Zaplet, Inc. Method system and program product for accessing a file using values from a redirect message string for each change of the link identifier
US6662212B1 (en) 1999-08-31 2003-12-09 Qualcomm Incorporated Synchronization of a virtual workspace using E-mail extensions
US6628194B1 (en) 1999-08-31 2003-09-30 At&T Wireless Services, Inc. Filtered in-box for voice mail, e-mail, pages, web-based information, and faxes
US7289964B1 (en) 1999-08-31 2007-10-30 Accenture Llp System and method for transaction services patterns in a netcentric environment
US6255989B1 (en) 1999-09-04 2001-07-03 Edward Munson Method and system for addressing locations based upon latitude and longitude positions
GB2371902B (en) 1999-09-10 2004-11-17 Avantgo Inc System, method, and computer program product for interactive interfacing with mobile devices
US6810411B1 (en) 1999-09-13 2004-10-26 Intel Corporation Method and system for selecting a host in a communications network
US7293074B1 (en) 1999-09-20 2007-11-06 Fusionone, Inc. Performing server actions using template with field that can be completed without obtaining information from a user
US6360252B1 (en) 1999-09-20 2002-03-19 Fusionone, Inc. Managing the transfer of e-mail attachments to rendering devices other than an original e-mail recipient
EP1087575A1 (en) 1999-09-24 2001-03-28 BRITISH TELECOMMUNICATIONS public limited company Packet network interfacing
US6601143B1 (en) 1999-09-25 2003-07-29 International Business Machines Corporation Self-adapting cache management method and system
US6505214B1 (en) 1999-09-28 2003-01-07 Microsoft Corporation Selective information synchronization based on implicit user designation
JP3725376B2 (en) 1999-09-29 2005-12-07 株式会社東芝 DNS inquiry apparatus, DNS inquiry method, and recording medium
US6519452B1 (en) 1999-10-01 2003-02-11 Nortel Networks Limited Method and system for optimizing wireless communication system performance
US6505216B1 (en) 1999-10-01 2003-01-07 Emc Corporation Methods and apparatus for backing-up and restoring files using multiple trails
US6496944B1 (en) 1999-10-06 2002-12-17 International Business Machines Corporation Method for database assisted file system restore
US7039656B1 (en) 1999-10-20 2006-05-02 Yodlee.Com, Inc. Method and apparatus for synchronizing data records between a remote device and a data server over a data-packet-network
CA2625283C (en) 1999-10-27 2012-12-18 Roy-G-Biv Corporation Systems and methods for generating and communicating motion data through a distributed network
US6589290B1 (en) 1999-10-29 2003-07-08 America Online, Inc. Method and apparatus for populating a form with data
KR100636111B1 (en) 1999-10-30 2006-10-18 삼성전자주식회사 Method protecting data stored in lost mobile terminal and recording medium therefor
KR20010045359A (en) 1999-11-04 2001-06-05 조영선 A Mobile telecommunication system with the remote managing function of file and data
US6714987B1 (en) 1999-11-05 2004-03-30 Nortel Networks Limited Architecture for an IP centric distributed network
US6954783B1 (en) 1999-11-12 2005-10-11 Bmc Software, Inc. System and method of mediating a web page
US6870921B1 (en) 1999-11-12 2005-03-22 Metro One Telecommunications, Inc. Enhanced directory assistance service providing individual or group directories
US6484143B1 (en) 1999-11-22 2002-11-19 Speedera Networks, Inc. User device and system for traffic management and content distribution over a world wide area network
US7249175B1 (en) 1999-11-23 2007-07-24 Escom Corporation Method and system for blocking e-mail having a nonexistent sender address
TW452733B (en) 1999-11-26 2001-09-01 Inventec Corp Method for preventing BIOS from viruses infection
US6647399B2 (en) 1999-11-29 2003-11-11 International Business Machines Corporation Method, system, program, and data structures for naming full backup versions of files and related deltas of the full backup versions
US9191443B2 (en) 1999-12-02 2015-11-17 Western Digital Technologies, Inc. Managed peer-to-peer applications, systems and methods for distributed data access and storage
US20020049852A1 (en) 1999-12-06 2002-04-25 Yen-Jen Lee Global messaging with distributed adaptive streaming control
US7054952B1 (en) 1999-12-09 2006-05-30 International Business Machines Corp. Electronic document delivery system employing distributed document object model (DOM) based transcoding and providing interactive javascript support
US6732264B1 (en) 1999-12-14 2004-05-04 Intel Corporation Multi-tasking boot firmware
FR2803153B1 (en) 1999-12-23 2002-03-15 Cit Alcatel METHOD FOR OBTAINING CALLER IDENTITY IN A TERMINAL OF A TELEPHONE COMMUNICATION NETWORK
US6728530B1 (en) 1999-12-28 2004-04-27 Nokia Corporation Calendar-display apparatus, and associated method, for a mobile terminal
US6564336B1 (en) 1999-12-29 2003-05-13 General Electric Company Fault tolerant database for picture archiving and communication systems
US6584454B1 (en) 1999-12-31 2003-06-24 Ge Medical Technology Services, Inc. Method and apparatus for community management in remote system servicing
JP4261800B2 (en) 2000-01-10 2009-04-30 アイアン マウンテン インコーポレイテッド Management method of differential backup system in client server environment
US6904449B1 (en) 2000-01-14 2005-06-07 Accenture Llp System and method for an application provider framework
US6671757B1 (en) 2000-01-26 2003-12-30 Fusionone, Inc. Data transfer and synchronization system
US7505762B2 (en) 2004-02-27 2009-03-17 Fusionone, Inc. Wireless telephone data backup system
US6694336B1 (en) 2000-01-25 2004-02-17 Fusionone, Inc. Data transfer and synchronization system
US8156074B1 (en) * 2000-01-26 2012-04-10 Synchronoss Technologies, Inc. Data transfer and synchronization system
US7035878B1 (en) 2000-01-25 2006-04-25 Fusionone, Inc. Base rolling engine for data transfer and synchronization system
US7096418B1 (en) 2000-02-02 2006-08-22 Persistence Software, Inc. Dynamic web page cache
WO2001059977A2 (en) 2000-02-08 2001-08-16 Personal Electronic Devices, Inc. Intelligent data network
US6643707B1 (en) 2000-02-14 2003-11-04 General Instrument Corporation Method and apparatus for defining, managing and distributing broadcast names
US20030037020A1 (en) 2000-02-22 2003-02-20 Lars Novak Method and apparatus for synchronizing databases of portable devices without change logs
US20020116444A1 (en) 2000-02-29 2002-08-22 Imran Chaudhri Method and system for providing intelligent network content delivery
TW550477B (en) 2000-03-01 2003-09-01 Passgate Corp Method, system and computer readable medium for Web site account and e-commerce management from a central location
US6799214B1 (en) 2000-03-03 2004-09-28 Nec Corporation System and method for efficient content delivery using redirection pages received from the content provider original site and the mirror sites
