US20050091811A1 - Method of producing a nonwoven material - Google Patents

Method of producing a nonwoven material Download PDF

Info

Publication number
US20050091811A1
US20050091811A1 US10/976,850 US97685004A US2005091811A1 US 20050091811 A1 US20050091811 A1 US 20050091811A1 US 97685004 A US97685004 A US 97685004A US 2005091811 A1 US2005091811 A1 US 2005091811A1
Authority
US
United States
Prior art keywords
fibers
fibrous web
forming
continuous filaments
filaments
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/976,850
Inventor
Tomas Billgren
Mats Soderberg
Mees Versteeg
Hein Lindstedt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Essity Hygiene and Health AB
Original Assignee
SCA Hygiene Products AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SCA Hygiene Products AB filed Critical SCA Hygiene Products AB
Priority to US10/976,850 priority Critical patent/US20050091811A1/en
Assigned to SCA HYGIENE PRODUCTS AB reassignment SCA HYGIENE PRODUCTS AB ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LINDSTEDT, HEIN, VERSTEEG, MEES, BILLGREN, TOMAS, SODERBERG, MATS
Publication of US20050091811A1 publication Critical patent/US20050091811A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/48Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation
    • D04H1/49Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres in combination with at least one other method of consolidation entanglement by fluid jet in combination with another consolidation means
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/732Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by fluid current, e.g. air-lay
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H5/00Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
    • D04H5/02Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling
    • D04H5/03Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by mechanical methods, e.g. needling by fluid jet

