US20050040144A1 - Control of plasma transitions in sputter processing systems - Google Patents

Control of plasma transitions in sputter processing systems Download PDF

Info

Publication number
US20050040144A1
US20050040144A1 US10/642,509 US64250903A US2005040144A1 US 20050040144 A1 US20050040144 A1 US 20050040144A1 US 64250903 A US64250903 A US 64250903A US 2005040144 A1 US2005040144 A1 US 2005040144A1
Authority
US
United States
Prior art keywords
plasma
resonant circuit
vessel
state
shunting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/642,509
Other versions
US6967305B2 (en
Inventor
Jeff Sellers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Barclays Bank PLC
Original Assignee
Eni Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eni Technology Inc filed Critical Eni Technology Inc
Priority to US10/642,509 priority Critical patent/US6967305B2/en
Assigned to ENI TECHNOLOGIES, INC. reassignment ENI TECHNOLOGIES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SELLERS, JEFF C.
Priority to TW093124101A priority patent/TWI392754B/en
Priority to TW101137036A priority patent/TW201315294A/en
Priority to KR1020067003286A priority patent/KR101227721B1/en
Priority to JP2006523982A priority patent/JP5517395B2/en
Priority to CNB2004800237844A priority patent/CN100550274C/en
Priority to EP04781387A priority patent/EP1668664A2/en
Priority to PCT/US2004/026682 priority patent/WO2005020273A2/en
Publication of US20050040144A1 publication Critical patent/US20050040144A1/en
Assigned to MKS INSTRUMENTS, INC. reassignment MKS INSTRUMENTS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ENI TECHNOLOGY, INC.
Priority to US11/216,424 priority patent/US8089026B2/en
Publication of US6967305B2 publication Critical patent/US6967305B2/en
Application granted granted Critical
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH reassignment DEUTSCHE BANK AG NEW YORK BRANCH SECURITY AGREEMENT Assignors: MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Assigned to BARCLAYS BANK PLC reassignment BARCLAYS BANK PLC SECURITY AGREEMENT Assignors: MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Assigned to NEWPORT CORPORATION, MKS INSTRUMENTS, INC. reassignment NEWPORT CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Assigned to BARCLAYS BANK PLC, AS COLLATERAL AGENT reassignment BARCLAYS BANK PLC, AS COLLATERAL AGENT PATENT SECURITY AGREEMENT (ABL) Assignors: ELECTRO SCIENTIFIC INDUSTRIES, INC., MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Assigned to BARCLAYS BANK PLC, AS COLLATERAL AGENT reassignment BARCLAYS BANK PLC, AS COLLATERAL AGENT CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE U.S. PATENT NO.7,919,646 PREVIOUSLY RECORDED ON REEL 048211 FRAME 0312. ASSIGNOR(S) HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT (ABL). Assignors: ELECTRO SCIENTIFIC INDUSTRIES, INC., MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Assigned to JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT reassignment JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ELECTRO SCIENTIFIC INDUSTRIES, INC., MKS INSTRUMENTS, INC., NEWPORT CORPORATION
Assigned to MKS INSTRUMENTS, INC., ELECTRO SCIENTIFIC INDUSTRIES, INC., NEWPORT CORPORATION reassignment MKS INSTRUMENTS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BARCLAYS BANK PLC
Assigned to ELECTRO SCIENTIFIC INDUSTRIES, INC., NEWPORT CORPORATION, MKS INSTRUMENTS, INC. reassignment ELECTRO SCIENTIFIC INDUSTRIES, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BARCLAYS BANK PLC
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/0203Protection arrangements
    • H01J2237/0206Extinguishing, preventing or controlling unwanted discharges

Definitions

  • the present invention relates generally to plasma-based materials processing. More particularly, the invention relates to control of arcs and control of plasma state transitions in plasma processing systems.
  • PVD Plasma-enhanced Vapor Deposition
  • arc discharge plasma utilized in a cathodic arc PVD systems is characterized by high currents and low voltages
  • the glow plasma utilized in sputter PVD systems is characterized by lower currents and higher voltages.
  • Sputter PVD systems often include features that provide magnetic fields to support electric field ionization of the glow plasma.
  • a glow plasma and an arc discharge plasma can exhibit mode shifts.
  • a glow plasma can transition to an arc discharge plasma, while, though unlikely, an arc discharge plasma can transition to a glow plasma.
  • Undesired arcing is a significant problem for the performance of sputter PVD systems.
  • Arcing can be caused by a variety of factors. For example, arcing might be caused by flaking of the target during sputtering, overheating of the target, a gas disturbance within the plasma, or impurities in either the inert gas utilized to form the plasma or the target material.
  • plasma noise produces a certain amount of “micro-arcing” within a glow plasma inside the deposition chamber. However, the micro-arcing may develop into more severe plasma arcing, or “hard arcing”, within the chamber. An arc can remove the poisoning from the target, but it may also generate undesirable particles.
  • Some systems cope with arcing by shutting down the power supply when an arc is detected. For example, detection of a severe arc can cause the power supply to momentarily interrupt its output, for example, for 0.100-25 msec. Arcing current fluctuations, however, can have a frequency in the order of 1-10 MHz (i.e., a duration of 0.1-1.0 ⁇ sec).
  • a DC power supply can have energy stored in an output stage, such as in an output filter. Upon the appearance of micro-arcing or arcing conditions, the stored energy may be discharged into the sputtering chamber. The discharged energy pulse has a duration of approximately 0.2-20 ⁇ sec, which is too rapid to be controlled or limited by common detection circuitry of the power supply.
  • Periodic suppression systems are usually employed when defect free deposition is required, such as in the manufacture of semiconductors.
  • the invention in part, arises from the realization that the cooperative action of a resonant circuit and a shunt switch can provide improved response to arc initiation, improved transition between different plasma states, and improved ignition of a plasma.
  • a resonant circuit when shunted, can drive a plasma current to zero and thus extinguish the plasma in a brief period of time that effectively reduces, for example, arc related damage.
  • Cooperative action of the resonant circuit and the shunt can also improve ignition of glow and arc discharge plasmas.
  • a controller in response to a signal that indicates a state or state transition of a plasma in a plasma vessel, supports closed-loop control of the plasma state in the plasma vessel.
  • the signal can be provided, for example, by a flux sensor detecting a flux of an inductor in the resonant circuit.
  • the invention features, in part, improved means to transition from an arc plasma to a glow plasma, or transition from a glow plasma to an arc plasma.
  • the invention features plasma transitions that entail removal of an undesired plasma state before reignition of a desired plasma state.
  • the invention features an apparatus for controlling a plasma used for materials processing.
  • the apparatus includes a resonant circuit, sensors, and a switch unit.
  • the resonant circuit is in electrical communication with an output of a power supply and an input of a plasma vessel.
  • the sensor acquires a signal associated with a state of a plasma in the plasma vessel.
  • the switch unit has a first state (for example, open) and a second state (for example, closed), and can be switched between states in response to the signal.
  • the second state of the switch unit shunts the resonant circuit to permit a resonance of the resonant circuit that causes a change in the state of a plasma in the vessel.
  • the resonant circuit can store and release energy.
  • the sensor can be configured to sense a flux induced by an inductor of the resonant circuit.
  • the sensor can be a coil placed adjacent to the inductor. Such a sensor can provide quick detection of the onset of an arc plasma during glow plasma processing.
  • the switch unit can have a resistance that is large enough to effectively act as a damping impedance for the resonant circuit during shunting.
  • the apparatus can include a controller for receiving the signal from the sensor, and for causing the switch unit to switch to at least one of the first state and the second state to affect the state of the plasma.
  • the controller can be configured to cause the switch unit to switch to the second state when a transition of the state of the plasma is indicated by a change in the signal.
  • the apparatus can also include a voltage clamp circuit in parallel with the input of the plasma vessel.
  • the voltage clamp can be an asymmetric voltage clamp.
  • the apparatus can include a zero-bias supply unit in series with the switch unit.
  • the supply unit can apply an offset voltage to the switch unit.
  • the offset voltage is associated with a voltage drop caused by a resistance of the switch unit and/or parasitic circuit elements associated with the switch unit.
  • the apparatus can further include a voltage sensor for sensing a voltage of at least one of the resonant circuit, the power supply, and the input of the plasma vessel.
  • the apparatus can further include a current sensor for sensing a current of at least one of the resonant circuit, the power supply, and the input of the plasma vessel.
  • the additional sensors can provide improved detection of plasma state transitions.
  • the invention features a method for controlling a plasma used for materials processing.
  • the method includes providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, detecting a change that indicates a transition of a state of a plasma in the plasma vessel, and shunting the resonant circuit after the change is detected to permit a resonance of the resonant circuit. Shunting the resonant circuit can extinguish the plasma in the vessel prior to reignition of a desired plasma state.
  • shunting can include substantially reducing a current flowing through the plasma vessel during an initial half cycle of the resonant circuit relative to a current flowing through the vessel prior to the initial half cycle.
  • the shunt can be removed for the next half cycle before again shunting if the arc discharge plasma persists.
  • the shunt and wait cycle can be repeated until the original plasma mode is restored, in response to feedback from one or more sensors.
  • the method can include reigniting the plasma in the plasma vessel.
  • Reigniting can include shunting the resonant circuit to increase an energy stored in the resonant circuit, and removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel.
  • the invention features a method for igniting a plasma used for materials processing.
  • the method includes providing a resonant circuit, shunting the output of the power supply to increase an energy stored in the resonant circuit, and removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel.
  • the resonant circuit can be shunted until the resonant circuit causes a current of the power supply to be greater than a steady-state current of an arc plasma.
  • the shunt can then be removed to commute the current to the input of the plasma vessel to ignite an arc plasma in the plasma vessel.
  • the resonant circuit can be shunted for an effective portion of a cycle of the resonant circuit to increase an energy stored in the resonant circuit.
  • the shunt can then be removed to direct the stored energy to the plasma vessel after the effective portion of the cycle to ignite a glow plasma in the plasma vessel.
  • FIG. 1 a is a block diagram of embodiments of the invention that include features for controlling a plasma in a plasma processing system.
  • FIG. 1 b is an exemplary graph of the voltage over time detected by a flux sensor in response to a micro arc and a hard arc.
  • FIG. 1 c is an exemplary graph of voltage over time detected by a flux sensor, current over time detected by a current sensor, and voltage over time detected by a voltage sensor for the occurrence of an arc.
  • FIG. 1 d is a graph that corresponds to the graph of FIG. 1 c , though illustrating the behavior of the curves over a greater length of time.
  • FIG. 2 is a block diagram of an embodiment of a plasma processing system.
  • FIG. 3 is a flowchart of an embodiment a method for controlling a plasma used for materials processing.
  • FIG. 4 is a graph of voltage and current change over time during the transition from a glow plasma to an arc plasma.
  • FIG. 5 is a graph of voltage and current in a glow plasma, and voltage and current in an arc plasma.
  • FIG. 6 is a graph that illustrates the measured change in voltage over time of a glow plasma state in a sample system.
  • FIG. 7 illustrates current and voltage curves that can be collected by sensors.
  • FIG. 8 is a graph of a flux sensor voltage over time.
  • FIG. 9 is a graph of a current sensor current over time.
  • FIG. 10 is a flowchart of a method for igniting a plasma used for materials processing.
  • FIG. 11 is a graph of voltage and current curves over time for a plasma processing system.
  • a “plasma system” is an apparatus that includes plasma generation components, and can include materials processing components.
  • a plasma system can include one or more vessels, power supply components, metrology components, control components, and other components. Processing can occur in the one or more vessels and/or in one or more processing chambers in communication with the one or more vessels.
  • a plasma system can be a source of plasma or reactive gas species generated in a plasma or can be a complete processing tool.
  • a “vessel” is a container or portion of a container that contains a gas and/or a plasma, and within which a plasma can be ignited and or/maintained.
  • a vessel is combined with other components, such as power generation and cooling components to form a plasma processing system.
  • a “plasma” is a state of matter that includes a collection of energetic charged particles that can be developed through application of a combination of electrcal and magnetic fields to induce ionization in a related gas.
  • a plasma is a collection of charged ions, electrons and neutral particles, which taken as a whole are neutral, due to the restorative fields generated by the movement of the charged particles.
  • a plasma is electrically conductive due to the charged particles.
  • a plasma in a vessel may be considered to be extinguished when the vessel can no longer carry a current, or when the plasma does not produce light.
  • Other means of determining plasma extinction include those related to the electrical characteristics of the plasma.
  • a plasma vessel cathode can have a capacitive characteristic with a typical capacitance value in a range from 100 pf to 1 uf.
  • the plasma however has an inductive character (voltage leads current) due to the mass of the ions moving to the cathode.
  • the sensors measure a capacitive character of the plasma vessel, then the plasma has been extinguished. If the sensors measure an inductive character, then a plasma exists in the plasma vessel, and, depending on the voltage-current, ratio the operating mode of the plasma may be determined.
  • Ignition is the process of causing an initial breakdown in a gas, to form a plasma.
  • glow discharge plasma As used herein and depending on context, can encompass glow and superglow plasmas.
  • arc discharge plasma As used herein and depending on context, can encompass micro arcs and hard arcs.
  • FIG. 1 a is a block diagram of embodiments of the invention that include features for controlling a plasma in a plasma processing system 100 .
  • the apparatus of the invention 190 includes a resonant circuit 110 , a switch unit 120 that has first and second states.
  • the system 100 illustrated in FIG. 1 a includes a power supply 170 having an output, a plasma vessel 180 having an input for receiving power from the power supply 170 and/or the resonant circuit 110 , a voltage clamp unit 160 in parallel with the switch unit 120 , a flux sensor 131 , a current sensor 132 , a voltage sensor 133 , and a controller 140 for receiving signals from the sensors 131 , 132 , 133 and controlling the switch unit 120 and the zero-bias supply unit 150 .
  • the switch unit shunts the resonant circuit 110 when in the second state, for example, a closed state.
  • the power supply 170 can be, for example, a DC or an RF power supply, and the plasma vessel 170 can respectively be, for example, a capacitively coupled or inductively coupled plasma vessel, as welt as a magnetically enhanced cathode (e.g., a magnetron) or a simple diode type cathode known in the plasma processing arts.
  • the switch unit 120 is electrically connected in parallel with an output of the power supply 170 and an input of the plasma vessel 180 .
  • the resonant circuit 110 is electrically connected in parallel with the input of the plasma vessel 180 and the output of the power supply 170 .
  • Different embodiments will include the switch unit 120 in different locations within the plasma processing system 100 .
  • FIG. 1 a illustrates two possible locations for the switch unit 120 .
  • the plasma vessel 180 can be electrically connected to other components of the system 100 , but remotely located with respect to them.
  • the components of the system 100 which can be connected via a long high voltage cable to the plasma vessel 180 .
  • the switch unit 120 permits shunting of the resonant circuit 110 .
  • the switch unit 120 can shunt the resonant circuit 110 , in effect creating an alternative electrical path that competes for the current flow with the arc in the plasma vessel 180 .
  • the arc can cause the impedance of the toad presented by the plasma vessel 180 to decrease while current is ringing up in the resonant circuit 110 .
  • the switch unit 120 may share a fraction of the current flow with the plasma vessel 180 .
  • the peak current and total energy of the arc, and, therefore, the damage caused by the arc can be effectively reduced if the current has an alternative path.
  • the shunt can reduce the time required to bring the arc to a zero current, i.e., to a no plasma state. The plasma may be considered to be extinguished in this condition.
  • the arc plasma impedance tends to decrease in association with the total current through the arc. This effect arises from the additional thermal ionization inherent in the arc discharge. Hence, reduction in the current available to the arc can effectively reduce the temperature rise of the discharge.
  • the switch unit 120 provides an alternate current path.
  • the switch unit 120 impedance can be chosen to be similar to the arc impedance of the system 100 . It can be desirable, however, to select a switch unit 120 having an impedance that is not too low, as there can be a benefit to the switch unit 120 dissipating some of the energy.
  • the power supply 170 and the resonant circuit 110 can each include their own inductors, or can share one or more inductors or a portion of an inductor.
  • an inductor of the resonant circuit has a smaller inductance that the inductance of an inductor of the power supply 170 .
  • the a flux sensor 131 may be configured to detect a magnetic flux generated by an inductor of the resonant circuit 110 .
  • the flux sensor 131 can provide a relatively simple and effective way to monitor the state of the plasma. For example, by simply adding a second winding to an inductor of the resonant circuit 110 , the second winding may be used as a flux sensor 131 to provide an excellent plasma transition detector. With a location as the last series component in the connections to the plasma vessel 180 , transient changes in current to the plasma vessel 180 generate a corresponding change in the coupled flux of the sensor 131 winding.
  • the flux sensor 131 can be used to detect a rapid change of the plasma current and/or voltage. When such a change is detected, the controller 140 may act to operate the switch unit 120 to cause the resonant circuit 110 to ring out. Once the current and voltage crossover (go from voltage leading current to current leading voltage) and reach zero, the sensor 131 can be used to monitor the restart of the correct plasma mode. Plasma modes can have distinctive characteristics, which can be used to decide if the plasma is restarting in the correct mode.
  • the flux sensor 131 can detect the voltage and/or current rise associated with reignition and the beginning of plasma run. The flux sensor 131 can also distinguish between the ignition of different types of plasma states.
  • FIG. 1 b is an exemplary graph of the voltage over time detected by a flux sensor 131 in response to a micro arc and a hard arc.
  • the “back porch” of the signal from the flux sensor 131 shows the voltage for the micro arc dropping to zero before the voltage for the hard arc, which has tended to persist.
  • Arrow A indicates the time at which the micro arc induced voltage has dropped to zero, which arrow B indicates the time at which the hard arc induced voltage has dropped to zero.
  • the controller 140 may also use voltage and/or current measurements, for example, from the current sensor 132 and the voltage sensor 1 33 , to define the plasma state. Depending on the location of the measurement points, different information will be gained to aid the controller's decision process. An example would be measuring the voltage-current ratio to define the mode of the present plasma operation. Another example would be confirming the continuity of the reignition by measuring the voltage after one resonant period and again after two periods. Further, the combined use of two or more measured values can allow the controller's functionality to change to better meet the plasma mode and needed control strategy.
  • the controller 140 can set an anticipate flag and cycle the switch unit 120 to stop the plasma (for example, shutting it off, and restarting it.) This can allow the conditions leading to the “expected arc” to be stopped prior to the arc actually occurring, thereby reducing the possibility of particle generation.
  • the duration of one or more signals used for the anticipate function may be available only for a short period, for example, less than 3 ⁇ s prior to the transition. They may also be available for detection in fewer than all transitions, for example, in 20% to 60% of transitions.
  • For the glow to arc transition there is often a small linear voltage drop, without a corresponding current change just before and leading into the arc transition. A variation of this is when the voltage shift occurs for a short time then returns to normal just before (2 ⁇ sec to 10 ⁇ sec) the arc transition.
  • FIG. 1 c is an exemplary graph of the flux sensor 131 voltage over time, current sensor 132 current over time, and voltage sensor 133 voltage over time detected over a period of time shortly before and after the occurrence of an arc.
  • the curves illustrate the above-described anticipatory behavior.
  • FIG. 1 d is a graph that includes the sample curves as does FIG. 1 c with, however, a greater length of time included to show the extended behavior of the curves after the shunting action of the system 100 .
  • the controller 140 receives a signal, which is used for monitoring the characteristics of the system 100 .
  • the sensors 131 , 132 , 133 can provide one or more signals to the controller 140 to permit monitoring of the state of a plasma in the plasma vessel 180 .
  • the controller 140 may include, for example, integrated circuits, such as microprocessors. Alternatively, a single integrated circuit or microprocessor can incorporate the controller 140 and other electronic components of the system 100 .
  • One or more microprocessors may implement software that executes the functions of the controller 140 . Further, the controller 140 may be implemented in software, firmware, or hardware (e.g. as an application-specific integrated circuit.) The software may be designed to run on general-purpose equipment or specialized processors dedicated to the functionality herein described.
  • the controller 140 can open or close the switch unit 120 in response to one or more signals received from the sensors 131 , 132 , 133 to control plasma state transitions in the plasma vessel 180 .
  • the controller 140 can support improved processing by detecting and terminating an undesirable state transition, and reigniting a desired plasma state.
  • the controller 140 can also support improved ignition methods.
  • controlled transitions between desired states include a period of no plasma in the vessel 180 as indicated by a signal received from one or more of the sensors 131 , 132 , 133 .
  • a desired arc plasma for example, is found in a tool coating PVD system that utilizes a cathodic arc clean/heat cycle.
  • the system entails operation of a magnetron in a low-power arc plasma state.
  • the magnetron provides an ion source for ion etching and implantation of the magnetron's target material on a tool being processed by the system. If the arc plasma extinguishes, the plasma may transition to a glow plasma state, leading to a loss of deposition rate and a ruined tool.
  • the controller 140 can close the switch unit 120 to shut down the glow plasma, and then control further steps to reignite the desired arc plasma.
  • the controller 140 opens the switch unit 120 to permit energy stored in one or more inductors of the resonant circuit 110 to push ignition.
  • a desired glow plasma for example, is found in a sputter PVD system, which can often exhibit undesirable transitions to an arc state.
  • the various types of glow-to-arc transitions known to those having ordinary skill can receive a tailored response when detected by the controller 140 .
  • the controller 140 can close the switch unit 120 to bring the current in the plasma vessel 180 to zero current, for example, in less than approximately 200 ⁇ sec in some embodiments, or, even less than approximately 1 ⁇ sec in some embodiments. Quickly reducing the current can reduce the likelihood of particulate formation and ejection.
  • Micro arc formation can be detected by the controller 140 via the signal or signals provided by the one or more sensors 131 , 132 , 133 .
  • the flux sensor 131 when coupled to a magnetic flux of an inductor of the resonant circuit 110 , can permit the controller 140 to close the switch unit 120 within a length of time of arc onset that clips the arc current before excessive damage occurs.
  • the formation of the arc will generally cause a rapid decrease in voltage and an increase in current.
  • the controller 140 can close the switch unit 120 for a fraction of a cycle of the resonant circuit to extinguish the micro arc. The current can then decline through zero.
  • the switch unit 140 can be kept closed, for example, for a high current half cycle of the resonant circuit 110 .
  • the controller 140 can then open the switch unit 120 , and the resonant circuit 110 can ring positive and support a voltage overshoot to reignite the glow plasma.
  • a hard, or persistent arc can be both more difficult to extinguish and more difficult to confirm as extinguished than a micro arc.
  • the controller 140 can perform repeated cycling of the switch unit 120 until the hard arc is extinguished.
  • it can be advantageous to utilize both the flux sensor 131 and one or both of the voltage and current sensors 132 , 133 to confirm extinguishment.
  • the likelihood of a false indication of arc formation or extinguishment can be reduced.
  • the sensors 132 , 133 can provide a limited set of discreet values to the controller 140 .
  • the controller 140 can then respond in a closed-loop manner. Control functions that may be implemented by the controller 140 are further described below with reference to FIGS. 200 and 300 .
  • the controller 140 incorporates system condition sensing and adaptive response features. For example, the controller 140 can receive additional signals that indicate additional process and status conditions of the system 100 . In response to the system 100 status and process conditions, the controller 140 can invoke a pattern, for example, a process recipe, that better suits present conditions. Thus, the controller 140 can select an appropriate pattern or behavior.
  • a change in pattern can be associated with, for example, a change in the number and/or type of steps included in a process rather than a simple change in the length of one or more existing steps.
  • the plasma vessel 180 may be, for example, a DC cathode-based sputter vessel. Such a vessel 180 may include a magnetron device for focusing and concentrating a plasma in the vessel 180 .
  • the vessel 180 may be a conventional plasma processing chamber.
  • a reactive gas can be introduced between a target and a substrate in the vessel to support reactive sputter deposition.
  • the substrate can be biased with a DC or RF source in order to enhance the deposition process.
  • the substrate backplane can include a heating mechanism utilizing backside gas to heat the substrate. The backplane may rotate for a more uniform sputter deposition on the substrate.
  • FIG. 2 is a block diagram of a plasma processing system 100 A that includes an apparatus 190 A that is an exemplary embodiment of the apparatus 190 shown in FIG. 1 a .
  • the system 100 A includes a resonant circuit 110 A, a switch unit 120 A, a flux sensor 131 A, a current sensor 132 A, a voltage sensor 133 A, a voltage clamp circuit 160 A, and a power supply 170 A.
  • the system 10 A optionally includes a zero-bias supply unit 150 A,
  • the power supply 170 A is a DC supply, and includes filter inductors Lf in series with the output of the supply 170 A, and a filter capacitor C f in parallel with the output of the supply 170 A.
  • the switch unit 120 A includes a switch 121 and, in some embodiments, a diode 122 .
  • the switch 121 can be, for example, a gas switch, a SCR switch, an IGBT switch, an SiT switch, a FET switch, a GTO switch, or a MCT switch. More generally, a switch unit 120 A can include two or more switches of common or different types.
  • the diode 122 can be, for example, a zener diode.
  • the diode 122 causes the switch unit 120 A to act as a one-way switch.
  • the switch 121 When the switch 121 is closed, the diode 122 permits development of a reverse polarity current flow to the cathode of a plasma vessel.
  • a reverse current can accelerate the transition to a no plasma state in the plasma vessel as indicated by one or more signals from the sensors 131 A, 132 A, 133 A.
  • the switch unit 120 A in some embodiments may carry, for example, a peak current of approximately 85 A while the cathode experiences a peak current of approximately 20 A (relative to a run current of approximately 14 A.)
  • the zero-bias supply unit 150 A includes a transformer 151 , a diode 152 and a capacitor 153 .
  • the transformer 151 is in electrical communication with a controller, for example, the controller 140 illustrated in FIG. 1 a
  • a voltage provided by the supply unit 150 A modifies a voltage drop caused by the resistance of the switch unit 120 A and other components, if any, in series with the switch unit 120 A.
  • the supply unit 150 A can be used to reduce a required number of switches 121 in a switch unit 120 A, for example, by applying an offset voltage equal to the voltage drop across the one or more switches 121 at the peak current.
  • the switch 121 is implemented as two FETs, each representing a resistance of 1 ⁇
  • the two FETs, in series will present a resistance of 2 ⁇ .
  • the voltage drop will be 100 V.
  • the supply unit 150 offset can be set to 100 V.
  • the load current i.e., the plasma vessel 180 current, can have a secondary effect on a desired level of zero-bias supply unit 150 offset.
  • the switch unit 120 A can have a similar or lower resistance with respect to an arc plasma.
  • the switch unit 120 A should have a significant resistance.
  • the balance of impedance is set to have the switch unit 120 A impedance approximately equal to the typical arc plasma impedance.
  • an impedance of the switch unit 121 can be similar to that of the plasma, at least at the beginning of a shunt period.
  • the voltage clamp circuit 160 A includes diodes 161 in series and in two groups oriented respectively for forward and reverse voltage clamping.
  • the diodes can be, for example, unidirectional zener diodes.
  • the resonant circuit 110 A includes an inductor L R in series with the output of the power supply 170 A and the input of the plasma vessel, and a capacitor C R in parallel with the output of the power supply 170 A and the input of the plasma vessel.
  • the capacitor Cr and the inductor Lr can be chosen to be as fast as possible.
  • a high frequency limitation can arise from a need to have the inductor Lr be the dominant inductance (largest value) between the output of the power supply 170 A and the input of the plasma vessel 180 . It can also be beneficial to maintain enough energy in the resonant circuit 110 A to ring the current through zero. This energy can be in proportion to a DC process current in the plasma vessel 180 .
  • the low end of the frequency range can be determined by the power supply's sensitivity. It can be desirable for the power supply 170 A to ignore the operation of the resonant circuit 110 A, and only shut down when commanded by the controller 140 in order, for example, to maintain a deposition rate that is as constant as possible.
  • the value of the power supply 170 A filter inductor L f can be selected to be much larger than inductor Lr, for example, 10 ⁇ or more larger.
  • inductor Lr can have a value of 10 ⁇ H while power supply 170 A filter inductor L f can have a value of 2 mH.
  • the flux sensor 131 A of FIG. 2 includes an inductor disposed adjacent to the inductor L R of the resonant circuit 110 A so that a current is induced in the flux sensor 131 A when a changing current passes through the inductor L R of the resonant circuit 110 A.
  • the inductor L R of the resonant circuit 110 A can include, for example, a coil, such as an in an air core inductor; the flux sensor 131 A can include a coil that is disposed co-axially within the inductor L R of the resonant circuit 110 A.
  • the flux sensor is sensitive to changes in current in the resonant circuit 131 A, as arise, for example, when a transition occurs in a state of a plasma within the plasma vessel and/or when the switch unit 160 A is closed.
  • a coil-based flux sensor 131 A can include a coil made from fine gauge wire to simplify manufacturing.
  • the flux sensor 131 A can include a high speed SCR or thyratron coupled to a coil.
  • the flux sensor 131 A is the last component in the current path to a plasma vessel, for example, co-located with the inductor L R as the final components leading to a connector that is connected to the plasma vessel.
  • the current sensor 132 A voltage sensor 133 A can sense, respectively, current and voltage of at least one of the resonant circuit, the power supply, and the input of the plasma vessel.
  • One or a combination of the sensors 131 A, 132 A, 133 A can be utilized to support the functionality of a controller. Sensor readings are sampled in some embodiments at fractional or integer multiples of the resonant frequency of the resonant circuit 110 .
  • FIG. 3 is a flowchart of an embodiment of method 300 for controlling a plasma used for materials processing.
  • the method 300 can be implemented, for example, with the apparatus 190 , 190 A illustrated in FIGS. 1 a and 2 .
  • the method includes providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel (Step 310 ).
  • the resonant circuit can store and release energy.
  • the method also includes detecting a change, for example, in a signal, that indicates a transition of a state of a plasma in the plasma vessel (Step 320 ), and shunting the resonant circuit after the change is detected to permit a resonance of the resonant circuit (Step 330 ).
  • the shunting continues for a period equal to a half cycle of the resonant circuit.
  • the method 300 in some such embodiments includes waiting for a half cycle before again shunting, if the arc discharge plasma persists (Step 340 ).
  • the process of shunting and waiting is repeated in some embodiments until the change is no longer detected (Step 350 ).
  • the process of shunting and waiting may terminate when a change that indicates the transition of the state of the plasma or the extinguishment of the plasma is detected (Step 360 ).
  • the method may also include reigniting the plasma after extinguishing the undesired plasma state (Step 370 ).
  • the possible states of the plasma in the plasma vessel include, for example, various glow plasma states, various arc discharge states, and a no plasma state indicated by one or more signals that can be acquired, for example, by the sensors 131 , 132 , 133 illustrated in FIG. 1 a . Any of a variety of changes in the signal can be utilized to detect the onset of a state transition.
  • the flux sensor 131 may be the most effective at detecting the onset of a change of plasma state. Features of the flux sensor 131 are described below with reference to FIG. 8 .
  • the state of the plasma in the vessel may be determined, for example, via examination of the current and/or voltage levels associated with a plasma.
  • FIG. 4 is a graph that qualitatively illustrates how voltage and current change over time during the transition from a glow plasma to an arc plasma.
  • FIG. 5 is a graph that qualitatively illustrates the relationship between voltage and current in a glow plasma and an arc plasma.
  • the glow and arc plasmas may be identified by their characteristic values. For example in FIG. 4 , a glow plasma is characterized by a voltage of approximately 500 V and a current of approximately 10 A whereas an arc plasma is characterized by a current of approximately 100 A and a voltage of approximately 20 V.
  • sensing of voltage and/or current levels and their transition is one means to obtain an indication of plasma state and state transition.
  • the phase relationship between current and voltage signals can be used to indicate a plasma state in a vessel.
  • shunting can entail extinguishing the plasma in the plasma vessel, and the signal can be used to confirm that the plasma has been extinguished.
  • the plasma vessel in the off state, the plasma vessel exhibits a capacitive impedance, while in the glow or arc discharge plasma states, the vessel exhibits an inductive impedance.
  • Examination of the relationship of voltage and current waveforms, as provided by one or more sensors permits determination of the present impedance of the vessel.
  • both a glow plasma and an arc discharge plasma exhibit a voltage leading current characteristic. This characteristic can be observed, for example, when the glow or arc plasmas are newly formed and have yet to stabilize.
  • FIG. 6 is a graph that illustrates the measured change in voltage (sensed, for example, by a voltage sensor) over time of a glow plasma state in a sample system. The data for the graph was obtained by decreasing the power applied to a plasma vessel containing a glow plasma, and sensing the voltage across the plasma vessel.
  • the voltage is 233 V.
  • voltage ripple increases while the overall voltage declines.
  • the plasma collapses i.e., extinguishes
  • the power level at which the plasma collapses corresponds to a voltage level V min . as indicated on the graph.
  • the experimentally determined voltage level V min can then serve as a threshold voltage when sensing plasma vessel voltage to confirm that a glow plasma has been extinguished.
  • the current flowing through the plasma vessel can be substantially reduced during an initial half cycle of the resonant circuit relative to a current flowing through the vessel prior to the initial half cycle.
  • closing of the switch unit 120 can reduce the current in the plasma vessel 180 at a rapid rate during a first half cycle of the resonant circuit 110 .
  • the half cycle of the resonant circuit may have a range of approximately 1 to 50 ⁇ sec. After shunting for a half cycle, the shunt can be removed. Brief shunting can be sufficient to extinguish a plasma in the vessel.
  • FIG. 7 illustrates current and voltage curves, as can be collected with the sensors 132 , 133 .
  • the curves illustrate a glow plasma transitioning to an extinguished state.
  • the current and voltage rapidly decline.
  • the current and voltage may not settle to zero.
  • the current can be approximately 0.5 A and the voltage approximately 10 V.
  • a unipolar switch can be employed, which can allow the resonant circuit 110 to ring below zero during the second half of a cycle.
  • a unipolar switch can also make the timing of the off transition of the switch less critical. The plasma in the vessel 180 may be considered extinguished when current switches its direction of flow.
  • the method 300 of the present invention can include waiting for a half cycle, or other interval, before again shunting, if, for example, an arc discharge plasma persists (Step 340 ). Further, the shunting (Step 330 ) and waiting (Step 340 ) steps can be repeated until the change (Step 320 ) is no longer detected (Step 350 ). Failure to extinguish the arc after a preselected number of repeat cycles, or after a preselected period of time has elapsed, can lead to shutdown of a power supply. In this case, shunting can be allowed to continue until the supply is caused to shutdown, for example, for more than a half cycle.
  • Sensing a change in a second signal can support identification of the transition of a plasma state, and confirmation of reignition of the plasma (Step 360 ).
  • Reigniting the plasma (Step 360 ) after extinguishing the undesired plasma state can entail, for example, reigniting a glow or arc plasma.
  • the resonant circuit can be shunted to increase an energy stored in the resonant circuit, and then removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel.
  • the stored energy can be allowed to increase the power supply current to a level greater than a steady-state current of an arc discharge plasma.
  • the shunt can then be removed to direct the current to the input of the plasma vessel.
  • An arc discharge plasma may thereby be ignited in the plasma vessel, without contacting a cathode of the vessel, in contrast to common prior practice.
  • the resonant circuit can be shunted to increase the stored energy in the resonant circuit for an effective portion of a cycle of the resonant circuit.
  • the shunt can then be removed to direct the stored energy to the input of the plasma vessel thereby igniting a glow discharge plasma in the plasma vessel.
  • An effective portion of a cycle can be 1 ⁇ 2 of a cycle.
  • FIG. 8 is a graph of the flux sensor 131 voltage versus time
  • FIG. 9 is a graph of the current sensor 132 current versus time.
  • the flux sensor 131 signal is a sensitive and rapid indicator of the onset of an arc plasma.
  • the resonant circuit is shunted for a half cycle, causing a rapid decline in current in the current sensor to zero (no plasma), with a small swing to a negative current as the circuit oscillates.
  • a rise in the voltage level of the flux sensor 131 can be used as an indicator that a transition, for example, to an arc plasma, has occurred.
  • a small voltage level can be chosen as a threshold indicator of plasma onset. For example, a voltage of 1.0 V can be chosen as the threshold level. Shunting of the resonant circuit can being in response to detection of the flux sensor voltage rising above the threshold level.
  • the resonant frequency will be 145 khz.
  • These example values can cover, for example, a large range of sputtering conditions from a few watts to as high as 60 kw.
  • example values are also effective over a wide range of gase types, gas flow rates and target materials. Some of the more exotic target materials, however, may need some small adjustments in a controller to be optimally effective, as the voltage and current ranges for an arc discharge can be as high as some sputter processes.
  • TiB2 titanium diboride
  • the TiB2 had a sputter voltage of 385 V DC, and the voltage dropped to 310 V DC upon arcing.
  • the discharge was very visible arc, thus sensors, for example, sensors 131 , 132 , 133 , should identify this small change as a transition.
  • sensors for example, sensors 131 , 132 , 133 , should identify this small change as a transition.
  • more than one sensor can be required to adequately define the plasma mode, and a controller may be more effective with sufficient capacity to define small state changes.
  • the shunt can be removed approximately at or after the time the plasma is extinguished. Removing the shunt can also initiate the process of reigniting the glow plasma.
  • the flux sensor 131 reveals the capacitive charging phase, as does the current sensor 132 . After ignition and settling to a stable condition, the flux sensor 131 shows no signal while the current sensor 132 shows a stable current indicative of the glow plasma.
  • Reignition can be more reliably detected with two sensors.
  • a combination of any of the following sensors may be used to detect ignition: the flux sensor 131 , the voltage sensor 133 , the current sensor 132 , and a light sensor (not shown) disposed to detect light emitted by the plasma in the vessel.
  • the signal from the second sensor can be used to validate indication of plasma reignition provided by the signal from the first sensor.
  • a sensor signal may also be used to indicate the type of plasma in the vessel.
  • the character of the light emitted by the plasma indicates the type of plasma in the vessel.
  • the light intensity of an arc plasma can be approximately 10 times greater than that of a glow plasma.
  • a light sensor may be a broadband sensor, for example, a silicon detector.
  • the controller 140 for example, gate the signal from the light sensor to an arc extinguishing cycle. That is, a light signal can be collected while current in the plasma is driven to zero to obtain an indication of the absence of the plasma when substantially all of the tight emission vanishes.
  • the plasma in the vessel may be considered extinguished when no substantial light emission is detected.
  • FIG. 10 is a flowchart of a method 1000 for igniting a plasma used for materials processing.
  • the method 1000 can be implemented with the systems 100 , 100 A illustrated in FIGS. 1 a and 2 , and can be utilized in combination with the method 300 .
  • the method 1000 includes providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, the resonant circuit for storing and releasing energy (Step 1010 ), shunting the resonant circuit to increase an energy stored in the resonant circuit (Step 1020 ), and removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel (Step 1030 ). It will be apparent to one having ordinary skill in the plasma processing arts that proper related conditions should be provided to ignite a plasma, for example, gas type, pressure, and flow rate conditions.
  • the method 1000 optionally includes sensing a signal associated with a state of a plasma in the plasma vessel (Step 1040 ), for example, to confirm ignition of the plasma. Ignition can be confirmed, for example, as described above with respect to the method 300 . Also, as described above with respect to the method 300 , if the signal indicates an undesired plasma state of the plasma in the plasma vessel, shunting can be applied to extinguish the plasma (Step 1050 ).
  • the resonant circuit can be shunted until the resonant circuit causes a current of the power supply to be greater than a steady-state current of an arc plasma.
  • the shunt can then be removed to direct the current to the input of the plasma vessel to ignite the arc plasma in the plasma vessel.
  • a system must deliver more energy to a gas to force the gas to an arc discharge condition than required to obtain a glow discharge condition.
  • the controller 140 can close the switch unit 120 to create a short across both the plasma vessel 180 and the power supply 170 .
  • the short permits the power supply 170 to ramp the output current up to an appropriate level somewhat above the desired stable operating current level for an arc plasma.
  • the controller 140 detects an indication that the DC current has attained the elevated level, the controller 140 opens the switch unit 120 .
  • the current then shifts from the switch unit 120 to the cathode of the plasma vessel 180 , causing both a high voltage and high current that forces an arc plasma to form to support the current.
  • An arc discharge can thus be ignited without use of a physical contact step to deliver the ignition energy to the cathode.
  • the resonant circuit can be shunted for an effective portion of a cycle of the resonant circuit to increase an energy stored in the resonant circuit.
  • the shunt can then be removed to direct the stored energy to the plasma vessel after the effective portion of the cycle to ignite the glow plasma in the plasma vessel.
  • the effective portion of the cycle can be a half cycle.
  • the controller 140 can wait until a DC output voltage of the supply 170 settles at its peak value. The controller 140 can then close the switch unit 120 for a half cycle to increase energy stored in an inductor of the resonant circuit 110 as the circuit rings out and goes positive. The voltage level can increase until limited by the clamp circuit 160 or until the glow plasma ignites.
  • ignition of a glow plasma can be determined by observation of voltage or current levels provided by voltage or current sensors.
  • FIG. 11 is a graph of voltage and current curves versus time. The increasing voltage eventually drops after reaching an ignition voltage level, when a capacitive discharge marking the beginning of ignition occurs. The brief high voltage and low current behavior corresponds to a Townsend discharge ignition phase. The voltage then drops, and eventually settles at an operational level. In the normal operation region indicated in the graph, an increase in voltage provides an approximately linear increase in current of the glow plasma.
  • the gradual rise in voltage prior to plasma formation corresponds to charging of the capacitance associated with the plasma vessel.
  • the current does not rise with voltage prior to breakdown because no plasma exists in the vessel to provide conduction through the vessel.
  • the rapid increase in current indicates initiation of a plasma, and the current then settles to an operational level.
  • the observed overvoltage required for ignition can support confirmation that a plasma has been ignited, and thus also can confirm that a plasma had first been extinguished.
  • the level of overvoltage required to ignite a plasma can be affected by the condition of a plasma vessel. For example, a vessel that has held a plasma within the previous hour can exhibit a smaller overshoot upon reignition than would a completely “cold” vessel. While a cold ignition voltage can be, for an exemplary vessel, approximately 1250 V, a hot ignition voltage for the same vessel can be approximately 750 V, with stable operation settling at approximately 500 V. The overshoot level will tend to decrease with shorter off periods between reignition until reaching a nearly constant overshoot voltage for a particular set of conditions.
  • a plasma may be extinguished within, for example, the prior 1 ⁇ sec to 10 seconds.

Abstract

Methods and apparatus for controlling a plasma used for materials processing feature cooperative action of a resonant circuit and a switch unit coupled to a plasma vessel and a power supply. A sensor for acquiring a signal associated with a state of a plasma in the plasma vessel supports closed-loop control of the switch unit. Undesirable plasma states detected by the sensor can be eliminated by closing the switch unit to shunt the resonant circuit.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to plasma-based materials processing. More particularly, the invention relates to control of arcs and control of plasma state transitions in plasma processing systems.
  • BACKGROUND OF THE INVENTION
  • Many manufacturing operations utilize plasma processing. Plasma-enhanced Vapor Deposition (PVD), for example, is increasingly used for deposition of thin metallic and non-metallic films. Most PVD systems are either of the cathodic arc or sputtering types. While the arc discharge plasma utilized in a cathodic arc PVD systems is characterized by high currents and low voltages, the glow plasma utilized in sputter PVD systems is characterized by lower currents and higher voltages. Sputter PVD systems often include features that provide magnetic fields to support electric field ionization of the glow plasma.
  • A glow plasma and an arc discharge plasma, under appropriate conditions, can exhibit mode shifts. For example, a glow plasma can transition to an arc discharge plasma, while, though unlikely, an arc discharge plasma can transition to a glow plasma.
  • Undesired arcing is a significant problem for the performance of sputter PVD systems. Arcing can be caused by a variety of factors. For example, arcing might be caused by flaking of the target during sputtering, overheating of the target, a gas disturbance within the plasma, or impurities in either the inert gas utilized to form the plasma or the target material. Inherently, plasma noise produces a certain amount of “micro-arcing” within a glow plasma inside the deposition chamber. However, the micro-arcing may develop into more severe plasma arcing, or “hard arcing”, within the chamber. An arc can remove the poisoning from the target, but it may also generate undesirable particles.
  • Some systems cope with arcing by shutting down the power supply when an arc is detected. For example, detection of a severe arc can cause the power supply to momentarily interrupt its output, for example, for 0.100-25 msec. Arcing current fluctuations, however, can have a frequency in the order of 1-10 MHz (i.e., a duration of 0.1-1.0 μsec).
  • Some power supplies may exacerbate the problems associated with plasma arcing. For example, a DC power supply can have energy stored in an output stage, such as in an output filter. Upon the appearance of micro-arcing or arcing conditions, the stored energy may be discharged into the sputtering chamber. The discharged energy pulse has a duration of approximately 0.2-20 μsec, which is too rapid to be controlled or limited by common detection circuitry of the power supply.
  • Some systems periodically interrupt or apply a voltage reversal of the cathode voltage in an attempt to avoid arcing. The deposition rate may be reduced, however, because the cathode voltage is not continuously applied. Moreover, periodic suppression circuitry adds significant cost. Periodic suppression systems are usually employed when defect free deposition is required, such as in the manufacture of semiconductors.
  • SUMMARY OF THE INVENTION
  • The invention, in part, arises from the realization that the cooperative action of a resonant circuit and a shunt switch can provide improved response to arc initiation, improved transition between different plasma states, and improved ignition of a plasma. According to principles of the invention, a resonant circuit, when shunted, can drive a plasma current to zero and thus extinguish the plasma in a brief period of time that effectively reduces, for example, arc related damage. Cooperative action of the resonant circuit and the shunt can also improve ignition of glow and arc discharge plasmas.
  • In one embodiment, a controller, in response to a signal that indicates a state or state transition of a plasma in a plasma vessel, supports closed-loop control of the plasma state in the plasma vessel. The signal can be provided, for example, by a flux sensor detecting a flux of an inductor in the resonant circuit. The invention features, in part, improved means to transition from an arc plasma to a glow plasma, or transition from a glow plasma to an arc plasma. The invention features plasma transitions that entail removal of an undesired plasma state before reignition of a desired plasma state.
  • Accordingly, in a first aspect, the invention features an apparatus for controlling a plasma used for materials processing. The apparatus includes a resonant circuit, sensors, and a switch unit. The resonant circuit is in electrical communication with an output of a power supply and an input of a plasma vessel. The sensor acquires a signal associated with a state of a plasma in the plasma vessel. The switch unit has a first state (for example, open) and a second state (for example, closed), and can be switched between states in response to the signal. The second state of the switch unit shunts the resonant circuit to permit a resonance of the resonant circuit that causes a change in the state of a plasma in the vessel. The resonant circuit can store and release energy.
  • The sensor can be configured to sense a flux induced by an inductor of the resonant circuit. The sensor can be a coil placed adjacent to the inductor. Such a sensor can provide quick detection of the onset of an arc plasma during glow plasma processing. The switch unit can have a resistance that is large enough to effectively act as a damping impedance for the resonant circuit during shunting.
  • The apparatus can include a controller for receiving the signal from the sensor, and for causing the switch unit to switch to at least one of the first state and the second state to affect the state of the plasma. The controller can be configured to cause the switch unit to switch to the second state when a transition of the state of the plasma is indicated by a change in the signal. The apparatus can also include a voltage clamp circuit in parallel with the input of the plasma vessel. The voltage clamp can be an asymmetric voltage clamp.
  • The apparatus can include a zero-bias supply unit in series with the switch unit. The supply unit can apply an offset voltage to the switch unit. The offset voltage is associated with a voltage drop caused by a resistance of the switch unit and/or parasitic circuit elements associated with the switch unit.
  • The apparatus can further include a voltage sensor for sensing a voltage of at least one of the resonant circuit, the power supply, and the input of the plasma vessel. The apparatus can further include a current sensor for sensing a current of at least one of the resonant circuit, the power supply, and the input of the plasma vessel. The additional sensors can provide improved detection of plasma state transitions.
  • In a second aspect, the invention features a method for controlling a plasma used for materials processing. The method includes providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, detecting a change that indicates a transition of a state of a plasma in the plasma vessel, and shunting the resonant circuit after the change is detected to permit a resonance of the resonant circuit. Shunting the resonant circuit can extinguish the plasma in the vessel prior to reignition of a desired plasma state.
  • In response to detection of a state change, for example, the transition from a glow plasma mode to an arc plasma mode, shunting can include substantially reducing a current flowing through the plasma vessel during an initial half cycle of the resonant circuit relative to a current flowing through the vessel prior to the initial half cycle. The shunt can be removed for the next half cycle before again shunting if the arc discharge plasma persists. The shunt and wait cycle can be repeated until the original plasma mode is restored, in response to feedback from one or more sensors.
  • The method can include reigniting the plasma in the plasma vessel. Reigniting can include shunting the resonant circuit to increase an energy stored in the resonant circuit, and removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel.
  • In a third aspect, the invention features a method for igniting a plasma used for materials processing. The method includes providing a resonant circuit, shunting the output of the power supply to increase an energy stored in the resonant circuit, and removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel.
  • The resonant circuit can be shunted until the resonant circuit causes a current of the power supply to be greater than a steady-state current of an arc plasma. The shunt can then be removed to commute the current to the input of the plasma vessel to ignite an arc plasma in the plasma vessel. The resonant circuit can be shunted for an effective portion of a cycle of the resonant circuit to increase an energy stored in the resonant circuit. The shunt can then be removed to direct the stored energy to the plasma vessel after the effective portion of the cycle to ignite a glow plasma in the plasma vessel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • This invention is described with particularity in the appended claims. The above and further advantages of this invention may be better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 a is a block diagram of embodiments of the invention that include features for controlling a plasma in a plasma processing system.
  • FIG. 1 b is an exemplary graph of the voltage over time detected by a flux sensor in response to a micro arc and a hard arc.
  • FIG. 1 c is an exemplary graph of voltage over time detected by a flux sensor, current over time detected by a current sensor, and voltage over time detected by a voltage sensor for the occurrence of an arc.
  • FIG. 1 d is a graph that corresponds to the graph of FIG. 1 c, though illustrating the behavior of the curves over a greater length of time.
  • FIG. 2 is a block diagram of an embodiment of a plasma processing system.
  • FIG. 3 is a flowchart of an embodiment a method for controlling a plasma used for materials processing.
  • FIG. 4 is a graph of voltage and current change over time during the transition from a glow plasma to an arc plasma.
  • FIG. 5 is a graph of voltage and current in a glow plasma, and voltage and current in an arc plasma.
  • FIG. 6 is a graph that illustrates the measured change in voltage over time of a glow plasma state in a sample system.
  • FIG. 7. illustrates current and voltage curves that can be collected by sensors.
  • FIG. 8 is a graph of a flux sensor voltage over time.
  • FIG. 9 is a graph of a current sensor current over time.
  • FIG. 10 is a flowchart of a method for igniting a plasma used for materials processing.
  • FIG. 11 is a graph of voltage and current curves over time for a plasma processing system.
  • DETAILED DESCRIPTION
  • A “plasma system” is an apparatus that includes plasma generation components, and can include materials processing components. A plasma system can include one or more vessels, power supply components, metrology components, control components, and other components. Processing can occur in the one or more vessels and/or in one or more processing chambers in communication with the one or more vessels. A plasma system can be a source of plasma or reactive gas species generated in a plasma or can be a complete processing tool.
  • A “vessel” is a container or portion of a container that contains a gas and/or a plasma, and within which a plasma can be ignited and or/maintained. A vessel is combined with other components, such as power generation and cooling components to form a plasma processing system.
  • A “plasma” is a state of matter that includes a collection of energetic charged particles that can be developed through application of a combination of electrcal and magnetic fields to induce ionization in a related gas. In a general sense, a plasma is a collection of charged ions, electrons and neutral particles, which taken as a whole are neutral, due to the restorative fields generated by the movement of the charged particles. A plasma is electrically conductive due to the charged particles. A plasma in a vessel may be considered to be extinguished when the vessel can no longer carry a current, or when the plasma does not produce light. Other means of determining plasma extinction include those related to the electrical characteristics of the plasma. For example, without a plasma, a plasma vessel cathode can have a capacitive characteristic with a typical capacitance value in a range from 100 pf to 1 uf.
  • The plasma however has an inductive character (voltage leads current) due to the mass of the ions moving to the cathode. Hence, if the sensors measure a capacitive character of the plasma vessel, then the plasma has been extinguished. If the sensors measure an inductive character, then a plasma exists in the plasma vessel, and, depending on the voltage-current, ratio the operating mode of the plasma may be determined.
  • “Ignition” is the process of causing an initial breakdown in a gas, to form a plasma.
  • The phrases “glow discharge plasma,” “glow plasma,” and “glow” are herein used interchangeably to refer to a plasma state sustained by a relatively high voltage and low current in comparison to an arc discharge plasma. A glow plasma, as used herein and depending on context, can encompass glow and superglow plasmas.
  • The phrases “arc discharge plasma,” “arc plasma,” and “arc” are herein used interchangeably to refer to a plasma state sustained by a relatively low voltage and high current. An arc plasma, as used herein and depending on context, can encompass micro arcs and hard arcs.
  • The following description will focus on exemplary cathodic DC-based sputtering systems. It will be apparent, however, to one having ordinary skill in the plasma processing arts that principles of the invention may be applied to a variety of plasma processing systems, including systems that entail AC induced plasmas, such as RF plasma systems.
  • FIG. 1 a is a block diagram of embodiments of the invention that include features for controlling a plasma in a plasma processing system 100. The apparatus of the invention 190 includes a resonant circuit 110, a switch unit 120 that has first and second states. The system 100 illustrated in FIG. 1 a includes a power supply 170 having an output, a plasma vessel 180 having an input for receiving power from the power supply 170 and/or the resonant circuit 110, a voltage clamp unit 160 in parallel with the switch unit 120, a flux sensor 131, a current sensor 132, a voltage sensor 133, and a controller 140 for receiving signals from the sensors 131, 132, 133 and controlling the switch unit 120 and the zero-bias supply unit 150. The switch unit shunts the resonant circuit 110 when in the second state, for example, a closed state.
  • The power supply 170 can be, for example, a DC or an RF power supply, and the plasma vessel 170 can respectively be, for example, a capacitively coupled or inductively coupled plasma vessel, as welt as a magnetically enhanced cathode (e.g., a magnetron) or a simple diode type cathode known in the plasma processing arts. The switch unit 120 is electrically connected in parallel with an output of the power supply 170 and an input of the plasma vessel 180. The resonant circuit 110 is electrically connected in parallel with the input of the plasma vessel 180 and the output of the power supply 170. Different embodiments will include the switch unit 120 in different locations within the plasma processing system 100. FIG. 1 a illustrates two possible locations for the switch unit 120.
  • The plasma vessel 180 can be electrically connected to other components of the system 100, but remotely located with respect to them. For example, the components of the system 100 which can be connected via a long high voltage cable to the plasma vessel 180.
  • The switch unit 120 permits shunting of the resonant circuit 110. When closed in response, for example, to the detection of an undesired arc plasma in the vessel 180, the switch unit 120 can shunt the resonant circuit 110, in effect creating an alternative electrical path that competes for the current flow with the arc in the plasma vessel 180. The arc can cause the impedance of the toad presented by the plasma vessel 180 to decrease while current is ringing up in the resonant circuit 110. Thus, the switch unit 120 may share a fraction of the current flow with the plasma vessel 180. The peak current and total energy of the arc, and, therefore, the damage caused by the arc, can be effectively reduced if the current has an alternative path. The shunt can reduce the time required to bring the arc to a zero current, i.e., to a no plasma state. The plasma may be considered to be extinguished in this condition.
  • The arc plasma impedance tends to decrease in association with the total current through the arc. This effect arises from the additional thermal ionization inherent in the arc discharge. Hence, reduction in the current available to the arc can effectively reduce the temperature rise of the discharge. The switch unit 120 provides an alternate current path. The switch unit 120 impedance can be chosen to be similar to the arc impedance of the system 100. It can be desirable, however, to select a switch unit 120 having an impedance that is not too low, as there can be a benefit to the switch unit 120 dissipating some of the energy.
  • The power supply 170 and the resonant circuit 110 can each include their own inductors, or can share one or more inductors or a portion of an inductor. In some embodiments, an inductor of the resonant circuit has a smaller inductance that the inductance of an inductor of the power supply 170.
  • The a flux sensor 131 may be configured to detect a magnetic flux generated by an inductor of the resonant circuit 110. The flux sensor 131 can provide a relatively simple and effective way to monitor the state of the plasma. For example, by simply adding a second winding to an inductor of the resonant circuit 110, the second winding may be used as a flux sensor 131 to provide an excellent plasma transition detector. With a location as the last series component in the connections to the plasma vessel 180, transient changes in current to the plasma vessel 180 generate a corresponding change in the coupled flux of the sensor 131 winding.
  • Thus, the flux sensor 131 can be used to detect a rapid change of the plasma current and/or voltage. When such a change is detected, the controller 140 may act to operate the switch unit 120 to cause the resonant circuit 110 to ring out. Once the current and voltage crossover (go from voltage leading current to current leading voltage) and reach zero, the sensor 131 can be used to monitor the restart of the correct plasma mode. Plasma modes can have distinctive characteristics, which can be used to decide if the plasma is restarting in the correct mode.
  • Referring to FIGS. 1 b, 1 c and 1 d, the flux sensor 131 can detect the voltage and/or current rise associated with reignition and the beginning of plasma run. The flux sensor 131 can also distinguish between the ignition of different types of plasma states. FIG. 1 b is an exemplary graph of the voltage over time detected by a flux sensor 131 in response to a micro arc and a hard arc. The “back porch” of the signal from the flux sensor 131 shows the voltage for the micro arc dropping to zero before the voltage for the hard arc, which has tended to persist. Arrow A indicates the time at which the micro arc induced voltage has dropped to zero, which arrow B indicates the time at which the hard arc induced voltage has dropped to zero.
  • Alternatively, in addition to the flux sensor 131, the controller 140 may also use voltage and/or current measurements, for example, from the current sensor 132 and the voltage sensor 1 33, to define the plasma state. Depending on the location of the measurement points, different information will be gained to aid the controller's decision process. An example would be measuring the voltage-current ratio to define the mode of the present plasma operation. Another example would be confirming the continuity of the reignition by measuring the voltage after one resonant period and again after two periods. Further, the combined use of two or more measured values can allow the controller's functionality to change to better meet the plasma mode and needed control strategy.
  • For example, by appropriately combining measured values from the three sensors 131, 132, 133 with the control rules it is possible to anticipate the imminent occurrence of an arc transition in a glow plasma. When these conditions are detected, the controller 140 can set an anticipate flag and cycle the switch unit 120 to stop the plasma (for example, shutting it off, and restarting it.) This can allow the conditions leading to the “expected arc” to be stopped prior to the arc actually occurring, thereby reducing the possibility of particle generation.
  • The duration of one or more signals used for the anticipate function may be available only for a short period, for example, less than 3 μs prior to the transition. They may also be available for detection in fewer than all transitions, for example, in 20% to 60% of transitions. For the glow to arc transition, there is often a small linear voltage drop, without a corresponding current change just before and leading into the arc transition. A variation of this is when the voltage shift occurs for a short time then returns to normal just before (2 μsec to 10 μsec) the arc transition.
  • FIG. 1 c is an exemplary graph of the flux sensor 131 voltage over time, current sensor 132 current over time, and voltage sensor 133 voltage over time detected over a period of time shortly before and after the occurrence of an arc. The curves illustrate the above-described anticipatory behavior. FIG. 1 d is a graph that includes the sample curves as does FIG. 1 c with, however, a greater length of time included to show the extended behavior of the curves after the shunting action of the system 100.
  • The controller 140 receives a signal, which is used for monitoring the characteristics of the system 100. The sensors 131, 132, 133, for example, can provide one or more signals to the controller 140 to permit monitoring of the state of a plasma in the plasma vessel 180. The controller 140 may include, for example, integrated circuits, such as microprocessors. Alternatively, a single integrated circuit or microprocessor can incorporate the controller 140 and other electronic components of the system 100. One or more microprocessors may implement software that executes the functions of the controller 140. Further, the controller 140 may be implemented in software, firmware, or hardware (e.g. as an application-specific integrated circuit.) The software may be designed to run on general-purpose equipment or specialized processors dedicated to the functionality herein described.
  • The controller 140 can open or close the switch unit 120 in response to one or more signals received from the sensors 131, 132, 133 to control plasma state transitions in the plasma vessel 180. For example, the controller 140 can support improved processing by detecting and terminating an undesirable state transition, and reigniting a desired plasma state. The controller 140 can also support improved ignition methods. In embodiments of the invention, controlled transitions between desired states include a period of no plasma in the vessel 180 as indicated by a signal received from one or more of the sensors 131, 132, 133.
  • A desired arc plasma, for example, is found in a tool coating PVD system that utilizes a cathodic arc clean/heat cycle. The system entails operation of a magnetron in a low-power arc plasma state. The magnetron provides an ion source for ion etching and implantation of the magnetron's target material on a tool being processed by the system. If the arc plasma extinguishes, the plasma may transition to a glow plasma state, leading to a loss of deposition rate and a ruined tool.
  • To avoid tool damage, in terms of the broad embodiment of FIG. 1 a, the controller 140 can close the switch unit 120 to shut down the glow plasma, and then control further steps to reignite the desired arc plasma. In one embodiment of the invention, the controller 140 opens the switch unit 120 to permit energy stored in one or more inductors of the resonant circuit 110 to push ignition.
  • A desired glow plasma, for example, is found in a sputter PVD system, which can often exhibit undesirable transitions to an arc state. The various types of glow-to-arc transitions known to those having ordinary skill can receive a tailored response when detected by the controller 140.
  • In response to detection of a micro arc, the controller 140 can close the switch unit 120 to bring the current in the plasma vessel 180 to zero current, for example, in less than approximately 200 μsec in some embodiments, or, even less than approximately 1 μsec in some embodiments. Quickly reducing the current can reduce the likelihood of particulate formation and ejection.
  • Micro arc formation can be detected by the controller 140 via the signal or signals provided by the one or more sensors 131, 132, 133. The flux sensor 131, when coupled to a magnetic flux of an inductor of the resonant circuit 110, can permit the controller 140 to close the switch unit 120 within a length of time of arc onset that clips the arc current before excessive damage occurs. The formation of the arc will generally cause a rapid decrease in voltage and an increase in current. The controller 140 can close the switch unit 120 for a fraction of a cycle of the resonant circuit to extinguish the micro arc. The current can then decline through zero.
  • The switch unit 140 can be kept closed, for example, for a high current half cycle of the resonant circuit 110. The controller 140 can then open the switch unit 120, and the resonant circuit 110 can ring positive and support a voltage overshoot to reignite the glow plasma.
  • A hard, or persistent arc, can be both more difficult to extinguish and more difficult to confirm as extinguished than a micro arc. The controller 140 can perform repeated cycling of the switch unit 120 until the hard arc is extinguished. In the case of a hard arc, it can be advantageous to utilize both the flux sensor 131 and one or both of the voltage and current sensors 132, 133 to confirm extinguishment. Thus, the likelihood of a false indication of arc formation or extinguishment can be reduced.
  • To simplify signal sensing and control features of the invention, the sensors 132, 133 can provide a limited set of discreet values to the controller 140. The controller 140 can then respond in a closed-loop manner. Control functions that may be implemented by the controller 140 are further described below with reference to FIGS. 200 and 300.
  • In a more detailed embodiment of the system 100, the controller 140 incorporates system condition sensing and adaptive response features. For example, the controller 140 can receive additional signals that indicate additional process and status conditions of the system 100. In response to the system 100 status and process conditions, the controller 140 can invoke a pattern, for example, a process recipe, that better suits present conditions. Thus, the controller 140 can select an appropriate pattern or behavior. A change in pattern can be associated with, for example, a change in the number and/or type of steps included in a process rather than a simple change in the length of one or more existing steps.
  • The plasma vessel 180 may be, for example, a DC cathode-based sputter vessel. Such a vessel 180 may include a magnetron device for focusing and concentrating a plasma in the vessel 180. The vessel 180 may be a conventional plasma processing chamber. For example, a reactive gas can be introduced between a target and a substrate in the vessel to support reactive sputter deposition. The substrate can be biased with a DC or RF source in order to enhance the deposition process. The substrate backplane can include a heating mechanism utilizing backside gas to heat the substrate. The backplane may rotate for a more uniform sputter deposition on the substrate.
  • FIG. 2 is a block diagram of a plasma processing system 100A that includes an apparatus 190A that is an exemplary embodiment of the apparatus 190 shown in FIG. 1 a. The system 100A includes a resonant circuit 110A, a switch unit 120A, a flux sensor 131A, a current sensor 132A, a voltage sensor 133A, a voltage clamp circuit 160A, and a power supply 170A. The system 10A optionally includes a zero-bias supply unit 150A,
  • The power supply 170A is a DC supply, and includes filter inductors Lf in series with the output of the supply 170A, and a filter capacitor Cf in parallel with the output of the supply 170A. The switch unit 120A includes a switch 121 and, in some embodiments, a diode 122. The switch 121 can be, for example, a gas switch, a SCR switch, an IGBT switch, an SiT switch, a FET switch, a GTO switch, or a MCT switch. More generally, a switch unit 120A can include two or more switches of common or different types. The diode 122 can be, for example, a zener diode.
  • The diode 122 causes the switch unit 120A to act as a one-way switch. When the switch 121 is closed, the diode 122 permits development of a reverse polarity current flow to the cathode of a plasma vessel. A reverse current can accelerate the transition to a no plasma state in the plasma vessel as indicated by one or more signals from the sensors 131A, 132A, 133A. When closed in response to an arc plasma forming in a vessel, the switch unit 120A in some embodiments may carry, for example, a peak current of approximately 85 A while the cathode experiences a peak current of approximately 20 A (relative to a run current of approximately 14 A.)
  • The zero-bias supply unit 150A includes a transformer 151, a diode 152 and a capacitor 153. The transformer 151 is in electrical communication with a controller, for example, the controller 140 illustrated in FIG. 1 a A voltage provided by the supply unit 150A modifies a voltage drop caused by the resistance of the switch unit 120A and other components, if any, in series with the switch unit 120A. The supply unit 150A can be used to reduce a required number of switches 121 in a switch unit 120A, for example, by applying an offset voltage equal to the voltage drop across the one or more switches 121 at the peak current.
  • For example, if the switch 121 is implemented as two FETs, each representing a resistance of 1 Ω, the two FETs, in series, will present a resistance of 2 Ω. For a 50 A current, the voltage drop will be 100 V. In this case, the supply unit 150 offset can be set to 100 V. The load current, i.e., the plasma vessel 180 current, can have a secondary effect on a desired level of zero-bias supply unit 150 offset.
  • Competing goals must be balanced to identify an appropriate resistance for the switch unit 120A. To create an effective alternative electrical path, the switch unit 120A can have a similar or lower resistance with respect to an arc plasma. To dissipate energy to avoid inadvertent reignition of the arc plasma, the switch unit 120A should have a significant resistance. In a typical embodiment, the balance of impedance is set to have the switch unit 120A impedance approximately equal to the typical arc plasma impedance.
  • For example if the arc plasma develops a voltage drop of 40 V at approximately 60 amps, this corresponds to an impedance of 0.67 ohms. A typical switch impedance for these conditions would, be approximately 0.6 ohms or less. When the zero-bias supply unit 151A is not used, an impedance of the switch unit 121 can be similar to that of the plasma, at least at the beginning of a shunt period.
  • The voltage clamp circuit 160A includes diodes 161 in series and in two groups oriented respectively for forward and reverse voltage clamping. The diodes can be, for example, unidirectional zener diodes. Some optional structures and methods of operation of a voltage clamp circuit 160 are described in U.S. Pat. No. 6,524,455 to Sellers.
  • The resonant circuit 110A includes an inductor LR in series with the output of the power supply 170A and the input of the plasma vessel, and a capacitor CR in parallel with the output of the power supply 170A and the input of the plasma vessel. The capacitor Cr and the inductor Lr can be chosen to be as fast as possible. A high frequency limitation can arise from a need to have the inductor Lr be the dominant inductance (largest value) between the output of the power supply 170A and the input of the plasma vessel 180. It can also be beneficial to maintain enough energy in the resonant circuit 110A to ring the current through zero. This energy can be in proportion to a DC process current in the plasma vessel 180.
  • The low end of the frequency range can be determined by the power supply's sensitivity. It can be desirable for the power supply 170A to ignore the operation of the resonant circuit 110A, and only shut down when commanded by the controller 140 in order, for example, to maintain a deposition rate that is as constant as possible. Thus, the value of the power supply 170A filter inductor Lf can be selected to be much larger than inductor Lr, for example, 10× or more larger. For example, inductor Lr can have a value of 10 μH while power supply 170A filter inductor Lf can have a value of 2 mH.
  • The flux sensor 131A of FIG. 2 includes an inductor disposed adjacent to the inductor LR of the resonant circuit 110A so that a current is induced in the flux sensor 131A when a changing current passes through the inductor LR of the resonant circuit 110A. The inductor LR of the resonant circuit 110A can include, for example, a coil, such as an in an air core inductor; the flux sensor 131A can include a coil that is disposed co-axially within the inductor LR of the resonant circuit 110A. The flux sensor is sensitive to changes in current in the resonant circuit 131A, as arise, for example, when a transition occurs in a state of a plasma within the plasma vessel and/or when the switch unit 160A is closed.
  • A coil-based flux sensor 131A can include a coil made from fine gauge wire to simplify manufacturing. The flux sensor 131A can include a high speed SCR or thyratron coupled to a coil. Preferably, the flux sensor 131A is the last component in the current path to a plasma vessel, for example, co-located with the inductor LR as the final components leading to a connector that is connected to the plasma vessel.
  • The current sensor 132 A voltage sensor 133A can sense, respectively, current and voltage of at least one of the resonant circuit, the power supply, and the input of the plasma vessel. One or a combination of the sensors 131A, 132A, 133A can be utilized to support the functionality of a controller. Sensor readings are sampled in some embodiments at fractional or integer multiples of the resonant frequency of the resonant circuit 110.
  • FIG. 3 is a flowchart of an embodiment of method 300 for controlling a plasma used for materials processing. The method 300 can be implemented, for example, with the apparatus 190, 190A illustrated in FIGS. 1 a and 2. The method includes providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel (Step 310). The resonant circuit can store and release energy. The method also includes detecting a change, for example, in a signal, that indicates a transition of a state of a plasma in the plasma vessel (Step 320), and shunting the resonant circuit after the change is detected to permit a resonance of the resonant circuit (Step 330).
  • In some embodiments, the shunting continues for a period equal to a half cycle of the resonant circuit. The method 300 in some such embodiments includes waiting for a half cycle before again shunting, if the arc discharge plasma persists (Step 340). The process of shunting and waiting is repeated in some embodiments until the change is no longer detected (Step 350). The process of shunting and waiting may terminate when a change that indicates the transition of the state of the plasma or the extinguishment of the plasma is detected (Step 360). The method may also include reigniting the plasma after extinguishing the undesired plasma state (Step 370).
  • The possible states of the plasma in the plasma vessel include, for example, various glow plasma states, various arc discharge states, and a no plasma state indicated by one or more signals that can be acquired, for example, by the sensors 131, 132, 133 illustrated in FIG. 1 a. Any of a variety of changes in the signal can be utilized to detect the onset of a state transition. The flux sensor 131 may be the most effective at detecting the onset of a change of plasma state. Features of the flux sensor 131 are described below with reference to FIG. 8.
  • Referring to FIGS. 4 and 5, the state of the plasma in the vessel may be determined, for example, via examination of the current and/or voltage levels associated with a plasma. FIG. 4 is a graph that qualitatively illustrates how voltage and current change over time during the transition from a glow plasma to an arc plasma. FIG. 5 is a graph that qualitatively illustrates the relationship between voltage and current in a glow plasma and an arc plasma. The glow and arc plasmas may be identified by their characteristic values. For example in FIG. 4, a glow plasma is characterized by a voltage of approximately 500 V and a current of approximately 10 A whereas an arc plasma is characterized by a current of approximately 100 A and a voltage of approximately 20 V. Thus, sensing of voltage and/or current levels and their transition is one means to obtain an indication of plasma state and state transition.
  • When current and voltage levels are changing, the phase relationship between current and voltage signals can be used to indicate a plasma state in a vessel. For example, shunting (Step 330) can entail extinguishing the plasma in the plasma vessel, and the signal can be used to confirm that the plasma has been extinguished. For example, in the off state, the plasma vessel exhibits a capacitive impedance, while in the glow or arc discharge plasma states, the vessel exhibits an inductive impedance. Examination of the relationship of voltage and current waveforms, as provided by one or more sensors, permits determination of the present impedance of the vessel. For example, both a glow plasma and an arc discharge plasma exhibit a voltage leading current characteristic. This characteristic can be observed, for example, when the glow or arc plasmas are newly formed and have yet to stabilize.
  • Referring to FIG. 6, a voltage level alone can be used, for example, to conclude that a plasma has been extinguished. For example, a minimum voltage that can sustain a glow plasma may be experimentally determined for a particular embodiment of the system 100 being operated under particular process conditions (e.g., gas type and pressure conditions.) FIG. 6 is a graph that illustrates the measured change in voltage (sensed, for example, by a voltage sensor) over time of a glow plasma state in a sample system. The data for the graph was obtained by decreasing the power applied to a plasma vessel containing a glow plasma, and sensing the voltage across the plasma vessel.
  • For example, at 9 watts delivered power, the voltage is 233 V. At 8 watts delivered power, voltage ripple increases while the overall voltage declines. As the delivered power decreases to approximately 6 watts, the plasma collapses, i.e., extinguishes, The power level at which the plasma collapses corresponds to a voltage level Vmin. as indicated on the graph. Thus, the experimentally determined voltage level Vmin can then serve as a threshold voltage when sensing plasma vessel voltage to confirm that a glow plasma has been extinguished.
  • When the resonant circuit is shunted (Step 330), the current flowing through the plasma vessel can be substantially reduced during an initial half cycle of the resonant circuit relative to a current flowing through the vessel prior to the initial half cycle. For example, closing of the switch unit 120 can reduce the current in the plasma vessel 180 at a rapid rate during a first half cycle of the resonant circuit 110. The half cycle of the resonant circuit may have a range of approximately 1 to 50 μsec. After shunting for a half cycle, the shunt can be removed. Brief shunting can be sufficient to extinguish a plasma in the vessel.
  • FIG. 7. illustrates current and voltage curves, as can be collected with the sensors 132, 133. The curves illustrate a glow plasma transitioning to an extinguished state. When the resonant circuit 110 is shunted, the current and voltage rapidly decline. The current and voltage, however, may not settle to zero. For example, the current can be approximately 0.5 A and the voltage approximately 10 V.
  • Further, a unipolar switch can be employed, which can allow the resonant circuit 110 to ring below zero during the second half of a cycle. A unipolar switch can also make the timing of the off transition of the switch less critical. The plasma in the vessel 180 may be considered extinguished when current switches its direction of flow.
  • The method 300 of the present invention can include waiting for a half cycle, or other interval, before again shunting, if, for example, an arc discharge plasma persists (Step 340). Further, the shunting (Step 330) and waiting (Step 340) steps can be repeated until the change (Step 320) is no longer detected (Step 350). Failure to extinguish the arc after a preselected number of repeat cycles, or after a preselected period of time has elapsed, can lead to shutdown of a power supply. In this case, shunting can be allowed to continue until the supply is caused to shutdown, for example, for more than a half cycle.
  • Sensing a change in a second signal can support identification of the transition of a plasma state, and confirmation of reignition of the plasma (Step 360). Reigniting the plasma (Step 360) after extinguishing the undesired plasma state can entail, for example, reigniting a glow or arc plasma. To obtain an arc plasma, the resonant circuit can be shunted to increase an energy stored in the resonant circuit, and then removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel. The stored energy can be allowed to increase the power supply current to a level greater than a steady-state current of an arc discharge plasma. The shunt can then be removed to direct the current to the input of the plasma vessel. An arc discharge plasma may thereby be ignited in the plasma vessel, without contacting a cathode of the vessel, in contrast to common prior practice.
  • To obtain a glow plasma, the resonant circuit can be shunted to increase the stored energy in the resonant circuit for an effective portion of a cycle of the resonant circuit. The shunt can then be removed to direct the stored energy to the input of the plasma vessel thereby igniting a glow discharge plasma in the plasma vessel. An effective portion of a cycle can be ½ of a cycle.
  • Referring to FIGS. 8 and 9, an example of an undesired transition of a glow plasma to an arc plasma, extinguishment of the arc plasma by shunting, and reignition of the glow plasma are described. FIG. 8 is a graph of the flux sensor 131 voltage versus time; FIG. 9 is a graph of the current sensor 132 current versus time. The flux sensor 131 signal is a sensitive and rapid indicator of the onset of an arc plasma. When the arc is detected, the resonant circuit is shunted for a half cycle, causing a rapid decline in current in the current sensor to zero (no plasma), with a small swing to a negative current as the circuit oscillates. A rise in the voltage level of the flux sensor 131, can be used as an indicator that a transition, for example, to an arc plasma, has occurred.
  • Since the flux sensor 131 provides an accurate indicator of plasma transition, a small voltage level can be chosen as a threshold indicator of plasma onset. For example, a voltage of 1.0 V can be chosen as the threshold level. Shunting of the resonant circuit can being in response to detection of the flux sensor voltage rising above the threshold level.
  • For example, for a resonant circuit having an inductor of value 12 μh and a capacitor of value 0.1 μf, the resonant frequency will be 145 khz. These example values can cover, for example, a large range of sputtering conditions from a few watts to as high as 60 kw.
  • These example values are also effective over a wide range of gase types, gas flow rates and target materials. Some of the more exotic target materials, however, may need some small adjustments in a controller to be optimally effective, as the voltage and current ranges for an arc discharge can be as high as some sputter processes.
  • An example of this effect is found in the sputter deposition of TiB2 (titanium diboride). In a process the TiB2 had a sputter voltage of 385 V DC, and the voltage dropped to 310 V DC upon arcing. The discharge, however, was very visible arc, thus sensors, for example, sensors 131, 132, 133, should identify this small change as a transition. Thus, more than one sensor can be required to adequately define the plasma mode, and a controller may be more effective with sufficient capacity to define small state changes.
  • The shunt can be removed approximately at or after the time the plasma is extinguished. Removing the shunt can also initiate the process of reigniting the glow plasma. The flux sensor 131 reveals the capacitive charging phase, as does the current sensor 132. After ignition and settling to a stable condition, the flux sensor 131 shows no signal while the current sensor 132 shows a stable current indicative of the glow plasma.
  • Reignition can be more reliably detected with two sensors. For example, a combination of any of the following sensors may be used to detect ignition: the flux sensor 131, the voltage sensor 133, the current sensor 132, and a light sensor (not shown) disposed to detect light emitted by the plasma in the vessel. The signal from the second sensor can be used to validate indication of plasma reignition provided by the signal from the first sensor. A sensor signal may also be used to indicate the type of plasma in the vessel. For example, the character of the light emitted by the plasma indicates the type of plasma in the vessel. The light intensity of an arc plasma can be approximately 10 times greater than that of a glow plasma.
  • To observe light emitted by the plasma, a light sensor may be a broadband sensor, for example, a silicon detector. The controller 140, for example, gate the signal from the light sensor to an arc extinguishing cycle. That is, a light signal can be collected while current in the plasma is driven to zero to obtain an indication of the absence of the plasma when substantially all of the tight emission vanishes. The plasma in the vessel may be considered extinguished when no substantial light emission is detected.
  • Referring to FIG. 10, some features of the invention provide improved plasma ignition methods. FIG. 10 is a flowchart of a method 1000 for igniting a plasma used for materials processing. The method 1000 can be implemented with the systems 100, 100A illustrated in FIGS. 1 a and 2, and can be utilized in combination with the method 300. The method 1000 includes providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, the resonant circuit for storing and releasing energy (Step 1010), shunting the resonant circuit to increase an energy stored in the resonant circuit (Step 1020), and removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel (Step 1030). It will be apparent to one having ordinary skill in the plasma processing arts that proper related conditions should be provided to ignite a plasma, for example, gas type, pressure, and flow rate conditions.
  • The method 1000 optionally includes sensing a signal associated with a state of a plasma in the plasma vessel (Step 1040), for example, to confirm ignition of the plasma. Ignition can be confirmed, for example, as described above with respect to the method 300. Also, as described above with respect to the method 300, if the signal indicates an undesired plasma state of the plasma in the plasma vessel, shunting can be applied to extinguish the plasma (Step 1050).
  • To ignite an arc plasma, the resonant circuit can be shunted until the resonant circuit causes a current of the power supply to be greater than a steady-state current of an arc plasma. The shunt can then be removed to direct the current to the input of the plasma vessel to ignite the arc plasma in the plasma vessel. In general, a system must deliver more energy to a gas to force the gas to an arc discharge condition than required to obtain a glow discharge condition.
  • The controller 140 can close the switch unit 120 to create a short across both the plasma vessel 180 and the power supply 170. The short permits the power supply 170 to ramp the output current up to an appropriate level somewhat above the desired stable operating current level for an arc plasma. When the controller 140 detects an indication that the DC current has attained the elevated level, the controller 140 opens the switch unit 120. The current then shifts from the switch unit 120 to the cathode of the plasma vessel 180, causing both a high voltage and high current that forces an arc plasma to form to support the current. An arc discharge can thus be ignited without use of a physical contact step to deliver the ignition energy to the cathode.
  • To ignite a glow plasma, the resonant circuit can be shunted for an effective portion of a cycle of the resonant circuit to increase an energy stored in the resonant circuit. The shunt can then be removed to direct the stored energy to the plasma vessel after the effective portion of the cycle to ignite the glow plasma in the plasma vessel. The effective portion of the cycle can be a half cycle.
  • For example, the controller 140 can wait until a DC output voltage of the supply 170 settles at its peak value. The controller 140 can then close the switch unit 120 for a half cycle to increase energy stored in an inductor of the resonant circuit 110 as the circuit rings out and goes positive. The voltage level can increase until limited by the clamp circuit 160 or until the glow plasma ignites.
  • Referring to FIG. 11, ignition of a glow plasma, for example, can be determined by observation of voltage or current levels provided by voltage or current sensors. FIG. 11 is a graph of voltage and current curves versus time. The increasing voltage eventually drops after reaching an ignition voltage level, when a capacitive discharge marking the beginning of ignition occurs. The brief high voltage and low current behavior corresponds to a Townsend discharge ignition phase. The voltage then drops, and eventually settles at an operational level. In the normal operation region indicated in the graph, an increase in voltage provides an approximately linear increase in current of the glow plasma.
  • The gradual rise in voltage prior to plasma formation corresponds to charging of the capacitance associated with the plasma vessel. The current does not rise with voltage prior to breakdown because no plasma exists in the vessel to provide conduction through the vessel. The rapid increase in current indicates initiation of a plasma, and the current then settles to an operational level.
  • The observed overvoltage required for ignition can support confirmation that a plasma has been ignited, and thus also can confirm that a plasma had first been extinguished. The level of overvoltage required to ignite a plasma can be affected by the condition of a plasma vessel. For example, a vessel that has held a plasma within the previous hour can exhibit a smaller overshoot upon reignition than would a completely “cold” vessel. While a cold ignition voltage can be, for an exemplary vessel, approximately 1250 V, a hot ignition voltage for the same vessel can be approximately 750 V, with stable operation settling at approximately 500 V. The overshoot level will tend to decrease with shorter off periods between reignition until reaching a nearly constant overshoot voltage for a particular set of conditions. A plasma may be extinguished within, for example, the prior 1 μsec to 10 seconds. While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (63)

1. An apparatus for controlling a plasma used for materials processing, the apparatus comprising:
a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, the resonant circuit for storing and releasing energy;
a sensor for acquiring a signal associated with a state of a plasma in the plasma vessel; and
a switch unit switchable between a first state and a second state in response to the signal, the second state of the switch unit for shunting the resonant circuit to permit a resonance of the resonant circuit that causes a change in the state of the plasma.
2. The apparatus of claim 1, wherein the resonant circuit comprises an inductor, and the sensor is configured to sense a flux induced by the inductor.
3. The apparatus of claim 2, wherein the sensor is coaxially disposed adjacent to the inductor of the resonant circuit.
4. The apparatus of claim 1, wherein the switch unit has a resistance that is large enough to effectively act as a damping impedance for the resonant circuit during shunting.
5. The apparatus of claim 4, wherein the switch unit has a resistance that is less than a resistance of an arc discharge plasma in the plasma vessel.
6. The apparatus of claim 4, wherein the switch unit has an impedance that is greater than an impedance of an arc discharge plasma in the plasma vessel.
7. The apparatus of claim 4, wherein the resistance of the switch unit has a value in a range of approximately 0.001 Ω to approximately 100.0 Ω.
8. The apparatus of claim 1, further comprising a controller for receiving the signal from the sensor, and for causing the switch unit to switch to at least one of the first state and the second state to affect the state of the plasma.
9. The apparatus of claim 8, wherein the controller is configured to cause the switch unit to switch to the second state when a transition of the state of the plasma is indicated by a change in the signal.
10. The apparatus of claim 1, further comprising a voltage clamp circuit in parallel with the input of the plasma vessel.
11. The apparatus of claim 10, wherein the voltage clamp is an asymmetric voltage clamp.
12. The apparatus of claim 1, further comprising a zero-bias supply unit in series with the switch unit for applying to the switch unit an offset voltage associated with a voltage drop caused by a resistance of at least one of the switch unit and parasitic circuit elements associated with the switch unit.
13. The apparatus of claim 1, further comprising a voltage sensor for sensing a voltage of at least one of the resonant circuit, the power supply, and the input of the plasma vessel.
14. The apparatus of claim 1, further comprising a current sensor for sensing a current of at least one of the resonant circuit, the power supply, and the input of the plasma vessel.
15. The apparatus of claim 1, wherein the switch unit comprises at least one switch.
16. The apparatus of claim 15, wherein the resonant circuit comprises an inductor, and the switch unit has one terminal electrically connected between the inductor and the input of the plasma vessel.
17. The apparatus of claim 15, wherein the switch unit comprises at least one of a unipolar device and a bipolar device.
18. The apparatus of claim 15, wherein the switch unit comprises at least one of a gas switch, a SCR switch, an IGBT switch, an SiT switch, a FET switch, a GTO switch, and a MCT switch.
19. The apparatus of claim 1, wherein the resonant circuit comprises a capacitor in parallel with the switch unit.
20. The apparatus of claim 1, wherein the power supply comprises a capacitor in parallel with the output of the power supply, and in parallel with a capacitor of the resonant circuit.
21. The apparatus of claim 20, wherein the resonant circuit further comprises an inductor in series with the output of the power supply.
22. The apparatus of claim 1, wherein the plasma vessel comprises a cathode in electrical communication with the output of the power supply, and the power supply comprises a DC supply.
23. The apparatus of claim 1, wherein the power supply comprises an AC supply in electrical communication with the plasma vessel.
24. The apparatus of claim 1, wherein the resonant circuit and the power supply share components.
25. A method for controlling a plasma used for materials processing, the method comprising:
providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, the resonant circuit for storing and releasing energy;
detecting a change that indicates a transition of a state of a plasma in the plasma vessel; and
shunting the resonant circuit after the change is detected to permit a resonance of the resonant circuit.
26. The method of claim 25, wherein shunting comprises extinguishing the plasma in the plasma vessel.
27. The method of claim 26, wherein shunting comprises causing the plasma to extinguish in less than 10 μsec.
28. The method of claim 25, further comprising acquiring a signal associated with the state of the plasma, and wherein detecting comprises detecting the change in the signal.
29. The method of claim 25, wherein the plasma is at least one of a glow plasma and an arc discharge plasma.
30. The method of claim 25, wherein shunting comprises substantially reducing a current flowing through the plasma vessel during an initial half cycle of the resonant circuit relative to a current flowing through the vessel prior to the initial half cycle.
31. The method of claim 25, wherein the transition comprises initiation of an arc discharge plasma from a glow plasma in the plasma vessel, and shunting comprises shunting for a half cycle of the resonant circuit.
32. The method of claim 31, further comprising providing a switch unit for shunting the resonant circuit, and shunting comprises closing the switch for the half cycle of the resonant circuit.
33. The method of claim 31, further comprising waiting for a half cycle before again shunting if the arc discharge plasma persists.
34. The method of claim 33, further comprising repeating shunting and waiting until the change is no Longer detected.
35. The method of claim 34, further comprising acquiring at least a second signal comprising at least one of a voltage signal and a current signal of at least one of the resonant circuit, the power supply, and the plasma vessel, wherein repeating comprises repeating if the at least second signal indicates a persistent arc discharge plasma.
36. The method of claim 34, wherein shunting comprises causing the power supply to shut down when repeating occurs more than a predetermined number of times.
37. The method of claim 36, wherein shunting comprises causing the power supply to shut down when repeating occurs more than the predetermined number of times within a predetermined period.
38. The method of claim 25, further comprising acquiring at least a second signal comprising at least one of a voltage signal and a current signal of at least one of the resonant circuit, the power supply, and the plasma vessel, and detecting a change in the second signal that indicates the transition of the state of the plasma.
39. The method of claim 25, further comprising detecting a second change in the acquired signal, the second change indicating extinguishment of the plasma.
40. The method of claim 39, further comprising reigniting the plasma in the plasma vessel.
41. The method of claim 40, wherein reigniting comprises shunting the resonant circuit to increase an energy stored in the resonant circuit, and removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel.
42. The method of claim 41, wherein shunting to increase the stored energy comprises shunting the resonant circuit until the resonant circuit causes a current of the power supply to be greater than a steady-state current of an arc discharge plasma, and removing the shunt comprises commuting the current to the input of the plasma vessel to ignite an arc discharge plasma in the plasma vessel.
43. The method of claim 41, wherein shunting to increase the stored energy comprises shunting the resonant circuit for an effective portion of a cycle of the resonant circuit to increase an energy stored in the resonant circuit, and removing the shunt comprises directing the stored energy to the input of the plasma vessel after the effective portion of the cycle to ignite a glow discharge plasma in the plasma vessel.
44. The method of claim 25, wherein the resonant circuit comprises an inductor in series with the output of the power supply and the input of the plasma vessel, and sensing the signal comprises sensing a flux induced by the inductor.
45. The method of claim 25, wherein the transition of the state of the plasma is one of a glow plasma state to an arc discharge plasma state, an arc plasma state to a glow plasma state, an arc discharge plasma state to an off state, a glow plasma state to an off state, an off state to an arc discharge plasma state, and an off state to an arc discharge plasma state.
46. The method of claim 25, wherein the resonant circuit comprises a capacitor and inductor, and shunting comprises causing a current to resonate in the resonant circuit to cause a reversal of a current applied to the input of the plasma vessel.
47. The method of claim 46, further comprising clamping the reversed current to limit the magnitude of the reversed voltage to less than a predetermined magnitude.
48. A method for igniting a plasma used for materials processing, the method comprising:
providing a resonant circuit in electrical communication with an output of a power supply and an input of a plasma vessel, the resonant circuit for storing and releasing energy;
shunting the resonant circuit to increase an energy stored in the resonant circuit; and
removing the shunt to direct the stored energy to the input of the plasma vessel to ignite the plasma in the plasma vessel.
49. The method of claim 48, wherein shunting comprises shunting the resonant circuit until the resonant circuit causes a current of the power supply to be greater than a steady-state current of an arc plasma, and removing the shunt comprises commuting the current to the input of the plasma vessel to ignite an arc plasma in the plasma vessel.
50. The method of claim 48, wherein shunting comprises shunting the resonant circuit for an effective portion of a cycle of the resonant circuit to increase an energy stored in the resonant circuit, and removing the shunt comprises directing the stored energy to the plasma vessel after the effective portion of the cycle to ignite a glow plasma in the plasma vessel.
51. The method of claim 50, wherein the effective portion of the cycle is a half cycle.
52. The method of claim 48, further comprising sensing a signal associated with a state of a plasma in the plasma vessel.
53. The method of claim 52, further comprising repeating shunting and removing the shunt if the signal indicates failure to ignite a desired plasma state.
54. The method of claim 53, wherein repeating comprises repeating until one of a glow plasma is ignited, a predetermined number of failures to ignite the glow plasma occur, and a predetermined period of failure expires.
55. The method of claim 53, wherein repeating comprises repeating until one of an arc discharge plasma is ignited, a predetermined number of failures to ignite the arc discharge plasma occur, and a predetermined period of failure expires.
56. The method of claim 52, further comprising shunting to extinguish a plasma in the plasma vessel if the signal indicates an undesired plasma state of the plasma in the plasma vessel.
57. The method of claim 56, further comprising shunting to extinguish a plasma in the plasma vessel if the signal indicates an undesired plasma state of the plasma in the plasma vessel.
58. The method of claim 48, wherein most of the stored energy is stored by an inductor of the resonant circuit.
59. The method of claim 58, wherein the inductor of the power supply or a portion of the inductor of the power supply is shared by the resonant circuit.
60. The method of claim 48, wherein most of the stored energy is stored by an inductor of the power supply.
61. The method of claim 60, wherein the inductor of the power supply has a larger inductance than an inductor of the resonant circuit.
62. The method of claim 25, wherein detecting the change that indicates the transition of the state of the plasma comprises detecting a change that anticipates the transition of the state of the plasma.
62. The method of claim 62, wherein shunting the resonant circuit after the change is detected comprises shunting prior to the transition occurring.
US10/642,509 2003-08-18 2003-08-18 Control of plasma transitions in sputter processing systems Expired - Lifetime US6967305B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US10/642,509 US6967305B2 (en) 2003-08-18 2003-08-18 Control of plasma transitions in sputter processing systems
TW093124101A TWI392754B (en) 2003-08-18 2004-08-11 Control of plasma transitions in sputter processing systems
TW101137036A TW201315294A (en) 2003-08-18 2004-08-11 Control of plasma transitions in sputter processing systems
PCT/US2004/026682 WO2005020273A2 (en) 2003-08-18 2004-08-18 Control of plasma transitions in sputter processing systems
KR1020067003286A KR101227721B1 (en) 2003-08-18 2004-08-18 Control of plasma transitions in sputter processing systems
JP2006523982A JP5517395B2 (en) 2003-08-18 2004-08-18 Apparatus and method for controlling plasma
CNB2004800237844A CN100550274C (en) 2003-08-18 2004-08-18 The control of the plasma conversion in sputter processing systems
EP04781387A EP1668664A2 (en) 2003-08-18 2004-08-18 Control of plasma transitions in sputter processing systems
US11/216,424 US8089026B2 (en) 2003-08-18 2005-08-30 Methods for control of plasma transitions in sputter processing systems using a resonant circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/642,509 US6967305B2 (en) 2003-08-18 2003-08-18 Control of plasma transitions in sputter processing systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/216,424 Continuation US8089026B2 (en) 2003-08-18 2005-08-30 Methods for control of plasma transitions in sputter processing systems using a resonant circuit

Publications (2)

Publication Number Publication Date
US20050040144A1 true US20050040144A1 (en) 2005-02-24
US6967305B2 US6967305B2 (en) 2005-11-22

Family

ID=34193661

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/642,509 Expired - Lifetime US6967305B2 (en) 2003-08-18 2003-08-18 Control of plasma transitions in sputter processing systems
US11/216,424 Expired - Lifetime US8089026B2 (en) 2003-08-18 2005-08-30 Methods for control of plasma transitions in sputter processing systems using a resonant circuit

Family Applications After (1)

Application Number Title Priority Date Filing Date
US11/216,424 Expired - Lifetime US8089026B2 (en) 2003-08-18 2005-08-30 Methods for control of plasma transitions in sputter processing systems using a resonant circuit

Country Status (7)

Country Link
US (2) US6967305B2 (en)
EP (1) EP1668664A2 (en)
JP (1) JP5517395B2 (en)
KR (1) KR101227721B1 (en)
CN (1) CN100550274C (en)
TW (2) TWI392754B (en)
WO (1) WO2005020273A2 (en)

Cited By (259)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060241879A1 (en) * 2005-04-22 2006-10-26 Advanced Energy Industries, Inc. Arc detection and handling in radio frequency power applications
US20070045111A1 (en) * 2004-12-24 2007-03-01 Alfred Trusch Plasma excitation system
US20080021664A1 (en) * 2002-04-12 2008-01-24 Schneider Automation Inc. Current-Based Method and Apparatus for Detecting and Classifying Arcs
US20080133154A1 (en) * 2002-04-12 2008-06-05 Schneider Electric System and Method for Detecting Non-Cathode Arcing in a Plasma Generation Apparatus
WO2008100318A1 (en) * 2006-03-17 2008-08-21 Schneider Automation Inc. Current-based method and apparatus for detecting and classifying arcs
US20080203070A1 (en) * 2007-02-22 2008-08-28 Milan Ilic Arc recovery without over-voltage for plasma chamber power supplies using a shunt switch
US20090207537A1 (en) * 2008-02-14 2009-08-20 Mks Instruments, Inc. Application Of Wideband Sampling For Arc Detection With A Probabilistic Model For Quantitatively Measuring Arc Events
US20090308734A1 (en) * 2008-06-17 2009-12-17 Schneider Automation Inc. Apparatus and Method for Wafer Level Arc Detection
US20100026186A1 (en) * 2008-07-31 2010-02-04 Advanced Energy Industries, Inc. Power supply ignition system and method
US20100140231A1 (en) * 2008-12-05 2010-06-10 Milan Ilic Arc recovery with over-voltage protection for plasma-chamber power supplies
US20100148769A1 (en) * 2008-12-11 2010-06-17 Choi Shin-Ii Non-contact plasma-monitoring apparatus and method and plasma processing apparatus
US20100187998A1 (en) * 2008-03-26 2010-07-29 Kyosan Electric Mfg. Co., Ltd. Abnormal discharge suppressing device for vacuum apparatus
US20100201370A1 (en) * 2008-02-14 2010-08-12 Mks Instruments, Inc. Arc Detection
US20100213903A1 (en) * 2007-05-12 2010-08-26 Huettinger Electronic Sp. Z O.O. Reducing stored electrical energy in a lead inductance
US20130146443A1 (en) * 2011-10-31 2013-06-13 Hauzer Techno Coating Bv Apparatus and method for depositing hydrogen-free ta-c layers on workpieces and workpiece
US8542471B2 (en) 2009-02-17 2013-09-24 Solvix Gmbh Power supply device for plasma processing
US8552665B2 (en) 2010-08-20 2013-10-08 Advanced Energy Industries, Inc. Proactive arc management of a plasma load
CN103474321A (en) * 2012-02-28 2013-12-25 株式会社新动力等离子体 Method and apparatus for detecting arc in plasma chamber
CN103747606A (en) * 2013-12-27 2014-04-23 华中科技大学 Circuit generated low temperature plasma
US9279722B2 (en) 2012-04-30 2016-03-08 Agilent Technologies, Inc. Optical emission system including dichroic beam combiner
EP2206138B1 (en) * 2007-11-01 2017-03-22 Oerlikon Trading AG, Trübbach Method for manufacturing a treated surface and vacuum plasma sources
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US20210317989A1 (en) * 2020-04-13 2021-10-14 Delta Electronics, Inc. Ignition method of plasma chamber
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
CN115121912A (en) * 2022-06-27 2022-09-30 湘潭大学 Excitation current calibration method for multi-pole magnetic control GTAW arc sensor
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
WO2023194551A1 (en) * 2022-04-08 2023-10-12 TRUMPF Hüttinger GmbH + Co. KG Plasma ignition detection device for connection to an impedance matching circuit for a plasma generating system
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11959168B2 (en) 2021-04-26 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004015090A1 (en) 2004-03-25 2005-11-03 Hüttinger Elektronik Gmbh + Co. Kg Arc discharge detection device
US7081598B2 (en) * 2004-08-24 2006-07-25 Advanced Energy Industries, Inc. DC-DC converter with over-voltage protection circuit
ATE543198T1 (en) * 2004-12-24 2012-02-15 Huettinger Elektronik Gmbh PLASMA EXCITATION SYSTEM
JP4597886B2 (en) * 2005-02-24 2010-12-15 イーエヌ テクノロジー インコーポレイテッド Arc energy control circuit for plasma power supply
EP1720195B1 (en) 2005-05-06 2012-12-12 HÜTTINGER Elektronik GmbH + Co. KG Arc suppression system
ATE421791T1 (en) * 2005-12-22 2009-02-15 Huettinger Elektronik Gmbh METHOD AND DEVICE FOR ARC DETECTION IN A PLASMA PROCESS
US7538562B2 (en) * 2006-03-20 2009-05-26 Inficon, Inc. High performance miniature RF sensor for use in microelectronics plasma processing tools
JP4842752B2 (en) * 2006-09-28 2011-12-21 株式会社ダイヘン Arc detection device for plasma processing system, program for realizing arc detection device, and storage medium
ATE448562T1 (en) * 2006-11-23 2009-11-15 Huettinger Elektronik Gmbh METHOD FOR DETECTING AN ARC DISCHARGE IN A PLASMA PROCESS AND ARC DISCHARGE DETECTION DEVICE
US7795817B2 (en) * 2006-11-24 2010-09-14 Huettinger Elektronik Gmbh + Co. Kg Controlled plasma power supply
EP1928009B1 (en) * 2006-11-28 2013-04-10 HÜTTINGER Elektronik GmbH + Co. KG Arc detection system, plasma power supply and arc detection method
EP1933362B1 (en) * 2006-12-14 2011-04-13 HÜTTINGER Elektronik GmbH + Co. KG Arc detection system, plasma power supply and arc detection method
ATE493749T1 (en) 2007-03-08 2011-01-15 Huettinger Elektronik Gmbh METHOD AND DEVICE FOR SUPPRESSING ARC DISCHARGES DURING OPERATING A PLASMA PROCESS
ATE547804T1 (en) * 2007-12-24 2012-03-15 Huettinger Electronic Sp Z O O CURRENT CHANGE LIMITING DEVICE
US9613784B2 (en) * 2008-07-17 2017-04-04 Mks Instruments, Inc. Sputtering system and method including an arc detection
US9767988B2 (en) 2010-08-29 2017-09-19 Advanced Energy Industries, Inc. Method of controlling the switched mode ion energy distribution system
US11615941B2 (en) 2009-05-01 2023-03-28 Advanced Energy Industries, Inc. System, method, and apparatus for controlling ion energy distribution in plasma processing systems
US9287086B2 (en) * 2010-04-26 2016-03-15 Advanced Energy Industries, Inc. System, method and apparatus for controlling ion energy distribution
US20120000767A1 (en) * 2010-06-30 2012-01-05 Primestar Solar, Inc. Methods and apparatus of arc prevention during rf sputtering of a thin film on a substrate
US20120000765A1 (en) * 2010-06-30 2012-01-05 Primestar Solar, Inc. Methods of arc detection and suppression during rf sputtering of a thin film on a substrate
DE102010031568B4 (en) 2010-07-20 2014-12-11 TRUMPF Hüttinger GmbH + Co. KG Arclöschanordnung and method for erasing arcs
CN103513740A (en) * 2012-06-28 2014-01-15 鸿富锦精密工业(深圳)有限公司 Hard disk power supply circuit and hard disk back plate
US9685297B2 (en) 2012-08-28 2017-06-20 Advanced Energy Industries, Inc. Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system
US8742668B2 (en) * 2012-09-05 2014-06-03 Asm Ip Holdings B.V. Method for stabilizing plasma ignition
US9697991B2 (en) 2014-01-10 2017-07-04 Reno Technologies, Inc. RF impedance matching network
US9844127B2 (en) 2014-01-10 2017-12-12 Reno Technologies, Inc. High voltage switching circuit
US9496122B1 (en) 2014-01-10 2016-11-15 Reno Technologies, Inc. Electronically variable capacitor and RF matching network incorporating same
US10431428B2 (en) 2014-01-10 2019-10-01 Reno Technologies, Inc. System for providing variable capacitance
US9196459B2 (en) 2014-01-10 2015-11-24 Reno Technologies, Inc. RF impedance matching network
US10455729B2 (en) 2014-01-10 2019-10-22 Reno Technologies, Inc. Enclosure cooling system
US9865432B1 (en) 2014-01-10 2018-01-09 Reno Technologies, Inc. RF impedance matching network
US9755641B1 (en) 2014-01-10 2017-09-05 Reno Technologies, Inc. High speed high voltage switching circuit
US9525412B2 (en) 2015-02-18 2016-12-20 Reno Technologies, Inc. Switching circuit
US11017983B2 (en) 2015-02-18 2021-05-25 Reno Technologies, Inc. RF power amplifier
US9306533B1 (en) 2015-02-20 2016-04-05 Reno Technologies, Inc. RF impedance matching network
US9729122B2 (en) 2015-02-18 2017-08-08 Reno Technologies, Inc. Switching circuit
US10340879B2 (en) 2015-02-18 2019-07-02 Reno Technologies, Inc. Switching circuit
US11342160B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Filter for impedance matching
US11342161B2 (en) 2015-06-29 2022-05-24 Reno Technologies, Inc. Switching circuit with voltage bias
US11150283B2 (en) 2015-06-29 2021-10-19 Reno Technologies, Inc. Amplitude and phase detection circuit
US10984986B2 (en) 2015-06-29 2021-04-20 Reno Technologies, Inc. Impedance matching network and method
US10692699B2 (en) 2015-06-29 2020-06-23 Reno Technologies, Inc. Impedance matching with restricted capacitor switching
US11335540B2 (en) 2015-06-29 2022-05-17 Reno Technologies, Inc. Impedance matching network and method
US11081316B2 (en) 2015-06-29 2021-08-03 Reno Technologies, Inc. Impedance matching network and method
JP6582292B2 (en) * 2015-07-28 2019-10-02 東京電子交易株式会社 Discharge analysis method and discharge analysis apparatus
WO2017058764A1 (en) 2015-10-01 2017-04-06 Buchanan Walter Riley Plasma reactor for liquid and gas
US10882021B2 (en) 2015-10-01 2021-01-05 Ion Inject Technology Llc Plasma reactor for liquid and gas and method of use
US11452982B2 (en) 2015-10-01 2022-09-27 Milton Roy, Llc Reactor for liquid and gas and method of use
US10187968B2 (en) * 2015-10-08 2019-01-22 Ion Inject Technology Llc Quasi-resonant plasma voltage generator
US10046300B2 (en) 2015-12-09 2018-08-14 Ion Inject Technology Llc Membrane plasma reactor
US10566177B2 (en) * 2016-08-15 2020-02-18 Applied Materials, Inc. Pulse shape controller for sputter sources
US11398370B2 (en) 2017-07-10 2022-07-26 Reno Technologies, Inc. Semiconductor manufacturing using artificial intelligence
US11315758B2 (en) 2017-07-10 2022-04-26 Reno Technologies, Inc. Impedance matching using electronically variable capacitance and frequency considerations
US10714314B1 (en) 2017-07-10 2020-07-14 Reno Technologies, Inc. Impedance matching network and method
US11521833B2 (en) 2017-07-10 2022-12-06 Reno Technologies, Inc. Combined RF generator and RF solid-state matching network
US11393659B2 (en) 2017-07-10 2022-07-19 Reno Technologies, Inc. Impedance matching network and method
US10483090B2 (en) 2017-07-10 2019-11-19 Reno Technologies, Inc. Restricted capacitor switching
US10727029B2 (en) 2017-07-10 2020-07-28 Reno Technologies, Inc Impedance matching using independent capacitance and frequency control
US11114280B2 (en) 2017-07-10 2021-09-07 Reno Technologies, Inc. Impedance matching with multi-level power setpoint
US11289307B2 (en) 2017-07-10 2022-03-29 Reno Technologies, Inc. Impedance matching network and method
US11476091B2 (en) 2017-07-10 2022-10-18 Reno Technologies, Inc. Impedance matching network for diagnosing plasma chamber
US11101110B2 (en) 2017-07-10 2021-08-24 Reno Technologies, Inc. Impedance matching network and method
TWI804836B (en) 2017-11-17 2023-06-11 新加坡商Aes 全球公司 Method and system for plasma processing and relevant non-transitory computer-readable medium
WO2019099937A1 (en) 2017-11-17 2019-05-23 Advanced Energy Industries, Inc. Improved application of modulating supplies in a plasma processing system
WO2019099925A1 (en) 2017-11-17 2019-05-23 Advanced Energy Industries, Inc. Spatial and temporal control of ion bias voltage for plasma processing
US11476145B2 (en) * 2018-11-20 2022-10-18 Applied Materials, Inc. Automatic ESC bias compensation when using pulsed DC bias
US11538662B2 (en) 2019-05-21 2022-12-27 Reno Technologies, Inc. Impedance matching network and method with reduced memory requirements
TW202109611A (en) 2019-07-12 2021-03-01 新加坡商Aes全球公司 Bias supply with a single controlled switch
KR102165083B1 (en) * 2020-01-09 2020-11-04 김석술 Deburring Device for Copper Bus Bar
JP7307695B2 (en) 2020-03-26 2023-07-12 株式会社ダイヘン Method and plasma source for detecting the state of a plasma source
JP7307697B2 (en) 2020-03-26 2023-07-12 株式会社ダイヘン Method and plasma source for detecting the state of a plasma source
JP7307696B2 (en) 2020-03-26 2023-07-12 株式会社ダイヘン Method and plasma source for detecting the state of a plasma source
US11276601B2 (en) 2020-04-10 2022-03-15 Applied Materials, Inc. Apparatus and methods for manipulating power at an edge ring in a plasma processing device
JP2022117669A (en) * 2021-02-01 2022-08-12 東京エレクトロン株式会社 Filter circuit and plasma processing device
US11670487B1 (en) 2022-01-26 2023-06-06 Advanced Energy Industries, Inc. Bias supply control and data processing
US11942309B2 (en) 2022-01-26 2024-03-26 Advanced Energy Industries, Inc. Bias supply with resonant switching

Citations (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122816A (en) * 1976-04-01 1978-10-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plasma igniter for internal combustion engine
US4284490A (en) * 1978-09-28 1981-08-18 Coulter Systems Corporation R.F. Sputtering apparatus including multi-network power supply
US4557819A (en) * 1984-07-20 1985-12-10 Varian Associates, Inc. System for igniting and controlling a wafer processing plasma
US4902394A (en) * 1987-01-23 1990-02-20 Hitachi, Ltd. Sputtering method and apparatus
US4996646A (en) * 1988-03-31 1991-02-26 Square D Company Microprocessor-controlled circuit breaker and system
US5166887A (en) * 1988-03-31 1992-11-24 Square D Company Microcomputer-controlled circuit breaker system
US5170360A (en) * 1988-03-31 1992-12-08 Square D Company Computer-based metering arrangement including a circuit interrupter
US5505835A (en) * 1993-02-22 1996-04-09 Matsushita Electric Industrial Co., Ltd. Method for fabricating optical information storage medium
US5554809A (en) * 1993-10-08 1996-09-10 Hitachi, Ltd. Process detection apparatus
US5584974A (en) * 1995-10-20 1996-12-17 Eni Arc control and switching element protection for pulsed dc cathode sputtering power supply
US5616224A (en) * 1995-05-09 1997-04-01 Deposition Sciences, Inc. Apparatus for reducing the intensity and frequency of arcs which occur during a sputtering process
US5630952A (en) * 1994-12-27 1997-05-20 Sansha Electric Manufacturing Company, Limited Plasma-arc power supply apparatus
US5645698A (en) * 1992-09-30 1997-07-08 Advanced Energy Industries, Inc. Topographically precise thin film coating system
US5651865A (en) * 1994-06-17 1997-07-29 Eni Preferential sputtering of insulators from conductive targets
US5664066A (en) * 1992-11-09 1997-09-02 The United States Of America As Represented By The United States Department Of Energy Intelligent system for automatic feature detection and selection or identification
US5682067A (en) * 1996-06-21 1997-10-28 Sierra Applied Sciences, Inc. Circuit for reversing polarity on electrodes
US5711843A (en) * 1995-02-21 1998-01-27 Orincon Technologies, Inc. System for indirectly monitoring and controlling a process with particular application to plasma processes
US5718813A (en) * 1992-12-30 1998-02-17 Advanced Energy Industries, Inc. Enhanced reactive DC sputtering system
US5729119A (en) * 1996-06-28 1998-03-17 Siemens Energy & Automation, Inc. Dual mode power supply and under voltage trip device
US5759424A (en) * 1994-03-24 1998-06-02 Hitachi, Ltd. Plasma processing apparatus and processing method
US5770023A (en) * 1996-02-12 1998-06-23 Eni A Division Of Astec America, Inc. Etch process employing asymmetric bipolar pulsed DC
US5796214A (en) * 1996-09-06 1998-08-18 General Elecric Company Ballast circuit for gas discharge lamp
US5807470A (en) * 1995-10-06 1998-09-15 Balzers Und Leybold Deutschland Holding Ag Apparatus for coating substrates in a vacuum
US5831851A (en) * 1995-03-21 1998-11-03 Seagate Technology, Inc. Apparatus and method for controlling high throughput sputtering
US5971591A (en) * 1997-10-20 1999-10-26 Eni Technologies, Inc. Process detection system for plasma process
US6020794A (en) * 1998-02-09 2000-02-01 Eni Technologies, Inc. Ratiometric autotuning algorithm for RF plasma generator
US6291999B1 (en) * 1997-09-30 2001-09-18 Daihen Corp. Plasma monitoring apparatus
US6332961B1 (en) * 1997-09-17 2001-12-25 Tokyo Electron Limited Device and method for detecting and preventing arcing in RF plasma systems
US20020131555A1 (en) * 2001-03-15 2002-09-19 Ray Fleming Apparatus for producing vacuum arc discharges
US6483678B1 (en) * 1998-03-18 2002-11-19 Shindengen Electric Manufacturing Co., Ltd. Arc-extinguishing circuit and arc-extinguishing method
US6521099B1 (en) * 1992-12-30 2003-02-18 Advanced Energy Industries, Inc. Periodically clearing thin film plasma processing system
US6524455B1 (en) * 2000-10-04 2003-02-25 Eni Technology, Inc. Sputtering apparatus using passive arc control system and method
US20030226827A1 (en) * 2002-06-07 2003-12-11 City University Of Hong Kong Method and apparatus for automatically re-igniting vacuum arc plasma source

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5241152A (en) * 1990-03-23 1993-08-31 Anderson Glen L Circuit for detecting and diverting an electrical arc in a glow discharge apparatus
DE4127504A1 (en) * 1991-08-20 1993-02-25 Leybold Ag DEVICE FOR SUPPRESSING ARCES
JP3429801B2 (en) 1992-03-02 2003-07-28 新電元工業株式会社 Power supply for sputtering equipment
JPH0732077B2 (en) 1992-10-07 1995-04-10 株式会社京三製作所 High frequency generator
JP2733454B2 (en) * 1995-02-16 1998-03-30 株式会社京三製作所 Abnormal discharge suppression device for film forming equipment
WO1996031899A1 (en) * 1995-04-07 1996-10-10 Advanced Energy Industries, Inc. Adjustable energy quantum thin film plasma processing system
JP3660018B2 (en) * 1995-05-17 2005-06-15 株式会社アルバック Abnormal discharge extinguishing device for vacuum equipment
US5917286A (en) * 1996-05-08 1999-06-29 Advanced Energy Industries, Inc. Pulsed direct current power supply configurations for generating plasmas
DE19651811B4 (en) * 1996-12-13 2006-08-31 Unaxis Deutschland Holding Gmbh Device for covering a substrate with thin layers
JP2835322B2 (en) * 1997-02-20 1998-12-14 芝浦メカトロニクス株式会社 Power supply device for sputtering and sputtering device using the same
US6416638B1 (en) * 1997-02-20 2002-07-09 Shibaura Mechatronics Corporation Power supply unit for sputtering device
JP2000031072A (en) * 1998-07-10 2000-01-28 Seiko Epson Corp Plasma monitoring method and semiconductor fabrication system
DE19949394A1 (en) * 1999-10-13 2001-04-19 Balzers Process Systems Gmbh Electrical supply unit and method for reducing sparking during sputtering
US6332631B1 (en) 2000-01-25 2001-12-25 Impaxx, Inc. Peel back and re-sealable extended text label with detachment segment
JP3565774B2 (en) * 2000-09-12 2004-09-15 株式会社日立製作所 Plasma processing apparatus and processing method
JP2002176034A (en) * 2000-12-08 2002-06-21 Yoshio Fujino Automatic device for preventing abnormal discharge in plasma etching
DE10158316B4 (en) * 2001-11-28 2008-08-21 Siemens Ag Determination method for a switching state of a contact and corresponding evaluation circuit
US6736944B2 (en) * 2002-04-12 2004-05-18 Schneider Automation Inc. Apparatus and method for arc detection
WO2004001094A1 (en) * 2002-06-19 2003-12-31 Tosoh Smd, Inc. Sputter target monitoring system
JP2005531927A (en) * 2002-06-28 2005-10-20 東京エレクトロン株式会社 Method and system for predicting processing performance using material processing tools and sensor data
US6794601B2 (en) * 2002-09-05 2004-09-21 Thermal Dynamics Corporation Plasma arc torch system with pilot re-attach circuit and method
US6808607B2 (en) * 2002-09-25 2004-10-26 Advanced Energy Industries, Inc. High peak power plasma pulsed supply with arc handling
DE10260614B4 (en) * 2002-12-23 2008-01-31 Advanced Micro Devices, Inc., Sunnyvale Plasma parameter control using learning data
US6943317B1 (en) * 2004-07-02 2005-09-13 Advanced Energy Industries, Inc. Apparatus and method for fast arc extinction with early shunting of arc current in plasma
GB2477506B (en) 2010-02-03 2013-10-30 Dna Electronics Ltd Integrated electrochemical and optical sensor with inductor

Patent Citations (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4122816A (en) * 1976-04-01 1978-10-31 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Plasma igniter for internal combustion engine
US4284490A (en) * 1978-09-28 1981-08-18 Coulter Systems Corporation R.F. Sputtering apparatus including multi-network power supply
US4557819A (en) * 1984-07-20 1985-12-10 Varian Associates, Inc. System for igniting and controlling a wafer processing plasma
US4902394A (en) * 1987-01-23 1990-02-20 Hitachi, Ltd. Sputtering method and apparatus
US5170360A (en) * 1988-03-31 1992-12-08 Square D Company Computer-based metering arrangement including a circuit interrupter
US5166887A (en) * 1988-03-31 1992-11-24 Square D Company Microcomputer-controlled circuit breaker system
US4996646A (en) * 1988-03-31 1991-02-26 Square D Company Microprocessor-controlled circuit breaker and system
US5645698A (en) * 1992-09-30 1997-07-08 Advanced Energy Industries, Inc. Topographically precise thin film coating system
US5664066A (en) * 1992-11-09 1997-09-02 The United States Of America As Represented By The United States Department Of Energy Intelligent system for automatic feature detection and selection or identification
US5718813A (en) * 1992-12-30 1998-02-17 Advanced Energy Industries, Inc. Enhanced reactive DC sputtering system
US6521099B1 (en) * 1992-12-30 2003-02-18 Advanced Energy Industries, Inc. Periodically clearing thin film plasma processing system
US5505835A (en) * 1993-02-22 1996-04-09 Matsushita Electric Industrial Co., Ltd. Method for fabricating optical information storage medium
US6001224A (en) * 1993-04-02 1999-12-14 Advanced Energy Industries, Inc. Enhanced reactive DC sputtering system
US5554809A (en) * 1993-10-08 1996-09-10 Hitachi, Ltd. Process detection apparatus
US5759424A (en) * 1994-03-24 1998-06-02 Hitachi, Ltd. Plasma processing apparatus and processing method
US5651865A (en) * 1994-06-17 1997-07-29 Eni Preferential sputtering of insulators from conductive targets
US5810982A (en) * 1994-06-17 1998-09-22 Eni Technologies, Inc. Preferential sputtering of insulators from conductive targets
US5630952A (en) * 1994-12-27 1997-05-20 Sansha Electric Manufacturing Company, Limited Plasma-arc power supply apparatus
US5711843A (en) * 1995-02-21 1998-01-27 Orincon Technologies, Inc. System for indirectly monitoring and controlling a process with particular application to plasma processes
US5831851A (en) * 1995-03-21 1998-11-03 Seagate Technology, Inc. Apparatus and method for controlling high throughput sputtering
US5616224A (en) * 1995-05-09 1997-04-01 Deposition Sciences, Inc. Apparatus for reducing the intensity and frequency of arcs which occur during a sputtering process
US5807470A (en) * 1995-10-06 1998-09-15 Balzers Und Leybold Deutschland Holding Ag Apparatus for coating substrates in a vacuum
US5584974A (en) * 1995-10-20 1996-12-17 Eni Arc control and switching element protection for pulsed dc cathode sputtering power supply
US5770023A (en) * 1996-02-12 1998-06-23 Eni A Division Of Astec America, Inc. Etch process employing asymmetric bipolar pulsed DC
US5682067A (en) * 1996-06-21 1997-10-28 Sierra Applied Sciences, Inc. Circuit for reversing polarity on electrodes
US5729119A (en) * 1996-06-28 1998-03-17 Siemens Energy & Automation, Inc. Dual mode power supply and under voltage trip device
US5796214A (en) * 1996-09-06 1998-08-18 General Elecric Company Ballast circuit for gas discharge lamp
US6332961B1 (en) * 1997-09-17 2001-12-25 Tokyo Electron Limited Device and method for detecting and preventing arcing in RF plasma systems
US6291999B1 (en) * 1997-09-30 2001-09-18 Daihen Corp. Plasma monitoring apparatus
US5971591A (en) * 1997-10-20 1999-10-26 Eni Technologies, Inc. Process detection system for plasma process
US6020794A (en) * 1998-02-09 2000-02-01 Eni Technologies, Inc. Ratiometric autotuning algorithm for RF plasma generator
US6483678B1 (en) * 1998-03-18 2002-11-19 Shindengen Electric Manufacturing Co., Ltd. Arc-extinguishing circuit and arc-extinguishing method
US6524455B1 (en) * 2000-10-04 2003-02-25 Eni Technology, Inc. Sputtering apparatus using passive arc control system and method
US20030146083A1 (en) * 2000-10-04 2003-08-07 Sellers Jeff C. Passive bipolar arc control system and method
US20020131555A1 (en) * 2001-03-15 2002-09-19 Ray Fleming Apparatus for producing vacuum arc discharges
US20030226827A1 (en) * 2002-06-07 2003-12-11 City University Of Hong Kong Method and apparatus for automatically re-igniting vacuum arc plasma source

Cited By (328)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080021664A1 (en) * 2002-04-12 2008-01-24 Schneider Automation Inc. Current-Based Method and Apparatus for Detecting and Classifying Arcs
US20080133154A1 (en) * 2002-04-12 2008-06-05 Schneider Electric System and Method for Detecting Non-Cathode Arcing in a Plasma Generation Apparatus
US7981257B2 (en) 2002-04-12 2011-07-19 Schneider Electric USA, Inc. Current-based method and apparatus for detecting and classifying arcs
US7988833B2 (en) 2002-04-12 2011-08-02 Schneider Electric USA, Inc. System and method for detecting non-cathode arcing in a plasma generation apparatus
US20070045111A1 (en) * 2004-12-24 2007-03-01 Alfred Trusch Plasma excitation system
US20060241879A1 (en) * 2005-04-22 2006-10-26 Advanced Energy Industries, Inc. Arc detection and handling in radio frequency power applications
US7305311B2 (en) 2005-04-22 2007-12-04 Advanced Energy Industries, Inc. Arc detection and handling in radio frequency power applications
WO2008100318A1 (en) * 2006-03-17 2008-08-21 Schneider Automation Inc. Current-based method and apparatus for detecting and classifying arcs
US20080203070A1 (en) * 2007-02-22 2008-08-28 Milan Ilic Arc recovery without over-voltage for plasma chamber power supplies using a shunt switch
US8217299B2 (en) * 2007-02-22 2012-07-10 Advanced Energy Industries, Inc. Arc recovery without over-voltage for plasma chamber power supplies using a shunt switch
US8786263B2 (en) 2007-05-12 2014-07-22 Trumpf Huettinger Sp. Z O. O. Reducing stored electrical energy in a lead inductance
US9818579B2 (en) 2007-05-12 2017-11-14 Trumpf Huettinger Sp. Z O. O. Reducing stored electrical energy in a lead inductance
US20100213903A1 (en) * 2007-05-12 2010-08-26 Huettinger Electronic Sp. Z O.O. Reducing stored electrical energy in a lead inductance
EP2206138B1 (en) * 2007-11-01 2017-03-22 Oerlikon Trading AG, Trübbach Method for manufacturing a treated surface and vacuum plasma sources
US8289029B2 (en) 2008-02-14 2012-10-16 Mks Instruments, Inc. Application of wideband sampling for arc detection with a probabilistic model for quantitatively measuring arc events
US20100201370A1 (en) * 2008-02-14 2010-08-12 Mks Instruments, Inc. Arc Detection
US8581597B2 (en) 2008-02-14 2013-11-12 Msk Instruments, Inc. Application of wideband sampling for arc detection with a probabilistic model for quantitatively measuring arc events
GB2493122B (en) * 2008-02-14 2013-03-20 Mks Instr Inc Application of wideband sampling for arc detection with a probabilistic model for quantitatively measuring arc events
GB2493122A (en) * 2008-02-14 2013-01-23 Mks Instr Inc Application of wideband sampling for arc detection with a probabilistic model for quantitatively measuring arc events
GB2468430B (en) * 2008-02-14 2012-12-26 Mks Instr Inc Application of wideband sampling for arc detection with a probabilistic model for quantitatively measuring arc events
US20090207537A1 (en) * 2008-02-14 2009-08-20 Mks Instruments, Inc. Application Of Wideband Sampling For Arc Detection With A Probabilistic Model For Quantitatively Measuring Arc Events
US8334700B2 (en) 2008-02-14 2012-12-18 Mks Instruments, Inc. Arc detection
US8169162B2 (en) 2008-03-26 2012-05-01 Kyosan Electric Mfg. Co., Ltd. Abnormal discharge suppressing device for vacuum apparatus
US20100187998A1 (en) * 2008-03-26 2010-07-29 Kyosan Electric Mfg. Co., Ltd. Abnormal discharge suppressing device for vacuum apparatus
US20090308734A1 (en) * 2008-06-17 2009-12-17 Schneider Automation Inc. Apparatus and Method for Wafer Level Arc Detection
US8044594B2 (en) 2008-07-31 2011-10-25 Advanced Energy Industries, Inc. Power supply ignition system and method
US20100026186A1 (en) * 2008-07-31 2010-02-04 Advanced Energy Industries, Inc. Power supply ignition system and method
US8395078B2 (en) 2008-12-05 2013-03-12 Advanced Energy Industries, Inc Arc recovery with over-voltage protection for plasma-chamber power supplies
US8884180B2 (en) 2008-12-05 2014-11-11 Advanced Energy Industries, Inc. Over-voltage protection during arc recovery for plasma-chamber power supplies
US20100140231A1 (en) * 2008-12-05 2010-06-10 Milan Ilic Arc recovery with over-voltage protection for plasma-chamber power supplies
US20100148769A1 (en) * 2008-12-11 2010-06-17 Choi Shin-Ii Non-contact plasma-monitoring apparatus and method and plasma processing apparatus
US8542471B2 (en) 2009-02-17 2013-09-24 Solvix Gmbh Power supply device for plasma processing
US8837100B2 (en) 2009-02-17 2014-09-16 Solvix Gmbh Power supply device for plasma processing
US8854781B2 (en) 2009-02-17 2014-10-07 Solvix Gmbh Power supply device for plasma processing
US9214801B2 (en) 2009-02-17 2015-12-15 Solvix Gmbh Power supply device for plasma processing
US9997903B2 (en) 2009-02-17 2018-06-12 Solvix Gmbh Power supply device for plasma processing
US10844486B2 (en) 2009-04-06 2020-11-24 Asm Ip Holding B.V. Semiconductor processing reactor and components thereof
US10804098B2 (en) 2009-08-14 2020-10-13 Asm Ip Holding B.V. Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species
US8552665B2 (en) 2010-08-20 2013-10-08 Advanced Energy Industries, Inc. Proactive arc management of a plasma load
US11725277B2 (en) 2011-07-20 2023-08-15 Asm Ip Holding B.V. Pressure transmitter for a semiconductor processing environment
US10832903B2 (en) 2011-10-28 2020-11-10 Asm Ip Holding B.V. Process feed management for semiconductor substrate processing
US20130146443A1 (en) * 2011-10-31 2013-06-13 Hauzer Techno Coating Bv Apparatus and method for depositing hydrogen-free ta-c layers on workpieces and workpiece
CN103474321A (en) * 2012-02-28 2013-12-25 株式会社新动力等离子体 Method and apparatus for detecting arc in plasma chamber
US9752933B2 (en) 2012-04-30 2017-09-05 Agilent Technologies, Inc. Optical emission system including dichroic beam combiner
US10401221B2 (en) 2012-04-30 2019-09-03 Agilent Technologies, Inc. Optical emission system including dichroic beam combiner
US9279722B2 (en) 2012-04-30 2016-03-08 Agilent Technologies, Inc. Optical emission system including dichroic beam combiner
US11501956B2 (en) 2012-10-12 2022-11-15 Asm Ip Holding B.V. Semiconductor reaction chamber showerhead
CN103747606A (en) * 2013-12-27 2014-04-23 华中科技大学 Circuit generated low temperature plasma
US11015245B2 (en) 2014-03-19 2021-05-25 Asm Ip Holding B.V. Gas-phase reactor and system having exhaust plenum and components thereof
US10858737B2 (en) 2014-07-28 2020-12-08 Asm Ip Holding B.V. Showerhead assembly and components thereof
US10787741B2 (en) 2014-08-21 2020-09-29 Asm Ip Holding B.V. Method and system for in situ formation of gas-phase compounds
US10941490B2 (en) 2014-10-07 2021-03-09 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11795545B2 (en) 2014-10-07 2023-10-24 Asm Ip Holding B.V. Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same
US11742189B2 (en) 2015-03-12 2023-08-29 Asm Ip Holding B.V. Multi-zone reactor, system including the reactor, and method of using the same
US11242598B2 (en) 2015-06-26 2022-02-08 Asm Ip Holding B.V. Structures including metal carbide material, devices including the structures, and methods of forming same
US11233133B2 (en) 2015-10-21 2022-01-25 Asm Ip Holding B.V. NbMC layers
US11956977B2 (en) 2015-12-29 2024-04-09 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11139308B2 (en) 2015-12-29 2021-10-05 Asm Ip Holding B.V. Atomic layer deposition of III-V compounds to form V-NAND devices
US11676812B2 (en) 2016-02-19 2023-06-13 Asm Ip Holding B.V. Method for forming silicon nitride film selectively on top/bottom portions
US10865475B2 (en) 2016-04-21 2020-12-15 Asm Ip Holding B.V. Deposition of metal borides and silicides
US10851456B2 (en) 2016-04-21 2020-12-01 Asm Ip Holding B.V. Deposition of metal borides
US11101370B2 (en) 2016-05-02 2021-08-24 Asm Ip Holding B.V. Method of forming a germanium oxynitride film
US11453943B2 (en) 2016-05-25 2022-09-27 Asm Ip Holding B.V. Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor
US11094582B2 (en) 2016-07-08 2021-08-17 Asm Ip Holding B.V. Selective deposition method to form air gaps
US11649546B2 (en) 2016-07-08 2023-05-16 Asm Ip Holding B.V. Organic reactants for atomic layer deposition
US11749562B2 (en) 2016-07-08 2023-09-05 Asm Ip Holding B.V. Selective deposition method to form air gaps
US10714385B2 (en) 2016-07-19 2020-07-14 Asm Ip Holding B.V. Selective deposition of tungsten
US11610775B2 (en) 2016-07-28 2023-03-21 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11205585B2 (en) 2016-07-28 2021-12-21 Asm Ip Holding B.V. Substrate processing apparatus and method of operating the same
US10741385B2 (en) 2016-07-28 2020-08-11 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11694892B2 (en) 2016-07-28 2023-07-04 Asm Ip Holding B.V. Method and apparatus for filling a gap
US11107676B2 (en) 2016-07-28 2021-08-31 Asm Ip Holding B.V. Method and apparatus for filling a gap
US10943771B2 (en) 2016-10-26 2021-03-09 Asm Ip Holding B.V. Methods for thermally calibrating reaction chambers
US11532757B2 (en) 2016-10-27 2022-12-20 Asm Ip Holding B.V. Deposition of charge trapping layers
US11810788B2 (en) 2016-11-01 2023-11-07 Asm Ip Holding B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10714350B2 (en) 2016-11-01 2020-07-14 ASM IP Holdings, B.V. Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10720331B2 (en) 2016-11-01 2020-07-21 ASM IP Holdings, B.V. Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures
US10934619B2 (en) 2016-11-15 2021-03-02 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11396702B2 (en) 2016-11-15 2022-07-26 Asm Ip Holding B.V. Gas supply unit and substrate processing apparatus including the gas supply unit
US11222772B2 (en) 2016-12-14 2022-01-11 Asm Ip Holding B.V. Substrate processing apparatus
US11447861B2 (en) 2016-12-15 2022-09-20 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11581186B2 (en) 2016-12-15 2023-02-14 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus
US11851755B2 (en) 2016-12-15 2023-12-26 Asm Ip Holding B.V. Sequential infiltration synthesis apparatus and a method of forming a patterned structure
US11001925B2 (en) 2016-12-19 2021-05-11 Asm Ip Holding B.V. Substrate processing apparatus
US10784102B2 (en) 2016-12-22 2020-09-22 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11251035B2 (en) 2016-12-22 2022-02-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US10867788B2 (en) 2016-12-28 2020-12-15 Asm Ip Holding B.V. Method of forming a structure on a substrate
US11390950B2 (en) 2017-01-10 2022-07-19 Asm Ip Holding B.V. Reactor system and method to reduce residue buildup during a film deposition process
US11410851B2 (en) 2017-02-15 2022-08-09 Asm Ip Holding B.V. Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures
US11658030B2 (en) 2017-03-29 2023-05-23 Asm Ip Holding B.V. Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures
US10714335B2 (en) 2017-04-25 2020-07-14 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10950432B2 (en) 2017-04-25 2021-03-16 Asm Ip Holding B.V. Method of depositing thin film and method of manufacturing semiconductor device
US10892156B2 (en) 2017-05-08 2021-01-12 Asm Ip Holding B.V. Methods for forming a silicon nitride film on a substrate and related semiconductor device structures
US11848200B2 (en) 2017-05-08 2023-12-19 Asm Ip Holding B.V. Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures
US10886123B2 (en) 2017-06-02 2021-01-05 Asm Ip Holding B.V. Methods for forming low temperature semiconductor layers and related semiconductor device structures
US11306395B2 (en) 2017-06-28 2022-04-19 Asm Ip Holding B.V. Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus
US10685834B2 (en) 2017-07-05 2020-06-16 Asm Ip Holdings B.V. Methods for forming a silicon germanium tin layer and related semiconductor device structures
US11164955B2 (en) 2017-07-18 2021-11-02 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11695054B2 (en) 2017-07-18 2023-07-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US10734497B2 (en) 2017-07-18 2020-08-04 Asm Ip Holding B.V. Methods for forming a semiconductor device structure and related semiconductor device structures
US11018002B2 (en) 2017-07-19 2021-05-25 Asm Ip Holding B.V. Method for selectively depositing a Group IV semiconductor and related semiconductor device structures
US11374112B2 (en) 2017-07-19 2022-06-28 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11004977B2 (en) 2017-07-19 2021-05-11 Asm Ip Holding B.V. Method for depositing a group IV semiconductor and related semiconductor device structures
US11802338B2 (en) 2017-07-26 2023-10-31 Asm Ip Holding B.V. Chemical treatment, deposition and/or infiltration apparatus and method for using the same
US11417545B2 (en) 2017-08-08 2022-08-16 Asm Ip Holding B.V. Radiation shield
US11587821B2 (en) 2017-08-08 2023-02-21 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US10770336B2 (en) 2017-08-08 2020-09-08 Asm Ip Holding B.V. Substrate lift mechanism and reactor including same
US11769682B2 (en) 2017-08-09 2023-09-26 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11139191B2 (en) 2017-08-09 2021-10-05 Asm Ip Holding B.V. Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith
US11830730B2 (en) 2017-08-29 2023-11-28 Asm Ip Holding B.V. Layer forming method and apparatus
US11295980B2 (en) 2017-08-30 2022-04-05 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11581220B2 (en) 2017-08-30 2023-02-14 Asm Ip Holding B.V. Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures
US11069510B2 (en) 2017-08-30 2021-07-20 Asm Ip Holding B.V. Substrate processing apparatus
US11056344B2 (en) 2017-08-30 2021-07-06 Asm Ip Holding B.V. Layer forming method
US10928731B2 (en) 2017-09-21 2021-02-23 Asm Ip Holding B.V. Method of sequential infiltration synthesis treatment of infiltrateable material and structures and devices formed using same
US10844484B2 (en) 2017-09-22 2020-11-24 Asm Ip Holding B.V. Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11387120B2 (en) 2017-09-28 2022-07-12 Asm Ip Holding B.V. Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber
US11094546B2 (en) 2017-10-05 2021-08-17 Asm Ip Holding B.V. Method for selectively depositing a metallic film on a substrate
US10734223B2 (en) 2017-10-10 2020-08-04 Asm Ip Holding B.V. Method for depositing a metal chalcogenide on a substrate by cyclical deposition
US10923344B2 (en) 2017-10-30 2021-02-16 Asm Ip Holding B.V. Methods for forming a semiconductor structure and related semiconductor structures
US10910262B2 (en) 2017-11-16 2021-02-02 Asm Ip Holding B.V. Method of selectively depositing a capping layer structure on a semiconductor device structure
US11022879B2 (en) 2017-11-24 2021-06-01 Asm Ip Holding B.V. Method of forming an enhanced unexposed photoresist layer
US11127617B2 (en) 2017-11-27 2021-09-21 Asm Ip Holding B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11639811B2 (en) 2017-11-27 2023-05-02 Asm Ip Holding B.V. Apparatus including a clean mini environment
US11682572B2 (en) 2017-11-27 2023-06-20 Asm Ip Holdings B.V. Storage device for storing wafer cassettes for use with a batch furnace
US11501973B2 (en) 2018-01-16 2022-11-15 Asm Ip Holding B.V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US10872771B2 (en) 2018-01-16 2020-12-22 Asm Ip Holding B. V. Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures
US11393690B2 (en) 2018-01-19 2022-07-19 Asm Ip Holding B.V. Deposition method
US11482412B2 (en) 2018-01-19 2022-10-25 Asm Ip Holding B.V. Method for depositing a gap-fill layer by plasma-assisted deposition
US11018047B2 (en) 2018-01-25 2021-05-25 Asm Ip Holding B.V. Hybrid lift pin
USD913980S1 (en) 2018-02-01 2021-03-23 Asm Ip Holding B.V. Gas supply plate for semiconductor manufacturing apparatus
US11735414B2 (en) 2018-02-06 2023-08-22 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11081345B2 (en) 2018-02-06 2021-08-03 Asm Ip Holding B.V. Method of post-deposition treatment for silicon oxide film
US11685991B2 (en) 2018-02-14 2023-06-27 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US11387106B2 (en) 2018-02-14 2022-07-12 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10896820B2 (en) 2018-02-14 2021-01-19 Asm Ip Holding B.V. Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process
US10731249B2 (en) 2018-02-15 2020-08-04 Asm Ip Holding B.V. Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus
US11482418B2 (en) 2018-02-20 2022-10-25 Asm Ip Holding B.V. Substrate processing method and apparatus
US11939673B2 (en) 2018-02-23 2024-03-26 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US10975470B2 (en) 2018-02-23 2021-04-13 Asm Ip Holding B.V. Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment
US11473195B2 (en) 2018-03-01 2022-10-18 Asm Ip Holding B.V. Semiconductor processing apparatus and a method for processing a substrate
US11629406B2 (en) 2018-03-09 2023-04-18 Asm Ip Holding B.V. Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate
US11114283B2 (en) 2018-03-16 2021-09-07 Asm Ip Holding B.V. Reactor, system including the reactor, and methods of manufacturing and using same
US10847371B2 (en) 2018-03-27 2020-11-24 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11398382B2 (en) 2018-03-27 2022-07-26 Asm Ip Holding B.V. Method of forming an electrode on a substrate and a semiconductor device structure including an electrode
US11230766B2 (en) 2018-03-29 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11088002B2 (en) 2018-03-29 2021-08-10 Asm Ip Holding B.V. Substrate rack and a substrate processing system and method
US10867786B2 (en) 2018-03-30 2020-12-15 Asm Ip Holding B.V. Substrate processing method
US11469098B2 (en) 2018-05-08 2022-10-11 Asm Ip Holding B.V. Methods for depositing an oxide film on a substrate by a cyclical deposition process and related device structures
US11056567B2 (en) 2018-05-11 2021-07-06 Asm Ip Holding B.V. Method of forming a doped metal carbide film on a substrate and related semiconductor device structures
US11908733B2 (en) 2018-05-28 2024-02-20 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11361990B2 (en) 2018-05-28 2022-06-14 Asm Ip Holding B.V. Substrate processing method and device manufactured by using the same
US11718913B2 (en) 2018-06-04 2023-08-08 Asm Ip Holding B.V. Gas distribution system and reactor system including same
US11270899B2 (en) 2018-06-04 2022-03-08 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11837483B2 (en) 2018-06-04 2023-12-05 Asm Ip Holding B.V. Wafer handling chamber with moisture reduction
US11286562B2 (en) 2018-06-08 2022-03-29 Asm Ip Holding B.V. Gas-phase chemical reactor and method of using same
US10797133B2 (en) 2018-06-21 2020-10-06 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11530483B2 (en) 2018-06-21 2022-12-20 Asm Ip Holding B.V. Substrate processing system
US11296189B2 (en) 2018-06-21 2022-04-05 Asm Ip Holding B.V. Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures
US11492703B2 (en) 2018-06-27 2022-11-08 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11814715B2 (en) 2018-06-27 2023-11-14 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11952658B2 (en) 2018-06-27 2024-04-09 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11499222B2 (en) 2018-06-27 2022-11-15 Asm Ip Holding B.V. Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material
US11168395B2 (en) 2018-06-29 2021-11-09 Asm Ip Holding B.V. Temperature-controlled flange and reactor system including same
US10914004B2 (en) 2018-06-29 2021-02-09 Asm Ip Holding B.V. Thin-film deposition method and manufacturing method of semiconductor device
US11923190B2 (en) 2018-07-03 2024-03-05 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10755922B2 (en) 2018-07-03 2020-08-25 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US11646197B2 (en) 2018-07-03 2023-05-09 Asm Ip Holding B.V. Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition
US10767789B2 (en) 2018-07-16 2020-09-08 Asm Ip Holding B.V. Diaphragm valves, valve components, and methods for forming valve components
US11053591B2 (en) 2018-08-06 2021-07-06 Asm Ip Holding B.V. Multi-port gas injection system and reactor system including same
US10883175B2 (en) 2018-08-09 2021-01-05 Asm Ip Holding B.V. Vertical furnace for processing substrates and a liner for use therein
US10829852B2 (en) 2018-08-16 2020-11-10 Asm Ip Holding B.V. Gas distribution device for a wafer processing apparatus
US11430674B2 (en) 2018-08-22 2022-08-30 Asm Ip Holding B.V. Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods
US11274369B2 (en) 2018-09-11 2022-03-15 Asm Ip Holding B.V. Thin film deposition method
US11024523B2 (en) 2018-09-11 2021-06-01 Asm Ip Holding B.V. Substrate processing apparatus and method
US11804388B2 (en) 2018-09-11 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus and method
US11049751B2 (en) 2018-09-14 2021-06-29 Asm Ip Holding B.V. Cassette supply system to store and handle cassettes and processing apparatus equipped therewith
US11885023B2 (en) 2018-10-01 2024-01-30 Asm Ip Holding B.V. Substrate retaining apparatus, system including the apparatus, and method of using same
US11232963B2 (en) 2018-10-03 2022-01-25 Asm Ip Holding B.V. Substrate processing apparatus and method
US11414760B2 (en) 2018-10-08 2022-08-16 Asm Ip Holding B.V. Substrate support unit, thin film deposition apparatus including the same, and substrate processing apparatus including the same
US10847365B2 (en) 2018-10-11 2020-11-24 Asm Ip Holding B.V. Method of forming conformal silicon carbide film by cyclic CVD
US10811256B2 (en) 2018-10-16 2020-10-20 Asm Ip Holding B.V. Method for etching a carbon-containing feature
US11664199B2 (en) 2018-10-19 2023-05-30 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
US11251068B2 (en) 2018-10-19 2022-02-15 Asm Ip Holding B.V. Substrate processing apparatus and substrate processing method
USD948463S1 (en) 2018-10-24 2022-04-12 Asm Ip Holding B.V. Susceptor for semiconductor substrate supporting apparatus
US11087997B2 (en) 2018-10-31 2021-08-10 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11735445B2 (en) 2018-10-31 2023-08-22 Asm Ip Holding B.V. Substrate processing apparatus for processing substrates
US11866823B2 (en) 2018-11-02 2024-01-09 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11499226B2 (en) 2018-11-02 2022-11-15 Asm Ip Holding B.V. Substrate supporting unit and a substrate processing device including the same
US11572620B2 (en) 2018-11-06 2023-02-07 Asm Ip Holding B.V. Methods for selectively depositing an amorphous silicon film on a substrate
US11031242B2 (en) 2018-11-07 2021-06-08 Asm Ip Holding B.V. Methods for depositing a boron doped silicon germanium film
US10847366B2 (en) 2018-11-16 2020-11-24 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11798999B2 (en) 2018-11-16 2023-10-24 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11411088B2 (en) 2018-11-16 2022-08-09 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US10818758B2 (en) 2018-11-16 2020-10-27 Asm Ip Holding B.V. Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures
US11244825B2 (en) 2018-11-16 2022-02-08 Asm Ip Holding B.V. Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process
US11217444B2 (en) 2018-11-30 2022-01-04 Asm Ip Holding B.V. Method for forming an ultraviolet radiation responsive metal oxide-containing film
US11488819B2 (en) 2018-12-04 2022-11-01 Asm Ip Holding B.V. Method of cleaning substrate processing apparatus
US11158513B2 (en) 2018-12-13 2021-10-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11769670B2 (en) 2018-12-13 2023-09-26 Asm Ip Holding B.V. Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures
US11658029B2 (en) 2018-12-14 2023-05-23 Asm Ip Holding B.V. Method of forming a device structure using selective deposition of gallium nitride and system for same
US11390946B2 (en) 2019-01-17 2022-07-19 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process
US11171025B2 (en) 2019-01-22 2021-11-09 Asm Ip Holding B.V. Substrate processing device
US11127589B2 (en) 2019-02-01 2021-09-21 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11227789B2 (en) 2019-02-20 2022-01-18 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11482533B2 (en) 2019-02-20 2022-10-25 Asm Ip Holding B.V. Apparatus and methods for plug fill deposition in 3-D NAND applications
US11615980B2 (en) 2019-02-20 2023-03-28 Asm Ip Holding B.V. Method and apparatus for filling a recess formed within a substrate surface
US11251040B2 (en) 2019-02-20 2022-02-15 Asm Ip Holding B.V. Cyclical deposition method including treatment step and apparatus for same
US11798834B2 (en) 2019-02-20 2023-10-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11342216B2 (en) 2019-02-20 2022-05-24 Asm Ip Holding B.V. Cyclical deposition method and apparatus for filling a recess formed within a substrate surface
US11629407B2 (en) 2019-02-22 2023-04-18 Asm Ip Holding B.V. Substrate processing apparatus and method for processing substrates
US11114294B2 (en) 2019-03-08 2021-09-07 Asm Ip Holding B.V. Structure including SiOC layer and method of forming same
US11901175B2 (en) 2019-03-08 2024-02-13 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11424119B2 (en) 2019-03-08 2022-08-23 Asm Ip Holding B.V. Method for selective deposition of silicon nitride layer and structure including selectively-deposited silicon nitride layer
US11742198B2 (en) 2019-03-08 2023-08-29 Asm Ip Holding B.V. Structure including SiOCN layer and method of forming same
US11378337B2 (en) 2019-03-28 2022-07-05 Asm Ip Holding B.V. Door opener and substrate processing apparatus provided therewith
US11551925B2 (en) 2019-04-01 2023-01-10 Asm Ip Holding B.V. Method for manufacturing a semiconductor device
US11447864B2 (en) 2019-04-19 2022-09-20 Asm Ip Holding B.V. Layer forming method and apparatus
US11814747B2 (en) 2019-04-24 2023-11-14 Asm Ip Holding B.V. Gas-phase reactor system-with a reaction chamber, a solid precursor source vessel, a gas distribution system, and a flange assembly
US11781221B2 (en) 2019-05-07 2023-10-10 Asm Ip Holding B.V. Chemical source vessel with dip tube
US11289326B2 (en) 2019-05-07 2022-03-29 Asm Ip Holding B.V. Method for reforming amorphous carbon polymer film
US11355338B2 (en) 2019-05-10 2022-06-07 Asm Ip Holding B.V. Method of depositing material onto a surface and structure formed according to the method
US11515188B2 (en) 2019-05-16 2022-11-29 Asm Ip Holding B.V. Wafer boat handling device, vertical batch furnace and method
USD947913S1 (en) 2019-05-17 2022-04-05 Asm Ip Holding B.V. Susceptor shaft
USD975665S1 (en) 2019-05-17 2023-01-17 Asm Ip Holding B.V. Susceptor shaft
USD935572S1 (en) 2019-05-24 2021-11-09 Asm Ip Holding B.V. Gas channel plate
USD922229S1 (en) 2019-06-05 2021-06-15 Asm Ip Holding B.V. Device for controlling a temperature of a gas supply unit
US11345999B2 (en) 2019-06-06 2022-05-31 Asm Ip Holding B.V. Method of using a gas-phase reactor system including analyzing exhausted gas
US11453946B2 (en) 2019-06-06 2022-09-27 Asm Ip Holding B.V. Gas-phase reactor system including a gas detector
US11908684B2 (en) 2019-06-11 2024-02-20 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
US11476109B2 (en) 2019-06-11 2022-10-18 Asm Ip Holding B.V. Method of forming an electronic structure using reforming gas, system for performing the method, and structure formed using the method
USD944946S1 (en) 2019-06-14 2022-03-01 Asm Ip Holding B.V. Shower plate
USD931978S1 (en) 2019-06-27 2021-09-28 Asm Ip Holding B.V. Showerhead vacuum transport
US11746414B2 (en) 2019-07-03 2023-09-05 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11390945B2 (en) 2019-07-03 2022-07-19 Asm Ip Holding B.V. Temperature control assembly for substrate processing apparatus and method of using same
US11605528B2 (en) 2019-07-09 2023-03-14 Asm Ip Holding B.V. Plasma device using coaxial waveguide, and substrate treatment method
US11664267B2 (en) 2019-07-10 2023-05-30 Asm Ip Holding B.V. Substrate support assembly and substrate processing device including the same
US11664245B2 (en) 2019-07-16 2023-05-30 Asm Ip Holding B.V. Substrate processing device
US11615970B2 (en) 2019-07-17 2023-03-28 Asm Ip Holding B.V. Radical assist ignition plasma system and method
US11688603B2 (en) 2019-07-17 2023-06-27 Asm Ip Holding B.V. Methods of forming silicon germanium structures
US11643724B2 (en) 2019-07-18 2023-05-09 Asm Ip Holding B.V. Method of forming structures using a neutral beam
US11282698B2 (en) 2019-07-19 2022-03-22 Asm Ip Holding B.V. Method of forming topology-controlled amorphous carbon polymer film
US11557474B2 (en) 2019-07-29 2023-01-17 Asm Ip Holding B.V. Methods for selective deposition utilizing n-type dopants and/or alternative dopants to achieve high dopant incorporation
US11430640B2 (en) 2019-07-30 2022-08-30 Asm Ip Holding B.V. Substrate processing apparatus
US11443926B2 (en) 2019-07-30 2022-09-13 Asm Ip Holding B.V. Substrate processing apparatus
US11587815B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11227782B2 (en) 2019-07-31 2022-01-18 Asm Ip Holding B.V. Vertical batch furnace assembly
US11876008B2 (en) 2019-07-31 2024-01-16 Asm Ip Holding B.V. Vertical batch furnace assembly
US11587814B2 (en) 2019-07-31 2023-02-21 Asm Ip Holding B.V. Vertical batch furnace assembly
US11680839B2 (en) 2019-08-05 2023-06-20 Asm Ip Holding B.V. Liquid level sensor for a chemical source vessel
USD965044S1 (en) 2019-08-19 2022-09-27 Asm Ip Holding B.V. Susceptor shaft
USD965524S1 (en) 2019-08-19 2022-10-04 Asm Ip Holding B.V. Susceptor support
US11639548B2 (en) 2019-08-21 2023-05-02 Asm Ip Holding B.V. Film-forming material mixed-gas forming device and film forming device
USD930782S1 (en) 2019-08-22 2021-09-14 Asm Ip Holding B.V. Gas distributor
USD979506S1 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Insulator
USD940837S1 (en) 2019-08-22 2022-01-11 Asm Ip Holding B.V. Electrode
USD949319S1 (en) 2019-08-22 2022-04-19 Asm Ip Holding B.V. Exhaust duct
US11594450B2 (en) 2019-08-22 2023-02-28 Asm Ip Holding B.V. Method for forming a structure with a hole
US11286558B2 (en) 2019-08-23 2022-03-29 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11827978B2 (en) 2019-08-23 2023-11-28 Asm Ip Holding B.V. Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film
US11527400B2 (en) 2019-08-23 2022-12-13 Asm Ip Holding B.V. Method for depositing silicon oxide film having improved quality by peald using bis(diethylamino)silane
US11898242B2 (en) 2019-08-23 2024-02-13 Asm Ip Holding B.V. Methods for forming a polycrystalline molybdenum film over a surface of a substrate and related structures including a polycrystalline molybdenum film
US11495459B2 (en) 2019-09-04 2022-11-08 Asm Ip Holding B.V. Methods for selective deposition using a sacrificial capping layer
US11823876B2 (en) 2019-09-05 2023-11-21 Asm Ip Holding B.V. Substrate processing apparatus
US11562901B2 (en) 2019-09-25 2023-01-24 Asm Ip Holding B.V. Substrate processing method
US11610774B2 (en) 2019-10-02 2023-03-21 Asm Ip Holding B.V. Methods for forming a topographically selective silicon oxide film by a cyclical plasma-enhanced deposition process
US11339476B2 (en) 2019-10-08 2022-05-24 Asm Ip Holding B.V. Substrate processing device having connection plates, substrate processing method
US11735422B2 (en) 2019-10-10 2023-08-22 Asm Ip Holding B.V. Method of forming a photoresist underlayer and structure including same
US11637011B2 (en) 2019-10-16 2023-04-25 Asm Ip Holding B.V. Method of topology-selective film formation of silicon oxide
US11637014B2 (en) 2019-10-17 2023-04-25 Asm Ip Holding B.V. Methods for selective deposition of doped semiconductor material
US11315794B2 (en) 2019-10-21 2022-04-26 Asm Ip Holding B.V. Apparatus and methods for selectively etching films
US11646205B2 (en) 2019-10-29 2023-05-09 Asm Ip Holding B.V. Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same
US11594600B2 (en) 2019-11-05 2023-02-28 Asm Ip Holding B.V. Structures with doped semiconductor layers and methods and systems for forming same
US11501968B2 (en) 2019-11-15 2022-11-15 Asm Ip Holding B.V. Method for providing a semiconductor device with silicon filled gaps
US11626316B2 (en) 2019-11-20 2023-04-11 Asm Ip Holding B.V. Method of depositing carbon-containing material on a surface of a substrate, structure formed using the method, and system for forming the structure
US11915929B2 (en) 2019-11-26 2024-02-27 Asm Ip Holding B.V. Methods for selectively forming a target film on a substrate comprising a first dielectric surface and a second metallic surface
US11401605B2 (en) 2019-11-26 2022-08-02 Asm Ip Holding B.V. Substrate processing apparatus
US11646184B2 (en) 2019-11-29 2023-05-09 Asm Ip Holding B.V. Substrate processing apparatus
US11923181B2 (en) 2019-11-29 2024-03-05 Asm Ip Holding B.V. Substrate processing apparatus for minimizing the effect of a filling gas during substrate processing
US11929251B2 (en) 2019-12-02 2024-03-12 Asm Ip Holding B.V. Substrate processing apparatus having electrostatic chuck and substrate processing method
US11840761B2 (en) 2019-12-04 2023-12-12 Asm Ip Holding B.V. Substrate processing apparatus
US11885013B2 (en) 2019-12-17 2024-01-30 Asm Ip Holding B.V. Method of forming vanadium nitride layer and structure including the vanadium nitride layer
US11527403B2 (en) 2019-12-19 2022-12-13 Asm Ip Holding B.V. Methods for filling a gap feature on a substrate surface and related semiconductor structures
US11551912B2 (en) 2020-01-20 2023-01-10 Asm Ip Holding B.V. Method of forming thin film and method of modifying surface of thin film
US11521851B2 (en) 2020-02-03 2022-12-06 Asm Ip Holding B.V. Method of forming structures including a vanadium or indium layer
US11828707B2 (en) 2020-02-04 2023-11-28 Asm Ip Holding B.V. Method and apparatus for transmittance measurements of large articles
US11776846B2 (en) 2020-02-07 2023-10-03 Asm Ip Holding B.V. Methods for depositing gap filling fluids and related systems and devices
US11781243B2 (en) 2020-02-17 2023-10-10 Asm Ip Holding B.V. Method for depositing low temperature phosphorous-doped silicon
US11488854B2 (en) 2020-03-11 2022-11-01 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11876356B2 (en) 2020-03-11 2024-01-16 Asm Ip Holding B.V. Lockout tagout assembly and system and method of using same
US11837494B2 (en) 2020-03-11 2023-12-05 Asm Ip Holding B.V. Substrate handling device with adjustable joints
US11823866B2 (en) 2020-04-02 2023-11-21 Asm Ip Holding B.V. Thin film forming method
US11830738B2 (en) 2020-04-03 2023-11-28 Asm Ip Holding B.V. Method for forming barrier layer and method for manufacturing semiconductor device
US11437241B2 (en) 2020-04-08 2022-09-06 Asm Ip Holding B.V. Apparatus and methods for selectively etching silicon oxide films
US20210317989A1 (en) * 2020-04-13 2021-10-14 Delta Electronics, Inc. Ignition method of plasma chamber
US11698191B2 (en) * 2020-04-13 2023-07-11 Delta Electronics, Inc. Ignition method of plasma chamber
US11821078B2 (en) 2020-04-15 2023-11-21 Asm Ip Holding B.V. Method for forming precoat film and method for forming silicon-containing film
US11530876B2 (en) 2020-04-24 2022-12-20 Asm Ip Holding B.V. Vertical batch furnace assembly comprising a cooling gas supply
US11887857B2 (en) 2020-04-24 2024-01-30 Asm Ip Holding B.V. Methods and systems for depositing a layer comprising vanadium, nitrogen, and a further element
US11898243B2 (en) 2020-04-24 2024-02-13 Asm Ip Holding B.V. Method of forming vanadium nitride-containing layer
US11515187B2 (en) 2020-05-01 2022-11-29 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11798830B2 (en) 2020-05-01 2023-10-24 Asm Ip Holding B.V. Fast FOUP swapping with a FOUP handler
US11626308B2 (en) 2020-05-13 2023-04-11 Asm Ip Holding B.V. Laser alignment fixture for a reactor system
US11804364B2 (en) 2020-05-19 2023-10-31 Asm Ip Holding B.V. Substrate processing apparatus
US11705333B2 (en) 2020-05-21 2023-07-18 Asm Ip Holding B.V. Structures including multiple carbon layers and methods of forming and using same
US11767589B2 (en) 2020-05-29 2023-09-26 Asm Ip Holding B.V. Substrate processing device
US11646204B2 (en) 2020-06-24 2023-05-09 Asm Ip Holding B.V. Method for forming a layer provided with silicon
US11658035B2 (en) 2020-06-30 2023-05-23 Asm Ip Holding B.V. Substrate processing method
US11644758B2 (en) 2020-07-17 2023-05-09 Asm Ip Holding B.V. Structures and methods for use in photolithography
US11674220B2 (en) 2020-07-20 2023-06-13 Asm Ip Holding B.V. Method for depositing molybdenum layers using an underlayer
US11725280B2 (en) 2020-08-26 2023-08-15 Asm Ip Holding B.V. Method for forming metal silicon oxide and metal silicon oxynitride layers
USD990534S1 (en) 2020-09-11 2023-06-27 Asm Ip Holding B.V. Weighted lift pin
USD1012873S1 (en) 2020-09-24 2024-01-30 Asm Ip Holding B.V. Electrode for semiconductor processing apparatus
US11827981B2 (en) 2020-10-14 2023-11-28 Asm Ip Holding B.V. Method of depositing material on stepped structure
US11873557B2 (en) 2020-10-22 2024-01-16 Asm Ip Holding B.V. Method of depositing vanadium metal
US11901179B2 (en) 2020-10-28 2024-02-13 Asm Ip Holding B.V. Method and device for depositing silicon onto substrates
US11891696B2 (en) 2020-11-30 2024-02-06 Asm Ip Holding B.V. Injector configured for arrangement within a reaction chamber of a substrate processing apparatus
US11946137B2 (en) 2020-12-16 2024-04-02 Asm Ip Holding B.V. Runout and wobble measurement fixtures
US11885020B2 (en) 2020-12-22 2024-01-30 Asm Ip Holding B.V. Transition metal deposition method
US11961741B2 (en) 2021-03-04 2024-04-16 Asm Ip Holding B.V. Method for fabricating layer structure having target topological profile
US11959168B2 (en) 2021-04-26 2024-04-16 Asm Ip Holding B.V. Solid source precursor vessel
USD980813S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas flow control plate for substrate processing apparatus
USD981973S1 (en) 2021-05-11 2023-03-28 Asm Ip Holding B.V. Reactor wall for substrate processing apparatus
USD980814S1 (en) 2021-05-11 2023-03-14 Asm Ip Holding B.V. Gas distributor for substrate processing apparatus
USD990441S1 (en) 2021-09-07 2023-06-27 Asm Ip Holding B.V. Gas flow control plate
WO2023194551A1 (en) * 2022-04-08 2023-10-12 TRUMPF Hüttinger GmbH + Co. KG Plasma ignition detection device for connection to an impedance matching circuit for a plasma generating system
CN115121912A (en) * 2022-06-27 2022-09-30 湘潭大学 Excitation current calibration method for multi-pole magnetic control GTAW arc sensor
US11959171B2 (en) 2022-07-18 2024-04-16 Asm Ip Holding B.V. Methods of forming a transition metal containing film on a substrate by a cyclical deposition process

Also Published As

Publication number Publication date
JP5517395B2 (en) 2014-06-11
TW200512306A (en) 2005-04-01
KR20060064649A (en) 2006-06-13
US8089026B2 (en) 2012-01-03
TWI392754B (en) 2013-04-11
CN1839459A (en) 2006-09-27
TW201315294A (en) 2013-04-01
KR101227721B1 (en) 2013-01-29
WO2005020273A3 (en) 2005-05-19
WO2005020273A2 (en) 2005-03-03
EP1668664A2 (en) 2006-06-14
US20060011591A1 (en) 2006-01-19
WO2005020273B1 (en) 2005-08-25
CN100550274C (en) 2009-10-14
US6967305B2 (en) 2005-11-22
JP2007503096A (en) 2007-02-15

Similar Documents

Publication Publication Date Title
US6967305B2 (en) Control of plasma transitions in sputter processing systems
US5241152A (en) Circuit for detecting and diverting an electrical arc in a glow discharge apparatus
KR101348320B1 (en) Method and apparatus of providing power to ignite and sustain a plasma in a reactive gas generator
JP5241043B2 (en) Method and apparatus for sputtering deposition using direct current
US6621674B1 (en) Electric supply unit for plasma installations
TWI464282B (en) Rf substrate bias with high power impulse magnetron sputtering (hipims)
JP4624414B2 (en) Apparatus for rapid arc extinction using early short circuit of arc current in plasma.
JP2018504760A (en) Apparatus for treating arc and method for treating arc
JP5399563B2 (en) DC power supply
US5990668A (en) A.C. power supply having combined regulator and pulsing circuits
JP2008517438A (en) Gas discharge lamp monitoring method and arrangement, program, video projector
JP4621177B2 (en) Arc discharge suppression apparatus and method
JPH07233472A (en) Arc shielding method in dc glow discharge treatment device and device thereof
JP3895463B2 (en) Thin film forming method and thin film forming apparatus
JP2007134336A (en) Method of operating vacuum plasma process appartus, and vacuum plasma process appratus
US6740843B2 (en) Method and apparatus for automatically re-igniting vacuum arc plasma source
KR100584168B1 (en) Power supplying device and method for plasma processing
JP2006528731A (en) High peak power plasma pulse power supply by arc handling
JPH11229138A (en) Sputtering device
JP2004006146A (en) Power supply for electrical discharge, power supply for sputtering, and sputtering device
JP2017008336A (en) Power supply system for sputter device
JPH05311417A (en) Arc discharge preventive circuit

Legal Events

Date Code Title Description
AS Assignment

Owner name: ENI TECHNOLOGIES, INC., NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SELLERS, JEFF C.;REEL/FRAME:015158/0130

Effective date: 20040122

AS Assignment

Owner name: MKS INSTRUMENTS, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ENI TECHNOLOGY, INC.;REEL/FRAME:016737/0202

Effective date: 20050608

STCF Information on status: patent grant

Free format text: PATENTED CASE

CC Certificate of correction
FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: BARCLAYS BANK PLC, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;REEL/FRAME:038663/0139

Effective date: 20160429

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, NEW YORK

Free format text: SECURITY AGREEMENT;ASSIGNORS:MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;REEL/FRAME:038663/0265

Effective date: 20160429

FPAY Fee payment

Year of fee payment: 12

AS Assignment

Owner name: BARCLAYS BANK PLC, AS COLLATERAL AGENT, NEW YORK

Free format text: PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:ELECTRO SCIENTIFIC INDUSTRIES, INC.;MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;REEL/FRAME:048211/0312

Effective date: 20190201

Owner name: MKS INSTRUMENTS, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:048226/0095

Effective date: 20190201

Owner name: NEWPORT CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:048226/0095

Effective date: 20190201

AS Assignment

Owner name: BARCLAYS BANK PLC, AS COLLATERAL AGENT, NEW YORK

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE REMOVE U.S. PATENT NO.7,919,646 PREVIOUSLY RECORDED ON REEL 048211 FRAME 0312. ASSIGNOR(S) HEREBY CONFIRMS THE PATENT SECURITY AGREEMENT (ABL);ASSIGNORS:ELECTRO SCIENTIFIC INDUSTRIES, INC.;MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;REEL/FRAME:055668/0687

Effective date: 20190201

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS COLLATERAL AGENT, ILLINOIS

Free format text: SECURITY INTEREST;ASSIGNORS:MKS INSTRUMENTS, INC.;NEWPORT CORPORATION;ELECTRO SCIENTIFIC INDUSTRIES, INC.;REEL/FRAME:061572/0069

Effective date: 20220817

AS Assignment

Owner name: ELECTRO SCIENTIFIC INDUSTRIES, INC., OREGON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:063009/0001

Effective date: 20220817

Owner name: NEWPORT CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:063009/0001

Effective date: 20220817

Owner name: MKS INSTRUMENTS, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:063009/0001

Effective date: 20220817

Owner name: ELECTRO SCIENTIFIC INDUSTRIES, INC., OREGON

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:062739/0001

Effective date: 20220817

Owner name: NEWPORT CORPORATION, MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:062739/0001

Effective date: 20220817

Owner name: MKS INSTRUMENTS, INC., MASSACHUSETTS

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:062739/0001

Effective date: 20220817