US20020002599A1 (en) 2000-03-08 2002-01-03 Marbles, Inc. Real-time global positioning system application in two-way mobile wireless networks
EP1143338B1 (en) 2000-03-10 2004-05-19 Alcatel Method and apparatus for backing up data
US6671724B1 (en) 2000-03-21 2003-12-30 Centrisoft Corporation Software, systems and methods for managing a distributed network
US6609005B1 (en) 2000-03-28 2003-08-19 Leap Wireless International, Inc. System and method for displaying the location of a wireless communications device wiring a universal resource locator
JP3404353B2 (en) 2000-03-31 2003-05-06 真二 青山 Data backup method for portable telephone, portable telephone and data backup device for portable telephone
US6781972B1 (en) 2000-03-31 2004-08-24 Lucent Technologies Inc. Method and system for subscriber-configurable communications service
JP2001285451A (en) 2000-03-31 2001-10-12 Shinji Aoyama Method and device for data backup in portable telephone set
US6665721B1 (en) 2000-04-06 2003-12-16 International Business Machines Corporation Enabling a home network reverse web server proxy
US6701316B1 (en) 2000-04-07 2004-03-02 Nec Corporation Method and apparatus for intelligent network bandwidth and system resource utilization for web content fetch and refresh
JP2001357010A (en) 2000-04-10 2001-12-26 Mitsubishi Corp Method for entrusting and managing file in web server on internet and a file entrusting and managing device to be used for the same
US6363249B1 (en) 2000-04-10 2002-03-26 Motorola, Inc. Dynamically configurable datagram message communication system
GB2366050A (en) 2000-04-11 2002-02-27 Hewlett Packard Co Aggregation of log data from different operating systems into a central data log
EP1285519A4 (en) 2000-04-13 2009-07-29 S F Ip Properties 30 Llc Communications prioritizer
KR20010096814A (en) 2000-04-14 2001-11-08 홍기융 Digital Signature Certificate Based Security Kernel Method for File System Protection
US7363233B1 (en) 2000-04-17 2008-04-22 Levine Richard C System and method of network addressing and translation in a transportation system
WO2001084433A1 (en) 2000-05-01 2001-11-08 Mobliss, Inc. System for conducting electronic surveys
US7663652B1 (en) 2000-05-03 2010-02-16 Morris Reese Enhanced electronic mail delivery system
US20020016818A1 (en) 2000-05-11 2002-02-07 Shekhar Kirani System and methodology for optimizing delivery of email attachments for disparate devices
US6812961B1 (en) 2000-05-11 2004-11-02 Eastman Kodak Company System and camera for automatically forwarding digital images to a service provider
US6353448B1 (en) 2000-05-16 2002-03-05 Ez Online Network, Inc. Graphic user interface display method
US6944651B2 (en) 2000-05-19 2005-09-13 Fusionone, Inc. Single click synchronization of data from a public information store to a private information store
US8463912B2 (en) 2000-05-23 2013-06-11 Media Farm, Inc. Remote displays in mobile communication networks
US7082476B1 (en) 2000-05-24 2006-07-25 Cisco Technology, Inc. System and method of optimizing retrieval of network resources by identifying and substituting embedded symbolic host name references with network addresses in accordance with substitution policies
US6904460B1 (en) 2000-06-01 2005-06-07 Aerocast.Com, Inc. Reverse content harvester
US20010051920A1 (en) 2000-06-07 2001-12-13 Joao Raymond Anthony Financial transaction and/or wireless communication device authorization, notification and/or security apparatus and method
JP2001359176A (en) 2000-06-13 2001-12-26 Sanyo Electric Co Ltd Remotely controllable information processor
US6732101B1 (en) 2000-06-15 2004-05-04 Zix Corporation Secure message forwarding system detecting user's preferences including security preferences
US6868451B1 (en) 2000-06-20 2005-03-15 Palm Source, Inc. Data exchange between a handheld device and another computer system using an exchange manager via synchronization
US6829654B1 (en) 2000-06-23 2004-12-07 Cloudshield Technologies, Inc. Apparatus and method for virtual edge placement of web sites
US7003555B1 (en) 2000-06-23 2006-02-21 Cloudshield Technologies, Inc. Apparatus and method for domain name resolution
US7099915B1 (en) 2000-06-30 2006-08-29 Cisco Technology, Inc. Server load balancing method and system
US6327533B1 (en) 2000-06-30 2001-12-04 Geospatial Technologies, Inc. Method and apparatus for continuously locating an object
CA2414359C (en) 2000-07-03 2011-04-19 Imax Corporation Equipment and techniques for providing invisible seaming of multiple projection displays
JP2002027544A (en) 2000-07-04 2002-01-25 Fujitsu Ltd Data storing system
US6591266B1 (en) 2000-07-14 2003-07-08 Nec Corporation System and method for intelligent caching and refresh of dynamically generated and static web content
US6892225B1 (en) 2000-07-19 2005-05-10 Fusionone, Inc. Agent system for a secure remote access system
US6920488B1 (en) 2000-07-28 2005-07-19 International Business Machines Corporation Server assisted system for accessing web pages from a personal data assistant
US20020059116A1 (en) 2000-07-31 2002-05-16 Bulatovic Marija V. Method and system for selectively displaying advertisements on a display device
US7853664B1 (en) 2000-07-31 2010-12-14 Landmark Digital Services Llc Method and system for purchasing pre-recorded music
US7519702B1 (en) 2000-08-10 2009-04-14 International Business Machines Corporation Method and apparatus for measuring web site performance
US6959331B1 (en) 2000-08-14 2005-10-25 Sun Microsystems, Inc. System and method for operating a client network computer in a disconnected mode by establishing a connection to a fallover server implemented on the client network computer
US6996631B1 (en) 2000-08-17 2006-02-07 International Business Machines Corporation System having a single IP address associated with communication protocol stacks in a cluster of processing systems
US6925476B1 (en) 2000-08-17 2005-08-02 Fusionone, Inc. Updating application data including adding first change log to aggreagate change log comprising summary of changes
US6996617B1 (en) 2000-08-17 2006-02-07 International Business Machines Corporation Methods, systems and computer program products for non-disruptively transferring a virtual internet protocol address between communication protocol stacks
US6842770B1 (en) 2000-08-18 2005-01-11 Apple Computer, Inc. Method and system for seamlessly accessing remotely stored files
US6718348B1 (en) 2000-08-25 2004-04-06 Telefonaktiebolaget Lm Ericsson (Publ) Non-time dependent synchronization of databases
US6836765B1 (en) 2000-08-30 2004-12-28 Lester Sussman System and method for secure and address verifiable electronic commerce transactions
WO2002021413A2 (en) 2000-09-05 2002-03-14 Zaplet, Inc. Methods and apparatus providing electronic messages that are linked and aggregated
AU2001290874A1 (en) 2000-09-15 2002-03-26 Mobliss, Inc. System for conducting user-specific promotional campaigns using multiple communications device platforms