Definitions

  • the present invention refers to a method of producing a nonwoven material, wherein a fibrous web containing continuous filaments and natural fibers and/or synthetic staple fibers is formed on a forming member and subsequently hydroentangled to form said nonwoven material.
  • Hydroentangling or spunlacing is a technique introduced during the 1970's, see e.g. CA patent no. 841 938.
  • the method involves forming a fiber web which is either drylaid or wetlaid, after which the fibers are entangled by means of very fine water jets under high pressure. The water jets twist the fibers around each other giving the web strength. Several rows of water jets are directed against the fiber web which is supported by a movable wire. The entangled fiber web is then dried.
  • the fibers that are used in the material can be synthetic or regenerated staple fibers, e.g. polyester, polyamide, polypropylene, rayon or the like, pulp fibers or mixtures of pulp fibers and staple fibers.
  • Spunlace materials can be produced in high quality at a reasonable cost and have a high absorption capacity. They can e.g. be used as wiping material for household or industrial use, as disposable materials in medical care and for hygiene purposes etc.
  • a fiber mixture in which one of the fiber components is meltblown fibers.
  • the base material i.e.
  • the fibrous material which is exerted to hydroentangling either consists of at least two preformed fibrous layers where one layer is composed of meltblown fibers or of a “coform material” where an essentially homogeneous mixture of meltblown fibers and other fibers is airlaid on a wire and after that is exerted to hydroentangling.
  • EP-A-0 308 320 it is known to bring together a web of continuous filaments with a wetlaid fibrous material containing pulp fibers and staple fibers and hydroentangle together the separately formed fibrous webs to a laminate.
  • the fibers of the different fibrous webs will not be integrated with each other since the fibers already before the hydroentangling are bonded to each other and only have a very limited mobility.
  • EP-A-0 938 601 discloses a method of producing a nonwoven material by hydroentangling a fiber mixture containing continuous filaments, e.g. meltblown and/or spunbond fibers, and other fibers
  • the method is characterized by foamforming a fibrous web of natural fibers and/or synthetic staple fibers and hydroentangling together the foamed fiber dispersion with the continuous filaments for forming a composite material, in which the continuous filaments are well integrated with the rest of the fibers.
  • the object of the present invention is to provide a method for producing a hydroentangled nonwoven material of a fibrous mixture of continuous filaments, for example in the form of meltblown and/or spunbond fibers and natural fibers and/or synthetic or regenerated staple fibers, in which there is given a high freedom in the choice of fibers and fiber lengths and where the continuous filaments are well integrated with the rest of the fibers.
  • FIG. 1 shows schematically an embodiment of a process for producing a hydroentangled nonwoven material according to the invention.
  • the hydroentangled composite material according to the invention comprises a mixture of continuous filaments and natural fibers and/or synthetic staple fibers. These different types of fibers are defined as follows.
  • the continuous filaments are fibers that in proportion to their diameter are very long, in principle endless. They can be produced by extruding a molten thermoplastic polymer through fine nozzles, whereafter the polymer will be cooled and drawn, preferably by the action of an air flow blown at and along the polymer streams, and solidified into strands that can be treated by drawing, stretching or crimping. Chemicals for additional functions can be added to the surface.
  • Filaments can also be regenerated fibers produced by chemical reaction of a solution of fiber-forming reactants entering a reagent medium, for example by spinning of regenerated cellulose fibers from a cellulose xanthate solution into sulphuric acid.
  • regenerated cellulose fibers are rayon, viscose or lyocell fibers.
  • Continuous filaments may be in the form of spunlaid filaments or meltblown filaments.
  • Spunlaid filaments are produced by extruding a molten polymer, cool and stretch to an appropriate diameter.
  • the fiber diameter is usually above 10 ⁇ m, e.g. between 10 and 100 ⁇ m.
  • Production of spunlaid filaments is e.g. described in U.S. Pat. Nos. 4,813,864 and 5,545,371.
  • meltblown filaments are formed by means of a meltblown equipment 10 , for example of the kind shown in the U.S. Pat. Nos. 3,849,241 or 4,048,364.
  • the method shortly involves that a molten polymer is extruded through a nozzle in very fine streams and converging hot air streams are directed towards the polymer streams so that they are drawn out into continuous filaments with a very small diameter.
  • the filaments can be microfibers or macrofibers depending on their dimension. Microfibers have a diameter of up to 20 ⁇ m, but usually are in the interval between 2 and 12 ⁇ m in diameter. Macrofibers have a diameter of over 20 ⁇ m, e.g. between 20 and 100 ⁇ m.
  • thermoplastic polymers can in principle be used for producing spunlaid and meltblown filaments.
  • useful polymers are polyolefins, such as polyethylene and polypropylene, polyamides, polyesters and polylactides. Copolymers of these polymers may of course also be used.
  • Tow is another type of filaments, which normally are the starting material in the production of staple fibers, but which also is sold and used as a product of its own.
  • tow is produced from fine polymer streams that are drawn out and stretched, but instead of being laid down on a moving surface to form a web, they are kept in a bundle to finalize drawing and stretching.
  • this bundle of filaments is then treated with spin finish chemicals, are often crimped and then fed into a cutting stage where a wheel with knives will cut the filaments into distinct fiber lengths that are packed into bales to be shipped and used as staple fibers.
  • the filament bundles are packed, with or without spin finish chemicals, into bales or boxes.
  • continuous filaments will in the following be described as spunlaid fibers, but it is understood that also other types of continuous filaments, e.g. meltblown fibers, can be used.
  • the natural fibers are usually cellulose fibers, such as pulp fibers or fibers from grass or straw. Pulp fibers are the most commonly used natural fibers and are used in the material for their tendency to absorb water and for their tendency to create a coherent sheet. Both softwood fibers and hardwood fibers are suitable, and also recycled fibers can be used. The fiber lengths will vary from around 2-3 mm for softwood fibers and around 1-1.5 mm for hardwood fibers, and even shorter for recycled fibers as well as blends of these. Other natural fibers that are commonly used in nonwoven materials are cotton and hemp.
  • the staple fibers used can be produced from the same substances and by the same processes as the filaments discussed above. They may either be synthetic fibers or regenerated cellulose fibers, such as rayon, viscose or lyocell.
  • the cutting of the fiber bundles is normally done to result in a single cut length, which can be altered by varying the distances between the knives of the cutting wheel.
  • the fiber lengths of conventional wetlaid hydroentangled nonwovens are usually in the interval 12-18 mm. However according to the present invention also shorter fiber lengths, from about 2-3 mm, can be used.
  • continuous filaments 11 in the form of spunlaid fibers are produced by extruding a molten polymer, cool and stretch to an appropriate diameter.
  • the fiber diameter is usually above 10 ⁇ m, e.g. between 10 and 100 ⁇ m.
  • the spunlaid filaments are laid down directly on a forming wire 12 where they are allowed to form a relatively loose, open web structure in which the fibers are relatively free from each other. This is achieved either by making the distance between the spunlaying nozzle and the wire relatively large, so that the filaments are allowed to cool down before they land on the wire 12 , at which their stickiness is reduced.
  • the basis weight of the formed spunlaid layer should be between 2 and 50 g/m 2 and the bulk between 5 and 15 cm 3 /g.
  • meltblown fibers are formed by means of a meltblown equipment.
  • the meltblown technique shortly involves that a molten polymer is extruded through a nozzle in very fine streams and converging air streams are directed towards the polymer streams so that they are drawn out into continuous filaments with a very small diameter.
  • the fibers can be microfibers or macrofibers depending on their dimension. Microfibers have a diameter of up to 20 ⁇ m, but usually are in the interval between 2 and 12 ⁇ m in diameter. Macrofibers have a diameter of over 20 ⁇ m, e.g. between 20 and 100 ⁇ m.
  • aqueous or a foamed fibrous dispersion 13 from a headbox 14 is laid on top of the spunlaid filaments.
  • the fibers are dispersed in water, with optional additives, and the fiber dispersion is dewatered on a forming fabric to form a wet laid fibrous web.
  • foam forming technique a fibrous web is formed from a dispersion of fibers in a foamed liquid containing water and a tenside.
  • the foamforming technique is described in for example GB 1,329,409, U.S. Pat. No. 4,443,297, WO 96/02701 and EP-A-0 938 601.
  • a foam-formed fibrous web has a very uniform fiber formation.
  • the spunlaid filaments Prior to the headbox 14 the spunlaid filaments are according to one embodiment wetted in a spraybar 23 or gentle shower.
  • the wettening of the filaments takes place at a very low pressure so that no substantial bonding of sideways displacement of the fibers take place.
  • the surface tension of the water will adhere the filaments to the wire so the formation will not distort while entering the headbox.
  • a tenside may be added in the spraybar 23 to wet the fibers.
  • Fibers of many different kinds and in different mixing proportions can be used for making the wet laid or foam formed fibrous web.
  • pulp fibers or mixtures of pulp fibers and synthetic staple fibers e.g. polyester, polyethylene, polypropylene, polyamide, polylactide, rayon, viscose, lyocell etc.
  • Other natural fibers than pulp fibers may further be used, such as seed hair fibers, e.g. cotton, kapok and milkweed; leaf fibers e.g. sisal, abaca, pineapple, New Zealand hamp, or bast fibers, e.g. flax, hemp, ramie, jute, kenaf. Varying fiber lengths can be used.
  • the fibrous web contains between 5 and 50% by weight, preferably between 5 and 20% by weight staple fibers. As stated above, for many applications it is advantageous to use short staple fibers, between 3 and 7 mm. In one embodiment a major part have a length in the interval 3 to 7 mm, wherein a major part refers to at least 50, preferably at least 70, more preferably at least 90 and most preferably at least 100% by weight of the staple fibers present in the material have a length in said interval.
  • pulp fibers As a substitute for pulp fibers other natural fibers with a short fiber length may be used, e.g. esparto grass, phalaris arundinacea and straw from crop seed.
  • the fibrous web comprises between 20 and 85% by weight, preferably between 40 and 75% by weight natural fibers, such as pulp fibers or substitutes therefore. It is further preferred that the fibrous web contains between 0.5 and 50% by weight, preferably between 15 and 30% by weight, continuous filaments, especially in the form of spunlaid or meltblown filaments.
  • the fiber dispersion laid on top of the spunlaid filaments is dewatered by suction boxes arranged under the wire 12 . This provides the possibility to control the moisture content of the web before entering the subsequent foreshortening step. A higher moisture content increases the mobility of the fibers and their ability to rearrange and vice versa.
  • a spray station 15 may according to one embodiment be a pre-entangling station including one or several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide a pre-entangling of the fibrous web.
  • This pre-entangling binds the fibrous web to a certain degree, which should however not be higher than to allow a certain rearrangement of the structure in the subsequent foreshortening step.
  • the pre-entangling step may in an alternative embodiment be eliminated.
  • the fibrous web is then transferred to an entangling wire 16 via a transfer wire 17 .
  • the entangling wire 16 is driven at a lower speed than the forming wire 12
  • the transfer wire 17 is preferably driven at a speed intermediate that of the forming and entangling wires.
  • Suction boxes 21 and 22 are arranged at the points of transfer between the wires.
  • the fibrous web will in some sense be stuffed into the second wire. Because of the suction box 21 the fibrous web will be drained from water at the same time as it is stuffed in the surface of the transfer wire 17 . Free from water the short fibers will to a certain degree rearrange to a more three-dimensional structure and the spunlaid filaments will catch some curls, bights and loops. The formation of curls will be eased if a three-dimensional structure is created already by the forming wire 12 . These curls will ease the formation of loops in the entangling process and increase the penetration of the pulp into the spunlaid web. The increased mobility of the fibers will facilitate the intertwining of the fibers and will result in a structure where the pulp fibers are more firmly caught in the material.
  • the transfer fabric 17 may be replaced by a transfer roll.
  • the angles between the wires in the points of transfer should preferably be adjustable.
  • the type of foreshortening the fibrous web is exerted to by transferring it between wires driven at different speeds as described above, may be replaced by any other appropriate type of foreshortening a fibrous web, such as creping or micro creping, which e.g. is disclosed in U.S. Pat. No. 3,260,778 and U.S. Pat. No. 4,432,927, or through the so called “Clupak”-method, according to which a wet paper web is compacted by being placed on a rubber belt and be exerted to a varying tensile stress as is disclosed in U.S. Pat. No. 2,264,245.
  • the fibrous web After having been transferred to the entangling wire 16 the fibrous web is hydroentangled in an entangling station 18 including several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide an entangling of the web.
  • an entangling station 18 including several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide an entangling of the web.
  • the entangling wire may optionally be patterned in order to form a patterned nonwoven material.
  • the foreshortening of the fibrous web creates a structure that more easily will mix and entangle in the subsequent hydroentangling step, which results in a composite nonwoven having a good integration between the spunlaid filaments, pulp and staple fibers.
  • a part of the short pulp fibers and staple fibers will take a position oriented more in the z-direction of the web than would otherwise be obtained. This will result in improved absorption characteristics of the material. It will also improve the textile feeling of the material due to an increased amount of fiber ends sticking out.
  • the forming wire 12 and/or the entangling wire 16 may of course be substituted for another appropriate forming and entangling member respectively, such as an apertured belt, an apertured drum etc.
  • the material 19 is dried and wound up.
  • the material is then converted in a known manner to a suitable format and is packed.

Abstract

Method of producing a nonwoven material, wherein a fibrous web containing continuous filaments and natural fibers and/or staple fibers is formed on a forming member (12) and subsequently hydroentangled to form the nonwoven material. The fibrous web is transferred to an entangling member (16) while subjecting the fibrous web to foreshortening and subsequently hydroentangling the foreshortened fibrous web, thus forming a composite material (19) wherein the continuous filaments are well integrated with the rest of the fibers.

Description

    CROSS REFERENCE TO RELATED APPLICATION
  • This application claims the 35 U.S.C. 119(e) benefit of prior provisional application Ser. No. 60/515,640 filed on Oct. 31, 2003.
  • FIELD OF THE INVENTION
  • The present invention refers to a method of producing a nonwoven material, wherein a fibrous web containing continuous filaments and natural fibers and/or synthetic staple fibers is formed on a forming member and subsequently hydroentangled to form said nonwoven material.
  • BACKGROUND OF THE INVENTION
  • Hydroentangling or spunlacing is a technique introduced during the 1970's, see e.g. CA patent no. 841 938. The method involves forming a fiber web which is either drylaid or wetlaid, after which the fibers are entangled by means of very fine water jets under high pressure. The water jets twist the fibers around each other giving the web strength. Several rows of water jets are directed against the fiber web which is supported by a movable wire. The entangled fiber web is then dried. The fibers that are used in the material can be synthetic or regenerated staple fibers, e.g. polyester, polyamide, polypropylene, rayon or the like, pulp fibers or mixtures of pulp fibers and staple fibers. Spunlace materials can be produced in high quality at a reasonable cost and have a high absorption capacity. They can e.g. be used as wiping material for household or industrial use, as disposable materials in medical care and for hygiene purposes etc. Through e.g. EP-A-0 333 211 and EP-A-0 333 228 it is known to hydroentangle a fiber mixture in which one of the fiber components is meltblown fibers. The base material, i.e. the fibrous material which is exerted to hydroentangling, either consists of at least two preformed fibrous layers where one layer is composed of meltblown fibers or of a “coform material” where an essentially homogeneous mixture of meltblown fibers and other fibers is airlaid on a wire and after that is exerted to hydroentangling.
  • Through EP-A-0 308 320 it is known to bring together a web of continuous filaments with a wetlaid fibrous material containing pulp fibers and staple fibers and hydroentangle together the separately formed fibrous webs to a laminate. In such a material the fibers of the different fibrous webs will not be integrated with each other since the fibers already before the hydroentangling are bonded to each other and only have a very limited mobility.
  • EP-A-0 938 601 discloses a method of producing a nonwoven material by hydroentangling a fiber mixture containing continuous filaments, e.g. meltblown and/or spunbond fibers, and other fibers The method is characterized by foamforming a fibrous web of natural fibers and/or synthetic staple fibers and hydroentangling together the foamed fiber dispersion with the continuous filaments for forming a composite material, in which the continuous filaments are well integrated with the rest of the fibers.
  • OBJECT AND SUMMARY OF THE INVENTION
  • The object of the present invention is to provide a method for producing a hydroentangled nonwoven material of a fibrous mixture of continuous filaments, for example in the form of meltblown and/or spunbond fibers and natural fibers and/or synthetic or regenerated staple fibers, in which there is given a high freedom in the choice of fibers and fiber lengths and where the continuous filaments are well integrated with the rest of the fibers. This has according to the invention been obtained by transferring the fibrous web to an entangling member while subjecting said fibrous web to foreshortening and subsequently hydroentangling the foreshortened fibrous web, thus forming a composite material wherein the continuous filaments are well integrated with the rest of the fibers.
  • Other features of the invention are disclosed in the dependent claims and in the description below.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The invention will below be closer described with reference to an embodiment shown in the accompanying drawings.
  • FIG. 1 shows schematically an embodiment of a process for producing a hydroentangled nonwoven material according to the invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The hydroentangled composite material according to the invention comprises a mixture of continuous filaments and natural fibers and/or synthetic staple fibers. These different types of fibers are defined as follows.
  • Continuous Filaments
  • The continuous filaments are fibers that in proportion to their diameter are very long, in principle endless. They can be produced by extruding a molten thermoplastic polymer through fine nozzles, whereafter the polymer will be cooled and drawn, preferably by the action of an air flow blown at and along the polymer streams, and solidified into strands that can be treated by drawing, stretching or crimping. Chemicals for additional functions can be added to the surface.
  • Filaments can also be regenerated fibers produced by chemical reaction of a solution of fiber-forming reactants entering a reagent medium, for example by spinning of regenerated cellulose fibers from a cellulose xanthate solution into sulphuric acid. Examples of regenerated cellulose fibers are rayon, viscose or lyocell fibers.
  • Continuous filaments may be in the form of spunlaid filaments or meltblown filaments. Spunlaid filaments are produced by extruding a molten polymer, cool and stretch to an appropriate diameter. The fiber diameter is usually above 10 μm, e.g. between 10 and 100 μm. Production of spunlaid filaments is e.g. described in U.S. Pat. Nos. 4,813,864 and 5,545,371.
  • Meltblown filaments are formed by means of a meltblown equipment 10, for example of the kind shown in the U.S. Pat. Nos. 3,849,241 or 4,048,364. The method shortly involves that a molten polymer is extruded through a nozzle in very fine streams and converging hot air streams are directed towards the polymer streams so that they are drawn out into continuous filaments with a very small diameter. The filaments can be microfibers or macrofibers depending on their dimension. Microfibers have a diameter of up to 20 μm, but usually are in the interval between 2 and 12 μm in diameter. Macrofibers have a diameter of over 20 μm, e.g. between 20 and 100 μm.
  • All thermoplastic polymers can in principle be used for producing spunlaid and meltblown filaments. Examples of useful polymers are polyolefins, such as polyethylene and polypropylene, polyamides, polyesters and polylactides. Copolymers of these polymers may of course also be used.
  • Tow is another type of filaments, which normally are the starting material in the production of staple fibers, but which also is sold and used as a product of its own. In the same way as in the production of spunlaid fibers, tow is produced from fine polymer streams that are drawn out and stretched, but instead of being laid down on a moving surface to form a web, they are kept in a bundle to finalize drawing and stretching. When staple fibers are produced, this bundle of filaments is then treated with spin finish chemicals, are often crimped and then fed into a cutting stage where a wheel with knives will cut the filaments into distinct fiber lengths that are packed into bales to be shipped and used as staple fibers. When tow is produced, the filament bundles are packed, with or without spin finish chemicals, into bales or boxes.
  • The continuous filaments will in the following be described as spunlaid fibers, but it is understood that also other types of continuous filaments, e.g. meltblown fibers, can be used.
  • Natural Fibers
  • The natural fibers are usually cellulose fibers, such as pulp fibers or fibers from grass or straw. Pulp fibers are the most commonly used natural fibers and are used in the material for their tendency to absorb water and for their tendency to create a coherent sheet. Both softwood fibers and hardwood fibers are suitable, and also recycled fibers can be used. The fiber lengths will vary from around 2-3 mm for softwood fibers and around 1-1.5 mm for hardwood fibers, and even shorter for recycled fibers as well as blends of these. Other natural fibers that are commonly used in nonwoven materials are cotton and hemp.
  • Staple Fibers
  • The staple fibers used can be produced from the same substances and by the same processes as the filaments discussed above. They may either be synthetic fibers or regenerated cellulose fibers, such as rayon, viscose or lyocell. The cutting of the fiber bundles is normally done to result in a single cut length, which can be altered by varying the distances between the knives of the cutting wheel. The fiber lengths of conventional wetlaid hydroentangled nonwovens are usually in the interval 12-18 mm. However according to the present invention also shorter fiber lengths, from about 2-3 mm, can be used.
  • The Process
  • According to the embodiment shown in FIG. 1 continuous filaments 11 in the form of spunlaid fibers are produced by extruding a molten polymer, cool and stretch to an appropriate diameter. The fiber diameter is usually above 10 μm, e.g. between 10 and 100 μm. The spunlaid filaments are laid down directly on a forming wire 12 where they are allowed to form a relatively loose, open web structure in which the fibers are relatively free from each other. This is achieved either by making the distance between the spunlaying nozzle and the wire relatively large, so that the filaments are allowed to cool down before they land on the wire 12, at which their stickiness is reduced. The basis weight of the formed spunlaid layer should be between 2 and 50 g/m2 and the bulk between 5 and 15 cm3/g.
  • In an alternative embodiment meltblown fibers are formed by means of a meltblown equipment. The meltblown technique shortly involves that a molten polymer is extruded through a nozzle in very fine streams and converging air streams are directed towards the polymer streams so that they are drawn out into continuous filaments with a very small diameter. The fibers can be microfibers or macrofibers depending on their dimension. Microfibers have a diameter of up to 20 μm, but usually are in the interval between 2 and 12 μm in diameter. Macrofibers have a diameter of over 20 μm, e.g. between 20 and 100 μm.
  • An aqueous or a foamed fibrous dispersion 13 from a headbox 14 is laid on top of the spunlaid filaments. In wet laying technique the fibers are dispersed in water, with optional additives, and the fiber dispersion is dewatered on a forming fabric to form a wet laid fibrous web. In foam forming technique a fibrous web is formed from a dispersion of fibers in a foamed liquid containing water and a tenside. The foamforming technique is described in for example GB 1,329,409, U.S. Pat. No. 4,443,297, WO 96/02701 and EP-A-0 938 601. A foam-formed fibrous web has a very uniform fiber formation. For a more detailed description of the foamforming technique reference is made to the above mentioned documents.
  • Prior to the headbox 14 the spunlaid filaments are according to one embodiment wetted in a spraybar 23 or gentle shower. The wettening of the filaments takes place at a very low pressure so that no substantial bonding of sideways displacement of the fibers take place. The surface tension of the water will adhere the filaments to the wire so the formation will not distort while entering the headbox. In some cases, when hydrophobic polymers are used for forming the spunlaid filaments, a tenside may be added in the spraybar 23 to wet the fibers.
  • Fibers of many different kinds and in different mixing proportions can be used for making the wet laid or foam formed fibrous web. Thus there can be used pulp fibers or mixtures of pulp fibers and synthetic staple fibers, e.g. polyester, polyethylene, polypropylene, polyamide, polylactide, rayon, viscose, lyocell etc. Other natural fibers than pulp fibers may further be used, such as seed hair fibers, e.g. cotton, kapok and milkweed; leaf fibers e.g. sisal, abaca, pineapple, New Zealand hamp, or bast fibers, e.g. flax, hemp, ramie, jute, kenaf. Varying fiber lengths can be used. However, according to the invention, it is of advantage to use relatively short staple fibers, below 10 mm, preferably in the interval 2 to 8 mm and more preferably 3 to 7 mm. This is because short fibers will more easily mix and integrate with the spunlaid filaments than longer fibers. There will also be more fiber ends sticking out form the material, which increases softness and textile feeling of the material. For short staple fibers both wet laying and foam forming techniques may be used.
  • In foam forming technique longer fibers can be used than what is possible with wetlaying technique. Long fibers, around 18-30 mm, may be an advantage in hydroentangling, since they increase the strength of the material in dry as well as in wet condition.
  • It is preferred that the fibrous web contains between 5 and 50% by weight, preferably between 5 and 20% by weight staple fibers. As stated above, for many applications it is advantageous to use short staple fibers, between 3 and 7 mm. In one embodiment a major part have a length in the interval 3 to 7 mm, wherein a major part refers to at least 50, preferably at least 70, more preferably at least 90 and most preferably at least 100% by weight of the staple fibers present in the material have a length in said interval.
  • As a substitute for pulp fibers other natural fibers with a short fiber length may be used, e.g. esparto grass, phalaris arundinacea and straw from crop seed.
  • It is preferred that the fibrous web comprises between 20 and 85% by weight, preferably between 40 and 75% by weight natural fibers, such as pulp fibers or substitutes therefore. It is further preferred that the fibrous web contains between 0.5 and 50% by weight, preferably between 15 and 30% by weight, continuous filaments, especially in the form of spunlaid or meltblown filaments.
  • The fiber dispersion laid on top of the spunlaid filaments is dewatered by suction boxes arranged under the wire 12. This provides the possibility to control the moisture content of the web before entering the subsequent foreshortening step. A higher moisture content increases the mobility of the fibers and their ability to rearrange and vice versa.
  • A spray station 15 may according to one embodiment be a pre-entangling station including one or several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide a pre-entangling of the fibrous web. This pre-entangling binds the fibrous web to a certain degree, which should however not be higher than to allow a certain rearrangement of the structure in the subsequent foreshortening step. The pre-entangling step may in an alternative embodiment be eliminated.
  • The fibrous web is then transferred to an entangling wire 16 via a transfer wire 17. The entangling wire 16 is driven at a lower speed than the forming wire 12, and the transfer wire 17 is preferably driven at a speed intermediate that of the forming and entangling wires. Suction boxes 21 and 22 are arranged at the points of transfer between the wires.
  • Due to the speed difference, which normally is below 20%, the fibrous web is braked at the transfer between the wires, resulting in a foreshortening or compacting effect. This technique, sometimes called rush transfer, of transferring a fibrous web between wires driven with different speed, in order to provide a foreshortening effect of the fibrous web, is known from the papermaking field, especially tissue paper making. It is for example referred to U.S. Pat. No. 5,607,551.
  • At this so called rush transfer the fibrous web will in some sense be stuffed into the second wire. Because of the suction box 21 the fibrous web will be drained from water at the same time as it is stuffed in the surface of the transfer wire 17. Free from water the short fibers will to a certain degree rearrange to a more three-dimensional structure and the spunlaid filaments will catch some curls, bights and loops. The formation of curls will be eased if a three-dimensional structure is created already by the forming wire 12. These curls will ease the formation of loops in the entangling process and increase the penetration of the pulp into the spunlaid web. The increased mobility of the fibers will facilitate the intertwining of the fibers and will result in a structure where the pulp fibers are more firmly caught in the material.
  • The transfer fabric 17 may be replaced by a transfer roll.
  • The angles between the wires in the points of transfer should preferably be adjustable.
  • The type of foreshortening the fibrous web is exerted to by transferring it between wires driven at different speeds as described above, may be replaced by any other appropriate type of foreshortening a fibrous web, such as creping or micro creping, which e.g. is disclosed in U.S. Pat. No. 3,260,778 and U.S. Pat. No. 4,432,927, or through the so called “Clupak”-method, according to which a wet paper web is compacted by being placed on a rubber belt and be exerted to a varying tensile stress as is disclosed in U.S. Pat. No. 2,264,245.
  • After having been transferred to the entangling wire 16 the fibrous web is hydroentangled in an entangling station 18 including several rows of nozzles from which very fine water jets under high pressure are directed against the fibrous web to provide an entangling of the web. For a further description of the hydroentangling technique or, as it is also called, the spunlace technique, reference is made to e.g. CA patent 841,938. The entangling wire may optionally be patterned in order to form a patterned nonwoven material.
  • The foreshortening of the fibrous web creates a structure that more easily will mix and entangle in the subsequent hydroentangling step, which results in a composite nonwoven having a good integration between the spunlaid filaments, pulp and staple fibers. During the foreshortening when the web is compacted a part of the short pulp fibers and staple fibers will take a position oriented more in the z-direction of the web than would otherwise be obtained. This will result in improved absorption characteristics of the material. It will also improve the textile feeling of the material due to an increased amount of fiber ends sticking out.
  • The forming wire 12 and/or the entangling wire 16 may of course be substituted for another appropriate forming and entangling member respectively, such as an apertured belt, an apertured drum etc.
  • After the hydroentangling the material 19 is dried and wound up. The material is then converted in a known manner to a suitable format and is packed.

Claims (14)

1. In a method of producing a nonwoven material, which comprises:
forming a fibrous web containing continuous filaments and natural fibers and/or staple fibers on a forming member and subsequently hydroentangling to form said nonwoven material;
the improvement which comprises transferring the fibrous web to an entangling member while subjecting said fibrous web to foreshortening and subsequently hydroentangling the foreshortened fibrous web, thus forming a composite material wherein the continuous filaments are well integrated with the rest of the fibers.
2. The method as claimed in claim 1, wherein the fibrous web is exerted to a pre-hydroentangling step before being foreshortened.
3. The method as claimed in claim 1, further comprising driving the forming member at a higher speed than the entangling member thus providing a foreshortening effect of the fibrous web when transferring the web between said members.
4. The method as claimed in claim 3, wherein the fibrous web is transferred to the entangling member via a transfer member, the entangling member is driven at a lower speed than the forming member, and the transfer member is driven at a speed intermediate that of the forming and entangling members.
5. The method as claimed in claim 1, wherein the fibrous web is wet-formed or foam-formed.
6. The method as claimed in claim 1, wherein the fibrous web comprises between 20 and 85% by weight natural fibers.
7. The method as claimed in claim 1, wherein the natural fibers are pulp fibers.
8. The method as claimed in claim 1, wherein the fibrous web contains between 5 and 50% by weight synthetic or regenerated staple fibers.
9. The method as claimed in claim 8, wherein at least a major part of the synthetic staple fibers have a fiber length between 3 and 7 mm.
10. The method as claimed in claim 1, wherein the fibrous web contains between 0.5 and 50% by weight continuous filaments.
11. The method as claimed in claim 10, wherein the continuous filaments are in the form of spunlaid or meltblown filaments.
12. The method as claimed in claim 1, wherein the fibrous web comprises between 40 and 75% by weight natural fibers.
13. The method as claimed in claim 1, wherein the fibrous web contains between 5 and 20% by weight synthetic or regenerated staple fibers.
14. The method as claimed in claim 1, wherein the fibrous web contains between 15 and 30% by weight continuous filaments.
US10/976,850 2003-10-31 2004-11-01 Method of producing a nonwoven material Abandoned US20050091811A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/976,850 US20050091811A1 (en) 2003-10-31 2004-11-01 Method of producing a nonwoven material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US51564003P 2003-10-31 2003-10-31
US10/976,850 US20050091811A1 (en) 2003-10-31 2004-11-01 Method of producing a nonwoven material

Publications (1)

Publication Number Publication Date
US20050091811A1 true US20050091811A1 (en) 2005-05-05

Family

ID=34556024

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/976,850 Abandoned US20050091811A1 (en) 2003-10-31 2004-11-01 Method of producing a nonwoven material

Country Status (1)

Country Link
US (1) US20050091811A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050136776A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US20060230589A1 (en) * 2003-05-01 2006-10-19 Dan-Web Holding A/S Method and apparatus for dry forming of a fabric
US20060288639A1 (en) * 2005-06-23 2006-12-28 The Procter & Gamble Company Individualized seed hairs and products employing same
US20070067973A1 (en) * 2005-09-26 2007-03-29 Kimberly-Clark Worldwide, Inc. Manufacturing process for combining a layer of pulp fibers with another substrate
US20090029595A1 (en) * 2007-07-24 2009-01-29 Hon Hai Precision Ind. Co., Ltd. Electrical card connector
US20100162541A1 (en) * 2008-12-31 2010-07-01 Weyerhaeuser Company Method for Making Lyocell Web Product
US20100167029A1 (en) * 2008-12-31 2010-07-01 Weyerhaeuser Company Lyocell Web Product
US20100227138A1 (en) * 2009-03-03 2010-09-09 William Ouellette Multiple Layer Absorbent Substrate and Method of Formation
US7928010B2 (en) 2006-10-20 2011-04-19 Sandisk Corporation Method for producing portable memory devices
US20110168342A1 (en) * 2010-01-14 2011-07-14 Khosrow Parviz Mohammadi Soft and strong fibrous structures and methods for making same
US20120096694A1 (en) * 2009-04-08 2012-04-26 Ullrich Muenstermainn Apparatus for compacting a fiber web
US8318318B2 (en) 2008-12-31 2012-11-27 Weyerhaeuser Nr Company Lyocell web product
US20140170402A1 (en) * 2012-12-13 2014-06-19 Jacob Holm & Sons Ag Method for production of a hydroentangled airlaid web and products obtained therefrom
US8763219B2 (en) * 2011-05-04 2014-07-01 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
US8808501B2 (en) 2005-06-23 2014-08-19 The Procter & Gamble Company Methods for individualizing trichomes
US20150083354A1 (en) * 2012-05-03 2015-03-26 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
CN104894904A (en) * 2014-03-07 2015-09-09 精工爱普生株式会社 Sheet manufacturing apparatus
US9617103B2 (en) 2014-03-07 2017-04-11 Seiko Epson Corporation Sheet manufacturing apparatus
US20180112339A1 (en) * 2015-04-13 2018-04-26 Truetzschler Gmbh & Co. Kg Plant and method for connecting a web of fibrous material to a nonwoven or consolidating it therewith
US10435826B2 (en) * 2015-12-01 2019-10-08 Sca Hygiene Products Ab Process for producing nonwoven with improved surface properties
CN111101297A (en) * 2020-01-10 2020-05-05 杭州湿法无纺布设备有限公司 High-speed low-gram-weight wet-process composite spunlace non-woven fabric production device and process thereof
EP3690136A1 (en) * 2019-02-04 2020-08-05 Wepa Hygieneprodukte GmbH Nonwoven fibrous material
US20220307173A1 (en) * 2021-03-29 2022-09-29 Andritz Kuesters Gmbh System for the bonding of at least one wet-laid or dry-laid fiber layer
US20220307177A1 (en) * 2021-03-29 2022-09-29 Andritz Kuesters Gmbh Apparatus and method for bonding layers comprising fibers to form a non-woven web
US20220307176A1 (en) * 2021-03-29 2022-09-29 Andritz Kuesters Gmbh System for bonding layers comprising fibers to form a nonwoven web

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443284A (en) * 1965-05-21 1969-05-13 Johnson & Johnson Method of manufacturing a web of continuous filaments
US4950531A (en) * 1988-03-18 1990-08-21 Kimberly-Clark Corporation Nonwoven hydraulically entangled non-elastic web and method of formation thereof
US5389202A (en) * 1990-12-21 1995-02-14 Kimberly-Clark Corporation Process for making a high pulp content nonwoven composite fabric
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5730923A (en) * 1992-09-28 1998-03-24 The University Of Tennessee Research Corporation Post-treatment of non-woven webs
US5935880A (en) * 1997-03-31 1999-08-10 Wang; Kenneth Y. Dispersible nonwoven fabric and method of making same
US6103061A (en) * 1998-07-07 2000-08-15 Kimberly-Clark Worldwide, Inc. Soft, strong hydraulically entangled nonwoven composite material and method for making the same
US6163943A (en) * 1997-10-24 2000-12-26 Sca Hygiene Products Ab Method of producing a nonwoven material
US6375889B1 (en) * 1998-04-17 2002-04-23 Polymer Group, Inc. Method of making machine direction stretchable nonwoven fabrics having a high degree of recovery upon elongation
US6412155B2 (en) * 2000-02-15 2002-07-02 Fleissner Gmbh & Co., Maschinenfabrik Device for hydrodynamic supply of the fluid to fibers of a fiber web
US6592713B2 (en) * 2000-12-18 2003-07-15 Sca Hygiene Products Ab Method of producing a nonwoven material
US20030217448A1 (en) * 2000-12-19 2003-11-27 Andersen Jens Ole Production of an air-laid hydroentangled fiber web
US6750166B1 (en) * 1998-06-20 2004-06-15 Corovin Gmbh Method for producing a non-woven fibre fabric
US6836938B2 (en) * 2000-01-17 2005-01-04 Fleissner Gmbh & Co., Maschinenfabrik Method and device for production of composite non-woven fiber fabrics by means of hydrodynamic needling

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3443284A (en) * 1965-05-21 1969-05-13 Johnson & Johnson Method of manufacturing a web of continuous filaments
US4950531A (en) * 1988-03-18 1990-08-21 Kimberly-Clark Corporation Nonwoven hydraulically entangled non-elastic web and method of formation thereof
US5389202A (en) * 1990-12-21 1995-02-14 Kimberly-Clark Corporation Process for making a high pulp content nonwoven composite fabric
US5730923A (en) * 1992-09-28 1998-03-24 The University Of Tennessee Research Corporation Post-treatment of non-woven webs
US5607551A (en) * 1993-06-24 1997-03-04 Kimberly-Clark Corporation Soft tissue
US5935880A (en) * 1997-03-31 1999-08-10 Wang; Kenneth Y. Dispersible nonwoven fabric and method of making same
US6163943A (en) * 1997-10-24 2000-12-26 Sca Hygiene Products Ab Method of producing a nonwoven material
US6375889B1 (en) * 1998-04-17 2002-04-23 Polymer Group, Inc. Method of making machine direction stretchable nonwoven fabrics having a high degree of recovery upon elongation
US6750166B1 (en) * 1998-06-20 2004-06-15 Corovin Gmbh Method for producing a non-woven fibre fabric
US6103061A (en) * 1998-07-07 2000-08-15 Kimberly-Clark Worldwide, Inc. Soft, strong hydraulically entangled nonwoven composite material and method for making the same
US6836938B2 (en) * 2000-01-17 2005-01-04 Fleissner Gmbh & Co., Maschinenfabrik Method and device for production of composite non-woven fiber fabrics by means of hydrodynamic needling
US6412155B2 (en) * 2000-02-15 2002-07-02 Fleissner Gmbh & Co., Maschinenfabrik Device for hydrodynamic supply of the fluid to fibers of a fiber web
US6592713B2 (en) * 2000-12-18 2003-07-15 Sca Hygiene Products Ab Method of producing a nonwoven material
US20030217448A1 (en) * 2000-12-19 2003-11-27 Andersen Jens Ole Production of an air-laid hydroentangled fiber web

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060230589A1 (en) * 2003-05-01 2006-10-19 Dan-Web Holding A/S Method and apparatus for dry forming of a fabric
US7331089B2 (en) * 2003-05-01 2008-02-19 Dan-Web Holding A/S Method and apparatus for dry forming of a fabric
US7194788B2 (en) * 2003-12-23 2007-03-27 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US20050136776A1 (en) * 2003-12-23 2005-06-23 Kimberly-Clark Worldwide, Inc. Soft and bulky composite fabrics
US7691472B2 (en) * 2005-06-23 2010-04-06 The Procter & Gamble Company Individualized seed hairs and products employing same
US20060288639A1 (en) * 2005-06-23 2006-12-28 The Procter & Gamble Company Individualized seed hairs and products employing same
US8808501B2 (en) 2005-06-23 2014-08-19 The Procter & Gamble Company Methods for individualizing trichomes
US7478463B2 (en) * 2005-09-26 2009-01-20 Kimberly-Clark Worldwide, Inc. Manufacturing process for combining a layer of pulp fibers with another substrate
US20070067973A1 (en) * 2005-09-26 2007-03-29 Kimberly-Clark Worldwide, Inc. Manufacturing process for combining a layer of pulp fibers with another substrate
US7928010B2 (en) 2006-10-20 2011-04-19 Sandisk Corporation Method for producing portable memory devices
US20090029595A1 (en) * 2007-07-24 2009-01-29 Hon Hai Precision Ind. Co., Ltd. Electrical card connector
US20100162541A1 (en) * 2008-12-31 2010-07-01 Weyerhaeuser Company Method for Making Lyocell Web Product
US20100167029A1 (en) * 2008-12-31 2010-07-01 Weyerhaeuser Company Lyocell Web Product
US8318318B2 (en) 2008-12-31 2012-11-27 Weyerhaeuser Nr Company Lyocell web product
US20100227138A1 (en) * 2009-03-03 2010-09-09 William Ouellette Multiple Layer Absorbent Substrate and Method of Formation
US8250719B2 (en) * 2009-03-03 2012-08-28 The Clorox Company Multiple layer absorbent substrate and method of formation
US8782861B2 (en) * 2009-04-08 2014-07-22 Truetzschler Nonwovens Gmbh Apparatus for compacting a fiber web
US20120096694A1 (en) * 2009-04-08 2012-04-26 Ullrich Muenstermainn Apparatus for compacting a fiber web
US8029645B2 (en) 2010-01-14 2011-10-04 The Procter & Gamble Company Soft and strong fibrous structures and methods for making same
US8425722B2 (en) 2010-01-14 2013-04-23 The Procter & Gamble Company Soft and strong fibrous structures and methods for making same
US20110168342A1 (en) * 2010-01-14 2011-07-14 Khosrow Parviz Mohammadi Soft and strong fibrous structures and methods for making same
US8763219B2 (en) * 2011-05-04 2014-07-01 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
US20150083354A1 (en) * 2012-05-03 2015-03-26 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
US9194084B2 (en) * 2012-05-03 2015-11-24 Sca Hygiene Products Ab Method of producing a hydroentangled nonwoven material
US9394637B2 (en) * 2012-12-13 2016-07-19 Jacob Holm & Sons Ag Method for production of a hydroentangled airlaid web and products obtained therefrom
US20140170402A1 (en) * 2012-12-13 2014-06-19 Jacob Holm & Sons Ag Method for production of a hydroentangled airlaid web and products obtained therefrom
US11622919B2 (en) 2012-12-13 2023-04-11 Jacob Holm & Sons Ag Hydroentangled airlaid web and products obtained therefrom
US9617103B2 (en) 2014-03-07 2017-04-11 Seiko Epson Corporation Sheet manufacturing apparatus
US20150252530A1 (en) * 2014-03-07 2015-09-10 Seiko Epson Corporation Sheet manufacturing apparatus
US9890005B2 (en) 2014-03-07 2018-02-13 Seiko Epson Corporation Sheet manufacturing apparatus
CN104894904B (en) * 2014-03-07 2019-01-01 精工爱普生株式会社 Sheet producing device
CN104894904A (en) * 2014-03-07 2015-09-09 精工爱普生株式会社 Sheet manufacturing apparatus
US9540768B2 (en) * 2014-03-07 2017-01-10 Seiko Epson Corporation Sheet manufacturing apparatus
US10968551B2 (en) * 2015-04-13 2021-04-06 Truetzschler Gmbh & Co. Kg Plant and method for connecting a web of fibrous material to a nonwoven or consolidating it therewith
US20180112339A1 (en) * 2015-04-13 2018-04-26 Truetzschler Gmbh & Co. Kg Plant and method for connecting a web of fibrous material to a nonwoven or consolidating it therewith
US10718076B2 (en) * 2015-04-13 2020-07-21 Truetzschler Gmbh & Co. Kg Plant and method for connecting a web of fibrous material to a nonwoven or consolidating it therewith
US10435826B2 (en) * 2015-12-01 2019-10-08 Sca Hygiene Products Ab Process for producing nonwoven with improved surface properties
EP3690136A1 (en) * 2019-02-04 2020-08-05 Wepa Hygieneprodukte GmbH Nonwoven fibrous material
CN111101297A (en) * 2020-01-10 2020-05-05 杭州湿法无纺布设备有限公司 High-speed low-gram-weight wet-process composite spunlace non-woven fabric production device and process thereof
US20220307173A1 (en) * 2021-03-29 2022-09-29 Andritz Kuesters Gmbh System for the bonding of at least one wet-laid or dry-laid fiber layer
US20220307177A1 (en) * 2021-03-29 2022-09-29 Andritz Kuesters Gmbh Apparatus and method for bonding layers comprising fibers to form a non-woven web
US20220307176A1 (en) * 2021-03-29 2022-09-29 Andritz Kuesters Gmbh System for bonding layers comprising fibers to form a nonwoven web
US11761130B2 (en) * 2021-03-29 2023-09-19 Andritz Kuesters Gmbh System for the bonding of at least one wet-laid or dry-laid fiber layer
US11879193B2 (en) * 2021-03-29 2024-01-23 Andritz Kuesters Gmbh Apparatus and method for bonding layers comprising fibers to form a non-woven web

Similar Documents

Publication Publication Date Title
US20050091811A1 (en) Method of producing a nonwoven material
US7422660B2 (en) Method of producing a nonwoven material
US7331091B2 (en) Method of producing a nonwoven material
US9194084B2 (en) Method of producing a hydroentangled nonwoven material
US8763219B2 (en) Method of producing a hydroentangled nonwoven material
US6163943A (en) Method of producing a nonwoven material
US8389427B2 (en) Hydroentangled nonwoven material
US6592713B2 (en) Method of producing a nonwoven material
EP1215325A1 (en) Method of producing a nonwoven material
EP1678361B1 (en) Method of producing a nonwoven material
WO2005042822A1 (en) Method of producing a nonwoven material
MXPA06009285A (en) Method of producing a nonwoven material
CZ20001428A3 (en) Process for producing nonwoven material

Legal Events

Date Code Title Description
AS Assignment

Owner name: SCA HYGIENE PRODUCTS AB, SWEDEN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:BILLGREN, TOMAS;SODERBERG, MATS;VERSTEEG, MEES;AND OTHERS;REEL/FRAME:015946/0507;SIGNING DATES FROM 20040924 TO 20041021

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE