Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20050049708 A1
Publication typeApplication
Application numberUS 10/967,042
Publication date3 Mar 2005
Filing date15 Oct 2004
Priority date4 Apr 2000
Also published asUS6402750, US6835205, US20020095154, US20060084994, US20070225814, US20080255616, US20090112267
Publication number10967042, 967042, US 2005/0049708 A1, US 2005/049708 A1, US 20050049708 A1, US 20050049708A1, US 2005049708 A1, US 2005049708A1, US-A1-20050049708, US-A1-2005049708, US2005/0049708A1, US2005/049708A1, US20050049708 A1, US20050049708A1, US2005049708 A1, US2005049708A1
InventorsRobert Atkinson, Peter Keith
Original AssigneeAtkinson Robert E., Keith Peter T.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Devices and methods for the treatment of spinal disorders
US 20050049708 A1
Abstract
Devices and methods for treating a damaged intervertebral disc to reduce or eliminate associated back pain. Dynamic bias devices and reinforcement devices are disclosed, which may be used individually or in combination, to eliminate nerve impingement associated with the damaged disc, and/or to reinforce the damaged disc, while permitting relative movement of the vertebrae adjacent the damaged disc.
Images(25)
Previous page
Next page
Claims(20)
1. A method of treating pain associated an intervertebral disc disposed between a first vertebra and a second vertebra in an adult human spine having a median plane and an axis of curvature, the method comprising the steps of:
identifying the intervertebral disc causing pain;
providing one or more implantable devices, each having a first vertebral attachment member, a second vertebral attachment member, and a bias force member applying a bias force therebetween while permitting near normal relative motion therebetween;
attaching the first attachment member of each implantable device to the first vertebra; and
attaching the second attachment member of each implantable device to the second vertebra such that the bias force members exert a net bias force balanced about the median plane to increase separation of the first and second vertebrae.
2. A method as in claim 1, wherein the first and second vertebrae have spinous processes, and wherein the implantable device is disposed posterior of the spinous processes.
3. A method as in claim 1, wherein the first and second vertebrae have spinous processes, and wherein the implantable devices are disposed lateral of the spinous processes.
4. A method as in claim 1, wherein the bias force member of each implantable device is pre-loaded with a compression load prior to the step of attaching the second attachment member.
5. A method as in claim 1, wherein the first and second vertebrae are partially separated prior to the step of attaching the second attachment member.
6. A method as in claim 1, wherein the intervertebral disc has a protrusion, further comprising the step of cutting away at least a portion of the protrusion.
7. A method as in claim 1, wherein the intervertebral disc has an annulus, further comprising the steps of:
providing an implantable reinforcement member; and
implanting the reinforcement member into the annulus of the intervertebral disc.
8. An implantable system for treating an intervertebral disc disposed between a first vertebra and a second vertebra in an adult human spine having a median plane and an axis of curvature, the system comprising:
a first vertebral attachment member;
a second vertebral attachment member; and
a bias member applying a net bias force between the first vertebral attachment member and the second vertebra attachment member, wherein the bias member permits near normal relative motion between the first and second vertebrae, and the net bias force is substantially symmetric about the median plane.
9. An implantable system as in claim 8, wherein the bias member has a substantially linear displacement.
10. An implantable system as in claim 9, wherein the displacement is substantially parallel to the axis of curvature of the first and second vertebrae.
11. An implantable system as in claim 8, wherein the bias member has a range of displacement and the bias member applies substantially no force over a portion of the range of displacement.
12. An implantable system as in claim 8, wherein the bias member has a range of displacement greater than 1.0 cm.
13. An implantable system as in claim 8, wherein the bias member includes a spring.
14. An implantable system as in claim 8, further including a bushing to isolate movement of the attachment members from the vertebrae.
15. A method of reinforcing an annulus of an intervertebral disc disposed between a first vertebra and a second vertebra in an adult human spine, the method comprising the steps of:
providing an implantable reinforcement member; and
implanting the reinforcement member into the annulus of the intervertebral disc.
16. A method as in claim 15, further comprising the step of partially separating the adjacent vertebrae prior to the step of implantation.
17. A method as in claim 15, wherein a plurality of implantable reinforcement members are provided, and wherein the plurality of reinforcement members are implanted substantially parallel in the annulus.
18. A method as in claim 15, wherein the reinforcement member is expandable, further comprising the step of expanding the reinforcement member.
19. A method as in claim 15, further comprising the steps of:
providing a tubular member having a curved tip and a lumen extending therethrough;
inserting the tip of the tubular member into the annulus; and
inserting the reinforcement member through the lumen of the tubular member and into the annulus.
20. A method as in claim 15, further comprising the steps of:
providing one or more implantable bias devices, each having a first vertebral attachment member, a second vertebral attachment member, and a bias force member applying a bias force therebetween while permitting near normal relative motion therebetween;
attaching the first attachment member of each implantable bias device to the first vertebra; and
attaching the second attachment member of each implantable bias device to the second vertebra.
Description
    FIELD OF THE INVENTION
  • [0001]
    The present invention generally relates to spinal implants. Specifically, the present invention relates to implantable devices and methods for the treatment of spinal disorders associated with the intervertebral disc.
  • BACKGROUND OF THE INVENTION
  • [0002]
    Back pain is one of the most common and often debilitating conditions affecting millions of people in all walks of life. Today, it is estimated that over ten million people in the United States alone suffer from persistent back pain. Approximately half of those suffering from persistent back pain are afflicted with chronic disabling pain, which seriously compromises a person's quality of life and is the second most common cause of worker absenteeism. Further, the cost of treating chronic back pain is very high, even though the majority of sufferers do not receive treatment due to health risks, limited treatment options and inadequate therapeutic results. Thus, chronic back pain has a significantly adverse effect on a person's quality of life, on industrial productivity, and on heath care expenditures.
  • [0003]
    Some forms of back pain are not chronic and may be simply treated by rest, posture adjustments and painkillers. For example, some forms of lower back pain (LBP) are very common and may be caused by unusual exertion or injury. Unusual exertion such has heavy lifting or strenuous exercise may result in back strain such as a pulled muscle, sprained muscle, sprained ligament, muscle spasm, or a combination thereof. An injury caused by falling down or a blow to the back may cause bruising. These forms of back pain are typically non-chronic and may be self-treated and cured in a few days or weeks.
  • [0004]
    Other types of non-chronic back pain may be treated by improvements in physical condition, posture and/or work conditions. For example, being pregnant, obese or otherwise significantly overweight may cause LBP. A mattress that does not provide adequate support may cause back pain in the morning. Working in an environment lacking good ergonomic design may also cause back pain. In these instances, the back pain may be cured by eliminating the culprit cause. Whether it is excess body weight, a bad mattress, or a bad office chair, these forms of back pain are readily treated.
  • [0005]
    However, some forms of back pain are chronic and are the result of spinal disorders which are not readily treated. Such spinal disorders may cause severe back pain, the origin of which may or may not be certain. A prevalent clinical theory is that pain arises from physical impingement of the nerve roots or the spinal cord. Such nerve impingement may have of a number of different causes, but generally results from either a disc protrusion or from narrowing of the intervertebral foramina which surround the nerve roots. Another clinical theory is that damage to the disc, either from injury, degradation or otherwise, causes physical impingement of the disc nerves, which are primarily disposed about the periphery of the annulus, but may grow into fissures of a damaged disc.
  • [0006]
    Disc protrusions may be caused by a physical injury to the disc or by natural degradation of the disc such as by degenerative disc disease (DDD). Physical injury may cause damage to the annulus fibrosus which allows a portion of the disc, such as the nucleus pulposus, to protrude from the normal disc space. DDD may cause the entire disc to degenerate to such a degree that the annulus fibrosus bulges outward, delaminates or otherwise separates such that a portion of the disc protrudes from the normal disc space. In either case, the disc protrusion may impinge on a spinal nerve root causing severe pain. Impingement on the nerve root may also be caused by conditions unrelated to the disc such as by a spinal tumor or spinal stenosis (abnormal bone growth), but disc protrusions are the most common cause. Depending on the cause and nature of the disc protrusion, the condition may be referred to as a disc stenosis, a disc bulge, a herniated disc, a slipped disc, a prolapsed disc or, if the protrusion separates from the disc, a sequestered disc.
  • [0007]
    Nerve root impingement most often occurs in the lumbar region of the spinal column since the lumbar discs bear significant vertical loads relative to discs in other regions of the spine. In addition, disc protrusions in the lumbar region typically occur posteriorly because the annulus fibrosus is thinner on the posterior side than on the anterior side and because normal posture places more compression on the posterior side. Posterior protrusions are particularly problematic since the nerve roots are posteriorly positioned relative to the intervertebral discs. When a posterior disc protrusion presses against a nerve root, the pain is often severe and radiating, and may be aggravated by such subtle movements as coughing, bending over, or remaining in a sitting position for an extended period of time.
  • [0008]
    A common treatment for disc protrusion is discectomy, which is a procedure wherein the protruding portion of the disc is surgically removed. However, discectomy procedures have an inherent risk since the portion of the disc to be removed is immediately adjacent the nerve root and any damage to the nerve root is clearly undesirable. Furthermore, discectomy procedures are not always successful long term because scar tissue may form and/or additional disc material may subsequently protrude from the disc space as the disc deteriorates further. The recurrence of a disc protrusion may necessitate a repeat discectomy procedure, along with its inherent clinical risks and less than perfect long term success rate. Thus, a discectomy procedure, at least as a stand-alone procedure, is clearly not an optimal solution.
  • [0009]
    Discectomy is also not a viable solution for DDD when no disc protrusion is involved. As mentioned above, DDD causes the entire disc to degenerate, narrowing of the intervertebral space, and shifting of the load to the facet joints. If the facet joints carry a substantial load, the joints may degrade over time and be a different cause of back pain. Furthermore, the narrowed disc space can result in the intervertebral foramina surrounding the nerve roots to directly impinge on one or more nerve roots. Such nerve impingement is very painful and cannot be corrected by a discectomy procedure.
  • [0010]
    As a result, spinal fusion, particularly with the assistance of interbody fusion cages, has become a preferred secondary procedure, and in some instances, a preferred primary procedure. Spinal fusion involves permanently fusing or fixing adjacent vertebrae. Hardware in the form of bars, plates, screws and cages may be utilized in combination with bone graft material to fuse adjacent vertebrae. Spinal fusion may be performed as a stand-alone procedure or may be performed in combination with a discectomy procedure. By placing the adjacent vertebrae in their nominal position and fixing them in place, relative movement therebetween may be significantly reduced and the disc space may be restored to its normal condition. Thus, theoretically, aggravation caused by relative movement between adjacent vertebrae (and thus impingement on the nerve root by a disc protrusion and/or impingement from bone may be reduced if not eliminated.
  • [0011]
    However, the success rate of spinal fusion procedures is certainly less than perfect for a number of different reasons, none of which are well understood. In addition, even if spinal fusion procedures are initially successful, they may cause accelerated degeneration of adjacent discs since the adjacent discs must accommodate a greater degree of motion. The degeneration of adjacent discs simply leads to the same problem at a different anatomical location, which is clearly not an optimal solution. Furthermore, spinal fusion procedures are invasive to the disc, risk nerve damage and, depending on the procedural approach, either technically complicated (endoscopic anterior approach), invasive to the bowel (surgical anterior approach), or invasive to the musculature of the back (surgical posterior approach).
  • [0012]
    Another procedure that has been less than clinically successful is total disc replacement with a prosthetic disc. This procedure is also very invasive to the disc and, depending on the procedural approach, either invasive to the bowel (surgical anterior approach) or invasive to the musculature of the back (surgical posterior approach). In addition, the procedure may actually complicate matters by creating instability in the spine, and the long term mechanical reliability of prosthetic discs has yet to be demonstrated.
  • [0013]
    Many other medical procedures have been proposed to solve the problems associated with disc protrusions. However, many of the proposed procedures have not been clinically proven and some of the allegedly beneficial procedures have controversial clinical data. From the foregoing, it should be apparent that there is a substantial need for improvements in the treatment of spinal disorders, particularly in the treatment of nerve impingement as the result of damage to the disc, whether by injury, degradation, or the like.
  • SUMMARY OF THE INVENTION
  • [0014]
    The present invention addresses this need by providing improved devices and methods for the treatment of spinal disorders. As used herein, the term spinal disorder generally refers to a degradation in spinal condition as the result of injury, aging or the like, as opposed to a spinal deformity resulting from growth defects. The improved devices and methods of the present invention specifically address nerve impingement as the result of damage to the disc, particularly in the lumbar region, but may have other significant applications not specifically mentioned herein. For purposes of illustration only, and without limitation, the present invention is discussed in detail with reference to the treatment of damaged discs in the lumbar region of the adult human spinal column.
  • [0015]
    As will become apparent from the following description, the improved devices and methods of the present invention reduce if not eliminate back pain while maintaining near normal anatomical motion. Specifically, the present invention provides dynamic bias devices and reinforcement devices, which may be used individually or in combination, to eliminate nerve impingement associated with a damaged disc, and/or to reinforce a damaged disc, while permitting relative movement of the vertebrae adjacent the damaged disc. The devices of the present invention are particularly well suited for minimally invasive methods of implantation.
  • [0016]
    The dynamic bias devices of the present invention basically apply a bias force to adjacent vertebrae on either side of a damaged disc, while permitting relative movement of the vertebrae. By applying a bias force, disc height may be restored, thereby reducing nerve impingement. Specifically, by restoring disc height, the dynamic bias devices of the present invention: retract disc protrusions into the normal disc space thereby reducing nerve impingement by the protrusions; reduce the load carried by the facet joints thereby eliminating nerve impingement originating at the joint; restore intervertebral spacing thereby eliminating nerve impingement by the intervertebral foramina; and reduce pressure on portions of the annulus thereby alleviating nerve impingement in disc fissures.
  • [0017]
    The reinforcement devices of the present invention basically reinforce a damaged disc, restore disc height and/or bear some or all of the load normally carried by a healthy disc, thereby reducing nerve impingement. Some embodiments of the reinforcement members of the present invention have a relatively small profile when implanted, but are very rigid, and thus serve to reinforce the disc, particularly the annulus. By reinforcing the disc, and particularly the annulus, disc protrusions may reduced or prevented, thereby eliminating nerve impingement by the protrusions. Other embodiments have a relatively large profile when implanted, and thus serve to increase disc height and/or to bear load. By increasing disc height, the advantages discussed previously may be obtained. By bearing some of the load normally carried by a healthy disc, the load may be redistributed as needed, such as when a dynamic bias device is used.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0018]
    FIGS. 1A and 1B illustrate left lateral and posterior views, respectively, of a portion of the adult human vertebral (spinal) column;
  • [0019]
    FIG. 2A illustrates a left lateral view of an intervertebral disc disposed between adjacent vertebrae, wherein the disc is partially protruding from the normal disc space and the disc height is reduced;
  • [0020]
    FIG. 2B illustrates a left lateral view of an intervertebral disc disposed between adjacent vertebrae as in FIG. 2A, wherein dynamic bias devices and reinforcement devices of the present invention, which are illustrated schematically, restore normal disc height and eliminate the disc protrusion;
  • [0021]
    FIGS. 3A-3C schematically illustrate a dynamic bias device 100 in accordance with the present invention;
  • [0022]
    FIGS. 4A-4B schematically illustrate left lateral and posterior views, respectively, of dynamic bias devices of the present invention mounted to adjacent vertebrae equidistant from the median plane;
  • [0023]
    FIGS. 5A-5B schematically illustrate left lateral and posterior views, respectively, of a dynamic bias device of the present invention mounted to adjacent vertebrae in the median plane;
  • [0024]
    FIGS. 6A-6B illustrate end and exploded views, respectively, of a bushing in accordance with a first embodiment of the present invention;
  • [0025]
    FIG. 6C illustrates a posterior view of the bushing shown in FIGS. 6A-6B mounted to a spinous process;
  • [0026]
    FIG. 6D illustrates a posterior view of the spinous process shown in FIG. 6C, detailing the counter-bore;
  • [0027]
    FIGS. 7A-7B illustrate end and exploded views, respectively, of a bushing in accordance with a second embodiment of the present invention;
  • [0028]
    FIGS. 8A-8B illustrate end and exploded views, respectively, of a bushing in accordance with a third embodiment of the present invention;
  • [0029]
    FIGS. 9A-9B illustrate end and exploded views, respectively, of a bushing in accordance with a fourth embodiment of the present invention;
  • [0030]
    FIG. 10A illustrates a side view of a dynamic bias device in accordance with a first embodiment of the present invention;
  • [0031]
    FIG. 10B illustrates a side view of the dynamic bias device shown in FIG. 10A subjected to a compression load;
  • [0032]
    FIG. 10C illustrates a cross-sectional view of the dynamic bias device shown in FIG. 10A;
  • [0033]
    FIG. 11A illustrates a cross-sectional view of a dynamic bias device in accordance with a second embodiment of the present invention;
  • [0034]
    FIG. 11B illustrates a cross-sectional view of a dynamic bias device in accordance with a third embodiment of the present invention;
  • [0035]
    FIGS. 12A-12B illustrate rear and side views, respectively, of a dynamic bias device in accordance with a fourth embodiment of the present invention;
  • [0036]
    FIG. 12C illustrates the dynamic bias device shown in FIGS. 12A-12B subjected to a compression load;
  • [0037]
    FIG. 13A illustrates a side view of a dynamic bias device in accordance with a fifth embodiment of the present invention;
  • [0038]
    FIG. 13B illustrates a side or rear view of a dynamic bias device in accordance with a sixth embodiment of the present invention;
  • [0039]
    FIG. 13C illustrates a rear view of a dynamic bias device in accordance with a seventh embodiment of the present invention;
  • [0040]
    FIGS. 14A-14D illustrate tools of the present invention for implanting the reinforcement members;
  • [0041]
    FIGS. 15A-15J illustrate steps for implanting a self-expanding reinforcement member;
  • [0042]
    FIGS. 15K-15L illustrate steps for implanting an inflatable reinforcement member;
  • [0043]
    FIGS. 15M-1SR illustrate steps for implanting reinforcement bars; AND
  • [0044]
    FIG. 16 illustrates a bias force v. displacement curve for the dynamic bias device.
  • DETAILED DESCRIPTION
  • [0045]
    The following detailed description should be read with reference to the drawings in which similar elements in different drawings are numbered the same. The drawings, which are not necessarily to scale, depict illustrative embodiments and are not intended to limit the scope of the invention.
  • [0046]
    With reference to FIGS. 1A and 1B, the lower portion of an adult human vertebral column 10 is illustrated in left lateral and posterior views, respectively. The upper portion of the vertebral column 10 includes the thoracic region and the cervical region, which are not shown for purposes of simplified illustration only. The lower portion of the vertebral column 10 includes the lumbar region 12, the sacrum 14 and the coccyx 16. The sacrum 14 and the coccyx 16 are sometimes collectively referred to as the pelvic curvature.
  • [0047]
    The vertebral column 10 includes an axis of curvature 60 which generally forms a double-S shape when viewed laterally. The vertebral column 10 also includes a median plane 70 which is a sagittal plane bisecting the vertebral column 10 into symmetrical left lateral and right lateral portions. In posterior views, the median plane 70 appears as a line.
  • [0048]
    The lumbar region 12 of the vertebral column 10 includes five (5) vertebrae 20 (labeled L1, L2, L3, L4 and L5) separated by intervertebral discs 50. The sacrum 14, which includes five (5) fused vertebrae 30 (superior vertebra 30 labeled S1), is separated by a single disc 50 from the coccyx 16, which includes four (4) fused vertebrae 40. Although not labeled, the intervertebral discs 50 may be referenced by their respective adjacent vertebrae. For example, the disc 50 between the L4 and L5 lumbar vertebrae 20 may be referred to as the L4L5 disc. Similarly, the disc 50 between the L5 lumbar vertebra 20 and the S1 sacral vertebra 30 may be referred to as the L5S1 disc.
  • [0049]
    Although each vertebra 20/30/40 is a unique and irregular bone structure, the vertebrae 20 of the lumbar region 12 (in addition to the thoracic and cervical regions) have common structures. Each vertebra 20 of the lumbar region 12 generally includes a body portion 21 and a vertebral arch portion 22/23 which encloses the vertebral foramen (not visible) in which the spinal cord is disposed. The vertebral arch 22/23 includes two pedicles 22 and two laminae 23. A spinous process 24 extends posteriorly from the juncture of the two laminae 23, and two transverse processes 25 extend laterally from each lamina 23. Four articular processes 26/27 extend inferiorly 26 and superiorly 27 from the laminae 23. The inferior articular process 26 rests in the superior articular process 27 of the adjacent vertebra to form a facet joint 28.
  • [0050]
    The five (5) vertebrae 30 of the sacrum 14 are fused together to form a single rigid structure. The sacrum 14 includes a median sacral crest 31 which roughly corresponds to the spinous processes of the vertebrae 30, and two intermediate sacral crests 32 which roughly correspond to the articular processes of the vertebrae 30. The sacral laminae 33 are disposed between the median 31 and intermediate 32 sacral crests. Two lateral sacral crests 34 are disposed on either side of the sacral foraminae 35. The sacrum 14 also includes a pair of sacral wings 36 which define auricular surfaces 39. The superior (S1) sacral vertebra 30 includes two superior articular processes 37 which engage the inferior articular processes 26 of the L5 lumber vertebra 20 to form a facet joint, and the base 38 of the superior sacral vertebra S1 is joined to the L5S1 disc 50.
  • [0051]
    Each intervertebral disc 50 includes an annulus fibrosus 52 surrounding a nucleus pulposus 54, which are more clearly visible in FIG. 15A. The posterior annulus 52 is generally thinner than the anterior annulus 52, which may account for the higher incidence of posterior disc protrusions. As used herein, a disc protrusion generically refers to any portion of the disc that protrudes from the normal disc space. Common clinical conditions that may be characterized as a disc protrusion include a disc stenosis, a disc bulge, a herniated or sequestered disc, a slipped disc, and a prolapsed disc. Generally, a disc protrusion results in a decrease in disc height proportional to the volume of the protrusion. A degenerative disc may sometimes only involve the loss of disc height, and may or may not involve any significant protrusion. However, both degenerative discs and a disc protrusions usually involve some loss in disc height.
  • [0052]
    A common theory is that each intervertebral disc 50 forms one support point and the facet joints form two support points of what may be characterized as a three point support structure between adjacent vertebrae. However, in the lumbar region 12, the facet joints 28 are substantially vertical, leaving the disc 50 to carry the vast majority of the load. As between the annulus fibrosus 52 and the nucleus pulposus 54 of the disc 50, it is commonly believed that the nucleus 54 bears the majority of the load. This belief is based on the theory that the disc 50 behaves much like a balloon or tire, wherein the annulus 22 merely serves to contain the pressurized nucleus 54, and the nucleus 54 bears all the load.
  • [0053]
    However, this theory is questionable since the annulus fibrosus 52 comprises 60% of the total disc 50 cross-section, and the nucleus pulposus 54 only comprises 40% of the total disc 50 cross-section. In addition, the annulus fibrosus 52 is made of 40-60% organized collagen in the form of a laminated structure, whereas the nucleus pulposus 54 is made of 18-30% collagen in the form of a relatively homogenous gel. It seems a more plausible theory is that the annulus fibrosus 52 is the primary load bearing portion of the disc 50.
  • [0054]
    With reference to FIG. 2A, a left lateral view of an intervertebral disc 50 disposed between adjacent vertebrae 20 S (superior) and 20 I (inferior) is illustrated, wherein the disc 50 is partially protruding 56 from the normal disc space and the disc height is reduced. Although the disc 50 is shown to include a protrusion 56, the reduction in disc height may or may not be accompanied with a protrusion 56 as discussed previously. For example, if the disc 50 is degenerated, the disc height may be reduced with or without a corresponding protrusion 56.
  • [0055]
    It should be understood that the vertebrae shown in FIGS. 2A and 2B generically refer to any two adjacent vertebrae or any series of adjacent vertebrae, and that lumbar vertebrae 20 S and 20 I are specifically shown for purposes of illustration only. This generic method of illustrating vertebrae also applies to the remainder of the Figures.
  • [0056]
    With reference to FIG. 2B, a left lateral view of the intervertebral disc 50 disposed between adjacent vertebrae 20 S and 20 I is illustrated as in FIG. 2A. However, in this Figure, devices 100 and 200 of the present invention, which are illustrated schematically, eliminate the disc protrusion 56 and restore normal disc height. Specifically, one or more dynamic bias devices 100 and one or more reinforcement members 200 are utilized, either in combination or individually.
  • [0057]
    The dynamic bias device 100 restores disc height and, by conservation of disc volume, retracts the protrusion into the normal disc space thereby reducing nerve impingement by the protrusion. Restoring disc height also reduces the load carried by the facet joints thereby eliminating nerve impingement originating at the joint, restores intervertebral spacing thereby eliminating nerve impingement by the intervertebral foramina, and reduces pressure on portions of the annulus thereby alleviating nerve impingement in disc fissures.
  • [0058]
    The dynamic bias device 100 basically applies a bias force to the adjacent vertebrae 20 S and 20 I to which it is connected, but allows relative movement of the vertebrae 20 S and 20 I. The dynamic bias device 100 is conceptually similar to a spring attached to the adjacent vertebrae 20 S and 20 I. The dynamic bias device 100 applies a bias force (usually repulsive) between the vertebrae 20 S and 20 I when the disc height is normal or less than normal. The bias force is preferably set such that the disc height is normal with normal posture and loading, and increases with posterior flexure and/or added vertical load. The details of the design and use of the dynamic bias device 100 will be discussed in greater detail hereinafter, particularly with reference to FIGS. 3A-3C, 4A-4B, 5A-5B, 10A-10C, 11A-11B, 12A-12C, and 13A-13C.
  • [0059]
    Because most protrusions 56 are posterior, the dynamic bias device 100 is preferably mounted posterior to the axis of curvature 60. Locating the dynamic bias device 100 posterior to the axis of curvature 60 shifts the load carried by the disc 50 from the posterior portion of the disc to the anterior portion of the disc 50. Locating the dynamic bias device 100 posterior to the axis of curvature 60 also reduces the load carried by the facet joints. Preferably, the dynamic bias device 100 applies a substantially vertical bias force, with the direction independent of displacement.
  • [0060]
    Because more load will be shifted to the anterior portion of the disc 50 with a posterior mounted dynamic bias device 100, reinforcement members 200 may be placed in the anterior annulus 52, to effectively bolster the anterior portion of the disc. The reinforcement members 200 may be used to reinforce the disc, restore disc height and/or bear the load normally carried by annulus. The reinforcement members 200 are relatively rigid and thus serve to reinforce the disc 50 where inserted. In addition, the reinforcement members 200 may have a relatively large profile when implanted and thus increase disc height. The reinforcement members 200 are particularly beneficial if the disc 50 is degenerated, or if the disc 50 will likely become degenerated with the change in load distribution. The details of the design and use of the reinforcement members 200 will be discussed in greater detail hereinafter, particularly with reference to FIGS. 14A-14D and 15A-15R.
  • [0061]
    As mentioned previously, one or more dynamic bias devices 100 and one or more reinforcement members 200 may be utilized, either alone or in combination. Specifically: one or more dynamic bias devices 100 may be used alone; one or more spacer devices 200 may be used alone; and one or more dynamic bias devices 100 and one or more reinforcement members 200 may be used in combination. If a combination of devices 100/200 is used, it is believed that the use of one or more posterior dynamic bias devices 100 in combination with one or more anterior reinforcement members 200 is most effective in treating posterior protrusions 56, facet joint degradation, and nerve impingement by intervertebral foraminae, which are believed to be the most common culprits of chronic LBP.
  • [0062]
    As an alternative to the arrangement shown in FIG. 2B, two or more dynamic bias devices 100 may be attached to the vertebrae on opposite sides of vertebrae 20 S and 20 I. Specifically, one or more dynamic bias devices 100 is connected to vertebra 20 S and the vertebra immediately superior to vertebra 20 S, and one or more dynamic bias devices 100 is connected to vertebra 20 I and the vertebra immediately inferior to vertebra 201. With this arrangement, the dynamic bias devices 100 are primarily applying a traction force to effectively pull vertebrae 20 S and 20 I apart, thereby eliminating the disc protrusion 56 and restoring normal disc height.
  • [0063]
    With reference to FIGS. 3A-3C, the dynamic bias device 100 is schematically illustrated under conditions of no-load, compression load (LC), and traction load (LT), respectively. The dynamic bias device 100 includes a pair of attachment members 102, a bias member 104, and a housing 106. Attachment members 102 facilitate attachment of the dynamic bias device 100 to vertebrae 20 S and 20 I, as shown in FIG. 2B. Bias member 104 functions to apply a bias force between the attachment members 102. Housing 106 functions to separate the moving portions of dynamic bias device 100 from the surrounding muscle, ligaments and other tissue when the dynamic bias device 100 is implanted.
  • [0064]
    Attachment members 102 may comprise a wide variety of mechanical connection designs, and may incorporate into their design, or be used in combination with, other machine elements not specifically mentioned herein. For purposes of illustration only, the each attachment member 102 is shown as loop which may be connected to the vertebrae by fasteners and bushings, specific examples of which are described in detail with reference to FIGS. 6A-6D, 7A-7B, 8A-8B and 9A-9B. These specific examples are provided by way of example, not limitation. Those skilled in the art will recognize that the attachment members 102 may comprise or include screws, rivets, spikes, keys, pins, cotters, splines, couplings, bushings, washers, and the like, without departing from the scope or spirit of the present invention.
  • [0065]
    The primary function of the attachment members 102 is to fixedly secure the ends of the bias member 104 to the vertebrae 20 S and 20 I. Preferably, the attachment members 102 are secured to the vertebrae 20 S and 20 I such that translational movement is minimized or eliminated, and such that rotational movement is permitted between each attachment member 102 and each vertebrae 20 S and 20 I. Providing attachment members 102 with these functional attributes permits the dynamic bias device 100 to effectively transmit a bias force to each vertebrae 20 S and 20 I, allow relative movement therebetween, and minimize stress on the vertebrae 20 S and 20 I at the attachment points.
  • [0066]
    Bias member 104 functions to apply a bias force, either attraction or repulsion, between the attachment members 102. The bias force generally increases or decreases with displacement of the ends of the bias member 104, as with a conventional spring. In addition, the bias force may increase or decrease with the time derivative of displacement (i.e., velocity) of the ends of the bias member 104, as with a conventional damper or shock absorber. As shown in FIG. 3B, the bias member 104 compresses in response to a compression load (LC), thereby increasing or decreasing the bias force. Similarly, as shown in FIG. 3C, the bias member 104 extends in response to a traction load (LT), thereby increasing or decreasing the bias force.
  • [0067]
    If the dynamic bias devices 100 are attached to vertebrae 20 S and 20 I (compression embodiment), as shown in FIG. 2B, the bias force of the bias member 104 increases in response to a compression load (LC), and decreases in response to a traction load (LT). In addition, the bias member 104 normally operates in compression. Preferably, the bias force of the bias member 104 is adjusted such that the disc is restored to a more normal height when the dynamic bias device 100 is implanted. Because the disc height is usually initially less than normal, the dynamic bias device 100 is attached to the vertebrae with the bias member 104 preloaded in compression or with the vertebrae 20 S and 20 I in traction or otherwise spread apart. In this manner, for a given posture, the disc height will be larger following implantation of the dynamic bias device 100 than prior to implantation.
  • [0068]
    If the dynamic bias devices 100 are attached to the vertebrae on opposite sides of vertebrae 20 S and 20 I (traction embodiment), as discussed as an alternative to the arrangement shown in FIG. 2B, the bias force of the bias member 104 decreases in response to a compression load (LC), and increases in response to a traction load (LT). With this latter arrangement, the bias member 104 normally operates in tension. Because the bias member 104 normally operates in tension with this arrangement, the bias member 104 may simply comprise a member that is rigid or semi-rigid in tension, such as a cable. Also with this arrangement, the bias force of the bias member 104 is adjusted such that the disc is restored to a more normal height when the dynamic bias device 100 is implanted. Further with this arrangement, because the disc height is usually initially less than normal, the dynamic bias device 100 is attached to the vertebrae with the bias member 104 preloaded in tension or with the vertebrae 20 S and 20 I in traction or otherwise spread apart.
  • [0069]
    With either arrangement, the dynamic bias device 100 preferably operates with substantially linear displacement substantially parallel to the axis of curvature 60. However, the amount of displacement will be evenly shared between the dynamic bias devices 100 in the traction embodiment, whereas the compression embodiment requires the full displacement to be assumed by each dynamic bias device 100. The following ranges of displacement are given with reference to the compression embodiment. When mounted near the posterior portion of adjacent spinous processes, the dynamic bias device 100 may have a total (i.e., maximum) displacement preferably in the range of 1.0 to 3.0 cm to accommodate full posterior to anterior flexure in the L5-S1 region, 0.5 to 1.5 cm to accommodate full posterior to anterior flexure in the L4-L5 region, and 0.25 to 1.0 cm to accommodate full posterior to anterior flexure in the L1-L4 region.
  • [0070]
    Within these ranges of displacement, it is preferable that bias member 104 operate within its elastic limit, as dictated by the chosen material and geometry of the bias member 104. In addition, because the bias member preferably should be able to withstand 1.0 to 10 million fatigue cycles, it is preferable that bias member 104 operate within its fatigue limit, as dictated by the chosen material and geometry, for the full range of displacement.
  • [0071]
    As mentioned previously, the bias force may generally increase or decrease with displacement of the ends of the bias member 104, as with a conventional spring. In this situation, the bias force (FB) is generally governed by Hooke's Law where FB=KΔX, wherein FB is linearly proportional to the displacement (ΔX) as dictated by the spring constant (K) of the bias member 104. Also as mentioned previously, the bias force may increase or decrease with the time derivative of displacement (i.e., velocity) of the ends of the bias member 104, as with a conventional damper or shock absorber. In this situation, the bias force (FB) is generally linearly proportional to the derivative of displacement (ΔX/ΔT) as dictated by the damper constant (P) of the bias member 104. Preferably, the bias force FB Of the bias member 104 is adjusted such that the disc is restored to a more normal height when the dynamic bias device 100 is implanted. The bias force FB may be adjusted by selecting the spring constant (K) and/or damper constant (P) of the bias member 104 and by pre-loading (compressing) the bias member 104 an initial displacement ΔXi.
  • [0072]
    The necessary bias force FB may be roughly calculated as a function of body weight (BW), the distance of the mounted dynamic bias device 100 from the axis of curvature 60, and the mechanical properties of the surrounding tissues (muscle tissue, connective tissue, joints). The normal net load carried by the lumbar region 12 is roughly 30% BW when laying down, 140% BW when standing, 185% BW when sitting, 215% BW when bending forward, and 250% BW when slouching.
  • [0073]
    With reference to FIG. 16, a bias force versus attachment point displacement curve for the dynamic bias device 100 is shown. The bias force is intended to be sufficiently high to spread the attachment points (e.g., processes of adjacent vertebrae) and restore normal disc height in all postures. For example, in normal standing posture, the bias force is sufficiently high to spread the attachment points as shown in FIG. 16, such that more normal disc size and shape is obtained. As the spine is placed in flexion and extension, the amount of force carried by the dynamic bias device 100 will change as a function of the spring properties, including the spring constant (K) and the compression length of the spring.
  • [0074]
    In a preferred embodiment, the bias force is sufficient to shift the pre-implant (normal posture) distance to the post-implant (normal posture) distance. To prevent excessive compression of the disc, particularly the posterior disc, it is also preferred that the bias force increase significantly as the attachment points come closer, as by extension, lifting and/or poor posture. This is facilitated by the natural increase in bias force of the spring as the distance decreases, and is aided by the damper pad and the compression limit (bottomed out) of the spring. In addition, because the dynamic bias device is intended to limit excessive compression of the posterior disc, and not necessarily intended to limit flexion of the spine, it is also preferable that the bias force approach zero (spring fully extended) at a distance which is less than the extension limit of the dynamic bias device.
  • [0075]
    Thus, by way of example, not limitation, the bias force may be in the range of 1% to 30% BW when laying down. With other postures after implantation, the bias force may be estimated by subtracting the contribution of body weight from the load carried by lumbar region 12, which is approximately 50% BW (head=5% BW; arms=9% BW; trunk=36% BW). As such, the bias force may be in the range of 10% to 90% BW when standing.
  • [0076]
    With reference to FIGS. 4A-4B and 5A-5B, left lateral and posterior views of dynamic bias devices 100 are schematically illustrated as being mounted to adjacent spinous processes 24 S and 24 I of adjacent vertebrae 20 S and 20 I. When two or more dynamic bias devices 100 are utilized per pair of vertebrae as shown in FIGS. 4A and 4B, the dynamic bias devices 100 are preferably mounted substantially equidistant from the median plane 70, or otherwise symmetric about the median plane 70, in order to avoid causing lateral bias or curvature of the spine 10. Note that the dynamic bias devices 100 may be mounted substantially vertical as shown or at an angle to the median plane 70 and satisfy these criteria. When only one dynamic bias device 100 is utilized per pair of vertebrae as shown in FIGS. 5A and 5B, the dynamic bias device 100 is preferably mounted in or near the median plane 70 for the same reason.
  • [0077]
    Although it is preferable to have the dynamic bias device(s) 100 near the median plane 70, substantially equidistant from the median plane 70, or otherwise symmetric about the median plane 70, it is possible to have multiple dynamic bias devices 100 mounted asymmetrically while maintaining balanced bias forces about the median plane 70. The objective is to avoid causing lateral bias or curvature of the spine 10, which is a function of balancing bias forces and moments about the median plane 70.
  • [0078]
    The bias forces are vectors which have a magnitude governed by the properties of the bias member 104, and a direction dictated by the mounting position of the dynamic bias device 100. Each dynamic bias device 100 has two bias force vectors, one for each attachment member 102 at each attachment point. Each bias force vector has a moment arm equal to the distance from the attachment point to the median plane 70. For each attachment point, the product of the moment arm and the vertical component of the bias force vector is the moment or torque applied to the spine 10, and the horizontal component of the bias force vector is the shear applied to the spine 10. Thus, in order to minimize curvature of the spine 10, all of the moments are balanced about the median plane 70 In order to minimize lateral bias on the spine 10, all of the horizontal components of the bias force vectors are balanced about the median plane 70. The easiest way to accomplish this result, of course, is to mount the dynamic bias devices 100 symmetrically about the median plane 70. However, those skilled in the art will recognize that asymmetric mounting arrangements that substantially meet these criteria are also possible.
  • [0079]
    Further, because most protrusions 56 are posterior, the dynamic bias device(s) 100 is/are preferably mounted posterior to the axis of curvature 60. This is advantageous because loss of disc height is most common in the posterior disc 50, the largest amount of mechanical advantage about the anterior disc is obtained posterior to the axis of curvature 60, and the posterior portions of the vertebrae are easiest to access less invasively. However, the dynamic bias device(s) 100 may be mounted at any position relative to the axis of curvature 60 depending on the location of the protrusion 56, as long as the dynamic bias device(s) 100 is/are near the median plane 70, substantially equidistant from the median plane 70, or otherwise symmetric about the median plane 70 as discussed above.
  • [0080]
    Given these criteria, there are many suitable mounting locations or attachment points for the dynamic bias device 100. Some of the possible attachment points are labeled A-N in FIGS. 1A and 1B. Attachment points A-G refer to the lumbar vertebrae 20 (L1-L5), and attachment points H-N refer to the sacral vertebrae 30 (particularly S1). The attachment points A-G of the lumbar region 12 are equally applicable to the thoracic and cervical regions of the spine 10, which are not illustrated for purposes of simplicity only.
  • [0081]
    In the lumbar region 12, attachment points A and B refer to the left lateral and right lateral surfaces of the spinous process 24; attachment point C refers to the posterior surface of the spinous process 24; attachment points D and E refer to the posterior surfaces of the left and right laminae 23; and attachment points F and G refer to the distal ends of the left and right transverse processes 25.
  • [0082]
    In the sacrum 14, attachment points H and I refer to the left lateral and right lateral surfaces of the superior median sacral crest 31; attachment points K and L refer to the posterior surfaces of the sacral laminae 33 between the median sacral crest 31 and the intermediate sacral crests 32; and attachment points M and N refer to posterior surface between the intermediate sacral crests 32 and the lateral sacral crests 34.
  • [0083]
    A wide variety of sets of attachment points are possible, a non-exhaustive list of which is set forth herein. For single dynamic bias device 100 mounting, the nomenclature is (X1Y1) where X1 is the attachment point on vertebra X, and Y1 is the attachment point on vertebra Y. For double dynamic bias device 100 mounting, the nomenclature is (X1Y1, X2Y2) where X1 is the attachment point of the first dynamic bias device 100 on vertebra X, Y1 is the attachment point of the first dynamic bias device 100 on vertebra Y, X2 is the attachment point of the second dynamic bias device 100 on vertebra X, and Y2 is the attachment point of the second dynamic bias device 100 on vertebra Y. Vertebrae X and Y refer to any two different vertebrae, which are usually, but not necessarily, adjacent. In addition, vertebrae X and Y may be superior and inferior, respectively, or vice-versa.
  • [0084]
    To illustrate the attachment point nomenclature, reference may be made to FIGS. 4B and 5B. In FIG. 4B, a first dynamic bias device 100 is attached to the left lateral surface of the two spinous processes, and a second dynamic bias device 100 is attached to the right lateral surface of the two spinous processes. Thus, the set of attachment points for the arrangement of FIG. 4B is (AA, BB). In FIG. 5B, only one dynamic bias device 100 is attached to the posterior surface of the two spinous processes. Thus, the set of attachment points for the arrangement of FIG. 5B is (CC).
  • [0085]
    By way of example, not limitation, the following sets of attachment points may be used to satisfy the above-referenced criteria with regard to balancing moments and forces about the median plane 70. For single dynamic bias device 100 mounting: (CC); and (CJ) are preferred. For double dynamic bias device 100 mounting: (AA, BB); (DD, EE); (FF, GG); (AH, BI); (DK, EL); (FK, GL); (DM, EN); and (FM, GN) are preferred. Also for double dynamic bias device 100 mounting: (AD, BE); (AF, BG); (AK, BL); (AM, BN); (DH, El); (DF, EG); (FH, GI); (CA, CB); (CH, CI); (CD, CE); (CF, CG); (CK, CL); (CM, CN); (JA, JB); (JH, JI); (JD, JE); and (JF, JG) are possible. For more than double mounting, any combination of these sets may be used. Generally, the more posterior the attachment points, the less invasive the procedure will be. Attachment points A, B, C, H and I are preferred for this reason. In addition, to avoid interfering with the motion of the vertebrae, the dynamic bias device 140 is preferably disposed laterally or posteriorly of the spinous processes 24, as opposed to under and between the spinous processes 24.
  • [0086]
    The dynamic bias device 100 may be attached to these points by conventional surgical techniques, except as described herein. The posterior musculature and connective tissues may be dissected to expose the desired attachment points. If desired, any disc protrusions 56 may be removed, in whole or in part, using a conventional discectomy procedure. Also if desired, any other abnormal spinal growths or protrusions may be removed. However, for many disc protrusions 56, it is anticipated that conventional traction or separation techniques may be employed to temporarily retract the protrusion 56 into the normal disc space until the dynamic bias devices are implanted.
  • [0087]
    In order to establish separation of the vertebrae, the spine may be placed in traction or conventional intervertebral separation tools may be used. Alternatively, the dynamic bias device 100 may be preloaded such that when the device is released after attachment, the bias force establishes the desired amount of separation.
  • [0088]
    Pilot holes are drilled as needed, such as for the use of bushings 330, 340 and/or 350 (described with reference to FIGS. 7A-7B, 8A-8B and 9A-9B hereinafter). If attachment points A, B, H and I are to be used, such as with the use of bushing 320 (described with reference to FIGS. 6A-6D hereinafter), a hole 90 and counter-bore 92 may be drilled into the spinous process 24. The device(s) 100 are then attached to the desired attachment points in accordance with the hardware being used, and the site is subsequently surgically closed.
  • [0089]
    With reference to FIGS. 6A-6D, 7A-7B, 8A-8B and 9A-9B, various embodiments of bushings 320, 330, 340, and 350, respectively, are illustrated. As mentioned previously, the attachment members 102 may comprise a wide variety of mechanical connection designs, and may incorporate into their design, or be used in combination with, other machine elements such as bushings 320, 330, 340, and 350. Bushings 320, 330, 340, and 350 are adapted to mount one or two dynamic bias devices 100. As illustrated, bushings 320, 330, 340, and 350 are adapted to receive attachment members 102 in the form of loops or the like, but may be modified to receive other structures. A primary function of bushings 320, 330, 340, and 350 is to isolate movement of the attachment members 102 from the vertebrae to which they are attached. Thus, the bushing to bone (vertebrae) interface is static, while the bushing to attachment member interface is dynamic. This reduces if not eliminates the abrasive degradation of the vertebrae due to the attachment of the dynamic bias device 100. The orientation of the vertebral surface at the attachment points will determine the best bushing scheme.
  • [0090]
    With reference to FIGS. 6A-6B, end and exploded views, respectively, of a bushing 320 are illustrated. Bushing 320 is particularly suitable for attachment to the spinous process 24 as shown in FIG. 6C, or attachment points A, B, H and I as illustrated in FIG. 1A. Bushing 320 may be attached to the spinous process 24 utilizing a conventional fastener 300, which includes bolt 302, nut 304 and washers 306 and 308. Preferably, the fastener 300 is a lock fastener such that it will not have a tendency to unscrew with relative motion of the attachment members 102. However, the nut 304 is not tightened so much as to inhibit rotational movement of the attachment members 102. Fastener 300 may alternatively comprise a key and pin (e.g., cotter pin). When fully assembled, the attachment members 102 are disposed around the shaft of the bolt 302 on either side of the bushing 320 and between the washers 306 and 308.
  • [0091]
    Bushing 320 includes a male fitting 321 which fits into a female fitting 324. The male fitting 321 includes a shank portion 322 and a head portion 323. Similarly, the female fitting 324 includes a shank portion 325 and a head portion 326. The female fitting 324 has an inside diameter sized to accommodate the shank 322 of the male fitting 321, and the male fitting 321 has an inside diameter sized to accommodate the bolt 302 of the fastener 300. The outside surface of the shank 322 of the male fitting 321 and the inside surface of the shank 325 of the female fitting 324 may include mating threads.
  • [0092]
    The size of the head 323/326 to bone interface is preferably maximized to minimize stress concentration and to distribute torsional loads over a large surface area. The size of the female shank 25 and the corresponding size of the hole 90 drilled through the spinous process 24 are chosen to minimize stress concentration and minimize the loss of bone integrity. A counter-bore 92 may be used to flatten and thereby maximize the contact surface area of the head 323/326 to bone interface, as illustrated in FIG. 6D.
  • [0093]
    The materials of the fastener 300 and bushing 320 may comprise any suitable implantable material capable of withstanding high fatigue. For example, all components could be comprised of 300 or 400 series stainless steel, titanium alloy 6-4, or MP35N alloy. Preferably, all components would be made of the same or similar material to reduce galvanic corrosion. The surfaces of the fastener 300 and bushing 320 that engage the attachment members 102 of the dynamic bias device 100 are preferably smooth to reduce friction and wear. The surfaces of the bushing 320 that engage the vertebrae may have a roughened surface (e.g., knurled) to reduce the likelihood of relative movement therebetween. In addition, the surfaces of the bushing 320 that engage the vertebrae may have a porous sintered surface to facilitate solid bone growth, thereby further securing the bushing 320. Coatings and surface treatments may be utilized to reduce or increase friction where desired, and biological response where tissue interface is likely.
  • [0094]
    With reference to FIGS. 7A-7B, end and exploded views, respectively, of a bushing 330 are illustrated. Except as described herein, bushing 330 is substantially the same in design, function and use as bushing 320. Bushing 330 is adapted to mount one or (preferably) two dynamic bias devices 100. Bushing 330 is particularly suitable for attachment points C and J as illustrated in FIG. 1B. Bushing 330 may be attached to the vertebrae 20/30 utilizing a conventional bone screw 310, which may be modified in diameter, length and thread type for the particular attachment site and condition.
  • [0095]
    Bushing 330 includes two male fittings 331 which fit into a female fitting 334. The male fittings 331 each include a shank portion 332 and a head portion 333. Similarly, the female fitting 334 includes two shank portions 335 and two head portions 336. The female fitting 334 has an inside diameter sized to accommodate the shanks 332 of the male fittings 331, and the male fittings 331 have an inside diameter sized to accommodate the bolt 302 of the fastener 300. The outside surfaces of the shanks 332 of the male fittings 331 and the inside surfaces of the shanks 335 of the female fitting 334 may include mating threads. When fully assembled, the attachment members 102 are disposed around the shanks 335 on either side of heads 336 of the female fitting 334 and between the heads 333 of the male fittings 331.
  • [0096]
    With reference to FIGS. 8A-8B, end and exploded views, respectively, of a bushing 340 are illustrated. Except as described herein, bushing 340 is substantially the same in design, function and use as bushing 330. Bushing 340 is adapted to mount one dynamic bias device 100. Bushing 340 is particularly suitable for attachment points C, D, E, F, G, J, K, L, M and N, but may also be used for attachment points A, B, H and I as illustrated in FIGS. 1A and 1B. Bushing 340 may be attached to the vertebrae 20/30 utilizing a conventional bone screw 310, which may be modified in diameter, length and thread type for the particular attachment site and condition.
  • [0097]
    Bushing 340 includes a male fitting 341 which fits into a female fitting 344. The male fitting 341 includes a shank portion 342 and a head portion 343. Similarly, the female fitting 344 includes a shank portion 345 and a head portion 346. The female fitting 344 also includes a flange 347 connecting the bone screw 310 to the bushing 340. The female fitting 344 has an inside diameter sized to accommodate the shank 342 of the male fitting 341, and the male fitting 341 has an inside diameter sized to accommodate the bolt 302 of the fastener 300. The outside surface of the shank 342 of the male fitting 341 and the inside surface of the shank 345 of the female fitting 344 may include mating threads. When fully assembled, the attachment member 102 is disposed around the shank 345 on the female fitting 344 and between the heads 343/346 of the fittings 341/344. When mounted, the axis of the shank 345 of bushing 340 is oriented parallel to the mounting surface.
  • [0098]
    With reference to FIGS. 9A-9B, end and exploded views, respectively, of a bushing 350 are illustrated. Except as described herein, bushing 350 is substantially the same in design, function and use as bushing 340. Bushing 350 is adapted to mount one dynamic bias device 100. Bushing 350 is particularly suitable for attachment points C, D, E, F, G, J, K, L, M and N, but may also be used for attachment points A, B, H and I as illustrated in FIGS. 1A and 1B. Bushing 350 may be attached to the vertebrae 20/30 utilizing a conventional bone screw 310, which may be modified in diameter, length and thread type for the particular attachment site and condition. In this particular embodiment, the fastener 300 is formed integrally with the bone screw 310.
  • [0099]
    Bushing 350 includes a male fitting 351 which fits into a female fitting 354. The male fitting 351 includes a shank portion 352 and a head portion 353. Similarly, the female fitting 354 includes a shank portion 355 and a head portion 356. The female fitting 354 has an inside diameter sized to accommodate the shank 352 of the male fitting 351, and the male fitting 351 has an inside diameter sized to accommodate the bolt 302, which is integral with the bone screw 310. The outside surface of the shank 352 of the male fitting 351 and the inside surface of the shank 355 of the female fitting 354 may include mating threads. When fully assembled, the attachment member 102 is disposed around the shank 355 on the female fitting 354 and between the heads 353/356 of the fittings 351/354. When mounted, the axis of the shank 355 of bushing 350 is oriented perpendicular to the mounting surface.
  • [0100]
    With reference to FIGS. 10A-10C, side views of a dynamic bias device 110 are illustrated in a no-load condition, in a compression load condition, and in cross-section, respectively. Except as described herein, dynamic bias device 110 is substantially the same in design, function and use as the generic device 100 described previously. Dynamic bias device 110 includes a barrel 111 in which piston 112 is slidably disposed. A bias member in the form of a spring 113 is disposed in the barrel 111. Longitudinal displacement of the barrel 111 relative to the piston 112 causes compression (or extension) of the spring 113. The spring 113 provides a bias force which increases (or decreases) linearly with displacement as discussed previously. A flexible housing (not shown) may be placed about the dynamic bias device 110 to isolate the moving parts 111/112 from the surrounding tissue when implanted.
  • [0101]
    An adjustable arm 114 may be connected to the piston 112. The arm 114 and the barrel 111 include holes 115 or other suitable attachment members, which may be used in combination bushings 320, 330, 340 and 350, to attach the dynamic bias device 110 to the vertebrae. The adjustable arm 114 and the piston 112 may include mating threads such that rotation of the arm 114 causes the arm 114 to effectively lengthen or shorten the piston 112. This allows the distance between the holes 115 to be varied to accommodate different attachment locations and different anatomies. This also allows the dynamic bias device to be preloaded by extending the effective length of the piston 112 beyond the distance between attachment points.
  • [0102]
    A collar 116 is provided to limit the extended length of the dynamic bias device 110. The collar 116 may include threads that mate with threads inside the barrel 111 such that the collar 116 is adjustable, and thus the extended length is adjustable. The collar 116 may also include an elastomeric bumper pad to dampen impact between the piston 112 and the collar when the device 110 is filly extended. Similarly, a elastomeric bumper pad 117 may be provided in the barrel 111 to dampen impact between the piston 112 and the barrel 111 when the device 110 is filly collapsed.
  • [0103]
    With reference to FIG. 11A, a cross-sectional view of a dynamic bias device 120 is illustrated. Except as described herein, dynamic bias device 120 is substantially the same in design, function and use as dynamic bias device 110 discussed with reference to FIGS. 10A-10C. Dynamic bias device 120 includes a barrel 121 in which piston 122 is slidably disposed. A bias member 123 in the form of a compressed or evacuated fluid (liquid or gas or a combination of both) is disposed in the barrel 121 and sealed relative to the piston 122 by piston ring 128. The barrel 121 and piston 122 may define a closed volume or an exhaust reservoir 129 may be used as shown. The bias fluid 123 is in fluid communication with the exhaust reservoir 129 by way of an exhaust port through the wall of the barrel 121. The exhaust reservoir 129 may comprise an expandable annular bag as shown, or other suitable structure. If a closed volume is used, longitudinal displacement of the barrel 121 relative to the piston 122 simply causes a change in pressure of the fluid 123. If an exhaust reservoir 129 is used as shown, longitudinal displacement of the barrel 121 relative to the piston 122 causes a change in pressure of the fluid 123 and flow of fluid 123 into the exhaust reservoir 129 via the exhaust port. The pressure of the fluid 123 and the size of the exhaust hole dictates the bias force which increases (or decreases) with the time derivative of displacement as discussed previously.
  • [0104]
    A flexible housing (not shown) may be placed about the dynamic bias device 130 to isolate the moving parts 121/122 from the surrounding tissue when implanted. The housing may be used to define the exhaust reservoir 129. An adjustable arm 124 may be connected to the piston 122. The arm 124 and the barrel 121 include holes 125 or other suitable attachment members to attach the dynamic bias device 120 to the vertebrae. The adjustable arm 124 and the piston 122 may include mating threads to effectively lengthen or shorten the piston 122. An adjustable collar 126 may be provided including mating threads such that the collar 126 is adjustable, and thus the extended length of the dynamic bias device 120 is adjustable. The collar 126 may include an elastomeric bumper pad (not shown) and an elastomeric bumper pad 127 may be provided in the barrel 121 to dampen impact between the piston 122 and the barrel 121.
  • [0105]
    With reference to FIG. 11B, a cross-sectional view of a dynamic bias device 130 is illustrated. Except as described herein, dynamic bias device 130 is substantially the same in design, function and use as the combination of dynamic bias device 110 discussed with reference to FIGS. 10A-10C and dynamic bias device 120 described with reference to FIG. 11A.
  • [0106]
    Dynamic bias device 130 includes a barrel 131 in which piston 132 is slidably disposed. A bias member is the form of a spring 133A is disposed in the barrel 131. Longitudinal displacement of the barrel 131 relative to the piston 132 causes compression (or extension) of the spring 133. The spring 133 provides a bias force which increases (or decreases) linearly with displacement as discussed previously. In addition, a bias member 133B in the form of a compressed or evacuated fluid (liquid or gas) is disposed in the barrel 131 and sealed relative to the piston 132 by piston ring 138.
  • [0107]
    The barrel 131 and piston 132 may define a closed volume or an exhaust reservoir 129 may be used as shown. The bias fluid 133 is in fluid communication with the exhaust reservoir 139 by way of an exhaust port through the wall of the barrel 131. The exhaust reservoir 139 may comprise an expandable annular bag as shown, or other suitable structure. If a closed volume is used, longitudinal displacement of the barrel 131 relative to the piston 132 simply causes a change in pressure of the fluid 133. If an exhaust reservoir 139 is used as shown, longitudinal displacement of the barrel 131 relative to the piston 132 causes a change in pressure of the fluid 133 and flow of fluid 133 into the exhaust reservoir 139 via the exhaust port. The pressure of the fluid 133 and the size of the exhaust hole dictates the bias force which increases (or decreases) with the time derivative of displacement as discussed previously. Thus, the bias members 133A/133B effectively act as a combined spring and damper.
  • [0108]
    A flexible housing (not shown) may be placed about the dynamic bias device 130 to isolate the moving parts 131/132 from the surrounding tissue when implanted. The housing may be used to define the exhaust reservoir 139. An adjustable arm 134 may be connected to the piston 132. The arm 134 and the barrel 131 include holes 135 or other suitable attachment members to attach the dynamic bias device 130 to the vertebrae. The adjustable arm 134 and the piston 132 may include mating threads to effectively lengthen or shorten the piston 132. An adjustable collar 136 may be provided including mating threads such that the collar 136 is adjustable, and thus the extended length of the dynamic bias device 130 is adjustable. The collar 136 may include an elastomeric bumper pad (not shown) and an elastomeric bumper pad 137 may be provided in the barrel 131 to dampen impact between the piston 132 and the barrel 131.
  • [0109]
    With reference to FIGS. 12A-12B, rear and side views of dynamic bias device 140 are illustrated in no-load condition. FIG. 12C illustrates the dynamic bias device 140 subjected to a compression load. Except as described herein, dynamic bias device 140 is substantially the same in design, function and use as the generic device 100 described previously. Although movement of the dynamic bias device 140 in compression and extension is substantially linear and parallel to the axis of curvature 60, as with dynamic bias device 100, some lateral or posterior-anterior motion is present, but preferably minimized. Dynamic bias device 140 includes bias member 142 and loops 144 or other suitable attachment members, which may be used in combination bushings 320, 330, 340 and 350, to attach the dynamic bias device 140 to the vertebrae. The bias member 142 is may be a semi-circular or semi-elliptical leaf spring, which may be a single plate as shown or a series of laminated plates. Relative longitudinal displacement of the attachment members 144 causes compression (or extension) of the leaf spring 142. The leaf spring 142 provides a bias force which increases (or decreases) with displacement as discussed previously.
  • [0110]
    The radius or axis of curvature of the leaf spring 142 is preferably maximized such that displacement of the attachment members 144 is substantially linear, but should not be so high as to result in buckling or inversion in compression. By way of example, not limitation, the radius or axis of curvature may range from half the distance between the attachment points to approximately 10 cm. Of course, half the distance between attachment points will vary depending on the location of each attachment point, but will likely be in the range of 1.0 to 3.0 cm for attachment points between adjacent processes.
  • [0111]
    The displacement of the apex 143 is preferably of the leaf spring 142 minimized to minimize disturbance of and interference from surrounding tissue (bone, muscle, connective tissue, nerves, etc.). The apex 143 may face anteriorly, but preferably faces posteriorly or laterally to reduce interference with tissue close to the spinal column. The dynamic bias device 140, and particularly the leaf spring 142, is preferably disposed laterally or posteriorly of the spinous processes 24 to avoid interference with movement of the vertebrae.
  • [0112]
    With reference to FIGS. 13A-13C, various alternative dynamic bias devices 150, 160 and 170 are illustrated in side and posterior views. Except as described herein, dynamic bias devices 150, 160 and 170 are substantially the same in design, function and use as the dynamic bias device 140 discussed with reference to FIGS. 12A-12C.
  • [0113]
    Dynamic bias device 150 as seen in FIG. 13A includes bias member 152 in the form of an articulated leaf spring, and attachment members 154. Articulated leaf spring 152 reduces the horizontal range of movement by utilizing a plurality of articulations 153 having a smaller radius or axis of curvature. The reduced horizontal range of movement of the bias member 152 reduces the amount of disturbance and interference from surrounding tissue (bone, muscle, connective tissue, nerves, etc.).
  • [0114]
    Dynamic bias device 160 as seen in FIG. 13B includes a plurality of bias members 162 in the form of leaf springs (shown) or articulated leaf springs (not shown), and attachment members 164. Utilizing a plurality of leaf springs 162 increases stability of the dynamic bias device 160 and allows for greater net bias forces to be delivered to the attachment members 164 and the vertebrae attached thereto.
  • [0115]
    Dynamic bias device 170 as seen in FIG. 13C includes a plurality of bias members 172 in the form of leaf springs (shown) or articulated leaf springs (not shown). The dynamic bias device 170 also includes attachment members 174 in the form of inverted semi-circular loops. The inverted semi-circular loops 174 permit the device 170 to be attached to the inferior and superior sides spinous processes of adjacent vertebrae, such that the attachment members 174 are disposed between adjacent spinous processes but the bias members 172 are disposed laterally of the spinous processes to avoid interference with movement of the vertebrae.
  • [0116]
    Dynamic bias devices 110, 120, 130, 140, 150, 160 and 170 may be used (i.e., implanted) substantially as described with reference to generic dynamic bias device 100. As mentioned previously, one or more reinforcement members 200 may be used in combination with one or more dynamic bias devices 100. The reinforcement members 200 may be used to reinforce the disc, restore disc height and/or bear some or all of the load normally carried by the annulus. The reinforcement members 200 are relatively rigid and thus serve to reinforce the disc 50, and particularly the annulus 52, where inserted. In addition, the reinforcement members 200 may have a relatively large profile when implanted and thus increase disc height.
  • [0117]
    The reinforcing members 200 may be used singularly or in groups, depending on the increase in disc 50 height desired and/or the amount of reinforcement of the annulus 52 desired. For example, the reinforcing members 200 may be stacked as illustrated in FIG. 2B or inserted side-by-side as illustrated in FIG. 15R. In addition, the reinforcing members 200 may be located in virtually any portion of the annulus 52. Preferably, the reinforcing members 200 are substantially symmetrically disposed about the median plane 70 to avoid causing curvature of the spine 10. Although the reinforcing members 200 may be inserted, in part or in whole, into the nucleus 54, it is preferable to insert them into the annulus 52 for purposes of stability and load carrying. Specifically, to provide stability, it is desirable to symmetrically locate the reinforcing members 200 as far as reasonably possible from the median plane 70, or to span as great a distance as possible across the median plane 70. In addition, because the annulus 52 of the disc 50 is believed to carry the majority of the load, particularly in the lumbar region 12, the reinforcing members 200 are preferably placed in the annulus 52 to assume the load normally carried thereby, and reinforce the load bearing capacity of the annulus 52, without hindering the normal mobility function of the disc 50.
  • [0118]
    The reinforcing members 200 may comprise expandable members such as self-expanding members 210 or inflatable members 220. Alternatively, the reinforcing members 200 may comprise unexpandable members such as reinforcement bars 230. When implanting each type of reinforcement member 210/220/230, it is preferable to maintain the integrity of the annulus 52. Accordingly, space in the annulus 52 for the reinforcing members 200 is preferably established by dilation or the like, although some amount of tissue removal may be used.
  • [0119]
    The expandable reinforcement members 210/220 are useful because they may be delivered in a low profile, unexpanded condition making it easier to traverse the very tough and fibrous collagen tissue of the annulus 52. For similar reasons, the reinforcement bars 230 are useful because they may have a small diameter and a sharpened tip. Although it is possible to insert the expandable reinforcing members 210/220 into the annulus 52 in their final expanded state, it is desirable to deliver the expandable reinforcing members 210/220 into the annulus 52 in an unexpanded state and subsequently expand them in order to minimize invasiveness and resistance to insertion.
  • [0120]
    The self-expanding reinforcing member 210 may comprise a solid or semi-solid member that self-expands (e.g., by hydration) after insertion into the annulus. Examples of suitable materials for such solid or semi-solid members include solid fibrous collagen or other suitable hard hydrophilic biocompatible material. If the selected material is degradable, the material may induce the formation of fibrous scar tissue which is favorable. If non-degradable material is selected, the material must be rigid and bio-inert. The self-expanding reinforcing member 210 preferably has an initial diameter that is minimized, but may be in the range of 25% to 75% of the final expanded diameter, which may be in the range of 0.3 to 0.75 cm, or 10% to 75% of the nominal disc height. The length of the self-expanding member 210 may be in the range of 1.0 to 6.0 cm, and preferably in the range of 2.0 to 4.0 cm.
  • [0121]
    The inflatable reinforcing member 220 may comprise an expandable hollow membrane capable of inflation after insertion into the annulus. An example of a suitable inflatable structure is detachable balloon membrane filled with a curable material. The membrane may consist of a biocompatible and bio-inert polymer material, such as polyurethane, silicone, or polycarbonate-polyurethane (e.g., Corethane). The curable filler material may consist of a curable silicone or polyurethane. The filler material may be curable by chemical reaction (e.g., moisture), photo-activation (e.g., UV light) or the like. The cure time is preferably sufficiently long to enable activation just prior to insertion (i.e., outside the body) and permit sufficient time for navigation and positioning of the member 220 in the disc. However, activation may also take place inside the body after implantation. The inflatable reinforcing member 220 preferably has an initial deflated diameter that is minimized, but may be in the range of 25% to 75% of the final inflated diameter, which may be in the range of 0.3 to 0.75 cm, or 10% to 75% of the nominal disc height. The length of the inflatable member 220 may be in the range of 1.0 to 6.0 cm, and preferably in the range of 2.0 to 4.0 cm.
  • [0122]
    The reinforcement bars 230 may comprise a rigid, solid or hollow bar having a sharpened tip. The reinforcement bars 230 may comprises stainless steel mandrels, for example, having a diameter in the range of 0.005 to 0.100 inches, preferably in the range of 0.010 to 0.050 inches, and most preferably in the range of 0.020 to 0.040 inches, and a length in the range of 1.0 to 6.0 cm, and preferably in the range of 2.0 to 4.0 cm. The reinforcement bars 230 may be straight for linear insertion, or curved to gently wrap with the curvature of the annulus during insertion. In addition, the outer surface of the reinforcement bars 230 may have circular ridges or the like that the permit easy insertion into the annulus 52 but resist withdrawal and motion in the annulus following implantation. Other suitable materials for reinforcement bars 230 include titanium alloy 6-4, MP35N alloy, or super-elastic nickel-titanium alloy.
  • [0123]
    Referring now to FIGS. 14A-14D, various tools 410, 420 and 430 are shown individually and assembled. The tools 410, 420 and 430 may be used to implant the reinforcement devices 210/220/230 discussed above. The tools include a rigid, sharpened, hollow needle 410, a semi-rigid, sharpened, hollow curved needle 420, and a sharpened stylet 430. As seen in FIG. 14D, the sharpened stylet 430 fits into the semi-rigid needle 420 which fits into the rigid needle 410.
  • [0124]
    With specific reference to FIG. 14A, the rigid hollow needle 410 includes a hollow shaft 412 and a grip or handle 414. The shaft 412 includes a sharpened tip 413 to facilitate insertion into and pass through the surrounding tissue. The shaft 412 is preferably made of a rigid metal such as a stainless steel hypodermic tube. The grip 414 may comprise a polymer and may be formed by insert injection molding with the shaft 412 inserted into the mold.
  • [0125]
    With specific reference to FIG. 14B, the semi-rigid curved needle 420 includes a hollow shaft 422 a hub 424. The shaft 422, which includes a sharpened tip 423, is longer than the rigid needle 410 and has an outside diameter sufficiently small to fit into the rigid needle 410. The shaft 422 is preferably made of a semi-rigid polymer or composite. The shaft 422 includes a curved distal portion 426 that may be straightened (shown in phantom) upon insertion of the semi-rigid needle 420 into the lumen of the rigid needle 410. The hub 424 may include a fitting 425 to facilitate connection to a fluid source or a pressure source (e.g., a syringe).
  • [0126]
    With specific reference to FIG. 14C, the sharpened stylet 430 includes a flexible shaft 432 and a sharpened distal end 433. The shaft 432 is longer than the both the rigid needle 410 and the semi-rigid needle 420, and may have a length on the order of 10 to 60 cm. The shaft 432 also has an outside diameter sufficiently small to fit into the semi-rigid needle 420. The shaft 422 preferably has a flexible but pushable construction incorporating a rigid metal such as stainless steel, or super-elastic nickel-titanium alloy. The sharpened stylet 430 is preferably highly elastic, to resist permanent set upon insertion into the curved portion 426 of the semi-rigid needle 420.
  • [0127]
    With general reference to FIGS. 15A-15J, the steps for implanting a self-expanding reinforcement member 210 are illustrated. It should be understood that the procedure for implanting a single member 210 in the anterior annulus 52 is shown for purposes of illustration, not limitation. All of the variables with regard to quantity, location, orientation, etc. discussed previously may be implemented by varying the generic procedure described hereinafter.
  • [0128]
    Initially, the sharpened stylet 430, semi-rigid needle 420 and rigid needle 410 are assembled as shown in FIG. 14D. As shown in FIG. 15A, the distal portion of the assembly 410/420/430 is inserted into the disc 50 as in a conventional discogram procedure. The assembly 410/420/430 is advanced until the distal tip 413 of the rigid needle is proximate the anterior curvature of the annulus 52, near the anterior side of the nucleus 54, as seen in FIG. 15B. The semi-rigid needle 420 (alone or with stylet 430) is advanced relative to the rigid needle 410 until the curved portion 426 of the semi-rigid needle exits the distal tip 413 of the rigid needle 410 and the desired amount of curvature is established, as seen in FIG. 15C. The curved portion 426 may be advanced until the tip 423 is substantially parallel to the tangent of the anterior annulus 52 curvature. The sharpened stylet 430 is advanced relative to the semi-rigid needle 420 to the desired position within the anterior annulus 52, as shown in FIG. 15D. The semi-rigid needle 420 and the rigid needle 410 are completely withdrawn from the stylet 430, leaving the stylet in position as shown in FIG. 15E.
  • [0129]
    A flexible dilator 440 is advanced over the stylet 430 to dilate the annulus 52, as seen in FIG. 15F. The flexible dilator 440 is similar to semi-rigid needle 420 except that the dilator includes a blunt distal tip and is relatively more flexible, and has larger inner and outer diameters. Note that one or more dilators 440 may be advanced co-axially about the stylet 430 until the annulus is sufficiently dilated to accept the self-expandable member 210. The stylet 430 is then withdrawn from the flexible dilator 440 and the self-expandable member 210 is introduced into the lumen of the flexible dilator 440 using a push bar 450, as shown in FIG. 15G. Alternatively, the dilator 440 may be removed in favor of a flexible hollow catheter with a large inner diameter to facilitate delivery of member 210. The push bar 450 is similar to stylet 430 except that the distal tip of the push bar 450 is blunt. Alternatively, the push bar 450 may simply comprise the stylet 430 turned around, thus using the proximal blunt end of the stylet 430 as the push bar 450. The push bar 450 is advanced until the member 210 is in the desired position, as seen in FIG. 15H. To facilitate positioning the member 210, radiographic visualization may be used to visualize the distal end of the push bar 450, which is formed of radiopaque material and may include radiopaque markers. In addition, the member may be loaded with a radiopaque material to facilitate radiographic visualization thereof.
  • [0130]
    After the member 210 is in the desired position, the flexible dilator 440 is retracted from the push bar 450 while maintaining position of the member 210 with the push bar. The push bar 450 is then removed leaving the member 210 in place. If necessary, the procedure may be repeated for additional member implants 210. The member 210 is then allowed to expand over time, perhaps augmented by placing the spine 10 in traction. Alternatively, the spine 10 may be placed in traction prior to beginning the procedure as discussed with reference to the procedure for implanting dynamic bias device 100.
  • [0131]
    With reference to FIGS. 15K-15L, the steps for implanting an inflatable reinforcement member 220 are illustrated. In this procedure, the steps outlined with reference to FIGS. 15A- 15F are followed. Specifically, the same steps are followed up to and including the step of advancing the flexible dilator 440 over the stylet 430 to dilate the annulus 52, and thereafter removing the stylet 430 from the flexible dilator 440. Using a catheter 460, the inflatable member 220 is introduced into the dilator 440 and advanced until the member 220 is in the desired position, as shown in FIG. 15K. The inflatable member 220 is connected to the distal end of the catheter 460, which includes a flexible but pushable shaft 462 and an inflation port 464. The flexible dilator 440 is retracted from the catheter 460 while maintaining position of the member 220.
  • [0132]
    With the member 220 in the desired position, which may be confirmed using radiographic visualization as described above, the proximal inflation port 464 is connected to a syringe (not shown) or other suitable inflation apparatus for injection of the curable filler material. The filler material is then activated and the desired volume is injected into the catheter 460 via the inflation port 464, as seen if FIG. 15L. The filler material is allowed to cure and the catheter 460 is gently torqued to break the catheter 460 from the solid member 220. This break-away step may be facilitated by an area of weakness at the juncture between the distal end of the catheter 460 and the proximal end of the member 220. The catheter 460 is then removed leaving the member 220 in place. If necessary, the procedure may be repeated for additional member implants 220.
  • [0133]
    With reference to FIGS. 15M-15R, the steps for implanting a reinforcement bar 230 are illustrated. As seen in FIG. 15M, the disc 50 includes a protrusion or bulge 56, which is preferably, but not necessarily, reduced or eliminated before insertion of the reinforcement bar 230. This may be done by separating the adjacent vertebrae 20. In order to establish separation of the vertebrae 20, the spine 10 may be placed in traction or conventional intervertebral separation tools may be used. After the bulge 56 is reduced or eliminated, similar steps are followed as outlined with reference to FIGS. 15A-15C.
  • [0134]
    Delivery of a single reinforcement bar 230 into the posterior annulus 52 is illustrated. Specifically, the distal portion of the assembly 410/420/450 is inserted into the disc 50 as in a conventional discogram procedure. The assembly 410/420/450 is advanced until the distal tip 413 of the rigid needle 410 just penetrates the posterior side of the annulus 52, as seen in FIG. 15N. The semi-rigid needle 420 (alone or with bar 230) is advanced relative to the rigid needle 410 until the curved portion 426 of the semi-rigid needle 420 exits the distal tip 413 of the rigid needle 410 and the desired amount of curvature is established, as shown in FIG. 15N. The curved portion 426 may be advanced until the tip 423 is substantially parallel to the posterior annulus 52.
  • [0135]
    Using the push bar 450, the reinforcement bar 230 with its sharpened tip is pushed into the annulus 52 as seen in FIG. 150. The reinforcement bar 230 is advanced into the annulus 52 with the push bar 450 until the bar 230 is in the desired position, as seen in FIG. 15P, which may be confirmed using radiographic visualization as described above. The push bar 450 is then retracted, leaving the reinforcement bar 230 in place, as shown in FIG. 15P. The semi-rigid needle 420 and the rigid needle 410 are then removed, as shown in FIG. 15Q, or, if necessary, the procedure may be repeated for additional reinforcement bar implants 230, as shown in FIG. 15R. Presence of the reinforcement bars 230 serves to keep the disc 50, and particularly the bulge 56, in a more normal condition, and to protect against continued bulging, thus easing nerve impingement.
  • [0136]
    From the foregoing, those skilled in the art will appreciate that the present invention provides dynamic bias devices 100, 110, 120, 130, 140, 150, 160, and 170, in addition to reinforcement devices 210, 220, and 230, which may be used individually or in combination, to eliminate nerve impingement associated with a damaged disc 50, and/or to reinforce a damaged disc, while permitting relative movement of the vertebrae 20 S and 20 I adjacent the damaged disc. The present invention also provides minimally invasive methods of implanting such devices as described above.
  • [0137]
    Those skilled in the art will recognize that the present invention may be manifested in a variety of forms other than the specific embodiments described and contemplated herein. Accordingly, departures in form and detail may be made without departing from the scope and spirit of the present invention as described in the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US3426364 *25 Aug 196611 Feb 1969Colorado State Univ Research FProsthetic appliance for replacing one or more natural vertebrae
US3648691 *24 Feb 197014 Mar 1972Univ Colorado State Res FoundMethod of applying vertebral appliance
US5423816 *29 Jul 199313 Jun 1995Lin; Chih I.Intervertebral locking device
US5458642 *18 Jan 199417 Oct 1995Beer; John C.Synthetic intervertebral disc
US6610093 *28 Jul 200026 Aug 2003Perumala CorporationMethod and apparatus for stabilizing adjacent vertebrae
US6626916 *1 Dec 199930 Sep 2003Teresa T. YeungTissue fastening devices and methods for sustained holding strength
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7335200 *25 Mar 200326 Feb 2008Scient'xDynamic intervertebral connection device with controlled multidirectional deflection
US74589819 Mar 20052 Dec 2008The Board Of Trustees Of The Leland Stanford Junior UniversitySpinal implant and method for restricting spinal flexion
US747623824 Mar 200513 Jan 2009Yale UniversityDynamic spine stabilizer
US75566394 Jan 20067 Jul 2009Accelerated Innovation, LlcMethods and apparatus for vertebral stabilization using sleeved springs
US757884927 Jan 200625 Aug 2009Warsaw Orthopedic, Inc.Intervertebral implants and methods of use
US75885922 Oct 200715 Sep 2009Kyphon SarlSystem and method for immobilizing adjacent spinous processes
US763229329 Mar 200615 Dec 2009Synthes Usa, LlcDynamic damping element for two bones
US763537727 Apr 200722 Dec 2009Kyphon SarlSpine distraction implant and method
US76550419 Jul 20072 Feb 2010Moximed, Inc.Extra-articular implantable mechanical energy absorbing systems and implantation method
US766218729 Jun 200716 Feb 2010Kyphon SarlInterspinous process implants and methods of use
US766620928 Mar 200723 Feb 2010Kyphon SarlSpine distraction implant and method
US76781479 Jul 200716 Mar 2010Moximed, Inc.Extra-articular implantable mechanical energy absorbing systems and implantation method
US768237627 Jan 200623 Mar 2010Warsaw Orthopedic, Inc.Interspinous devices and methods of use
US769113027 Jan 20066 Apr 2010Warsaw Orthopedic, Inc.Spinal implants including a sensor and methods of use
US769551320 May 200413 Apr 2010Kyphon SarlDistractible interspinous process implant and method of implantation
US771328719 May 200511 May 2010Applied Spine Technologies, Inc.Dynamic spine stabilizer
US772723329 Apr 20051 Jun 2010Warsaw Orthopedic, Inc.Spinous process stabilization devices and methods
US774925217 Mar 20066 Jul 2010Kyphon SarlInterspinous process implant having deployable wing and method of implantation
US774925327 Apr 20076 Jul 2010Kyphon SĀRLSpine distraction implant and method
US77586191 Mar 200420 Jul 2010Kyphon SĀRLSpinous process implant with tethers
US776302025 Sep 200327 Jul 2010Moximed, Inc.Bone fixated, articulated joint load control device
US776305210 Mar 200427 Jul 2010N Spine, Inc.Method and apparatus for flexible fixation of a spine
US77669153 Aug 2010Jackson Roger PDynamic fixation assemblies with inner core and outer coil-like member
US776694030 Dec 20043 Aug 2010Depuy Spine, Inc.Posterior stabilization system
US77760693 Sep 200317 Aug 2010Kyphon SĀRLPosterior vertebral support assembly
US778070912 Apr 200524 Aug 2010Warsaw Orthopedic, Inc.Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US778989815 Apr 20057 Sep 2010Warsaw Orthopedic, Inc.Transverse process/laminar spacer
US779905431 May 200521 Sep 2010Depuy Spine, Inc.Facet joint replacement
US78031909 Nov 200628 Sep 2010Kyphon SĀRLInterspinous process apparatus and method with a selectably expandable spacer
US781130926 Jul 200512 Oct 2010Applied Spine Technologies, Inc.Dynamic spine stabilization device with travel-limiting functionality
US781566327 Jan 200619 Oct 2010Warsaw Orthopedic, Inc.Vertebral rods and methods of use
US781566519 Oct 2010N Spine, Inc.Adjustable spinal stabilization system
US782882227 Apr 20069 Nov 2010Kyphon SĀRLSpinous process implant
US783324614 Oct 200316 Nov 2010Kyphon SĀRLInterspinous process and sacrum implant and method
US783771127 Jan 200623 Nov 2010Warsaw Orthopedic, Inc.Artificial spinous process for the sacrum and methods of use
US784618528 Apr 20067 Dec 2010Warsaw Orthopedic, Inc.Expandable interspinous process implant and method of installing same
US784618620 Jun 20067 Dec 2010Kyphon SĀRLEquipment for surgical treatment of two vertebrae
US78547529 Aug 200421 Dec 2010Theken Spine, LlcSystem and method for dynamic skeletal stabilization
US78625879 Jan 20064 Jan 2011Jackson Roger PDynamic stabilization assemblies, tool set and method
US78625908 Apr 20054 Jan 2011Warsaw Orthopedic, Inc.Interspinous process spacer
US786259110 Nov 20054 Jan 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US78672569 Apr 200711 Jan 2011Synthes Usa, LlcDevice for dynamic stabilization of bones or bone fragments
US787910415 Nov 20061 Feb 2011Warsaw Orthopedic, Inc.Spinal implant system
US789690630 Dec 20041 Mar 2011Depuy Spine, Inc.Artificial facet joint
US79014321 Mar 20048 Mar 2011Kyphon SarlMethod for lateral implantation of spinous process spacer
US79014378 Mar 2011Jackson Roger PDynamic stabilization member with molded connection
US79059068 Nov 200615 Mar 2011Disc Motion Technologies, Inc.System and method for lumbar arthroplasty
US790985331 Mar 200522 Mar 2011Kyphon SarlInterspinous process implant including a binder and method of implantation
US791887728 Feb 20055 Apr 2011Kyphon SarlLateral insertion method for spinous process spacer with deployable member
US792735417 Feb 200619 Apr 2011Kyphon SarlPercutaneous spinal implants and methods
US793167417 Mar 200626 Apr 2011Kyphon SarlInterspinous process implant having deployable wing and method of implantation
US793513429 Jun 20063 May 2011Exactech, Inc.Systems and methods for stabilization of bone structures
US7942905 *20 Apr 200617 May 2011Warsaw Orthopedic, Inc.Vertebral stabilizer
US795117030 May 200831 May 2011Jackson Roger PDynamic stabilization connecting member with pre-tensioned solid core
US795535628 Feb 20057 Jun 2011Kyphon SarlLaterally insertable interspinous process implant
US795539214 Dec 20067 Jun 2011Warsaw Orthopedic, Inc.Interspinous process devices and methods
US795965224 Mar 200614 Jun 2011Kyphon SarlInterspinous process implant having deployable wings and method of implantation
US797654923 Mar 200712 Jul 2011Theken Spine, LlcInstruments for delivering spinal implants
US798524427 Sep 200526 Jul 2011Depuy Spine, Inc.Posterior dynamic stabilizer devices
US798524631 Mar 200626 Jul 2011Warsaw Orthopedic, Inc.Methods and instruments for delivering interspinous process spacers
US79887077 Jan 20092 Aug 2011Yale UniversityDynamic spine stabilizer
US798870917 Feb 20062 Aug 2011Kyphon SarlPercutaneous spinal implants and methods
US798871013 Feb 20072 Aug 2011N Spine, Inc.Spinal stabilization device
US799334216 Jun 20069 Aug 2011Kyphon SarlPercutaneous spinal implants and methods
US79933702 Mar 20059 Aug 2011N Spine, Inc.Method and apparatus for flexible fixation of a spine
US799337430 Oct 20079 Aug 2011Kyphon SarlSupplemental spine fixation device and method
US799817416 Jun 200616 Aug 2011Kyphon SarlPercutaneous spinal implants and methods
US799817510 Jan 200516 Aug 2011The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US799820829 Mar 200716 Aug 2011Kyphon SarlPercutaneous spinal implants and methods
US800752122 Jan 200730 Aug 2011Kyphon SarlPercutaneous spinal implants and methods
US800753729 Jun 200730 Aug 2011Kyphon SarlInterspinous process implants and methods of use
US801217719 Jun 20096 Sep 2011Jackson Roger PDynamic stabilization assembly with frusto-conical connection
US801218018 Oct 20076 Sep 2011Synthes Usa, LlcDamping element and device for stabilization of adjacent vertebral bodies
US801220710 Mar 20056 Sep 2011Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US801220929 Jan 20076 Sep 2011Kyphon SarlInterspinous process implant including a binder, binder aligner and method of implantation
US802139521 May 200820 Sep 2011Eden Spine, LlcInterspinous vertebral implant
US802568017 May 200627 Sep 2011Exactech, Inc.Systems and methods for posterior dynamic stabilization of the spine
US802568129 Mar 200727 Sep 2011Theken Spine, LlcDynamic motion spinal stabilization system
US80295414 Oct 2011Simpirica Spine, Inc.Methods and systems for laterally stabilized constraint of spinous processes
US802954231 Oct 20074 Oct 2011Kyphon SarlSupplemental spine fixation device and method
US80295457 Feb 20064 Oct 2011Warsaw Orthopedic Inc.Articulating connecting member and anchor systems for spinal stabilization
US80295484 Oct 2011Warsaw Orthopedic, Inc.Flexible spinal stabilization element and system
US802954930 Oct 20074 Oct 2011Kyphon SarlPercutaneous spinal implants and methods
US80295505 Oct 20094 Oct 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US802956717 Feb 20064 Oct 2011Kyphon SarlPercutaneous spinal implants and methods
US803407912 Apr 200511 Oct 2011Warsaw Orthopedic, Inc.Implants and methods for posterior dynamic stabilization of a spinal motion segment
US803408022 Jan 200711 Oct 2011Kyphon SarlPercutaneous spinal implants and methods
US8034081 *6 Feb 200711 Oct 2011CollabComl, LLCInterspinous dynamic stabilization implant and method of implanting
US803869819 Oct 200518 Oct 2011Kphon SarlPercutaneous spinal implants and methods
US804333530 Oct 200725 Oct 2011Kyphon SarlPercutaneous spinal implants and methods
US804333621 Jan 201025 Oct 2011Warsaw Orthopedic, Inc.Posterior vertebral support assembly
US804337826 May 200925 Oct 2011Warsaw Orthopedic, Inc.Intercostal spacer device and method for use in correcting a spinal deformity
US804811723 Sep 20051 Nov 2011Kyphon SarlInterspinous process implant and method of implantation
US804811828 Apr 20061 Nov 2011Warsaw Orthopedic, Inc.Adjustable interspinous process brace
US804811920 Jul 20061 Nov 2011Warsaw Orthopedic, Inc.Apparatus for insertion between anatomical structures and a procedure utilizing same
US805751317 Feb 200615 Nov 2011Kyphon SarlPercutaneous spinal implants and methods
US80623374 May 200622 Nov 2011Warsaw Orthopedic, Inc.Expandable device for insertion between anatomical structures and a procedure utilizing same
US806673929 Nov 2011Jackson Roger PTool system for dynamic spinal implants
US806674231 Mar 200529 Nov 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US807077817 Mar 20066 Dec 2011Kyphon SarlInterspinous process implant with slide-in distraction piece and method of implantation
US807078318 Aug 20106 Dec 2011Depuy Spine, Inc.Facet joint replacement
US80755956 Dec 200413 Dec 2011The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US807559612 Jan 200713 Dec 2011Warsaw Orthopedic, Inc.Spinal prosthesis systems
US808379518 Jan 200627 Dec 2011Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US808816630 Apr 20083 Jan 2012Moximed, Inc.Adjustable absorber designs for implantable device
US809245924 May 200710 Jan 2012Kyphon SarlPercutaneous spinal implants and methods
US809249621 Jun 200510 Jan 2012Depuy Spine, Inc.Methods and devices for posterior stabilization
US809250015 Sep 200910 Jan 2012Jackson Roger PDynamic stabilization connecting member with floating core, compression spacer and over-mold
US80925025 Oct 200710 Jan 2012Jackson Roger PPolyaxial bone screw with uploaded threaded shank and method of assembly and use
US80925333 Oct 200610 Jan 2012Warsaw Orthopedic, Inc.Dynamic devices and methods for stabilizing vertebral members
US809253526 Jun 200710 Jan 2012Kyphon SarlInterspinous process implants and methods of use
US809699429 Mar 200717 Jan 2012Kyphon SarlPercutaneous spinal implants and methods
US809699529 Mar 200717 Jan 2012Kyphon SarlPercutaneous spinal implants and methods
US809699619 Mar 200817 Jan 2012Exactech, Inc.Rod reducer
US809701824 May 200717 Jan 2012Kyphon SarlPercutaneous spinal implants and methods
US809701918 Oct 200717 Jan 2012Kyphon SarlSystems and methods for in situ assembly of an interspinous process distraction implant
US810091524 Jan 2012Jackson Roger POrthopedic implant rod reduction tool set and method
US810094316 Jun 200624 Jan 2012Kyphon SarlPercutaneous spinal implants and methods
US810096730 Apr 200824 Jan 2012Moximed, Inc.Adjustable absorber designs for implantable device
US810535728 Apr 200631 Jan 2012Warsaw Orthopedic, Inc.Interspinous process brace
US810535830 Jul 200831 Jan 2012Kyphon SarlMedical implants and methods
US81053632 Feb 200931 Jan 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySpinal implant and method for restricting spinal flexion
US81053681 Aug 200731 Jan 2012Jackson Roger PDynamic stabilization connecting member with slitted core and outer sleeve
US810997225 Oct 20077 Feb 2012Kyphon SarlInterspinous process implant having deployable wings and method of implantation
US810997330 Oct 20067 Feb 2012Stryker SpineMethod for dynamic vertebral stabilization
US81141315 Nov 200814 Feb 2012Kyphon SarlExtension limiting devices and methods of use for the spine
US811413213 Jan 201014 Feb 2012Kyphon SarlDynamic interspinous process device
US811413516 Jan 200914 Feb 2012Kyphon SarlAdjustable surgical cables and methods for treating spinal stenosis
US811413618 Mar 200814 Feb 2012Warsaw Orthopedic, Inc.Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US81188397 Nov 200721 Feb 2012Kyphon SarlInterspinous implant
US811884027 Feb 200921 Feb 2012Warsaw Orthopedic, Inc.Vertebral rod and related method of manufacture
US811884424 Apr 200621 Feb 2012Warsaw Orthopedic, Inc.Expandable device for insertion between anatomical structures and a procedure utilizing same
US81237825 Sep 200828 Feb 2012Vertiflex, Inc.Interspinous spacer
US812380530 Apr 200828 Feb 2012Moximed, Inc.Adjustable absorber designs for implantable device
US81238076 Dec 200428 Feb 2012Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US812866114 Sep 20096 Mar 2012Kyphon SarlInterspinous process distraction system and method with positionable wing and method
US812866218 Oct 20066 Mar 2012Vertiflex, Inc.Minimally invasive tooling for delivery of interspinous spacer
US812866327 Jun 20076 Mar 2012Kyphon SarlSpine distraction implant
US812869814 Oct 20086 Mar 2012Anulex Technologies, Inc.Method and apparatus for the treatment of the intervertebral disc annulus
US812870225 Oct 20076 Mar 2012Kyphon SarlInterspinous process implant having deployable wings and method of implantation
US813738530 Oct 200620 Mar 2012Stryker SpineSystem and method for dynamic vertebral stabilization
US814751630 Oct 20073 Apr 2012Kyphon SarlPercutaneous spinal implants and methods
US814751723 May 20063 Apr 2012Warsaw Orthopedic, Inc.Systems and methods for adjusting properties of a spinal implant
US814751821 May 20083 Apr 2012Spinadyne, Inc.Dynamic connector for spinal device
US814752626 Feb 20103 Apr 2012Kyphon SarlInterspinous process spacer diagnostic parallel balloon catheter and methods of use
US814754817 Mar 20063 Apr 2012Kyphon SarlInterspinous process implant having a thread-shaped wing and method of implantation
US815281023 Nov 200410 Apr 2012Jackson Roger PSpinal fixation tool set and method
US815283720 Dec 200510 Apr 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US815784028 Jun 200717 Apr 2012Kyphon SarlSpine distraction implant and method
US815784124 May 200717 Apr 2012Kyphon SarlPercutaneous spinal implants and methods
US815784212 Jun 200917 Apr 2012Kyphon SarlInterspinous implant and methods of use
US816294824 Apr 2012Jackson Roger POrthopedic implant rod reduction tool set and method
US816298217 Apr 200924 Apr 2012Simpirica Spine, Inc.Methods and systems for constraint of multiple spine segments
US816298520 Oct 200424 Apr 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US81630223 Sep 200924 Apr 2012Anulex Technologies, Inc.Method and apparatus for the treatment of the intervertebral disc annulus
US816789030 Oct 20071 May 2012Kyphon SarlPercutaneous spinal implants and methods
US81679441 May 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US81728805 Nov 20078 May 2012Warsaw Orthopedic, Inc.Intervertebral stabilising device
US81873055 Jun 200929 May 2012Simpirica Spine, Inc.Methods and apparatus for deploying spinous process constraints
US818730717 Apr 200929 May 2012Simpirica Spine, Inc.Structures and methods for constraining spinal processes with single connector
US821627531 Oct 200810 Jul 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySpinal implant and method for restricting spinal flexion
US821627629 Jul 200910 Jul 2012Warsaw Orthopedic, Inc.Interspinous spacer
US82162777 Dec 200910 Jul 2012Kyphon SarlSpine distraction implant and method
US821627918 Feb 201010 Jul 2012Warsaw Orthopedic, Inc.Spinal implant kits with multiple interchangeable modules
US822145830 Oct 200717 Jul 2012Kyphon SarlPercutaneous spinal implants and methods
US822146331 May 200717 Jul 2012Kyphon SarlInterspinous process implants and methods of use
US82214658 Jun 201017 Jul 2012Warsaw Orthopedic, Inc.Multi-chamber expandable interspinous process spacer
US82266533 May 201024 Jul 2012Warsaw Orthopedic, Inc.Spinous process stabilization devices and methods
US822668724 Jul 2012Stryker SpineApparatus and method for dynamic vertebral stabilization
US822669023 Feb 200624 Jul 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for stabilization of bone structures
US825202819 Dec 200728 Aug 2012Depuy Spine, Inc.Posterior dynamic stabilization device
US825203128 Apr 200628 Aug 2012Warsaw Orthopedic, Inc.Molding device for an expandable interspinous process implant
US826269816 Mar 200611 Sep 2012Warsaw Orthopedic, Inc.Expandable device for insertion between anatomical structures and a procedure utilizing same
US826796920 Mar 200718 Sep 2012Exactech, Inc.Screw systems and methods for use in stabilization of bone structures
US827308925 Sep 2012Jackson Roger PSpinal fixation tool set and method
US827310725 Oct 200725 Sep 2012Kyphon SarlInterspinous process implant having a thread-shaped wing and method of implantation
US82731088 Jul 200825 Sep 2012Vertiflex, Inc.Interspinous spacer
US827748824 Jul 20082 Oct 2012Vertiflex, Inc.Interspinous spacer
US829289213 May 200923 Oct 2012Jackson Roger POrthopedic implant rod reduction tool set and method
US829292216 Apr 200823 Oct 2012Vertiflex, Inc.Interspinous spacer
US829292617 Aug 200723 Oct 2012Jackson Roger PDynamic stabilization connecting member with elastic core and outer sleeve
US829292724 Apr 200923 Oct 2012Warsaw Orthopedic, Inc.Flexible articulating spinal rod
US83087715 Jun 200913 Nov 2012Simpirica Spine, Inc.Methods and apparatus for locking a band
US831783113 Jan 201027 Nov 2012Kyphon SarlInterspinous process spacer diagnostic balloon catheter and methods of use
US83178329 Feb 201227 Nov 2012Warsaw Orthopedic, Inc.Implants and methods for inter-spinous process dynamic stabilization of spinal motion segment
US831786427 Nov 2012The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US83337901 Mar 201018 Dec 2012Yale UniversityDynamic spine stabilizer
US834897627 Aug 20078 Jan 2013Kyphon SarlSpinous-process implants and methods of using the same
US834897730 Jun 20108 Jan 2013Warsaw Orthopedic, Inc.Artificial spinous process for the sacrum and methods of use
US834897828 Apr 20068 Jan 2013Warsaw Orthopedic, Inc.Interosteotic implant
US834901322 Jun 20108 Jan 2013Kyphon SarlSpine distraction implant
US835393220 Aug 200815 Jan 2013Jackson Roger PPolyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US835718127 Oct 200522 Jan 2013Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8361118 *5 Oct 200929 Jan 2013Biedermann Technologies Gmbh & Co. KgElongated implant device and bone stabilization device including the same
US83667451 Jul 20095 Feb 2013Jackson Roger PDynamic stabilization assembly having pre-compressed spacers with differential displacements
US83721175 Jun 200912 Feb 2013Kyphon SarlMulti-level interspinous implants and methods of use
US837706719 Feb 2013Roger P. JacksonOrthopedic implant rod reduction tool set and method
US839413323 Jul 201012 Mar 2013Roger P. JacksonDynamic fixation assemblies with inner core and outer coil-like member
US8403961 *18 Apr 200826 Mar 2013Simpirica Spine, Inc.Methods and devices for controlled flexion restriction of spinal segments
US84039648 Aug 201126 Mar 2013Simpirica Spine, Inc.Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment
US840928130 Apr 20082 Apr 2013Moximed, Inc.Adjustable absorber designs for implantable device
US840928226 Jul 20052 Apr 2013Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US84146199 Apr 2013Warsaw Orthopedic, Inc.Vertebral rods and methods of use
US84255597 Nov 200623 Apr 2013Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US844468113 Apr 201221 May 2013Roger P. JacksonPolyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US844957628 Jun 200728 May 2013DePuy Synthes Products, LLCDynamic fixation system
US845465929 Jun 20074 Jun 2013Kyphon SarlInterspinous process implants and methods of use
US84546604 Jun 2013Simpirica Spine, Inc.Methods and systems for laterally stabilized constraint of spinous processes
US845469324 Feb 20114 Jun 2013Kyphon SarlPercutaneous spinal implants and methods
US84546975 Apr 20124 Jun 2013Anulex Technologies, Inc.Method and apparatus for the treatment of tissue
US846031910 Aug 201011 Jun 2013Anulex Technologies, Inc.Intervertebral disc annulus repair system and method
US84754983 Jan 20082 Jul 2013Roger P. JacksonDynamic stabilization connecting member with cord connection
US848611029 Dec 201116 Jul 2013The Board Of Trustees Of The Leland Stanford Junior UniversitySpinal implant and method for restricting spinal flexion
US85065995 Aug 201113 Aug 2013Roger P. JacksonDynamic stabilization assembly with frusto-conical connection
US850663625 Jun 200713 Aug 2013Theken Spine, LlcOffset radius lordosis
US852386516 Jan 20093 Sep 2013Exactech, Inc.Tissue splitter
US852390413 Jul 20073 Sep 2013The Board Of Trustees Of The Leland Stanford Junior UniversityMethods and systems for constraint of spinous processes with attachment
US8523948 *20 Oct 20093 Sep 2013Moximed, Inc.Extra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods
US852960324 Jan 201210 Sep 2013Stryker SpineSystem and method for dynamic vertebral stabilization
US852960610 Mar 201010 Sep 2013Simpirica Spine, Inc.Surgical tether apparatus and methods of use
US852960728 Jul 201110 Sep 2013Simpirica Spine, Inc.Sacral tether anchor and methods of use
US854075121 Feb 200724 Sep 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US85407535 Oct 200424 Sep 2013Roger P. JacksonPolyaxial bone screw with uploaded threaded shank and method of assembly and use
US854553826 Apr 20101 Oct 2013M. Samy AbdouDevices and methods for inter-vertebral orthopedic device placement
US855114213 Dec 20108 Oct 2013Exactech, Inc.Methods for stabilization of bone structures
US85569385 Oct 201015 Oct 2013Roger P. JacksonPolyaxial bone anchor with non-pivotable retainer and pop-on shank, some with friction fit
US855697712 Nov 201015 Oct 2013Anulex Technologies, Inc.Tissue anchoring system and method
US85626501 Mar 201122 Oct 2013Warsaw Orthopedic, Inc.Percutaneous spinous process fusion plate assembly and method
US856265310 Mar 201022 Oct 2013Simpirica Spine, Inc.Surgical tether apparatus and methods of use
US856845427 Apr 200729 Oct 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US856845526 Oct 200729 Oct 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US856846027 Apr 200729 Oct 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US859151526 Aug 200926 Nov 2013Roger P. JacksonSpinal fixation tool set and method
US85915467 Dec 201126 Nov 2013Warsaw Orthopedic, Inc.Interspinous process implant having a thread-shaped wing and method of implantation
US859154831 Mar 201126 Nov 2013Warsaw Orthopedic, Inc.Spinous process fusion plate assembly
US85915498 Apr 201126 Nov 2013Warsaw Orthopedic, Inc.Variable durometer lumbar-sacral implant
US85915602 Aug 201226 Nov 2013Roger P. JacksonDynamic stabilization connecting member with elastic core and outer sleeve
US859736227 Aug 20103 Dec 2013Cotera, Inc.Method and apparatus for force redistribution in articular joints
US861374718 Dec 200824 Dec 2013Vertiflex, Inc.Spacer insertion instrument
US861376014 Dec 201124 Dec 2013Roger P. JacksonDynamic stabilization connecting member with slitted core and outer sleeve
US861721128 Mar 200731 Dec 2013Warsaw Orthopedic, Inc.Spine distraction implant and method
US862305717 Jun 20117 Jan 2014DePuy Synthes Products, LLCSpinal stabilization device
US862305913 Jan 20127 Jan 2014Stryker SpineSystem and method for dynamic vertebral stabilization
US862857427 Jul 201014 Jan 2014Vertiflex, Inc.Systems and methods for posterior dynamic stabilization of the spine
US863259026 Sep 200621 Jan 2014Anulex Technologies, Inc.Apparatus and methods for the treatment of the intervertebral disc
US864173429 Apr 20094 Feb 2014DePuy Synthes Products, LLCDual spring posterior dynamic stabilization device with elongation limiting elastomers
US86417629 Jan 20124 Feb 2014Warsaw Orthopedic, Inc.Systems and methods for in situ assembly of an interspinous process distraction implant
US865215310 Aug 201018 Feb 2014Anulex Technologies, Inc.Intervertebral disc annulus repair system and bone anchor delivery tool
US865217531 Dec 200418 Feb 2014Rachiotek, LlcSurgical implant devices and systems including a sheath member
US866871930 Mar 201011 Mar 2014Simpirica Spine, Inc.Methods and apparatus for improving shear loading capacity of a spinal segment
US867297421 Feb 200718 Mar 2014Warsaw Orthopedic, Inc.Spine distraction implant and method
US867297526 Oct 200718 Mar 2014Warsaw Orthopedic, IncSpine distraction implant and method
US867300810 Jan 201218 Mar 2014Spinadyne, Inc.Posterior spinal arthroplasty system
US867300910 Jan 201218 Mar 2014Spinadyne, Inc.Spinal prosthesis and facet joint prosthesis
US867916130 Oct 200725 Mar 2014Warsaw Orthopedic, Inc.Percutaneous spinal implants and methods
US869091930 Dec 20098 Apr 2014Warsaw Orthopedic, Inc.Surgical spacer with shape control
US86967106 Oct 201115 Apr 2014Simpirica Spine, Inc.Device and accessories for limiting flexion
US869671130 Jul 201215 Apr 2014Roger P. JacksonPolyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
US870904318 Jan 201129 Apr 2014Depuy Spine, Inc.Artificial facet joint
US870909030 Apr 200829 Apr 2014Moximed, Inc.Adjustable absorber designs for implantable device
US874094320 Oct 20093 Jun 2014Warsaw Orthopedic, Inc.Spine distraction implant and method
US874094815 Dec 20103 Jun 2014Vertiflex, Inc.Spinal spacer for cervical and other vertebra, and associated systems and methods
US877131728 Oct 20098 Jul 2014Warsaw Orthopedic, Inc.Interspinous process implant and method of implantation
US879037222 Mar 201229 Jul 2014Simpirica Spine, Inc.Methods and systems for constraint of multiple spine segments
US880179514 Oct 200912 Aug 2014Moximed, Inc.Extra-articular implantable mechanical energy absorbing systems
US881490826 Jul 201026 Aug 2014Warsaw Orthopedic, Inc.Injectable flexible interspinous process device system
US88149133 Sep 201326 Aug 2014Roger P JacksonHelical guide and advancement flange with break-off extensions
US882154827 Apr 20072 Sep 2014Warsaw Orthopedic, Inc.Spine distraction implant and method
US882801728 Jun 20079 Sep 2014Warsaw Orthopedic, Inc.Spine distraction implant and method
US88406172 Feb 201223 Sep 2014Warsaw Orthopedic, Inc.Interspinous process spacer diagnostic parallel balloon catheter and methods of use
US884064610 May 200723 Sep 2014Warsaw Orthopedic, Inc.Spinous process implants and methods
US884564913 May 200930 Sep 2014Roger P. JacksonSpinal fixation tool set and method for rod reduction and fastener insertion
US88457247 Feb 201430 Sep 2014Cotera, Inc.Method and apparatus for altering biomechanics of the articular joints
US884572622 Jan 200930 Sep 2014Vertiflex, Inc.Dilator
US885223511 Sep 20077 Oct 2014Spinadyne, Inc.Posteriorly inserted artificial disc and an artificial facet joint
US885860015 Apr 200814 Oct 2014Spinadyne, Inc.Dynamic spinal stabilization device
US886482815 Jan 200921 Oct 2014Vertiflex, Inc.Interspinous spacer
US888881616 Mar 201018 Nov 2014Warsaw Orthopedic, Inc.Distractible interspinous process implant and method of implantation
US889465728 Nov 201125 Nov 2014Roger P. JacksonTool system for dynamic spinal implants
US889468629 Jun 200725 Nov 2014Warsaw Orthopedic, Inc.Interspinous process implants and methods of use
US889471419 May 201125 Nov 2014Moximed, Inc.Unlinked implantable knee unloading device
US89002711 May 20122 Dec 2014The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US890027228 Jan 20132 Dec 2014Roger P JacksonDynamic fixation assemblies with inner core and outer coil-like member
US891147721 Oct 200816 Dec 2014Roger P. JacksonDynamic stabilization member with end plate support and cable core extension
US89451839 Mar 20093 Feb 2015Vertiflex, Inc.Interspinous process spacer instrument system with deployment indicator
US89683664 Jan 20073 Mar 2015DePuy Synthes Products, LLCMethod and apparatus for flexible fixation of a spine
US8974499 *16 Sep 200910 Mar 2015Stryker SpineApparatus and method for dynamic vertebral stabilization
US8979900 *13 Feb 200717 Mar 2015DePuy Synthes Products, LLCSpinal stabilization device
US89799047 Sep 201217 Mar 2015Roger P JacksonConnecting member with tensioned cord, low profile rigid sleeve and spacer with torsion control
US899257617 Dec 200931 Mar 2015DePuy Synthes Products, LLCPosterior spine dynamic stabilizer
US90052986 Jan 201014 Apr 2015Moximed, Inc.Extra-articular implantable mechanical energy absorbing systems
US901149424 Sep 200921 Apr 2015Warsaw Orthopedic, Inc.Composite vertebral rod system and methods of use
US90230846 Dec 20045 May 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for stabilizing the motion or adjusting the position of the spine
US903401626 Jul 201119 May 2015Yale UniversityDynamic spine stabilizer
US9034049 *1 Aug 201319 May 2015Moximed, Inc.Extra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods
US90397429 Apr 201226 May 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US904427029 Mar 20112 Jun 2015Moximed, Inc.Apparatus for controlling a load on a hip joint
US905013915 Mar 20139 Jun 2015Roger P. JacksonOrthopedic implant rod reduction tool set and method
US90559782 Oct 201216 Jun 2015Roger P. JacksonOrthopedic implant rod reduction tool set and method
US9060867 *1 Aug 201323 Jun 2015Moximed, Inc.Extra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods
US909544223 Jan 20124 Aug 2015Krt Investors, Inc.Method and apparatus for the treatment of the intervertebral disc annulus
US910140426 Jan 201111 Aug 2015Roger P. JacksonDynamic stabilization connecting member with molded connection
US910770611 Sep 201318 Aug 2015Simpirica Spine, Inc.Surgical tether apparatus and methods of use
US91140167 Feb 201425 Aug 2015Cotera, Inc.Method and apparatus for altering biomechanics of the articular joints
US911402529 Jun 201125 Aug 2015Krt Investors, Inc.Methods and devices for spinal disc annulus reconstruction and repair
US911968027 Feb 20121 Sep 2015Vertiflex, Inc.Interspinous spacer
US912569225 Feb 20138 Sep 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US91257464 Feb 20118 Sep 2015Moximed, Inc.Methods of implanting extra-articular implantable mechanical energy absorbing systems
US914443926 Mar 201329 Sep 2015Warsaw Orthopedic, Inc.Vertebral rods and methods of use
US91493042 Aug 20136 Oct 2015The Board Of Trustees Of The Leland Sanford Junior UniversityMethods and systems for constraint of spinous processes with attachment
US915557014 Sep 201213 Oct 2015Vertiflex, Inc.Interspinous spacer
US91555726 Mar 201213 Oct 2015Vertiflex, Inc.Minimally invasive tooling for delivery of interspinous spacer
US916178314 Sep 201220 Oct 2015Vertiflex, Inc.Interspinous spacer
US918618618 Apr 201417 Nov 2015Vertiflex, Inc.Spinal spacer for cervical and other vertebra, and associated systems and methods
US91923723 Jun 201324 Nov 2015Krt Investors, Inc.Method for the treatment of tissue
US921114627 Feb 201215 Dec 2015The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US921115023 Sep 201015 Dec 2015Roger P. JacksonSpinal fixation tool set and method
US921603919 Nov 201022 Dec 2015Roger P. JacksonDynamic spinal stabilization assemblies, tool set and method
US92160418 Feb 201222 Dec 2015Roger P. JacksonSpinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
US923296819 Sep 200812 Jan 2016DePuy Synthes Products, Inc.Polymeric pedicle rods and methods of manufacturing
US20040073215 *25 Mar 200315 Apr 2004Scient ' XDynamic intervertebral connection device with controlled multidirectional deflection
US20040097931 *14 Oct 200320 May 2004Steve MitchellInterspinous process and sacrum implant and method
US20040143264 *21 Aug 200322 Jul 2004Mcafee Paul C.Metal-backed UHMWPE rod sleeve system preserving spinal motion
US20040153071 *29 Dec 20035 Aug 2004St. Francis Medical Technologies, Inc.Interspinous process distraction system and method with positionable wing and method
US20040167520 *1 Mar 200426 Aug 2004St. Francis Medical Technologies, Inc.Spinous process implant with tethers
US20040220568 *1 Mar 20044 Nov 2004St. Francis Medical Technologies, Inc.Method for lateral implantation of spinous process spacer
US20050075634 *27 Oct 20037 Apr 2005Zucherman James F.Interspinous process implant with radiolucent spacer and lead-in tissue expander
US20050124991 *10 Mar 20049 Jun 2005Tae-Ahn JahngMethod and apparatus for flexible fixation of a spine
US20050171543 *31 Dec 20044 Aug 2005Timm Jens P.Spine stabilization systems and associated devices, assemblies and methods
US20050177156 *31 Dec 200411 Aug 2005Timm Jens P.Surgical implant devices and systems including a sheath member
US20050177157 *2 Mar 200511 Aug 2005N Spine, Inc.Method and apparatus for flexible fixation of a spine
US20050203514 *27 Dec 200415 Sep 2005Tae-Ahn JahngAdjustable spinal stabilization system
US20050216017 *9 Mar 200529 Sep 2005Louie FieldingSpinal implant and method for restricting spinal flexion
US20050222569 *24 Mar 20056 Oct 2005Panjabi Manohar MDynamic spine stabilizer
US20050228383 *28 Feb 200513 Oct 2005St. Francis Medical Technologies, Inc.Lateral insertion method for spinous process spacer with deployable member
US20050228384 *28 Feb 200513 Oct 2005St. Francis Medical Technologies, Inc.Spinous process implant with tethers
US20050245930 *19 May 20053 Nov 2005Timm Jens PDynamic spine stabilizer
US20050251170 *30 Mar 200510 Nov 2005Ethicon Endo-Surgery, Inc.Instrument for effecting anastomosis of respective tissues defining two body lumens
US20050261680 *25 Sep 200324 Nov 2005Imperial College Innovations Ltd.Bone fixated, articulated joint load control device
US20050261768 *21 May 200424 Nov 2005Trieu Hai HInterspinous spacer
US20060064165 *31 Mar 200523 Mar 2006St. Francis Medical Technologies, Inc.Interspinous process implant including a binder and method of implantation
US20060064166 *31 Mar 200523 Mar 2006St. Francis Medical Technologies, Inc.Interspinous process implant including a binder and method of implantation
US20060084976 *30 Sep 200420 Apr 2006Depuy Spine, Inc.Posterior stabilization systems and methods
US20060084982 *20 Oct 200420 Apr 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084983 *20 Oct 200420 Apr 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084984 *6 Dec 200420 Apr 2006The Board Of Trustees For The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084985 *6 Dec 200420 Apr 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20060084987 *10 Jan 200520 Apr 2006Kim Daniel HSystems and methods for posterior dynamic stabilization of the spine
US20060085076 *21 Oct 200420 Apr 2006Manoj KrishnaPosterior spinal arthroplasty-development of a new posteriorly inserted artificial disc and an artificial facet joint
US20060089717 *12 Aug 200527 Apr 2006Manoj KrishnaSpinal prosthesis and facet joint prosthesis
US20060111715 *9 Jan 200625 May 2006Jackson Roger PDynamic stabilization assemblies, tool set and method
US20060122620 *6 Dec 20048 Jun 2006The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for stabilizing the motion or adjusting the position of the spine
US20060136060 *3 Sep 200322 Jun 2006Jean TaylorPosterior vertebral support assembly
US20060149229 *30 Dec 20046 Jul 2006Kwak Seungkyu DanielArtificial facet joint
US20060155279 *26 Oct 200513 Jul 2006Axial Biotech, Inc.Apparatus and method for concave scoliosis expansion
US20060184247 *19 Oct 200517 Aug 2006Edidin Avram APercutaneous spinal implants and methods
US20060184248 *19 Oct 200517 Aug 2006Edidin Avram APercutaneous spinal implants and methods
US20060189984 *22 Mar 200524 Aug 2006Medicinelodge, Inc.Apparatus and method for dynamic vertebral stabilization
US20060195093 *22 Nov 200531 Aug 2006Tae-Ahn JahngMethod and apparatus for flexible fixation of a spine
US20060202242 *2 Mar 200614 Sep 2006Sony CorporationSolid-state imaging device
US20060212033 *21 Jul 200521 Sep 2006Accin CorporationVertebral stabilization using flexible rods
US20060224159 *31 Mar 20055 Oct 2006Sdgi Holdings, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20060229612 *4 Jan 200612 Oct 2006Accin CorporationMethods and apparatus for vertebral stabilization using sleeved springs
US20060235387 *15 Apr 200519 Oct 2006Sdgi Holdings, Inc.Transverse process/laminar spacer
US20060235521 *27 Apr 200619 Oct 2006St. Francis Medical Technologies, Inc.Spinous process implant with tethers
US20060241613 *12 Apr 200526 Oct 2006Sdgi Holdings, Inc.Implants and methods for inter-transverse process dynamic stabilization of a spinal motion segment
US20060241614 *12 Apr 200526 Oct 2006Sdgi Holdings, Inc.Implants and methods for posterior dynamic stabilization of a spinal motion segment
US20060241757 *31 Mar 200526 Oct 2006Sdgi Holdings, Inc.Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20060247637 *30 May 20062 Nov 2006Dennis ColleranSystem and method for dynamic skeletal stabilization
US20060247640 *29 Apr 20052 Nov 2006Sdgi Holdings, Inc.Spinous process stabilization devices and methods
US20060264938 *17 Mar 200623 Nov 2006St. Francis Medical Technologies, Inc.Interspinous process implant having deployable wing and method of implantation
US20060264939 *17 Mar 200623 Nov 2006St. Francis Medical Technologies, Inc.Interspinous process implant with slide-in distraction piece and method of implantation
US20060264940 *29 Mar 200623 Nov 2006Stephan HartmannDynamic damping element for two bones
US20060265066 *17 Mar 200623 Nov 2006St. Francis Medical Technologies, Inc.Interspinous process implant having a thread-shaped wing and method of implantation
US20060265074 *4 Apr 200623 Nov 2006Manoj KrishnaPosterior spinal arthroplasty-development of a new posteriorly inserted artificial disc, a new anteriorly inserted artifical disc and an artificial facet joint
US20060271046 *31 May 200530 Nov 2006Kwak Seungkyu DanielFacet joint replacement
US20060271049 *24 Mar 200630 Nov 2006St. Francis Medical Technologies, Inc.Interspinous process implant having deployable wings and method of implantation
US20060282080 *30 May 200614 Dec 2006Accin CorporationVertebral facet stabilizer
US20070010813 *17 Mar 200611 Jan 2007St. Francis Medical Technologies, Inc.Interspinous process implant having deployable wing and method of implantation
US20070043356 *26 Jul 200522 Feb 2007Timm Jens PDynamic spine stabilization device with travel-limiting functionality
US20070043359 *23 Feb 200622 Feb 2007Moti AltaracSystems and methods for stabilization of bone structures
US20070049934 *17 Feb 20061 Mar 2007Edidin Avram APercutaneous spinal implants and methods
US20070049935 *17 Feb 20061 Mar 2007Edidin Avram APercutaneous spinal implants and methods
US20070055237 *17 Feb 20068 Mar 2007Edidin Avram APercutaneous spinal implants and methods
US20070055246 *3 Nov 20068 Mar 2007St. Francis Medical Technologies, Inc.Spine distraction implant and method
US20070093813 *11 Oct 200526 Apr 2007Callahan Ronald IiDynamic spinal stabilizer
US20070093814 *11 Oct 200526 Apr 2007Callahan Ronald IiDynamic spinal stabilization systems
US20070093815 *11 Oct 200526 Apr 2007Callahan Ronald IiDynamic spinal stabilizer
US20070100340 *27 Oct 20053 May 2007Sdgi Holdings, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070100341 *29 Jun 20063 May 2007Reglos Joey CSystems and methods for stabilization of bone structures
US20070123861 *10 Nov 200531 May 2007Sdgi Holdings, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070123871 *4 Jan 200731 May 2007Tae-Ahn JahngMethod and apparatus for flexible fixation of a spine
US20070167945 *18 Jan 200619 Jul 2007Sdgi Holdings, Inc.Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20070167949 *20 Mar 200719 Jul 2007Moti AltaracScrew systems and methods for use in stabilization of bone structures
US20070168038 *13 Jan 200619 Jul 2007Sdgi Holdings, Inc.Materials, devices and methods for treating multiple spinal regions including the interbody region
US20070173820 *13 Jan 200626 Jul 2007Sdgi Holdings, Inc.Materials, devices, and methods for treating multiple spinal regions including the anterior region
US20070173823 *18 Jan 200626 Jul 2007Sdgi Holdings, Inc.Intervertebral prosthetic device for spinal stabilization and method of implanting same
US20070191832 *27 Jan 200616 Aug 2007Sdgi Holdings, Inc.Vertebral rods and methods of use
US20070191834 *27 Jan 200616 Aug 2007Sdgi Holdings, Inc.Artificial spinous process for the sacrum and methods of use
US20070191837 *27 Jan 200616 Aug 2007Sdgi Holdings, Inc.Interspinous devices and methods of use
US20070191838 *27 Jan 200616 Aug 2007Sdgi Holdings, Inc.Interspinous devices and methods of use
US20070191953 *27 Jan 200616 Aug 2007Sdgi Holdings, Inc.Intervertebral implants and methods of use
US20070198014 *7 Feb 200623 Aug 2007Sdgi Holdings, Inc.Articulating connecting member and anchor systems for spinal stabilization
US20070203490 *27 Apr 200730 Aug 2007Zucherman James FSpine distraction implant and method
US20070203493 *21 Feb 200730 Aug 2007Zucherman James FSpine distraction implant and method
US20070203495 *27 Apr 200730 Aug 2007Zucherman James FSpine distraction implant and method
US20070203497 *27 Apr 200730 Aug 2007Zucherman James FSpine distraction implant and method
US20070203501 *27 Apr 200730 Aug 2007Zucherman James FSpine distraction implant and method
US20070208347 *27 Apr 20076 Sep 2007Zucherman James FSpine distraction implant and method
US20070225706 *17 Feb 200627 Sep 2007Clark Janna GPercutaneous spinal implants and methods
US20070225710 *13 Feb 200727 Sep 2007Tae-Ahn JahngSpinal stabilization device
US20070225810 *23 Mar 200727 Sep 2007Dennis ColleranFlexible cage spinal implant
US20070233068 *22 Feb 20064 Oct 2007Sdgi Holdings, Inc.Intervertebral prosthetic assembly for spinal stabilization and method of implanting same
US20070233074 *16 Mar 20064 Oct 2007Sdgi Holdings, Inc.Expandable device for insertion between anatomical structures and a procedure utilizing same
US20070233076 *31 Mar 20064 Oct 2007Sdgi Holdings, Inc.Methods and instruments for delivering interspinous process spacers
US20070233094 *29 Mar 20074 Oct 2007Dennis ColleranDynamic motion spinal stabilization system
US20070233095 *9 Apr 20074 Oct 2007Schlaepfer Fridolin JDevice for dynamic stabilization of bones or bone fragments
US20070239159 *25 Oct 200611 Oct 2007Vertiflex, Inc.Systems and methods for stabilization of bone structures
US20070265623 *22 Jan 200715 Nov 2007Malandain Hugues FPercutaneous Spinal Implants and Methods
US20070265624 *21 Feb 200715 Nov 2007Zucherman Jamesq FSpine distraction implant and method
US20070270814 *20 Apr 200622 Nov 2007Sdgi Holdings, Inc.Vertebral stabilizer
US20070270823 *28 Apr 200622 Nov 2007Sdgi Holdings, Inc.Multi-chamber expandable interspinous process brace
US20070270824 *28 Apr 200622 Nov 2007Warsaw Orthopedic, Inc.Interspinous process brace
US20070270825 *28 Apr 200622 Nov 2007Sdgi Holdings, Inc.Expandable interspinous process implant and method of installing same
US20070270826 *28 Apr 200622 Nov 2007Sdgi Holdings, Inc.Interosteotic implant
US20070270828 *28 Apr 200622 Nov 2007Sdgi Holdings, Inc.Interspinous process brace
US20070270829 *28 Apr 200622 Nov 2007Sdgi Holdings, Inc.Molding device for an expandable interspinous process implant
US20070270834 *4 May 200622 Nov 2007Sdgi Holdings, Inc.Expandable device for insertion between anatomical structures and a procedure utilizing same
US20070270959 *18 Apr 200622 Nov 2007Sdgi Holdings, Inc.Arthroplasty device
US20070276368 *23 May 200629 Nov 2007Sdgi Holdings, Inc.Systems and methods for adjusting properties of a spinal implant
US20070276369 *26 May 200629 Nov 2007Sdgi Holdings, Inc.In vivo-customizable implant
US20070276370 *18 Oct 200629 Nov 2007Vertiflex, Inc.Minimally invasive tooling for delivery of interspinous spacer
US20070276372 *22 Jan 200729 Nov 2007Malandain Hugues FPercutaneous Spinal Implants and Methods
US20070276373 *22 Jan 200729 Nov 2007Malandain Hugues FPercutaneous Spinal Implants and Methods
US20070276380 *13 Feb 200729 Nov 2007Tae-Ahn JahngSpinal stabilization device
US20070276493 *24 May 200729 Nov 2007Malandain Hugues FPercutaneous spinal implants and methods
US20070276496 *23 May 200629 Nov 2007Sdgi Holdings, Inc.Surgical spacer with shape control
US20070276500 *29 Jan 200729 Nov 2007St. Francis Medical Technologies, Inc.Interspinous process implant including a binder, binder aligner and method of implantation
US20070282340 *24 May 20076 Dec 2007Malandain Hugues FPercutaneous spinal implants and methods
US20070282442 *24 May 20076 Dec 2007Malandain Hugues FPercutaneous spinal implants and methods
US20070288009 *23 Mar 200713 Dec 2007Steven BrownDynamic spinal stabilization device
US20070288012 *23 Apr 200713 Dec 2007Dennis ColleranDynamic motion spinal stabilization system and device
US20070288094 *8 Nov 200613 Dec 2007Manoj KrishnaSystem and method for lumbar arthroplasty
US20070299526 *14 Jun 200727 Dec 2007Malandain Hugues FPercutaneous spinal implants and methods
US20080009866 *13 Jul 200710 Jan 2008Todd AlaminMethods and systems for constraint of spinous processes with attachment
US20080015700 *28 Mar 200717 Jan 2008Zucherman James FSpine distraction implant and method
US20080021460 *20 Jul 200624 Jan 2008Warsaw Orthopedic Inc.Apparatus for insertion between anatomical structures and a procedure utilizing same
US20080021468 *31 May 200724 Jan 2008Zucherman James FInterspinous process implants and methods of use
US20080021471 *2 Oct 200724 Jan 2008Kyphon Inc.System and Method for Immobilizing Adjacent Spinous Processes
US20080021560 *28 Mar 200724 Jan 2008Zucherman James FSpine distraction implant and method
US20080027433 *29 Mar 200731 Jan 2008Kohm Andrew CPercutaneous spinal implants and methods
US20080027545 *31 May 200731 Jan 2008Zucherman James FInterspinous process implants and methods of use
US20080027552 *28 Jun 200731 Jan 2008Zucherman James FSpine distraction implant and method
US20080027553 *28 Jun 200731 Jan 2008Zucherman James FSpine distraction implant and method
US20080033435 *18 Oct 20077 Feb 2008Armin StuderDamping element and device for stabilization of adjacent vertebral bodies
US20080033445 *27 Jun 20077 Feb 2008Zucherman James FSpine distraction implant and method
US20080033558 *29 Jun 20077 Feb 2008Zucherman James FInterspinous process implants and methods of use
US20080033559 *29 Jun 20077 Feb 2008Zucherman James FInterspinous process implants and methods of use
US20080033560 *29 Jun 20077 Feb 2008Zucherman James FInterspinous process implants and methods of use
US20080033562 *11 Sep 20077 Feb 2008Disc Motion Technologies, Inc.Posteriorly inserted artificial disc and an artificial facet joint
US20080039853 *27 Jun 200714 Feb 2008Zucherman James FSpine distraction implant and method
US20080039858 *28 Jun 200714 Feb 2008Zucherman James FSpine distraction implant and method
US20080039859 *31 May 200714 Feb 2008Zucherman James FSpine distraction implant and method
US20080039944 *22 Jan 200714 Feb 2008Malandain Hugues FPercutaneous Spinal Implants and Methods
US20080039947 *29 Jun 200714 Feb 2008Zucherman James FInterspinous process implants and methods of use
US20080045958 *25 Oct 200721 Feb 2008Zucherman James FInterspinous process implant having deployable wings and method of implantation
US20080045959 *26 Oct 200721 Feb 2008Zucherman James FSpine distraction implant and method
US20080046085 *25 Oct 200721 Feb 2008Zucherman James FInterspinous process implant having deployable wings and method of implantation
US20080046086 *25 Oct 200721 Feb 2008Zucherman James FInterspinous process implant having a thread-shaped wing and method of implantation
US20080046087 *25 Oct 200721 Feb 2008Zucherman James FInterspinous process implant including a binder and method of implantation
US20080046088 *26 Oct 200721 Feb 2008Zucherman James FSpine distraction implant and method
US20080046089 *26 Oct 200721 Feb 2008Zucherman James FSpine distraction implant and method
US20080051785 *21 Feb 200728 Feb 2008Zucherman James FSpine distraction implant and method
US20080051893 *30 Oct 200728 Feb 2008Malandain Hugues FPercutaneous spinal implants and methods
US20080051894 *30 Oct 200728 Feb 2008Malandain Hugues FPercutaneous spinal implants and methods
US20080051899 *29 Jun 200728 Feb 2008Zucherman James FInterspinous process implants and methods of use
US20080051905 *30 Oct 200728 Feb 2008Zucherman James FSupplemental spine fixation device and method
US20080058934 *30 Oct 20076 Mar 2008Malandain Hugues FPercutaneous spinal implants and methods
US20080058935 *30 Oct 20076 Mar 2008Malandain Hugues FPercutaneous spinal implants and methods
US20080058936 *30 Oct 20076 Mar 2008Malandain Hugues FPercutaneous spinal implants and methods
US20080058937 *30 Oct 20076 Mar 2008Malandain Hugues FPercutaneous spinal implants and methods
US20080058941 *30 Oct 20076 Mar 2008Zucherman James FSupplemental spine fixation device and method
US20080065078 *5 Nov 200713 Mar 2008Henry GrafIntervertebral stabilising device
US20080065086 *27 Jun 200713 Mar 2008Zucherman James FSpine distraction implant and method
US20080065212 *26 Jun 200713 Mar 2008Zucherman James FInterspinous process implants and methods of use
US20080065213 *26 Jun 200713 Mar 2008Zucherman James FInterspinous process implants and methods of use
US20080065219 *25 Jun 200713 Mar 2008Justin DyeOffset radius lordosis
US20080071376 *29 Mar 200720 Mar 2008Kohm Andrew CPercutaneous spinal implants and methods
US20080071378 *28 Jun 200720 Mar 2008Zucherman James FSpine distraction implant and method
US20080077241 *24 Sep 200727 Mar 2008Linh NguyenRemovable rasp/trial member insert, kit and method of use
US20080091213 *6 Dec 200717 Apr 2008Jackson Roger PTool system for dynamic spinal implants
US20080108993 *19 Oct 20078 May 2008Simpirica Spine, Inc.Methods and systems for deploying spinous process constraints
US20080114357 *15 Nov 200615 May 2008Warsaw Orthopedic, Inc.Inter-transverse process spacer device and method for use in correcting a spinal deformity
US20080114455 *15 Nov 200615 May 2008Warsaw Orthopedic, Inc.Rotating Interspinous Process Devices and Methods of Use
US20080114456 *15 Nov 200615 May 2008Warsaw Orthopedic, Inc.Spinal implant system
US20080132952 *24 May 20075 Jun 2008Malandain Hugues FPercutaneous spinal implants and methods
US20080161919 *3 Oct 20063 Jul 2008Warsaw Orthopedic, Inc.Dynamic Devices and Methods for Stabilizing Vertebral Members
US20080161920 *3 Oct 20063 Jul 2008Warsaw Orthopedic, Inc.Dynamizing Interbody Implant and Methods for Stabilizing Vertebral Members
US20080172057 *28 Mar 200717 Jul 2008Zucherman James FSpine distraction implant and method
US20080172090 *12 Jan 200717 Jul 2008Warsaw Orthopedic, Inc.Spinal Prosthesis Systems
US20080177264 *13 Jul 200724 Jul 2008Simpirica Spine, Inc.Methods and systems for laterally stabilized constraint of spinous processes
US20080177272 *3 Jul 200724 Jul 2008Zucherman James FInterspinous process implant having deployable wing and method of implantation
US20080177298 *18 Oct 200724 Jul 2008St. Francis Medical Technologies, Inc.Tensioner Tool and Method for Implanting an Interspinous Process Implant Including a Binder
US20080177333 *24 Oct 200624 Jul 2008Warsaw Orthopedic, Inc.Adjustable jacking implant
US20080177391 *18 Oct 200724 Jul 2008St. Francis Medical Technologies, Inc.Systems and Methods for In Situ Assembly of an Interspinous Process Distraction Implant
US20080183210 *31 Oct 200731 Jul 2008Zucherman James FSupplemental spine fixation device and method
US20080195154 *15 Apr 200814 Aug 2008Disc Motion Technologies, Inc.Dynamic spinal stabilization device
US20080228227 *21 May 200818 Sep 2008Disc Motion Technologies, Inc.Dynamic connector for spinal device
US20080234746 *13 Feb 200725 Sep 2008N Spine, Inc.Spinal stabilization device
US20080234824 *6 Feb 200725 Sep 2008Youssef Jim AInterspinous dynamic stabilization implant and method of implanting
US20080262549 *18 Apr 200823 Oct 2008Simpirica Spine, Inc.Methods and systems for deploying spinous process constraints
US20080275552 *30 Apr 20086 Nov 2008Exploramed Nc4, Inc.Adjustable absorber designs for implantable device
US20080275555 *2 May 20076 Nov 2008Exploramed Nc4, Inc.Extra-Articular Implantable Mechanical Energy Absorbing Systems
US20080275556 *30 Apr 20086 Nov 2008Exploramed Nc4, Inc.Adjustable absorber designs for implantable device
US20080275557 *30 Apr 20086 Nov 2008Exploramed Nc4, Inc.Adjustable absorber designs for implantable device
US20080275558 *9 Jul 20076 Nov 2008Exploramed Nc4, Inc.Extra-articular implantable mechanical energy absorbing systems and implantation method
US20080275559 *30 Apr 20086 Nov 2008Exploramed Nc4, Inc.Adjustable absorber designs for implantable device
US20080275560 *30 Apr 20086 Nov 2008Exploramed Nc4, Inc.Femoral and tibial base components
US20080275561 *9 Jul 20076 Nov 2008Exploramed Nc4, Inc.Extra-articular implantable mechanical energy absorbing systems and implantation method
US20080275562 *30 Apr 20086 Nov 2008Exploramed Nc4, Inc.Femoral and tibial base components
US20080275565 *30 Apr 20086 Nov 2008Exploramed Nc4, Inc.Adjustable absorber designs for implantable device
US20080275567 *1 May 20076 Nov 2008Exploramed Nc4, Inc.Extra-Articular Implantable Mechanical Energy Absorbing Systems
US20080281361 *10 May 200713 Nov 2008Shannon Marlece VitturPosterior stabilization and spinous process systems and methods
US20080287997 *8 Jul 200820 Nov 2008Moti AltaracInterspinous spacer
US20080288075 *27 Jun 200720 Nov 2008Zucherman James FSpine distraction implant and method
US20080288078 *27 May 200820 Nov 2008Kohm Andrew CPercutaneous spinal implants and methods
US20080294199 *25 May 200727 Nov 2008Andrew KohmSpinous process implants and methods of using the same
US20080294263 *24 Jul 200827 Nov 2008Moti AltaracInterspinous spacer
US20080319487 *18 Apr 200825 Dec 2008Simpirica Spine, Inc.Methods and Devices for Controlled Flexion Restriction of Spinal Segments
US20090005819 *21 May 20081 Jan 2009Eden Spine, LlcInterspinous vertebral implant
US20090030523 *9 Oct 200829 Jan 2009Jean TaylorVeretebra Stabilizing Assembly
US20090062915 *27 Aug 20075 Mar 2009Andrew KohmSpinous-process implants and methods of using the same
US20090088782 *28 Sep 20072 Apr 2009Missoum MoumeneFlexible Spinal Rod With Elastomeric Jacket
US20090099607 *15 Feb 200816 Apr 2009Stryker SpineApparatus and method for dynamic vertebral stabilization
US20090125030 *22 Jan 200914 May 2009Shawn TebbeDilator
US20090163955 *19 Sep 200825 Jun 2009Missoum MoumenePolymeric Pedicle Rods and Methods of Manufacturing
US20090198241 *30 Jul 20086 Aug 2009Phan Christopher USpine distraction tools and methods of use
US20090198245 *30 Jul 20086 Aug 2009Phan Christopher UTools and methods for insertion and removal of medical implants
US20090198282 *2 Feb 20096 Aug 2009Louis FieldingSpinal implant and method for restricting spinal flexion
US20090198337 *30 Jul 20086 Aug 2009Phan Christopher UMedical implants and methods
US20090222043 *9 Mar 20093 Sep 2009Moti AltaracInterspinous process spacer instrument system with deployment indicator
US20090227990 *26 May 200910 Sep 2009Stoklund OleIntercostal spacer device and method for use in correcting a spinal deformity
US20090240283 *18 Mar 200824 Sep 2009Warsaw Orthopedic, Inc.Implants and methods for inter-spinous process dynamic stabilization of a spinal motion segment
US20090248026 *17 Apr 20091 Oct 2009Moximed, Inc.Bone fixated, articulated joint load control device
US20090264932 *22 Oct 2009Simpirica Spine, Inc.Methods and systems for constraint of multiple spine segments
US20090275982 *3 Apr 20075 Nov 2009Jean TaylorDevice for treating vertebrae, including an interspinous implant
US20090326583 *25 Jun 200831 Dec 2009Missoum MoumenePosterior Dynamic Stabilization System With Flexible Ligament
US20090326584 *27 Jun 200831 Dec 2009Michael Andrew SlivkaSpinal Dynamic Stabilization Rods Having Interior Bumpers
US20100004744 *14 Sep 20097 Jan 2010Kyphon SarlInterspinous process distraction system and method with positionable wing and method
US20100010544 *16 Sep 200914 Jan 2010Stryker SpineApparatus and method for dynamic vertebral stabilization
US20100023060 *5 Jun 200928 Jan 2010Simpirica Spine, Inc.Methods and apparatus for locking a band
US20100030269 *5 Sep 20074 Feb 2010Jean TaylorInterspinous spinal prosthesis
US20100030549 *4 Feb 2010Lee Michael MMobile device having human language translation capability with positional feedback
US20100036424 *11 Feb 2010Simpirica Spine, Inc.Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment
US20100042150 *18 Feb 2010Warsaw Orthopedic, Inc.Intervertebral prosthetic device for spinal stabilization and method of manufacturing same
US20100069964 *28 Jun 200718 Mar 2010Beat LechmannDynamic fixation system
US20100070038 *7 Nov 200718 Mar 2010Jean TaylorInterspinous implant
US20100082108 *7 Dec 20091 Apr 2010Kyphon SarlSpine distraction implant and method
US20100087862 *5 Oct 20098 Apr 2010Lutz BiedermannElongated implant device and bone stabilization device including the same
US20100094344 *14 Oct 200815 Apr 2010Kyphon SarlPedicle-Based Posterior Stabilization Members and Methods of Use
US20100106247 *14 Oct 200929 Apr 2010Moximed, Inc.Extra-Articular Implantable Mechanical Energy Absorbing Systems
US20100106248 *6 Jan 201029 Apr 2010Moximed, Inc.Extra-Articular Implantable Mechanical Energy Absorbing Systems
US20100106252 *29 Oct 200829 Apr 2010Kohm Andrew CSpinal implants having multiple movable members
US20100114166 *5 Nov 20086 May 2010Andrew KohmExtension limiting devices and methods of use for the spine
US20100114320 *30 Dec 20096 May 2010Warsaw Orthopedic, Inc., An Indiana CorporationSurgical spacer with shape control
US20100121456 *21 Jan 201013 May 2010Kyphon SarlPosterior vertebral support assembly
US20100121457 *20 Jan 201013 May 2010Moximed, Inc.Extra-articular implantable mechanical energy absorbing systems and implantation method
US20100137996 *9 Feb 20103 Jun 2010Moximed, Inc.Femoral and tibial base components
US20100145336 *1 Dec 200910 Jun 2010Moximed, Inc.Bone fixated, articulated joint load control device
US20100145387 *18 Feb 201010 Jun 2010Warsaw Orthopedic, Inc.Spinal implants including a sensor and methods of use
US20100145449 *5 Feb 201010 Jun 2010Moximed, Inc.Adjustable absorber designs for implantable device
US20100152776 *17 Dec 200917 Jun 2010Synthes Usa, LlcPosterior spine dynamic stabilizer
US20100152779 *25 Feb 201017 Jun 2010Warsaw Orthopedic, Inc.Inter-transverse process spacer device and method for use in correcting a spinal deformity
US20100174316 *8 Jul 2010Kyphon SarlDistractible interspinous process implant and method of implantation
US20100174317 *1 Mar 20108 Jul 2010Applied Spine Technologies, Inc.Dynamic Spine Stabilizer
US20100185241 *22 Jul 2010Malandain Hugues FAdjustable surgical cables and methods for treating spinal stenosis
US20100211101 *3 May 201019 Aug 2010Warsaw Orthopedic, Inc.Spinous Process Stabilization Devices and Methods
US20100211104 *29 Apr 200919 Aug 2010Missoum MoumeneDual Spring Posterior Dynamic Stabilization Device With Elongation Limiting Elastomers
US20100217320 *3 May 200626 Aug 2010Tutogen Medical GmbhVertebral implant made from bone material for relief of a narrowed vertebral channel
US20100234894 *16 Sep 2010Simpirica Spine, Inc.Surgical tether apparatus and methods of use
US20100249841 *8 Jun 201030 Sep 2010Warsaw Orthopedic, Inc.Multi-chamber expandable interspinous process spacer
US20100262243 *22 Jun 201014 Oct 2010Kyphon SarlSpine distraction implant
US20100268277 *30 Jun 201021 Oct 2010Warsaw Orthopedic, Inc.Artificial spinous process for the sacrum and methods of use
US20100274287 *24 Apr 200928 Oct 2010Warsaw Orthopedic, Inc.Flexible Articulating Spinal Rod
US20100286701 *8 May 200911 Nov 2010Kyphon SarlDistraction tool for distracting an interspinous space
US20100305611 *2 Dec 2010Kyphon SarlInterspinous process apparatus and method with a selectably expandable spacer
US20100312277 *5 Jun 20099 Dec 2010Kyphon SarlMulti-level interspinous implants and methods of use
US20100318127 *16 Dec 2010Kyphon SarlInterspinous implant and methods of use
US20100318130 *2 Dec 200816 Dec 2010Parlato Brian DFlexible rod assembly for spinal fixation
US20100331886 *27 Oct 200930 Dec 2010Jonathan FangerPosterior Dynamic Stabilization Device Having A Mobile Anchor
US20110040331 *20 May 201017 Feb 2011Jose FernandezPosterior stabilizer
US20110077686 *29 Sep 200931 Mar 2011Kyphon SarlInterspinous process implant having a compliant spacer
US20110077692 *31 Mar 2011Jackson Roger PDynamic spinal stabilization assemblies, tool set and method
US20110087290 *14 Apr 2011Fridolin Johannes SchlaepferDevice for dynamic stabilization of bones or bone fragments
US20110093079 *21 Apr 2011Slone Clinton NExtra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods
US20110098745 *28 Oct 200928 Apr 2011Kyphon SarlInterspinous process implant and method of implantation
US20110106160 *5 May 2011The Board Of Trustees Of The Leland Stanford Junior UniversitySystems and methods for posterior dynamic stabilization of the spine
US20110106167 *18 Oct 20105 May 2011Tae-Ahn JahngAdjustable spinal stabilization system
US20110144697 *16 Jun 2011Kyphon SarlPercutaneous spinal implants and methods
US20110144701 *13 Dec 201016 Jun 2011Exactech, Inc.Methods for stabilization of bone structures
US20110153022 *29 May 200923 Jun 2011Synthes Usa, LlcBalloon-assisted annulus repair
US20110172596 *13 Jan 201014 Jul 2011Kyphon SarlInterspinous process spacer diagnostic balloon catheter and methods of use
US20110172708 *14 Jul 2011Simpirica Spine, Inc.Methods and systems for increasing the bending stiffness of a spinal segment with elongation limit
US20110172720 *14 Jul 2011Kyphon SarlArticulating interspinous process clamp
US20110213301 *26 Feb 20101 Sep 2011Kyphon SĀRLInterspinous process spacer diagnostic parallel balloon catheter and methods of use
US20110230914 *7 Aug 200822 Sep 2011Synthes (U.S.A.)Dynamic cable system
US20110238119 *24 Mar 201029 Sep 2011Missoum MoumeneComposite Material Posterior Dynamic Stabilization Spring Rod
US20120004727 *5 Jan 2012Eden Spine, LlcMethod Of Implanting An Interspinous Vertebral Implant
US20120109201 *29 Apr 20113 May 2012Neuraxis LlcIntersegmental motion preservation system for use in the spine and methods for use thereof
US20120109202 *3 May 2012Neuraxis LlcIntersegmental motion preservation system for use in the spine and methods for use thereof
US20130338782 *1 Aug 201319 Dec 2013Moximed, Inc.Extra-Articular Implantable Mechanical Energy Absorbing Assemblies Having a Tension Member, and Methods
US20130338783 *1 Aug 201319 Dec 2013Moximed, Inc.Extra-Articular Implantable Mechanical Energy Absorbing Assemblies Having a Tension Member, and Methods
EP1994900A1 *22 May 200726 Nov 2008Flexismed SAInterspinous vertebral implant
EP2182864A1 *18 Apr 200812 May 2010Simpirica Spine, Inc.Methods and devices for controlled flexion restriction of spinal segments
EP2182864A4 *18 Apr 20082 Jan 2013Simpirica Spine IncMethods and devices for controlled flexion restriction of spinal segments
EP2770927A4 *26 Oct 20124 Nov 2015Univ Johns HopkinsIntersegmental motion preservation system for use in the spine and methods for use thereof
WO2007019894A1 *3 May 200622 Feb 2007Tutogen Medical GmbhVertebral implant made from bone material for relief of a narrowed vertebral channel
WO2008051423A118 Oct 20072 May 2008Univ Leland Stanford JuniorMethods and systems for constraint of spinous processes with attachment
WO2008051801A218 Oct 20072 May 2008Simpirica Spine IncStructures and methods for constraining spinal processes with single connector
WO2008051802A218 Oct 20072 May 2008Simpirica Spine IncMethods and systems for constraint of multiple spine segments
WO2009146428A1 *29 May 20093 Dec 2009Synthes Usa, LlcBalloon-assisted annulus repair
WO2009149407A15 Jun 200910 Dec 2009Simpirica Spine, Inc.Methods and apparatus for locking a band
WO2009149414A15 Jun 200910 Dec 2009Simpirica Spine, Inc.Methods and apparatus for locking a band
WO2010088621A11 Feb 20105 Aug 2010Simpirica Spine, Inc.Sacral tether anchor and methods of use
WO2010104975A110 Mar 201016 Sep 2010Simpirica Spine, Inc.Surgical tether apparatus and methods of use
WO2010121256A119 Apr 201021 Oct 2010Simpirica Spine, Inc.Structures and methods for constraining spinal processes with single connector
WO2011017363A13 Aug 201010 Feb 2011Simpirica Spine, Inc.Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment
Classifications
U.S. Classification623/17.16, 623/17.13, 606/279, 606/257
International ClassificationA61F2/44, A61B17/70, A61B17/00
Cooperative ClassificationA61F2002/4435, A61B17/7026, A61B2017/00557, A61B17/7062, A61B17/70, A61B17/7025, A61B17/7011
European ClassificationA61B17/70B1R10, A61B17/70B1R8, A61B17/70P, A61B17/70
Legal Events
DateCodeEventDescription
24 Feb 2005ASAssignment