US7010578B1 (en) 2000-09-21 2006-03-07 Akamai Technologies, Inc. Internet content delivery service with third party cache interface support
US6892245B1 (en) 2000-09-22 2005-05-10 Nortel Networks Limited Management information base for a multi-domain network address translator
US7085817B1 (en) 2000-09-26 2006-08-01 Juniper Networks, Inc. Method and system for modifying requests for remote resources
US7454500B1 (en) 2000-09-26 2008-11-18 Foundry Networks, Inc. Global server load balancing
US7716374B2 (en) 2000-10-16 2010-05-11 Telecommunication Systems, Inc. Run-time engine implemented on a computing device allowing synchronization of records during application execution
US6813487B1 (en) 2000-10-18 2004-11-02 David Alan Trommelen Method and apparatus for securing data stored in a remote electronic device
JP2002142254A (en) 2000-10-30 2002-05-17 Nec Corp Emergency report system and method using mobile communication terminal device
WO2002037749A1 (en) 2000-11-03 2002-05-10 Fusionone, Inc. Secure authentication of users via intermediate parties
US20020083325A1 (en) 2000-11-03 2002-06-27 Bharat Mediratta Updating security schemes for remote client access
US6795848B1 (en) 2000-11-08 2004-09-21 Hughes Electronics Corporation System and method of reading ahead of objects for delivery to an HTTP proxy server
US7237027B1 (en) 2000-11-10 2007-06-26 Agami Systems, Inc. Scalable storage system
US20020073212A1 (en) 2000-11-13 2002-06-13 Sokol Daniel D. Wireless web browsing terminal and hub
US6850944B1 (en) 2000-11-20 2005-02-01 The University Of Alabama System, method, and computer program product for managing access to and navigation through large-scale information spaces
JP3709338B2 (en) 2000-11-22 2005-10-26 日本電気株式会社 Mobile phone user setting information management method and user setting information management system
US20020067816A1 (en) 2000-12-01 2002-06-06 Bushnell William Jackson System and method for delivering profile information relating to a caller
AU2001223622A1 (en) 2000-12-04 2002-06-18 Nokia Corporation Communication system and method for establishing a connection to a serving network element
US20020069178A1 (en) 2000-12-06 2002-06-06 Hoffman Jeremy P. Secure server system and method
JP2002185575A (en) 2000-12-11 2002-06-28 Matsushita Electric Ind Co Ltd Communication terminal device, terminal communication method, communication program and recording medium therefor, and communication system
US20020078075A1 (en) 2000-12-15 2002-06-20 Colson James C. System, method, and program product for prioritizing synchronizable data
US20020082995A1 (en) 2000-12-27 2002-06-27 Christie, Samuel H. Payment authorization system
US6804690B1 (en) 2000-12-27 2004-10-12 Emc Corporation Method for physical backup in data logical order
US7299007B2 (en) 2001-02-01 2007-11-20 Ack Venture Holdings, Llc Mobile computing and communication
US7363372B2 (en) 2001-02-06 2008-04-22 Mtvn Online Partners I Llc System and method for managing content delivered to a user over a network
JP2002247144A (en) 2001-02-15 2002-08-30 Matsushita Electric Ind Co Ltd Portable telephone system and its call receiving method
US20020120600A1 (en) 2001-02-26 2002-08-29 Schiavone Vincent J. System and method for rule-based processing of electronic mail messages
AU2002238720B2 (en) 2001-03-07 2005-01-27 Matchtip Limited Data Storage System
US7110954B2 (en) 2001-03-12 2006-09-19 University Of Hong Kong Wireless purchase and on-line inventory apparatus and method for vending machines
US7499888B1 (en) 2001-03-16 2009-03-03 Fusionone, Inc. Transaction authentication system and method
US20020138769A1 (en) 2001-03-23 2002-09-26 Fishman Jayme Matthew System and process for conducting authenticated transactions online
GB0107642D0 (en) 2001-03-27 2001-05-16 Nokia Mobile Phones Ltd Communication terminal handling user-to-user information received during a call
JP3567143B2 (en) 2001-04-09 2004-09-22 ソフト流通株式会社 Incoming image distribution system and method
US6842695B1 (en) 2001-04-17 2005-01-11 Fusionone, Inc. Mapping and addressing system for a secure remote access system
US20040132428A1 (en) 2001-04-19 2004-07-08 Michael Mulligan Method and system for privacy preferences management using a synchronisation protocol
US7024698B2 (en) 2001-04-27 2006-04-04 Matsushita Electric Industrial Co., Ltd. Portable information processing device having data evacuation function and method thereof
US6684206B2 (en) 2001-05-18 2004-01-27 Hewlett-Packard Development Company, L.P. OLAP-based web access analysis method and system
US6744868B2 (en) 2001-05-31 2004-06-01 Alcatel Call party profile presentation service in a multimedia-capable network
US7320011B2 (en) 2001-06-15 2008-01-15 Nokia Corporation Selecting data for synchronization and for software configuration
FI114417B (en) 2001-06-15 2004-10-15 Nokia Corp Select data for synchronization
US6745040B2 (en) 2001-06-25 2004-06-01 Koninklijke Philips Electronics N.V. Method and system for processing incoming calls on a communication unit
US20040093342A1 (en) 2001-06-27 2004-05-13 Ronald Arbo Universal data mapping system
FI113144B (en) 2001-07-12 2004-02-27 Nokia Corp Providing a packet data service in a wireless communication system
EP1410667A1 (en) 2001-07-18 2004-04-21 Wizard Mobile Solutions Limited Data security device
AU2002355530A1 (en) 2001-08-03 2003-02-24 John Allen Ananian Personalized interactive digital catalog profiling
US7146161B2 (en) 2001-08-27 2006-12-05 Cheng-Hao Chou Subscriber identity module card backup system
US7447743B1 (en) 2001-08-31 2008-11-04 At&T Intellectual Property I, L.P. Methods and systems for attachment processing in association with electronic messages
US20030061163A1 (en) 2001-09-27 2003-03-27 Durfield Richard C. Method and apparatus for verification/authorization by credit or debit card owner of use of card concurrently with merchant transaction
US20030065934A1 (en) 2001-09-28 2003-04-03 Angelo Michael F. After the fact protection of data in remote personal and wireless devices
US7761535B2 (en) 2001-09-28 2010-07-20 Siebel Systems, Inc. Method and system for server synchronization with a computing device
GB0128243D0 (en) 2001-11-26 2002-01-16 Cognima Ltd Cognima patent
KR20030049105A (en) 2001-12-14 2003-06-25 에스케이텔레텍주식회사 Method for storing backup data on the network and cellular-phone implementing the same
FR2834104B1 (en) 2001-12-20 2004-10-15 France Telecom METHOD FOR TRANSMITTING OBJECTS BETWEEN A SERVER AND A CLIENT TERMINAL IMPLEMENTING CACHE MANAGEMENT, CORRESPONDING TRANSMISSION SYSTEM, SERVER AND TERMINAL
US7752135B2 (en) 2002-01-16 2010-07-06 International Business Machines Corporation Credit authorization system and method
US6757533B2 (en) 2002-01-23 2004-06-29 Nokia Corporation Rich calling line handling in call setup signalling
JP2003259011A (en) 2002-02-27 2003-09-12 Ntt Docomo Inc Radio communication system, radio communication method, information managing apparatus, information managing method, radio communication terminal, radio communication terminal control method, and program
WO2003083716A1 (en) 2002-03-28 2003-10-09 Nokia Corporation Enhanced storing of personal content
US7233791B2 (en) 2002-04-02 2007-06-19 X-Cyte, Inc. Cell phone feature for downloading information via a telecommunications network
US9715500B2 (en) 2004-04-27 2017-07-25 Apple Inc. Method and system for sharing playlists
US7376701B2 (en) 2002-04-29 2008-05-20 Cisco Technology, Inc. System and methodology for control of, and access and response to internet email from a wireless device
US7376702B2 (en) 2002-05-02 2008-05-20 Danger, Inc. System and method for processing message attachments
JP4200686B2 (en) 2002-05-08 2008-12-24 ソニー株式会社 Information communication terminal, information distribution apparatus, information distribution system, information reception method, information distribution method
US7162494B2 (en) 2002-05-29 2007-01-09 Sbc Technology Resources, Inc. Method and system for distributed user profiling
US7522910B2 (en) 2002-05-31 2009-04-21 Oracle International Corporation Method and apparatus for controlling data provided to a mobile device
US20030229898A1 (en) 2002-06-05 2003-12-11 Babu Suresh P. Multiple on-demand media vendor integration
US20040204120A1 (en) 2002-07-19 2004-10-14 Lavon Jiles Portable telephone
US7162237B1 (en) 2002-07-26 2007-01-09 Bellsouth Intellectual Property Corporation System for automatic selection of profile based on location
US7539697B1 (en) 2002-08-08 2009-05-26 Spoke Software Creation and maintenance of social relationship network graphs
EP1537491A1 (en) 2002-09-11 2005-06-08 Nokia Corporation Method, device and system for automated synchronization between terminals
JP2004112119A (en) 2002-09-13 2004-04-08 Nec Corp Sharing system of telephone directory information in portable telephone
US6836657B2 (en) 2002-11-12 2004-12-28 Innopath Software, Inc. Upgrading of electronic files including automatic recovery from failures and errors occurring during the upgrade
US20050204001A1 (en) 2002-09-30 2005-09-15 Tzvi Stein Method and devices for prioritizing electronic messages
US7107349B2 (en) 2002-09-30 2006-09-12 Danger, Inc. System and method for disabling and providing a notification for a data processing device
US7734028B2 (en) 2002-09-30 2010-06-08 Avaya Inc. Method and apparatus for delivering enhanced caller identification services to a called party
US7269433B2 (en) 2002-11-05 2007-09-11 Microsoft Corporation Scheduling of synchronization operation on a mobile device based on predetermined subset of user actions
US7440746B1 (en) 2003-02-21 2008-10-21 Swan Joseph G Apparatuses for requesting, retrieving and storing contact records
US20040093317A1 (en) 2002-11-07 2004-05-13 Swan Joseph G. Automated contact information sharing
JP2004164037A (en) 2002-11-08 2004-06-10 Nec Corp Backup system and method for memory information of cellular telephone
US7870279B2 (en) 2002-12-09 2011-01-11 Hrl Laboratories, Llc Method and apparatus for scanning, personalizing, and casting multimedia data streams via a communication network and television
US7215750B2 (en) 2002-12-18 2007-05-08 Bellsouth Intellectual Property Corporation System and method for providing custom caller-ID messages
US8538895B2 (en) 2004-03-15 2013-09-17 Aol Inc. Sharing social network information
US8666524B2 (en) 2003-01-02 2014-03-04 Catch Media, Inc. Portable music player and transmitter
US7725582B2 (en) 2003-01-10 2010-05-25 At & T Intellectual Property I, L.P. Network based proxy control of content
US20060035647A1 (en) * 2003-01-30 2006-02-16 Intrado Apparatus and method for displaying caller ID with location information
WO2004071051A2 (en) 2003-02-04 2004-08-19 Reliance Infocomm Limited Mobile telephony application platform
US20040162830A1 (en) 2003-02-18 2004-08-19 Sanika Shirwadkar Method and system for searching location based information on a mobile device
US20040193953A1 (en) 2003-02-21 2004-09-30 Sun Microsystems, Inc. Method, system, and program for maintaining application program configuration settings
JP2004274310A (en) 2003-03-07 2004-09-30 Sony Ericsson Mobilecommunications Japan Inc Mobile terminal device
JP2004318828A (en) 2003-03-31 2004-11-11 Seiko Epson Corp Data backup system, data backup method, wearable computer, mail transmission system, image information transmission system and data backup program
US7383061B1 (en) 2003-04-02 2008-06-03 Palm, Inc. Peripheral device for a wireless communication device
CN1266981C (en) 2003-04-21 2006-07-26 大唐微电子技术有限公司 Back-up system and method for mobile terminal data network
JP3873989B2 (en) 2003-06-09 2007-01-31 ソニー株式会社 Content data transfer system and content data transfer method
US6839022B1 (en) 2003-06-23 2005-01-04 Lucent Technologies Inc. Network support for subscriber access to mobile caller location information
WO2005010715A2 (en) 2003-07-21 2005-02-03 Fusionone, Inc. Device message management system
US6973299B2 (en) 2003-08-01 2005-12-06 Microsoft Corporation Unified contact list
US9344850B2 (en) 2003-08-08 2016-05-17 Telecommunication Systems, Inc. Method and system for collecting, synchronizing, and reporting telecommunication call events
US8745222B2 (en) 2003-08-15 2014-06-03 Blackboard Inc. Content system and associated methods
US7590837B2 (en) 2003-08-23 2009-09-15 Softex Incorporated Electronic device security and tracking system and method
WO2005026952A2 (en) 2003-09-17 2005-03-24 Research In Motion Limited System and method for management of mutating applications
US20050064859A1 (en) 2003-09-23 2005-03-24 Motorola, Inc. Server-based system for backing up memory of a wireless subscriber device
KR20050039367A (en) 2003-10-24 2005-04-29 주식회사 팬택앤큐리텔 Method of registering automatically address information of the mobile communication terminal
US20050096975A1 (en) 2003-11-05 2005-05-05 Eliahu Moshe Method and system for interactive advertisement
US7080104B2 (en) 2003-11-07 2006-07-18 Plaxo, Inc. Synchronization and merge engines
US7634509B2 (en) 2003-11-07 2009-12-15 Fusionone, Inc. Personal information space management system and method
US7343568B2 (en) 2003-11-10 2008-03-11 Yahoo! Inc. Navigation pattern on a directory tree
CA2452251C (en) 2003-12-04 2010-02-09 Timothy R. Jewell Data backup system and method
US7113981B2 (en) 2003-12-29 2006-09-26 Mixxer, Inc. Cellular telephone download locker
US7349719B2 (en) 2004-03-02 2008-03-25 Spartak Buniatyan Portable universal data storage device
US7707150B2 (en) 2004-03-05 2010-04-27 Intel Corporation Automatic exchange of information in an ad-hoc computing environment
US7221902B2 (en) 2004-04-07 2007-05-22 Nokia Corporation Mobile station and interface adapted for feature extraction from an input media sample
WO2005103929A1 (en) 2004-04-20 2005-11-03 Pluck Corporation Method, system, and computer program product for sharing information within a global computer network
ATE541423T1 (en) * 2004-04-30 2012-01-15 Research In Motion Ltd SYSTEM AND METHOD FOR PERFORMING RECOVERY OPERATIONS ON MOBILE DEVICES
EP1759521B1 (en) 2004-05-12 2016-06-29 Synchronoss Technologies, Inc. Advanced contact identification system
JP4213628B2 (en) 2004-05-28 2009-01-21 株式会社東芝 Information terminal equipment
US7587398B1 (en) 2004-06-30 2009-09-08 Google Inc. System and method of accessing a document efficiently through multi-tier web caching
US8090776B2 (en) 2004-11-01 2012-01-03 Microsoft Corporation Dynamic content change notification
US7317907B2 (en) 2005-01-31 2008-01-08 Research In Motion Limited Synchronizing server and device data using device data schema
US7587596B2 (en) 2005-02-24 2009-09-08 International Business Machines Corporation Method and apparatus for updating information stored in multiple information handling systems
US8160220B2 (en) 2005-03-23 2012-04-17 Alcatel Lucent Request to block use of remotely selected ring tone
EP1889169A4 (en) * 2005-05-19 2011-12-28 Fusionone Inc Mobile device address book builder
KR20080017313A (en) * 2005-05-19 2008-02-26 퓨전원 인코포레이티드 Remote cell phone auto destruct
US7889715B2 (en) 2005-08-31 2011-02-15 Microsoft Corporation Voice over internet protocol (VoIP) management
US20080009268A1 (en) 2005-09-14 2008-01-10 Jorey Ramer Authorized mobile content search results
US7752209B2 (en) * 2005-09-14 2010-07-06 Jumptap, Inc. Presenting sponsored content on a mobile communication facility
US7548915B2 (en) 2005-09-14 2009-06-16 Jorey Ramer Contextual mobile content placement on a mobile communication facility
US20070220419A1 (en) 2006-03-10 2007-09-20 Web.Com, Inc. Systems and Methods of Providing Web Content to Multiple Browser Device Types
US20080005282A1 (en) * 2006-07-03 2008-01-03 Dewey Gaedcke Method for displaying user generated content in a web browser
US20080059897A1 (en) * 2006-09-02 2008-03-06 Whattoread, Llc Method and system of social networking through a cloud
US20080064378A1 (en) 2006-09-11 2008-03-13 Ariel Yehoshua Kahan Media playing on another device
US8312108B2 (en) 2007-05-22 2012-11-13 Yahoo! Inc. Hot within my communities
GB2462563A (en) * 2007-06-28 2010-02-17 Taptu Ltd Sharing mobile search results
US8549417B2 (en) 2007-07-19 2013-10-01 Salesforce.Com, Inc. System, method and computer program product for editing an on-demand database service graphical user interface
US20090138546A1 (en) 2007-11-25 2009-05-28 Nazareno Brier Cruzada Device awareness; user profiling; profile storage, analysis and matching; and social interaction system for wireless mobile devices
US9372935B2 (en) 2008-06-30 2016-06-21 Verizon Patent And Licensing Inc. Content management and access systems and methods

Patent Citations (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5519606A (en) * 1992-01-21 1996-05-21 Starfish Software, Inc. System and methods for appointment reconciliation
US5778346A (en) * 1992-01-21 1998-07-07 Starfish Software, Inc. System and methods for appointment reconcilation
US5701423A (en) * 1992-04-10 1997-12-23 Puma Technology, Inc. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5392390A (en) * 1992-04-10 1995-02-21 Intellilink Corp. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5666553A (en) * 1992-04-10 1997-09-09 Puma Technology, Inc. Method for mapping, translating, and dynamically reconciling data between disparate computer platforms
US5742792A (en) * 1993-04-23 1998-04-21 Emc Corporation Remote data mirroring
US5710922A (en) * 1993-06-02 1998-01-20 Apple Computer, Inc. Method for synchronizing and archiving information between computer systems
US5771354A (en) * 1993-11-04 1998-06-23 Crawford; Christopher M. Internet online backup system provides remote storage for customers using IDs and passwords which were interactively established when signing up for backup services
US5574906A (en) * 1994-10-24 1996-11-12 International Business Machines Corporation System and method for reducing storage requirement in backup subsystems utilizing segmented compression and differencing
US5684990A (en) * 1995-01-11 1997-11-04 Puma Technology, Inc. Synchronization of disparate databases
US5682524A (en) * 1995-05-26 1997-10-28 Starfish Software, Inc. Databank system with methods for efficiently storing non-uniform data records
US5809497A (en) * 1995-05-26 1998-09-15 Starfish Software, Inc. Databank system with methods for efficiently storing non uniforms data records
US6182117B1 (en) * 1995-05-31 2001-01-30 Netscape Communications Corporation Method and apparatus for workgroup information replication
US5628005A (en) * 1995-06-07 1997-05-06 Microsoft Corporation System and method for providing opportunistic file access in a network environment
US5630081A (en) * 1995-09-07 1997-05-13 Puma Technology, Inc. Connection resource manager displaying link-status information using a traffic light iconic representation
US6000000A (en) * 1995-10-13 1999-12-07 3Com Corporation Extendible method and apparatus for synchronizing multiple files on two different computer systems
US5884323A (en) * 1995-10-13 1999-03-16 3Com Corporation Extendible method and apparatus for synchronizing files on two different computer systems
US5727202A (en) * 1995-10-18 1998-03-10 Palm Computing, Inc. Method and apparatus for synchronizing information on two different computer systems
US5832489A (en) * 1995-10-18 1998-11-03 3 Com Corporation Method and apparatus for synchronizing information on two different computer systems
US5745906A (en) * 1995-11-14 1998-04-28 Deltatech Research, Inc. Method and apparatus for merging delta streams to reconstruct a computer file
US5893119A (en) * 1995-11-17 1999-04-06 Deltatech Research, Inc. Computer apparatus and method for merging system deltas
US5729743A (en) * 1995-11-17 1998-03-17 Deltatech Research, Inc. Computer apparatus and method for merging system deltas
US5768597A (en) * 1996-05-02 1998-06-16 Starfish Software, Inc. System and methods for improved installation of compressed software programs
US5787262A (en) * 1996-06-26 1998-07-28 Microsoft Corporation System and method for distributed conflict resolution between data objects replicated across a computer network
US5812793A (en) * 1996-06-26 1998-09-22 Microsoft Corporation System and method for asynchronous store and forward data replication
US5812773A (en) * 1996-07-12 1998-09-22 Microsoft Corporation System and method for the distribution of hierarchically structured data
US5787247A (en) * 1996-07-12 1998-07-28 Microsoft Corporation Replica administration without data loss in a store and forward replication enterprise
US6016478A (en) * 1996-08-13 2000-01-18 Starfish Software, Inc. Scheduling system with methods for peer-to-peer scheduling of remote users
US5943676A (en) * 1996-11-13 1999-08-24 Puma Technology, Inc. Synchronization of recurring records in incompatible databases
US6405218B1 (en) * 1996-11-13 2002-06-11 Pumatech, Inc. Synchronizing databases
US6141664A (en) * 1996-11-13 2000-10-31 Puma Technology, Inc. Synchronization of databases with date range
US6061790A (en) * 1996-11-20 2000-05-09 Starfish Software, Inc. Network computer system with remote user data encipher methodology
US6202085B1 (en) * 1996-12-06 2001-03-13 Microsoft Corportion System and method for incremental change synchronization between multiple copies of data
US6131116A (en) * 1996-12-13 2000-10-10 Visto Corporation System and method for globally accessing computer services
US6006274A (en) * 1997-01-30 1999-12-21 3Com Corporation Method and apparatus using a pass through personal computer connected to both a local communication link and a computer network for indentifying and synchronizing a preferred computer with a portable computer
US5968131A (en) * 1997-04-11 1999-10-19 Roampage, Inc. System and method for securely synchronizing multiple copies of a workspace element in a network
US5961590A (en) * 1997-04-11 1999-10-05 Roampage, Inc. System and method for synchronizing electronic mail between a client site and a central site
US6023708A (en) * 1997-05-29 2000-02-08 Visto Corporation System and method for using a global translator to synchronize workspace elements across a network
US6141011A (en) * 1997-08-04 2000-10-31 Starfish Software, Inc. User interface methodology supporting light data entry for microprocessor device having limited user input
US6044381A (en) * 1997-09-11 2000-03-28 Puma Technology, Inc. Using distributed history files in synchronizing databases
US6295541B1 (en) * 1997-12-16 2001-09-25 Starfish Software, Inc. System and methods for synchronizing two or more datasets
US6275831B1 (en) * 1997-12-16 2001-08-14 Starfish Software, Inc. Data processing environment with methods providing contemporaneous synchronization of two or more clients
US6023723A (en) * 1997-12-22 2000-02-08 Accepted Marketing, Inc. Method and system for filtering unwanted junk e-mail utilizing a plurality of filtering mechanisms
US6151606A (en) * 1998-01-16 2000-11-21 Visto Corporation System and method for using a workspace data manager to access, manipulate and synchronize network data
US6205448B1 (en) * 1998-01-30 2001-03-20 3Com Corporation Method and apparatus of synchronizing two computer systems supporting multiple synchronization techniques
US6012063A (en) * 1998-03-04 2000-01-04 Starfish Software, Inc. Block file system for minimal incremental data transfer between computing devices
US6226650B1 (en) * 1998-09-17 2001-05-01 Synchrologic, Inc. Database synchronization and organization system and method
US6131096A (en) * 1998-10-05 2000-10-10 Visto Corporation System and method for updating a remote database in a network
US6397307B2 (en) * 1999-02-23 2002-05-28 Legato Systems, Inc. Method and system for mirroring and archiving mass storage
US6401104B1 (en) * 1999-07-03 2002-06-04 Starfish Software, Inc. System and methods for synchronizing datasets using cooperation among multiple synchronization engines
US6694335B1 (en) * 1999-10-04 2004-02-17 Microsoft Corporation Method, computer readable medium, and system for monitoring the state of a collection of resources

Cited By (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8442943B2 (en) 2000-01-26 2013-05-14 Synchronoss Technologies, Inc. Data transfer and synchronization between mobile systems using change log
US8315976B2 (en) 2000-01-26 2012-11-20 Synchronoss Technologies, Inc. Data transfer and synchronization system
US7587446B1 (en) * 2000-11-10 2009-09-08 Fusionone, Inc. Acquisition and synchronization of digital media to a personal information space
US7774408B2 (en) 2001-04-23 2010-08-10 Foundationip, Llc Methods, systems, and emails to link emails to matters and organizations
US20020178229A1 (en) * 2001-04-23 2002-11-28 Pradeep Sinha Methods, systems, and emails to link emails to matters and organizations
US7653631B1 (en) * 2001-05-10 2010-01-26 Foundationip, Llc Method for synchronizing information in multiple case management systems
US20020184234A1 (en) * 2001-06-01 2002-12-05 Lundberg Steven W. Internet-based patent and trademark applicaton management system
US8811952B2 (en) 2002-01-08 2014-08-19 Seven Networks, Inc. Mobile device power management in data synchronization over a mobile network with or without a trigger notification
US10110534B2 (en) 2002-01-08 2018-10-23 Seven Networks, Llc Connection architecture for a mobile network
US10084739B2 (en) 2002-01-08 2018-09-25 Seven Networks, Llc Method and mobile device for sending emails with attachments
US20030167181A1 (en) * 2002-03-01 2003-09-04 Schwegman, Lundberg, Woessner & Kluth, P.A. Systems and methods for managing information disclosure statement (IDS) references
US20030225826A1 (en) * 2002-04-19 2003-12-04 Mckellar Brian Delta handling in server pages
US7444585B2 (en) * 2002-04-19 2008-10-28 Sap Aktiengesellschaft Delta handling in server pages
US7703015B2 (en) 2002-04-30 2010-04-20 Sap Aktiengesellschaft Delta-handling in server-pages
US7434163B2 (en) 2002-05-31 2008-10-07 Sap Aktiengesellschaft Document structures for delta handling in server pages
US20030226106A1 (en) * 2002-05-31 2003-12-04 Mckellar Brian Document structures for delta handling in server pages
US8103953B2 (en) 2002-05-31 2012-01-24 Sap Ag Document structures for delta handling in server pages
US7337239B2 (en) * 2002-11-19 2008-02-26 Microsoft Corporation Atomic message division
US20040103141A1 (en) * 2002-11-19 2004-05-27 Miller Quentin S. Atomic message division
US20040186916A1 (en) * 2003-03-03 2004-09-23 Bjorner Nikolaj S. Interval vector based knowledge synchronization for resource versioning
US7506007B2 (en) 2003-03-03 2009-03-17 Microsoft Corporation Interval vector based knowledge synchronization for resource versioning
US7660833B2 (en) 2003-07-10 2010-02-09 Microsoft Corporation Granular control over the authority of replicated information via fencing and unfencing
US9723460B1 (en) 2003-07-21 2017-08-01 Synchronoss Technologies, Inc. Device message management system
US9615221B1 (en) 2003-07-21 2017-04-04 Synchronoss Technologies, Inc. Device message management system
US8645471B2 (en) 2003-07-21 2014-02-04 Synchronoss Technologies, Inc. Device message management system
US8166101B2 (en) 2003-08-21 2012-04-24 Microsoft Corporation Systems and methods for the implementation of a synchronization schemas for units of information manageable by a hardware/software interface system
US20070088724A1 (en) * 2003-08-21 2007-04-19 Microsoft Corporation Systems and methods for extensions and inheritance for units of information manageable by a hardware/software interface system
US8046424B2 (en) 2003-08-21 2011-10-25 Microsoft Corporation Systems and methods for the utilization of metadata for synchronization optimization
US7529811B2 (en) 2003-08-21 2009-05-05 Microsoft Corporation Systems and methods for the implementation of a core schema for providing a top-level structure for organizing units of information manageable by a hardware/software interface system
US7917534B2 (en) 2003-08-21 2011-03-29 Microsoft Corporation Systems and methods for extensions and inheritance for units of information manageable by a hardware/software interface system
US20050050053A1 (en) * 2003-08-21 2005-03-03 Microsoft Corporation. Systems and methods for the implementation of a core schema for providing a top-level structure for organizing units of information manageable by a hardware/software interface system
US8238696B2 (en) 2003-08-21 2012-08-07 Microsoft Corporation Systems and methods for the implementation of a digital images schema for organizing units of information manageable by a hardware/software interface system
US8620286B2 (en) 2004-02-27 2013-12-31 Synchronoss Technologies, Inc. Method and system for promoting and transferring licensed content and applications
US7395446B2 (en) * 2004-05-03 2008-07-01 Microsoft Corporation Systems and methods for the implementation of a peer-to-peer rule-based pull autonomous synchronization system
US20050262371A1 (en) * 2004-05-03 2005-11-24 Microsoft Corporation Systems and methods for the implementation of a peer-to-peer rule-based pull autonomous synchronization system
US9542076B1 (en) 2004-05-12 2017-01-10 Synchronoss Technologies, Inc. System for and method of updating a personal profile
US7908302B1 (en) * 2004-09-17 2011-03-15 Symantec Operating Corporation In-place splitting and merging of files
US9298792B2 (en) * 2004-12-10 2016-03-29 Seven Networks, Llc Database synchronization
US20060149794A1 (en) * 2004-12-10 2006-07-06 Seven Networks International Oy Database synchronization
US20060184591A1 (en) * 2004-12-29 2006-08-17 Seven Networks International Oy Database synchronization via a mobile network
US10089376B2 (en) 2004-12-29 2018-10-02 Seven Networks, Llc Database synchronization via a mobile network
US8620858B2 (en) 2004-12-29 2013-12-31 Seven Networks International Oy Database synchronization via a mobile network
US10423291B2 (en) 2005-02-28 2019-09-24 At&T Intellectual Property I, L.P. Methods, systems, and products for calendaring applications
US9792589B2 (en) * 2005-03-31 2017-10-17 At&T Intellectual Property I, L.P. Methods, systems and products for synchronizing reminder acknowledgements in calendaring applications
US20110154207A1 (en) * 2005-03-31 2011-06-23 At&T Intellectual Property I, L.P. Methods, Systems, and Products for Calendaring Applications
US9769176B1 (en) 2005-04-21 2017-09-19 Seven Networks, Llc Multiple data store authentication
US10560459B2 (en) * 2005-04-21 2020-02-11 Seven Networks, Llc Multiple data store authentication
US9578027B1 (en) 2005-04-21 2017-02-21 Seven Networks, Llc Multiple data store authentication
US9444812B1 (en) 2005-04-21 2016-09-13 Seven Networks, Llc Systems and methods for authenticating a service
US10979435B1 (en) * 2005-04-21 2021-04-13 Seven Networks, Llc Multiple data store authentication
US20190068609A1 (en) * 2005-04-21 2019-02-28 Seven Networks, Llc Multiple data store authentication
US8839412B1 (en) * 2005-04-21 2014-09-16 Seven Networks, Inc. Flexible real-time inbox access
US9912671B1 (en) * 2005-04-21 2018-03-06 Seven Networks, Llc Multiple data store authentication
US11295360B1 (en) * 2005-04-21 2022-04-05 Seven Networks, Llc Multiple data store authentication
US7693888B2 (en) * 2005-05-10 2010-04-06 Siemens Communications, Inc. Data synchronizer with failover facility
US20060259517A1 (en) * 2005-05-10 2006-11-16 Siemens Communications, Inc. Data synchronizer with failover facility
US8761756B2 (en) 2005-06-21 2014-06-24 Seven Networks International Oy Maintaining an IP connection in a mobile network
US11178121B2 (en) * 2005-07-26 2021-11-16 Apple Inc. Secure software updates
US20070070999A1 (en) * 2005-08-02 2007-03-29 Black Jeffrey T Synchronization of historical data without retransmission
US20070168516A1 (en) * 2005-12-05 2007-07-19 Microsoft Corporation Resource freshness and replication
US7788223B2 (en) 2005-12-05 2010-08-31 Microsoft Corporation Resource freshness and replication
US20070234342A1 (en) * 2006-01-25 2007-10-04 Flynn John T Jr System and method for relocating running applications to topologically remotely located computing systems
US7613749B2 (en) 2006-04-12 2009-11-03 International Business Machines Corporation System and method for application fault tolerance and recovery using topologically remotely located computing devices
US20080077634A1 (en) * 2006-09-27 2008-03-27 Gary Lee Quakenbush Clone file system data
US7606842B2 (en) * 2006-09-27 2009-10-20 Hewlett-Packard Development Company, L.P. Method of merging a clone file system with an original file system
US7594138B2 (en) 2007-01-31 2009-09-22 International Business Machines Corporation System and method of error recovery for backup applications
US8774844B2 (en) 2007-06-01 2014-07-08 Seven Networks, Inc. Integrated messaging
US8805425B2 (en) 2007-06-01 2014-08-12 Seven Networks, Inc. Integrated messaging
US9002828B2 (en) 2007-12-13 2015-04-07 Seven Networks, Inc. Predictive content delivery
US8181111B1 (en) 2007-12-31 2012-05-15 Synchronoss Technologies, Inc. System and method for providing social context to digital activity
US8862657B2 (en) 2008-01-25 2014-10-14 Seven Networks, Inc. Policy based content service
US8799410B2 (en) 2008-01-28 2014-08-05 Seven Networks, Inc. System and method of a relay server for managing communications and notification between a mobile device and a web access server
US8838744B2 (en) 2008-01-28 2014-09-16 Seven Networks, Inc. Web-based access to data objects
US8909759B2 (en) 2008-10-10 2014-12-09 Seven Networks, Inc. Bandwidth measurement
US10496608B2 (en) * 2009-10-28 2019-12-03 Sandisk Il Ltd. Synchronizing changes in a file system which are initiated by a storage device and a host device
US8255006B1 (en) 2009-11-10 2012-08-28 Fusionone, Inc. Event dependent notification system and method
US9049179B2 (en) 2010-07-26 2015-06-02 Seven Networks, Inc. Mobile network traffic coordination across multiple applications
US8838783B2 (en) 2010-07-26 2014-09-16 Seven Networks, Inc. Distributed caching for resource and mobile network traffic management
US9043433B2 (en) 2010-07-26 2015-05-26 Seven Networks, Inc. Mobile network traffic coordination across multiple applications
US8843153B2 (en) 2010-11-01 2014-09-23 Seven Networks, Inc. Mobile traffic categorization and policy for network use optimization while preserving user experience
US8700728B2 (en) 2010-11-01 2014-04-15 Seven Networks, Inc. Cache defeat detection and caching of content addressed by identifiers intended to defeat cache
US8782222B2 (en) 2010-11-01 2014-07-15 Seven Networks Timing of keep-alive messages used in a system for mobile network resource conservation and optimization
US8943428B2 (en) 2010-11-01 2015-01-27 Synchronoss Technologies, Inc. System for and method of field mapping
US20120179867A1 (en) * 2010-11-09 2012-07-12 Tridib Chakravarty Tape data management
US9773059B2 (en) * 2010-11-09 2017-09-26 Storagedna, Inc. Tape data management
US8903954B2 (en) 2010-11-22 2014-12-02 Seven Networks, Inc. Optimization of resource polling intervals to satisfy mobile device requests
US9325662B2 (en) 2011-01-07 2016-04-26 Seven Networks, Llc System and method for reduction of mobile network traffic used for domain name system (DNS) queries
US9084105B2 (en) 2011-04-19 2015-07-14 Seven Networks, Inc. Device resources sharing for network resource conservation
US8832228B2 (en) 2011-04-27 2014-09-09 Seven Networks, Inc. System and method for making requests on behalf of a mobile device based on atomic processes for mobile network traffic relief
US8621075B2 (en) 2011-04-27 2013-12-31 Seven Metworks, Inc. Detecting and preserving state for satisfying application requests in a distributed proxy and cache system
US8868753B2 (en) 2011-12-06 2014-10-21 Seven Networks, Inc. System of redundantly clustered machines to provide failover mechanisms for mobile traffic management and network resource conservation
US8977755B2 (en) 2011-12-06 2015-03-10 Seven Networks, Inc. Mobile device and method to utilize the failover mechanism for fault tolerance provided for mobile traffic management and network/device resource conservation
US8934414B2 (en) 2011-12-06 2015-01-13 Seven Networks, Inc. Cellular or WiFi mobile traffic optimization based on public or private network destination
US9173128B2 (en) 2011-12-07 2015-10-27 Seven Networks, Llc Radio-awareness of mobile device for sending server-side control signals using a wireless network optimized transport protocol
US9009250B2 (en) 2011-12-07 2015-04-14 Seven Networks, Inc. Flexible and dynamic integration schemas of a traffic management system with various network operators for network traffic alleviation
US9208123B2 (en) 2011-12-07 2015-12-08 Seven Networks, Llc Mobile device having content caching mechanisms integrated with a network operator for traffic alleviation in a wireless network and methods therefor
US9021021B2 (en) 2011-12-14 2015-04-28 Seven Networks, Inc. Mobile network reporting and usage analytics system and method aggregated using a distributed traffic optimization system
US8812695B2 (en) 2012-04-09 2014-08-19 Seven Networks, Inc. Method and system for management of a virtual network connection without heartbeat messages
US8700569B1 (en) 2012-05-09 2014-04-15 Bertec Corporation System and method for the merging of databases
US9043278B1 (en) 2012-05-09 2015-05-26 Bertec Corporation System and method for the merging of databases
US8543540B1 (en) 2012-05-09 2013-09-24 Bertec Corporation System and method for the merging of databases
US8775631B2 (en) 2012-07-13 2014-07-08 Seven Networks, Inc. Dynamic bandwidth adjustment for browsing or streaming activity in a wireless network based on prediction of user behavior when interacting with mobile applications
US8874761B2 (en) 2013-01-25 2014-10-28 Seven Networks, Inc. Signaling optimization in a wireless network for traffic utilizing proprietary and non-proprietary protocols
US8750123B1 (en) 2013-03-11 2014-06-10 Seven Networks, Inc. Mobile device equipped with mobile network congestion recognition to make intelligent decisions regarding connecting to an operator network
US9065765B2 (en) 2013-07-22 2015-06-23 Seven Networks, Inc. Proxy server associated with a mobile carrier for enhancing mobile traffic management in a mobile network
US9798740B2 (en) * 2014-12-29 2017-10-24 Here Global B.V. Updates for navigational map data organized in lists
US20160188641A1 (en) * 2014-12-29 2016-06-30 Here Global B.V. Updates for Navigational Map Data Organized in Lists
US10616195B2 (en) 2016-12-08 2020-04-07 Oath Inc. Computerized system and method for automatically sharing device pairing credentials across multiple devices
US10129231B2 (en) * 2016-12-08 2018-11-13 Oath Inc. Computerized system and method for automatically sharing device pairing credentials across multiple devices
CN116319836A (en) * 2023-05-22 2023-06-23 江苏物润船联网络股份有限公司 Service flow data synchronous processing method and system, electronic equipment and storage medium

Also Published As

Publication number Publication date
US20080201362A1 (en) 2008-08-21
JP2001356949A (en) 2001-12-26
US8156074B1 (en) 2012-04-10
US8315976B2 (en) 2012-11-20

Similar Documents

Publication Publication Date Title
US8156074B1 (en) Data transfer and synchronization system
US6671757B1 (en) Data transfer and synchronization system
US6694336B1 (en) Data transfer and synchronization system
EP1130512A2 (en) Data transfer and synchronization system
US7035878B1 (en) Base rolling engine for data transfer and synchronization system
EP1187421A2 (en) Base rolling engine for data transfer and synchronization system
US6694335B1 (en) Method, computer readable medium, and system for monitoring the state of a collection of resources
US8166101B2 (en) Systems and methods for the implementation of a synchronization schemas for units of information manageable by a hardware/software interface system
US6578054B1 (en) Method and system for supporting off-line mode of operation and synchronization using resource state information
US7401104B2 (en) Systems and methods for synchronizing computer systems through an intermediary file system share or device
US7743019B2 (en) Systems and methods for providing synchronization services for units of information manageable by a hardware/software interface system
US6925476B1 (en) Updating application data including adding first change log to aggreagate change log comprising summary of changes
US6324544B1 (en) File object synchronization between a desktop computer and a mobile device
US20050044530A1 (en) Systems and methods for providing relational and hierarchical synchronization services for units of information manageable by a hardware/software interface system
KR101109399B1 (en) Systems and methods for the implementation of a synchronization schemas for units of information manageable by a hardware/software interface system
KR20060110733A (en) System and methods for synchronizing computer systems through an intermediary file system share or device

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION