US20040223863A1 - Piston operating assembly for a linear compressor and method for manufacturing the same - Google Patents

Piston operating assembly for a linear compressor and method for manufacturing the same Download PDF

Info

Publication number
US20040223863A1
US20040223863A1 US10/866,935 US86693504A US2004223863A1 US 20040223863 A1 US20040223863 A1 US 20040223863A1 US 86693504 A US86693504 A US 86693504A US 2004223863 A1 US2004223863 A1 US 2004223863A1
Authority
US
United States
Prior art keywords
piston
operating assembly
magnets
coupling boss
linear compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/866,935
Inventor
Kyung-shik Choi
Chal-gi Jo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/866,935 priority Critical patent/US20040223863A1/en
Publication of US20040223863A1 publication Critical patent/US20040223863A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/12Casings; Cylinders; Cylinder heads; Fluid connections
    • F04B39/122Cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B35/00Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for
    • F04B35/04Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric
    • F04B35/045Piston pumps specially adapted for elastic fluids and characterised by the driving means to their working members, or by combination with, or adaptation to, specific driving engines or motors, not otherwise provided for the means being electric using solenoids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/14Provisions for readily assembling or disassembling

Abstract

An integrated piston operating assembly for a linear compressor and a method for manufacturing the same are provided. The integrated piston operating assembly includes a piston coupling boss coupled to a piston, a plurality of magnets disposed in a cylindrical arrangement concentric with the piston coupling boss, and a linking member formed of a resin for connecting and thus integrating the piston coupling boss with the plurality of magnets. The magnets and piston coupling boss are secured to the linking member as the linking member is injection molded. By integrating the piston operating assembly of the linear compressor, geometric and assembling tolerances are improved, while deterioration of persistence due to processing and assembling processes is prevented.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a linear compressor for compressing refrigerant by using a reciprocating piston. More particularly, the present invention relates to a piston operating assembly for the linear compressor and a method for manufacturing the same. [0002]
  • 2. Description of the Prior Art [0003]
  • Generally, a linear compressor compresses a refrigerant by reciprocating a piston with a changing magnetic field. Such a compressor is shown in FIGS. 1 through 3. [0004]
  • As shown in the drawings, the linear compressor includes a [0005] cylinder portion 10, a piston 20, a piston operating assembly 30 and an external lamination portion 40, all of which are disposed in a chamber 1.
  • As shown in FIG. 2, the [0006] piston operating assembly 30 includes a magnet holder 32, which is a hollow cylinder having a hole formed in an outer circumference thereof, a magnet 33 inserted in the hole of the magnet holder 32, a magnet cover 35 press fit on the outer circumference of the magnet holder 32 to prevent any accidental separation of the magnet 33 from the magnet holder 32, and a linking member 31 having a hole formed on the center portion thereof for receiving the piston 20. The linking member 31 is connected to one end of the magnet holder 32.
  • The [0007] piston 20 is a hollow cylinder, having one end attached to a suction valve 25 and the other end coupled to the linking member 31 of the piston operating assembly 30. The piston 20 can be secured to the linking member 31 by one of a number of methods, such as welding, etc.
  • The [0008] cylinder portion 10 includes a cylinder 11, in which the piston 20 is received for reciprocating movement, an internal lamination 13 inserted about the outer circumference of the cylinder 11, and a coil 15 wound about the center portion of the internal lamination 13.
  • An [0009] external lamination portion 40 includes an external lamination 41 formed a predetermined distance from the internal lamination 13, a housing 43 for supporting the external lamination 41, and a frame 42.
  • The operation of the linear compressor constructed as above will be described below. [0010]
  • First, when Alternating Current (AC) voltage is applied to the [0011] coil 15 of the internal lamination 13, a magnetic field having N-S poles is generated between the internal and external laminations 13 and 41, respectively. Due to the presence of the permanent magnet 33 disposed between the internal and external laminations 13 and 41, a force in an axial direction is generated according to Flemming's left-hand rule. As the N-S poles of the magnet 33 are varied, the magnet 33 reciprocates, and accordingly, the piston 20 also reciprocates.
  • Next, a refrigerant is introduced into the chamber [0012] 1 through an inlet tube 3 by the reciprocating movement of the piston 20. The refrigerant flows through the piston 20 and the suction valve 25 and into a compressing chamber 5. When the refrigerant is compressed in the compressing chamber 5, the refrigerant is then discharged through an outlet tube 7.
  • The conventional linear compressor, however, has several shortcomings. First, some parts of the compressor require forceful coupling methods, such as force fit, welding, etc., to secure the parts together. For example, the [0013] piston 20 and linking member 31 are welded together, as are the linking member 31 and the magnet holder 32. Further, the magnet holder 32 must undergo processes like cutting, punching and welding. The force of the couplings and heat distortion of the respective parts produce an internal stress that affects the integrity of the parts. Further, the conventional linear compressor has a complex and lengthy assembly process, while producing a high possibility of defective products. As a result, productivity and throughput are deteriorated.
  • The manufacturing process of the [0014] magnet holder 32 is described in greater detail with reference to FIG. 3. First, a metal plate 32 a of a predetermined size is prepared. Then, the metal plate 32 a undergoes a rolling process. Next, the ends of the metal plate 32 a are welded together to form a hollow cylinder 32 b. The hollow cylinder 32 b is then punched to form a plurality of holes 32 c therein. Finally, in order to prevent any accidental separation of the magnets 33 from the hollow cylinder 32 b, a magnet cover 35 is force fit onto the outer circumference of the hollow cylinder 32 b.
  • In the conventional linear compressor, the different sizes of and deviations among the [0015] magnets 33 make it difficult to press fit or force fit the magnet cover 35. When the magnet cover 35 is forcefully press fit, without taking into consideration the different sizes of the magnets 33, those magnets 33 that are more fragile can be broken.
  • Further, according to a conventional way of assembling the [0016] piston operating assembly 30 of the linear compressor, an error in concentricity occurs when the piston 20 and the magnet holder 32 are welded to the linking member 31, and errors in circularity and concentricity occur when press fitting the magnet 33, which is press fit in the magnet holder 32, in the magnet cover 35. Accordingly, productivity and throughput deteriorate. Further, since there are numerous parts that must be assembled together, all of which affect the geometric tolerance of the piston operating assembly 30, the assembly tolerance is increased due to an accumulation of the tolerances of the respective parts. When the geometric tolerance and the assembly tolerance exceed a predetermined degree, the same becomes a defect factor, which can cause problems, such as a malfunction of the linear compressor, etc.
  • In addition, in the conventional method of assembling the linear compressor, a non-magnetic metal is used to form the [0017] magnet holder 32, thereby preventing a leakage of the magnetic force from the magnet 33. The non-magnetic metal of the conventional linear compressor, however, has a relatively higher conductivity, which hinders a complete absence of the magnetic force leakage from the magnet 33. Accordingly, due to the leakage of the magnetic force from the magnet 33, the compression efficiency of the linear compressor is negatively affected.
  • SUMMARY OF THE INVENTION
  • The present invention has been made to overcome the above-mentioned problems of the prior art. Accordingly, it is an object of the present invention to provide a piston operating assembly for a linear compressor having a piston coupling boss coupled with a piston, a plurality of magnets, and a linking member. The linking member connects the piston coupling boss with the magnets, all of which are integrally secured to the linking member when the linking member is injection molded. Thus, the integrated piston operating assembly has improved geometric and assembling tolerances and no deterioration of persistence. [0018]
  • It is another object of the present invention to provide a method for manufacturing a piston operating assembly for a linear compressor. In the present method the processes are simplified while resulting in a higher productivity. [0019]
  • The above object is accomplished by a piston operating assembly of a linear compressor for compressing a refrigerant with a piston that linearly reciprocates due to a magnetic field. The piston operating assembly includes a piston coupling boss for coupling to the piston, a plurality of magnets disposed in a cylindrical arrangement concentric with respect to the piston coupling boss, and a linking member for connecting and thus integrating the piston coupling boss and the plurality of magnets. The linking member is formed of an injection molded resin, and the piston coupling boss and the magnets are coupled to the linking member at the same time that the linking member is injection molded. [0020]
  • Each of the magnets has a stepped portion that is formed along a boundary thereof. [0021]
  • The above object is also accomplished by a method for manufacturing a piston operating assembly for a linear compressor. The method includes the steps of preparing a plurality of magnets and a piston coupling boss, assembling the plurality of magnets and the piston coupling boss in a core mold, and mounting the core mold in an injection molding machine. The method further includes injecting a molding resin into the core mold to form an integrated piston operating assembly, with the plurality of magnets and the piston coupling boss fixed in the molding resin. The completed integrated piston operating assembly is then separated from the core mold, once the injection molding is finished. [0022]
  • Accordingly, the piston operating assembly of the linear compressor has improved geometric and assembling tolerances and persistence. In addition, the method of manufacturing such piston operating assembly is greatly simplified and results in an increase in productivity.[0023]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above objects and other features and advantages of the present invention will become readily apparent by reference to the following detailed description when considered in conjunction with the accompanying drawings, in which: [0024]
  • FIG. 1 is a sectional view of a conventional linear compressor; [0025]
  • FIG. 2 is a sectional view of a piston operating assembly for the conventional linear compressor of FIG. 1; [0026]
  • FIG. 3 illustrates the steps for manufacturing a conventional magnet holder for the conventional linear compressor of FIG. 1; [0027]
  • FIG. 4 is a plan view of a plurality of magnets, which are employed in a piston operating assembly for a linear compressor, in accordance with the present invention; [0028]
  • FIG. 5 is a sectional view of a piston coupling boss, which is employed in the piston operating assembly for the linear compressor, in accordance with the present invention; [0029]
  • FIG. 6 is a perspective view of the piston operating assembly for the linear compressor, in accordance with the present invention; [0030]
  • FIG. 7A is a plan view of a core mold, which is used to manufacture the piston operating assembly of FIG. 6; [0031]
  • FIG. 7B is a cross-sectional view taken generally along the line I-I of FIG. 7A; [0032]
  • FIG. 8 is a sectional view of the core mold of FIGS. 7A and 7B shown mounted in an injection molding machine during manufacture of the piston operating assembly of FIG. 6; and [0033]
  • FIG. 9 is a flow chart illustrating the steps in a method for manufacturing the piston operating assembly of FIG. 6.[0034]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • The preferred embodiment of the present invention will be described below with reference to the accompanying drawings. [0035]
  • FIG. 6 is a perspective view of a [0036] piston operating assembly 50 for a linear compressor in accordance with the present invention.
  • The [0037] piston operating assembly 50 includes a plurality of magnets 51 disposed in a cylindrical arrangement and spaced from each other at equal intervals, a hollow piston coupling boss 52 concentrically disposed within the cylindrical arrangement, and a linking member 53 for connecting the cylindrical arrangement to an end of the piston coupling boss 52. The magnets 51, piston coupling boss 52, and linking member 53 are preferably secured together simultaneously with the formation of the linking member 53..
  • In order to compress a refrigerant, a piston reciprocates in the cylinder of a linear compressor. The piston operating assembly, which moves the piston within the cylinder of the compressor, includes a [0038] piston coupling boss 52 that has a screw portion 52 b (FIG. 5). The screw portion 52 b includes threads that engage the threads formed at one end of the piston. The integrated piston operating assembly is preferably injection molded using a molding resin. As shown in FIG. 5, in order to increase the coupling force between the piston coupling boss 52 and the molding resin, a female screw portion 52 b is formed in one end of the piston coupling boss 52, while a raised portion 52 a is formed at the opposite end. It is further preferable that the piston coupling boss 52 is made of a brass.
  • Because of the changes of magnetic field between the internal and [0039] external laminations 13 and 41, the magnets 51 cause the piston to reciprocate. Each magnet 51 has a stepped portion formed around its boundary. As shown in FIG. 4, each magnet 51 is a square plate having a predetermined radius of curvature. The two opposite sides of the magnet 51 are processed to have an L-shaped cross-section, while the other two opposite sides of the magnet 51 are processed to have an upended L-shaped cross-section. By processing the sides of the magnet 51 to have L-shaped and upended L-shaped cross-sections, the coupling force between the piston operating assembly 50 and the molding resin is increased when the piston operating assembly 50 is integrally formed by injection molding.
  • The molding resin is preferably a non-magnetic and non-conductive thermosetting resin, such as a bulk molding compound composed of polyester as a main material, glass fiber as a reinforcing material, filler, and catalyst, etc. [0040]
  • In the [0041] piston operating assembly 50 for the linear compressor of the present invention, since the piston coupling boss 52 and the plurality of magnets 51 are integrally formed in the integrated molding resin, which forms the linking member 53, the separate process steps of assembling the magnets 51 and press fitting the magnet cover 35 are no longer required. In addition, the assembly of the piston is completed by screwing the piston onto the piston coupling boss 52.
  • The integrated [0042] piston operating assembly 50 reciprocates due to a changing magnetic field, which is generated by the internal lamination 13 and coil 15 disposed within the cylindrical arrangement of magnets 51, and the external lamination 41 disposed outside the cylindrical arrangement of magnets 51. When the piston operating assembly 50 reciprocates, the piston, which is coupled with the piston operating assembly 50, also reciprocates linearly within the cylinder. Accordingly, the refrigerant is drawn into the compressing chamber and then compressed.
  • A method for manufacturing the [0043] piston operating assembly 50 for the linear compressor in accordance with the preferred embodiment of the present invention will be described below with reference to FIGS. 7-9.
  • As illustrated in FIG. 9, the method for manufacturing the integrated [0044] piston operating assembly 50 includes the steps of preparing a plurality of magnets 51 and a piston coupling boss 52 (step S100), assembling the plurality of magnets 51 and the piston coupling boss 52 in a core mold 60 (FIGS. 7A and 7B) and mounting the core mold 60 in an injection molding machine (step S200), integrally injection molding the piston operating assembly 50 with the plurality of magnets 51 and the piston coupling boss 52 (step S300), and then separating the completed the piston operating assembly 50 for the linear compressor from the core mold 60 when the molding process is finished (step S400).
  • In the preparation step S[0045] 100, the magnets 51 and the piston coupling boss 52, which are made by separate processes, are prepared for assembly into the core mold 60. In this embodiment, one piston coupling boss 52 and eight magnets 51 are used. Accordingly, eight magnets 51 and one piston coupling boss 52 are prepared. The magnets 51 are initially non-magnetized magnets.
  • In the mold mounting step S[0046] 200, the eight magnets 51 and the piston coupling boss 52 are assembled in the core mold 60. The core mold 60 is then mounted between an upper mold 70 and a lower mold 80 of the injection molding machine. The core mold 60 has a plurality of linear projections 61 (FIGS. 7A and 7B) that are formed on the outer circumference thereof. The linear projections 61 extend parallel to the axis of the core mold 60 and are spaced apart at equal intervals to accommodate the magnets 51. In order to magnetize the non-magnetic magnets 51, additional magnets 62 are disposed within the core mold 60. Further, a screw portion is formed at the center of the core mold 60, to secure the piston coupling boss 52. The piston operating assembly 50 of the present invention has less geometric error, for example, less error in concentricity, since a relatively shorter piston coupling boss 52 is secured thereto by injection molding. In contrast, in a conventional piston operating assembly, a longer piston is welded onto the linking member.
  • After the [0047] core mold 60 is mounted in the injection molding machine, the injection molding process begins. A molding resin is injected in the direction indicated by an arrow P in FIG. 8 into the core mold 60. The molding resin fills in the area of the core mold 60 that is indicated by the cross-hatching in FIG. 8 to surround the piston coupling boss 52 and the magnets 51. As a result, the integrated piston operating assembly 50 is formed at step S300. Gravity helps to draw the molding resin down through the gaps defined between the plurality of projections 61 of the core mold 60 to surround the magnets 51, so that the magnets 5 1 are fixedly secured by the molding resin.
  • After a predetermined time period, the molding resin solidifies and cools. At step S[0048] 400 the completed piston operating assembly 50 is then removed from between the upper and lower molds 70 and 80, respectively, of the injection molding machine.
  • The present method for manufacturing the [0049] piston operating assembly 50 improves the geometric and assembly tolerances of the resulting piston operating assembly, by eliminating forceful coupling methods for securing the piston coupling boss and the magnets to the linking member. The magnets 51 and the coupling boss 52 are each coupled to the linking member 53 as the linking member 53 is injection molded.
  • Furthermore, the present method for manufacturing the [0050] piston operating assembly 50 for the linear compressor improves productivity, since the numerous assembly process steps are simplified by injection molding. The L-shaped cross-section of the magnets 51 secures the magnets to the linking member 53, thereby eliminating the need for a separate magnet cover. In addition, the piston is easily connected to the piston operating assembly 50, by matingly engaging the threads at the end of the piston with the screw portion 52 b of the piston coupling boss 52.
  • As stated above, a preferred embodiment of the present invention is shown and described. Although the preferred embodiment of the present invention has been described, it is understood that the present invention should not be limited to this preferred embodiment. Various changes and modifications can be made by one skilled in the art within the spirit and scope of the present invention as hereinafter claimed. [0051]

Claims (6)

1-4. (canceled).
5. A method for manufacturing a piston operating assembly for a linear compressor comprising:
preparing a plurality of magnets and a piston coupling boss;
assembling the plurality of magnets and the piston coupling boss in a core mold;
mounting the core mold in an injection molding machine; and
injecting a molding resin in the core mold to form an integrated piston operating assembly including the plurality of magnets and the piston coupling boss.
6. The method as claimed in claim 5, further comprising separating the integrated piston operating assembly from the core mold.
7. The method as claimed in claim 5, wherein each magnet has a stepped portion formed along a boundary thereof, and wherein the molding resin engages the stepped portion of the magnets to secure the magnets in the piston operating assembly.
8. The method as claimed in claim 5, wherein the piston coupling boss is comprised of brass.
9. The method as claimed in claim 5, wherein the piston coupling boss includes a screw portion for engaging a threaded end of a piston.
US10/866,935 2000-11-10 2004-06-14 Piston operating assembly for a linear compressor and method for manufacturing the same Abandoned US20040223863A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/866,935 US20040223863A1 (en) 2000-11-10 2004-06-14 Piston operating assembly for a linear compressor and method for manufacturing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR2000-66866 2000-11-10
KR1020000066866A KR100701871B1 (en) 2000-11-10 2000-11-10 Piston-drive part of linear compressor and method of producting the same
US09/834,344 US6761543B2 (en) 2000-11-10 2001-04-12 Piston operating assembly for a linear compressor and method for manufacturing the same
US10/866,935 US20040223863A1 (en) 2000-11-10 2004-06-14 Piston operating assembly for a linear compressor and method for manufacturing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/834,344 Division US6761543B2 (en) 2000-11-10 2001-04-12 Piston operating assembly for a linear compressor and method for manufacturing the same

Publications (1)

Publication Number Publication Date
US20040223863A1 true US20040223863A1 (en) 2004-11-11

Family

ID=19698419

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/834,344 Expired - Fee Related US6761543B2 (en) 2000-11-10 2001-04-12 Piston operating assembly for a linear compressor and method for manufacturing the same
US10/866,935 Abandoned US20040223863A1 (en) 2000-11-10 2004-06-14 Piston operating assembly for a linear compressor and method for manufacturing the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/834,344 Expired - Fee Related US6761543B2 (en) 2000-11-10 2001-04-12 Piston operating assembly for a linear compressor and method for manufacturing the same

Country Status (6)

Country Link
US (2) US6761543B2 (en)
JP (1) JP3739683B2 (en)
KR (1) KR100701871B1 (en)
CN (1) CN1140702C (en)
BR (1) BR0101810A (en)
IT (1) ITTO20010605A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100486572B1 (en) * 2002-09-04 2005-05-03 엘지전자 주식회사 Reciprocating compressor
AU2003250569A1 (en) * 2003-07-25 2005-02-14 Lg Electronics Inc. Pistion assembly of cooler
CN100383382C (en) * 2003-10-30 2008-04-23 乐金电子(天津)电器有限公司 Silencer fixing structure for linear compressor
KR100619731B1 (en) * 2004-07-26 2006-09-08 엘지전자 주식회사 Reciprocating motor and reciprocating compressor having the reciprocating motor
US8678789B2 (en) * 2005-07-22 2014-03-25 Fisher & Paykel Appliances Limited Refrigeration compressor with flexible discharge conduit
KR100796697B1 (en) * 2007-11-02 2008-01-21 주식회사 신금하 Manufacturing method of magnet assembly for compressor linear motor
CN103850919A (en) * 2012-12-03 2014-06-11 海尔集团公司 Piston of linear compressor and linear compressor
CN104005931B (en) * 2013-02-21 2016-04-27 青岛海尔智能技术研发有限公司 Linearkompressor
US9518572B2 (en) * 2014-02-10 2016-12-13 Haier Us Appliance Solutions, Inc. Linear compressor
KR102424602B1 (en) * 2018-02-26 2022-07-25 엘지전자 주식회사 Linear compressor
KR102401335B1 (en) 2020-03-27 2022-05-23 엘지전자 주식회사 Linear motor and linear compressor thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993175A (en) * 1995-06-23 1999-11-30 Lg Electronics Inc. Oil supply apparatus for friction portion of linear compressor
US6024544A (en) * 1995-06-23 2000-02-15 Lg Electronics Inc. Coolant supply apparatus for linear compressor
US20010014292A1 (en) * 2000-02-14 2001-08-16 Matsushita Electric Industrial Co., Ltd. Linear compressor
US6324745B1 (en) * 1997-02-21 2001-12-04 Emerson Electric Co. Method of assembling a rotor assembly for a rotating machine
US20010055535A1 (en) * 2000-06-19 2001-12-27 Matsushita Electric Industrial Co., Ltd. Linear compressor
US6379125B1 (en) * 1996-07-09 2002-04-30 Sanyo Electric Co., Ltd. Linear compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR200197564Y1 (en) * 1997-12-19 2000-10-02 윤종용 A linear compessor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5993175A (en) * 1995-06-23 1999-11-30 Lg Electronics Inc. Oil supply apparatus for friction portion of linear compressor
US6024544A (en) * 1995-06-23 2000-02-15 Lg Electronics Inc. Coolant supply apparatus for linear compressor
US6379125B1 (en) * 1996-07-09 2002-04-30 Sanyo Electric Co., Ltd. Linear compressor
US6324745B1 (en) * 1997-02-21 2001-12-04 Emerson Electric Co. Method of assembling a rotor assembly for a rotating machine
US20010014292A1 (en) * 2000-02-14 2001-08-16 Matsushita Electric Industrial Co., Ltd. Linear compressor
US6506032B2 (en) * 2000-02-14 2003-01-14 Matsushita Electric Industrial Co., Ltd. Linear compressor
US20010055535A1 (en) * 2000-06-19 2001-12-27 Matsushita Electric Industrial Co., Ltd. Linear compressor
US6565332B2 (en) * 2000-06-19 2003-05-20 Matsushita Electric Industrial Co., Ltd. Linear compressor

Also Published As

Publication number Publication date
ITTO20010605A1 (en) 2002-12-22
KR20020036610A (en) 2002-05-16
US20020057973A1 (en) 2002-05-16
JP2002155859A (en) 2002-05-31
US6761543B2 (en) 2004-07-13
KR100701871B1 (en) 2007-04-02
JP3739683B2 (en) 2006-01-25
CN1140702C (en) 2004-03-03
BR0101810A (en) 2002-07-02
CN1353246A (en) 2002-06-12

Similar Documents

Publication Publication Date Title
US6761543B2 (en) Piston operating assembly for a linear compressor and method for manufacturing the same
CN100541988C (en) Outer stator for reciprocating motor and manufacture method thereof
KR100529901B1 (en) The linear motor of a linear compressor
EP1674725B1 (en) Reciprocating compressor
KR100641112B1 (en) Reciprocating compressor and method for manufacturing thereof
KR100619731B1 (en) Reciprocating motor and reciprocating compressor having the reciprocating motor
US7617594B2 (en) Apparatus for fixing a stator of a motor of a reciprocal compressor
CN100563081C (en) The stator fixing apparatus of reciprocating compressor and manufacture method thereof
CN101207318A (en) Electric machine fixation structure of linear compressor
KR100442377B1 (en) Reciprocating compressor
US20050260083A1 (en) Linear motor and linear compressor having the same
KR100533043B1 (en) Winding coil structure for reciprocating and manufacture method thereof
JP6605260B2 (en) Vibration type compressor
KR100414081B1 (en) Method for manufacturing stator of motor in linear compressor
CN105201775A (en) Linear compressor resonator system and linear compressor
KR100565351B1 (en) Innerstator structure for reciprocating compressor
KR100287717B1 (en) Piston unit of linear compressor and the manufacturing apparatus and method for it
US20050232790A1 (en) Linear compressor
CN213511085U (en) Compressor
KR100556816B1 (en) Reciprocating compressor method for manufacturing thereof
KR100608695B1 (en) Structure for fixing inner stator of reciprocating compressor
KR100285190B1 (en) Manufacturing Method of Magnetic Body for Communication Buzzer and Communication Buzzer Using the Same
CN112628109A (en) A kind of compressor
KR20110006183A (en) Piston device for reciprocating compressor and manufacturing mentod thereof
KR20000002211A (en) Fixing structure for magnet of linear compressor

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION