US20050043710A1 - Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia - Google Patents

Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia Download PDF

Info

Publication number
US20050043710A1
US20050043710A1 US10/952,339 US95233904A US2005043710A1 US 20050043710 A1 US20050043710 A1 US 20050043710A1 US 95233904 A US95233904 A US 95233904A US 2005043710 A1 US2005043710 A1 US 2005043710A1
Authority
US
United States
Prior art keywords
anesthetic
injection
pressure
nerve
delivery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/952,339
Inventor
Admir Hadzic
Jerry VLoka
Sergio Giglioli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macosta Medical USA LLC
Original Assignee
Macosta Medical USA LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macosta Medical USA LLC filed Critical Macosta Medical USA LLC
Priority to US10/952,339 priority Critical patent/US20050043710A1/en
Publication of US20050043710A1 publication Critical patent/US20050043710A1/en
Priority to US12/250,211 priority patent/US7727224B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/48Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for varying, regulating, indicating or limiting injection pressure
    • A61M5/486Indicating injection pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16831Monitoring, detecting, signalling or eliminating infusion flow anomalies
    • A61M5/16854Monitoring, detecting, signalling or eliminating infusion flow anomalies by monitoring line pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2202/00Special media to be introduced, removed or treated
    • A61M2202/04Liquids
    • A61M2202/0468Liquids non-physiological
    • A61M2202/048Anaesthetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3355Controlling downstream pump pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/48Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests having means for varying, regulating, indicating or limiting injection pressure
    • A61M5/488Limiting injection pressure

Definitions

  • the present invention relates generally to administration of regional or local anesthesia to achieve peripheral nerve blockade, such as is useful when a surgeon operates on a patient's arm or leg or to treat pain emanating in the said or other body parts. More particularly, the present invention relates to an improved method and system of local anesthetic administration that includes a device for indicating pressures interposed between the syringe with local anesthetic and needle for locating the nerves during administration of nerve blocks. Additionally, since the pressure during nerve block injection also depend on the speed of injection, the same device can be used to indirectly monitor and limit the excessive speed of injection
  • nerve block anesthesia may be performed to numb or anesthetize the nerves innervating the region being operated upon.
  • Performance of nerve blocks consists of several phases.
  • the operator inserts the needle in the presumed vicinity of the nerve(s) to be blocked. In doing so, the operator may insert the needle “blindly” relying on anatomical landmarks, the operator may try to elicit “paresthesia,” whereby the nerve is touched by the needle and the patient perceives “a shock” traveling down the nerve being touched, or the operator may use a nerve stimulator to elicit the motor response (twitch) of the nerve being sought.
  • Regional anesthesia is widely thought to have a number of advantages over general anesthesia.
  • Regional anesthesia is an effective, low-cost technique that provides a means of selectively anesthetizing a region of the body while minimally interfering with the patient's vital systems.
  • one of the major disadvantages of regional anesthesia and nerve blocks in particular is the possibility of nerve damage during administration of nerve blocks or regional anesthesia.
  • Other drawbacks include the risks of systemic and local toxic complications.
  • the primary target for local anesthetic effect in regional anesthesia is neural tissue, such as peripheral nerves, nerve roots, and spinal cord.
  • neural tissue such as peripheral nerves, nerve roots, and spinal cord.
  • Nerve Lesions after Axillary Blocks Acta. Anaesth. Scand., 23, 27 (1979); Plevak et al., “Paresthesia Vs. Non Paresthesia—the Axillary Block,” Anesthesiology, 59, A216 (1983); Winchell et al., “The incidence of neuropathy following upper extremity nerve blocks,” Reg. Anesth., 10, 12 (1985); Tourtier et al., “Complications of Axillary Block Using Two Techniques: Experience with 1400 Cases,” Anesthesiology, 71, A726 (1989); Davis et al., “Brachial Plexus Anesthesia for Outpatient Surgical Procedures on an Upper Extremity,” Mayo Clin.
  • Selander et al. “Longitudal Spread of Intraneurally Injected Local Anesthetics,” Acta Anesth. Scand., 22, 622 (1978). Similar conditions can also occur in humans, and admixture of epinephrine with local anesthetic can enhance ischemia when injected intraneuronally and thus increase the risk of nerve injury. Selander et al., “Parasthesiae or No Parasthesiae? Nerve Lesions after Axillary Blocks,” Acta Anaesth. Scand., 23, 27 (1979). The pressures on normal injection of local anesthetics in humans range from about 500 mm Hg to about 1200 mm Hg. Higher pressures may indicate an intraneuronal injection. Hadzic et al., “Injection Pressure During Peripheral Nerve Blockade,” Anesthesiology, Abstract (2002).
  • the present invention provides an objective and reproducible method of monitoring and/or controlling the pressure during nerve blockage injection, especially by less experienced personnel and/or assistants, in order to decrease the possibility of intraneuronal injection. More specifically, the present invention employs a pressure sensing and/or limiting device located between an injection device (typically a syringe) and a nerve block needle whereby injection pressure during a nerve block injection can be easily and objectively monitored, thereby allowing the operator to monitor the injection pressure during a nerve blockage injection procedure. Additionally, since the pressure during nerve block injection also depend on the speed of injection, the same device can be used to indirectly monitor and limit excessive injection speeds.
  • FIG. 1 illustrates one embodiment of the nerve blockage injection system of the present invention.
  • FIG. 2 illustrates one embodiment of the pressure sensing device used in the present invention.
  • Panel A provides a side view of the pressure sensing device indicating “low” or “normal” pressure.
  • Panel B provides the same side view except that the pressure sensing device indicates “high” or “abnormal” pressure.
  • Panel C provides a top view of the pressure sensing device.
  • FIG. 3 provides a flowchart illustrate the general method of the present invention.
  • FIG. 4 provides a flowchart illustrating one preferred embodiment of the general method of the present invention wherein an anesthesiologist-or other health care provider employs an assistant to operate the injection device.
  • the present invention provides an objective and reproducible method of monitoring and/or controlling the pressure during nerve blockage injection, especially by less experienced personnel, in order to decrease the possibility of intraneuronal injection. More specifically, the present invention employs a pressure sensing and/or limiting device located between an injection device (typically a syringe) and a nerve block needle whereby injection pressure during a nerve block injection can be easily and objectively monitored, thereby allowing the operator to monitor the injection pressure during a nerve blockage injection procedure.
  • an injection device typically a syringe
  • a “normal” injection pressure is generally considered to be in the range of the typical pressure normally encountered in a particular type of nerve bock procedure.
  • An “abnormal” injection pressure is generally considered to. be above the range of such typical pressures normally encountered in a particular type of nerve bock procedure.
  • an “intermediate” injection pressure would span the higher end of the “normal” pressure range and the lower end of the “abnormal” range.
  • a normal injection pressure would generally be less than about 15 psi; an intermediate injection pressure generally would be about 15 to about 25 psi; and an abnormal injection pressure would generally be greater than about 25 psi.
  • these pressures may vary depending on the patient, the type or location of the nerve block, the type, length, or caliber of the needle, the composition, viscosity, or other characteristics of the anesthetic used, speed or force of the injection, as well as other factors.
  • the present apparatus for performing a nerve block injection comprises an anesthetic delivery device. (e.g., syringe) having an anesthetic storage compartment and an output end, an anesthetic needle or catheter having an input end and an output end, an anesthetic passageway connecting the output end of the anesthetic delivery device and the input end of the anaesthetic needle whereby anesthetic from the anesthetic storage compartment can be delivered via the output end of the anesthetic needle to a patient, and a pressure sensing device located along, and in pressure sensing communication with, the anesthetic passageway, whereby the pressure of the anesthetic can be monitored during the nerve block injection.
  • an anesthetic delivery device e.g., syringe
  • an anesthetic needle or catheter having an input end and an output end
  • an anesthetic passageway connecting the output end of the anesthetic delivery device and the input end of the anaesthetic needle whereby anesthetic from the anesthetic storage
  • FIG. 1 One embodiment of the present invention is shown in FIG. 1 having an anesthetic delivery device 10 , a pressure indicating device 20 , flexible tubing 52 , and a needle 60 for delivering anesthetic adjacent or in the vicinity of nerve 72 for which a nerve block is desired.
  • the anesthetic delivery device 10 shown in FIG. 1 is a syringe having a body 18 , an anesthetic storage compartment 12 , a movable piston 16 , and an output end 14 .
  • Other suitable anesthetic delivery devices include, for example, mechanical pumps, and the like so long as they can be controlled by an operator.
  • the output end 14 is adapted to be fitted or attached to the pressure indicating device 20 at its input end 22 .
  • the output end 26 is attached via flexible tubing 52 (having an input end 50 and an output end 52 ).
  • the output end 54 of the flexible tubing 52 is attached to the input end 62 of needle 60 .
  • Needle 60 has an output end 64 for delivering anesthetic to a desired location. In operation, as the piston 16 is depressed, anesthetic flows from the anesthetic storage compartment 12 , through the pressure indicating device 20 (via passageway 38 ), through flexible tubing 52 , and through needle 60 in order to be injected at the desired location to effect the nerve block.
  • the pressure indicating device 20 shown in FIG. 1 is attached directly to the output end 22 of syringe 10 , it could be attached via flexile tubing (similar to flexible tubing 521 so that it could be located anywhere along the length of flexible tubing 52 (including directly attached to the input end 62 of needle 60 ) as desired.
  • flexile tubing similar to flexible tubing 521 so that it could be located anywhere along the length of flexible tubing 52 (including directly attached to the input end 62 of needle 60 ) as desired.
  • Such a pressure sensing/monitoring device 20 could also be built-in into the syringe-piston mechanism and/or the needle device, rather than being attached to the syringe as shown in FIG. 1 . Additionally, more than one pressure indicating device 20 could be included if desired.
  • one pressure indicating device 20 could be located near the output end 22 of syringe 10 and another one near the input end 62 of needle 60 to allow observation of the injection pressure by an operator controlling the needle 60 (e.g., anesthesiologist, nurse anesthesiologist, other anesthesia providers, and the like) and an assistant controlling the syringe 10 .
  • an operator controlling the needle 60 e.g., anesthesiologist, nurse anesthesiologist, other anesthesia providers, and the like
  • FIG. 2 One embodiment of the pressure indicating device 20 is shown in more detail in FIG. 2 wherein the device in Panel A illustrates a normal pressure condition and Panel B illustrates an abnormal or high pressure condition.
  • the pressure indicating device 20 is formed in a body 24 with an input end 22 to receive anesthetic from the anesthetic delivery device 10 , a passageway 38 allowing anesthetic to pass through the body 24 , and an output end 26 to deliver anesthetic to the needle 60 via flexible tubing 52 .
  • the body has an internal flexible membrane 36 within pressure expansion chamber 32 such that as the injection pressure of the anesthetic increase, the membrane 36 can expand within the pressure expansion chamber 32 as shown in Panel B thereby forcing pressure indicating pin 28 to extend beyond a top housing 30 to indicate the injection pressure.
  • the passageway 38 is in fluid communication with the membrane 36 via passageway opening 40 .
  • Panels A and B provide side views; Panel C provides a top view.
  • membrane 36 is shown as circular in Panel C, it could be of any shape so long as it can be expanded sufficiently to move the pressure indicating pin 28 to indicate increase injection pressure.
  • membrane 26 is construction of flexible silicone, flexible polyurethane, flexible rubber, or other flexible materials suitable for use in medical devices.
  • anesthetic can force the membrane 36 to expand and thereby enter into portion 42 of the expansion chamber 32 and move the pressure indicating pin 28 upward and out of the top housing 30 .
  • a larger volume of local anesthetic within portion 42 expands or stretches membrane 36 and allows the volume within portion 42 to increase and move the pressure indicating pin 28 .
  • the top housing 30 is used to keep the pressure indicating pin 28 in proper alignment so that it can move, depending on the injection pressure, from and to the positions illustrated in Panels A and B.
  • the pressure indicated pin 28 has an associated spring 34 to resist movement upward.
  • the strength of the spring 28 can be selected to provide the desired resistant to movement and, therefore, the range of pressures required to move the pressure indicated pin 28 .
  • the extend of expansion of the membrane (and thus the relative size or volume of portion 42 and the extent of travel of pressure indicating pin 28 ) will depend on the injection pressure and/or injection speed.
  • the pressure indicating pin 28 is color coded to indicate relative injection pressure.
  • green would indicate normal injection pressure
  • yellow would indicate an intermediate pressure
  • red would indicate an abnormally high pressure.
  • the color exposed on the pressure indicating pin 28 would, therefore, provide a quick and visual indication of the injection pressure along with an indication of how to proceed with the injection.
  • green i.e., normal pressure
  • yellow i.e., intermediate pressure
  • red i.e., abnormal pressure
  • the pressure indicating pin 28 In operation, during normal injection pressures, the pressure indicating pin 28 would remain in the retracted position as shown in Panel A with only green showing. During abnormal injection pressure, the pressure indicating pin 28 would move to its extended position as shown in Panel B with red now showing to indicate the abnormal pressure; when the injection pressure decreases, the pressure indicating pin 28 would then move downward to, once normal injection pressures are reestablished, to the position shown in Panel A.
  • a normal injection pressure i.e., the green position in FIG. 2
  • an intermediate injection pressure i.e., the yellow position in FIG. 2
  • an abnormal injection pressure i.e., the red position in FIG. 2
  • these pressures may vary depending on the patient, the type or location of the nerve block, the type, length, or caliber of the needle, the composition, viscosity, or other characteristics of the anesthetic used, speed or force of the injection, as well as other factors.
  • pressure indicating devices having different operating pressure ranges may be provided so that the operator can selected the appropriate range for the specific application and/or patient.
  • the pressure indicating device 20 can be formed using conventional materials of construction normally used in medical devices.
  • all materials contacting the anesthetic e.g., the interior of passageway 38 , membrane 36 , and portion 42 of expansion chamber 32 .
  • all materials of construction should be capable of being rendered medical sterile using conventional procedures. It is generally preferred, that lightweight plastic materials be used whenever possible.
  • the pressure indicating device 20 is used once and discarded using appropriate procedures. If desired, however, the materials of construction for pressure indicating device 20 can be selected such that it can be resterilized for multiple usage.
  • the operator inserts the needle 60 into the patient through the skin 70 such that the needle tip 64 can deliver anesthetic adjacent, near, or in the immediate vicinity of the nerve 72 to be anesthetized.
  • Conventional techniques are used to position the needle tip 64 in the desired location relative to the nerve 72 .
  • the local anesthetic is injected by exerting the pressure on the piston 16 of the syringe 10 .
  • the operator or an assistant observes the pressure indicating device 20 during injection so that, if the pressure increases, the appropriate action (as determined by the operator) can be undertaken.
  • higher than desired pressures i.e.,. intermediate or abnormal pressure
  • higher than desired pressures can occur due to a too fast injection of local anesthetic, obstruction of the needle tip due to tissue debris, or inadvertent placement of the needle inside the nerve.
  • the operator upon observing increased pressure normally wish to determine the cause of the increased pressure in determining how to proceed.
  • the operator has the option to disregard the data and continue the injection, slow the rate of injection, or to stop injection and reposition and/or flush the needle and then continue the injection.
  • the nerve block needle is inserted into the patent at the appropriate location (i.e., in the immediate vicinity of the nerve to be blocked). After confirming that the location is acceptable using conventional techniques (e.g., using anatomical landmarks, achieving paresthesia (sensation traveling in the are of the nerve to be blocked distribution), and/or obtaining motor stimulation (muscle twitch) using a nerve stimulator), the injectior is begun. The injection pressure during injection is monitored using the pressure sensing device. The injection is continued, modified, or terminated depending on the injection pressure observed. For example, if only normal or acceptable pressure are observed during the injection, the injection is continued until completion.
  • conventional techniques e.g., using anatomical landmarks, achieving paresthesia (sensation traveling in the are of the nerve to be blocked distribution), and/or obtaining motor stimulation (muscle twitch) using a nerve stimulator.
  • the injection pressure during injection is monitored using the pressure sensing device.
  • the injection is continued, modified, or terminated depending on the injection pressure observed.
  • the injection may be modified or terminated as appropriate.
  • the method of the present invention may be carried out by a single individual (e.g., anesthesiologist, nurse anesthesiologist, other anesthesia providers, and the like) or by such an individual using an assistant.
  • FIG. 4 A preferred procedure for using the apparatus of the present invention is illustrated in FIG. 4 wherein the operator who positions the needle relative to the nerve to be block uses an assistant to operate the anesthetic delivery device and observe the pressure indicating device.
  • the actions of the anesthesiologist (or other health care provider) and the assistant are generally presented on the left and right sides, respectively.
  • the anesthesiologist inserts the nerve block needle into the patent at the appropriate location (i.e., in the immediate vicinity of the nerve to be blocked).
  • the anesthesiologist After confirming that the location is acceptable using conventional techniques (e.g., using anatomical landmarks, achieving paresthesia (sensation traveling in the are of the nerve to be blocked distribution), and/or obtaining motor stimulation (muscle twitch) using a nerve stimulator), the anesthesiologist instructs the assistant to begin the injection.
  • the assistant then begins the injection and continuously monitors the pressure sensing device. If only normal or acceptable pressure are observed during the injection, the injection is continued until completion. If, however, intermediately or abnormally high pressure are observed, the assistant informs the anesthesiologist who must make a decision as whether to interrupt or continue the injection. If the pressure is only in the intermediate level (i.e., yellow showing on the pressure indicating pin 28 (see FIG.
  • the anesthesiologist may wish to continue the injection unless abnormal pressures are later observed. Whether in the intermediate or abnormal level, the anesthesiologist may instruct the assistant to stop or interrupt the injection so that corrective action may be undertaken. Such corrective action may include, for example, repositioning the needle relative to the nerve, clearing the needle tip of debris that may have blocked the needle, allowing the pressure to decrease before restarting the injection, reducing the speed of the injection, terminating the injection in order to start over, and the like.
  • the assistant Once the anesthesiologist has completed the necessary corrective actions (except, of course, terminating the injection), instructions are given to the assistant to restart the injection. Upon restarting the injection, the assistant will again monitor the injection pressure as described above and providing the necessary information should the pressure increase to intermediate or abnormal levels again.
  • the assistant both monitors the pressure sensing device and operates the syringe or other pumping device in the method illustrated in FIG. 4
  • the anesthesiologist or other health care provider may also be involved in these activities.
  • the pressure sensing device could be located at a position near the needle (as opposed to near the syringe) to allow the anesthesiologist or other health care provider to easily monitor the injection pressure during injection as well as control the needle position.
  • the anesthesiologist or other health care provider could practice the method of the present invention without the use of an assistant.
  • the syringe or other pumping device could-preferably be operated by a foot peddle or other device to leave the operator's hand free to place and control the needle.
  • the present method provides the anesthesiologist the option of continuing the injection even if intermediate or abnormal pressures are observed based on his or her best medical judgement.
  • the anesthesiologist will instruct the assistant to continue the injection.
  • the assistant preferably should continue to monitor the injection pressure in case it increases dramatically so that, if appropriate, the anesthesiologist can reconsider the decision to continue.
  • high pressures due to a intraneuronal injection are most commonly observed at the beginning of the injection; however, the needle be initially placed outside the nerve and then inadvertently advanced into the nerve during the injection, resulting in higher pressures.
  • the pressure sensing device may also be equipped with a pressure-activated shut-off so that if the injection pressure reaches some predetermined level, flow of the anesthetic will be automatically stopped.
  • this predetermined level may be set at any level, it is generally preferred that it be set at a level at or near the abnormal pressure range (e.g., generally at a level of about 25 psi or higher).
  • This automatic shut-off feature may also, if desired, be equipped with a manual override mechanism so that the anesthesiologist, if desired, can continue the injection with or without corrective actions. It will generally be preferred, however, that such an injection not be continued unless such corrective actions are successfully undertaken.

Abstract

An objective and reproducible system for, and method of, monitoring and/or controlling the pressure during nerve blockage injection, especially by less experienced personnel, is provided in order to decrease the possibility of intraneuronal injection. More specifically, the present invention employs a pressure sensing and/or limiting device located between an injection device (typically a syringe) and a nerve block needle whereby injection pressure during a nerve block injection can be easily and objectively monitored, thereby allowing the operator to monitor the injection pressure and/or injection speed during a nerve blockage injection procedure and to take appropriate corrective actions if abnormal pressure conditions are observed.

Description

    TECHNICAL FIELD
  • The present invention relates generally to administration of regional or local anesthesia to achieve peripheral nerve blockade, such as is useful when a surgeon operates on a patient's arm or leg or to treat pain emanating in the said or other body parts. More particularly, the present invention relates to an improved method and system of local anesthetic administration that includes a device for indicating pressures interposed between the syringe with local anesthetic and needle for locating the nerves during administration of nerve blocks. Additionally, since the pressure during nerve block injection also depend on the speed of injection, the same device can be used to indirectly monitor and limit the excessive speed of injection
  • BACKGROUND OF THE INVENTION
  • When a surgeon operates on the legs or arms, nerve block anesthesia may be performed to numb or anesthetize the nerves innervating the region being operated upon. Performance of nerve blocks consists of several phases. In the first phase, the operator inserts the needle in the presumed vicinity of the nerve(s) to be blocked. In doing so, the operator may insert the needle “blindly” relying on anatomical landmarks, the operator may try to elicit “paresthesia,” whereby the nerve is touched by the needle and the patient perceives “a shock” traveling down the nerve being touched, or the operator may use a nerve stimulator to elicit the motor response (twitch) of the nerve being sought. Whichever method is used, the operator hopes to be in the immediate vicinity to the nerve (which is necessary for reliable nerve blocks) and not in the nerve itself (which may result in traumatic nerve injury when the local anesthetic is injected into the nerve). It is important to emphasize that all three methods used to locate nerves at best approximate the needle position in relationship to the nerve and not confirm it with absolute accuracy. Consequently, with these three described methods for localizing nerves during nerve blocks, the needle tip may inadvertently be inserted into the nerve itself. The resultant injection directly into the nerve(s) may result in significant nerve injury.
  • Regional anesthesia is widely thought to have a number of advantages over general anesthesia. Regional anesthesia is an effective, low-cost technique that provides a means of selectively anesthetizing a region of the body while minimally interfering with the patient's vital systems. However, one of the major disadvantages of regional anesthesia and nerve blocks in particular is the possibility of nerve damage during administration of nerve blocks or regional anesthesia. Other drawbacks include the risks of systemic and local toxic complications. The primary target for local anesthetic effect in regional anesthesia is neural tissue, such as peripheral nerves, nerve roots, and spinal cord. Thus, it may not be surprising that the most common and troublesome local complications of nerve blocks and regional anesthesia involve the peripheral nerves. Such complications are, fortunately, rare, but they can cause considerable problems for both patient and physician. Of note, even the most careful anesthesiologist will occasionally encounter a PNS complication. For instance, in a survey of hand surgeons regarding experience of neurologic complications associated with axillary block anesthesia, 171 (21%) of the responding 800 surgeons had seen a total of 249 major complications (i.e., lasting at least a year), and 521 (65%) had dealt with minor neurologic sequence (Stark, “Neurologic Injury from Axillary Block Anesthesia,” J. Hand Surg. 21A, 391 (1996)). Thus, about one of five hand surgeons has seen a major neurologic sequela that might have been related to a nerve block. While the overall incidence of nerve damage after nerve blocks is relatively low, the consequences can be catastrophic and result in a temporary or permanent injury to the nerve, loss of limb function and paralysis. See, e.g., Auroy et al., “Serious Complications Related to Regional Anesthesia: Results of a Prospective Survey in France,” Anesthesiology, 87, 479-484 (1997); Eisenach, “Regional Anesthesia: Vintage Bordeaux (And Napa Valley),” Anesthesiology, 87, 467-9 (1997). Indeed, the neurologic complications after regional anesthesia are among the most commonly discussed issues at various anesthesia conferences, and a common topic of many scientific publications. Lesions to the brachial plexus seem to be reported most frequently. See, e.g., Bonica et al., “Brachial Plexus Block Anesthesia,” Am. J. Surg., 78, 65 (1949); Moberg et al., “Brachial Plexus Block Analgesia with Xylocaine,” J. Bone Joint Surg., 33A, 884 (1951); Wolley et al., “Neurological sequelae of brachial plexus nerve block,” Ann. Surg., 149, 53 (1959); Brand et al., “A Comparison of Supraclavicular and Axillary Techniques for Brachial Plexus Blocks,” Anesthesiology, 22, 226 (1961); Schmidt et al., “Komplikationen und Gefahren der Plexus-brachialis-Anesthesie unter besonderer Berucksictinung von Langzeitschaden,” Anasth. lntensivther. Notfallmed., 16, 346 (1981); de Jong , “Axillary block of the brachial plexus,” Anesthesiology, 22 , 215 (1961); Hamelberg et al., “Perivascular Axillary Versus Supraclavicular Brachial Plexus Block and General Anesthesia,” Anesth. Analg., 41, 85 (1962); Wall, “Axillary nerve blocks,” Ann. Surg., 149, 53 (1959); Moore et al,. “Bupivacaine: a Review of 11,080 Cases,” Anesth. Analg., 57, 42 (1978); Selander et al., “Parasthesiae or No Parasthesiae? Nerve Lesions after Axillary Blocks,” Acta. Anaesth. Scand., 23, 27 (1979); Plevak et al., “Paresthesia Vs. Non Paresthesia—the Axillary Block,” Anesthesiology, 59, A216 (1983); Winchell et al., “The incidence of neuropathy following upper extremity nerve blocks,” Reg. Anesth., 10, 12 (1985); Tourtier et al., “Complications of Axillary Block Using Two Techniques: Experience with 1400 Cases,” Anesthesiology, 71, A726 (1989); Davis et al., “Brachial Plexus Anesthesia for Outpatient Surgical Procedures on an Upper Extremity,” Mayo Clin. Proc., 66, 470 (1991); Stan et al., “The Incidence of Neurovascular Complications Following Axillary Brachial Plexus Block Using a Transarterial Approach,” Reg. Anesth., 20, 486 (1995); Lofstrom et al., “Late Disturbances in Nerve Function after Block with Local Anesthetic Agents.” Acta. Anesth. Scand., 10, 111 (1966); Mogensen et al., “Posttraumatic Instability of the Metacarpophalangeal Joint of the Thumb,” Hand, 12, 85 (1980).
  • One of the mechanisms of nerve injury is inadvertent insertion of the needle into a nerve with consequent injection of local anesthetic inside the nerve. This in turn may result in either mechanical trauma to the nerve, ischemic injury to the nerve due the resultant increase in endoneural pressure due to the high pressures inside the nerve, and/or endoneral edema. Indeed, experimentally, it was found that intrafascicular injections in rabbit sciatic nerve in vivo can produce endoneural pressures of more than 700 mm Hg, and after such injections the endoneural pressure could exceed the estimated capillary perfusion pressure for about 15 minutes. During this period, the nerve fascicle is both ischemic and vulnerable to otherwise toxicologically neutral local anesthetic solutions. Selander et al., “Longitudal Spread of Intraneurally Injected Local Anesthetics,” Acta Anesth. Scand., 22, 622 (1978). Similar conditions can also occur in humans, and admixture of epinephrine with local anesthetic can enhance ischemia when injected intraneuronally and thus increase the risk of nerve injury. Selander et al., “Parasthesiae or No Parasthesiae? Nerve Lesions after Axillary Blocks,” Acta Anaesth. Scand., 23, 27 (1979). The pressures on normal injection of local anesthetics in humans range from about 500 mm Hg to about 1200 mm Hg. Higher pressures may indicate an intraneuronal injection. Hadzic et al., “Injection Pressure During Peripheral Nerve Blockade,” Anesthesiology, Abstract (2002).
  • The current recommendations to decrease the risk of intra-neuronal injections consist of slow injection to avoid high injection pressures and the avoidance of injection when high pressures are noticed during injection of local anesthetic. Finucane, Complications of Regional Anesthesia, Churchill Livingstone, New York (1999). However, these recommendations assume that the operator or operators are able to perceive the difference between “normal” and “abnormal” injection pressures and take appropriate actions when “abnormal” injection pressures are observed. However, these judgments are prone to subjective interpretation and/or the “feel” of the operators and not on any objective measurements (e.g., measured injection pressure, speed, or similar variables). The ability of different operators to estimate and/or control the injection (especially as with regard to pressure) is further complicated by differences in hand strength and experience among operators as well as differences in resistance to injection for various needle types, lengths, and lumen calibers. In addition, in clinical practice, it is common practice for an operator (e.g., anesthesiologist, nurse anesthesiologist, other anesthesia providers, and the like) to perform the needle placement with an assistant (often without significant experience in nerve blockade) who injects the local anesthetic. This practice poses a risk of exerting too high pressures during injection and possible unrecognized intraneuronal injection. In addition, the operator typically uses both hands to perform the procedure (i.e., place the injection needle in the appropriate location relative to the nerve) and cannot easily determine and/or control the amount of force and pressure that the assistant may employ to inject the local anesthetic.
  • Moreover, forceful and/or fast injections of local anesthetic solutions can lead to a higher risk of systemic local anesthetic toxicity (e.g., seizures, arrhythmia, cardiovascular collapse, and death) due to tracking of local anesthetic between tissue layers and inadvertent intravascular injections. Additionally, intraneuronal and rapid injections of local anesthetics can backtrack to the spinal column and result in unintended epidural or spinal anesthesia with potentially disastrous consequences (Selander et al., “Longitudal Spread of Intraneurally Injected Local Anesthetics,” Acta Anesth. Scand., 22, 622 (1978); Tetzlaff et al., “Subdural Anesthesia as a Complication of an lnterscalene Brachial Plexus Block,” Regional Anesthesia, 19, 357-359 (1994); Dutton et al., “Total Spinal Anesthesia after Interscalene Blockade of the Brachial Plexus,” Anesthesiology, 80, 939-941 (1994)).
  • Various attempts have been made to improve anesthesia instruments. See, e.g., U.S. Pat. No. 5,119,832 (Jun. 9, 1992); U.S. Pat. No. 5,378,241 (Jan. 3, 1995); U.S. Pat. No. 4,994,036 (Feb. 19, 1991); U.S. Pat. No. 4,775,367 (Oct. 4, 1988); U.S. Pat. No. 4,889,529 (Dec. 26, 1989); U.S. Pat. No. 4,917,670 (Apr. 17, 1990); U.S. Pat. No. 4,917,668 (Apr. 17, 1990); U.S. Pat. No. 5,085,631 (Feb. 4, 1992); U.S. Pat. No. 5,106,376 (Apr. 21, 1992); U.S. Pat. No. 5,135,525 (Aug. 4, 1992); U.S. Pat. No. 5,312,374 (May 17, 1994); U.S. Pat. No. 5,328,479 (Jul. 12, 1994); U.S. Pat. No. 5,512,052 (Apr. 30, 1996); U.S. Pat. No. 5,630,802 (May 20, 1997). None of these attempts, however, focused on controlling and/or measuring the pressure and/or injection speed during injection to avoid an inadvertent intraneuronal injection, or rapid spread, and/or absorption of local anesthetics during nerve blockade/regional anesthesia.
  • Thus, it is clear that a more objective and reproducible method of monitoring and/or controlling the pressure and/or injection speed during nerve blockage injection, especially by less experienced personnel and/or assistants, would be beneficial in order to decrease the possibility of intraneuronal injection. The present invention provides such a method and apparatus.
  • SUMMARY OF THE INVENTION
  • The present invention provides an objective and reproducible method of monitoring and/or controlling the pressure during nerve blockage injection, especially by less experienced personnel and/or assistants, in order to decrease the possibility of intraneuronal injection. More specifically, the present invention employs a pressure sensing and/or limiting device located between an injection device (typically a syringe) and a nerve block needle whereby injection pressure during a nerve block injection can be easily and objectively monitored, thereby allowing the operator to monitor the injection pressure during a nerve blockage injection procedure. Additionally, since the pressure during nerve block injection also depend on the speed of injection, the same device can be used to indirectly monitor and limit excessive injection speeds.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 illustrates one embodiment of the nerve blockage injection system of the present invention.
  • FIG. 2 illustrates one embodiment of the pressure sensing device used in the present invention. Panel A provides a side view of the pressure sensing device indicating “low” or “normal” pressure. Panel B provides the same side view except that the pressure sensing device indicates “high” or “abnormal” pressure. Panel C provides a top view of the pressure sensing device.
  • FIG. 3 provides a flowchart illustrate the general method of the present invention.
  • FIG. 4 provides a flowchart illustrating one preferred embodiment of the general method of the present invention wherein an anesthesiologist-or other health care provider employs an assistant to operate the injection device.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention provides an objective and reproducible method of monitoring and/or controlling the pressure during nerve blockage injection, especially by less experienced personnel, in order to decrease the possibility of intraneuronal injection. More specifically, the present invention employs a pressure sensing and/or limiting device located between an injection device (typically a syringe) and a nerve block needle whereby injection pressure during a nerve block injection can be easily and objectively monitored, thereby allowing the operator to monitor the injection pressure during a nerve blockage injection procedure.
  • For purposes of this invention, the terms “local,” “regional,” and “nerve block” with respect to anesthesia are intended to be synonymous and interchangeable. For purposes of this invention, a “normal” injection pressure is generally considered to be in the range of the typical pressure normally encountered in a particular type of nerve bock procedure. An “abnormal” injection pressure is generally considered to. be above the range of such typical pressures normally encountered in a particular type of nerve bock procedure. And, of course, an “intermediate” injection pressure would span the higher end of the “normal” pressure range and the lower end of the “abnormal” range. For guidance purposes only, a normal injection pressure would generally be less than about 15 psi; an intermediate injection pressure generally would be about 15 to about 25 psi; and an abnormal injection pressure would generally be greater than about 25 psi. Of course, these pressures may vary depending on the patient, the type or location of the nerve block, the type, length, or caliber of the needle, the composition, viscosity, or other characteristics of the anesthetic used, speed or force of the injection, as well as other factors.
  • The present apparatus for performing a nerve block injection comprises an anesthetic delivery device. (e.g., syringe) having an anesthetic storage compartment and an output end, an anesthetic needle or catheter having an input end and an output end, an anesthetic passageway connecting the output end of the anesthetic delivery device and the input end of the anaesthetic needle whereby anesthetic from the anesthetic storage compartment can be delivered via the output end of the anesthetic needle to a patient, and a pressure sensing device located along, and in pressure sensing communication with, the anesthetic passageway, whereby the pressure of the anesthetic can be monitored during the nerve block injection.
  • One embodiment of the present invention is shown in FIG. 1 having an anesthetic delivery device 10, a pressure indicating device 20, flexible tubing 52, and a needle 60 for delivering anesthetic adjacent or in the vicinity of nerve 72 for which a nerve block is desired. The anesthetic delivery device 10 shown in FIG. 1 is a syringe having a body 18, an anesthetic storage compartment 12, a movable piston 16, and an output end 14. Other suitable anesthetic delivery devices include, for example, mechanical pumps, and the like so long as they can be controlled by an operator. The output end 14 is adapted to be fitted or attached to the pressure indicating device 20 at its input end 22. The output end 26 is attached via flexible tubing 52 (having an input end 50 and an output end 52). The output end 54 of the flexible tubing 52 is attached to the input end 62 of needle 60. Needle 60 has an output end 64 for delivering anesthetic to a desired location. In operation, as the piston 16 is depressed, anesthetic flows from the anesthetic storage compartment 12, through the pressure indicating device 20 (via passageway 38), through flexible tubing 52, and through needle 60 in order to be injected at the desired location to effect the nerve block.
  • Although the pressure indicating device 20 shown in FIG. 1 is attached directly to the output end 22 of syringe 10, it could be attached via flexile tubing (similar to flexible tubing 521 so that it could be located anywhere along the length of flexible tubing 52 (including directly attached to the input end 62 of needle 60) as desired. Such a pressure sensing/monitoring device 20 could also be built-in into the syringe-piston mechanism and/or the needle device, rather than being attached to the syringe as shown in FIG. 1. Additionally, more than one pressure indicating device 20 could be included if desired. For example, one pressure indicating device 20 could be located near the output end 22 of syringe 10 and another one near the input end 62 of needle 60 to allow observation of the injection pressure by an operator controlling the needle 60 (e.g., anesthesiologist, nurse anesthesiologist, other anesthesia providers, and the like) and an assistant controlling the syringe 10.
  • One embodiment of the pressure indicating device 20 is shown in more detail in FIG. 2 wherein the device in Panel A illustrates a normal pressure condition and Panel B illustrates an abnormal or high pressure condition. The pressure indicating device 20 is formed in a body 24 with an input end 22 to receive anesthetic from the anesthetic delivery device 10, a passageway 38 allowing anesthetic to pass through the body 24, and an output end 26 to deliver anesthetic to the needle 60 via flexible tubing 52. The body has an internal flexible membrane 36 within pressure expansion chamber 32 such that as the injection pressure of the anesthetic increase, the membrane 36 can expand within the pressure expansion chamber 32 as shown in Panel B thereby forcing pressure indicating pin 28 to extend beyond a top housing 30 to indicate the injection pressure. As shown in Panel B, the passageway 38 is in fluid communication with the membrane 36 via passageway opening 40. Panels A and B provide side views; Panel C provides a top view. Although membrane 36 is shown as circular in Panel C, it could be of any shape so long as it can be expanded sufficiently to move the pressure indicating pin 28 to indicate increase injection pressure. Preferably, membrane 26 is construction of flexible silicone, flexible polyurethane, flexible rubber, or other flexible materials suitable for use in medical devices.
  • As the injection pressure increases, anesthetic can force the membrane 36 to expand and thereby enter into portion 42 of the expansion chamber 32 and move the pressure indicating pin 28 upward and out of the top housing 30. With increased pressure, a larger volume of local anesthetic within portion 42 expands or stretches membrane 36 and allows the volume within portion 42 to increase and move the pressure indicating pin 28. The top housing 30 is used to keep the pressure indicating pin 28 in proper alignment so that it can move, depending on the injection pressure, from and to the positions illustrated in Panels A and B. The pressure indicated pin 28 has an associated spring 34 to resist movement upward. The strength of the spring 28 can be selected to provide the desired resistant to movement and, therefore, the range of pressures required to move the pressure indicated pin 28. The extend of expansion of the membrane (and thus the relative size or volume of portion 42 and the extent of travel of pressure indicating pin 28) will depend on the injection pressure and/or injection speed.
  • As shown in Panels A and B, the pressure indicating pin 28 is color coded to indicate relative injection pressure. In the embodiment indicated, green would indicate normal injection pressure, yellow would indicate an intermediate pressure, and red would indicate an abnormally high pressure. The color exposed on the pressure indicating pin 28 would, therefore, provide a quick and visual indication of the injection pressure along with an indication of how to proceed with the injection. Thus, for example, green (i.e., normal pressure) would indicate continuing the injection procedure; yellow (i.e., intermediate pressure) would indicate the injection could be continued but that the pressure should be monitored carefully; and red (i.e., abnormal pressure) would indicate that the injection should be terminated until with cause of the high pressure is identified. Of course, other color coding or other coding systems can be used if desired so long as the changes in pressure during injection can be easily monitored. In operation, during normal injection pressures, the pressure indicating pin 28 would remain in the retracted position as shown in Panel A with only green showing. During abnormal injection pressure, the pressure indicating pin 28 would move to its extended position as shown in Panel B with red now showing to indicate the abnormal pressure; when the injection pressure decreases, the pressure indicating pin 28 would then move downward to, once normal injection pressures are reestablished, to the position shown in Panel A.
  • Generally, a normal injection pressure (i.e., the green position in FIG. 2) would be less than about 15 psi; an intermediate injection pressure (i.e., the yellow position in FIG. 2) would be about 15 to about 25 psi; and an abnormal injection pressure (i.e., the red position in FIG. 2) would be greater than about 25 psi. Of course, these pressures may vary depending on the patient, the type or location of the nerve block, the type, length, or caliber of the needle, the composition, viscosity, or other characteristics of the anesthetic used, speed or force of the injection, as well as other factors. Thus, pressure indicating devices having different operating pressure ranges may be provided so that the operator can selected the appropriate range for the specific application and/or patient.
  • Generally conventional materials of construction normally used in medical devices can be used to form the pressure indicating device 20. Of course, all materials contacting the anesthetic (e.g., the interior of passageway 38, membrane 36, and portion 42 of expansion chamber 32) should be inert relative to the anesthetic. Additionally, all materials of construction should be capable of being rendered medical sterile using conventional procedures. It is generally preferred, that lightweight plastic materials be used whenever possible. It is also generally preferred that the pressure indicating device 20 is used once and discarded using appropriate procedures. If desired, however, the materials of construction for pressure indicating device 20 can be selected such that it can be resterilized for multiple usage.
  • In operation, the operator (e.g., anesthesiologist, nurse anesthesiologist, other anesthesia providers, and the like) inserts the needle 60 into the patient through the skin 70 such that the needle tip 64 can deliver anesthetic adjacent, near, or in the immediate vicinity of the nerve 72 to be anesthetized. Conventional techniques are used to position the needle tip 64 in the desired location relative to the nerve 72. Once the needle 60 and needle tip 64 are appropriately placed, the local anesthetic is injected by exerting the pressure on the piston 16 of the syringe 10. The operator or an assistant observes the pressure indicating device 20 during injection so that, if the pressure increases, the appropriate action (as determined by the operator) can be undertaken.
  • During nerve block injection, higher than desired pressures (i.e.,. intermediate or abnormal pressure) can occur due to a too fast injection of local anesthetic, obstruction of the needle tip due to tissue debris, or inadvertent placement of the needle inside the nerve. The operator upon observing increased pressure normally wish to determine the cause of the increased pressure in determining how to proceed. In the event of higher than normal pressures, the operator has the option to disregard the data and continue the injection, slow the rate of injection, or to stop injection and reposition and/or flush the needle and then continue the injection.
  • The general procedure for using the apparatus of the present invention is illustrated in FIG. 3. To begin the nerve block, the nerve block needle is inserted into the patent at the appropriate location (i.e., in the immediate vicinity of the nerve to be blocked). After confirming that the location is acceptable using conventional techniques (e.g., using anatomical landmarks, achieving paresthesia (sensation traveling in the are of the nerve to be blocked distribution), and/or obtaining motor stimulation (muscle twitch) using a nerve stimulator), the injectior is begun. The injection pressure during injection is monitored using the pressure sensing device. The injection is continued, modified, or terminated depending on the injection pressure observed. For example, if only normal or acceptable pressure are observed during the injection, the injection is continued until completion. If however, higher than normal pressure are observed, the injection may be modified or terminated as appropriate. The method of the present invention may be carried out by a single individual (e.g., anesthesiologist, nurse anesthesiologist, other anesthesia providers, and the like) or by such an individual using an assistant.
  • A preferred procedure for using the apparatus of the present invention is illustrated in FIG. 4 wherein the operator who positions the needle relative to the nerve to be block uses an assistant to operate the anesthetic delivery device and observe the pressure indicating device. In FIG. 4, the actions of the anesthesiologist (or other health care provider) and the assistant are generally presented on the left and right sides, respectively. To begin the nerve block, the anesthesiologist inserts the nerve block needle into the patent at the appropriate location (i.e., in the immediate vicinity of the nerve to be blocked). After confirming that the location is acceptable using conventional techniques (e.g., using anatomical landmarks, achieving paresthesia (sensation traveling in the are of the nerve to be blocked distribution), and/or obtaining motor stimulation (muscle twitch) using a nerve stimulator), the anesthesiologist instructs the assistant to begin the injection. The assistant then begins the injection and continuously monitors the pressure sensing device. If only normal or acceptable pressure are observed during the injection, the injection is continued until completion. If, however, intermediately or abnormally high pressure are observed, the assistant informs the anesthesiologist who must make a decision as whether to interrupt or continue the injection. If the pressure is only in the intermediate level (i.e., yellow showing on the pressure indicating pin 28 (see FIG. 2)); the anesthesiologist may wish to continue the injection unless abnormal pressures are later observed. Whether in the intermediate or abnormal level, the anesthesiologist may instruct the assistant to stop or interrupt the injection so that corrective action may be undertaken. Such corrective action may include, for example, repositioning the needle relative to the nerve, clearing the needle tip of debris that may have blocked the needle, allowing the pressure to decrease before restarting the injection, reducing the speed of the injection, terminating the injection in order to start over, and the like. Once the anesthesiologist has completed the necessary corrective actions (except, of course, terminating the injection), instructions are given to the assistant to restart the injection. Upon restarting the injection, the assistant will again monitor the injection pressure as described above and providing the necessary information should the pressure increase to intermediate or abnormal levels again.
  • Although the assistant both monitors the pressure sensing device and operates the syringe or other pumping device in the method illustrated in FIG. 4, the anesthesiologist or other health care provider may also be involved in these activities. For example, the pressure sensing device could be located at a position near the needle (as opposed to near the syringe) to allow the anesthesiologist or other health care provider to easily monitor the injection pressure during injection as well as control the needle position. Alternatively, the anesthesiologist or other health care provider could practice the method of the present invention without the use of an assistant. In such a case, the syringe or other pumping device could-preferably be operated by a foot peddle or other device to leave the operator's hand free to place and control the needle.
  • The present method provides the anesthesiologist the option of continuing the injection even if intermediate or abnormal pressures are observed based on his or her best medical judgement. In such cases, the anesthesiologist will instruct the assistant to continue the injection. Even in such cases, the assistant preferably should continue to monitor the injection pressure in case it increases dramatically so that, if appropriate, the anesthesiologist can reconsider the decision to continue. Generally, high pressures due to a intraneuronal injection are most commonly observed at the beginning of the injection; however, the needle be initially placed outside the nerve and then inadvertently advanced into the nerve during the injection, resulting in higher pressures.
  • If desired, the pressure sensing device may also be equipped with a pressure-activated shut-off so that if the injection pressure reaches some predetermined level, flow of the anesthetic will be automatically stopped. Although this predetermined level may be set at any level, it is generally preferred that it be set at a level at or near the abnormal pressure range (e.g., generally at a level of about 25 psi or higher). This automatic shut-off feature may also, if desired, be equipped with a manual override mechanism so that the anesthesiologist, if desired, can continue the injection with or without corrective actions. It will generally be preferred, however, that such an injection not be continued unless such corrective actions are successfully undertaken.
  • Of course, those skilled in the art may use other, similar mechanisms to measure and/or determine the pressures during nerve block injection and that various details of the invention may be changed without departing from the scope of the invention. All references cited herein are hereby incorporated by reference. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, which is defined in the following claims.

Claims (9)

1.-12. (cancelled):
13. A method of administering a nerve block to a patient with reduced risk of intraneuronal injection, said method comprising
(a) providing a system for administration of the nerve block in the patient with reduced risk of intraneuronal injection, said system comprising
(1) an anesthetic delivery device having an anesthetic storage compartment and an output end;
(2) an anesthetic needle having an input end and an output end wherein the output end can be inserted into the patient for delivery of anesthetic to the patent in the vicinity of a nerve to be blocked;
(3) a tube having an anesthetic passageway connecting the output end of the anesthetic delivery device and the input end of the anaesthetic needle, whereby anesthetic from the anesthetic storage compartment can be delivered via the output end of the anesthetic needle to the patient; and
(4) a pressure sensing device located along, and in pressure sensing communication with, the anesthetic passageway, whereby the pressure of the anesthetic can be continuously monitored and controlled during anesthetic delivery to the patient so as to reduce the risk of intraneuronal injection;
(b) inserting the output end of the anesthetic needle into the vicinity of the nerve to be blocked;
(c) starting delivery of the anesthetic;
(d) monitoring the pressure of the anesthetic during delivery of the anesthetic;
(e) continuing delivery of the anesthetic so long as the pressure remains within a normal range;
(f) if the pressure increases to an abnormal range, interrupting delivery of the anesthetic so that appropriate corrective action can be taken;
(g) if the delivery of the anesthetic is interrupted in step (f), taking the appropriate corrective action and continuing delivery of the anesthetic; and
(f) repeating steps (d) through (g) until delivery of the anesthetic is complete or delivery of anesthetic is terminated.
14. The method of claim 13, wherein the anesthetic delivery device is a syringe and the anesthetic needle is a nerve block needle.
15. The method of claim 13, wherein the tube is flexible tubing.
16. The method of claim 14, wherein the tube is flexible tubing.
17. The method of claim 13, wherein the pressure sensing device allows visual detection of at least the normal range and the abnormal range of pressures during anesthetic delivery to the patient.
18. The method of claim 14, wherein the pressure sensing device allows visual detection of at least the normal range and the abnormal range of pressures during anesthetic delivery to the patient.
19. The method of claim 13, wherein an operator and an assistant administer the nerve block to the patient such that the assistant monitors the pressure and reports pressures in the abnormal range so that the operator can take appropriate corrective action.
20. The method of claim 14, wherein an operator and an assistant administer the nerve block to the patient such that the assistant monitors the pressure and reports pressures in the abnormal range so that the operator can take appropriate corrective action.
US10/952,339 2002-05-28 2004-09-28 Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia Abandoned US20050043710A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/952,339 US20050043710A1 (en) 2002-05-28 2004-09-28 Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia
US12/250,211 US7727224B2 (en) 2002-05-28 2008-10-13 Method and Apparatus to Decrease the risk of intraneuronal injection during administration of nerve block anesthesia

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/156,416 US6866648B2 (en) 2002-05-28 2002-05-28 Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia
US10/952,339 US20050043710A1 (en) 2002-05-28 2004-09-28 Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/156,416 Division US6866648B2 (en) 2002-05-28 2002-05-28 Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/250,211 Continuation US7727224B2 (en) 2002-05-28 2008-10-13 Method and Apparatus to Decrease the risk of intraneuronal injection during administration of nerve block anesthesia

Publications (1)

Publication Number Publication Date
US20050043710A1 true US20050043710A1 (en) 2005-02-24

Family

ID=29582255

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/156,416 Expired - Lifetime US6866648B2 (en) 2002-05-28 2002-05-28 Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia
US10/952,339 Abandoned US20050043710A1 (en) 2002-05-28 2004-09-28 Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia
US12/250,211 Expired - Lifetime US7727224B2 (en) 2002-05-28 2008-10-13 Method and Apparatus to Decrease the risk of intraneuronal injection during administration of nerve block anesthesia

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/156,416 Expired - Lifetime US6866648B2 (en) 2002-05-28 2002-05-28 Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia

Family Applications After (1)

Application Number Title Priority Date Filing Date
US12/250,211 Expired - Lifetime US7727224B2 (en) 2002-05-28 2008-10-13 Method and Apparatus to Decrease the risk of intraneuronal injection during administration of nerve block anesthesia

Country Status (8)

Country Link
US (3) US6866648B2 (en)
EP (1) EP1531893B1 (en)
JP (2) JP4912589B2 (en)
AT (1) ATE486626T1 (en)
AU (1) AU2003243213B8 (en)
CA (1) CA2487723C (en)
DE (1) DE60334803D1 (en)
WO (1) WO2003101526A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070287991A1 (en) * 2006-06-08 2007-12-13 Mckay William F Devices and methods for detection of markers of axial pain with or without radiculopathy
US20090043281A1 (en) * 2002-05-28 2009-02-12 Macosta Medical U.S.A., L.L.C. Method and Apparatus to Decrease the Risk of Intraneuronal Injection During Administration of Nerve Block Anesthesia
US20100069851A1 (en) * 2008-09-17 2010-03-18 Mobitech Regenerative Medicine Method And Apparatus For Pressure Detection
US20100065578A1 (en) * 2008-09-16 2010-03-18 Diperna Paul M Flow regulating stopcocks and related methods
US8287495B2 (en) 2009-07-30 2012-10-16 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8650937B2 (en) 2008-09-19 2014-02-18 Tandem Diabetes Care, Inc. Solute concentration measurement device and related methods
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US9962486B2 (en) 2013-03-14 2018-05-08 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump
US10258736B2 (en) 2012-05-17 2019-04-16 Tandem Diabetes Care, Inc. Systems including vial adapter for fluid transfer

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060122555A1 (en) * 1998-04-10 2006-06-08 Mark Hochman Drug infusion device for neural axial and peripheral nerve tissue identification using exit pressure sensing
ITMO20040086A1 (en) * 2004-04-20 2004-07-20 Gambro Lundia Ab METHOD TO CHECK AN INFUSION DEVICE.
US7775966B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. Non-invasive pressure measurement in a fluid adjustable restrictive device
US7927270B2 (en) * 2005-02-24 2011-04-19 Ethicon Endo-Surgery, Inc. External mechanical pressure sensor for gastric band pressure measurements
US7658196B2 (en) * 2005-02-24 2010-02-09 Ethicon Endo-Surgery, Inc. System and method for determining implanted device orientation
US8016744B2 (en) * 2005-02-24 2011-09-13 Ethicon Endo-Surgery, Inc. External pressure-based gastric band adjustment system and method
US8066629B2 (en) * 2005-02-24 2011-11-29 Ethicon Endo-Surgery, Inc. Apparatus for adjustment and sensing of gastric band pressure
US7699770B2 (en) 2005-02-24 2010-04-20 Ethicon Endo-Surgery, Inc. Device for non-invasive measurement of fluid pressure in an adjustable restriction device
US7775215B2 (en) 2005-02-24 2010-08-17 Ethicon Endo-Surgery, Inc. System and method for determining implanted device positioning and obtaining pressure data
US8870742B2 (en) 2006-04-06 2014-10-28 Ethicon Endo-Surgery, Inc. GUI for an implantable restriction device and a data logger
US8152710B2 (en) 2006-04-06 2012-04-10 Ethicon Endo-Surgery, Inc. Physiological parameter analysis for an implantable restriction device and a data logger
DE102006020363A1 (en) * 2006-04-28 2007-10-31 Gebr. Pajunk Besitzverwaltung Ohg Catheter set for epidural or peripheral nerve block
US10702174B2 (en) * 2007-06-27 2020-07-07 Integra Lifesciences Corporation Medical monitor user interface
US7927281B2 (en) * 2007-10-08 2011-04-19 Jay Wheeler Automated needle pen drug delivery system
US7806862B2 (en) 2008-05-02 2010-10-05 Molnar James M Regional anesthesia system and cart
US8622962B1 (en) 2008-07-14 2014-01-07 Dartmouth-Hitchcock Clinic Safety syringe and method for using the same
US20150105659A1 (en) * 2008-11-11 2015-04-16 Covidien Lp Energy delivery device and methods of use
US8303547B2 (en) * 2009-07-07 2012-11-06 Relox Medical, Llc Method and apparatus for syringe injection of fluids
CH701492A1 (en) * 2009-07-20 2011-01-31 Tecpharma Licensing Ag Delivery device with a means for detecting pressure changes.
US8814807B2 (en) 2009-08-19 2014-08-26 Mirador Biomedical Spinal canal access and probe positioning, devices and methods
FR2952682B1 (en) * 2009-11-13 2017-08-25 Pulssar Tech DEVICE FOR MONITORING A SAMPLING USING A PISTON PUMP.
US8202227B2 (en) * 2009-12-14 2012-06-19 Ethicon Endo-Surgery, Inc. Pressure sensing adapter for gastric band system injector
US8486020B2 (en) * 2010-08-11 2013-07-16 Zevex, Inc. Pressure sensor and method of use
WO2012092352A1 (en) * 2010-12-30 2012-07-05 Cook Medical Technologies Llc Occlusion device
ITBO20110302A1 (en) * 2011-05-25 2012-11-26 Bellco Srl GROUP OF INFUSION OF A DIALYSIS MACHINE
US9662459B2 (en) * 2011-12-23 2017-05-30 B. Braun Melsungen Ag Apparatus and method pertaining to the monitoring of injection pressure during administration of nerve blocks
ES2813953T3 (en) 2012-04-24 2021-03-25 The Queen Elizabeth Hospital Kings Lynn Nhs Found Trust A device to perform regional anesthesia
US9956341B2 (en) 2012-07-03 2018-05-01 Milestone Scientific, Inc. Drug infusion with pressure sensing and non-continuous flow for identification of and injection into fluid-filled anatomic spaces
US10010673B2 (en) 2012-08-28 2018-07-03 Osprey Medical, Inc. Adjustable medium diverter
US10022497B2 (en) * 2012-08-28 2018-07-17 Osprey Medical, Inc. Reservoir for collection and reuse of diverted medium
US9636070B2 (en) 2013-03-14 2017-05-02 DePuy Synthes Products, Inc. Methods, systems, and devices for monitoring and displaying medical parameters for a patient
CN105451790A (en) 2013-03-15 2016-03-30 协同医学公司 Method and system for controlling delivery of a fluid to and from a patient
US9375537B2 (en) 2013-10-14 2016-06-28 Medtronic Minimed, Inc. Therapeutic agent injection device
US10220180B2 (en) 2015-10-16 2019-03-05 Milestone Scientific, Inc. Method and apparatus for performing a peripheral nerve block
PL3368103T3 (en) * 2015-10-30 2020-11-02 Pajunk GmbH Medizintechnologie Device for limiting the injection pressure of a medical instrument for introducing a fluid
KR101639641B1 (en) * 2016-04-25 2016-07-14 유한회사 삼성산업경제연구소 Position detector for Epidural Space
US10441713B1 (en) 2016-10-17 2019-10-15 Anestech, LLC Anesthesia injection system and method
US20200086066A1 (en) * 2017-05-03 2020-03-19 Rockport Medical Technologies Llc Devices and methods for sensor-enhanced needle placement
US11471595B2 (en) 2017-05-04 2022-10-18 Milestone Scientific, Inc. Method and apparatus for performing a peripheral nerve block
CN107569760B (en) * 2017-10-17 2020-07-03 王孟冬 Uniform anesthesia medicine distributor for gynecological nursing
CN108095809B (en) * 2018-02-05 2019-12-03 郑雪松 A kind of puncture needle and drainage device for paracentesis pericardii
CN108744244A (en) * 2018-06-14 2018-11-06 林平珍 A kind of gynemetrics's birth canal anesthesia anti-inflammatory double-purpose device
US10646660B1 (en) 2019-05-16 2020-05-12 Milestone Scientific, Inc. Device and method for identification of a target region
EP3831426A1 (en) * 2019-12-05 2021-06-09 Heraeus Medical GmbH Device for local application of pharmaceutical fluids
CN111529009B (en) * 2020-05-22 2021-08-10 中南大学湘雅二医院 Device convenient to operate by one person and used for nerve block medicine injection
DE102020210756A1 (en) 2020-08-25 2022-03-03 B. Braun Melsungen Aktiengesellschaft Medical device for the visual representation of an injection pressure of a fluid
CN113509623B (en) * 2021-07-12 2022-10-04 马新刚 Synchronous propelling device for local anesthesia
WO2023122787A1 (en) * 2021-12-23 2023-06-29 Ray King Pressure transducer for injections
WO2023239667A1 (en) * 2022-06-06 2023-12-14 Carefusion 303, Inc. Pressure detection system and method

Citations (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2522052A (en) * 1947-07-03 1950-09-12 James J Logan Tooth pulp tester
US3087486A (en) * 1959-03-05 1963-04-30 Cenco Instr Corp Cardiac electrode means
US3098813A (en) * 1959-02-06 1963-07-23 Beckman Instruments Inc Electrode
US3249103A (en) * 1963-01-21 1966-05-03 Charles F Woodhouse Method and apparatus for measuring bioelectronic parameters
US3828780A (en) * 1973-03-26 1974-08-13 Valleylab Inc Combined electrocoagulator-suction instrument
US3943932A (en) * 1975-01-17 1976-03-16 Yen Kong Woo Acupuncture needles and holder
US4282881A (en) * 1979-05-10 1981-08-11 Sorenson Research Co., Inc. Manometer for infusion apparatus
US4301802A (en) * 1980-03-17 1981-11-24 Stanley Poler Cauterizing tool for ophthalmological surgery
US4411266A (en) * 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
US4606391A (en) * 1983-10-28 1986-08-19 Rainer Achterholt Valve cap with pressure drop indication for pneumatic tires
US4775367A (en) * 1986-08-06 1988-10-04 B. Braun Melsungen Ag Needle assembly
US4801293A (en) * 1985-10-09 1989-01-31 Anthony Jackson Apparatus and method for detecting probe penetration of human epidural space and injecting a therapeutic substance thereinto
US4810248A (en) * 1986-02-03 1989-03-07 Masters Edwin J Syringe with safety sheath and safety needle cap
US4816024A (en) * 1987-04-13 1989-03-28 Icu Medical, Inc. Medical device
US4832696A (en) * 1987-03-05 1989-05-23 Luther Medical Products, Inc. Assembly of needle and protector
US4834718A (en) * 1987-06-01 1989-05-30 Michael McDonald Safety needle apparatus
US4846811A (en) * 1987-01-29 1989-07-11 International Medical Innovators, Inc. Sliding sheath for medical needles
US4889529A (en) * 1987-07-10 1989-12-26 B. Braun Melsungen Ag Needle
US4917670A (en) * 1988-03-22 1990-04-17 Hurley Ronald J Continuous spinal anesthesia administering apparatus and method
US4917669A (en) * 1989-02-08 1990-04-17 Safetyject Catheter inserter
US4917668A (en) * 1988-03-18 1990-04-17 B.. Braun Melsungen Ag Valve for permanent venous cannulae or for catheter insertion means
US4929241A (en) * 1988-08-05 1990-05-29 Kulli John C Medical needle puncture guard
US4944725A (en) * 1987-06-01 1990-07-31 Mcdonald Michael Safety needle apparatus
US4950233A (en) * 1988-10-05 1990-08-21 Abramowitz Joseph M Nerve block needle and safety method of use
US4964854A (en) * 1989-01-23 1990-10-23 Luther Medical Products, Inc. Intravascular catheter assembly incorporating needle tip shielding cap
US4978344A (en) * 1988-08-11 1990-12-18 Dombrowski Mitchell P Needle and catheter assembly
US4994036A (en) * 1988-09-09 1991-02-19 B. Braun Melsungen Ag Catheter set for spinal anaesthesia
US5007365A (en) * 1990-01-17 1991-04-16 Hwang Feng Lin Air-leak indicator for vehicle tire
US5049136A (en) * 1990-01-10 1991-09-17 Johnson Gerald W Hypodermic needle with protective sheath
US5051109A (en) * 1990-07-16 1991-09-24 Simon Alexander Z Protector for catheter needle
US5053017A (en) * 1990-02-28 1991-10-01 Chamuel Steven R Hypodermic needle safety clip
US5085648A (en) * 1990-09-13 1992-02-04 Becton Dickinson And Company Dual diameter needle with a smooth transition
US5085631A (en) * 1988-08-02 1992-02-04 Thomas Jefferson University Method and kit for administering spinal subarachnoid anesthesia
US5106376A (en) * 1989-07-07 1992-04-21 B. Braun Melsungen Ag Anaesthesia set
US5119832A (en) * 1989-07-11 1992-06-09 Ravi Xavier Epidural catheter with nerve stimulators
US5135504A (en) * 1989-07-17 1992-08-04 Mclees Donald J Needle tip guard
US5135525A (en) * 1989-06-06 1992-08-04 B. Braun Melsungen Ag Catheter set for continuous spinal anaesthesia
US5147327A (en) * 1990-01-10 1992-09-15 Johnson Gerald W Hypodermic needle with protective sheath
US5186712A (en) * 1991-08-23 1993-02-16 Kansas Creative Devices, Inc. Intravenous catheter launching device
US5215528A (en) * 1992-02-07 1993-06-01 Becton, Dickinson And Company Catheter introducer assembly including needle tip shield
US5279591A (en) * 1990-07-16 1994-01-18 Simon Alexander Z Protector for needle catheter
US5300045A (en) * 1993-04-14 1994-04-05 Plassche Jr Walter M Interventional needle having an automatically capping stylet
US5312359A (en) * 1991-12-03 1994-05-17 Wallace Henry G Intravenous cannula insertion assembly with protective shield
US5312374A (en) * 1993-03-31 1994-05-17 Simon Gurmarnik Device for administration of epidural anesthesia
US5322517A (en) * 1989-02-01 1994-06-21 Sero-Guard Corporation Disposable automatic hypodermic needle guard
US5328479A (en) * 1992-12-04 1994-07-12 Simon Gurmarnik Set for continuous epidural anesthesia
US5378479A (en) * 1992-09-25 1995-01-03 Kraft General Foods, Inc. Method for manufacture of skim milk cheese
US5378241A (en) * 1992-06-24 1995-01-03 Haindl; Hans Anesthesia instrument
US5395347A (en) * 1990-11-08 1995-03-07 Mbo Laboratories, Inc. Safe blood collection system
US5409461A (en) * 1993-09-28 1995-04-25 Becton Dickinson And Company Catheter introducer assembly with needle shielding device
US5433739A (en) * 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5512052A (en) * 1992-11-24 1996-04-30 B. Braun Melsungen Ag Catheterization set
US5605539A (en) * 1992-09-11 1997-02-25 Urohealth Systems, Inc. Self-introducing infusion catheter
US5630802A (en) * 1994-04-25 1997-05-20 B. Braun Melsungen Ag Device for introducing a catheter into a body cavity
US5704919A (en) * 1992-12-04 1998-01-06 Travenol Laboratories (Israel) Ltd. Intravenous cannula assembly
US5713876A (en) * 1995-06-07 1998-02-03 Johnson & Johnson Medical, Inc. Catheter release mechanism
US5807395A (en) * 1993-08-27 1998-09-15 Medtronic, Inc. Method and apparatus for RF ablation and hyperthermia
US5833670A (en) * 1994-04-20 1998-11-10 Noble House Group Protective device
US5853393A (en) * 1995-06-07 1998-12-29 Johnson & Johnson Medical, Inc. Catheter needle locking and catheter hub unlocking mechanism
US5865806A (en) * 1996-04-04 1999-02-02 Becton Dickinson And Company One step catheter advancement automatic needle retraction system
US5879337A (en) * 1997-02-27 1999-03-09 Injectimed, Inc. Needle tip guard for hypodermic needles
US5882337A (en) * 1995-06-07 1999-03-16 Johnson & Johnson Medical, Inc. Tip protection device
US5935109A (en) * 1997-04-29 1999-08-10 Smiths Industries Public Limited Company Catheter and needle assemblies
US5951515A (en) * 1996-03-12 1999-09-14 Becton, Dickinson And Company Medical needle guard for catheter placement
US6086559A (en) * 1995-02-02 2000-07-11 Enk; Dietmar Method and device for pressure-controlled handling of a fluid, in particular for medical purposes
US6146380A (en) * 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
US20050101935A1 (en) * 1998-07-27 2005-05-12 Spinello Ronald P. Anesthetic dental injection apparatus and methods

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR611037A (en) 1926-02-13 1926-09-18 Device for gas injections
US3977403A (en) * 1975-02-24 1976-08-31 The Kendall Company Catheter adapter
US4187848A (en) * 1977-07-18 1980-02-12 The Kendall Company Adapter assembly
US4277227A (en) * 1979-07-02 1981-07-07 Imed Corporation Apparatus for converting a pump to a controller
US4403988A (en) * 1980-08-21 1983-09-13 The Kendall Company Syringe assembly
DE3209721A1 (en) * 1982-03-17 1983-09-29 MGVG Medizinische Geräte Vertriebs-Gesellschaft mbH, 8000 München Infusion device
US4710172A (en) * 1986-11-24 1987-12-01 John Jacklich High pressure syringe with pressure indicator
US4759750A (en) * 1986-12-22 1988-07-26 Dlp Inc. Pressure sensing syringe
DE3816128C1 (en) * 1988-05-11 1989-09-28 Mc Medizingeraete Gmbh, 8755 Alzenau, De
US4929238A (en) * 1988-11-23 1990-05-29 Coeur Laboratories, Inc. Multi-pressure injector device
US5295967A (en) * 1992-09-23 1994-03-22 Becton, Dickinson And Company Syringe pump having continuous pressure monitoring and display
JPH0715051U (en) * 1993-08-24 1995-03-14 トノクラ医科工業株式会社 Catheter
JPH07171214A (en) * 1993-12-17 1995-07-11 Adtec:Kk Syringe apparatus for liquid injection
US6200289B1 (en) * 1998-04-10 2001-03-13 Milestone Scientific, Inc. Pressure/force computer controlled drug delivery system and the like
US6371937B1 (en) * 2000-03-27 2002-04-16 I-Flow Corporation Manometer infusion apparatus
WO2002004048A2 (en) * 2000-07-07 2002-01-17 Fluidsense Corporation Method and apparatus for determining air content and pressure of a liquid in an infusion line
US6866648B2 (en) 2002-05-28 2005-03-15 Macosta Medical U.S.A., L.L.C. Method and apparatus to decrease the risk of intraneuronal injection during administration of nerve block anesthesia

Patent Citations (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2522052A (en) * 1947-07-03 1950-09-12 James J Logan Tooth pulp tester
US3098813A (en) * 1959-02-06 1963-07-23 Beckman Instruments Inc Electrode
US3087486A (en) * 1959-03-05 1963-04-30 Cenco Instr Corp Cardiac electrode means
US3249103A (en) * 1963-01-21 1966-05-03 Charles F Woodhouse Method and apparatus for measuring bioelectronic parameters
US3828780A (en) * 1973-03-26 1974-08-13 Valleylab Inc Combined electrocoagulator-suction instrument
US3943932A (en) * 1975-01-17 1976-03-16 Yen Kong Woo Acupuncture needles and holder
US4282881A (en) * 1979-05-10 1981-08-11 Sorenson Research Co., Inc. Manometer for infusion apparatus
US4301802A (en) * 1980-03-17 1981-11-24 Stanley Poler Cauterizing tool for ophthalmological surgery
US4411266A (en) * 1980-09-24 1983-10-25 Cosman Eric R Thermocouple radio frequency lesion electrode
US4606391A (en) * 1983-10-28 1986-08-19 Rainer Achterholt Valve cap with pressure drop indication for pneumatic tires
US4801293A (en) * 1985-10-09 1989-01-31 Anthony Jackson Apparatus and method for detecting probe penetration of human epidural space and injecting a therapeutic substance thereinto
US4810248A (en) * 1986-02-03 1989-03-07 Masters Edwin J Syringe with safety sheath and safety needle cap
US4775367A (en) * 1986-08-06 1988-10-04 B. Braun Melsungen Ag Needle assembly
US4846811A (en) * 1987-01-29 1989-07-11 International Medical Innovators, Inc. Sliding sheath for medical needles
US4832696A (en) * 1987-03-05 1989-05-23 Luther Medical Products, Inc. Assembly of needle and protector
US4816024A (en) * 1987-04-13 1989-03-28 Icu Medical, Inc. Medical device
US4834718A (en) * 1987-06-01 1989-05-30 Michael McDonald Safety needle apparatus
US4944725A (en) * 1987-06-01 1990-07-31 Mcdonald Michael Safety needle apparatus
US4889529A (en) * 1987-07-10 1989-12-26 B. Braun Melsungen Ag Needle
US4917668A (en) * 1988-03-18 1990-04-17 B.. Braun Melsungen Ag Valve for permanent venous cannulae or for catheter insertion means
US4917670A (en) * 1988-03-22 1990-04-17 Hurley Ronald J Continuous spinal anesthesia administering apparatus and method
US5085631A (en) * 1988-08-02 1992-02-04 Thomas Jefferson University Method and kit for administering spinal subarachnoid anesthesia
US4929241A (en) * 1988-08-05 1990-05-29 Kulli John C Medical needle puncture guard
US4978344A (en) * 1988-08-11 1990-12-18 Dombrowski Mitchell P Needle and catheter assembly
US4994036A (en) * 1988-09-09 1991-02-19 B. Braun Melsungen Ag Catheter set for spinal anaesthesia
US4950233A (en) * 1988-10-05 1990-08-21 Abramowitz Joseph M Nerve block needle and safety method of use
US4964854A (en) * 1989-01-23 1990-10-23 Luther Medical Products, Inc. Intravascular catheter assembly incorporating needle tip shielding cap
US5328482A (en) * 1989-02-01 1994-07-12 Sero-Guard Corporation Catheter with automatic needle guard
US5322517A (en) * 1989-02-01 1994-06-21 Sero-Guard Corporation Disposable automatic hypodermic needle guard
US4917669A (en) * 1989-02-08 1990-04-17 Safetyject Catheter inserter
US5135525A (en) * 1989-06-06 1992-08-04 B. Braun Melsungen Ag Catheter set for continuous spinal anaesthesia
US5106376A (en) * 1989-07-07 1992-04-21 B. Braun Melsungen Ag Anaesthesia set
US5119832A (en) * 1989-07-11 1992-06-09 Ravi Xavier Epidural catheter with nerve stimulators
US5135504A (en) * 1989-07-17 1992-08-04 Mclees Donald J Needle tip guard
US5147327A (en) * 1990-01-10 1992-09-15 Johnson Gerald W Hypodermic needle with protective sheath
US5049136A (en) * 1990-01-10 1991-09-17 Johnson Gerald W Hypodermic needle with protective sheath
US5007365A (en) * 1990-01-17 1991-04-16 Hwang Feng Lin Air-leak indicator for vehicle tire
US5053017A (en) * 1990-02-28 1991-10-01 Chamuel Steven R Hypodermic needle safety clip
US5051109A (en) * 1990-07-16 1991-09-24 Simon Alexander Z Protector for catheter needle
US5279591A (en) * 1990-07-16 1994-01-18 Simon Alexander Z Protector for needle catheter
US5085648A (en) * 1990-09-13 1992-02-04 Becton Dickinson And Company Dual diameter needle with a smooth transition
US5395347A (en) * 1990-11-08 1995-03-07 Mbo Laboratories, Inc. Safe blood collection system
US5186712A (en) * 1991-08-23 1993-02-16 Kansas Creative Devices, Inc. Intravenous catheter launching device
US5312359A (en) * 1991-12-03 1994-05-17 Wallace Henry G Intravenous cannula insertion assembly with protective shield
US5215528C1 (en) * 1992-02-07 2001-09-11 Becton Dickinson Co Catheter introducer assembly including needle tip shield
US5215528A (en) * 1992-02-07 1993-06-01 Becton, Dickinson And Company Catheter introducer assembly including needle tip shield
US5378241A (en) * 1992-06-24 1995-01-03 Haindl; Hans Anesthesia instrument
US5605539A (en) * 1992-09-11 1997-02-25 Urohealth Systems, Inc. Self-introducing infusion catheter
US5378479A (en) * 1992-09-25 1995-01-03 Kraft General Foods, Inc. Method for manufacture of skim milk cheese
US5512052A (en) * 1992-11-24 1996-04-30 B. Braun Melsungen Ag Catheterization set
US5328479A (en) * 1992-12-04 1994-07-12 Simon Gurmarnik Set for continuous epidural anesthesia
US5704919A (en) * 1992-12-04 1998-01-06 Travenol Laboratories (Israel) Ltd. Intravenous cannula assembly
US5312374A (en) * 1993-03-31 1994-05-17 Simon Gurmarnik Device for administration of epidural anesthesia
US5300045A (en) * 1993-04-14 1994-04-05 Plassche Jr Walter M Interventional needle having an automatically capping stylet
US5807395A (en) * 1993-08-27 1998-09-15 Medtronic, Inc. Method and apparatus for RF ablation and hyperthermia
US5409461A (en) * 1993-09-28 1995-04-25 Becton Dickinson And Company Catheter introducer assembly with needle shielding device
US5433739A (en) * 1993-11-02 1995-07-18 Sluijter; Menno E. Method and apparatus for heating an intervertebral disc for relief of back pain
US5833670A (en) * 1994-04-20 1998-11-10 Noble House Group Protective device
US5630802A (en) * 1994-04-25 1997-05-20 B. Braun Melsungen Ag Device for introducing a catheter into a body cavity
US6086559A (en) * 1995-02-02 2000-07-11 Enk; Dietmar Method and device for pressure-controlled handling of a fluid, in particular for medical purposes
US5853393A (en) * 1995-06-07 1998-12-29 Johnson & Johnson Medical, Inc. Catheter needle locking and catheter hub unlocking mechanism
US5882337A (en) * 1995-06-07 1999-03-16 Johnson & Johnson Medical, Inc. Tip protection device
US5713876A (en) * 1995-06-07 1998-02-03 Johnson & Johnson Medical, Inc. Catheter release mechanism
US5951515A (en) * 1996-03-12 1999-09-14 Becton, Dickinson And Company Medical needle guard for catheter placement
US5911705A (en) * 1996-04-04 1999-06-15 Becton Dickinson And Company One step catheter advancement automatic needle retraction system
US5865806A (en) * 1996-04-04 1999-02-02 Becton Dickinson And Company One step catheter advancement automatic needle retraction system
US6001080A (en) * 1997-02-27 1999-12-14 Injectimed, Inc. Intravenous catheter assembly
US5879337A (en) * 1997-02-27 1999-03-09 Injectimed, Inc. Needle tip guard for hypodermic needles
US5935109A (en) * 1997-04-29 1999-08-10 Smiths Industries Public Limited Company Catheter and needle assemblies
US6146380A (en) * 1998-01-09 2000-11-14 Radionics, Inc. Bent tip electrical surgical probe
US20050101935A1 (en) * 1998-07-27 2005-05-12 Spinello Ronald P. Anesthetic dental injection apparatus and methods

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7727224B2 (en) 2002-05-28 2010-06-01 Macosta Medical U.S.A.,L.L.C. Method and Apparatus to Decrease the risk of intraneuronal injection during administration of nerve block anesthesia
US20090043281A1 (en) * 2002-05-28 2009-02-12 Macosta Medical U.S.A., L.L.C. Method and Apparatus to Decrease the Risk of Intraneuronal Injection During Administration of Nerve Block Anesthesia
US20070287991A1 (en) * 2006-06-08 2007-12-13 Mckay William F Devices and methods for detection of markers of axial pain with or without radiculopathy
US8986253B2 (en) 2008-01-25 2015-03-24 Tandem Diabetes Care, Inc. Two chamber pumps and related methods
US8448824B2 (en) 2008-09-16 2013-05-28 Tandem Diabetes Care, Inc. Slideable flow metering devices and related methods
US8408421B2 (en) 2008-09-16 2013-04-02 Tandem Diabetes Care, Inc. Flow regulating stopcocks and related methods
US20100065578A1 (en) * 2008-09-16 2010-03-18 Diperna Paul M Flow regulating stopcocks and related methods
US20100069851A1 (en) * 2008-09-17 2010-03-18 Mobitech Regenerative Medicine Method And Apparatus For Pressure Detection
US8608665B2 (en) 2008-09-17 2013-12-17 Vijay Vad Methods for pressure detection
US8650937B2 (en) 2008-09-19 2014-02-18 Tandem Diabetes Care, Inc. Solute concentration measurement device and related methods
US8758323B2 (en) 2009-07-30 2014-06-24 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8287495B2 (en) 2009-07-30 2012-10-16 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8926561B2 (en) 2009-07-30 2015-01-06 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US8298184B2 (en) 2009-07-30 2012-10-30 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US9211377B2 (en) 2009-07-30 2015-12-15 Tandem Diabetes Care, Inc. Infusion pump system with disposable cartridge having pressure venting and pressure feedback
US11135362B2 (en) 2009-07-30 2021-10-05 Tandem Diabetes Care, Inc. Infusion pump systems and methods
US11285263B2 (en) 2009-07-30 2022-03-29 Tandem Diabetes Care, Inc. Infusion pump systems and methods
US10258736B2 (en) 2012-05-17 2019-04-16 Tandem Diabetes Care, Inc. Systems including vial adapter for fluid transfer
US9962486B2 (en) 2013-03-14 2018-05-08 Tandem Diabetes Care, Inc. System and method for detecting occlusions in an infusion pump

Also Published As

Publication number Publication date
JP4912589B2 (en) 2012-04-11
CA2487723C (en) 2011-03-15
JP2005527334A (en) 2005-09-15
WO2003101526A1 (en) 2003-12-11
AU2003243213B8 (en) 2009-01-29
EP1531893A1 (en) 2005-05-25
US20090043281A1 (en) 2009-02-12
CA2487723A1 (en) 2003-12-11
US6866648B2 (en) 2005-03-15
EP1531893A4 (en) 2008-05-21
JP2010227661A (en) 2010-10-14
US7727224B2 (en) 2010-06-01
US20030225371A1 (en) 2003-12-04
DE60334803D1 (en) 2010-12-16
EP1531893B1 (en) 2010-11-03
AU2003243213B2 (en) 2009-01-08
ATE486626T1 (en) 2010-11-15
AU2003243213A1 (en) 2003-12-19

Similar Documents

Publication Publication Date Title
US7727224B2 (en) Method and Apparatus to Decrease the risk of intraneuronal injection during administration of nerve block anesthesia
JP6349311B2 (en) Discontinuous flow for infusion of drug with pressure sensing and identification of fluid-filled body space and infusion into fluid-filled body space
US11478621B2 (en) Fluid removal device
US8622962B1 (en) Safety syringe and method for using the same
EP3538186B1 (en) Needle for a syringe, syringe and corresponding control system
Karnawat et al. Adductor canal block for post-operative pain relief in knee surgeries: A review article
US20090076485A1 (en) Alarm system for implantable pumps for intravenous drug delivery
Lin et al. Advances of techniques in deep regional blocks
Jeong et al. A retrospective analysis of neurological complications after ultrasound guided interscalene block for arthroscopic shoulder surgery
Ilfeld et al. Continuous peripheral nerve blocks
Coombs et al. Spinal anesthesia using subcutaneously implanted pumps for intrathecal drug infusion
Kc et al. Combined spinal epidural anesthesia for total hip replacement surgery in Birendra Army Hospital
Tsui et al. Intermittent Bolus Injection Via Peripheral Nerve Catheters May Exceed Occlusion Pressure Limit of an Ambulatory Infusion Pump: An In Vitro Study
Mustafa Peripheral nerve cathter techniques
US10322265B2 (en) Apparatus and method for accessing an epidural space
Mustafa Peripheral nerve catheter techniques
Irwin et al. LetTs Get Started
NONSTIMULATING CONtiNUOUS PERiPhERAl NERvE BlOckS
Read Equipment for Loco‐Regional Anesthesia and Analgesia
Aboumerhi et al. INTERSCALENE CATHETERS: COMPLICATIONS AND MANAGEMENT
Ilfeld et al. Continuous Peripheral Nerve
McLoughlin et al. Ultrasound‐guided popliteal nerve blocks in a high risk patient for bilateral foot amputations on dual anti‐platelet therapy
Auroy et al. Regional Anesthesia Morbidity Study: France
Di Renna et al. Regional versus General Anesthesia for Fractures of the Proximal Femur

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION