US20050019455A1 - Ultrasonic rotary forming of food products - Google Patents

Ultrasonic rotary forming of food products Download PDF

Info

Publication number
US20050019455A1
US20050019455A1 US10/494,402 US49440204A US2005019455A1 US 20050019455 A1 US20050019455 A1 US 20050019455A1 US 49440204 A US49440204 A US 49440204A US 2005019455 A1 US2005019455 A1 US 2005019455A1
Authority
US
United States
Prior art keywords
food product
rotary wheel
cavity
ultrasonically activated
ultrasonically
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/494,402
Inventor
Roberto Capodieci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/494,402 priority Critical patent/US20050019455A1/en
Publication of US20050019455A1 publication Critical patent/US20050019455A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/16Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using pocketed rollers, e.g. two co-operating pocketed rollers
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/0002Processes of manufacture not relating to composition and compounding ingredients
    • A23G3/0004Processes specially adapted for manufacture or treatment of sweetmeats or confectionery
    • A23G3/0019Shaping of liquid, paste, powder; Manufacture of moulded articles, e.g. modelling, moulding, calendering
    • A23G3/0025Processes in which the material is shaped at least partially in a mould in the hollows of a surface, a drum, an endless band, or by a drop-by-drop casting or dispensing of the material on a surface, e.g. injection moulding, transfer moulding
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/0002Processes of manufacture not relating to composition and compounding ingredients
    • A23G3/0063Coating or filling sweetmeats or confectionery
    • A23G3/0065Processes for making filled articles, composite articles, multi-layered articles
    • A23G3/007Processes for making filled articles, composite articles, multi-layered articles the material being shaped at least partially in a mould, in the hollows of a surface, a drum, an endless band or by drop-by-drop casting or dispensing of the materials on a surface or an article being completed
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/0002Processes of manufacture not relating to composition and compounding ingredients
    • A23G3/0063Coating or filling sweetmeats or confectionery
    • A23G3/0065Processes for making filled articles, composite articles, multi-layered articles
    • A23G3/007Processes for making filled articles, composite articles, multi-layered articles the material being shaped at least partially in a mould, in the hollows of a surface, a drum, an endless band or by drop-by-drop casting or dispensing of the materials on a surface or an article being completed
    • A23G3/0072Processes for laying down the liquid, pasty or solid materials in moulds or drop-by-drop, on a surface or an article being completed, optionally with the associated heating, cooling, proportioning, cutting cast-tail, antidripping
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/02Apparatus specially adapted for manufacture or treatment of sweetmeats or confectionery; Accessories therefor
    • A23G3/0236Shaping of liquid, paste, powder; Manufacture of moulded articles, e.g. modelling, moulding, calendering
    • A23G3/0252Apparatus in which the material is shaped at least partially in a mould, in the hollows of a surface, a drum, an endless band, or by a drop-by-drop casting or dispensing of the material on a surface, e.g. injection moulding, transfer moulding
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/02Apparatus specially adapted for manufacture or treatment of sweetmeats or confectionery; Accessories therefor
    • A23G3/20Apparatus for coating or filling sweetmeats or confectionery
    • A23G3/2007Manufacture of filled articles, composite articles, multi-layered articles
    • A23G3/2023Manufacture of filled articles, composite articles, multi-layered articles the material being shaped at least partially in a mould, in the hollows of a surface, a drum, an endless band or by drop-by-drop casting or dispensing of the materials on a surface or an article being completed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/02Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a ram exerting pressure on the material in a moulding space
    • B30B11/027Particular press methods or systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/32Discharging presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/461Rollers the rollers having specific surface features
    • B29C2043/465Rollers the rollers having specific surface features having one or more cavities, e.g. for forming distinct products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/44Compression means for making articles of indefinite length
    • B29C43/46Rollers
    • B29C2043/468Rollers take-off rollers, i.e. arranged adjacent a material feeding device

Definitions

  • the present invention generally relates to a system and method of rotary forming food products.
  • the present invention relates to a system and method of ultrasonically rotary forming food products, such as confectionary.
  • Millions of pounds of food products such as snack foods, cereals, and pet foods, for example, are purchased and consumed every year.
  • many of these types of food products are manufactured and sold in the form of small, spherical, bite-sized shapes.
  • many popular snack foods and dry cereals today are packaged and sold in small, bite-sized shapes.
  • Such bite-sized, spherical or pellet shapes may provide for convenient manufacturing and packaging of the food product as well as being easily consumable by consumers.
  • dry pet foods such as dog food, for example, are also typically sold in small, pellet-shaped form. Small, pellet-shaped dry pet foods may also provide convenient manufacturing and packaging of the pet food products as well as being easily consumable by pets.
  • Rotary forming of food products has been a widely used practice in the field of food product manufacturing for years.
  • rotary forming of food products has typically been accomplished by using one of two types of systems: puddle infeed rotary systems or slab infeed rotary systems.
  • Puddle infeed rotary systems supply “puddles” or droplets of food products to rotary forming wheels.
  • Slab infeed rotary systems provide a continuous slab to the rotary wheels.
  • Puddle and slab infeed rotary systems typically include a food product input system and a pair of rotary forming wheels.
  • Each of the rotary forming wheels typically includes a number of cavities positioned around the outer edge of each of the rotary forming wheels.
  • the cavities generally extend inward from the outer edge of the rotary forming wheel towards the center of the rotary forming wheel forming a plurality of cavities around the outer edge of the rotary forming wheels.
  • the number of cavities and the size and shape of the cavities of each rotary forming wheel in a pair of rotary forming wheels are typically the same. That is, each cavity on one rotary forming wheel typically has a counterpart of the same shape and size on the other rotary forming wheel in the pair.
  • the number of cavities, as well as the width and depth of the cavities on different pairs of rotary forming wheels may be adjusted depending on the width of the outer edges of the rotary forming wheels and the desired size and depth of a formed food product.
  • Each rotary forming wheel typically is also similar in size, or is the same size as its counterpart wheel. Further, each wheel is oriented adjacent to its counterpart so that the center point of each rotary forming wheel is along the same horizontal plane. That is, the rotary forming wheels are typically positioned directly adjacent to each other with the outer edges of each of the rotary wheels facing each other. The rotary forming wheels are also typically positioned so that the outer edges of each of the rotary forming wheels are in close proximity to, or touching the other rotary forming wheel.
  • typical infeed rotary systems include a food product input system.
  • the food product input system is typically used to introduce a desired food product into the cavities in the outer edges of the rotary forming wheels.
  • the food product input system may vary depending on the type of food product desired to be introduced into the cavities of the rotary forming wheels.
  • a single tube may be used to deliver food product between a pair of rotary forming wheels.
  • a pair of hollow tubes or a pair of chutes for example, may be used to deliver the food product to the cavity of the rotary forming wheels. That is, each wheel may be supplied food product by a separate food product delivery tube.
  • Some infeed rotary systems are configured so that the hollow tubes of the food product input system are positioned above the outer edge of the pair of rotary forming wheels.
  • One end of each of the hollow tubes is typically attached to a food product supply system that supplies the desired food product or products to the infeed rotary system.
  • the end of each of the hollow tubes not attached to the food product supply system is typically positioned in a downward orientation directly over the top of the outer edge of the rotary forming wheels so that one tube is over each rotary forming wheel. That is, the downward end of one tube is positioned over one rotary forming wheel while the downward end of the other tube is positioned over the other forming wheel in the pair.
  • the rotary forming wheels typically are rotated in a downward fashion so that the cavities at the top of each of the rotary forming wheels are rotated towards each other.
  • the timing of each of the rotary forming wheels is arranged so that the cavities along the outer edges of each of the rotary forming wheels align with each other at the point where the outer edges of the two rotary forming wheels are positioned closest together or touching.
  • a hollow mold is formed by the two cavities at the point where the outer edges of the two rotary forming wheels are positioned closest together or touching.
  • the food product may be delivered from the food product supply system through the hollow tube, or tubes of the food product input system.
  • the food product supply system typically delivers the food product in a sticky or semi-adhesive state. Due to the orientation of the rotary forming wheels with respect to the hollow tubes, the tubes of the food product input system then may deliver the food product into the upper most cavity of each of the rotary forming wheels.
  • the food product may be continuously supplied (such as in a slab infeed system) or discretely supplied (such as in a puddle infeed system) to the cavities by the food product input system.
  • the rotation of the rotary forming wheels causes the filled cavities to become positioned adjacent to each other forming an enclosed mold as described above.
  • the close proximity of the rotary forming wheels causes the exposed edges of the food product not bounded by the cavity walls, to come into contact with each other.
  • the sticky or semi-adhesive properties of the food product cause the contacting exposed edges of food product from each cavity to adhere or “stick together” forming a formed food product.
  • each formed food product is connected to other formed food product through a “web” of food product. That is, a sheet of food product having a plurality of spherical, oblong or pellet shaped protrusions connected through food product webbing is dislodged from the wheels.
  • the formed food product included within the food product web typically becomes dislodged, or “falls out” of the rotary forming wheels due to gravity.
  • the falling formed food product web having a plurality of food product protrusions may then received by a conveyor, for example, for further downstream processing, such as separating the individual food product shapes from the food product webbing.
  • the food product web typically is necessary in order for the food product to dislodge, separate, or otherwise pass from the rotary forming wheels.
  • the weight of the food product web ensures that the food product separates, dislodges, or passes from the wheels. Otherwise, the weight of each individual bite-sized food product is insufficient to dislodge the food product from the cavity and the food product sticks within the cavity, or cavities, of the wheel(s). That is, the food product depends on gravity to dislodge from the wheels.
  • the cohesive nature of the food product causes individual food product pellets, or shapes to stick to the cavities.
  • the cohesive force of the individually formed food product with a cavity or cavities typically is greater than the gravitational force generated by the weight of the individually formed food product.
  • an individually formed food product not connected to other individually formed food product through a web of food product typically sticks to the cavities, or a cavity, of the rotary forming wheel(s). Without a food product web, food product typically sticks within a cavity or cavities the rotary forming wheel(s) and does not dislodge.
  • the use of the food product web offers disadvantages as well.
  • the food product web produces wasted food product material. That is, because the individual bite-sized food product is used in the final product, the webbing that holds the individual pieces together typically is discarded, or recycled after the individual pieces are separated. If the webbing is discarded, the wasted material adds to overall cost of the process. If the webbing is recycled, the process of recycling adds another step to the process of manufacturing individual food product pieces through rotary forming, thereby decreasing the efficiency of the food product manufacturing process.
  • a system for ultrasonic rotary forming of food products includes a first ultrasonically activated rotary wheel including a first cavity for receiving a food product and a second rotary wheel.
  • the first ultrasonically activated rotary wheel and said second rotary wheel rotate such that food product within the first cavity contacts the second rotary wheel to form an individually-formed food product.
  • the food product passes from the first cavity upon continued rotation of the wheels. Because the rotary wheel is ultrasonically actuated, food product does not stick in the cavity, even without the use of the food product web.
  • the system also includes a food product delivery system for delivering food product to the first ultrasonically activated rotary wheel and the second rotary wheel.
  • the food product delivery system may include a single food product delivery tube that simultaneously delivers food product from the same stream, slab, puddle, droplet, or line to both rotary wheels.
  • the food product delivery system may include a first hollow tube delivering food product to the first rotary wheel and a second hollow tube delivering food product to the second rotary wheel.
  • FIG. 1 illustrates an ultrasonic rotary forming system according to an alternative embodiment of the present invention.
  • FIG. 2 illustrates an inclusion delivery system according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of methods of ultrasonically rotary forming a food product according to embodiments of the present invention.
  • FIG. 4 illustrates an ultrasonic rotary forming system according to a preferred embodiment of the present invention.
  • FIG. 4 illustrates an ultrasonic rotary forming system 400 according to a preferred embodiment of the present invention.
  • the forming system 400 includes a first ultrasonically activated rotary wheel 412 , a second ultrasonically activated rotary wheel 418 , a food product delivery tube 424 , a stream of food product 426 dispensed from the delivery tube 424 and a single formed food product 430 .
  • the first ultrasonically activated rotary wheel 412 includes a plurality of empty cavities 414 and a cavity 416 filled with food product 426 .
  • the second ultrasonically activated rotary wheel 18 includes a plurality of empty cavities 420 and a cavity 422 filled with food product 426 .
  • the empty cavities 414 and 420 and the filled cavities 416 and 422 are located on outer circumferential edges 413 and 415 of the first and second ultrasonically activated rotary wheels 412 and 418 , respectively.
  • the number of cavities 414 and 420 and the size and shape of the cavities 414 and 420 of the wheels 412 and 418 may be adjusted depending on the width of the outer edges 413 and 415 and the desired size, shape, and depth of the formed food product 430 .
  • the first and second ultrasonically activated rotary wheels 412 and 418 are each connected to an actuation system (not shown) that rotates the wheels 412 and 418 .
  • the rotary forming wheels 412 and 418 are similar in size or are the same size as each other and are oriented adjacent to each other so that the center point of each rotary forming wheel 412 and 418 is along the same horizontal plane.
  • the rotary forming wheels 412 and 418 are positioned directly adjacent to each other with the outer edges 413 and 415 of each of the rotary wheels 412 and 418 facing each other.
  • the rotary forming wheels 412 and 418 are also positioned so that the outer edges 413 and 415 of each of the rotary forming wheels 412 and 418 are in close proximity to or touching each other.
  • the food product delivery tube 424 is positioned over the juncture of the two wheels 412 and 418 , or the point where the wheels 412 and 418 are closest to each other. Preferably, the food delivery tube 424 is positioned such that delivered food product 424 fills the cavities 416 and 422 in equal amounts.
  • the food product delivery tube 424 delivers food product, such as chocolate, that is supplied to the food product delivery tube 424 from a food product delivery system (not shown).
  • the wheels 412 and 418 may be oriented in a vertical or horizontal orientation, with respect to the plane of the floor upon which the system 400 is positioned.
  • a conveyor system may be used to convey the food product 426 to and from the wheels 412 and 418 .
  • the food product delivery tube 424 may be positioned over the juncture of the two horizontally oriented wheels 412 and 418 and the single food product 430 may drop from the wheels 412 and 418 .
  • each ultrasonically activated wheel 412 and 418 is rotated such that one of the cavities 414 and one of the cavities 420 align at the point where food product 426 is delivered to the wheels 412 and 418 .
  • the rotary forming wheels 412 and 418 are rotated in a downward fashion so that the cavities 414 and 420 at the top of each of the rotary forming wheels 412 and 418 are rotated towards each other.
  • the wheel 412 is rotated in a clock-wise fashion while the wheel 418 is rotated in a counter clock-wise direction.
  • each of the rotary forming wheels 412 and 418 is arranged so that the cavities 414 and 420 along the outer edges 413 and 415 of each of the rotary forming wheels 412 and 418 align with each other at the point where the outer edges 413 and 415 of the two rotary forming wheels 412 and 418 are positioned closest together or touching.
  • a hollow mold is formed by the two cavities 416 and 422 at the point where the outer edges 413 and 415 of the two rotary forming wheels 412 and 418 are positioned closest together or touching.
  • the filled cavities 416 and 422 represent cavities 414 and 420 filled with food product 426 .
  • Each cavity 414 and 420 receives food product 426 from the food product delivery tube 424 as the wheels 412 and 418 rotate such that cavities 414 and 420 align with each other.
  • the food product delivery tube 424 simultaneously supplies food product 426 to both wheels 412 and 418 from the same stream, puddle, slab or line of food product 426 .
  • the ultrasonic activation of the wheels 412 and 418 acts in conjunction with the edges of the filled cavities 416 and 422 , to separate the food product 426 from the steady stream of food product 426 that is supplied from the food product delivery tube 424 .
  • the food product 426 is pinched between the ultrasonically activated wheels 412 and 418 , and is separated from the stream of food product 426 supplied from the food product delivery tube 424 .
  • the food product 426 breaks off from the stream of supplied food product 426 as it is deposited into the cavities 416 and 422 .
  • the food product delivery system delivers the food product to the wheels 412 and 418 via the food product delivery tube 424 in a sticky or semi-adhesive state.
  • the food product 426 may be continuously supplied or discretely supplied to the cavities 416 and 422 by the food product delivery system.
  • the food product 426 in the filled cavity 416 sticks to, or amalgamates with the food product 426 in the filled cavity 422 .
  • Each filled cavity 416 and 422 releases, or passes the single formed food product as the wheels 412 and 418 continue to rotate thereby separating the filled cavities 416 and 422 from each other.
  • the food product 426 does not stick in the filled cavities 416 and 422 because of the ultrasonic activation of the edges of the filled cavities 416 and 422 .
  • the ultrasonic activation of the filled cavities 416 and 422 produces a non-stick surface by which the formed food product 430 passes, or dislodges from the filled cavities 416 and 422 .
  • the ultrasonically activated wheels 412 and 418 are ultrasonically activated by methods known in the art, or as described in U.S. Pat. No. 5,871,783 issued to Roberto Capodieci, which is herein incorporated by reference in its entirety.
  • the ultrasonic action facilitates shaping by suitably forming the food product 426 and by preventing the food product 426 from sticking to the ultrasonically activated filled cavities 416 and 422 .
  • the ultrasonic energy produced through the ultrasonic activation of the wheels 412 and 418 also vibrates the filled cavities 416 and 422 thereby ensuring the release, or dislodgment, of the formed food product 430 from the filled cavities 416 and 422 . That is, the vibration of the wheels 412 and 418 produced through the ultrasonic activation of the wheels 412 and 418 hinders, or eliminates the possibility of the single formed food product 430 sticking to the filled cavities 416 and 422 , which become unfilled cavities 414 and 420 as the single formed food product 430 passes from the filled cavities 416 and 422 .
  • the single formed food product 430 may then be conveyed to other food product preparation system, such as a coating and/or packaging system.
  • FIG. 1 illustrates an ultrasonic rotary forming system 100 according to an alternative embodiment of the present invention.
  • the forming system 100 includes a first ultrasonically activated rotary forming wheel 105 , a second ultrasonically activated rotary forming wheel 110 , a first food product delivery tube 125 , a second food product delivery tube 130 , a first wiping shoe 145 , a second wiping shoe 150 , and a formed food product 160 .
  • the first rotary forming wheel 105 further includes an outer edge 107 , cavities 115 , and filled cavities 135 .
  • the second rotary forming wheel 110 further includes an outer edge 108 , cavities 120 and filled cavities 140 .
  • the system 100 is set up and operates similarly to the system 400 of FIG. 4 .
  • the first food product delivery tube 125 is positioned over the first wheel 105 and the second food product delivery tube 130 is positioned over the second wheel 110 . That is, the wheels 105 and 110 do not receive food product from the same food product stream as in FIG. 4 . Rather, each wheel 105 and 110 receives food product from separate food product streams.
  • the first wiping shoe 145 is positioned around a portion of the first wheel 105 and the second shoe 150 is positioned around a portion of the second wheel 110 . The first and second wiping shoes 145 and 150 wipe excess food product from the edges 107 and 108 of the wheels 105 and 110 .
  • the rotary forming wheels 105 and 110 typically are rotated in a downward fashion so that the cavities 135 and 140 at the top of each of the rotary forming wheels are rotated towards each other.
  • the timing of each of the rotary forming wheels 105 and 110 is arranged so that the cavities 135 and 140 along the outer edges 107 and 108 of each of the rotary forming wheels 105 and 110 align with each other at the point where the outer edges 107 and 108 of the two rotary forming wheels 105 and 110 are positioned closest together or touching.
  • a hollow mold is formed by the two cavities 135 and 140 at the point where the outer edges 107 and 108 of the two rotary forming wheels 105 and 110 are positioned closest together or touching.
  • the food product may be delivered from the food product supply system through the hollow tubes 125 and 130 of the food product supply system.
  • the food product supply system typically delivers the food product in a sticky or semi-adhesive state. Due to the orientation of the rotary forming wheels 105 and 110 with respect to the hollow tubes 125 and 130 , the tubes 125 and 130 of the food product supply system may then deliver the food product into the upper most cavity 135 or 140 of each of the rotary forming wheels 105 and 110 .
  • the food product may be continuously supplied or discretely supplied to the cavities by the food product supply system.
  • the rotation of the rotary forming wheels 105 and 110 causes the filled cavities 135 and 140 to become positioned adjacent to each other forming an enclosed mold.
  • the close proximity of the rotary forming wheels 105 and 110 causes the exposed edges of the food product not bounded by the cavity walls, to come into contact with each other.
  • the first and second wiping shoes 145 and 150 wipe excess food product from the edges 107 and 108 of the wheels 105 and 110 .
  • the wiping shoes 145 and 150 ensure that the cavities 135 and 140 do not contain too much food product.
  • the food product in the filled cavity 135 sticks to, or amalgamates with the food product in the filled cavity 140 .
  • Each filled cavity- 135 and 140 releases, or passes the single formed food product 160 as the wheels 105 and 110 continue to rotate thereby separating the filled cavities 135 and 140 from each other.
  • the food product does not stick in the filled cavities 135 and 140 because of the ultrasonic activation of the edges of the filled cavities 135 and 140 .
  • the ultrasonic activation of the filled cavities 135 and 140 produces a non-stick surface by which the formed food product 160 passes, or dislodges from the filled cavities 135 and 140 .
  • the ultrasonically activated wheels 105 and 110 are ultrasonically activated by methods known in the art, or as described in U.S. Pat. No. 5,871,783 issued to Roberto Capodieci, which is herein incorporated by reference in its entirety.
  • the ultrasonic action facilitates shaping by suitably forming the food product and by preventing the food product from sticking to the ultrasonically activated filled cavities 135 and 140 .
  • the ultrasonic energy produced through the ultrasonic activation of the wheels 105 and 110 also vibrates the filled cavities 135 and 140 thereby ensuring the release, or dislodgment, of the formed food product 160 from the filled cavities 135 and 140 . That is, the vibration of the wheels 135 and 140 produced through the ultrasonic activation of the wheels 105 and 110 hinders, or eliminates the possibility of the single formed food product 160 sticking to the filled cavities 135 and 140 , which become unfilled cavities 115 and 120 as the single formed food product 30 passes from the filled cavities 135 and 140 .
  • the single formed food product 160 may then be conveyed to other food product preparation system, such as a coating and/or packaging system.
  • FIG. 2 illustrates an inclusion delivery system 200 according to an embodiment of the present invention.
  • the system 200 includes an inclusion delivery tube 220 , an ultrasonically activated rotary wheel 210 (only one wheel shown), a plurality of inclusions 225 , such as nuts or pieces of nougat, cavities 215 , a food product delivery tube 230 , a wiping shoe 240 , and food product and inclusion-filled cavities 250 .
  • the inclusion delivery system 200 is shown with the food product delivery tube 230 located over the wheel 210 .
  • the inclusion delivery system 200 may also be used with the system 400 of FIG. 4 .
  • the inclusion delivery tube 220 deposits an inclusion, such as a nut or piece of nougat, into a cavity 215 .
  • the wheel 210 is rotated such that the cavity 215 with the inclusion 225 progresses toward the food product delivery tube 230 .
  • the food product delivery tube 230 then deposits food product into the cavity 215 thereby forming a food product and inclusion-filled cavity 250 .
  • the rotation of the wheel 210 causes the food product and inclusion-filled cavity 250 to align with a filled cavity (not shown) or another food product and inclusion-filled cavity (not shown) of another ultrasonically activated rotary wheel (not shown) where the food product forming process described above occurs.
  • one of the rotary wheels may be an ultrasonically activated rotary wheel having cavities while the other wheel may be a rotary wheel having a smooth circumferential edge without any cavities.
  • the wheel with the smooth circumferential edge may or may not be ultrasonically activated.
  • the wheel with cavities is ultrasonically activated.
  • food product is deposited into the cavities of the ultrasonically activated wheel.
  • the wheels are rotated such that food product in a cavity contacts the wheel with the smooth circumferential edge. A single formed food product is dislodged from the cavity, due to the ultrasonic activation of the ultrasonically activated rotary wheel, when the rotation of the wheels causes the filled cavity to separate from the wheel having the smooth circumferential edge.
  • the weight of the food product may cause the formed food product to separate from the wheel having the smooth circumferential edge even if that wheel is not ultrasonically activated.
  • FIG. 3 is a flow chart 300 of methods of ultrasonically rotary forming a food product according to embodiments of the present invention.
  • food product is deposited into a first cavity of a first ultrasonically activated rotary wheel.
  • food product is deposited into a second cavity of a second ultrasonically activated rotary wheel.
  • the second wheel has a smooth circumferential edge, food product may be deposited within a first cavity of a first ultrasonically activated wheel.
  • the first wheel and second wheel are rotated in unison with another such that the food product in the first cavity (and in the second cavity) is rotated toward the point where the wheels are closest to, or touching one another.
  • the food product in the first cavity contacts the second rotary wheel.
  • the food product in the first cavity contacts the food product in the second cavity when the cavities are aligned.
  • the food product in the first cavity contacts the smooth circumferential edge of the second wheel.
  • the contacting steps 310 or 312 form a single food product at step 314 .
  • the continued rotation of the wheels and ultrasonic activation of at least one of the wheels causes the single formed food product to pass, or dislodge, from the wheels.
  • embodiments of the present invention provide a system and method of rotary forming individually formed food product without a food product web. Because the present invention does not utilize a food product web to dislodge food product from cavities of the rotary forming wheels, the present invention provides a more efficient and cost-effective system and method as compared to prior systems and method of rotary forming food products.

Abstract

A system and method of ultrasonic rotary forming food products is provided. The system (400) includes a first ultrasonically activated rotary wheel (412) including a first cavity (414) for receiving a food product and a secondary rotary wheel (418). The first ultrasonically activated rotary wheel and said second rotary wheel rotate such that food product within the first cavity contacts the second rotary wheel to form an individually formed food product. The product passes from the first cavity to form a single formed food product. The system also includes a food product delivery system for delivering food product to the first ultrasonically activated rotary wheel and the second rotary wheel. The second rotary wheel may also be an ultrasonically activated rotary wheel having cavities (420) formed on the outer circumferential edge (415) of the wheel. The food product delivery system may include a single food product delivery tube (424) that simultaneously delivers food product from the same stream to both rotary wheels.

Description

    BACKGROUND OF THE INVENTION
  • The present invention generally relates to a system and method of rotary forming food products. In particular, the present invention relates to a system and method of ultrasonically rotary forming food products, such as confectionary.
  • Millions of pounds of food products such as snack foods, cereals, and pet foods, for example, are purchased and consumed every year. Typically, many of these types of food products are manufactured and sold in the form of small, spherical, bite-sized shapes. For example, many popular snack foods and dry cereals today are packaged and sold in small, bite-sized shapes. Such bite-sized, spherical or pellet shapes may provide for convenient manufacturing and packaging of the food product as well as being easily consumable by consumers. Additionally, dry pet foods, such as dog food, for example, are also typically sold in small, pellet-shaped form. Small, pellet-shaped dry pet foods may also provide convenient manufacturing and packaging of the pet food products as well as being easily consumable by pets.
  • One method of manufacturing these small, bite-sized, oblong, spherical, or pellet3 shaped food products is rotary forming. Rotary forming of food products has been a widely used practice in the field of food product manufacturing for years. Traditionally, rotary forming of food products has typically been accomplished by using one of two types of systems: puddle infeed rotary systems or slab infeed rotary systems. Puddle infeed rotary systems supply “puddles” or droplets of food products to rotary forming wheels. Slab infeed rotary systems provide a continuous slab to the rotary wheels. Each one of these rotary forming systems may present a number of advantages and drawbacks.
  • Puddle and slab infeed rotary systems typically include a food product input system and a pair of rotary forming wheels. Each of the rotary forming wheels typically includes a number of cavities positioned around the outer edge of each of the rotary forming wheels. The cavities generally extend inward from the outer edge of the rotary forming wheel towards the center of the rotary forming wheel forming a plurality of cavities around the outer edge of the rotary forming wheels. The number of cavities and the size and shape of the cavities of each rotary forming wheel in a pair of rotary forming wheels are typically the same. That is, each cavity on one rotary forming wheel typically has a counterpart of the same shape and size on the other rotary forming wheel in the pair. The number of cavities, as well as the width and depth of the cavities on different pairs of rotary forming wheels may be adjusted depending on the width of the outer edges of the rotary forming wheels and the desired size and depth of a formed food product.
  • Each rotary forming wheel typically is also similar in size, or is the same size as its counterpart wheel. Further, each wheel is oriented adjacent to its counterpart so that the center point of each rotary forming wheel is along the same horizontal plane. That is, the rotary forming wheels are typically positioned directly adjacent to each other with the outer edges of each of the rotary wheels facing each other. The rotary forming wheels are also typically positioned so that the outer edges of each of the rotary forming wheels are in close proximity to, or touching the other rotary forming wheel.
  • In addition to the pair of rotary forming wheels, typical infeed rotary systems include a food product input system. The food product input system is typically used to introduce a desired food product into the cavities in the outer edges of the rotary forming wheels. The food product input system may vary depending on the type of food product desired to be introduced into the cavities of the rotary forming wheels. Typically, however, a single tube may be used to deliver food product between a pair of rotary forming wheels. Alternatively, a pair of hollow tubes or a pair of chutes, for example, may be used to deliver the food product to the cavity of the rotary forming wheels. That is, each wheel may be supplied food product by a separate food product delivery tube.
  • Some infeed rotary systems are configured so that the hollow tubes of the food product input system are positioned above the outer edge of the pair of rotary forming wheels. One end of each of the hollow tubes is typically attached to a food product supply system that supplies the desired food product or products to the infeed rotary system. The end of each of the hollow tubes not attached to the food product supply system is typically positioned in a downward orientation directly over the top of the outer edge of the rotary forming wheels so that one tube is over each rotary forming wheel. That is, the downward end of one tube is positioned over one rotary forming wheel while the downward end of the other tube is positioned over the other forming wheel in the pair.
  • In operation, the rotary forming wheels typically are rotated in a downward fashion so that the cavities at the top of each of the rotary forming wheels are rotated towards each other. The timing of each of the rotary forming wheels is arranged so that the cavities along the outer edges of each of the rotary forming wheels align with each other at the point where the outer edges of the two rotary forming wheels are positioned closest together or touching. When the cavities of each of the rotary forming wheels align, a hollow mold is formed by the two cavities at the point where the outer edges of the two rotary forming wheels are positioned closest together or touching.
  • Once the rotary forming wheels are rotated, the food product may be delivered from the food product supply system through the hollow tube, or tubes of the food product input system. The food product supply system typically delivers the food product in a sticky or semi-adhesive state. Due to the orientation of the rotary forming wheels with respect to the hollow tubes, the tubes of the food product input system then may deliver the food product into the upper most cavity of each of the rotary forming wheels. The food product may be continuously supplied (such as in a slab infeed system) or discretely supplied (such as in a puddle infeed system) to the cavities by the food product input system. Once the food product is delivered and fills the upper most cavity of each rotary forming wheel, the rotation of the rotary forming wheels causes the filled cavities to become positioned adjacent to each other forming an enclosed mold as described above. As the cavities of the rotary forming tools filled with food product become aligned adjacent to each other, the close proximity of the rotary forming wheels causes the exposed edges of the food product not bounded by the cavity walls, to come into contact with each other. Typically, the sticky or semi-adhesive properties of the food product cause the contacting exposed edges of food product from each cavity to adhere or “stick together” forming a formed food product.
  • As the rotary forming wheels continue to rotate downward, the cavities of each rotary forming wheel containing the formed food product begin to separate. Each formed food product is connected to other formed food product through a “web” of food product. That is, a sheet of food product having a plurality of spherical, oblong or pellet shaped protrusions connected through food product webbing is dislodged from the wheels. Once the rotary forming wheels rotate sufficiently so that the cavities of each rotary forming wheel are completely separated, the formed food product included within the food product web typically becomes dislodged, or “falls out” of the rotary forming wheels due to gravity. The falling formed food product web having a plurality of food product protrusions may then received by a conveyor, for example, for further downstream processing, such as separating the individual food product shapes from the food product webbing.
  • The food product web typically is necessary in order for the food product to dislodge, separate, or otherwise pass from the rotary forming wheels. The weight of the food product web ensures that the food product separates, dislodges, or passes from the wheels. Otherwise, the weight of each individual bite-sized food product is insufficient to dislodge the food product from the cavity and the food product sticks within the cavity, or cavities, of the wheel(s). That is, the food product depends on gravity to dislodge from the wheels. However, the cohesive nature of the food product causes individual food product pellets, or shapes to stick to the cavities. The cohesive force of the individually formed food product with a cavity or cavities typically is greater than the gravitational force generated by the weight of the individually formed food product. Thus, an individually formed food product not connected to other individually formed food product through a web of food product typically sticks to the cavities, or a cavity, of the rotary forming wheel(s). Without a food product web, food product typically sticks within a cavity or cavities the rotary forming wheel(s) and does not dislodge.
  • The use of the food product web, however, offers disadvantages as well. First, the food product web produces wasted food product material. That is, because the individual bite-sized food product is used in the final product, the webbing that holds the individual pieces together typically is discarded, or recycled after the individual pieces are separated. If the webbing is discarded, the wasted material adds to overall cost of the process. If the webbing is recycled, the process of recycling adds another step to the process of manufacturing individual food product pieces through rotary forming, thereby decreasing the efficiency of the food product manufacturing process.
  • Thus, a need has existed for a rotary forming food product system that does not utilize a food product web. Further, a need has existed for a more efficient and cost effective system and method of rotary forming food product.
  • SUMMARY OF THE INVENTION
  • A system for ultrasonic rotary forming of food products has been developed. The system includes a first ultrasonically activated rotary wheel including a first cavity for receiving a food product and a second rotary wheel. The first ultrasonically activated rotary wheel and said second rotary wheel rotate such that food product within the first cavity contacts the second rotary wheel to form an individually-formed food product. The food product passes from the first cavity upon continued rotation of the wheels. Because the rotary wheel is ultrasonically actuated, food product does not stick in the cavity, even without the use of the food product web. The system also includes a food product delivery system for delivering food product to the first ultrasonically activated rotary wheel and the second rotary wheel. The food product delivery system may include a single food product delivery tube that simultaneously delivers food product from the same stream, slab, puddle, droplet, or line to both rotary wheels. Alternatively, the food product delivery system may include a first hollow tube delivering food product to the first rotary wheel and a second hollow tube delivering food product to the second rotary wheel.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The foregoing summary, as well as the following detailed description of the preferred embodiments of the present invention, will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings, embodiments, which are present preferred. It should be understood, however, that the present invention is not limited to the precise arrangements and instrumentality shown in the attached drawings.
  • FIG. 1 illustrates an ultrasonic rotary forming system according to an alternative embodiment of the present invention.
  • FIG. 2 illustrates an inclusion delivery system according to an embodiment of the present invention.
  • FIG. 3 is a flow chart of methods of ultrasonically rotary forming a food product according to embodiments of the present invention.
  • FIG. 4 illustrates an ultrasonic rotary forming system according to a preferred embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 4 illustrates an ultrasonic rotary forming system 400 according to a preferred embodiment of the present invention. The forming system 400 includes a first ultrasonically activated rotary wheel 412, a second ultrasonically activated rotary wheel 418, a food product delivery tube 424, a stream of food product 426 dispensed from the delivery tube 424 and a single formed food product 430. The first ultrasonically activated rotary wheel 412 includes a plurality of empty cavities 414 and a cavity 416 filled with food product 426. Likewise, the second ultrasonically activated rotary wheel 18 includes a plurality of empty cavities 420 and a cavity 422 filled with food product 426. The empty cavities 414 and 420 and the filled cavities 416 and 422 are located on outer circumferential edges 413 and 415 of the first and second ultrasonically activated rotary wheels 412 and 418, respectively.
  • The number of cavities 414 and 420 and the size and shape of the cavities 414 and 420 of the wheels 412 and 418 may be adjusted depending on the width of the outer edges 413 and 415 and the desired size, shape, and depth of the formed food product 430. The first and second ultrasonically activated rotary wheels 412 and 418 are each connected to an actuation system (not shown) that rotates the wheels 412 and 418. The rotary forming wheels 412 and 418 are similar in size or are the same size as each other and are oriented adjacent to each other so that the center point of each rotary forming wheel 412 and 418 is along the same horizontal plane. That is, the rotary forming wheels 412 and 418 are positioned directly adjacent to each other with the outer edges 413 and 415 of each of the rotary wheels 412 and 418 facing each other. The rotary forming wheels 412 and 418 are also positioned so that the outer edges 413 and 415 of each of the rotary forming wheels 412 and 418 are in close proximity to or touching each other.
  • The food product delivery tube 424 is positioned over the juncture of the two wheels 412 and 418, or the point where the wheels 412 and 418 are closest to each other. Preferably, the food delivery tube 424 is positioned such that delivered food product 424 fills the cavities 416 and 422 in equal amounts. The food product delivery tube 424 delivers food product, such as chocolate, that is supplied to the food product delivery tube 424 from a food product delivery system (not shown). The wheels 412 and 418 may be oriented in a vertical or horizontal orientation, with respect to the plane of the floor upon which the system 400 is positioned. If the wheels 412 and 418 are oriented in a horizontal orientation, a conveyor system may be used to convey the food product 426 to and from the wheels 412 and 418. Alternatively, the food product delivery tube 424 may be positioned over the juncture of the two horizontally oriented wheels 412 and 418 and the single food product 430 may drop from the wheels 412 and 418.
  • In operation, each ultrasonically activated wheel 412 and 418 is rotated such that one of the cavities 414 and one of the cavities 420 align at the point where food product 426 is delivered to the wheels 412 and 418. The rotary forming wheels 412 and 418 are rotated in a downward fashion so that the cavities 414 and 420 at the top of each of the rotary forming wheels 412 and 418 are rotated towards each other. As shown in FIG. 4, the wheel 412 is rotated in a clock-wise fashion while the wheel 418 is rotated in a counter clock-wise direction. The timing of rotation of each of the rotary forming wheels 412 and 418 is arranged so that the cavities 414 and 420 along the outer edges 413 and 415 of each of the rotary forming wheels 412 and 418 align with each other at the point where the outer edges 413 and 415 of the two rotary forming wheels 412 and 418 are positioned closest together or touching. When the cavities of each of the rotary forming wheels 412 and 418 align, a hollow mold is formed by the two cavities 416 and 422 at the point where the outer edges 413 and 415 of the two rotary forming wheels 412 and 418 are positioned closest together or touching.
  • When the cavities 414 and 420 align, the cavities 414 and 420 receive food product 426. The filled cavities 416 and 422 represent cavities 414 and 420 filled with food product 426. Each cavity 414 and 420 receives food product 426 from the food product delivery tube 424 as the wheels 412 and 418 rotate such that cavities 414 and 420 align with each other. The food product delivery tube 424 simultaneously supplies food product 426 to both wheels 412 and 418 from the same stream, puddle, slab or line of food product 426. The ultrasonic activation of the wheels 412 and 418 acts in conjunction with the edges of the filled cavities 416 and 422, to separate the food product 426 from the steady stream of food product 426 that is supplied from the food product delivery tube 424. That is, the food product 426 is pinched between the ultrasonically activated wheels 412 and 418, and is separated from the stream of food product 426 supplied from the food product delivery tube 424. Thus, the food product 426 breaks off from the stream of supplied food product 426 as it is deposited into the cavities 416 and 422.
  • The food product delivery system delivers the food product to the wheels 412 and 418 via the food product delivery tube 424 in a sticky or semi-adhesive state. The food product 426 may be continuously supplied or discretely supplied to the cavities 416 and 422 by the food product delivery system. The food product 426 in the filled cavity 416 sticks to, or amalgamates with the food product 426 in the filled cavity 422. Each filled cavity 416 and 422 releases, or passes the single formed food product as the wheels 412 and 418 continue to rotate thereby separating the filled cavities 416 and 422 from each other. The food product 426 does not stick in the filled cavities 416 and 422 because of the ultrasonic activation of the edges of the filled cavities 416 and 422.
  • The ultrasonic activation of the filled cavities 416 and 422 produces a non-stick surface by which the formed food product 430 passes, or dislodges from the filled cavities 416 and 422. The ultrasonically activated wheels 412 and 418 are ultrasonically activated by methods known in the art, or as described in U.S. Pat. No. 5,871,783 issued to Roberto Capodieci, which is herein incorporated by reference in its entirety. The ultrasonic action facilitates shaping by suitably forming the food product 426 and by preventing the food product 426 from sticking to the ultrasonically activated filled cavities 416 and 422. The ultrasonic energy produced through the ultrasonic activation of the wheels 412 and 418 also vibrates the filled cavities 416 and 422 thereby ensuring the release, or dislodgment, of the formed food product 430 from the filled cavities 416 and 422. That is, the vibration of the wheels 412 and 418 produced through the ultrasonic activation of the wheels 412 and 418 hinders, or eliminates the possibility of the single formed food product 430 sticking to the filled cavities 416 and 422, which become unfilled cavities 414 and 420 as the single formed food product 430 passes from the filled cavities 416 and 422. The single formed food product 430 may then be conveyed to other food product preparation system, such as a coating and/or packaging system.
  • FIG. 1 illustrates an ultrasonic rotary forming system 100 according to an alternative embodiment of the present invention. The forming system 100 includes a first ultrasonically activated rotary forming wheel 105, a second ultrasonically activated rotary forming wheel 110, a first food product delivery tube 125, a second food product delivery tube 130, a first wiping shoe 145, a second wiping shoe 150, and a formed food product 160. The first rotary forming wheel 105 further includes an outer edge 107, cavities 115, and filled cavities 135. The second rotary forming wheel 110 further includes an outer edge 108, cavities 120 and filled cavities 140.
  • The system 100 is set up and operates similarly to the system 400 of FIG. 4. However, instead of a single food delivery tube positioned over the juncture of the two wheels 105 and 110, the first food product delivery tube 125 is positioned over the first wheel 105 and the second food product delivery tube 130 is positioned over the second wheel 110. That is, the wheels 105 and 110 do not receive food product from the same food product stream as in FIG. 4. Rather, each wheel 105 and 110 receives food product from separate food product streams. Additionally, the first wiping shoe 145 is positioned around a portion of the first wheel 105 and the second shoe 150 is positioned around a portion of the second wheel 110. The first and second wiping shoes 145 and 150 wipe excess food product from the edges 107 and 108 of the wheels 105 and 110.
  • In operation, the rotary forming wheels 105 and 110 typically are rotated in a downward fashion so that the cavities 135 and 140 at the top of each of the rotary forming wheels are rotated towards each other. The timing of each of the rotary forming wheels 105 and 110 is arranged so that the cavities 135 and 140 along the outer edges 107 and 108 of each of the rotary forming wheels 105 and 110 align with each other at the point where the outer edges 107 and 108 of the two rotary forming wheels 105 and 110 are positioned closest together or touching. When the cavities 135 and 140 of each of the rotary forming wheels align 105 and 110, a hollow mold is formed by the two cavities 135 and 140 at the point where the outer edges 107 and 108 of the two rotary forming wheels 105 and 110 are positioned closest together or touching.
  • Once the rotary forming wheels 105 and 110 are rotated, the food product may be delivered from the food product supply system through the hollow tubes 125 and 130 of the food product supply system. The food product supply system typically delivers the food product in a sticky or semi-adhesive state. Due to the orientation of the rotary forming wheels 105 and 110 with respect to the hollow tubes 125 and 130, the tubes 125 and 130 of the food product supply system may then deliver the food product into the upper most cavity 135 or 140 of each of the rotary forming wheels 105 and 110. The food product may be continuously supplied or discretely supplied to the cavities by the food product supply system.
  • Once the food product is delivered and fills the upper most cavities 135 and 140 of each rotary forming wheel 105 and 110, creating a “puddle” of food product in the cavities 135 and 140, the rotation of the rotary forming wheels 105 and 110 causes the filled cavities 135 and 140 to become positioned adjacent to each other forming an enclosed mold. As the filled cavities 135 and 140 of the rotary forming wheels 105 and 110 align adjacent to each other, the close proximity of the rotary forming wheels 105 and 110 causes the exposed edges of the food product not bounded by the cavity walls, to come into contact with each other. As mentioned above, the first and second wiping shoes 145 and 150 wipe excess food product from the edges 107 and 108 of the wheels 105 and 110. The wiping shoes 145 and 150 ensure that the cavities 135 and 140 do not contain too much food product.
  • The food product in the filled cavity 135 sticks to, or amalgamates with the food product in the filled cavity 140. Each filled cavity-135 and 140 releases, or passes the single formed food product 160 as the wheels 105 and 110 continue to rotate thereby separating the filled cavities 135 and 140 from each other. The food product does not stick in the filled cavities 135 and 140 because of the ultrasonic activation of the edges of the filled cavities 135 and 140.
  • The ultrasonic activation of the filled cavities 135 and 140 produces a non-stick surface by which the formed food product 160 passes, or dislodges from the filled cavities 135 and 140. Similar to FIG. 1, the ultrasonically activated wheels 105 and 110 are ultrasonically activated by methods known in the art, or as described in U.S. Pat. No. 5,871,783 issued to Roberto Capodieci, which is herein incorporated by reference in its entirety. The ultrasonic action facilitates shaping by suitably forming the food product and by preventing the food product from sticking to the ultrasonically activated filled cavities 135 and 140. The ultrasonic energy produced through the ultrasonic activation of the wheels 105 and 110 also vibrates the filled cavities 135 and 140 thereby ensuring the release, or dislodgment, of the formed food product 160 from the filled cavities 135 and 140. That is, the vibration of the wheels 135 and 140 produced through the ultrasonic activation of the wheels 105 and 110 hinders, or eliminates the possibility of the single formed food product 160 sticking to the filled cavities 135 and 140, which become unfilled cavities 115 and 120 as the single formed food product 30 passes from the filled cavities 135 and 140. The single formed food product 160 may then be conveyed to other food product preparation system, such as a coating and/or packaging system.
  • FIG. 2 illustrates an inclusion delivery system 200 according to an embodiment of the present invention. The system 200 includes an inclusion delivery tube 220, an ultrasonically activated rotary wheel 210 (only one wheel shown), a plurality of inclusions 225, such as nuts or pieces of nougat, cavities 215, a food product delivery tube 230, a wiping shoe 240, and food product and inclusion-filled cavities 250. As shown in FIG. 2, the inclusion delivery system 200 is shown with the food product delivery tube 230 located over the wheel 210. However, the inclusion delivery system 200 may also be used with the system 400 of FIG. 4.
  • In operation, the inclusion delivery tube 220 deposits an inclusion, such as a nut or piece of nougat, into a cavity 215. The wheel 210 is rotated such that the cavity 215 with the inclusion 225 progresses toward the food product delivery tube 230. The food product delivery tube 230 then deposits food product into the cavity 215 thereby forming a food product and inclusion-filled cavity 250. The rotation of the wheel 210 causes the food product and inclusion-filled cavity 250 to align with a filled cavity (not shown) or another food product and inclusion-filled cavity (not shown) of another ultrasonically activated rotary wheel (not shown) where the food product forming process described above occurs.
  • Alternatively, with respect to FIGS. 1-2 and 4, one of the rotary wheels may be an ultrasonically activated rotary wheel having cavities while the other wheel may be a rotary wheel having a smooth circumferential edge without any cavities. The wheel with the smooth circumferential edge may or may not be ultrasonically activated. However, the wheel with cavities is ultrasonically activated. In operation, food product is deposited into the cavities of the ultrasonically activated wheel. The wheels are rotated such that food product in a cavity contacts the wheel with the smooth circumferential edge. A single formed food product is dislodged from the cavity, due to the ultrasonic activation of the ultrasonically activated rotary wheel, when the rotation of the wheels causes the filled cavity to separate from the wheel having the smooth circumferential edge. Because the wheel having the smooth circumferential edge does not have any cavity or recess into which food product may be deposited, the weight of the food product may cause the formed food product to separate from the wheel having the smooth circumferential edge even if that wheel is not ultrasonically activated.
  • FIG. 3 is a flow chart 300 of methods of ultrasonically rotary forming a food product according to embodiments of the present invention. At step 302, food product is deposited into a first cavity of a first ultrasonically activated rotary wheel. Also, at step 302, food product is deposited into a second cavity of a second ultrasonically activated rotary wheel. Alternatively, at step 304, if the second wheel has a smooth circumferential edge, food product may be deposited within a first cavity of a first ultrasonically activated wheel.
  • Next, at step 306, the first wheel and second wheel are rotated in unison with another such that the food product in the first cavity (and in the second cavity) is rotated toward the point where the wheels are closest to, or touching one another. At step 308, when the wheels are closest to, or touching one another, the food product in the first cavity contacts the second rotary wheel. At step 310, the food product in the first cavity contacts the food product in the second cavity when the cavities are aligned. Alternatively, at step 312, the food product in the first cavity contacts the smooth circumferential edge of the second wheel. The contacting steps 310 or 312, form a single food product at step 314. At step 316, the continued rotation of the wheels and ultrasonic activation of at least one of the wheels causes the single formed food product to pass, or dislodge, from the wheels.
  • Therefore, embodiments of the present invention provide a system and method of rotary forming individually formed food product without a food product web. Because the present invention does not utilize a food product web to dislodge food product from cavities of the rotary forming wheels, the present invention provides a more efficient and cost-effective system and method as compared to prior systems and method of rotary forming food products.
  • While particular elements, embodiments and applications of the present invention have been shown and described, it will be understood, of course, that the invention is not limited thereto since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings. It is therefore contemplated by the appended claims to cover such modifications that incorporate those features coming within the scope of the invention.

Claims (45)

1. A system for ultrasonic rotary forming of food products, said system including:
a first ultrasonically activated rotary wheel including a first cavity for receiving a food product; and
a second rotary wheel, said first ultrasonically activated rotary wheel and said second rotary wheel rotating such that food product within said first cavity contacts said second rotary wheel to form a food product.
2. The system of claim 1 wherein said food product dislodges from said first cavity upon continued rotation of said first ultrasonically activated rotary wheel and said second rotary wheel.
3. The system of claim 1 wherein said second rotary wheel is an ultrasonically activated rotary wheel including a second cavity for receiving food product, said first ultrasonically activated rotary wheel and said second ultrasonically activated rotary wheel rotating such that food product within said first cavity contacts food product within said second cavity to form said food product.
4. The system of claim 1 further including a food product delivery system for delivering food product to said first ultrasonically activated rotary wheel and said second rotary wheel.
5. The system of claim 1 wherein said second rotary wheel is an ultrasonically activated rotary wheel.
6. The system of claim 1 wherein said second rotary wheel has a smooth circumferential edge.
7. The system of claim 1 further including a food product delivery system wherein said food product delivery system is comprised of a first tube delivering a food product to said first ultrasonically activated rotary wheel and a second tube delivering a food product to said second rotary wheel.
8. The system of claim 1 further including a food product delivery system wherein said food product delivery system is comprised of a food product delivery tube delivering a food product to said first ultrasonically activated rotary wheel and to said second rotary wheel.
9. The system of claim 1 further including a first wiping shoe for wiping excess food product from an outer edge of said first ultrasonically activated rotary wheel and a second wiping shoe for wiping excess food product from an outer edge of said second rotary wheel.
10. The system of claim 1 further including an inclusion delivery system for providing an inclusion to said first cavity of said first ultrasonically activated rotary wheel.
11. The system of claim 10 further including an inclusion delivery system for providing an inclusion to said first cavity, and for providing an inclusion to said second cavity.
12. The system of claim 1 wherein said first ultrasonically activated rotary wheel includes a plurality of cavities for receiving food product, and wherein said second rotary wheel is a second ultrasonically activated rotary wheel including a plurality of cavities for receiving food product.
13. A system for ultrasonic rotary forming of food products, said system including:
a first ultrasonically activated rotary wheel including a first cavity for receiving a food product;
a second rotary wheel, said first ultrasonically activated rotary wheel and said second rotary wheel rotating such that food product within said first cavity contacts said second rotary wheel to form an individually-formed food product;
a food product delivery system for delivering food product to said first ultrasonically activated rotary wheel and said second rotary wheel; and
an inclusion delivery system for providing an inclusion to said first cavity of said first ultrasonically activated rotary wheel.
14. The system of claim 13 wherein said food product passes from said first cavity upon continued rotation of said first ultrasonically activated rotary wheel and said second rotary wheel.
15. The system of claim 13 wherein said second rotary wheel is an ultrasonically activated rotary wheel including a second cavity for receiving food product, wherein said first ultrasonically activated rotary wheel and said second ultrasonically activated rotary wheel rotate such that food product within said first cavity contacts food product within said second cavity to form a single food product, and wherein said inclusion delivery system provides an inclusion to said second cavity of said second ultrasonically activated rotary wheel prior to said first cavity contacting said second cavity.
16. The system of claim 13 wherein said second rotary wheel has a smooth circumferential edge.
17. The system of claim 13 wherein said food product delivery system includes a hollow tube delivering a food product to said first ultrasonically activated rotary wheel and a hollow tube delivering a food product to said second rotary wheel.
18. The system of claim 13 wherein said food product delivery system includes a food product delivery tube delivering a food product to said first ultrasonically activated rotary wheel and to said second rotary wheel.
19. The system of claim 13 further including a first wiping shoe for wiping excess food product from an outer edge of said first ultrasonically activated rotary wheel and a second wiping shoe for wiping excess food product from an outer edge of said second rotary wheel.
20. The system of claim 13 wherein said first ultrasonically activated rotary wheel includes a plurality of cavities for receiving food product, and wherein said second rotary wheel is a second ultrasonically activated rotary wheel including a plurality of cavities for receiving food product.
21. A system for ultrasonic rotary forming of food products, said system including:
a first ultrasonically activated rotary wheel including a first cavity for receiving a food product; and
a second ultrasonically activated rotary wheel including a second cavity for receiving food product, said first ultrasonically activated rotary wheel and said second ultrasonically activated rotary wheel rotating such that food product within said first cavity contacts food product within said second cavity to form a single food product.
22. The system of claim 21 wherein said single food product passes from said first and second cavities upon continued rotation of said first and second ultrasonically activated rotary wheels.
23. The system of claim 21 further including a food product delivery system for delivering food product to said first ultrasonically activated rotary wheel and said second ultrasonically activated rotary wheel.
24. The system of claim 21 further including a food product delivery system wherein said food product delivery system is comprised of a first hollow tube delivering a food product to said first ultrasonically activated rotary wheel and a second hollow tube delivering a food product to said second ultrasonically activated rotary wheel.
25. The system of claim 21 further including a food product delivery system wherein said food product delivery system is comprised of a food product delivery tube delivering a food product to said first ultrasonically activated rotary wheel and to said second rotary wheel.
26. The system of claim 21 further including a first wiping shoe for wiping excess food product from an outer edge of said first ultrasonically activated rotary wheel and a second wiping shoe for wiping excess food product from an outer edge of said second ultrasonically activated rotary wheel.
27. The system of claim 21 further including an inclusion delivery system for providing an inclusion to said first cavity, and for providing an inclusion to said second cavity.
28. The system of claim 21 wherein said first ultrasonically activated rotary wheel includes a plurality of cavities for receiving food product, and said second ultrasonically activated rotary wheel includes a plurality of cavities for receiving food product.
29. A method of ultrasonically rotary forming food products, said method including:
depositing food product within a first cavity of a first ultrasonically activated rotary wheel;
rotating the first ultrasonically activated rotary wheel in conjunction with a second rotary wheel; and
contacting the food product in the first cavity with the second rotary wheel to form a food product.
30. The system of claim 29 further including passing the single food product from the first ultrasonically activated rotary wheel and the second rotary wheel upon continued rotation of the first ultrasonically activated rotary wheel and the second rotary wheel.
31. The method of claim 29 further including:
ultrasonically activating the second rotary wheel; and
depositing food product within a second cavity of the second rotary wheel,
wherein said contacting step includes contacting the food product within the first cavity with the food product within the second cavity to form a single food product.
32. The method of claim 29 further including ultrasonically activating the second rotary wheel.
33. The method of claim 29 further including forming a smooth circumferential edge on the second rotary wheel.
34. The method of claim 29 further including delivering food product to the first ultrasonically activated rotary wheel with a first tube and delivering food product to the second rotary wheel with a second tube.
35. The method of claim 29 further including delivering food product to the first ultrasonically activated rotary wheel and the second rotary wheel with a food product delivery tube.
36. The method of claim 29 further including wiping excess food product from an outer edge of said first ultrasonically activated rotary wheel with a first wiping shoe and wiping excess food product from an outer edge of said second rotary wheel with a second wiping shoe.
37. The method of claim 29 further including providing an inclusion to the first cavity of the first ultrasonically activated rotary wheel prior to said contacting step.
38. The method of claim 31 further including providing an inclusion to the first cavity, and providing an inclusion to the second cavity prior to said contacting step.
39. A method of ultrasonically rotary forming food products, said method including:
depositing food product within a first cavity of a first ultrasonically activated rotary wheel;
depositing food product within a second cavity of a second ultrasonically activated rotary wheel;
rotating the first ultrasonically activated rotary wheel in conjunction with the second ultrasonically activated rotary wheel; and
contacting the food product in the first cavity with the food product in the second cavity of the second ultrasonically activated rotary wheel to form a food product.
40. The method of claim 39 further including dislodging the food product from the first ultrasonically activated rotary wheel and the second rotary wheel upon continued rotation of the first ultrasonically activated rotary wheel and the second rotary wheel.
41. The method of claim 39 further including delivering food product to the first ultrasonically activated rotary wheel with a first tube and delivering food product to the second rotary wheel with a second tube.
42. The method of claim 39 further including delivering food product to the first ultrasonically activated rotary wheel and the second rotary wheel with a food product delivery tube.
43. The method of claim 39 further including wiping excess food product from an outer edge of said first ultrasonically activated rotary wheel with a first wiping shoe and wiping excess food product from an outer edge of said second rotary wheel with a second wiping shoe.
44. The method of claim 39 further including providing an inclusion to the first cavity of the first ultrasonically activated rotary wheel prior to said contacting step.
45. The method of claim 39 further including providing an inclusion to the first cavity, and providing an inclusion to the second cavity prior to said contacting step.
US10/494,402 2001-10-26 2002-10-25 Ultrasonic rotary forming of food products Abandoned US20050019455A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/494,402 US20050019455A1 (en) 2001-10-26 2002-10-25 Ultrasonic rotary forming of food products

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/046,329 US6635292B2 (en) 2001-10-26 2001-10-26 Ultrasonic rotary forming of food products
PCT/US2002/034372 WO2003034835A1 (en) 2001-10-26 2002-10-25 Ultrasonic rotary forming of food products
US10/494,402 US20050019455A1 (en) 2001-10-26 2002-10-25 Ultrasonic rotary forming of food products

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US10/046,329 Continuation-In-Part US6635292B2 (en) 2001-10-26 2001-10-26 Ultrasonic rotary forming of food products

Publications (1)

Publication Number Publication Date
US20050019455A1 true US20050019455A1 (en) 2005-01-27

Family

ID=21942872

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/046,329 Expired - Lifetime US6635292B2 (en) 2001-10-26 2001-10-26 Ultrasonic rotary forming of food products
US10/494,402 Abandoned US20050019455A1 (en) 2001-10-26 2002-10-25 Ultrasonic rotary forming of food products

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/046,329 Expired - Lifetime US6635292B2 (en) 2001-10-26 2001-10-26 Ultrasonic rotary forming of food products

Country Status (6)

Country Link
US (2) US6635292B2 (en)
AU (1) AU2002342154B2 (en)
CA (1) CA2464431C (en)
DE (1) DE10297378T5 (en)
GB (1) GB2396838B (en)
WO (1) WO2003034835A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076182A1 (en) * 2003-07-08 2007-04-05 Nikon Corporation Wafer table for immersion lithography
WO2007126430A1 (en) 2005-12-23 2007-11-08 Cadbury Adams Usa Llc Compositions providing a heating sensation for oral or dermal delivery
US20080065099A1 (en) * 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Side looking minimally invasive surgery instrument assembly
EP2478777A1 (en) 2005-12-23 2012-07-25 Kraft Foods Global Brands LLC Composition providing a cooling sensation substantially similar to that provided by menthol
EP2559424A1 (en) 2005-10-05 2013-02-20 Kraft Foods Global Brands LLC Cooling composition comprising trimethyl isopropyl butanamide

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6574944B2 (en) 2001-06-19 2003-06-10 Mars Incorporated Method and system for ultrasonic sealing of food product packaging
US20040134327A1 (en) * 2002-11-20 2004-07-15 Roberto Capodieci Apparatus and method for shaped cutting and slitting of food products
US20040146616A1 (en) * 2003-01-29 2004-07-29 Thorson James S. Method and system for ultrasonic surface modification of food products
US8491950B2 (en) * 2004-04-29 2013-07-23 Del Monte Corporation Cat treat
US7621734B2 (en) 2004-07-28 2009-11-24 Mars, Incorporated Apparatus and process for preparing confectionery having an inclusion therein using forming rolls and a forming pin
US7442026B2 (en) * 2004-08-23 2008-10-28 Wm. Wrigley Jr. Company Apparatuses for producing alternatively shaped confectionary products
US20070199423A1 (en) * 2006-01-20 2007-08-30 Roberto Capodieci Apparatus and method for ultrasonic cutting
CH697341B1 (en) * 2007-05-29 2008-08-29 Cramford Services Llc Procedure and apparatus for the realization of solid forms for food, pharmaceutical, pesticide and agricultural.
ITBO20070458A1 (en) * 2007-07-04 2009-01-05 Ima Spa APPARATUS FOR THE PRODUCTION OF FOODSTUFFS, IN PARTICULAR CAKES.
US8268374B2 (en) * 2008-08-18 2012-09-18 Creative Resonance, Inc. Pet food and process of manufacture
US8709517B2 (en) * 2008-08-18 2014-04-29 Creative Resonance, Inc. Novelty snacks and method of manufacture of same
AU2015200272A1 (en) * 2012-03-26 2015-02-12 Mars, Incorporated Ultrasonic rotary molding
EP2891405B1 (en) 2012-03-26 2016-12-21 Mars, Incorporated Ultrasonic rotary molding
US9532946B2 (en) 2012-11-20 2017-01-03 Intervet Inc. Manufacturing of semi-plastic pharmaceutical dosage units
WO2014152336A1 (en) * 2013-03-15 2014-09-25 Mars, Incorporated Cutter having varied cavity draft angle
CN111972467B (en) * 2020-06-30 2022-11-11 泉州职业技术大学 Edible muddy meat processing device

Citations (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2145941A (en) * 1938-04-18 1939-02-07 Stokes & Smith Co Method of and apparatus for making packages
US3029751A (en) * 1958-11-26 1962-04-17 Sonneman Products Inc Popped corn forming machine and method
US3031804A (en) * 1958-06-02 1962-05-01 Charles J Thatcher Ultrasonic slicing tool and method
US3044510A (en) * 1959-04-09 1962-07-17 Schneider Machine Company Vibratory slicing apparatus
US3199437A (en) * 1963-02-25 1965-08-10 Silas E Nelsen Infusion apparatus
US3434906A (en) * 1966-06-20 1969-03-25 Ways & Means Inc Plastic dispensing container and method of making same
US3505136A (en) * 1966-09-19 1970-04-07 Union Special Machine Co Method and apparatus for bonding thermoplastic sheet materials
US3636859A (en) * 1969-10-20 1972-01-25 Energy Conversion Systems Inc Ultrasonic cooking apparatus
US3819089A (en) * 1971-08-11 1974-06-25 J Scales Food storage and cooking bag and associated holder and dispensing element
US3829007A (en) * 1971-04-30 1974-08-13 British Visqueen Ltd Plastics-film bags
US3830944A (en) * 1972-04-13 1974-08-20 G Dimitriadis Sandwich package
US3873735A (en) * 1971-05-04 1975-03-25 Nabisco Inc Food package for heating and venting
US3895118A (en) * 1972-07-26 1975-07-15 Adolf Rambold Infusion bag
US3961089A (en) * 1973-07-30 1976-06-01 P. Ferrero & C. S.P.A. Method of manufacture of hollow chocolate articles
US3971838A (en) * 1972-08-18 1976-07-27 Polymer Processing Research Institute Ltd. Process for continuously producing shaped articles of polystyrene foam
US4017237A (en) * 1975-03-05 1977-04-12 Bethlehem Steel Corporation Injection mold with ultra sonic gating means
US4097327A (en) * 1975-03-13 1978-06-27 Station Service-Textile F. Calemard Et Cie S.A. Apparatus to apply vibrations to partially or completely thermofusible articles
US4115489A (en) * 1977-06-24 1978-09-19 Textron, Inc. Plasticizing and molding articles from polymer strip
US4163768A (en) * 1975-07-28 1979-08-07 Textron Inc. Method of manufacturing molded top stop
US4216639A (en) * 1978-02-15 1980-08-12 Societe Generale Des Eaux Minerales De Vittel Process of making containers made of thin pliable synthetic material
US4290521A (en) * 1979-09-10 1981-09-22 Thomas J. Lipton, Inc. Infusion package and method of making same
US4373982A (en) * 1980-11-24 1983-02-15 Frito-Lay, Inc. Ultrasonic sealing apparatus
US4394395A (en) * 1980-10-31 1983-07-19 Societe D'assistance Technique Pour Produits Nestle S.A. Process for the production of a molded food product by sintering
US4453370A (en) * 1981-09-14 1984-06-12 Basic Packaging Systems, Inc. Square ended bag
US4500280A (en) * 1982-07-13 1985-02-19 Legrand Vibration-aided feed device for a molding apparatus
US4514426A (en) * 1983-07-27 1985-04-30 Martha White Foods, Inc. Package and method for the automatic control of the degree of cooking of a cereal
US4517790A (en) * 1984-02-27 1985-05-21 Frito-Lay, Inc. Apparatus and method for ultrasonic sealing of packages
US4521467A (en) * 1983-12-12 1985-06-04 Frito-Lay, Inc. Ultrasonically-sealable peelable seal
US4534818A (en) * 1983-12-22 1985-08-13 Frito-Lay, Inc. Method and apparatus for ultrasonic sealing
US4534726A (en) * 1983-10-11 1985-08-13 Nabisco Brands, Inc. Apparatus having shims underlying portions of a die
US4574566A (en) * 1985-01-14 1986-03-11 Doboy Packaging Machinery, Inc. Wrapping machine and method
US4601157A (en) * 1984-03-15 1986-07-22 The Crowell Corporation Automatic packaging
US4605123A (en) * 1983-12-15 1986-08-12 Ethyl Corporation Infusion package
US4608261A (en) * 1983-11-04 1986-08-26 New Zealand Government Property Corporation Method and apparatus for producing a puffed foodstuff
US4652456A (en) * 1985-12-16 1987-03-24 Sailsbury Lowell W Method of making popcorn balls
US4651870A (en) * 1985-04-01 1987-03-24 Frank Giambalvo Controlled infusion containers and method of manufacture
US4663915A (en) * 1983-10-31 1987-05-12 Signode Corporation Method of packaging and apparatus
US4663917A (en) * 1984-06-20 1987-05-12 Taylor Alfred A Packaging apparatus
US4685602A (en) * 1984-04-09 1987-08-11 Kabushiki Kaisha Harmo Plastic-mold cutting apparatus using supersonic waves
US4689942A (en) * 1985-08-07 1987-09-01 Compagnie Generale Des Establissements Michelin Device and method for assembling threads
US4735753A (en) * 1986-07-28 1988-04-05 Ackermann Walter T Method of making a fastener
US4751916A (en) * 1985-03-21 1988-06-21 Dieter Hansen Ag Ultrasonic tool
US4759249A (en) * 1985-09-21 1988-07-26 Maschinenfabrik Goebel Gmbh Web slitting apparatus having adjustable lower cutting blades
US4759170A (en) * 1986-04-18 1988-07-26 Kureha Chemical Industry Co., Ltd. Filling and packaging method and apparatus therefor
US4796300A (en) * 1985-11-08 1989-01-03 Kcl Corporation Reclosable flexible container having interior and exterior closure elements interlocked on the container walls
US4810109A (en) * 1986-08-21 1989-03-07 Jean Castel Supple bag made by flat assembly of a system of films intended to constitute, by extension, a stable recipient, and process for obtaining same
US4849233A (en) * 1987-11-12 1989-07-18 Hemker Leonard E Meltable coating and binder composition for popped corn kernels
US4890439A (en) * 1988-11-09 1990-01-02 James River Corporation Flexible disposable material for forming a food container for microwave cooking
US4909870A (en) * 1986-08-08 1990-03-20 Minigrip, Inc. Method of and apparatus for attaching continuously running fastener strip to web substrate
US4923701A (en) * 1989-01-12 1990-05-08 Minigrip, Inc. Zippered cook-in-bag pouch and method
US4937410A (en) * 1989-03-27 1990-06-26 Anderson Alan R Bag for containing edibles during microwave cooking
US4950859A (en) * 1989-03-27 1990-08-21 Anderson Alan R Bag for containing edibles during microwave cooking
US5096532A (en) * 1990-01-10 1992-03-17 Kimberly-Clark Corporation Ultrasonic rotary horn
US5104674A (en) * 1983-12-30 1992-04-14 Kraft General Foods, Inc. Microfragmented ionic polysaccharide/protein complex dispersions
US5110403A (en) * 1990-05-18 1992-05-05 Kimberly-Clark Corporation High efficiency ultrasonic rotary horn
US5137745A (en) * 1988-04-11 1992-08-11 The Quaker Oats Company Process for preparing shaped grain products
US5181365A (en) * 1991-12-09 1993-01-26 Minnesota Mining And Manufacturing Company Method and apparatus for forming individual pouches from a continuous web and packaging a product in the individual pouches
US5202064A (en) * 1990-01-20 1993-04-13 Idemitsu Kosan Co., Ltd. Method of extrusion molding and apparatus therefor
US5222813A (en) * 1991-01-09 1993-06-29 Sig Schweizerische Industrie-Gesellschaft Packaging bag having tear-open means
US5226343A (en) * 1988-06-03 1993-07-13 Nestec S.A. Ultrasonic cutting apparatus
US5228372A (en) * 1990-10-19 1993-07-20 Nestec S.A. Cutting device
US5230761A (en) * 1984-05-21 1993-07-27 Qst Industries, Inc. Waistband interlining with thin edges and its ultrasonic formation
US5280844A (en) * 1991-10-17 1994-01-25 Kraft General Foods, Inc. Beverage containers and filling thereof
US5342634A (en) * 1990-07-03 1994-08-30 Kanebo, Ltd. Encased instantly cookable pasta
US5391387A (en) * 1992-04-15 1995-02-21 A.C. Machines Limited Process and apparatus for manufacturing shaped confectionery products
US5419437A (en) * 1989-01-12 1995-05-30 Packaging Innovations, Inc. Snap and fill plastic film bags
US5435712A (en) * 1993-10-11 1995-07-25 Ixtlan Aktiengesellschaft Device employing vibration for transporting plastic substances with a high coefficient of friction
US5437215A (en) * 1992-08-28 1995-08-01 Nestec S.A. Ultrasonic cutting device
US5519982A (en) * 1991-05-31 1996-05-28 Kraft Foods, Inc. Pouch having easy opening and reclosing characteristics and method and apparatus for production thereof
US5645681A (en) * 1996-07-05 1997-07-08 Minnesota Mining And Manufacturing Company Stacked rotary acoustic horn
US5706635A (en) * 1995-01-13 1998-01-13 Burton's Gold Medal Biscuits Limited Packaging machine
US5733587A (en) * 1994-03-09 1998-03-31 The Wm. Wrigley Jr. Company Apparatus for forming miniature size confectionary products
US5752423A (en) * 1995-03-21 1998-05-19 Nestec S.A. Ultrasonic cutting device
US5861185A (en) * 1996-08-22 1999-01-19 Mars, Incorporated Ultrasonic forming of confectionery products
US5863585A (en) * 1995-08-25 1999-01-26 Nestec S.A. Package for food product and method for emptying the package
US5871783A (en) * 1996-08-22 1999-02-16 Mars, Incorporated Apparatus for ultrasonically forming confectionery products
US5871793A (en) * 1996-11-27 1999-02-16 Mars Incorporated Puffed cereal cakes
US5914142A (en) * 1996-04-23 1999-06-22 Kraft Jacobs Suchard Ag Easy opening boil-in-a-bag pouch
US5928695A (en) * 1997-12-31 1999-07-27 Mars, Incorporated Ultrasonically activated continuous slitter apparatus and method
US6032561A (en) * 1997-09-18 2000-03-07 Colborne Corporation Apparatus for ultrasonic cutting of food products
US6231913B1 (en) * 1998-02-28 2001-05-15 Kraft Foods, Inc. Food product dressings and methods for preparing food product dressings
US6357914B1 (en) * 2000-09-22 2002-03-19 Kraft Foods Holdings, Inc. Fastener closure arrangement for flexible packages
US6361609B1 (en) * 1999-10-15 2002-03-26 Recot, Inc. Ultrasonic full-width sheeter
US6368647B1 (en) * 1998-12-29 2002-04-09 Mars, Incorporated Ultrasonically activated continuous slitter apparatus and method
US6403132B1 (en) * 1997-04-30 2002-06-11 Mars, Incorporated System and method for forming cereal food products
US6403138B1 (en) * 2000-07-28 2002-06-11 Kraft Foods Holdings, Inc. Method for reforming dairy products
US6537401B2 (en) * 2000-11-30 2003-03-25 Kimberly-Clark Worldwide, Inc. Rotary ultrasonic bonding apparatus and methods using load cell
US6540854B2 (en) * 2000-11-30 2003-04-01 Kimberly-Clark Worldwide, Inc. Load cell closed loop control for rotary ultrasonic bonding apparatus
US6554931B1 (en) * 1998-10-06 2003-04-29 Masterfoods Scs Ultrasonic welding apparatus
US6574944B2 (en) * 2001-06-19 2003-06-10 Mars Incorporated Method and system for ultrasonic sealing of food product packaging

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3114643A (en) 1961-11-02 1963-12-17 Bartelt Engineering Co Inc Food package
GB952581A (en) 1962-05-12 1964-03-18 Cho Onpa Kogyo Kabushiki Kaish Improvements in or relating to methods of and apparatus for bonding plastic materials using ultrasonic vibrations
GB1013665A (en) 1962-06-12 1965-12-15 Gen Foods Corp Food packages
US3416398A (en) 1966-07-05 1968-12-17 Albert G. Bodine Jr. Sonic cutting apparatus
US3407077A (en) 1966-11-10 1968-10-22 Gen Mills Inc Handle for a heat-in-the-bag food package
USRE26543E (en) 1967-09-07 1969-03-11 Method and apparatus for breaking and separating eggs
US3615712A (en) 1969-04-01 1971-10-26 Cpc International Inc Plastic food pouch for cooking
US4055109A (en) 1975-08-04 1977-10-25 Dai Nippon Insatsu Kabushiki Kaisha Method and apparatus for producing self-standing bags
DE2922834A1 (en) 1979-06-06 1980-12-11 Niepmann Ag Walchwil Packing fluids, slurries, solids, in thermoplastic film hoses - using two ultrasonic welders forming vertical and horizontal seams
US4616470A (en) 1979-12-03 1986-10-14 Konji Nakamura Method of forming re-sealable dispenser-container
US4358466A (en) 1980-04-11 1982-11-09 The Dow Chemical Company Freezer to microwave oven bag
DE3034955A1 (en) 1980-09-17 1982-03-25 Natronag Papierproduktion Gmbh & Co, Papiersackfabriken Kg, 3380 Goslar Continuous mfr. of combination film tubing for bags - in which wrapped films with longitudinally overlapping edges are ultrasonically welded
US4421773A (en) 1981-05-05 1983-12-20 Akutagawa Chocolate Co., Ltd. Process for molding chocolate to make chocolate block having ornamental pattern and internal hollow cavity
US4404052A (en) 1982-01-26 1983-09-13 The Procter & Gamble Company Dynamic laminating method and apparatus for ultrasonically bonding juxtaposed webs
CA1191112A (en) 1982-03-29 1985-07-30 Frederic N. Mathison Boil-in-bag pouch
US4631901A (en) 1982-12-16 1986-12-30 Mpr Corporation Apparatus and method for packaging a product in individual packets
AT382112B (en) 1983-12-27 1987-01-12 Trentini & Cie Kommanditgesell WELDING DEVICE
US4864802A (en) 1984-08-31 1989-09-12 The Crowell Corporation Packaging
GB8504386D0 (en) 1985-02-20 1985-03-20 Erskine W R C Carrier bag
US4693056A (en) 1985-10-04 1987-09-15 The Crowell Corporation Heat sealing and packaging
US4879124A (en) 1985-10-08 1989-11-07 W. R. Grace & Co.-Conn Perforated cook-in shrink bag
WO1987002968A1 (en) 1985-11-08 1987-05-21 Kcl Corporation Reclosable flexible container
EP0250946A3 (en) 1986-06-23 1988-11-23 AZIONARIA COSTRUZIONI MACCHINE AUTOMATICHE-A.C.M.A.-S.p.A. Method of wrapping various products in packaging made from sheet material, a device for working the method, and packaging thus obtained
US4784591A (en) 1986-07-28 1988-11-15 Ackermann Walter T Die set and apparatus for in-situ molding of a separable fastener component
GB8805949D0 (en) 1988-03-12 1988-04-13 Mead Corp Ultrasonic heat sealing device
GB2219245A (en) 1988-06-03 1989-12-06 Rawson Francis F H Ultrasonic cutting
DE8809048U1 (en) 1988-07-14 1988-09-01 Niederberg-Chemie Gmbh, 4133 Neukirchen-Vluyn, De
US5161350A (en) 1988-11-09 1992-11-10 Kennak U.S.A. Inc. Process and apparatus for manufacturing a dispenser-container
US4865680A (en) 1988-12-23 1989-09-12 Eastman Kodak Company Ultrasonic securing system
US5067302A (en) 1990-01-26 1991-11-26 Zip-Pak Incorporated Sealing jaws for zippered foil or film in form, fill and seal machines
DE4017363A1 (en) 1990-05-30 1991-12-05 Rovema Gmbh Carton for liq. with flexible bag - which is inserted into rigid outer container
US5061331A (en) 1990-06-18 1991-10-29 Plasta Fiber Industries, Inc. Ultrasonic cutting and edge sealing of thermoplastic material
US5058364A (en) 1990-07-27 1991-10-22 Klockner-Bartelt, Inc. Packaging machine adapted to convert pouches from edgewise advance to broadwise advance
ZA915599B (en) 1990-08-13 1993-03-31 Colgate Palmolive Co Ultrasonic welding in pouch manufacture
EP0478812A1 (en) 1990-10-01 1992-04-08 Societe Des Produits Nestle S.A. Package for food product
DE69015826T2 (en) 1990-10-01 1995-05-18 Nestle Sa Packaging for food.
US5044777A (en) 1990-10-26 1991-09-03 Golden Valley Microwave Foods Inc. Flat-faced package for improving the microwave popping of corn
GB2276138B (en) 1991-12-02 1996-07-31 Dalgety Spillers Foods Packages
FR2688765B1 (en) 1992-03-17 1995-05-19 Rcl BAG AND METHOD FOR EMPTYING THE SAME.
TW264443B (en) 1992-10-02 1995-12-01 Unilever Nv
US5358727A (en) * 1993-03-01 1994-10-25 Sunsweet Growers, Inc. Method for producing molded food pieces
GB2283007A (en) 1993-10-19 1995-04-26 Mars Inc Boil-in-bag sachet with tear-off strip
CN1135742A (en) 1993-11-08 1996-11-13 尤尼利弗公司 Infusion package
WO1996009919A1 (en) 1994-09-28 1996-04-04 Unilever Plc Ultrasonic cutting process
DE19505298A1 (en) 1995-02-16 1996-08-22 Ips Int Packaging Syst Ultrasonic sealing
EP0731022B1 (en) 1995-03-10 1999-06-23 AZIONARIA COSTRUZIONI MACCHINE AUTOMATICHE-A.C.M.A.-S.p.A. Product wrapping method and machine
US5827559A (en) 1996-02-02 1998-10-27 E. I. Du Pont De Nemours And Company Cook-in packaging and methods relating thereto
US5689942A (en) 1996-06-25 1997-11-25 Ibaraki Seiki Machinery Company, Ltd. Drive motor controlling apparatus for use in packaging machine
GB2332387A (en) * 1997-12-16 1999-06-23 Nestle Sa Method and apparatus for moulding food articles

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2145941A (en) * 1938-04-18 1939-02-07 Stokes & Smith Co Method of and apparatus for making packages
US3031804A (en) * 1958-06-02 1962-05-01 Charles J Thatcher Ultrasonic slicing tool and method
US3029751A (en) * 1958-11-26 1962-04-17 Sonneman Products Inc Popped corn forming machine and method
US3044510A (en) * 1959-04-09 1962-07-17 Schneider Machine Company Vibratory slicing apparatus
US3199437A (en) * 1963-02-25 1965-08-10 Silas E Nelsen Infusion apparatus
US3434906A (en) * 1966-06-20 1969-03-25 Ways & Means Inc Plastic dispensing container and method of making same
US3505136A (en) * 1966-09-19 1970-04-07 Union Special Machine Co Method and apparatus for bonding thermoplastic sheet materials
US3636859A (en) * 1969-10-20 1972-01-25 Energy Conversion Systems Inc Ultrasonic cooking apparatus
US3829007A (en) * 1971-04-30 1974-08-13 British Visqueen Ltd Plastics-film bags
US3873735A (en) * 1971-05-04 1975-03-25 Nabisco Inc Food package for heating and venting
US3819089A (en) * 1971-08-11 1974-06-25 J Scales Food storage and cooking bag and associated holder and dispensing element
US3830944A (en) * 1972-04-13 1974-08-20 G Dimitriadis Sandwich package
US3895118A (en) * 1972-07-26 1975-07-15 Adolf Rambold Infusion bag
US3971838A (en) * 1972-08-18 1976-07-27 Polymer Processing Research Institute Ltd. Process for continuously producing shaped articles of polystyrene foam
US3961089A (en) * 1973-07-30 1976-06-01 P. Ferrero & C. S.P.A. Method of manufacture of hollow chocolate articles
US4017237A (en) * 1975-03-05 1977-04-12 Bethlehem Steel Corporation Injection mold with ultra sonic gating means
US4097327A (en) * 1975-03-13 1978-06-27 Station Service-Textile F. Calemard Et Cie S.A. Apparatus to apply vibrations to partially or completely thermofusible articles
US4163768A (en) * 1975-07-28 1979-08-07 Textron Inc. Method of manufacturing molded top stop
US4115489A (en) * 1977-06-24 1978-09-19 Textron, Inc. Plasticizing and molding articles from polymer strip
US4216639A (en) * 1978-02-15 1980-08-12 Societe Generale Des Eaux Minerales De Vittel Process of making containers made of thin pliable synthetic material
US4290521A (en) * 1979-09-10 1981-09-22 Thomas J. Lipton, Inc. Infusion package and method of making same
US4394395A (en) * 1980-10-31 1983-07-19 Societe D'assistance Technique Pour Produits Nestle S.A. Process for the production of a molded food product by sintering
US4373982A (en) * 1980-11-24 1983-02-15 Frito-Lay, Inc. Ultrasonic sealing apparatus
US4453370A (en) * 1981-09-14 1984-06-12 Basic Packaging Systems, Inc. Square ended bag
US4500280A (en) * 1982-07-13 1985-02-19 Legrand Vibration-aided feed device for a molding apparatus
US4514426A (en) * 1983-07-27 1985-04-30 Martha White Foods, Inc. Package and method for the automatic control of the degree of cooking of a cereal
US4534726A (en) * 1983-10-11 1985-08-13 Nabisco Brands, Inc. Apparatus having shims underlying portions of a die
US4663915A (en) * 1983-10-31 1987-05-12 Signode Corporation Method of packaging and apparatus
US4608261A (en) * 1983-11-04 1986-08-26 New Zealand Government Property Corporation Method and apparatus for producing a puffed foodstuff
US4521467A (en) * 1983-12-12 1985-06-04 Frito-Lay, Inc. Ultrasonically-sealable peelable seal
US4605123A (en) * 1983-12-15 1986-08-12 Ethyl Corporation Infusion package
US4534818A (en) * 1983-12-22 1985-08-13 Frito-Lay, Inc. Method and apparatus for ultrasonic sealing
US5104674A (en) * 1983-12-30 1992-04-14 Kraft General Foods, Inc. Microfragmented ionic polysaccharide/protein complex dispersions
US4517790A (en) * 1984-02-27 1985-05-21 Frito-Lay, Inc. Apparatus and method for ultrasonic sealing of packages
US4601157A (en) * 1984-03-15 1986-07-22 The Crowell Corporation Automatic packaging
US4685602A (en) * 1984-04-09 1987-08-11 Kabushiki Kaisha Harmo Plastic-mold cutting apparatus using supersonic waves
US5230761A (en) * 1984-05-21 1993-07-27 Qst Industries, Inc. Waistband interlining with thin edges and its ultrasonic formation
US4663917A (en) * 1984-06-20 1987-05-12 Taylor Alfred A Packaging apparatus
US4574566A (en) * 1985-01-14 1986-03-11 Doboy Packaging Machinery, Inc. Wrapping machine and method
US4751916A (en) * 1985-03-21 1988-06-21 Dieter Hansen Ag Ultrasonic tool
US4651870A (en) * 1985-04-01 1987-03-24 Frank Giambalvo Controlled infusion containers and method of manufacture
US4689942A (en) * 1985-08-07 1987-09-01 Compagnie Generale Des Establissements Michelin Device and method for assembling threads
US4759249A (en) * 1985-09-21 1988-07-26 Maschinenfabrik Goebel Gmbh Web slitting apparatus having adjustable lower cutting blades
US4796300A (en) * 1985-11-08 1989-01-03 Kcl Corporation Reclosable flexible container having interior and exterior closure elements interlocked on the container walls
US4652456A (en) * 1985-12-16 1987-03-24 Sailsbury Lowell W Method of making popcorn balls
US4759170A (en) * 1986-04-18 1988-07-26 Kureha Chemical Industry Co., Ltd. Filling and packaging method and apparatus therefor
US4735753A (en) * 1986-07-28 1988-04-05 Ackermann Walter T Method of making a fastener
US4909870A (en) * 1986-08-08 1990-03-20 Minigrip, Inc. Method of and apparatus for attaching continuously running fastener strip to web substrate
US4810109A (en) * 1986-08-21 1989-03-07 Jean Castel Supple bag made by flat assembly of a system of films intended to constitute, by extension, a stable recipient, and process for obtaining same
US4849233A (en) * 1987-11-12 1989-07-18 Hemker Leonard E Meltable coating and binder composition for popped corn kernels
US5137745A (en) * 1988-04-11 1992-08-11 The Quaker Oats Company Process for preparing shaped grain products
US5226343A (en) * 1988-06-03 1993-07-13 Nestec S.A. Ultrasonic cutting apparatus
US4890439A (en) * 1988-11-09 1990-01-02 James River Corporation Flexible disposable material for forming a food container for microwave cooking
US4923701A (en) * 1989-01-12 1990-05-08 Minigrip, Inc. Zippered cook-in-bag pouch and method
US5419437A (en) * 1989-01-12 1995-05-30 Packaging Innovations, Inc. Snap and fill plastic film bags
US4937410A (en) * 1989-03-27 1990-06-26 Anderson Alan R Bag for containing edibles during microwave cooking
US4950859A (en) * 1989-03-27 1990-08-21 Anderson Alan R Bag for containing edibles during microwave cooking
US5096532A (en) * 1990-01-10 1992-03-17 Kimberly-Clark Corporation Ultrasonic rotary horn
US5202064A (en) * 1990-01-20 1993-04-13 Idemitsu Kosan Co., Ltd. Method of extrusion molding and apparatus therefor
US5110403A (en) * 1990-05-18 1992-05-05 Kimberly-Clark Corporation High efficiency ultrasonic rotary horn
US5342634A (en) * 1990-07-03 1994-08-30 Kanebo, Ltd. Encased instantly cookable pasta
US5228372A (en) * 1990-10-19 1993-07-20 Nestec S.A. Cutting device
US5222813A (en) * 1991-01-09 1993-06-29 Sig Schweizerische Industrie-Gesellschaft Packaging bag having tear-open means
US5519982A (en) * 1991-05-31 1996-05-28 Kraft Foods, Inc. Pouch having easy opening and reclosing characteristics and method and apparatus for production thereof
US5525363A (en) * 1991-05-31 1996-06-11 Kraft Foods, Inc. Cheese pouch having easy opening and reclosing characteristics
US5280844A (en) * 1991-10-17 1994-01-25 Kraft General Foods, Inc. Beverage containers and filling thereof
US5181365A (en) * 1991-12-09 1993-01-26 Minnesota Mining And Manufacturing Company Method and apparatus for forming individual pouches from a continuous web and packaging a product in the individual pouches
US5391387A (en) * 1992-04-15 1995-02-21 A.C. Machines Limited Process and apparatus for manufacturing shaped confectionery products
US5437215A (en) * 1992-08-28 1995-08-01 Nestec S.A. Ultrasonic cutting device
US5435712A (en) * 1993-10-11 1995-07-25 Ixtlan Aktiengesellschaft Device employing vibration for transporting plastic substances with a high coefficient of friction
US5733587A (en) * 1994-03-09 1998-03-31 The Wm. Wrigley Jr. Company Apparatus for forming miniature size confectionary products
US5706635A (en) * 1995-01-13 1998-01-13 Burton's Gold Medal Biscuits Limited Packaging machine
US5752423A (en) * 1995-03-21 1998-05-19 Nestec S.A. Ultrasonic cutting device
US5863585A (en) * 1995-08-25 1999-01-26 Nestec S.A. Package for food product and method for emptying the package
US5914142A (en) * 1996-04-23 1999-06-22 Kraft Jacobs Suchard Ag Easy opening boil-in-a-bag pouch
US5645681A (en) * 1996-07-05 1997-07-08 Minnesota Mining And Manufacturing Company Stacked rotary acoustic horn
US5645681B1 (en) * 1996-07-05 2000-03-14 Minnesota Mining & Mfg Stacked rotary acoustic horn
US20030003207A1 (en) * 1996-08-22 2003-01-02 Capodieci Roberto A. Ultrasonic forming of confectionery products
US6607765B2 (en) * 1996-08-22 2003-08-19 Mars, Incorporated Ultrasonic forming of confectionery products
US5861185A (en) * 1996-08-22 1999-01-19 Mars, Incorporated Ultrasonic forming of confectionery products
US6431849B1 (en) * 1996-08-22 2002-08-13 Mars, Incorporated Ultrasonic forming of confectionery products
US5871783A (en) * 1996-08-22 1999-02-16 Mars, Incorporated Apparatus for ultrasonically forming confectionery products
US6231330B1 (en) * 1996-08-22 2001-05-15 Mars, Incorporated Ultrasonic forming of confectionery products
US6210728B1 (en) * 1996-08-22 2001-04-03 Mars Incorporated Ultrasonic forming of confectionery products
US6068868A (en) * 1996-11-27 2000-05-30 Mars, Incorporated Process for preparing puffed cereal articles
US6517879B2 (en) * 1996-11-27 2003-02-11 Mars Incorporated Method and apparatus for ultrasonic molding
US5871793A (en) * 1996-11-27 1999-02-16 Mars Incorporated Puffed cereal cakes
US6403132B1 (en) * 1997-04-30 2002-06-11 Mars, Incorporated System and method for forming cereal food products
US6032561A (en) * 1997-09-18 2000-03-07 Colborne Corporation Apparatus for ultrasonic cutting of food products
US5928695A (en) * 1997-12-31 1999-07-27 Mars, Incorporated Ultrasonically activated continuous slitter apparatus and method
US6231913B1 (en) * 1998-02-28 2001-05-15 Kraft Foods, Inc. Food product dressings and methods for preparing food product dressings
US6554931B1 (en) * 1998-10-06 2003-04-29 Masterfoods Scs Ultrasonic welding apparatus
US20020119225A1 (en) * 1998-12-29 2002-08-29 Capodieci Roberto A. Ultrasonically activated continuous slitter apparatus and method
US6368647B1 (en) * 1998-12-29 2002-04-09 Mars, Incorporated Ultrasonically activated continuous slitter apparatus and method
US6361609B1 (en) * 1999-10-15 2002-03-26 Recot, Inc. Ultrasonic full-width sheeter
US6403138B1 (en) * 2000-07-28 2002-06-11 Kraft Foods Holdings, Inc. Method for reforming dairy products
US6357914B1 (en) * 2000-09-22 2002-03-19 Kraft Foods Holdings, Inc. Fastener closure arrangement for flexible packages
US6537401B2 (en) * 2000-11-30 2003-03-25 Kimberly-Clark Worldwide, Inc. Rotary ultrasonic bonding apparatus and methods using load cell
US6540854B2 (en) * 2000-11-30 2003-04-01 Kimberly-Clark Worldwide, Inc. Load cell closed loop control for rotary ultrasonic bonding apparatus
US6574944B2 (en) * 2001-06-19 2003-06-10 Mars Incorporated Method and system for ultrasonic sealing of food product packaging

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070076182A1 (en) * 2003-07-08 2007-04-05 Nikon Corporation Wafer table for immersion lithography
EP2559424A1 (en) 2005-10-05 2013-02-20 Kraft Foods Global Brands LLC Cooling composition comprising trimethyl isopropyl butanamide
WO2007126430A1 (en) 2005-12-23 2007-11-08 Cadbury Adams Usa Llc Compositions providing a heating sensation for oral or dermal delivery
EP2478777A1 (en) 2005-12-23 2012-07-25 Kraft Foods Global Brands LLC Composition providing a cooling sensation substantially similar to that provided by menthol
US20080065099A1 (en) * 2006-06-13 2008-03-13 Intuitive Surgical, Inc. Side looking minimally invasive surgery instrument assembly

Also Published As

Publication number Publication date
DE10297378T5 (en) 2004-11-18
CA2464431A1 (en) 2003-05-01
GB2396838B (en) 2005-10-26
WO2003034835A1 (en) 2003-05-01
CA2464431C (en) 2009-12-08
AU2002342154B2 (en) 2007-10-25
GB0409265D0 (en) 2004-05-26
US20030082283A1 (en) 2003-05-01
US6635292B2 (en) 2003-10-21
GB2396838A (en) 2004-07-07

Similar Documents

Publication Publication Date Title
US6635292B2 (en) Ultrasonic rotary forming of food products
AU2002342154A1 (en) Ultrasonic rotary forming of food products
JP2004516831A (en) Lipid-containing confectionery product with viscous filling and molded into a shell
EP2713764B1 (en) System and method for continuously coating confectionary product
EP0084763A1 (en) Apparatus for conveying biscuits, and confectionery products in general, towards a wrapping machine
US2590051A (en) Confection machine
US9055767B2 (en) Food coating apparatuses, systems, and methods
WO2022269247A1 (en) Demoulding apparatus and method
JP4295622B2 (en) Flowable solid dispensing device and method of use
JP4405104B2 (en) Method and apparatus for producing powdered chocolate
JP2003235457A (en) Method for molding food and apparatus for molding
AU596271B2 (en) Distributing apparatus
EP0610840B1 (en) A method and a device for coating articles with a loose coating material
EP0476162A1 (en) Distributing device
EP1675472B1 (en) Machine for decorating a food product, in particular a cake, with an ingredient in granular form
JP3464577B2 (en) Lipid-coated chewing gum, method for producing the same, and apparatus used therefor
JP2000279095A (en) Production of center-containing oil and fat food and apparatus used therefore
EP0084297B1 (en) Apparatus for conveying biscuits, and confectionery products in general, towards a wrapping machine
JP4233230B2 (en) Method and apparatus for producing powder-containing food
JPH0536553Y2 (en)
JP6603129B2 (en) Apparatus and method for distributing a meat flow in a coating process
JPS62151137A (en) Device for releasing wrapping paper of product packed by twisting
FR2753345A1 (en) Production of marbled chocolate
KR200246145Y1 (en) Manufacturing device of Korean sweet stuff
JPH033194Y2 (en)

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION