US20040178530A1 - High volume manufacturing of nanoparticles and nano-dispersed particles at low cost - Google Patents

High volume manufacturing of nanoparticles and nano-dispersed particles at low cost Download PDF

Info

Publication number
US20040178530A1
US20040178530A1 US10/698,564 US69856403A US2004178530A1 US 20040178530 A1 US20040178530 A1 US 20040178530A1 US 69856403 A US69856403 A US 69856403A US 2004178530 A1 US2004178530 A1 US 2004178530A1
Authority
US
United States
Prior art keywords
metal
dispersed
particles
powders
nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/698,564
Inventor
Tapesh Yadav
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PPG Industries Ohio Inc
Original Assignee
Nano Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/707,341 external-priority patent/US5788738A/en
Priority claimed from US08/730,661 external-priority patent/US5952040A/en
Priority claimed from US08/739,257 external-priority patent/US5905000A/en
Priority claimed from US09/790,036 external-priority patent/US6933331B2/en
Application filed by Nano Products Corp filed Critical Nano Products Corp
Priority to US10/698,564 priority Critical patent/US20040178530A1/en
Publication of US20040178530A1 publication Critical patent/US20040178530A1/en
Assigned to NANOPRODUCTS CORPORATION reassignment NANOPRODUCTS CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: DIRSTINE, ROGER, PFAFFENBACH, KARL, YADAV, TAPESH
Assigned to PPG INDUSTRIES OHIO, INC. reassignment PPG INDUSTRIES OHIO, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: NANOPRODUCTS CORPORATION
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/02Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor for obtaining at least one reaction product which, at normal temperature, is in the solid state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • B01J35/23
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • B01J37/18Reducing with gases containing free hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/09Mixtures of metallic powders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/12Metallic powder containing non-metallic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/12Making metallic powder or suspensions thereof using physical processes starting from gaseous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/08Making granules by agglomerating smaller particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/58Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising fillers only, e.g. particles, powder, beads, flakes, spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/14Methods for preparing oxides or hydroxides in general
    • C01B13/145After-treatment of oxides or hydroxides, e.g. pulverising, drying, decreasing the acidity
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/0615Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium
    • C01B21/062Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with transition metals other than titanium, zirconium or hafnium with chromium, molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/991Boron carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B35/00Boron; Compounds thereof
    • C01B35/02Boron; Borides
    • C01B35/04Metal borides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • C01F11/04Oxides or hydroxides by thermal decomposition
    • C01F11/06Oxides or hydroxides by thermal decomposition of carbonates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F5/00Compounds of magnesium
    • C01F5/02Magnesia
    • C01F5/06Magnesia by thermal decomposition of magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2/00Lime, magnesia or dolomite
    • C04B2/10Preheating, burning calcining or cooling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0004Microcomposites or nanocomposites, e.g. composite particles obtained by polymerising monomers onto inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62222Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic coatings
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C7/00Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material
    • H01C7/10Non-adjustable resistors formed as one or more layers or coatings; Non-adjustable resistors made from powdered conducting material or powdered semi-conducting material with or without insulating material voltage responsive, i.e. varistors
    • H01C7/105Varistor cores
    • H01C7/108Metal oxide
    • H01C7/112ZnO type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0036Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
    • H01F1/0045Zero dimensional, e.g. nanoparticles, soft nanoparticles for medical/biological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00177Controlling or regulating processes controlling the pH
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/0018Controlling or regulating processes controlling the conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B2009/125Micropellets, microgranules, microparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/10Solid density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/013Additives applied to the surface of polymers or polymer particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/252Glass or ceramic [i.e., fired or glazed clay, cement, etc.] [porcelain, quartz, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention relates, in general, to nano-dispersed powders, and, more particularly, to nano-dispersed, complex composition fine powders and methods to produce such powders.
  • Powders are used in numerous applications. They are the building blocks of catalytic, electronic, telecommunication, electrical, magnetic, structural, optical, biomedical, chemical, thermal and consumer goods. On-going market demands for more efficient, reliable, smaller, faster, superior and more portable products have demanded miniaturization of numerous products. This, in turn, has demanded miniaturization of the building blocks, i.e. the powders.
  • Sub-micron and nanoscale (or nanosize, ultra-fine) powders with a size 10 to 100 times smaller than conventional micron size powders, enable quality improvement and differentiation of product characteristics at scales currently unachievable by commercially available micron-sized powders.
  • Nanopowders in particular, and sub-micron powders in general are a novel family of materials whose distinguishing features include that their domain size is so small that size confinement effects become a significant determinant of the materials' performance. Such confinement effects can, therefore, lead to a wide range of commercially important properties. Nanopowders, therefore, are an extraordinary opportunity for design, development and commercialization of a wide range of devices and products for various applications. Furthermore, since they represent a whole new family of material precursors where conventional coarse-grain physiochemical mechanisms are not applicable, these materials offer unique combination of properties that can enable novel and multifunctional components of unmatched performance. Bickmore, et al. in U.S. Pat. No. 5,984,997, which along with the references contained therein is incorporated herein by reference, teach some applications of sub-micron and nanoscale powders.
  • Conventional dispersed powders comprise powders of a first composition (e.g. metal) dispersed on the surface of a carrier which may be of a second composition (e.g. carbon).
  • the dispersed powder structure enables greater and more effective availability of the first composition. It also provides a cost reduction because the second composition can be a low-cost carrier. Additionally, the dispersed powder structure improves the stability and enhances the performance synergistically.
  • Dispersed powders are desired in a number of applications such as catalysis.
  • the junctions provide active sites for useful chemical reactions.
  • Dispersed powders are often produced using chemical precipitation techniques. These techniques fail to provide a fine and uniform distribution of the dispersed particles on the surfaces of the carrier. Furthermore, the challenge becomes even more difficult when complex compositions need to be dispersed on a carrier powder. Chemical precipitation techniques also leave chemical residues on the surfaces that sometimes are not desirable. Given the difficulty in their production, few dispersed powders are known in the literature and these have found only limited applications.
  • Phillips in U.S. Pat. No. 5,989,648 (which, along with its references, is specifically incorporated herein by reference) teaches a plasma-based method for preparing metal supported catalysts from an aerosol comprising a mixture of at least one metal powder and at least one support powder. Phillips reports the unusual benefits as catalysts of the metal supported powders so prepared. However, Phillips does not offer motivation for or methods of utilizing fluid precursors to form dispersed powders. Phillips also does not teach nano-dispersed sub-micron powders, motivations for their use, or their benefits to various applications.
  • the present invention involves nano-dispersed powders comprising powders that have been morphologically engineered. More specifically, the term nano-dispersed powders according to this invention refers to powders that have been arranged to provide a desired morphological distribution (dispersion) at nanoscale levels (e.g., sub-100 nm levels). As described in the definition section, nano-dispersed powders comprise carrier particles and attached particles dispersed on the surface of the carrier particles.
  • the carrier particles may be spherical, non-spherical, porous, tubular, planar, crystallites, amorphous, or any other useful form.
  • the nanoparticles may similarly be one-dimensional, two-dimensional, or three-dimensional, spherical, non-spherical, porous, tubular, planar, crystallites, or amorphous forms, or any other useful form.
  • the attached nano-dispersed particles may be free flowing, agglomerated, porous, coated, or hollow forms or any other useful form.
  • the same carrier may have nanoparticles of more than one composition attached to its surface.
  • various nano-dispersed particles of different compositions may be blended to achieve useful compositions.
  • the invention provides nano-dispersed powders with unusually engineered morphology.
  • the unusual morphology provides a high density of multi-phasic points (i.e. points where two or more distinct phases interact with each other and/or species in the gas phase). These morphologically engineered nano-dispersed powders offer benefits to numerous applications.
  • Some illustrative, but non-limiting applications include (a) catalytic transformation of less valuable chemicals and material feed stocks into more valuable chemicals and materials; (b) catalytic transformation of more hazardous chemicals and materials into less hazardous or non-hazardous forms of substances; (c) unusual phosphor, photonic, and optical materials for display, photonic, and optical applications; (d) unusual carriers, tracers, drug delivery vehicles, and markers for biomedical and genomic applications; (e) unusual building blocks for batteries, sensors, and electrochemical products; (f) fillers for polymers, ceramics, and metal matrix composites; and (g) dopants for electronic, magnetic, thermal, piezo, electrical, tooling, structural, inks, paints, and topical health products.
  • FIG. 1 shows an example of a sub-micron powder comprising nanopowders discretely dispersed on and attached to the surface of the submicron powder.
  • FIG. 2 shows an example of a nanotube carrier having nanoparticles dispersed on and attached to its surface, wherein at least two of the nanoparticles are not in contact with each other.
  • FIG. 3 shows one embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.
  • FIG. 4 shows a schematic concentric flame approach to improve the uniformity of particle size distribution.
  • FIG. 5 shows an alternate embodiment for producing nano-dispersed particles in which both the nano-sized powders and the carrier particles are prepared in-situ during the thermal processing.
  • FIG. 6 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.
  • FIG. 7 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.
  • FIG. 8 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.
  • the present invention is directed to dispersed powders in general and dispersed nanoscale powders in particular.
  • dispersed powders provide a structure having a particle size that is largely determined by the size of a carrier particle, and surface behavior that is largely determined by dispersed particles attached to the carrier particle. This somewhat oversimplifies dispersed particle structures in that both the size and ultimate surface behavior may be affected by each component, however the simplification is useful for understanding.
  • the composite structure can be engineered to have some benefits (e.g., cost, material handling, and the like) associated with larger particle sizes while exhibiting behaviors, particularly surface-related behaviors, of the nanoscale powders dispersed on the carrier.
  • FIG. 1 shows an example of a sub-micron powder comprising nanopowders 200 discretely dispersed on and attached to the surface of a submicron carrier 102 .
  • discretely it is meant that the particles 200 do not touch or overlap. In one sense means particles do not physically overlap. In another sense means that they are sufficiently separate that the solid states of atoms within adjacent particles 200 have a level of interaction determined by their separation.
  • FIG. 2 shows an example of a nanotube carrier 203 having nanoparticles 200 dispersed on and attached to its surface, wherein at least two of the nanoparticles are not in contact with each other.
  • Powders refers to powders that simultaneously satisfy the following criteria:
  • Micron powders refers to fine powders that simultaneously satisfy the following criteria:
  • powders are used interchangeably and refer to powders that simultaneously satisfy the following criteria:
  • they comprise at least a first composition that serves as a carrier particle
  • they comprise particles of at least a second composition that are attached to the surface of the carrier particle in a mechanically stable state, where the second composition can be the same as or different from the first composition;
  • the average separation distance between the center of gravity of the at least two neighboring attached particles on the surface of the carrier that are not in contact with each other is at least 1.05 times the average diameter of the attached particles, preferably greater than 2.5 times the average diameter of the attached particles, more preferably greater than 5 times the average diameter of the attached particles, and most preferably greater than 10 times the average diameter of the attached particles;
  • the attached particle is smaller than the carrier particle. More particularly, the ratio of the average diameter of the carrier particles and the average diameter of the attached particles is greater than or equal to 2, preferably greater than 10, more preferably greater than 25, and most preferably greater than 100. In one embodiment, the carrier powder is less than 1000 microns, preferably less than 100 microns, more preferably 10 microns, and most preferably 1 micron.
  • nanopowders As used interchangeably and refer to fine powders that simultaneously satisfy the following criteria:
  • Pure powders refers to powders that have a composition purity of at least 99.9%, preferably 99.99% by metal basis.
  • Nano-dispersed powders refers to dispersed powders in which the attached particle is a nanopowder.
  • Nano-dispersed sub-micron powders refers to dispersed powders in which the attached particle is a nanopowder and the carrier particle is a sub-micron powder.
  • Nano-dispersed nanopowders refers to dispersed powders where the attached particle is a nanopowder and the carrier particle is also a nanoscale powder.
  • binder “particle,” and “grain” are used interchangeably and encompass oxides, carbides, nitrides, borides, chalcogenides, halides, metals, intermetallics, ceramics, polymers, alloys, and combinations thereof.
  • the term includes single metal, multi-metal, and complex compositions.
  • These terms further include hollow, dense, porous, semi-porous, coated, uncoated, layered, laminated, simple, complex, dendritic, inorganic, organic, elemental, non-elemental, composite, doped, undoped, spherical, non-spherical, surface functionalized, surface non-functionalized, stoichiometric, and non-stoichiometric forms or substances.
  • powder in its generic sense includes one-dimensional materials (fibers, tubes), two-dimensional materials (platelets, films, laminates, planar), and three-dimensional materials (spheres, cones, ovals, cylindrical, cubes, monoclinic, parallelolipids, dumbbells, hexagonal, truncated dodecahedron, irregular shaped structures, etc.).
  • the term “aspect ratio” refers to the ratio of the maximum to the minimum dimension of a particle.
  • the present invention is directed to dispersed powders in general and dispersed nanoscale powders in particular. Dispersed powders preferably simultaneously satisfy the following criteria:
  • they comprise particles of at least a second composition that are dispersed on and attached to the surface of the carrier particle in a mechanically stable state (i.e., sufficiently attached to prevent undesired physical mobility during normal use), where the composition of the attached particles may be the same as or different than the carrier particle;
  • the surfaces of the attached particle and carrier particle interact physically, chemically, or electrochemically with each other, but the attached particles exhibit properties (e.g., electrical properties, chemical properties, solid state properties, size-confinement properties, surface properties and/or the like) that are distinct from the carrier particle;
  • the average separation distance between the center of gravity of the at least two neighboring attached particles that are not in contact with each other is at least 1.05 times the average diameter of the attached particles, preferably greater than 2.5 times the average diameter of the attached particles, more preferably greater than 5 times the average diameter of the attached particles, and most preferably greater than 10 times the average diameter of the attached particles;
  • the attached particle is smaller than the carrier particle. More particularly, the ratio of the average diameter of the carrier particles and the average diameter of the attached particles is greater than or equal to 2, preferably greater than 10, more preferably greater than 25, and most preferably greater than 100.
  • the carrier particle is a ceramic composition (oxide, carbide, nitride, boride, chalcogenide) or an intermetallic composition (aluminide, silicide) or an elemental composition.
  • ceramic composition include, but are not limited to (a) simple oxides such as aluminum oxide, silicon oxide, zirconium oxide, cerium oxide, yttrium oxide, bismuth oxide, titanium oxide, iron oxide, nickel oxide, zinc oxide, molybdenum oxide, manganese oxide, magnesium oxide, calcium oxide, and tin oxide; (b) multi-metal oxides such as aluminum silicon oxide, copper zinc oxide, nickel iron oxide, magnesium aluminum oxide, calcium aluminum oxide, calcium aluminum silicon oxide, indium tin oxide, yttrium zirconium oxide, calcium cerium oxide, scandium yttrium zirconium oxide, barium titanium oxide, barium iron oxide and silver copper zinc oxide; (c) doped oxides such as zirconium doped cerium oxide, antimony doped
  • the dispersed particles that are attached to the carrier particle are elemental, ceramic, intermetallic or polymer compositions.
  • the composition of the attached particles can be the same as or different than the composition of the carrier particle.
  • the particles are preferably separated from each other either uniformly or non-uniformly across the surface of the carrier particle.
  • the distance between two neighboring attached particles on the surface of the carrier that do not touch each other is at least 2 Angstroms, but may be greater than 5 Angstroms, 10 Angstroms, 50 Angstroms or more to meet the needs of a particular application.
  • Examples of elemental compositions for the dispersed, attached particles include, but are not limited to, (a) precious metals such as platinum, palladium, gold, silver, rhodium, ruthenium and their alloys; (b) base and rare earth metals such as iron, nickel, manganese, cobalt, aluminum, copper, zinc, titanium, samarium, cerium, europium, erbium, and neodymium; (c) semi-metals such as boron, silicon, tin, indium, selenium, tellurium, and bismuth; (d) non-metals such as carbon, phosphorus, and halogens; (e) clusters such as fullerenes (C 60 , C 70 , C 82 ), silicon clusters, and nanotubes of various compositions; and (f) alloys such as steel, shape memory alloys, aluminum alloys, manganese alloys, and superplastic alloys.
  • precious metals such as platinum, palladium, gold, silver
  • Ceramic compositions for the dispersed, attached particles include, but are not limited to, (a) simple oxides such as aluminum oxide, silicon oxide, zirconium oxide, cerium oxide, yttrium oxide, bismuth oxide, titanium oxide, iron oxide, nickel oxide, zinc oxide, molybdenum oxide, manganese oxide, magnesium oxide, calcium oxide, and tin oxide; (b) multi-metal oxides such as aluminum silicon oxide, copper zinc oxide, nickel iron oxide, magnesium aluminum oxide, calcium aluminum oxide, calcium aluminum silicon oxide, indium tin oxide, yttrium zirconium oxide, calcium cerium oxide, scandium yttrium zirconium oxide, barium titanium oxide, and silver copper zinc oxide; (c) doped oxides such as zirconium doped cerium oxide, antimony doped tin oxide, boron doped aluminum oxide, phosphorus doped silicon oxide, and nickel doped iron oxide; (d) carbides such as silicon carbide, boron carbide, iron carbide, titanium carbide
  • the nano-dispersed powders of this invention may further comprise carrier particles having dispersed particles of more than one composition dispersed on and attached to their surfaces.
  • the dispersed powders may comprise multiple layers of the attached particles, where the layers may be concentric or non-concentric.
  • Other preferred specifications for the carrier particles are provided in Table 2.
  • Range Desired Range Preferred Range Average particle Less than 5 micron 1 nm-250 nm size Standard deviation 1 nm-750 nm 1 nm-50 nm of the Size distribution Purity, by wt % Dependant on the >99.99% needs of the application and cost (normally, greater than 90%) Surface Area >1 m 2 /gm >100 m 2 /gm XRD crystallite Amorphous, 1 nm to ⁇ 250 nm size 1 micron Mechanical Dependant on the High Stability needs of the application and cost
  • nano-dispersed powders of this invention commercially desirable result in part from (a) the separation between the attached nanoparticles during their use, (b) the unusual properties of attached nanoparticles, (c) the useful interaction between the carrier composition and the dispersed attached particles, and (d) the morphologically induced interaction of dispersed attached particle interfaces and the carrier particle interface with the chemical, electromagnetic, electrochemical, photonic, magnetic, charges, and thermodynamic environment around the dispersed particles.
  • the distinct usefulness of nano-dispersed powders is in part a result of the separation between the dispersed nanoparticles attached to the surface of the carrier particle, which in turn reduces the potential sintering of the particles at higher temperatures. It is known in the art that closely packed small particles in general, and nanoscale particles in particular, sinter faster as the temperature of use increases. This limits the time during which the useful performance of the particle is available. Many applications, particularly those that operate at high temperatures (e.g. catalysis), require that the surface and bulk properties of the material in use do not vary or that they vary only slightly with time.
  • Nano-scaled materials are a family of materials whose distinguishing feature is that their mean grain size is less than 100 nm.
  • Nanopowders because of their nanoscale dimensions (near-molecular), feature a variety of confinement effects that significantly modify the properties of the material.
  • the physics behind this has been aptly conjectured to be the following: a property will be altered when the entity or mechanism responsible for that property is confined within a space smaller than the critical length associated with that entity or mechanism. Such confinement effects lead to very desirable properties. For example:
  • nanopowders have a very high surface area which leads to enhanced interfacial diffusivities and thus enables rapid, low temperature formation of materials that are typically difficult to process;
  • nanopowders are isomorphic because of dimensional confinement. Furthermore, enhanced solubilities are observed leading to non-equilibrium compositions. This leads to catalysts and reactants with extremely high surface areas, high selectivity and activity;
  • nanopowders have grain sizes that are too small for Frank-Read dislocation to operate in the conventional yield stress domain; consequently, enhancement in strengths and hardness of 100% to 500% are observed in films and pellets made from nanopowders;
  • the size of the nanopowder is less than the wavelength of visible light; consequently unique optical materials with grain sizes tailored for excitonic interactions with particular wavelengths can be prepared;
  • nanopowders are confined to a dimension less than the mean free path of electrons; consequently, unusual electrical and electrochemical properties can be observed;
  • nanopowders are confined to dimension less than the domain size of magnetic materials; consequently, nanopowders are precursors to magnetic materials exhibiting Giant Magnetoresistive (GMR) and superparamagnetic effects; and
  • nanopowders feature quantum confinement to dimensions less than Debye length. This leads to electrochemical properties with order of magnitude higher sensitivities to chemical species.
  • Nanopowders in general, and nano-dispersed powders in particular thus provide an extraordinary opportunity for design, development and commercialization of a wide range of structural, electrochemical, electrical, optical, electronic, magnetic and chemical applications. Furthermore, since nanopowders represent a whole new family of material precursors for which conventional coarse-grain physiochemical mechanisms are not performance determining, nanomaterials in general and nano-dispersed powders in particular offer unique combination of properties that can enable novel and multifunctional components of unmatched performance.
  • nano-dispersed powders Yet another source of distinct usefulness of nano-dispersed powders results in part from the useful interaction between the dispersed attached nanoparticles and the carrier particles.
  • Dimensionally confined nanomaterials have properties that are determined in part by the interface thermodynamics and characteristics. These interfaces in turn are influenced by neighboring atoms.
  • the nanoparticles interact with the interface of the carrier particles. This interaction can induce a novel performance that is not exhibited by either of the carrier particle or nanoparticle materials in isolation.
  • triple points are the points where three or more phases meet and lead to useful interaction between the dispersed particles, the carrier particles, and the fluid environment around the junction of dispersed and carrier particles.
  • the nanoscale size of dispersed particles significantly increases the density of triple points.
  • FIG. 3 shows one embodiment of a system for producing dispersed powders in accordance with the present invention. This method can be used to produce dispersed powders that are coarse and pure, but is particularly useful for nano-dispersed sub-micron and nano-dispersed nanoscale powders.
  • the process shown in FIG. 3 begins at 100 with a metal-containing precursor such as an emulsion, fluid, particle-containing liquid slurry, or water-soluble salt.
  • the precursor may be a gas, a single-phase liquid, a multi-phase liquid, a melt, fluid mixtures, or combinations thereof.
  • the metal-containing precursor comprise a stoichiometric or a non-stoichiometric metal composition wherein at least some portion is in a fluid phase. Fluid precursors are preferred in this invention over solid precursors because fluids are easier to convey, evaporate, and thermally process, and the resulting product is more uniform.
  • the precursors are preferably environmentally benign, safe, readily available, high-metal loading, lower cost fluid materials.
  • metal-containing precursors suitable for purposes of this invention include, but are not limited to, metal acetates, metal carboxylates, metal ethanoates, metal alkoxides, metal octoates, metal chelates, metallo-organic compounds, metal halides, metal azides, metal nitrates, metal sulfates, metal hydroxides, metal salts soluble in organics or water, and metal-containing emulsions.
  • multiple metal precursors may be mixed if complex nano-dispersed powders are desired.
  • a barium precursor and iron precursor may be mixed to prepare high purity barium ferrite powders.
  • a yttrium precursor, barium precursor, and copper precursor may be mixed in correct proportions to yield a high purity YBCO powder for superconducting applications.
  • an aluminum precursor and silica precursor may be mixed to yield aluminum silicate powders.
  • Such complex nano-dispersed powders can help create materials with surprising and unusual properties not available through the respective single metal oxides or a simple nanocomposite formed by physical blending powders of different compositions.
  • nanoscale powders formed from blending two or more metals can create materials with a hardness, refractive index, or other property or a combination of such properties that have values that are intermediate to the properties of the respective single metal oxide forms.
  • complex powders may be prepared from aluminum and silicon precursors to create novel aluminum silicate nanomaterials with refractive index that is intermediate to the refractive index of the alumina and silica.
  • precursors of a higher purity it is desirable to use precursors of a higher purity to produce a nano-dispersed powder of a desired purity. For example, if purities greater than x % (by metal basis) is desired, one or more precursors that are mixed and used have purities greater than or equal to x % (by metal basis) to practice the teachings herein.
  • the metal-containing precursor 100 (containing one or a mixture of metal-containing precursors) is mixed with carrier particles 102 of desired size, composition, and characteristics.
  • Carrier particles 102 may comprise micron-sized particles, sub-micron particles, or nanostructured particles.
  • the resultant slurry precursor 104 is the preferred feed material for producing nano-dispersed powders.
  • the relative concentrations of the metal-containing precursors 100 and the carrier particles 102 should be substantially equivalent to that desired in the final product.
  • the slurry precursor 104 is fed into a high temperature process 106 implemented using a high temperature reactor, for example.
  • a synthetic aid such as a reactive fluid 108 can be added along with the slurry precursor 104 as it is being fed into the reactor 106 .
  • a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-carbon elemental ratio in the precursor molecule is high.
  • a reactive fluid 108 that provides excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106 . Examples of such reactive fluids include, but are not limited to, oxygen gas and air.
  • a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-carbon elemental ratio is less than 0.1, more preferably less than 1.0, and most preferably less than 2.0.
  • a reactive fluid 108 that provides excess carbon or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106 .
  • reactive fluids include, but are not limited to, methane, ethylene, acetylene, ethane, natural gas, benzene, naphtha, and hydrogen.
  • a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-nitrogen elemental ratio in the precursor molecule less than 0.1, more preferably less than 1.0, and most preferably less than 2.0.
  • a reactive fluid 108 that provides excess nitrogen or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106 .
  • reactive fluids include, but are not limited to, amines, ammonia, hydrazine, nitrogen, and hydrogen.
  • a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-boron elemental ratio in the precursor molecule less than 0.1 and more preferably less than 1.0, and most preferably less than 1.5.
  • a reactive fluid 108 that provides excess boron or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106 . Examples include, but are not limited to, boranes, boron, and hydrogen.
  • a preferred embodiment of this invention is to use a precursor 100 in which the (a) oxygen-to-carbon elemental ratio in the precursor molecule less than 0.1 and more preferably less than 1.0, and most preferably less than 2.0, and (b) the oxygen-to-nitrogen elemental ratio in the precursor molecule less than 0.1, more preferably less than 1.0, and most preferably less than 2.0.
  • a reactive fluid 108 may be added along with the slurry precursor 104 to the reaction zone 106 .
  • reactive fluids include, but are not limited to, methane, ethylene, acetylene, ethane, natural gas, benzene, naphtha, amines, ammonia, hydrazine, nitrogen, and hydrogen.
  • the precursor 100 may be also pre-processed in a number of other ways before the high temperature thermal treatment.
  • the pH may be adjusted to ensure stable precursor.
  • selective solution chemistry such as precipitation may be employed to form a sol or other state of matter.
  • the precursor 101 may be pre-heated or partially combusted before the thermal treatment.
  • the slurry precursor 104 may be injected axially, radially, tangentially, or at any other angle into the high temperature region 106 .
  • the slurry precursor 104 may be pre-mixed or diffusionally mixed with other reactants.
  • the slurry precursor 104 may be fed into the thermal processing reactor by a laminar, parabolic, turbulent, pulsating, sheared, or cyclonic flow pattern, or by any other flow pattern.
  • one or more metal-containing precursors 100 can be injected from one or more.ports in the reactor 106 .
  • the feed spray system may yield a feed pattern that envelops the heat source or, alternatively, the heat sources may envelop the feed, or alternatively, various combinations of this may be employed.
  • a preferred embodiment is to atomize and spray the feed in a manner that enhances heat transfer efficiency, mass transfer efficiency, momentum transfer efficiency, and reaction efficiency.
  • the reactor shape may be cylindrical, spherical, conical, or any other shape. Methods and equipment such as those taught in U.S. Pat. Nos. 5,788,738, 5,851,507, and 5,984,997 (each of which is specifically incorporated herein by reference) can be employed in practicing the methods of this invention.
  • the slurry precursor 104 is fed into reactor 106 , it is processed at high temperatures to form the product nano-dispersed powder.
  • the thermal treatment is preferably done in a gas environment with the aim to produce a product such as powders that have the desired porosity, strength, morphology, dispersion, surface area, and composition.
  • This step produces by-products such as gases. To reduce costs, these gases may be recycled, mass/heat integrated, or used to prepare the pure gas stream desired by the process.
  • the high temperature processing is conducted at step 106 (FIG. 3) at temperatures greater than 1500° C., preferably 2500° C., more preferably greater than 3000° C., and most preferably greater than 4000° C.
  • temperatures may be achieved by various methods including, but not limited to, plasma processes, combustion, pyrolysis, electrical arcing in an appropriate reactor, and combinations thereof.
  • the plasma may provide reaction gases or just provide a clean source of heat.
  • reaction zone such as a combustion flame
  • the reaction zone can be surrounded by a fully or a partially concentric zone of a medium with a thermal, mass and momentum profile that reduces such non-uniformity.
  • FIG. 4 shows a primary combustion burner 420 , over which useful particle producing flame chemistry occurs, is preferably surrounded by a concentric secondary burner 421 where a fuel is burned to maintain the outer edge temperatures in region 422 as close to the primary flame's highest temperature in region 423 as possible.
  • the mass and momentum profile of the medium created by the concentric secondary burner 421 should be similar in one or more respects to the mass and momentum profile of the medium created by the primary burner 420 .
  • Such concentric burners can assist in a more uniform thermal, mass, and momentum profile for the reaction space created by the primary burner 420 .
  • a non-limiting illustration of such concentric burners is discussed and referenced by Howard et al., Carbon 30(8):1183-1201 (1992), which along with references contained therein is specifically incorporated herein by reference.
  • the slurry precursor 104 is pre-treated to minimize non-uniformity in heat, mass, and/or momentum transfer. This can be achieved through techniques such as (a) axially, radially, or tangentially surrounding the high temperature processing zone 106 with an inert gas plasma, (b) axially, radially, or tangentially surrounding the high temperature processing zone 106 with a complete combustion flame, preferably of high temperature, or (c) axially, radially, or tangentially surrounding the high temperature processing zone 106 with an electrical arc or high temperature radiation source.
  • the concentric flame's adiabatic temperature is preferably greater than 500° C., more preferably greater than 1000° C., and most preferably greater than 2000° C.
  • the minimal requirement of this technique is that the high temperature processing zone temperature at the outer edges be higher when the concentric high temperature thermal zone is present than when it is absent.
  • This principle of concentric thermal zones can be applied to any method of producing dispersed powders.
  • Illustrative examples of processes where this principle can be used include one-dimensional combustion flames, diffusion flames, turbulent flames, pre-mixed flames, flat flames, plasma, arcing, microwave, sputtering, pyrolysis, spray evaporation, laser and hydrothermal processing.
  • carrier particles 102 are present in the high temperature process.
  • the carrier particles 102 may be substantially inert during high temperature process 106 , or they may be transformed by physical, chemical, or solid state reactions.
  • High temperature processing is performed in a manner such that the end product of high temperature process 106 includes carrier particles 102 of desired size, composition and uniformity. Alternatively, the carrier particles can be added at a later stage of the high temperature process.
  • the high temperature process 106 results in a vapor comprising fine powders and carrier particles.
  • this vapor is cooled at step 110 to nucleate dispersion of fine powders, preferably nanopowders, onto the surface of the carrier particles.
  • the cooling temperature at step 110 is high enough to prevent moisture condensation.
  • the dispersed particles are formed from the precursor because of the thermokinetic conditions in the process. By engineering the process conditions such as pressure, residence time, flow rates, species concentrations, diluent addition, degree of mixing, momentum transfer, mass transfer, and heat transfer, the morphology of the dispersed powders can be tailored.
  • the focus of the process is on producing a dispersed powder product that excels in satisfying the end application requirement and customer needs. In some cases, this may be achieved with uniformly dispersed particles and in others it may be non-uniformly distributed particles that best meet the customer needs.
  • the nano-dispersed powder is preferably quenched to lower temperatures at step 116 to minimize and preferably prevent agglomeration or grain growth.
  • Suitable quenching methods include, but are not limited to, methods taught in U.S. Pat. No. 5,788,738. It is preferred that quenching methods be employed which can prevent deposition of the powders on the conveying walls. These methods may include electrostatic means, blanketing with gases, the use of higher flow rates, mechanical means, chemical means, electrochemical means, or sonication/vibration of the walls.
  • the high temperature processing system includes instrumentation 112 , 114 that can assist in the quality control of the process by analyzing the quality of the product either between steps 116 and 118 , or between steps 118 and 120 .
  • the data collected after analysis of the product can provide information on how to adjust the process variables to adjust the quality of the product.
  • the high temperature processing zone 106 is operated to produce fine powders 120 (FIG. 3), preferably submicron powders, and most preferably nanopowders.
  • the gaseous products from the process may be monitored for composition, temperature and other variables to ensure quality at 112 (FIG. 3).
  • the gaseous products may be recycled to be used in process 108 (FIG. 3), or used as a valuable raw material when dispersed powders 120 have been formed.
  • the nano-dispersed powders are cooled further at step 118 and then harvested at step 120 .
  • the product nano-dispersed powders 120 may be collected by any method. Suitable collection means include, but are not limited to, bag filtration, electrostatic separation, membrane filtration, cyclones, impact filtration, centrifugation, hydrocyclones, thermophoresis, magnetic separation, and combinations thereof.
  • FIG. 5 shows an alternate embodiment for producing dispersed particles according to this invention.
  • the embodiment shown in FIG. 5 begins with nano-scale powders 200 produced by any technique. These nanoscale powders 200 are mixed with desired coarser carrier particles 202 into a slurry precursor 204 .
  • the slurry precursor 204 is mixed with a fluid such as a fuel and then used as precursor to make nano-dispersed particles following steps 204 - 210 in a manner similar to that described for steps 104 - 112 of FIG. 3.
  • precursors may be blended into or emulsified into a commercially available nanoparticulate sol, such as NALCO® silica sols or NYACOL® alumina sol. This multi-phased feed is then used to make particles by the process described by FIG. 5.
  • a commercially available nanoparticulate sol such as NALCO® silica sols or NYACOL® alumina sol. This multi-phased feed is then used to make particles by the process described by FIG. 5.
  • FIG. 6 shows yet another embodiment for producing dispersed particles according to this invention.
  • both the nano-scale particles and the carrier particles are formed in-situ during the thermal processing step.
  • a metal-containing precursor 300 containing one or a mixture of metal-containing precursors
  • optional dopants 301 are combined to form a precursor batch 302 .
  • the dopants may be added to modify or enable the performance of the dispersed powders suitably for a particular application.
  • dopants include, but are not limited to, transition metals, rare earth metals, alkali metals, alkaline earth metals, semi-metals, and non-metals.
  • precursors for such dopants are intimately mixed with the metal-containing precursor 300 . It is also preferred that dopant precursors are fluids.
  • the precursor batch is then feed into a high temperature reactor 306 .
  • one or more synthetic aids such as a reactive fluid 308 can be added along with the precursor batch 302 as it is being fed into the reactor 306 . Examples of synthetic aids include, but are not limited to, oxygen, methane, nitrogen, feed gases, oxidants, or reactants.
  • the precursor batch 302 is then fed into a thermal reactor 306 where the precursors are partially transformed, or preferably completely transformed, into the vapor form.
  • the source of thermal energy in the preferred embodiments is plasma generator 305 .
  • Plasma gas 307 which may be inert or reactive, is supplied to plasma generator 305 .
  • the source of thermal energy may be internal energy, heat of reaction, conductive, convective, radiative, inductive, microwave, electromagnetic, direct or pulsed electric arc, laser, nuclear, or combinations thereof, so long as it is sufficient to cause the rapid vaporization of the powder suspension being processed.
  • the high temperature process 306 results in a vapor comprising both fine powders and carrier particles formed in-situ from the precursors 300 .
  • the thermokinetic conditions and ratio of the precursor to the synthetic aid are controlled.
  • the precursors can be fed at different locations in the reactor to engineer the residence time experienced by each feed location.
  • a change in residence time or thermokinetic condition or process variable produces powders of different characteristics (size, shape, composition, etc.). This method can therefore be employed to produce both carrier and attached particles.
  • this vapor is cooled at step 310 to nucleate dispersion of the onto the surface of the carrier particles.
  • the cooling temperature at step 310 is high enough to prevent moisture condensation.
  • the nano-dispersed powder is preferably quenched as described above to lower temperatures at step 316 to prevent agglomeration or grain growth. It is preferred that quenching methods be employed which can prevent deposition of the powders on the conveying walls. Following quenching step 316 the nano-dispersed powders are cooled further at step 318 and then harvested at step 320 .
  • the product of this process is a dispersed powder, such as nano-scale particles dispersed on larger nano-scale particles or nano-scale particles dispersed on sub-micron particles.
  • the nano-dispersed powders are produced by first combining nano-scale powders produced by any method with carrier particles.
  • the relative concentrations of the nano-scale powder and the carrier particles should be substantially equivalent to that desired in the final product.
  • the mixture is then mechanically milled by methods known in the art to produce the nano-dispersed powders.
  • the milling may be done in gas or liquid environment. If a liquid environment is employed, the liquid may comprise acids, alkalis, oxidizers, dispersants, metal containing precursors, or other suitable constituents.
  • FIG. 7 shows an alternative flow diagram of a thermal process for the synthesis of nano-dispersed powders.
  • precursors 404 such as metal containing emulsions, fluid, or water soluble salt, are combined with carrier particles 405 .
  • carrier particles 405 Although a single precursor storage tank 404 is shown in FIG. 7, it is to be understood that multiple precursor tanks may be provided and used with or without premixing mechanisms (not shown) to premix multiple precursors before feeding into reactor 401 .
  • a feed stream of precursor material from storage tank 404 and carrier particles 405 is atomized in mixing apparatus 403 .
  • a precursor storage 404 may be implemented by suspending the precursor in a gas, preferably in a continuous operation, using fluidized beds, spouting beds, hoppers, or combinations thereof, as best suited to the nature of the precursor.
  • the resulting suspension is advantageously preheated in a heat exchanger (not shown), preferably with the exhaust heat, and is then fed into a thermal reactor 401 where the atomized precursors are partially transformed, or preferably completely transformed, into the vapor form.
  • the source of thermal energy in the preferred embodiments is plasma generator 402 powered by power supply 206 .
  • Plasma gas 407 which may be inert or reactive, is supplied to plasma generator 402 .
  • the source of thermal energy may be internal energy, heat of reaction, conductive, convective, radiative, inductive, microwave, electromagnetic, direct or pulsed electric arc, laser, nuclear, or combinations thereof, so long as it is sufficient to cause the rapid vaporization of the precursor being processed.
  • the peak temperature in the thermal reactor 401 is greater than 1500° C., preferably greater than 2500° C., more preferably greater than 3000° C., and most preferably greater than 4000° C.
  • the walls of reactor 401 may be pre-coated with the same material being processed.
  • the vapor next enters an extended reaction zone 411 of the thermal reactor which provides additional residence time as needed to complete the processing of the feed material and to provide additional reaction and forming time for the vapor (if necessary).
  • an extended reaction zone 411 of the thermal reactor which provides additional residence time as needed to complete the processing of the feed material and to provide additional reaction and forming time for the vapor (if necessary).
  • the stream leaves the reactor, it passes through a zone 409 where the thermokinetic conditions favor the nucleation of solid powders from the vaporized precursor. These conditions are determined by calculating the supersaturation ratio and critical cluster size required to initiate nucleation. Rapid quenching leads to high supersaturation which gives rise to homogeneous nucleation.
  • the zones 401 , 411 , and 409 may be combined and integrated in any manner to enhance material, energy, momentum, and/or reaction efficiency.
  • the process stream is quenched in a heat removal apparatus within nucleation zone 409 comprising, for example, a converging-diverging nozzle-driven adiabatic expansion chamber at rates at least exceeding 1,000 K/sec, preferably greater than 1,000,000 K/sec, or as high as possible.
  • a cooling medium (not shown) may be utilized for the converging-diverging nozzle to prevent contamination of the product and damage to the expansion chamber.
  • the quenched gas stream is filtered by appropriate separation equipment in harvesting region 413 to remove the nano-dispersed product from the gas stream.
  • the filtration can be accomplished by single stage or multistage impingement filters, electrostatic filters, screen filters, fabric filters, cyclones, scrubbers, magnetic filters, or combinations thereof.
  • the filtered nano-dispersed product is then harvested from the filter, either in batch mode or continuously, using screw conveyors or gas-phase solid transport, and the product stream is conveyed to powder processing or packaging unit operations (not shown).
  • the process is preferably operated at near ambient pressures and more preferably at pressures that are less than 750 mm Hg absolute (i.e. vacuum).
  • a low pressure can be achieved using any type of vacuum pump, compressor, and more preferably using compressed fluid-based eductor operating on a venturi principle given the lower cost, simplicity and environmental benefits.
  • Vacuum generating equipment may be placed at any stage of the overall process. The product stream from the vacuum generating equipment may be utilized elsewhere in the process to achieve heat and mass integration and thereby to reduce costs.
  • a suspension or dispersion may be prepared in a liquid directly if the liquid were to be utilized as the high pressure driving fluid for the eductor.
  • the nano-dispersed product is deposited directly on a substrate 601 to form a coating or film or near-net shape structural part.
  • the fluid precursor 504 and carrier particles 505 are fed into mixing apparatus 503 and then fed into a thermal reactor 501 where the atomized precursors are partially transformed, or preferably completely transformed, into the vapor form.
  • the preferred source of thermal energy in the embodiment illustrated in FIG. 8 is plasma generator 502 powered by power supply 506 .
  • the mixture is thermally heated in reactor 501 to high temperatures to yield a hot vapor.
  • a substrate 601 having an exposed surface is provided within or in communication with reaction chamber 501 on, for example, a thermally controlled substrate holder.
  • the hot vapor is then contacted with the exposed substrate surface and coats the exposed surface.
  • the hot vapor may be cooled or quenched before the deposition step to provide a stream that has fine liquid droplets or hot particulate matter.
  • the substrate 601 may be cooled or heated using a substrate thermal control 514 to affect the quality of the coating.
  • the substrate 601 may be mounted on a turn-table or drum to rotate the substrate 601 parallel, perpendicularly, tangentially (or at any other angle) relative to the gas stream comprising of nanoparticles.
  • the rotation can help achieve different thickness, a conformal form, or a curved form.
  • the substrate 601 to be coated may be continuously fed and removed over rotating cylinders to substrate 601 . By controlling the substrate feed rate, the coating thickness can be controlled.
  • Such coating method can employ suitable in-situ instrumentation to control the quality of the coating formed.
  • the deposition approach in accordance with the present invention is different from thermal spray technology currently in used in many ways such as: (a) the feed in conventional methods is a solid micron sized powder in thermal spray processes, whereas in this invention the feed is a fluid precursor; and (b) the conventional thermal spray process is considered to yield a powder with molten surface which then sticks to the substrate, whereas in this invention, as the hot vapor cools it is anticipated to yield a molten droplet or soft particulate that forms the coating.
  • the advantage of forming a coating or film according to this invention is the fine to nanoscale microstructure of the resultant coating or film.
  • the present invention will yield additional benefits in the ability to easily transport fluids within the process, the ability to form coatings, and the ability to form wide range of compositions (oxides, carbides, nitrides, borides, multimetal compositions, composites, etc.) from a limited collection of precursors through mixing and other methods as taught herein.
  • a coating, film, or component may also be prepared by dispersing the dispersed nanopowder, followed by applying various known methods such as, but not limited to, electrophoretic deposition, magnetophoretic deposition, spin coating, dip coating, spraying, brushing, screen printing, ink-jet printing, toner printing, and sintering.
  • the nanopowders may be thermally treated or reacted to enhance their electrical, optical, photonic, catalytic, thermal, magnetic, structural, electronic, emission, processing, or forming properties before such a step.
  • the powder may be post-processed to further improve its performance or characteristics such as flowability.
  • the post-processing of the dispersed powder may be include one or more of the following steps in any order: air classification, sieving, drying, reduction, chemical reaction with liquid, chemical reaction with gases, humidification, surface treatment, coating, pyrolysis, combustion, casting, dispersion, dissolution, suspension, molding, hipping, pressing, milling, composite forming, coarsening, mixing, agglomeration, de-agglomeration, weighing, and packaging.
  • a non-limiting illustration of such post-processing would be where the dispersed powder are dissolved in a media selected such that the carrier particle dissolves in the media while the attached particles do not dissolve in the media.
  • This post-processing can produce hollow nanostructured or sub-micron particles.
  • the dispersed particles comprise of a polymeric carrier powders and the attached particles are ceramic, pyrolysis or combustion can also be utilized to make hollow particles.
  • Such hollow particles are anticipated to have unusual properties such as lower effective density, low effective dielectric constant, lower effective thermal conductivity.
  • Dispersed powders have numerous applications in industries such as, but not limited to, catalysis, biomedical, pharmaceuticals, sensor, electronic, telecom, optics, electrical, photonic, thermal, piezo, magnetic and electrochemical products.
  • Biomedical implants and surgical tools can benefit from dispersed powders. It is expected that nano-dispersed powders can enable implants with modulus and other properties that match the part being replaced. The match is expected to be within 10% of the target properties.
  • the surgical tools produced using nano-dispersed powders are expected to offer strength that is at least 10% higher than that achieved using powders without nano-dispersion.
  • Powdered marker, drug carriers and inhalation particulates that reduce side effects can benefit from nano-dispersed powders.
  • carrier particles with a size range of 500 nm to 50 microns are preferred, and carrier particles with a geometric diameter of 1-50 ⁇ m and an aerodynamic diameter of 1-10 ⁇ m are most preferred.
  • the nanoscale dispersed particle can be a drug or a carrier of the drug.
  • the carrier particle can be engineered to favor prolonged release.
  • carrier particles with a size range of 100 nm to 25 microns are preferred, and carrier particles with a geometric diameter of 0.1-5 ⁇ m and an aerodynamic diameter of 0.1-1 ⁇ m are most preferred.
  • the nanoscale dispersed particles can be markers, tracers, drug vehicles or target carriers.
  • Phosphors emit light when exposed to radiation.
  • Phosphors include Zn 2 SiO 4 :Mn, ZnS:Ag, ZnO:Zn, CaSiO 3 :Mn, Y 3 Al 5 O 12 :Ce, Y 2 O 3 :Eu, Y 2 SiO 5 :Ce, Y 3 (Al,Ga) 5 O 12 :Tb, BaO.6Al 2 O 3 :Mn, BaMg 2 Al 16 O 27 :Eu, CsI:Na, and CaS:Ce,Sm.
  • the major phase of the phosphor is the carrier particle and the minor phase is the nano-dispersed particle.
  • the minor phase is the nano-dispersed particle.
  • Y 3 Al 5 O 12 :Ce Y 3 Al 5 O 12 can be the carrier particle while Ce is the nano-dispersed phase on the surface of the carrier.
  • carrier particles with a size range of 50 nm to 25 microns are preferred, and carrier particles with a geometric diameter of 0.5-10 microns are preferred.
  • the dispersed particles with a size range of 1 nm to 0.5 microns are preferred, and dispersed particles with a geometric diameter of 1-100 nanometers are preferred.
  • Nano-dispersed phosphor powders can be used in lamps, cathode ray tubes, field emission displays, plasma display panels, scintillators, X-ray detectors, IR detectors, UV detectors and laser detectors. Nano-dispersed phosphor powders can also be used in printing inks, or dispersed in plastics to prevent forgery and counterfeiting of currency, original works of art, passports, credit cards, bank checks, and other documents or products. The nano-dispersed powders can also be used to prepare optical networking components such as detectors, emitters, photodiodes, and phototransistors.
  • Nano-dispersed powders can increase the reliability of these components by 10% or more when used as electroceramic dopants. Furthermore, nano-dispersed particles can enable miniaturization of these components by enabling ceramic layer thicknesses below 500 nm and electrode layer thicknesses below 400 nm.
  • Electrochemical capacitors prepared from nano-dispersed powders are expected to have charge densities that are 10% higher than those prepared from non-dispersed powders of equivalent composition.
  • the electrochemical capacitors are also expected to offer high volumetric efficiencies, and longer mean times between failures.
  • Batteries prepared from nano-dispersed powders can offer power densities that are 5% higher than those prepared from non-dispersed powders of equivalent composition.
  • Chemical sensors prepared from nano-dispersed powder are expected to offer sensitivities that are at least 10% higher than those prepared from non-dispersed powders of equivalent composition.
  • a major application area for nano-dispersed powders produced using the high temperature process of this invention is in chemical catalysis.
  • Catalytic materials that are prepared from nano-dispersed powders are expected to last 10% or more longer and give superior yields and selectivity than catalytic materials prepared from non-dispersed powders of equivalent composition. They are also expected to offer turn over rates that are 5% higher than those prepared from non-dispersed powders of equivalent composition.
  • the process of this invention for producing nano-dispersed powders can additionally offer desirable porosity, structural strength, and uniformity. Examples of such applications include (a) catalytic transformation of less valuable chemicals and material feed stocks into more valuable chemicals and materials and (b) catalytic transformation of more hazardous chemicals and materials into less hazardous or non-hazardous forms of substances.
  • nano-dispersed powders include (a) fillers for polymers, ceramics, and metal matrix composites and (b) dopants for electronic, magnetic, thermal, piezo, electrical, tooling, structural, inks, paints, and topical health products.
  • Magnetic devices prepared from dispersed powders are expected to offer superior magnetic performance.
  • nano-dispersed powders offer a means of improving the value-added performance of existing products that are produced from non-dispersed powders.

Abstract

A method for economically producing nanoscale powders in general and nano-dispersed powders in particular at high throughputs. The composition of the powders produced may be oxides, carbides, nitrides, borides, chalcogenides, metals, and alloys.

Description

    RELATED APPLICATIONS
  • The present application is a divisional of copending U.S. patent application Ser. No. 10/004,387 filed on Dec. 04, 2001 entitled “Nano-dispersed powders and methods for their manufacture” which claims the benefit of provisional application No. 60/310,967 filed Aug. 8, 2001 all of which are assigned to the assignee of the present invention and which are incorporated herein by reference. [0001]
  • This application is also a continuation-in-part of U.S. patent application Ser. No. 09/790,036 filed on Feb. 20, 2001 which is a division of U.S. Pat. No. 6,228,904 filed on May 2, 1998, which is a continuation-in-part of U.S. Pat. No. 5,905,000 filed on Oct. 30, 1996, which is a continuation in part of U.S. Pat. No. 5,952,040 filed on Oct. 11, 1996, which is a continuation-in-part of U.S. Pat. No. 5,788,738 filed Sep. 3, 1996, all of which are incorporated herein by reference.[0002]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • The present invention relates, in general, to nano-dispersed powders, and, more particularly, to nano-dispersed, complex composition fine powders and methods to produce such powders. [0004]
  • 2. Background of the Invention [0005]
  • Powders are used in numerous applications. They are the building blocks of catalytic, electronic, telecommunication, electrical, magnetic, structural, optical, biomedical, chemical, thermal and consumer goods. On-going market demands for more efficient, reliable, smaller, faster, superior and more portable products have demanded miniaturization of numerous products. This, in turn, has demanded miniaturization of the building blocks, i.e. the powders. Sub-micron and nanoscale (or nanosize, ultra-fine) powders, with a size 10 to 100 times smaller than conventional micron size powders, enable quality improvement and differentiation of product characteristics at scales currently unachievable by commercially available micron-sized powders. [0006]
  • Nanopowders in particular, and sub-micron powders in general, are a novel family of materials whose distinguishing features include that their domain size is so small that size confinement effects become a significant determinant of the materials' performance. Such confinement effects can, therefore, lead to a wide range of commercially important properties. Nanopowders, therefore, are an extraordinary opportunity for design, development and commercialization of a wide range of devices and products for various applications. Furthermore, since they represent a whole new family of material precursors where conventional coarse-grain physiochemical mechanisms are not applicable, these materials offer unique combination of properties that can enable novel and multifunctional components of unmatched performance. Bickmore, et al. in U.S. Pat. No. 5,984,997, which along with the references contained therein is incorporated herein by reference, teach some applications of sub-micron and nanoscale powders. [0007]
  • Conventional dispersed powders comprise powders of a first composition (e.g. metal) dispersed on the surface of a carrier which may be of a second composition (e.g. carbon). The dispersed powder structure enables greater and more effective availability of the first composition. It also provides a cost reduction because the second composition can be a low-cost carrier. Additionally, the dispersed powder structure improves the stability and enhances the performance synergistically. [0008]
  • Dispersed powders are desired in a number of applications such as catalysis. The junctions provide active sites for useful chemical reactions. Dispersed powders are often produced using chemical precipitation techniques. These techniques fail to provide a fine and uniform distribution of the dispersed particles on the surfaces of the carrier. Furthermore, the challenge becomes even more difficult when complex compositions need to be dispersed on a carrier powder. Chemical precipitation techniques also leave chemical residues on the surfaces that sometimes are not desirable. Given the difficulty in their production, few dispersed powders are known in the literature and these have found only limited applications. [0009]
  • Phillips in U.S. Pat. No. 5,989,648 (which, along with its references, is specifically incorporated herein by reference) teaches a plasma-based method for preparing metal supported catalysts from an aerosol comprising a mixture of at least one metal powder and at least one support powder. Phillips reports the unusual benefits as catalysts of the metal supported powders so prepared. However, Phillips does not offer motivation for or methods of utilizing fluid precursors to form dispersed powders. Phillips also does not teach nano-dispersed sub-micron powders, motivations for their use, or their benefits to various applications. [0010]
  • SUMMARY OF THE INVENTION
  • Briefly stated, the present invention involves nano-dispersed powders comprising powders that have been morphologically engineered. More specifically, the term nano-dispersed powders according to this invention refers to powders that have been arranged to provide a desired morphological distribution (dispersion) at nanoscale levels (e.g., sub-100 nm levels). As described in the definition section, nano-dispersed powders comprise carrier particles and attached particles dispersed on the surface of the carrier particles. [0011]
  • The carrier particles may be spherical, non-spherical, porous, tubular, planar, crystallites, amorphous, or any other useful form. The nanoparticles may similarly be one-dimensional, two-dimensional, or three-dimensional, spherical, non-spherical, porous, tubular, planar, crystallites, or amorphous forms, or any other useful form. The attached nano-dispersed particles may be free flowing, agglomerated, porous, coated, or hollow forms or any other useful form. The same carrier may have nanoparticles of more than one composition attached to its surface. In addition, various nano-dispersed particles of different compositions may be blended to achieve useful compositions. [0012]
  • The invention provides nano-dispersed powders with unusually engineered morphology. The unusual morphology provides a high density of multi-phasic points (i.e. points where two or more distinct phases interact with each other and/or species in the gas phase). These morphologically engineered nano-dispersed powders offer benefits to numerous applications. Some illustrative, but non-limiting applications include (a) catalytic transformation of less valuable chemicals and material feed stocks into more valuable chemicals and materials; (b) catalytic transformation of more hazardous chemicals and materials into less hazardous or non-hazardous forms of substances; (c) unusual phosphor, photonic, and optical materials for display, photonic, and optical applications; (d) unusual carriers, tracers, drug delivery vehicles, and markers for biomedical and genomic applications; (e) unusual building blocks for batteries, sensors, and electrochemical products; (f) fillers for polymers, ceramics, and metal matrix composites; and (g) dopants for electronic, magnetic, thermal, piezo, electrical, tooling, structural, inks, paints, and topical health products. [0013]
  • The concept of dispersed powders disclosed and their methods of manufacture may be applied to produce commercially useful submicron and micron dispersed powders as well.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 shows an example of a sub-micron powder comprising nanopowders discretely dispersed on and attached to the surface of the submicron powder. [0015]
  • FIG. 2 shows an example of a nanotube carrier having nanoparticles dispersed on and attached to its surface, wherein at least two of the nanoparticles are not in contact with each other. [0016]
  • FIG. 3 shows one embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles. [0017]
  • FIG. 4 shows a schematic concentric flame approach to improve the uniformity of particle size distribution. [0018]
  • FIG. 5 shows an alternate embodiment for producing nano-dispersed particles in which both the nano-sized powders and the carrier particles are prepared in-situ during the thermal processing. [0019]
  • FIG. 6 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles. [0020]
  • FIG. 7 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles. [0021]
  • FIG. 8 shows an alternate embodiment for producing nano-dispersed powders by combining a metal precursor and carrier particles.[0022]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention is directed to dispersed powders in general and dispersed nanoscale powders in particular. In a broad sense, dispersed powders provide a structure having a particle size that is largely determined by the size of a carrier particle, and surface behavior that is largely determined by dispersed particles attached to the carrier particle. This somewhat oversimplifies dispersed particle structures in that both the size and ultimate surface behavior may be affected by each component, however the simplification is useful for understanding. With respect to dispersed nanoscale powders in particular, the composite structure can be engineered to have some benefits (e.g., cost, material handling, and the like) associated with larger particle sizes while exhibiting behaviors, particularly surface-related behaviors, of the nanoscale powders dispersed on the carrier. [0023]
  • FIGS. 1 and 2 show two non-limiting examples of nano-dispersed sub-micron powders and nano-dispersed nanopowders, respectively. For example, FIG. 1 shows an example of a sub-micron [0024] powder comprising nanopowders 200 discretely dispersed on and attached to the surface of a submicron carrier 102. By “discretely” it is meant that the particles 200 do not touch or overlap. In one sense means particles do not physically overlap. In another sense means that they are sufficiently separate that the solid states of atoms within adjacent particles 200 have a level of interaction determined by their separation. FIG. 2 shows an example of a nanotube carrier 203 having nanoparticles 200 dispersed on and attached to its surface, wherein at least two of the nanoparticles are not in contact with each other.
  • Definitions
  • Certain terms used to describe the invention herein are defined as follows: [0025]
  • “Fine powders” as used herein, refers to powders that simultaneously satisfy the following criteria: [0026]
  • (1) particles with mean size less than 100 microns, preferably less than 10 microns; and [0027]
  • (2) particles with aspect ratio between 1 and 1,000,000. [0028]
  • “Submicron powders” as used herein, refers to fine powders that simultaneously satisfy the following criteria: [0029]
  • (1)particles with mean size less than 1 micron; and [0030]
  • (2)particles with aspect ratio between 1 and 1,000,000. [0031]
  • The terms “dispersed powders,” “morphologically-engineered powders,” “decorated powders,” and “surface dispersed powders” are used interchangeably and refer to powders that simultaneously satisfy the following criteria: [0032]
  • (1) they comprise at least a first composition that serves as a carrier particle; [0033]
  • (2) they comprise particles of at least a second composition that are attached to the surface of the carrier particle in a mechanically stable state, where the second composition can be the same as or different from the first composition; [0034]
  • (3) the surfaces of the attached particle and carrier particle interact physically, chemically, or electrochemically, but the attached particles exhibit properties that are distinct from the carrier particles; [0035]
  • (4) at least two neighboring attached particles on the surface of the carrier are not in contact with each other at ambient temperature (300 K); [0036]
  • (5) the average separation distance between the center of gravity of the at least two neighboring attached particles on the surface of the carrier that are not in contact with each other is at least 1.05 times the average diameter of the attached particles, preferably greater than 2.5 times the average diameter of the attached particles, more preferably greater than 5 times the average diameter of the attached particles, and most preferably greater than 10 times the average diameter of the attached particles; and [0037]
  • (6) the attached particle is smaller than the carrier particle. More particularly, the ratio of the average diameter of the carrier particles and the average diameter of the attached particles is greater than or equal to 2, preferably greater than 10, more preferably greater than 25, and most preferably greater than 100. In one embodiment, the carrier powder is less than 1000 microns, preferably less than 100 microns, more preferably 10 microns, and most preferably 1 micron. [0038]
  • The terms “nanopowders,” “nanosize powders,” and “nanoscale powders” are used interchangeably and refer to fine powders that simultaneously satisfy the following criteria: [0039]
  • (1) particles having a mean size less than 250 nanometers, preferably less than 100 nanometers; and [0040]
  • (2) particles with an aspect ratio between 1 and 1,000,000. [0041]
  • “Pure powders” as used herein, refers to powders that have a composition purity of at least 99.9%, preferably 99.99% by metal basis. [0042]
  • “Nano-dispersed powders” as used herein refers to dispersed powders in which the attached particle is a nanopowder. [0043]
  • “Nano-dispersed sub-micron powders” as used herein refers to dispersed powders in which the attached particle is a nanopowder and the carrier particle is a sub-micron powder. [0044]
  • “Nano-dispersed nanopowders” as used herein refers to dispersed powders where the attached particle is a nanopowder and the carrier particle is also a nanoscale powder. [0045]
  • The terms “powder,” “particle,” and “grain” are used interchangeably and encompass oxides, carbides, nitrides, borides, chalcogenides, halides, metals, intermetallics, ceramics, polymers, alloys, and combinations thereof. The term includes single metal, multi-metal, and complex compositions. These terms further include hollow, dense, porous, semi-porous, coated, uncoated, layered, laminated, simple, complex, dendritic, inorganic, organic, elemental, non-elemental, composite, doped, undoped, spherical, non-spherical, surface functionalized, surface non-functionalized, stoichiometric, and non-stoichiometric forms or substances. Further, the term powder in its generic sense includes one-dimensional materials (fibers, tubes), two-dimensional materials (platelets, films, laminates, planar), and three-dimensional materials (spheres, cones, ovals, cylindrical, cubes, monoclinic, parallelolipids, dumbbells, hexagonal, truncated dodecahedron, irregular shaped structures, etc.). [0046]
  • The term “aspect ratio” refers to the ratio of the maximum to the minimum dimension of a particle. [0047]
  • The definitions provided above are intended to be applied in the interpretation and understanding of the present invention, and are not necessarily applicable to interpretation of prior art and conventional processes. Some inventive features of the present invention are implicitly expressed in the definitions provided above, and are not to be interpreted as admissions that the defined term is prior art. To the extent these definitions are inconsistent with or more specific than a similar term used in the prior art, it is to be understood that the definition provided herein is preferred in the interpretation of the invention. [0048]
  • The present invention is directed to dispersed powders in general and dispersed nanoscale powders in particular. Dispersed powders preferably simultaneously satisfy the following criteria: [0049]
  • (1) they comprise a carrier particle with at least a first composition; [0050]
  • (2) they comprise particles of at least a second composition that are dispersed on and attached to the surface of the carrier particle in a mechanically stable state (i.e., sufficiently attached to prevent undesired physical mobility during normal use), where the composition of the attached particles may be the same as or different than the carrier particle; [0051]
  • (3) the surfaces of the attached particle and carrier particle interact physically, chemically, or electrochemically with each other, but the attached particles exhibit properties (e.g., electrical properties, chemical properties, solid state properties, size-confinement properties, surface properties and/or the like) that are distinct from the carrier particle; [0052]
  • (4) at least two neighboring attached particles on the surface of the carrier are not in contact with each other at ambient temperature (300 Kelvin); [0053]
  • (5) the average separation distance between the center of gravity of the at least two neighboring attached particles that are not in contact with each other is at least 1.05 times the average diameter of the attached particles, preferably greater than 2.5 times the average diameter of the attached particles, more preferably greater than 5 times the average diameter of the attached particles, and most preferably greater than 10 times the average diameter of the attached particles; and [0054]
  • (6) the attached particle is smaller than the carrier particle. More particularly, the ratio of the average diameter of the carrier particles and the average diameter of the attached particles is greater than or equal to 2, preferably greater than 10, more preferably greater than 25, and most preferably greater than 100. [0055]
  • In one embodiment, the carrier particle is a ceramic composition (oxide, carbide, nitride, boride, chalcogenide) or an intermetallic composition (aluminide, silicide) or an elemental composition. Examples of ceramic composition include, but are not limited to (a) simple oxides such as aluminum oxide, silicon oxide, zirconium oxide, cerium oxide, yttrium oxide, bismuth oxide, titanium oxide, iron oxide, nickel oxide, zinc oxide, molybdenum oxide, manganese oxide, magnesium oxide, calcium oxide, and tin oxide; (b) multi-metal oxides such as aluminum silicon oxide, copper zinc oxide, nickel iron oxide, magnesium aluminum oxide, calcium aluminum oxide, calcium aluminum silicon oxide, indium tin oxide, yttrium zirconium oxide, calcium cerium oxide, scandium yttrium zirconium oxide, barium titanium oxide, barium iron oxide and silver copper zinc oxide; (c) doped oxides such as zirconium doped cerium oxide, antimony doped tin oxide, boron doped aluminum oxide, phosphorus doped silicon oxide, and nickel doped iron oxide; (d) carbides such as silicon carbide, boron carbide, iron carbide, titanium carbide, zirconium carbide, hafnium carbide, molybdenum carbide, and vanadium carbide; (e) nitrides such as silicon nitride, boron nitride, iron nitride, titanium nitride, zirconium nitride, hafnium nitride, molybdenum nitride, and vanadium nitride; (f) borides such as silicon boride, iron boride, titanium diboride, zirconium boride, hafnium boride, molybdenum boride, and vanadium boride; (g) complex ceramics such as titanium carbonitride, titanium silicon carbide, zirconium carbonitride, zirconium carboxide, titanium oxynitride, molybdenum oxynitride, and molybdenum carbonitride; and (h) non-stoichiometric ceramics. Other preferred specifications for the carrier particles are provided in Table 1. [0056]
    TABLE 1
    Specifications for the carrier particles
    Parameter Desired Range Preferred Range
    Average particle 5 nm-5 mm 50 nm-5 microns
    size
    Standard deviation 1 nm-10 micron  1 nm-1000 nm
    of the Size
    distribution
    Purity, by wt % Dependant on the >99.99%
    needs of the
    application and
    cost (normally,
    greater than 90%)
    Surface Area >1 m2/gm >10 m2/gm
    XRD crystallite Amorphous, 1 nm to <1000 nm
    size >1 micron
    Porosity Dependant on the High
    needs of the
    application and
    cost
    Composition Ceramics, Single metal and
    elements, alloys multi-metal oxide
    ceramics
  • Preferably, the dispersed particles that are attached to the carrier particle are elemental, ceramic, intermetallic or polymer compositions. The composition of the attached particles can be the same as or different than the composition of the carrier particle. The particles are preferably separated from each other either uniformly or non-uniformly across the surface of the carrier particle. In a particular example, the distance between two neighboring attached particles on the surface of the carrier that do not touch each other is at least 2 Angstroms, but may be greater than 5 Angstroms, 10 Angstroms, 50 Angstroms or more to meet the needs of a particular application. [0057]
  • Examples of elemental compositions for the dispersed, attached particles include, but are not limited to, (a) precious metals such as platinum, palladium, gold, silver, rhodium, ruthenium and their alloys; (b) base and rare earth metals such as iron, nickel, manganese, cobalt, aluminum, copper, zinc, titanium, samarium, cerium, europium, erbium, and neodymium; (c) semi-metals such as boron, silicon, tin, indium, selenium, tellurium, and bismuth; (d) non-metals such as carbon, phosphorus, and halogens; (e) clusters such as fullerenes (C[0058] 60, C70, C82), silicon clusters, and nanotubes of various compositions; and (f) alloys such as steel, shape memory alloys, aluminum alloys, manganese alloys, and superplastic alloys.
  • Examples of ceramic compositions for the dispersed, attached particles include, but are not limited to, (a) simple oxides such as aluminum oxide, silicon oxide, zirconium oxide, cerium oxide, yttrium oxide, bismuth oxide, titanium oxide, iron oxide, nickel oxide, zinc oxide, molybdenum oxide, manganese oxide, magnesium oxide, calcium oxide, and tin oxide; (b) multi-metal oxides such as aluminum silicon oxide, copper zinc oxide, nickel iron oxide, magnesium aluminum oxide, calcium aluminum oxide, calcium aluminum silicon oxide, indium tin oxide, yttrium zirconium oxide, calcium cerium oxide, scandium yttrium zirconium oxide, barium titanium oxide, and silver copper zinc oxide; (c) doped oxides such as zirconium doped cerium oxide, antimony doped tin oxide, boron doped aluminum oxide, phosphorus doped silicon oxide, and nickel doped iron oxide; (d) carbides such as silicon carbide, boron carbide, iron carbide, titanium carbide, zirconium carbide, hafnium carbide, molybdenum carbide, and vanadium carbide; (e) nitrides such as silicon nitride, boron nitride, iron nitride, titanium nitride, zirconium nitride, hafnium nitride, molybdenum nitride, and vanadium nitride; (f) borides such as silicon boride, iron boride, titanium diboride, zirconium boride, hafnium boride, molybdenum boride, and vanadium boride; (g) complex ceramics such as titanium carbonitride, titanium silicon carbide, zirconium carbonitride, zirconium carboxide, titanium oxynitride, molybdenum oxynitride, and molybdenum carbonitride; and (h) non-stoichiometric ceramics. [0059]
  • The nano-dispersed powders of this invention may further comprise carrier particles having dispersed particles of more than one composition dispersed on and attached to their surfaces. In addition, the dispersed powders may comprise multiple layers of the attached particles, where the layers may be concentric or non-concentric. Other preferred specifications for the carrier particles are provided in Table 2. [0060]
    TABLE 2
    Specifications for dispersed, attached particles
    Parameter Desired Range Preferred Range
    Average particle Less than 5 micron 1 nm-250 nm
    size
    Standard deviation 1 nm-750 nm 1 nm-50 nm
    of the Size
    distribution
    Purity, by wt % Dependant on the >99.99%
    needs of the
    application and
    cost (normally,
    greater than 90%)
    Surface Area >1 m2/gm >100 m2/gm
    XRD crystallite Amorphous, 1 nm to <250 nm
    size 1 micron
    Mechanical Dependant on the High
    Stability needs of the
    application and
    cost
  • The distinctive features that make nano-dispersed powders of this invention commercially desirable result in part from (a) the separation between the attached nanoparticles during their use, (b) the unusual properties of attached nanoparticles, (c) the useful interaction between the carrier composition and the dispersed attached particles, and (d) the morphologically induced interaction of dispersed attached particle interfaces and the carrier particle interface with the chemical, electromagnetic, electrochemical, photonic, magnetic, charges, and thermodynamic environment around the dispersed particles. [0061]
  • More specifically, the distinct usefulness of nano-dispersed powders is in part a result of the separation between the dispersed nanoparticles attached to the surface of the carrier particle, which in turn reduces the potential sintering of the particles at higher temperatures. It is known in the art that closely packed small particles in general, and nanoscale particles in particular, sinter faster as the temperature of use increases. This limits the time during which the useful performance of the particle is available. Many applications, particularly those that operate at high temperatures (e.g. catalysis), require that the surface and bulk properties of the material in use do not vary or that they vary only slightly with time. This is difficult to accomplish with closely packed nanoparticles, because such nanoparticles sinter (diffuse and grow) across the grain boundaries as a function of temperature and time. By dispersing the nanoparticles on the surface of the carrier particle, the surfaces of the dispersed nanoparticles are kept from touching each other. This reduces or eliminates the interaction and consequent sintering between the nanoparticles, even at high temperatures. As a result, the interaction at the grain boundary is eliminated, and consequently the time and temperature based variances are eliminated. Thus, dispersing the nanoparticles solves an outstanding problem that confronts attempts to utilize the beneficial properties of nanoscale powders. [0062]
  • The distinct usefulness of nano-dispersed powders is also in part a result of the unusual inherent properties of nano-scaled particles. Nano-scaled materials are a family of materials whose distinguishing feature is that their mean grain size is less than 100 nm. Nanopowders, because of their nanoscale dimensions (near-molecular), feature a variety of confinement effects that significantly modify the properties of the material. The physics behind this has been aptly conjectured to be the following: a property will be altered when the entity or mechanism responsible for that property is confined within a space smaller than the critical length associated with that entity or mechanism. Such confinement effects lead to very desirable properties. For example: [0063]
  • (a) nanopowders have a very high surface area which leads to enhanced interfacial diffusivities and thus enables rapid, low temperature formation of materials that are typically difficult to process; [0064]
  • (b) nanopowders are isomorphic because of dimensional confinement. Furthermore, enhanced solubilities are observed leading to non-equilibrium compositions. This leads to catalysts and reactants with extremely high surface areas, high selectivity and activity; [0065]
  • (c) nanopowders have grain sizes that are too small for Frank-Read dislocation to operate in the conventional yield stress domain; consequently, enhancement in strengths and hardness of 100% to 500% are observed in films and pellets made from nanopowders; [0066]
  • (d) the size of the nanopowder is less than the wavelength of visible light; consequently unique optical materials with grain sizes tailored for excitonic interactions with particular wavelengths can be prepared; [0067]
  • (e) nanopowders are confined to a dimension less than the mean free path of electrons; consequently, unusual electrical and electrochemical properties can be observed; [0068]
  • (f) nanopowders are confined to dimension less than the domain size of magnetic materials; consequently, nanopowders are precursors to magnetic materials exhibiting Giant Magnetoresistive (GMR) and superparamagnetic effects; and [0069]
  • (g) nanopowders feature quantum confinement to dimensions less than Debye length. This leads to electrochemical properties with order of magnitude higher sensitivities to chemical species. [0070]
  • Nanopowders in general, and nano-dispersed powders in particular, thus provide an extraordinary opportunity for design, development and commercialization of a wide range of structural, electrochemical, electrical, optical, electronic, magnetic and chemical applications. Furthermore, since nanopowders represent a whole new family of material precursors for which conventional coarse-grain physiochemical mechanisms are not performance determining, nanomaterials in general and nano-dispersed powders in particular offer unique combination of properties that can enable novel and multifunctional components of unmatched performance. [0071]
  • Yet another source of distinct usefulness of nano-dispersed powders results in part from the useful interaction between the dispersed attached nanoparticles and the carrier particles. Dimensionally confined nanomaterials have properties that are determined in part by the interface thermodynamics and characteristics. These interfaces in turn are influenced by neighboring atoms. By dispersion, the nanoparticles interact with the interface of the carrier particles. This interaction can induce a novel performance that is not exhibited by either of the carrier particle or nanoparticle materials in isolation. [0072]
  • Yet another source of distinct usefulness of nano-dispersed powders results in part from the high concentration of triple points. Triple points are the points where three or more phases meet and lead to useful interaction between the dispersed particles, the carrier particles, and the fluid environment around the junction of dispersed and carrier particles. The nanoscale size of dispersed particles significantly increases the density of triple points. These are points where useful chemical, electrochemical, physical, electronic, photonic and electrical interactions can occur. [0073]
  • 1. Methods of Producing Nano-Dispersed Powders
  • FIG. 3 shows one embodiment of a system for producing dispersed powders in accordance with the present invention. This method can be used to produce dispersed powders that are coarse and pure, but is particularly useful for nano-dispersed sub-micron and nano-dispersed nanoscale powders. [0074]
  • The process shown in FIG. 3 begins at [0075] 100 with a metal-containing precursor such as an emulsion, fluid, particle-containing liquid slurry, or water-soluble salt. The precursor may be a gas, a single-phase liquid, a multi-phase liquid, a melt, fluid mixtures, or combinations thereof. The metal-containing precursor comprise a stoichiometric or a non-stoichiometric metal composition wherein at least some portion is in a fluid phase. Fluid precursors are preferred in this invention over solid precursors because fluids are easier to convey, evaporate, and thermally process, and the resulting product is more uniform.
  • In one embodiment of this invention, the precursors are preferably environmentally benign, safe, readily available, high-metal loading, lower cost fluid materials. Examples of metal-containing precursors suitable for purposes of this invention include, but are not limited to, metal acetates, metal carboxylates, metal ethanoates, metal alkoxides, metal octoates, metal chelates, metallo-organic compounds, metal halides, metal azides, metal nitrates, metal sulfates, metal hydroxides, metal salts soluble in organics or water, and metal-containing emulsions. [0076]
  • In another embodiment, multiple metal precursors may be mixed if complex nano-dispersed powders are desired. For example, a barium precursor and iron precursor may be mixed to prepare high purity barium ferrite powders. As another example, a yttrium precursor, barium precursor, and copper precursor may be mixed in correct proportions to yield a high purity YBCO powder for superconducting applications. In yet another example, an aluminum precursor and silica precursor may be mixed to yield aluminum silicate powders. Such complex nano-dispersed powders can help create materials with surprising and unusual properties not available through the respective single metal oxides or a simple nanocomposite formed by physical blending powders of different compositions. To illustrate, nanoscale powders formed from blending two or more metals can create materials with a hardness, refractive index, or other property or a combination of such properties that have values that are intermediate to the properties of the respective single metal oxide forms. As an example, complex powders may be prepared from aluminum and silicon precursors to create novel aluminum silicate nanomaterials with refractive index that is intermediate to the refractive index of the alumina and silica. [0077]
  • In all embodiments of this invention, it is desirable to use precursors of a higher purity to produce a nano-dispersed powder of a desired purity. For example, if purities greater than x % (by metal basis) is desired, one or more precursors that are mixed and used have purities greater than or equal to x % (by metal basis) to practice the teachings herein. [0078]
  • With continued reference to FIG. 3, the metal-containing precursor [0079] 100 (containing one or a mixture of metal-containing precursors) is mixed with carrier particles 102 of desired size, composition, and characteristics. Carrier particles 102 may comprise micron-sized particles, sub-micron particles, or nanostructured particles. The resultant slurry precursor 104 is the preferred feed material for producing nano-dispersed powders. The relative concentrations of the metal-containing precursors 100 and the carrier particles 102 should be substantially equivalent to that desired in the final product.
  • Upon formation of the [0080] slurry precursor 104, the slurry precursor 104 is fed into a high temperature process 106 implemented using a high temperature reactor, for example. In one embodiment, a synthetic aid such as a reactive fluid 108 can be added along with the slurry precursor 104 as it is being fed into the reactor 106. For example, when the object is to prepare a nano-dispersed powder comprising a dispersed oxide, a preferred embodiment of this invention is to use a precursor 100 in which the oxygen-to-carbon elemental ratio in the precursor molecule is high. Alternatively, or in addition, a reactive fluid 108 that provides excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106. Examples of such reactive fluids include, but are not limited to, oxygen gas and air.
  • As another example, when the object is to prepare a nano-dispersed powder comprising a dispersed carbide, a preferred embodiment of this invention is to use a [0081] precursor 100 in which the oxygen-to-carbon elemental ratio is less than 0.1, more preferably less than 1.0, and most preferably less than 2.0. Alternatively, or in addition, a reactive fluid 108 that provides excess carbon or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106. Examples of such reactive fluids include, but are not limited to, methane, ethylene, acetylene, ethane, natural gas, benzene, naphtha, and hydrogen.
  • As another example, when the object is to prepare a nano-dispersed powder comprising a dispersed nitride, a preferred embodiment of this invention is to use a [0082] precursor 100 in which the oxygen-to-nitrogen elemental ratio in the precursor molecule less than 0.1, more preferably less than 1.0, and most preferably less than 2.0. Alternatively, or in addition, a reactive fluid 108 that provides excess nitrogen or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106. Examples of such reactive fluids include, but are not limited to, amines, ammonia, hydrazine, nitrogen, and hydrogen.
  • As another example, when the object is to prepare a nano-dispersed powder comprising a dispersed boride, a preferred embodiment of this invention is to use a [0083] precursor 100 in which the oxygen-to-boron elemental ratio in the precursor molecule less than 0.1 and more preferably less than 1.0, and most preferably less than 1.5. Alternatively, or in addition, a reactive fluid 108 that provides excess boron or reduces excess oxygen may be added along with the slurry precursor 104 to the reaction zone 106. Examples include, but are not limited to, boranes, boron, and hydrogen.
  • As another example, when the object is to prepare a nano-dispersed powder comprising a dispersed carbonitride, a preferred embodiment of this invention is to use a [0084] precursor 100 in which the (a) oxygen-to-carbon elemental ratio in the precursor molecule less than 0.1 and more preferably less than 1.0, and most preferably less than 2.0, and (b) the oxygen-to-nitrogen elemental ratio in the precursor molecule less than 0.1, more preferably less than 1.0, and most preferably less than 2.0. Alternatively, or in addition, a reactive fluid 108 may be added along with the slurry precursor 104 to the reaction zone 106. Examples of such reactive fluids include, but are not limited to, methane, ethylene, acetylene, ethane, natural gas, benzene, naphtha, amines, ammonia, hydrazine, nitrogen, and hydrogen.
  • While the above examples specifically teach methods of preparing dispersed powders of oxides, carbides, nitrides, borides, and carbonitrides, the teachings may be readily extended in an analogous manner to other compositions such as chalcogenides. While it is preferred to use high temperature processing, a moderate temperature processing or a low/cryogenic temperature processing may also be employed to produce high purity nano-dispersed powders. [0085]
  • The [0086] precursor 100 may be also pre-processed in a number of other ways before the high temperature thermal treatment. For example, the pH may be adjusted to ensure stable precursor. Alternatively, selective solution chemistry such as precipitation may be employed to form a sol or other state of matter. The precursor 101 may be pre-heated or partially combusted before the thermal treatment.
  • The [0087] slurry precursor 104 may be injected axially, radially, tangentially, or at any other angle into the high temperature region 106. As stated above, the slurry precursor 104 may be pre-mixed or diffusionally mixed with other reactants. The slurry precursor 104 may be fed into the thermal processing reactor by a laminar, parabolic, turbulent, pulsating, sheared, or cyclonic flow pattern, or by any other flow pattern. In addition, one or more metal-containing precursors 100 can be injected from one or more.ports in the reactor 106. The feed spray system may yield a feed pattern that envelops the heat source or, alternatively, the heat sources may envelop the feed, or alternatively, various combinations of this may be employed. A preferred embodiment is to atomize and spray the feed in a manner that enhances heat transfer efficiency, mass transfer efficiency, momentum transfer efficiency, and reaction efficiency. The reactor shape may be cylindrical, spherical, conical, or any other shape. Methods and equipment such as those taught in U.S. Pat. Nos. 5,788,738, 5,851,507, and 5,984,997 (each of which is specifically incorporated herein by reference) can be employed in practicing the methods of this invention.
  • With continued reference to FIG. 3, after the [0088] slurry precursor 104 has been fed into reactor 106, it is processed at high temperatures to form the product nano-dispersed powder. The thermal treatment is preferably done in a gas environment with the aim to produce a product such as powders that have the desired porosity, strength, morphology, dispersion, surface area, and composition. This step produces by-products such as gases. To reduce costs, these gases may be recycled, mass/heat integrated, or used to prepare the pure gas stream desired by the process.
  • The high temperature processing is conducted at step [0089] 106 (FIG. 3) at temperatures greater than 1500° C., preferably 2500° C., more preferably greater than 3000° C., and most preferably greater than 4000° C. Such temperatures may be achieved by various methods including, but not limited to, plasma processes, combustion, pyrolysis, electrical arcing in an appropriate reactor, and combinations thereof. The plasma may provide reaction gases or just provide a clean source of heat.
  • An outstanding problem with conventional nanopowder synthesis methods is broad size distribution. This may happen because of non-uniformities in heat, mass, and/or momentum transfer. One reason for such non-uniformities is the sudden drop in temperature and reacting species at the outer edge of the reaction front such as a combustion flame. An illustration of outer edge of a flame would be the outer perimeter of the cross section of the flame, i.e. plane perpendicular to the direction of flame flow. At these edges, the reaction pathways are influenced by the heat and mass and momentum boundary conditions. This zone, therefore, yields conditions where the product produced is non-uniform and therefore different than those produced inside the boundary. Such conditions apply to all sorts of high temperature flow fields including flames and are created by various types of burners or reactor system. Some illustrations of such burners are taught by R. M. Fristrom (in [0090] Flame Structure and Processes, Oxford University Press, New York, 1995, which along with references contained therein is specifically incorporated herein by reference).
  • One feature of this invention is the ability to reduce this non-uniformity by eliminating or reducing the above-described source of non-uniformity. This can be accomplished in many ways. As an illustration, the reaction zone (such as a combustion flame) can be surrounded by a fully or a partially concentric zone of a medium with a thermal, mass and momentum profile that reduces such non-uniformity. For example, FIG. 4 shows a [0091] primary combustion burner 420, over which useful particle producing flame chemistry occurs, is preferably surrounded by a concentric secondary burner 421 where a fuel is burned to maintain the outer edge temperatures in region 422 as close to the primary flame's highest temperature in region 423 as possible. To the extent possible, the mass and momentum profile of the medium created by the concentric secondary burner 421 should be similar in one or more respects to the mass and momentum profile of the medium created by the primary burner 420. Such concentric burners can assist in a more uniform thermal, mass, and momentum profile for the reaction space created by the primary burner 420. A non-limiting illustration of such concentric burners is discussed and referenced by Howard et al., Carbon 30(8):1183-1201 (1992), which along with references contained therein is specifically incorporated herein by reference.
  • In another embodiment the [0092] slurry precursor 104 is pre-treated to minimize non-uniformity in heat, mass, and/or momentum transfer. This can be achieved through techniques such as (a) axially, radially, or tangentially surrounding the high temperature processing zone 106 with an inert gas plasma, (b) axially, radially, or tangentially surrounding the high temperature processing zone 106 with a complete combustion flame, preferably of high temperature, or (c) axially, radially, or tangentially surrounding the high temperature processing zone 106 with an electrical arc or high temperature radiation source. The concentric flame's adiabatic temperature (or concentric thermal zone) is preferably greater than 500° C., more preferably greater than 1000° C., and most preferably greater than 2000° C. The minimal requirement of this technique is that the high temperature processing zone temperature at the outer edges be higher when the concentric high temperature thermal zone is present than when it is absent.
  • This principle of concentric thermal zones can be applied to any method of producing dispersed powders. Illustrative examples of processes where this principle can be used include one-dimensional combustion flames, diffusion flames, turbulent flames, pre-mixed flames, flat flames, plasma, arcing, microwave, sputtering, pyrolysis, spray evaporation, laser and hydrothermal processing. [0093]
  • In the embodiment shown in FIG. 3, [0094] carrier particles 102 are present in the high temperature process. The carrier particles 102 may be substantially inert during high temperature process 106, or they may be transformed by physical, chemical, or solid state reactions. High temperature processing is performed in a manner such that the end product of high temperature process 106 includes carrier particles 102 of desired size, composition and uniformity. Alternatively, the carrier particles can be added at a later stage of the high temperature process.
  • The [0095] high temperature process 106 results in a vapor comprising fine powders and carrier particles. After the thermal processing, this vapor is cooled at step 110 to nucleate dispersion of fine powders, preferably nanopowders, onto the surface of the carrier particles. Preferably, the cooling temperature at step 110 is high enough to prevent moisture condensation. The dispersed particles are formed from the precursor because of the thermokinetic conditions in the process. By engineering the process conditions such as pressure, residence time, flow rates, species concentrations, diluent addition, degree of mixing, momentum transfer, mass transfer, and heat transfer, the morphology of the dispersed powders can be tailored. It is important to note that the focus of the process is on producing a dispersed powder product that excels in satisfying the end application requirement and customer needs. In some cases, this may be achieved with uniformly dispersed particles and in others it may be non-uniformly distributed particles that best meet the customer needs.
  • After cooling, the nano-dispersed powder is preferably quenched to lower temperatures at [0096] step 116 to minimize and preferably prevent agglomeration or grain growth. Suitable quenching methods include, but are not limited to, methods taught in U.S. Pat. No. 5,788,738. It is preferred that quenching methods be employed which can prevent deposition of the powders on the conveying walls. These methods may include electrostatic means, blanketing with gases, the use of higher flow rates, mechanical means, chemical means, electrochemical means, or sonication/vibration of the walls.
  • In one embodiment, the high temperature processing system includes [0097] instrumentation 112, 114 that can assist in the quality control of the process by analyzing the quality of the product either between steps 116 and 118, or between steps 118 and 120. The data collected after analysis of the product can provide information on how to adjust the process variables to adjust the quality of the product.
  • It is preferred that the high [0098] temperature processing zone 106 is operated to produce fine powders 120 (FIG. 3), preferably submicron powders, and most preferably nanopowders. The gaseous products from the process may be monitored for composition, temperature and other variables to ensure quality at 112 (FIG. 3). The gaseous products may be recycled to be used in process 108 (FIG. 3), or used as a valuable raw material when dispersed powders 120 have been formed. Following quenching step 116 (FIG. 3) the nano-dispersed powders are cooled further at step 118 and then harvested at step 120.
  • The product nano-dispersed [0099] powders 120 may be collected by any method. Suitable collection means include, but are not limited to, bag filtration, electrostatic separation, membrane filtration, cyclones, impact filtration, centrifugation, hydrocyclones, thermophoresis, magnetic separation, and combinations thereof.
  • FIG. 5 shows an alternate embodiment for producing dispersed particles according to this invention. The embodiment shown in FIG. 5 begins with nano-[0100] scale powders 200 produced by any technique. These nanoscale powders 200 are mixed with desired coarser carrier particles 202 into a slurry precursor 204. The slurry precursor 204 is mixed with a fluid such as a fuel and then used as precursor to make nano-dispersed particles following steps 204-210 in a manner similar to that described for steps 104-112 of FIG. 3.
  • Alternatively, precursors may be blended into or emulsified into a commercially available nanoparticulate sol, such as NALCO® silica sols or NYACOL® alumina sol. This multi-phased feed is then used to make particles by the process described by FIG. 5. [0101]
  • FIG. 6 shows yet another embodiment for producing dispersed particles according to this invention. In this method, both the nano-scale particles and the carrier particles are formed in-situ during the thermal processing step. More specifically, a metal-containing precursor [0102] 300 (containing one or a mixture of metal-containing precursors) and optional dopants 301 are combined to form a precursor batch 302. The dopants may be added to modify or enable the performance of the dispersed powders suitably for a particular application. Such dopants include, but are not limited to, transition metals, rare earth metals, alkali metals, alkaline earth metals, semi-metals, and non-metals. It is preferred that, like other metal precursors, precursors for such dopants are intimately mixed with the metal-containing precursor 300. It is also preferred that dopant precursors are fluids. The precursor batch is then feed into a high temperature reactor 306. In one embodiment, one or more synthetic aids such as a reactive fluid 308 can be added along with the precursor batch 302 as it is being fed into the reactor 306. Examples of synthetic aids include, but are not limited to, oxygen, methane, nitrogen, feed gases, oxidants, or reactants.
  • With continued reference to FIG. 6, the [0103] precursor batch 302 is then fed into a thermal reactor 306 where the precursors are partially transformed, or preferably completely transformed, into the vapor form. The source of thermal energy in the preferred embodiments is plasma generator 305. Plasma gas 307, which may be inert or reactive, is supplied to plasma generator 305. Alternatively, the source of thermal energy may be internal energy, heat of reaction, conductive, convective, radiative, inductive, microwave, electromagnetic, direct or pulsed electric arc, laser, nuclear, or combinations thereof, so long as it is sufficient to cause the rapid vaporization of the powder suspension being processed.
  • The [0104] high temperature process 306 results in a vapor comprising both fine powders and carrier particles formed in-situ from the precursors 300. In order to produce both the dispersed and carrier particles, the thermokinetic conditions and ratio of the precursor to the synthetic aid are controlled. Alternatively, the precursors can be fed at different locations in the reactor to engineer the residence time experienced by each feed location. A change in residence time or thermokinetic condition or process variable produces powders of different characteristics (size, shape, composition, etc.). This method can therefore be employed to produce both carrier and attached particles. After the thermal processing, this vapor is cooled at step 310 to nucleate dispersion of the onto the surface of the carrier particles. Preferably, the cooling temperature at step 310 is high enough to prevent moisture condensation.
  • With continued reference to FIG. 6, after cooling [0105] step 310 the nano-dispersed powder is preferably quenched as described above to lower temperatures at step 316 to prevent agglomeration or grain growth. It is preferred that quenching methods be employed which can prevent deposition of the powders on the conveying walls. Following quenching step 316 the nano-dispersed powders are cooled further at step 318 and then harvested at step 320. The product of this process is a dispersed powder, such as nano-scale particles dispersed on larger nano-scale particles or nano-scale particles dispersed on sub-micron particles.
  • In yet another embodiment (not shown), the nano-dispersed powders are produced by first combining nano-scale powders produced by any method with carrier particles. The relative concentrations of the nano-scale powder and the carrier particles should be substantially equivalent to that desired in the final product. The mixture is then mechanically milled by methods known in the art to produce the nano-dispersed powders. The milling may be done in gas or liquid environment. If a liquid environment is employed, the liquid may comprise acids, alkalis, oxidizers, dispersants, metal containing precursors, or other suitable constituents. [0106]
  • FIG. 7 shows an alternative flow diagram of a thermal process for the synthesis of nano-dispersed powders. In this method, [0107] precursors 404 such as metal containing emulsions, fluid, or water soluble salt, are combined with carrier particles 405. Although a single precursor storage tank 404 is shown in FIG. 7, it is to be understood that multiple precursor tanks may be provided and used with or without premixing mechanisms (not shown) to premix multiple precursors before feeding into reactor 401.
  • In one embodiment, a feed stream of precursor material from [0108] storage tank 404 and carrier particles 405 is atomized in mixing apparatus 403. Alternatively, a precursor storage 404 may be implemented by suspending the precursor in a gas, preferably in a continuous operation, using fluidized beds, spouting beds, hoppers, or combinations thereof, as best suited to the nature of the precursor.
  • The resulting suspension is advantageously preheated in a heat exchanger (not shown), preferably with the exhaust heat, and is then fed into a [0109] thermal reactor 401 where the atomized precursors are partially transformed, or preferably completely transformed, into the vapor form. The source of thermal energy in the preferred embodiments is plasma generator 402 powered by power supply 206. Plasma gas 407, which may be inert or reactive, is supplied to plasma generator 402. Alternatively, the source of thermal energy may be internal energy, heat of reaction, conductive, convective, radiative, inductive, microwave, electromagnetic, direct or pulsed electric arc, laser, nuclear, or combinations thereof, so long as it is sufficient to cause the rapid vaporization of the precursor being processed. The peak temperature in the thermal reactor 401 is greater than 1500° C., preferably greater than 2500° C., more preferably greater than 3000° C., and most preferably greater than 4000° C. Optionally, in order to prevent contamination of the vapor stream caused by partial sublimation or vaporization, the walls of reactor 401 may be pre-coated with the same material being processed.
  • The vapor next enters an [0110] extended reaction zone 411 of the thermal reactor which provides additional residence time as needed to complete the processing of the feed material and to provide additional reaction and forming time for the vapor (if necessary). As the stream leaves the reactor, it passes through a zone 409 where the thermokinetic conditions favor the nucleation of solid powders from the vaporized precursor. These conditions are determined by calculating the supersaturation ratio and critical cluster size required to initiate nucleation. Rapid quenching leads to high supersaturation which gives rise to homogeneous nucleation. The zones 401, 411, and 409 may be combined and integrated in any manner to enhance material, energy, momentum, and/or reaction efficiency.
  • As soon as the vapor has begun nucleation, the process stream is quenched in a heat removal apparatus within [0111] nucleation zone 409 comprising, for example, a converging-diverging nozzle-driven adiabatic expansion chamber at rates at least exceeding 1,000 K/sec, preferably greater than 1,000,000 K/sec, or as high as possible. A cooling medium (not shown) may be utilized for the converging-diverging nozzle to prevent contamination of the product and damage to the expansion chamber.
  • The quenched gas stream is filtered by appropriate separation equipment in [0112] harvesting region 413 to remove the nano-dispersed product from the gas stream. As is well understood in the art, the filtration can be accomplished by single stage or multistage impingement filters, electrostatic filters, screen filters, fabric filters, cyclones, scrubbers, magnetic filters, or combinations thereof. The filtered nano-dispersed product is then harvested from the filter, either in batch mode or continuously, using screw conveyors or gas-phase solid transport, and the product stream is conveyed to powder processing or packaging unit operations (not shown).
  • The process is preferably operated at near ambient pressures and more preferably at pressures that are less than 750 mm Hg absolute (i.e. vacuum). Such a low pressure can be achieved using any type of vacuum pump, compressor, and more preferably using compressed fluid-based eductor operating on a venturi principle given the lower cost, simplicity and environmental benefits. Vacuum generating equipment may be placed at any stage of the overall process. The product stream from the vacuum generating equipment may be utilized elsewhere in the process to achieve heat and mass integration and thereby to reduce costs. For example, in one embodiment a suspension or dispersion may be prepared in a liquid directly if the liquid were to be utilized as the high pressure driving fluid for the eductor. [0113]
  • In an alternate embodiment shown in FIG. 8, rather than harvesting the nano-dispersed product, the nano-dispersed product is deposited directly on a [0114] substrate 601 to form a coating or film or near-net shape structural part. In this embodiment, the fluid precursor 504 and carrier particles 505 are fed into mixing apparatus 503 and then fed into a thermal reactor 501 where the atomized precursors are partially transformed, or preferably completely transformed, into the vapor form.
  • The preferred source of thermal energy in the embodiment illustrated in FIG. 8 is [0115] plasma generator 502 powered by power supply 506. The mixture is thermally heated in reactor 501 to high temperatures to yield a hot vapor. A substrate 601 having an exposed surface is provided within or in communication with reaction chamber 501 on, for example, a thermally controlled substrate holder. The hot vapor is then contacted with the exposed substrate surface and coats the exposed surface. The hot vapor may be cooled or quenched before the deposition step to provide a stream that has fine liquid droplets or hot particulate matter. The substrate 601 may be cooled or heated using a substrate thermal control 514 to affect the quality of the coating.
  • The [0116] substrate 601 may be mounted on a turn-table or drum to rotate the substrate 601 parallel, perpendicularly, tangentially (or at any other angle) relative to the gas stream comprising of nanoparticles. The rotation can help achieve different thickness, a conformal form, or a curved form. The substrate 601 to be coated may be continuously fed and removed over rotating cylinders to substrate 601. By controlling the substrate feed rate, the coating thickness can be controlled. Such coating method can employ suitable in-situ instrumentation to control the quality of the coating formed.
  • The deposition approach in accordance with the present invention is different from thermal spray technology currently in used in many ways such as: (a) the feed in conventional methods is a solid micron sized powder in thermal spray processes, whereas in this invention the feed is a fluid precursor; and (b) the conventional thermal spray process is considered to yield a powder with molten surface which then sticks to the substrate, whereas in this invention, as the hot vapor cools it is anticipated to yield a molten droplet or soft particulate that forms the coating. The advantage of forming a coating or film according to this invention is the fine to nanoscale microstructure of the resultant coating or film. [0117]
  • Furthermore, it is contemplated that the present invention will yield additional benefits in the ability to easily transport fluids within the process, the ability to form coatings, and the ability to form wide range of compositions (oxides, carbides, nitrides, borides, multimetal compositions, composites, etc.) from a limited collection of precursors through mixing and other methods as taught herein. [0118]
  • A coating, film, or component may also be prepared by dispersing the dispersed nanopowder, followed by applying various known methods such as, but not limited to, electrophoretic deposition, magnetophoretic deposition, spin coating, dip coating, spraying, brushing, screen printing, ink-jet printing, toner printing, and sintering. The nanopowders may be thermally treated or reacted to enhance their electrical, optical, photonic, catalytic, thermal, magnetic, structural, electronic, emission, processing, or forming properties before such a step. [0119]
  • The powder may be post-processed to further improve its performance or characteristics such as flowability. For example, the post-processing of the dispersed powder may be include one or more of the following steps in any order: air classification, sieving, drying, reduction, chemical reaction with liquid, chemical reaction with gases, humidification, surface treatment, coating, pyrolysis, combustion, casting, dispersion, dissolution, suspension, molding, hipping, pressing, milling, composite forming, coarsening, mixing, agglomeration, de-agglomeration, weighing, and packaging. A non-limiting illustration of such post-processing would be where the dispersed powder are dissolved in a media selected such that the carrier particle dissolves in the media while the attached particles do not dissolve in the media. This post-processing can produce hollow nanostructured or sub-micron particles. Similarly, if the dispersed particles comprise of a polymeric carrier powders and the attached particles are ceramic, pyrolysis or combustion can also be utilized to make hollow particles. Such hollow particles are anticipated to have unusual properties such as lower effective density, low effective dielectric constant, lower effective thermal conductivity. [0120]
  • Uses [0121]
  • Dispersed powders have numerous applications in industries such as, but not limited to, catalysis, biomedical, pharmaceuticals, sensor, electronic, telecom, optics, electrical, photonic, thermal, piezo, magnetic and electrochemical products. [0122]
  • Biomedical implants and surgical tools can benefit from dispersed powders. It is expected that nano-dispersed powders can enable implants with modulus and other properties that match the part being replaced. The match is expected to be within 10% of the target properties. The surgical tools produced using nano-dispersed powders are expected to offer strength that is at least 10% higher than that achieved using powders without nano-dispersion. [0123]
  • Powdered marker, drug carriers and inhalation particulates that reduce side effects can benefit from nano-dispersed powders. For inhalation product applications, carrier particles with a size range of 500 nm to 50 microns are preferred, and carrier particles with a geometric diameter of 1-50 μm and an aerodynamic diameter of 1-10 μm are most preferred. The nanoscale dispersed particle can be a drug or a carrier of the drug. The carrier particle can be engineered to favor prolonged release. For injectable product applications, carrier particles with a size range of 100 nm to 25 microns are preferred, and carrier particles with a geometric diameter of 0.1-5 μm and an aerodynamic diameter of 0.1-1 μm are most preferred. The nanoscale dispersed particles can be markers, tracers, drug vehicles or target carriers. [0124]
  • Another category of application of nano-dispersed powders is phosphors. Phosphors emit light when exposed to radiation. Not-limiting illustrations of phosphors include Zn[0125] 2SiO4:Mn, ZnS:Ag, ZnO:Zn, CaSiO3:Mn, Y3Al5O12:Ce, Y2O3:Eu, Y2SiO5:Ce, Y3(Al,Ga)5O12:Tb, BaO.6Al2O3:Mn, BaMg2Al16O27:Eu, CsI:Na, and CaS:Ce,Sm. It is expected that the methods of manufacture and other teachings of this invention can be applied wherein the major phase of the phosphor is the carrier particle and the minor phase is the nano-dispersed particle. As a non-limiting example, for Y3Al5O12:Ce, Y3Al5O12 can be the carrier particle while Ce is the nano-dispersed phase on the surface of the carrier. For phosphor product applications, carrier particles with a size range of 50 nm to 25 microns are preferred, and carrier particles with a geometric diameter of 0.5-10 microns are preferred. The dispersed particles with a size range of 1 nm to 0.5 microns are preferred, and dispersed particles with a geometric diameter of 1-100 nanometers are preferred. It is anticipated that the light emitting efficiency of nano-dispersed phosphor powders will be higher by 5% or more than phosphor powder of equivalent composition that is not dispersed. The scope of this invention includes Stoke and anti-Stoke phosphors. Nano-dispersed phosphor powders can be used in lamps, cathode ray tubes, field emission displays, plasma display panels, scintillators, X-ray detectors, IR detectors, UV detectors and laser detectors. Nano-dispersed phosphor powders can also be used in printing inks, or dispersed in plastics to prevent forgery and counterfeiting of currency, original works of art, passports, credit cards, bank checks, and other documents or products. The nano-dispersed powders can also be used to prepare optical networking components such as detectors, emitters, photodiodes, and phototransistors.
  • Another broad use of nano-dispersed powders is in electrical and electronic components such as capacitors, inductors, resistors, thermistors, sensors and varistors. Nano-dispersed particles can increase the reliability of these components by 10% or more when used as electroceramic dopants. Furthermore, nano-dispersed particles can enable miniaturization of these components by enabling ceramic layer thicknesses below 500 nm and electrode layer thicknesses below 400 nm. [0126]
  • Electrochemical capacitors prepared from nano-dispersed powders are expected to have charge densities that are 10% higher than those prepared from non-dispersed powders of equivalent composition. The electrochemical capacitors are also expected to offer high volumetric efficiencies, and longer mean times between failures. Batteries prepared from nano-dispersed powders can offer power densities that are 5% higher than those prepared from non-dispersed powders of equivalent composition. Chemical sensors prepared from nano-dispersed powder are expected to offer sensitivities that are at least 10% higher than those prepared from non-dispersed powders of equivalent composition. [0127]
  • A major application area for nano-dispersed powders produced using the high temperature process of this invention is in chemical catalysis. Catalytic materials that are prepared from nano-dispersed powders are expected to last 10% or more longer and give superior yields and selectivity than catalytic materials prepared from non-dispersed powders of equivalent composition. They are also expected to offer turn over rates that are 5% higher than those prepared from non-dispersed powders of equivalent composition. For this application, the process of this invention for producing nano-dispersed powders can additionally offer desirable porosity, structural strength, and uniformity. Examples of such applications include (a) catalytic transformation of less valuable chemicals and material feed stocks into more valuable chemicals and materials and (b) catalytic transformation of more hazardous chemicals and materials into less hazardous or non-hazardous forms of substances. [0128]
  • Other applications of nano-dispersed powders include (a) fillers for polymers, ceramics, and metal matrix composites and (b) dopants for electronic, magnetic, thermal, piezo, electrical, tooling, structural, inks, paints, and topical health products. [0129]
  • Magnetic devices prepared from dispersed powders are expected to offer superior magnetic performance. In general, nano-dispersed powders offer a means of improving the value-added performance of existing products that are produced from non-dispersed powders. [0130]
  • In some applications where material cost is a critical parameter, affordability can be achieved by combining low cost carrier powders with highly functional but somewhat more expensive attached nanoparticles thereby yielding more affordable yet high performance nano-dispersed powders on a per unit weight basis. As an added benefit, improved ability to process micron size carrier powders can accelerate the adoption of nano-dispersed powders in commerce. [0131]
  • Other embodiments of the invention will be apparent to those skilled in the art from a consideration of the specification or practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with the true scope and spirit of the invention being indicated by the following claims. [0132]

Claims (30)

We claim:
1. A method of manufacturing powder comprising:
providing a metal-containing precursor;
feeding the metal-containing precursor to a reaction zone;
adding a reactive fluid to the metal-containing precursor in the reaction zone thereby creating a stream comprising reacted metal-containing precursor;
conducting high temperature processing of the stream comprising reacted metal-containing precursor at temperatures greater than 2500° C. to create a vapor;
cooling the vapor to form a vapor stream comprising nucleated nanoscale powders;
quenching the vapor stream comprising nucleated nanoscale powders thereby preventing agglomeration and grain growth;
harvesting the nucleated nanoscale powders.
2. The method of claim 1, wherein the metal-containing precursor is selected from the group comprising an emulsion, fluid, particle-containing liquid slurry, a gas, a solid, a single-phase liquid, a multi-phase liquid, a melt and a fluid mixture.
3. The method of claim 1, wherein the metal-containing precursor is selected from the group comprising metal acetates, metal carboxylates, metal ethanoates, metal alkoxides, metal octoates, metal chelates, metallo-organic compounds, metal halides, metal azides, metal nitrates, metal sulfates, metal hydroxides, metal salts soluble in organics, metal salts soluble in water, and metal-containing emulsions.
4. The method of claim 1, wherein the metal-containing precursor comprises of multiple metals.
5. The method of claim 1, wherein the nanoscale powder comprises a metal.
6. The method of claim 1, wherein the reactive fluid comprises oxygen.
7. The method of claim 1, wherein the reactive fluid comprises carbon.
8. The method of claim 1, wherein the reactive fluid comprises nitrogen.
9. The method of claim 1, wherein the reactive fluid comprises boron.
10. The method of claim 1, wherein the reactive fluid comprises hydrogen.
11. The method of claim 1, wherein the step of feeding the metal-containing precursor to the reaction zone comprises of spraying that enhances heat transfer efficiency, mass transfer efficiency, momentum transfer efficiency, and reaction efficiency.
12. The method of claim 1, wherein the reaction zone is surrounded by a concentric zone to reduce non-uniformities in heat, mass or momentum transfer.
13. The method of claim 1, wherein the step of high temperature processing is achieved using one or more of the means from the group consisting of plasma processes, internal energy, heat of reaction, conduction, convection, radiation, inductive, microwave, electromagnetic, direct electric arc, pulsed electric arc, laser and nuclear.
14. The method of claim 1, wherein the reacted metal-containing precursor is product of combustion.
15. The method of claim 1, wherein the step of high temperature processing is performed at temperatures greater than 3000° C.
16. The method of claim 1 further comprising a step wherein carrier particles are added to a later stage of the high temperature processing.
17. The method of claim 1, wherein the harvesting is accomplished using one or more means from the group consisting of bag filtration, electrostatic separation, membrane filtration, cyclones, impact filtration, centrifugation, hydrocyclones, thermophoresis, magnetic separation, impingement filters, screen filters, fabric filters and scrubbers.
18. The method of claim 1, wherein the quenching is accomplished using adiabatic expansion.
19. The method of claim 1, wherein the method includes instrumentation for quality control.
20. The method of claim 1, wherein the process operates near ambient pressure.
21. The method of claim 1, wherein the process operates at a pressure less than 750 mm Hg absolute.
22. The method of claim 21, wherein the pressure is achieved using a compressed fluid-based eductor operating on a venturi principle.
23. A method of producing nanoscale particles in vacuum wherein the vacuum is achieved using a compressed fluid-based eductor operating on a venturi principle.
24. The method of claim 1, wherein the powder manufactured comprises nano-dispersed particles.
25. The method of claim 1, wherein the metal-containing precursor comprises nanoscale powder and coarse carrier particles.
26. The method of claim 1, wherein the powder manufactured comprises carrier particles comprising a ceramic and attached particles comprising a metal.
27. The method of claim 1, wherein the powder manufactured comprises carrier particles comprising a ceramic and attached particles comprising an alloy.
28. The method of claim 1, wherein the powder manufactured comprises carrier particles comprising a ceramic and attached particles comprising an oxide.
29. The method of claim 1, wherein the powder manufactured comprises carrier particles comprising a ceramic and attached particles comprising a ceramic.
30. A powder manufactured using the method of claim 1.
US10/698,564 1996-09-03 2003-10-31 High volume manufacturing of nanoparticles and nano-dispersed particles at low cost Abandoned US20040178530A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/698,564 US20040178530A1 (en) 1996-09-03 2003-10-31 High volume manufacturing of nanoparticles and nano-dispersed particles at low cost

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US08/707,341 US5788738A (en) 1996-09-03 1996-09-03 Method of producing nanoscale powders by quenching of vapors
US08/730,661 US5952040A (en) 1996-10-11 1996-10-11 Passive electronic components from nano-precision engineered materials
US08/739,257 US5905000A (en) 1996-09-03 1996-10-30 Nanostructured ion conducting solid electrolytes
US09/083,893 US6228904B1 (en) 1996-09-03 1998-05-22 Nanostructured fillers and carriers
US09/790,036 US6933331B2 (en) 1998-05-22 2001-02-20 Nanotechnology for drug delivery, contrast agents and biomedical implants
US31096701P 2001-08-08 2001-08-08
US10/004,387 US6652967B2 (en) 2001-08-08 2001-12-04 Nano-dispersed powders and methods for their manufacture
US10/698,564 US20040178530A1 (en) 1996-09-03 2003-10-31 High volume manufacturing of nanoparticles and nano-dispersed particles at low cost

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US09/790,036 Continuation-In-Part US6933331B2 (en) 1996-09-03 2001-02-20 Nanotechnology for drug delivery, contrast agents and biomedical implants
US10/004,387 Division US6652967B2 (en) 1996-09-03 2001-12-04 Nano-dispersed powders and methods for their manufacture

Publications (1)

Publication Number Publication Date
US20040178530A1 true US20040178530A1 (en) 2004-09-16

Family

ID=26672930

Family Applications (3)

Application Number Title Priority Date Filing Date
US10/004,387 Expired - Lifetime US6652967B2 (en) 1996-09-03 2001-12-04 Nano-dispersed powders and methods for their manufacture
US10/464,208 Expired - Lifetime US6726992B1 (en) 1998-11-06 2003-06-18 Nano-engineered phosphors and related nanotechnology
US10/698,564 Abandoned US20040178530A1 (en) 1996-09-03 2003-10-31 High volume manufacturing of nanoparticles and nano-dispersed particles at low cost

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US10/004,387 Expired - Lifetime US6652967B2 (en) 1996-09-03 2001-12-04 Nano-dispersed powders and methods for their manufacture
US10/464,208 Expired - Lifetime US6726992B1 (en) 1998-11-06 2003-06-18 Nano-engineered phosphors and related nanotechnology

Country Status (2)

Country Link
US (3) US6652967B2 (en)
WO (1) WO2003045610A2 (en)

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050210859A1 (en) * 2004-03-23 2005-09-29 Bossmann Stefan H Electro-thermal nanoparticle generator
US20060184251A1 (en) * 2005-01-07 2006-08-17 Zongtao Zhang Coated medical devices and methods of making and using
US20060208399A1 (en) * 2005-03-16 2006-09-21 Horiba Instruments, Inc. Pure particle generator
US20060244164A1 (en) * 2003-10-10 2006-11-02 The Board Of Trustees Of The University Of Illinois Controlled chemical aerosol flow synthesis of nanometer-sized particles and other nanometer-sized products
US20060291827A1 (en) * 2005-02-11 2006-12-28 Suib Steven L Process and apparatus to synthesize materials
US20070240491A1 (en) * 2003-06-03 2007-10-18 Nano-Proprietary, Inc. Hydrogen Sensor
US20070276072A1 (en) * 2004-02-06 2007-11-29 Thomas Schmidt Method for the Production of Polyester Resins Containing Nanoscale Additives for Coating Powders
US20080006954A1 (en) * 2004-09-07 2008-01-10 Kazuhiro Yubuta Process and Apparatus for Producing Fine Particles
US20080032132A1 (en) * 2006-02-16 2008-02-07 Woodfield Brian F Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys
US20080069854A1 (en) * 2006-08-02 2008-03-20 Inframat Corporation Medical devices and methods of making and using
US20080124373A1 (en) * 2006-08-02 2008-05-29 Inframat Corporation Lumen - supporting devices and methods of making and using
US20080296144A1 (en) * 2005-07-28 2008-12-04 Strouse Geoffrey F Nanoparticle Synthesis and Associated Methods
EP2028228A2 (en) 2004-10-25 2009-02-25 Ciba Holding Inc. Functionalized nanoparticles
US20090084163A1 (en) * 2005-08-23 2009-04-02 Junhong Chen Ambient-temperature gas sensor
US20090133474A1 (en) * 2003-06-03 2009-05-28 Nano-Proprietary, Inc. Method and apparatus for sensing hydrogen gas
US20090317504A1 (en) * 2006-10-24 2009-12-24 Beneq Oy Device and method for producing nanoparticles
US20100005853A1 (en) * 2005-08-03 2010-01-14 Nano-Proprietary, Inc. Continuous Range Hydrogen Sensor
US20100055440A1 (en) * 2008-08-27 2010-03-04 Seoul National University Industry Foundation Composite nanoparticles
DE102008042578A1 (en) * 2008-10-02 2010-04-08 Biotronik Vi Patent Ag Implant with a body made of a biocorrodible manganese alloy
US7708974B2 (en) 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
US8058337B2 (en) 1996-09-03 2011-11-15 Ppg Industries Ohio, Inc. Conductive nanocomposite films
EP2425915A3 (en) * 2010-09-01 2012-07-04 Directa Plus S.p.A. Multi mode production complex for nano-particles of metal
US8268405B2 (en) 2005-08-23 2012-09-18 Uwm Research Foundation, Inc. Controlled decoration of carbon nanotubes with aerosol nanoparticles
EP2425916A3 (en) * 2010-09-01 2012-11-07 Directa Plus S.p.A. Multiple feeder reactor for the production of nano-particles of metal
US8404199B2 (en) 2010-08-06 2013-03-26 Empire Technology Development Llc Fluorine based vanadium boride nanoparticle synthesis
US9079164B2 (en) 2012-03-26 2015-07-14 Brigham Young University Single reaction synthesis of texturized catalysts
US9114378B2 (en) 2012-03-26 2015-08-25 Brigham Young University Iron and cobalt based fischer-tropsch pre-catalysts and catalysts
WO2016033526A1 (en) * 2014-08-29 2016-03-03 SDCmaterials, Inc. Composition comprising nanoparticles with desired sintering and melting point temperatures and methods of making thereof
US9289750B2 (en) 2013-03-09 2016-03-22 Brigham Young University Method of making highly porous, stable aluminum oxides doped with silicon
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US20210162392A1 (en) * 2019-12-03 2021-06-03 The Governing Council Of The University Of Toronto Electrocatalysts comprising transition metals and chalcogen for oxygen evolution reactions (oer) and manufacturing thereof

Families Citing this family (192)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6652967B2 (en) * 2001-08-08 2003-11-25 Nanoproducts Corporation Nano-dispersed powders and methods for their manufacture
WO2004050350A1 (en) * 2002-11-27 2004-06-17 Nanoproducts Corporation Nano-engineered inks, methods for their manufacture and their applications
US6653356B2 (en) * 1999-12-13 2003-11-25 Jonathan Sherman Nanoparticulate titanium dioxide coatings, and processes for the production and use thereof
US6855426B2 (en) * 2001-08-08 2005-02-15 Nanoproducts Corporation Methods for producing composite nanoparticles
US7252749B2 (en) * 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
US7455757B2 (en) * 2001-11-30 2008-11-25 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
ITTO20011191A1 (en) * 2001-12-18 2003-06-18 Itw Ind Components Srl SERVICE DEVICE FOR A REFRIGERATOR AND REFRIGERATOR PROVIDED WITH A DEVICE.
US6740453B2 (en) 2002-02-27 2004-05-25 Cyprus Amax Minerals Company Electrochemical cell with carbonaceous material and molybdenum carbide as anode
US6669823B1 (en) * 2002-06-17 2003-12-30 Nanophase Technologies Corporation Process for preparing nanostructured materials of controlled surface chemistry
FR2846572B1 (en) * 2002-11-05 2004-12-31 Centre Nat Rech Scient DISSYMMETRIC PARTICLES OF NANOMETRIC OR MESOSCOPIC SIZE, AND PROCESS FOR THEIR PREPARATION
US20040091417A1 (en) * 2002-11-07 2004-05-13 Nanoproducts Corporation Nanotechnology for agriculture, horticulture, and pet care
US7162308B2 (en) 2002-11-26 2007-01-09 Wilson Greatbatch Technologies, Inc. Nanotube coatings for implantable electrodes
US7250477B2 (en) 2002-12-20 2007-07-31 General Electric Company Thermoset composite composition, method, and article
US7229600B2 (en) * 2003-01-31 2007-06-12 Nanoproducts Corporation Nanoparticles of rare earth oxides
US20050126338A1 (en) * 2003-02-24 2005-06-16 Nanoproducts Corporation Zinc comprising nanoparticles and related nanotechnology
KR100501242B1 (en) * 2003-05-31 2005-07-18 주식회사 대우일렉트로닉스 Method for producing an injection-moled material with an antibacterial function
US20050008861A1 (en) * 2003-07-08 2005-01-13 Nanoproducts Corporation Silver comprising nanoparticles and related nanotechnology
US20050014317A1 (en) * 2003-07-18 2005-01-20 Pyo Sung Gyu Method for forming inductor in semiconductor device
ES2305428T3 (en) * 2003-07-21 2008-11-01 Abb Research Ltd. METALIZED ELECTROCERAMICS IRRADIATED BY LASER.
US8932632B2 (en) 2003-10-21 2015-01-13 Ppg Industries Ohio, Inc. Adhesives and sealants nanotechnology
US8106586B1 (en) 2004-04-26 2012-01-31 Imaging Systems Technology, Inc. Plasma discharge display with fluorescent conversion material
DE102004020961A1 (en) * 2004-04-28 2005-11-24 Ceram Ag Paint and / or coating material
US20070014148A1 (en) * 2004-05-10 2007-01-18 The University Of North Carolina At Chapel Hill Methods and systems for attaching a magnetic nanowire to an object and apparatuses formed therefrom
US7968503B2 (en) * 2004-06-07 2011-06-28 Ppg Industries Ohio, Inc. Molybdenum comprising nanomaterials and related nanotechnology
US7527824B2 (en) * 2004-06-25 2009-05-05 Becker Michael F Methods for producing coated nanoparticles from microparticles
KR101226142B1 (en) * 2004-06-29 2013-01-25 어플라이드 나노테크 홀딩스, 인크. Nanoparticle implantation
US7229690B2 (en) * 2004-07-26 2007-06-12 Massachusetts Institute Of Technology Microspheres including nanoparticles
EP1810001A4 (en) 2004-10-08 2008-08-27 Sdc Materials Llc An apparatus for and method of sampling and collecting powders flowing in a gas stream
EP2913722A1 (en) * 2004-11-24 2015-09-02 NovaCentrix Corp. Electrical, plating and catalytic uses of metal nanomaterial compositions
US20060153728A1 (en) * 2005-01-10 2006-07-13 Schoenung Julie M Synthesis of bulk, fully dense nanostructured metals and metal matrix composites
KR20060082527A (en) * 2005-01-12 2006-07-19 삼성에스디아이 주식회사 Phosphor and plasma display panel using the same
WO2006076611A2 (en) 2005-01-14 2006-07-20 Cabot Corporation Production of metal nanoparticles
US7824466B2 (en) 2005-01-14 2010-11-02 Cabot Corporation Production of metal nanoparticles
US8383014B2 (en) 2010-06-15 2013-02-26 Cabot Corporation Metal nanoparticle compositions
WO2006076609A2 (en) 2005-01-14 2006-07-20 Cabot Corporation Printable electronic features on non-uniform substrate and processes for making same
US8334464B2 (en) 2005-01-14 2012-12-18 Cabot Corporation Optimized multi-layer printing of electronics and displays
KR100678285B1 (en) * 2005-01-20 2007-02-02 삼성전자주식회사 Quantum Dot Phosphor for Light Emitting Diode and Method of Preparing Thereof
WO2006078825A2 (en) * 2005-01-21 2006-07-27 Cabot Corporation Processes for forming nanoparticles
JP4061367B2 (en) * 2005-03-18 2008-03-19 独立行政法人 日本原子力研究開発機構 ZnS (Ag) scintillation detector
US7641983B2 (en) * 2005-04-04 2010-01-05 Boston Scientific Scimed, Inc. Medical devices including composites
KR101111747B1 (en) * 2005-05-16 2012-06-12 삼성엘이디 주식회사 A composite nano particle and electronic device using the same
US20060266216A1 (en) * 2005-05-24 2006-11-30 Cabot Corporation High-throughput powder synthesis system
US20060275542A1 (en) * 2005-06-02 2006-12-07 Eastman Kodak Company Deposition of uniform layer of desired material
DE102005061828B4 (en) * 2005-06-23 2017-05-24 Osram Opto Semiconductors Gmbh Wavelength-converting converter material, light-emitting optical component and method for its production
US8350657B2 (en) 2005-06-30 2013-01-08 Derochemont L Pierre Power management module and method of manufacture
US8715839B2 (en) * 2005-06-30 2014-05-06 L. Pierre de Rochemont Electrical components and method of manufacture
CN100436310C (en) * 2005-07-13 2008-11-26 清华大学 Production of carbon nano-tube array
US20070088111A1 (en) * 2005-08-26 2007-04-19 Ppg Industries Ohio, Inc. Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods
US7745010B2 (en) * 2005-08-26 2010-06-29 Prc Desoto International, Inc. Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods
US20070048550A1 (en) * 2005-08-26 2007-03-01 Millero Edward R Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods
US20070045116A1 (en) * 2005-08-26 2007-03-01 Cheng-Hung Hung Electrodepositable coating compositions and related methods
US8231970B2 (en) * 2005-08-26 2012-07-31 Ppg Industries Ohio, Inc Coating compositions exhibiting corrosion resistance properties and related coated substrates
US20070254159A1 (en) * 2005-08-26 2007-11-01 Ppg Industries Ohio, Inc. Coating compositions exhibiting corrosion resistance properties, related coated substrates, and methods
DE502006003904D1 (en) * 2005-09-27 2009-07-16 Eth Zuerich PROCESS FOR ATTACHING NANOPARTICLES TO SUBSTRATE PARTICLES
US7615097B2 (en) * 2005-10-13 2009-11-10 Plasma Processes, Inc. Nano powders, components and coatings by plasma technique
TW200720767A (en) * 2005-11-18 2007-06-01 Hon Hai Prec Ind Co Ltd Cold cathode fluorescent lamp and backlight module using the same
CA2636932C (en) 2006-01-12 2014-03-25 The Board Of Trustees Of The University Of Arkansas Nanoparticle compositions and methods for making and using the same
US7517718B2 (en) * 2006-01-12 2009-04-14 International Business Machines Corporation Method for fabricating an inorganic nanocomposite
US10100266B2 (en) 2006-01-12 2018-10-16 The Board Of Trustees Of The University Of Arkansas Dielectric nanolubricant compositions
US8663495B1 (en) 2006-02-22 2014-03-04 William Marsh Rice University Gelled nanotube-containing heat transfer medium
JP2009530488A (en) * 2006-03-21 2009-08-27 ウルトラドッツ・インコーポレイテッド Luminescent material that emits visible or near-infrared light
JP2009534490A (en) * 2006-04-19 2009-09-24 チバ ホールディング インコーポレーテッド Inorganic optical brightener
FR2901721B1 (en) * 2006-05-30 2008-08-22 Commissariat Energie Atomique MAX PHASE POWDERS AND PROCESS FOR PRODUCING SAID POWDERS
CN101626789A (en) * 2006-06-05 2010-01-13 耶德研究和发展有限公司 Decontaminating fluids and using method thereof
US20080000880A1 (en) * 2006-06-30 2008-01-03 Bao Feng System and method for treating a coating on a substrate
US20100314788A1 (en) * 2006-08-18 2010-12-16 Cheng-Hung Hung Production of Ultrafine Particles in a Plasma System Having Controlled Pressure Zones
US7758838B2 (en) * 2006-08-18 2010-07-20 Ppg Industries Ohio, Inc. Method and apparatus for the production of ultrafine particles and related coating compositions
US7776303B2 (en) * 2006-08-30 2010-08-17 Ppg Industries Ohio, Inc. Production of ultrafine metal carbide particles utilizing polymeric feed materials
US20110070426A1 (en) * 2006-08-30 2011-03-24 Vanier Noel R Sintering aids for boron carbide ultrafine particles
US7635458B1 (en) 2006-08-30 2009-12-22 Ppg Industries Ohio, Inc. Production of ultrafine boron carbide particles utilizing liquid feed materials
US8889065B2 (en) * 2006-09-14 2014-11-18 Iap Research, Inc. Micron size powders having nano size reinforcement
US8952612B1 (en) 2006-09-15 2015-02-10 Imaging Systems Technology, Inc. Microdischarge display with fluorescent conversion material
US20080074479A1 (en) * 2006-09-27 2008-03-27 Tri-Century Corporation Method and apparatus for filling ink-jet cartridge
US7438880B2 (en) * 2006-12-20 2008-10-21 Ppg Industries Ohio, Inc. Production of high purity ultrafine metal carbide particles
US20080166558A1 (en) * 2006-12-22 2008-07-10 3M Innovative Properties Company Compositions of particles
US20080153963A1 (en) * 2006-12-22 2008-06-26 3M Innovative Properties Company Method for making a dispersion
US20080152913A1 (en) * 2006-12-22 2008-06-26 3M Innovative Properties Company Method of making compositions including particles
US8008624B2 (en) * 2007-01-16 2011-08-30 General Electric Company X-ray detector fabrication methods and apparatus therefrom
DE102007010719A1 (en) * 2007-03-06 2008-09-11 Merck Patent Gmbh Phosphors consisting of doped garnets for pcLEDs
EP2128091B1 (en) * 2007-03-16 2013-07-03 Asahi Glass Company, Limited Hollow microparticle, method for production thereof, coating composition, and article having coating film formed thereon
EP2128090B1 (en) * 2007-03-16 2012-05-16 Asahi Glass Company, Limited Hollow microparticle, method for production thereof, coating composition, and article having coating film formed thereon
US8703204B2 (en) 2007-05-03 2014-04-22 Bend Research, Inc. Nanoparticles comprising a cholesteryl ester transfer protein inhibitor and anon-ionizable polymer
WO2008135828A2 (en) 2007-05-03 2008-11-13 Pfizer Products Inc. Nanoparticles comprising a drug, ethylcellulose, and a bile salt
US9545384B2 (en) 2007-06-04 2017-01-17 Bend Research, Inc. Nanoparticles comprising drug, a non-ionizable cellulosic polymer and tocopheryl polyethylene glocol succinate
EP2162120B1 (en) 2007-06-04 2016-05-04 Bend Research, Inc Nanoparticles comprising a non-ionizable cellulosic polymer and an amphiphilic non-ionizable block copolymer
DE102007053285A1 (en) * 2007-11-08 2009-05-14 Merck Patent Gmbh Process for the preparation of coated phosphors
DE102007053770A1 (en) * 2007-11-12 2009-05-14 Merck Patent Gmbh Coated phosphor particles with refractive index matching
US9233078B2 (en) 2007-12-06 2016-01-12 Bend Research, Inc. Nanoparticles comprising a non-ionizable polymer and an Amine-functionalized methacrylate copolymer
EP2231169B1 (en) 2007-12-06 2016-05-04 Bend Research, Inc. Pharmaceutical compositions comprising nanoparticles and a resuspending material
US7713349B2 (en) * 2008-01-22 2010-05-11 Ppg Industries Ohio, Inc. Coatings including pigments comprising substrate particles with ultrafine metal oxide particles deposited thereon
TWI401205B (en) * 2008-01-31 2013-07-11 Ind Tech Res Inst Fabricating method for an applied substrate employing photo-thermal effect
WO2009145813A1 (en) * 2008-03-04 2009-12-03 Qd Vision, Inc. Particles including nanoparticles, uses thereof, and methods
DE102008017308B4 (en) * 2008-04-04 2014-09-25 Süd-Chemie Ip Gmbh & Co. Kg Process for the preparation of nanocrystalline bismuth-molybdenum mixed oxide catalysts
USD627900S1 (en) 2008-05-07 2010-11-23 SDCmaterials, Inc. Glove box
US9072664B2 (en) * 2008-05-22 2015-07-07 3M Innovative Properties Company Process for manufacturing flowable powder drug compositions
WO2009158300A1 (en) * 2008-06-26 2009-12-30 3M Innovative Properties Company Dry powder pharmaceutical compositions for pulmonary administration, and methods of manufacturing thereof
EP2309984B1 (en) * 2008-07-02 2018-04-11 3M Innovative Properties Company Method of making a dry powder pharmaceutical composition
DE102008038295B4 (en) * 2008-08-18 2013-11-28 Eads Deutschland Gmbh Granulation and stabilization of resin systems for use in the manufacture of fiber composite components
US20100055017A1 (en) * 2008-09-03 2010-03-04 Ppg Industries Ohio, Inc. Methods for the production of ultrafine metal carbide particles and hydrogen
ES2460574T3 (en) * 2008-10-13 2014-05-13 Innovnano-Materiais Avan�Ados, S.A. Ceramic powders coated with a layer of nanoparticles and process for obtaining them
WO2010061705A1 (en) * 2008-11-25 2010-06-03 株式会社クレハ Coating liquid and gas barrier laminate
US20100261029A1 (en) * 2008-12-18 2010-10-14 Ppg Industries Ohio, Inc. Multi-phase particulates, method of making, and composition containing same
US8377840B2 (en) 2009-02-13 2013-02-19 Babcock & Wilcox Technical Services Y-12, Llc Method of producing catalytic materials for fabricating nanostructures
US20100209605A1 (en) * 2009-02-13 2010-08-19 Babcock & Wilcox Technical Services Y-12, Llc Anchored Nanostructure Materials and Ball Milling Method Of Fabrication
US8318250B2 (en) 2009-02-13 2012-11-27 Babcock & Wilcox Technical Services Y-12, Llc Anchored nanostructure materials and method of fabrication
WO2010141113A2 (en) * 2009-02-13 2010-12-09 Babcock & Wilcox Technical Services Y-12, Llc Nano-material and method of fabrication
WO2010093926A2 (en) 2009-02-13 2010-08-19 Babcock & Wilcox Technical Services Y-12, Llc Composite materials formed with anchored nanostructures
US20100210456A1 (en) * 2009-02-13 2010-08-19 Babcock & Wilcox Technical Services Y-12, Llc Catalytic Materials for Fabricating Nanostructures
US20110006254A1 (en) * 2009-07-07 2011-01-13 Toyota Motor Engineering & Manufacturing North America, Inc. Process to make electrochemically active/inactive nanocomposite material
CN102482457B (en) 2009-09-09 2015-04-15 Qd视光有限公司 Particles including nanoparticles, uses thereof, and methods
WO2011031876A1 (en) 2009-09-09 2011-03-17 Qd Vision, Inc. Formulations including nanoparticles
US8697479B2 (en) * 2009-11-19 2014-04-15 Nitto Denko Corporation Method for producing nanoparticles
ES2648256T3 (en) 2009-12-08 2017-12-29 OmniPV, Inc. Luminescent materials that emit light in the visible range or in a range close to that of infrared and their methods of formation
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
US8545652B1 (en) 2009-12-15 2013-10-01 SDCmaterials, Inc. Impact resistant material
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US8470112B1 (en) 2009-12-15 2013-06-25 SDCmaterials, Inc. Workflow for novel composite materials
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US20110143930A1 (en) * 2009-12-15 2011-06-16 SDCmaterials, Inc. Tunable size of nano-active material on nano-support
US20110206937A1 (en) * 2010-02-25 2011-08-25 Schmidt Wayde R Composite article having a ceramic nanocomposite layer
US20110223220A1 (en) * 2010-03-15 2011-09-15 Ppg Industries Ohio, Inc. Dispersions of encapsulated particles and methods for their production and use
JP6016797B2 (en) 2010-10-04 2016-10-26 スリーエム イノベイティブ プロパティズ カンパニー Method for changing particle dissolution rate by adding hydrophobic nanoparticles
US8796361B2 (en) 2010-11-19 2014-08-05 Ppg Industries Ohio, Inc. Adhesive compositions containing graphenic carbon particles
US20140150970A1 (en) 2010-11-19 2014-06-05 Ppg Industries Ohio, Inc. Structural adhesive compositions
US11724310B2 (en) * 2011-06-17 2023-08-15 Consolidated Nuclear Security, LLC Titanium-group nano-whiskers and method of production
US20120321892A1 (en) * 2011-06-17 2012-12-20 Babcock & Wilcox Technical Services Y-12, Llc Titanium-Group Nano-Whiskers and Method of Production
WO2013001685A1 (en) * 2011-06-29 2013-01-03 パナソニック株式会社 Composite phosphor and light-emitting device
US9849512B2 (en) * 2011-07-01 2017-12-26 Attostat, Inc. Method and apparatus for production of uniformly sized nanoparticles
CA2845129A1 (en) 2011-08-19 2013-02-28 SDCmaterials, Inc. Coated substrates for use in catalysis and catalytic converters and methods of coating substrates with washcoat compositions
US9475946B2 (en) 2011-09-30 2016-10-25 Ppg Industries Ohio, Inc. Graphenic carbon particle co-dispersions and methods of making same
US9988551B2 (en) 2011-09-30 2018-06-05 Ppg Industries Ohio, Inc. Black pigments comprising graphenic carbon particles
US9832818B2 (en) 2011-09-30 2017-11-28 Ppg Industries Ohio, Inc. Resistive heating coatings containing graphenic carbon particles
US10294375B2 (en) 2011-09-30 2019-05-21 Ppg Industries Ohio, Inc. Electrically conductive coatings containing graphenic carbon particles
US10763490B2 (en) 2011-09-30 2020-09-01 Ppg Industries Ohio, Inc. Methods of coating an electrically conductive substrate and related electrodepositable compositions including graphenic carbon particles
US10240052B2 (en) 2011-09-30 2019-03-26 Ppg Industries Ohio, Inc. Supercapacitor electrodes including graphenic carbon particles
US9938416B2 (en) 2011-09-30 2018-04-10 Ppg Industries Ohio, Inc. Absorptive pigments comprising graphenic carbon particles
US8486363B2 (en) 2011-09-30 2013-07-16 Ppg Industries Ohio, Inc. Production of graphenic carbon particles utilizing hydrocarbon precursor materials
US9761903B2 (en) 2011-09-30 2017-09-12 Ppg Industries Ohio, Inc. Lithium ion battery electrodes including graphenic carbon particles
WO2013056185A1 (en) * 2011-10-12 2013-04-18 The Regents Of The University Of California Nanomaterials fabricated using spark erosion and other particle fabrication processes
US8691324B2 (en) * 2012-04-03 2014-04-08 Xerox Corporation Dry coating processes for substrates
WO2013158869A2 (en) 2012-04-18 2013-10-24 Drexel University Thixotropic processing of magnesium composites with a nanoparticles-haloed grain structure for biomedical implant applications
US9024526B1 (en) 2012-06-11 2015-05-05 Imaging Systems Technology, Inc. Detector element with antenna
US8476206B1 (en) 2012-07-02 2013-07-02 Ajay P. Malshe Nanoparticle macro-compositions
US8486870B1 (en) 2012-07-02 2013-07-16 Ajay P. Malshe Textured surfaces to enhance nano-lubrication
KR101818946B1 (en) * 2012-12-31 2018-01-17 생-고뱅 세라믹스 앤드 플라스틱스, 인코포레이티드 Particulate materials and methods of forming same
CN103466667B (en) * 2013-09-10 2015-12-09 清华大学 A kind of using plasma high temperature pyrolytic cracking (HTP) prepares the method for nano magnesia
US10402520B2 (en) 2013-09-26 2019-09-03 Synopsys, Inc. First principles design automation tool
US10417373B2 (en) 2013-09-26 2019-09-17 Synopsys, Inc. Estimation of effective channel length for FinFETs and nano-wires
US10516725B2 (en) 2013-09-26 2019-12-24 Synopsys, Inc. Characterizing target material properties based on properties of similar materials
US10489212B2 (en) 2013-09-26 2019-11-26 Synopsys, Inc. Adaptive parallelization for multi-scale simulation
WO2015048437A1 (en) * 2013-09-26 2015-04-02 Synopsys, Inc. Mapping intermediate material properties to target properties to screen materials
WO2015048532A1 (en) 2013-09-26 2015-04-02 Synopsys, Inc. Parameter extraction of dft
JP6033750B2 (en) * 2013-10-03 2016-11-30 三井金属鉱業株式会社 Abrasive material, method for producing the same, and abrasive slurry containing the same
JP6153175B2 (en) * 2013-11-21 2017-06-28 エルジー・ケム・リミテッド Getter material and hygroscopic film containing the same
WO2015112365A1 (en) * 2014-01-24 2015-07-30 United Technologies Corporation Powder improvement for additive manufacturing
US10167555B2 (en) 2014-08-18 2019-01-01 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
US11499230B2 (en) 2014-08-18 2022-11-15 Dynetics, Inc. Method and apparatus for fabricating fibers and microstructures from disparate molar mass precursors
US9885001B2 (en) 2014-09-23 2018-02-06 Attostat, Inc. Fuel additive composition and related methods
US9919363B2 (en) 2014-09-23 2018-03-20 Attostat, Inc. System and method for making non-spherical nanoparticles and nanoparticle compositions made thereby
US9434006B2 (en) 2014-09-23 2016-09-06 Attostat, Inc. Composition containing spherical and coral-shaped nanoparticles and method of making same
US9883670B2 (en) 2014-09-23 2018-02-06 Attostat, Inc. Compositions and methods for treating plant diseases
US10190253B2 (en) 2014-09-23 2019-01-29 Attostat, Inc Nanoparticle treated fabrics, fibers, filaments, and yarns and related methods
US9839652B2 (en) 2015-04-01 2017-12-12 Attostat, Inc. Nanoparticle compositions and methods for treating or preventing tissue infections and diseases
US11473202B2 (en) 2015-04-13 2022-10-18 Attostat, Inc. Anti-corrosion nanoparticle compositions
CN107614629A (en) 2015-04-13 2018-01-19 阿托斯塔特公司 Anticorrosive Nanoparticulate compositions
US9883994B2 (en) 2015-09-03 2018-02-06 International Business Machines Corporation Implementing organic materials in sunscreen applications
US10369092B2 (en) 2015-09-03 2019-08-06 International Business Machines Corporation Nitride-based nanoparticles for use in sunscreen applications
US9993402B2 (en) 2015-09-03 2018-06-12 International Business Machines Corporation Sunscreen additives for enhancing vitamin D production
US10772808B2 (en) 2015-09-03 2020-09-15 International Business Machines Corporation Anti-reflective coating on oxide particles for sunscreen applications
US9883993B2 (en) 2015-09-03 2018-02-06 International Business Machines Corporation Notch filter coatings for use in sunscreen applications
US10952942B2 (en) * 2015-09-03 2021-03-23 International Business Machines Corporation Plasmonic enhancement of zinc oxide light absorption for sunscreen applications
US9937112B2 (en) 2015-09-03 2018-04-10 International Business Machines Corporation Doping of zinc oxide particles for sunscreen applications
US10682294B2 (en) 2015-09-03 2020-06-16 International Business Machines Corporation Controlling zinc oxide particle size for sunscreen applications
US10045918B2 (en) 2015-10-22 2018-08-14 International Business Machines Corporation Embedding oxide particles within separate particles for sunscreen applications
US10092487B2 (en) 2015-10-22 2018-10-09 International Business Machines Corporation Plasmonic enhancement of absorption in sunscreen applications
US10076475B2 (en) 2015-10-23 2018-09-18 International Business Machines Corporation Shell-structured particles for sunscreen applications
RU2612293C1 (en) * 2015-10-29 2017-03-06 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирский государственный индустриальный университет" Method of titanium carbonitride nanopowder obtainment
US10734097B2 (en) 2015-10-30 2020-08-04 Synopsys, Inc. Atomic structure optimization
US10078735B2 (en) 2015-10-30 2018-09-18 Synopsys, Inc. Atomic structure optimization
US10377928B2 (en) 2015-12-10 2019-08-13 Ppg Industries Ohio, Inc. Structural adhesive compositions
US10201571B2 (en) 2016-01-25 2019-02-12 Attostat, Inc. Nanoparticle compositions and methods for treating onychomychosis
JP6734665B2 (en) * 2016-02-25 2020-08-05 合資会社亀井鉄工所 Abrasive material
EP3281726B1 (en) * 2016-08-09 2019-05-15 SLM Solutions Group AG Apparatus for producing a three-dimensional workpiece with temperature-controlled shielding gas
US10808297B2 (en) 2016-11-16 2020-10-20 Hrl Laboratories, Llc Functionally graded metal matrix nanocomposites, and methods for producing the same
US11018376B2 (en) 2017-11-28 2021-05-25 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
US11646453B2 (en) 2017-11-28 2023-05-09 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
EP3553137A1 (en) * 2018-04-13 2019-10-16 Siemens Aktiengesellschaft Particle with an antimicrobial surface, material for formation of a coating using such particles, and a method for the production of such particles
CN109950587A (en) * 2019-04-02 2019-06-28 浙江大学 A kind of proton exchange film fuel battery system temperature Active Fault-tolerant Control Method
LU101177B1 (en) 2019-04-16 2020-10-16 Delmee Maxime Functionalized metal powders by small particles made by non-thermal plasma glow discharge for additive manufacturing applications
US20210139376A1 (en) * 2019-11-12 2021-05-13 QuShell LLC Materials with hierarchical nanochemical bonding, manufacturing methods and applications of same
KR102260508B1 (en) * 2019-12-10 2021-06-07 현대모비스 주식회사 Catalyst for fuel cell, electrode for fuel cell comprising the same and membrane electrode assembly comprising the same

Citations (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US489449A (en) * 1893-01-10 Num bering-machine
US3565676A (en) * 1968-04-01 1971-02-23 Fansteel Metallurgical Corp Chemical vapor deposition method
US3635819A (en) * 1970-06-15 1972-01-18 Avco Corp Process for cleaning up oil spills
US3734790A (en) * 1970-10-22 1973-05-22 Us Army Gaseous illuminant pyrotechnic systems
US3806449A (en) * 1970-06-15 1974-04-23 Avco Corp Separation of liquid-liquid multiphase mixtures
US4017820A (en) * 1975-07-25 1977-04-12 Illinois Tool Works Inc. Humidity sensor with multiple electrode layers separated by a porous monolithic ceramic dielectric structure
US4019994A (en) * 1975-08-28 1977-04-26 Georgia-Pacific Corporation Process for the preparation of aqueous magnetic material suspensions
US4094804A (en) * 1974-08-19 1978-06-13 Junzo Shimoiizaka Method for preparing a water base magnetic fluid and product
US4252678A (en) * 1979-12-04 1981-02-24 Xerox Corporation Preparation of colloidal dispersions of ruthenium, rhodium, osmium and iridium by the polymer-catalyzed decomposition of carbonyl cluster compounds thereof
US4315827A (en) * 1979-11-08 1982-02-16 Ferrofluidics Corporation Low-vapor-pressure ferrofluids and method of making same
US4329241A (en) * 1979-07-20 1982-05-11 Agence Nationale De Valorisation De La Recherche (Anvar) Magnetic fluids and process for obtaining them
US4381244A (en) * 1980-03-24 1983-04-26 General Electric Company Ferrofluid
US4381922A (en) * 1977-03-11 1983-05-03 Frey Yvan A R Combustion detecting device using metallo-phthalocynine semiconductor and process of preparing same
US4426356A (en) * 1982-09-30 1984-01-17 E. I. Du Pont De Nemours And Company Method for making capacitors with noble metal electrodes
US4430239A (en) * 1981-10-21 1984-02-07 Ferrofluidics Corporation Ferrofluid composition and method of making and using same
US4584244A (en) * 1985-05-28 1986-04-22 Conoco Inc. Preparation of cold flow resistant polymer powders
US4588575A (en) * 1984-11-01 1986-05-13 Celanese Corporation Production of microcrystalline metal oxides
US4642207A (en) * 1983-06-04 1987-02-10 National Research Institute For Metals Process for producing ultrafine particles of ceramics
US4721610A (en) * 1984-11-19 1988-01-26 Ube Industries, Ltd. Process for producing metal oxide particles having a very small and uniform size
US4984446A (en) * 1988-05-27 1991-01-15 Ricoh Company, Ltd. Gas detecting device and gas detecting system using the same
US4988539A (en) * 1988-12-06 1991-01-29 Association Pour La Recherche Et Le Developpment Des Methodes Et Processus Industriels - Armines Method of manufacturing a gas detection sensor, and the resulting sensor
US5011627A (en) * 1988-03-19 1991-04-30 Degussa Aktiengesellschaft Screen-printable paste for manufacturing electrically conductive coatings
US5093286A (en) * 1989-12-18 1992-03-03 Hoya Corporation Semiconductor-containing glass and method of producing the same
US5180394A (en) * 1989-07-25 1993-01-19 Davidson James A Zirconium oxide and nitride coated prosthesis for wear and corrosion resistance
US5180650A (en) * 1992-01-31 1993-01-19 Xerox Corporation Toner compositions with conductive colored magnetic particles
US5187209A (en) * 1986-07-01 1993-02-16 Hidefumi Hirai Colloidal metal dispersion, and a colloidal metal complex
US5194128A (en) * 1989-07-12 1993-03-16 Thermo Electron Technologies Corporation Method for manufacturing ultrafine particles
US5308804A (en) * 1992-12-15 1994-05-03 Lee Huai Chuan Moving disks made of semiconductor nanocrystallite embedded glass
US5381664A (en) * 1990-09-28 1995-01-17 The United States Of America, As Represented By The Secretary Of Commerce Nanocomposite material for magnetic refrigeration and superparamagnetic systems using the same
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material
US5387462A (en) * 1991-04-05 1995-02-07 Minnesota Mining And Manufacturing Company Sensors based on nanostructured composite films
US5403375A (en) * 1992-05-04 1995-04-04 H.C. Starck Gmbh & Co. Kg Fine-particle metal powders
US5407458A (en) * 1992-05-04 1995-04-18 H. C. Starck Gmbh & Co. Kg. Fine-particle metal powders
US5414588A (en) * 1993-09-20 1995-05-09 The Regents Of The University Of California High performance capacitors using nano-structure multilayer materials fabrication
US5417956A (en) * 1992-08-18 1995-05-23 Worcester Polytechnic Institute Preparation of nanophase solid state materials
US5420083A (en) * 1993-01-15 1995-05-30 Sandvik Ab Whisker and particle reinforced ceramic cutting tool material
US5482656A (en) * 1993-03-04 1996-01-09 Kabushiki Kaisha Toshiba Non-linear optical devices employing a polysilane composition and a polysilane composition therefor
US5486675A (en) * 1991-02-22 1996-01-23 Idaho Research Foundation Plasma production of ultra-fine ceramic carbides
US5486435A (en) * 1994-01-25 1996-01-23 Hydro-Quebec Additives for extruding polymer electrolytes
US5489449A (en) * 1990-03-28 1996-02-06 Nisshin Flour Milling Co., Ltd. Coated particles of inorganic or metallic materials and processes of producing the same
US5503081A (en) * 1993-11-22 1996-04-02 Fmc Corp Annular plasma injector
US5507965A (en) * 1994-02-23 1996-04-16 Saint-Gobain Vitrage Protonic, conductive, electrolytic materials
US5514734A (en) * 1993-08-23 1996-05-07 Alliedsignal Inc. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates, and organo zirconates dispersed therein and process of preparing same
US5518810A (en) * 1993-06-30 1996-05-21 Mitsubishi Materials Corporation Infrared ray cutoff material and infrared cutoff powder use for same
US5593939A (en) * 1990-09-07 1997-01-14 Dai Nippon Printing Co., Ltd. Thermal transfer image receiving sheet, production process therefor and thermal transfer sheet
US5614011A (en) * 1991-03-01 1997-03-25 Degussa Aktiengesellschaft Thermally split zirconium silicate, method of its production and use
US5618475A (en) * 1994-10-27 1997-04-08 Northwestern University Evaporator apparatus and method for making nanoparticles
US5624718A (en) * 1995-03-03 1997-04-29 Southwest Research Institue Diamond-like carbon based electrocatalytic coating for fuel cell electrodes
US5629075A (en) * 1994-04-28 1997-05-13 Kao Corporation Magnetic recording medium having a substrate containing magnetic powder
US5629474A (en) * 1993-03-30 1997-05-13 Keele University Production of a sensor for carbon monoxide or water vapor including a semi conductor metallic oxide, catalyst, and rheological agent
US5709786A (en) * 1992-11-17 1998-01-20 Robert Bosch Gmbh Sintered solid electrolyte having a high oxygen-ion conductivity
US5714536A (en) * 1996-01-11 1998-02-03 Xerox Corporation Magnetic nanocompass compositions and processes for making and using
US5718047A (en) * 1995-09-22 1998-02-17 Yazaki Corporation Method of manufacturing electrical junction box
US5720805A (en) * 1993-04-13 1998-02-24 Southwest Research Institute Titanium-tin-oxide nanoparticles, compositions utilizing the same, and the method of forming the same
US5726247A (en) * 1996-06-14 1998-03-10 E. I. Du Pont De Nemours And Company Fluoropolymer nanocomposites
US5739193A (en) * 1996-05-07 1998-04-14 Hoechst Celanese Corp. Polymeric compositions having a temperature-stable dielectric constant
US5858080A (en) * 1996-05-31 1999-01-12 Ciba Specialty Chemicals Corporation Bismuth vanadate pigments
US5874134A (en) * 1996-01-29 1999-02-23 Regents Of The University Of Minnesota Production of nanostructured materials by hypersonic plasma particle deposition
US5876683A (en) * 1995-11-02 1999-03-02 Glumac; Nicholas Combustion flame synthesis of nanophase materials
US5880197A (en) * 1995-12-22 1999-03-09 Amcol International Corporation Intercalates and exfoliates formed with monomeric amines and amides: composite materials containing same and methods of modifying rheology therewith
US5891986A (en) * 1996-10-29 1999-04-06 Ube Industries, Ltd. Aromatic polyimide film and its precursor composition
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
US5905000A (en) * 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US6020419A (en) * 1998-03-18 2000-02-01 Bayer Aktiengesellschaft Transparent coating compositions containing nanoscale particles and having improved scratch resistance
US6027742A (en) * 1995-05-19 2000-02-22 Etex Corporation Bioresorbable ceramic composites
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US6042900A (en) * 1996-03-12 2000-03-28 Alexander Rakhimov CVD method for forming diamond films
US6045925A (en) * 1997-08-05 2000-04-04 Kansas State University Research Foundation Encapsulated nanometer magnetic particles
US6057637A (en) * 1996-09-13 2000-05-02 The Regents Of The University Of California Field emission electron source
US6065476A (en) * 1994-12-21 2000-05-23 Board Of Regents, University Of Texas System Method of enhancing surface porosity of biodegradable implants
US6170292B1 (en) * 1998-03-26 2001-01-09 Visteon Global Technologies, Inc. Medium gray colored glass with improved UV and IR absorption and nitrate-free manufacturing process therefor
US6180389B1 (en) * 1997-01-03 2001-01-30 The Research And Development Institute, Inc. Virion-constrained nanoparticles comprising a plant virion coat protein shell and encapsulated guest molecules
US6194481B1 (en) * 1999-05-19 2001-02-27 Board Of Regents Of The University Of Texas System Mechanically strong and transparent or translucent composites made using zirconium oxide nanoparticles
US6214368B1 (en) * 1995-05-19 2001-04-10 Etex Corporation Bone substitution material and a method of its manufacture
US6229937B1 (en) * 1998-09-17 2001-05-08 Corning Incorporated Circularly polarized fiber in optical circuits
US6226904B1 (en) * 1999-09-01 2001-05-08 Hamilton Beach/Proctor-Silex, Inc. Burn guard electric iron soleplate
US6344271B1 (en) * 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
US20020033131A1 (en) * 1999-02-19 2002-03-21 Equistar Chemicals, Lp Coated polymeric particles having improved anti-block characteristics, method of making such particles, and apparatus therefor
US6361161B1 (en) * 2000-03-01 2002-03-26 Eastman Kodak Company Nanoparticles for printing images
US6375864B1 (en) * 1998-11-10 2002-04-23 M.A. Hannacolor, A Division Of M.A. Hanna Company Daylight/nightglow colored phosphorescent plastic compositions and articles
US6387519B1 (en) * 1999-07-30 2002-05-14 Ppg Industries Ohio, Inc. Cured coatings having improved scratch resistance, coated substrates and methods thereto
US6387981B1 (en) * 1999-10-28 2002-05-14 3M Innovative Properties Company Radiopaque dental materials with nano-sized particles
US6479156B1 (en) * 1997-05-14 2002-11-12 Institut für Neue Materialien Gemeinnützige GmbH Nanocomposite for thermal insulation
US6503316B1 (en) * 2000-09-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Bismuth-containing laser markable compositions and methods of making and using same
US6503475B1 (en) * 1998-05-15 2003-01-07 Advanced Nano Technologies Pty Ltd. Process for the production of ultrafine powders of metal oxides
US20030035955A1 (en) * 2001-08-08 2003-02-20 Tapesh Yadav Methods for producing composite nanoparticles
US6528029B1 (en) * 1999-10-13 2003-03-04 Engelhard Corporation Catalyst compositions employing sol gel particles and methods of using the same
US6541112B1 (en) * 2000-06-07 2003-04-01 Dmc2 Degussa Metals Catalysts Cerdec Ag Rare earth manganese oxide pigments
US6548171B1 (en) * 1998-11-10 2003-04-15 Emilio Barbera-Guillem Fluorescent nanocrystal-embedded microspheres for fluorescence analyses
US6569397B1 (en) * 2000-02-15 2003-05-27 Tapesh Yadav Very high purity fine powders and methods to produce such powders
US6680279B2 (en) * 2002-01-24 2004-01-20 General Motors Corporation Nanostructured catalyst particle/catalyst carrier particle system
US6682872B2 (en) * 2002-01-22 2004-01-27 International Business Machines Corporation UV-curable compositions and method of use thereof in microelectronics
US6689823B1 (en) * 1999-03-31 2004-02-10 The Brigham And Women's Hospital, Inc. Nanocomposite surgical materials and method of producing them
US6689192B1 (en) * 2001-12-13 2004-02-10 The Regents Of The University Of California Method for producing metallic nanoparticles
US6693143B2 (en) * 1997-10-03 2004-02-17 Dentsply Detrey Gmbh Dental materials having a nanoscale filler
US6716525B1 (en) * 1998-11-06 2004-04-06 Tapesh Yadav Nano-dispersed catalysts particles
US6726992B1 (en) * 1998-11-06 2004-04-27 Nanoproducts Corporation Nano-engineered phosphors and related nanotechnology
US6855749B1 (en) * 1996-09-03 2005-02-15 Nanoproducts Corporation Polymer nanocomposite implants with enhanced transparency and mechanical properties for administration within humans or animals

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6447848B1 (en) * 1995-11-13 2002-09-10 The United States Of America As Represented By The Secretary Of The Navy Nanosize particle coatings made by thermally spraying solution precursor feedstocks
US5939146A (en) * 1996-12-11 1999-08-17 The Regents Of The University Of California Method for thermal spraying of nanocrystalline coatings and materials for the same
US6268054B1 (en) * 1997-02-18 2001-07-31 Cabot Corporation Dispersible, metal oxide-coated, barium titanate materials
US5989648A (en) 1997-05-06 1999-11-23 The Penn State Research Foundation Plasma generation of supported metal catalysts
US5984997A (en) 1997-08-29 1999-11-16 Nanomaterials Research Corporation Combustion of emulsions: A method and process for producing fine powders
US5985173A (en) * 1997-11-18 1999-11-16 Gray; Henry F. Phosphors having a semiconductor host surrounded by a shell
US6576156B1 (en) * 1999-08-25 2003-06-10 The United States Of America As Represented By The Secretary Of The Navy Phosphors with nanoscale grain sizes and methods for preparing the same
DE10049803A1 (en) * 2000-10-09 2002-04-18 Bayer Ag Composite particles used e.g. for pigmenting paint or plastics comprise unagglomerated primary pigment particles adhering to colorless carrier particles and separated from one another by a minimum distance

Patent Citations (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US489449A (en) * 1893-01-10 Num bering-machine
US3565676A (en) * 1968-04-01 1971-02-23 Fansteel Metallurgical Corp Chemical vapor deposition method
US3635819A (en) * 1970-06-15 1972-01-18 Avco Corp Process for cleaning up oil spills
US3806449A (en) * 1970-06-15 1974-04-23 Avco Corp Separation of liquid-liquid multiphase mixtures
US3734790A (en) * 1970-10-22 1973-05-22 Us Army Gaseous illuminant pyrotechnic systems
US4094804A (en) * 1974-08-19 1978-06-13 Junzo Shimoiizaka Method for preparing a water base magnetic fluid and product
US4017820A (en) * 1975-07-25 1977-04-12 Illinois Tool Works Inc. Humidity sensor with multiple electrode layers separated by a porous monolithic ceramic dielectric structure
US4019994A (en) * 1975-08-28 1977-04-26 Georgia-Pacific Corporation Process for the preparation of aqueous magnetic material suspensions
US4381922A (en) * 1977-03-11 1983-05-03 Frey Yvan A R Combustion detecting device using metallo-phthalocynine semiconductor and process of preparing same
US4329241A (en) * 1979-07-20 1982-05-11 Agence Nationale De Valorisation De La Recherche (Anvar) Magnetic fluids and process for obtaining them
US4315827A (en) * 1979-11-08 1982-02-16 Ferrofluidics Corporation Low-vapor-pressure ferrofluids and method of making same
US4252678A (en) * 1979-12-04 1981-02-24 Xerox Corporation Preparation of colloidal dispersions of ruthenium, rhodium, osmium and iridium by the polymer-catalyzed decomposition of carbonyl cluster compounds thereof
US4381244A (en) * 1980-03-24 1983-04-26 General Electric Company Ferrofluid
US4430239A (en) * 1981-10-21 1984-02-07 Ferrofluidics Corporation Ferrofluid composition and method of making and using same
US4426356A (en) * 1982-09-30 1984-01-17 E. I. Du Pont De Nemours And Company Method for making capacitors with noble metal electrodes
US4642207A (en) * 1983-06-04 1987-02-10 National Research Institute For Metals Process for producing ultrafine particles of ceramics
US4588575A (en) * 1984-11-01 1986-05-13 Celanese Corporation Production of microcrystalline metal oxides
US4721610A (en) * 1984-11-19 1988-01-26 Ube Industries, Ltd. Process for producing metal oxide particles having a very small and uniform size
US4584244A (en) * 1985-05-28 1986-04-22 Conoco Inc. Preparation of cold flow resistant polymer powders
US5187209A (en) * 1986-07-01 1993-02-16 Hidefumi Hirai Colloidal metal dispersion, and a colloidal metal complex
US5011627A (en) * 1988-03-19 1991-04-30 Degussa Aktiengesellschaft Screen-printable paste for manufacturing electrically conductive coatings
US4984446A (en) * 1988-05-27 1991-01-15 Ricoh Company, Ltd. Gas detecting device and gas detecting system using the same
US4988539A (en) * 1988-12-06 1991-01-29 Association Pour La Recherche Et Le Developpment Des Methodes Et Processus Industriels - Armines Method of manufacturing a gas detection sensor, and the resulting sensor
US5194128A (en) * 1989-07-12 1993-03-16 Thermo Electron Technologies Corporation Method for manufacturing ultrafine particles
US5180394A (en) * 1989-07-25 1993-01-19 Davidson James A Zirconium oxide and nitride coated prosthesis for wear and corrosion resistance
US5093286A (en) * 1989-12-18 1992-03-03 Hoya Corporation Semiconductor-containing glass and method of producing the same
US5489449A (en) * 1990-03-28 1996-02-06 Nisshin Flour Milling Co., Ltd. Coated particles of inorganic or metallic materials and processes of producing the same
US5593939A (en) * 1990-09-07 1997-01-14 Dai Nippon Printing Co., Ltd. Thermal transfer image receiving sheet, production process therefor and thermal transfer sheet
US5381664A (en) * 1990-09-28 1995-01-17 The United States Of America, As Represented By The Secretary Of Commerce Nanocomposite material for magnetic refrigeration and superparamagnetic systems using the same
US5486675A (en) * 1991-02-22 1996-01-23 Idaho Research Foundation Plasma production of ultra-fine ceramic carbides
US5614011A (en) * 1991-03-01 1997-03-25 Degussa Aktiengesellschaft Thermally split zirconium silicate, method of its production and use
US5387462A (en) * 1991-04-05 1995-02-07 Minnesota Mining And Manufacturing Company Sensors based on nanostructured composite films
US5180650A (en) * 1992-01-31 1993-01-19 Xerox Corporation Toner compositions with conductive colored magnetic particles
US5403375A (en) * 1992-05-04 1995-04-04 H.C. Starck Gmbh & Co. Kg Fine-particle metal powders
US5407458A (en) * 1992-05-04 1995-04-18 H. C. Starck Gmbh & Co. Kg. Fine-particle metal powders
US5417956A (en) * 1992-08-18 1995-05-23 Worcester Polytechnic Institute Preparation of nanophase solid state materials
US5385776A (en) * 1992-11-16 1995-01-31 Alliedsignal Inc. Nanocomposites of gamma phase polymers containing inorganic particulate material
US5709786A (en) * 1992-11-17 1998-01-20 Robert Bosch Gmbh Sintered solid electrolyte having a high oxygen-ion conductivity
US5308804A (en) * 1992-12-15 1994-05-03 Lee Huai Chuan Moving disks made of semiconductor nanocrystallite embedded glass
US5420083A (en) * 1993-01-15 1995-05-30 Sandvik Ab Whisker and particle reinforced ceramic cutting tool material
US5482656A (en) * 1993-03-04 1996-01-09 Kabushiki Kaisha Toshiba Non-linear optical devices employing a polysilane composition and a polysilane composition therefor
US5629474A (en) * 1993-03-30 1997-05-13 Keele University Production of a sensor for carbon monoxide or water vapor including a semi conductor metallic oxide, catalyst, and rheological agent
US5720805A (en) * 1993-04-13 1998-02-24 Southwest Research Institute Titanium-tin-oxide nanoparticles, compositions utilizing the same, and the method of forming the same
US5518810A (en) * 1993-06-30 1996-05-21 Mitsubishi Materials Corporation Infrared ray cutoff material and infrared cutoff powder use for same
US5514734A (en) * 1993-08-23 1996-05-07 Alliedsignal Inc. Polymer nanocomposites comprising a polymer and an exfoliated particulate material derivatized with organo silanes, organo titanates, and organo zirconates dispersed therein and process of preparing same
US5414588A (en) * 1993-09-20 1995-05-09 The Regents Of The University Of California High performance capacitors using nano-structure multilayer materials fabrication
US5503081A (en) * 1993-11-22 1996-04-02 Fmc Corp Annular plasma injector
US5486435A (en) * 1994-01-25 1996-01-23 Hydro-Quebec Additives for extruding polymer electrolytes
US5507965A (en) * 1994-02-23 1996-04-16 Saint-Gobain Vitrage Protonic, conductive, electrolytic materials
US5629075A (en) * 1994-04-28 1997-05-13 Kao Corporation Magnetic recording medium having a substrate containing magnetic powder
US5618475A (en) * 1994-10-27 1997-04-08 Northwestern University Evaporator apparatus and method for making nanoparticles
US6065476A (en) * 1994-12-21 2000-05-23 Board Of Regents, University Of Texas System Method of enhancing surface porosity of biodegradable implants
US5624718A (en) * 1995-03-03 1997-04-29 Southwest Research Institue Diamond-like carbon based electrocatalytic coating for fuel cell electrodes
US6214368B1 (en) * 1995-05-19 2001-04-10 Etex Corporation Bone substitution material and a method of its manufacture
US6027742A (en) * 1995-05-19 2000-02-22 Etex Corporation Bioresorbable ceramic composites
US5718047A (en) * 1995-09-22 1998-02-17 Yazaki Corporation Method of manufacturing electrical junction box
US5876683A (en) * 1995-11-02 1999-03-02 Glumac; Nicholas Combustion flame synthesis of nanophase materials
US5880197A (en) * 1995-12-22 1999-03-09 Amcol International Corporation Intercalates and exfoliates formed with monomeric amines and amides: composite materials containing same and methods of modifying rheology therewith
US5714536A (en) * 1996-01-11 1998-02-03 Xerox Corporation Magnetic nanocompass compositions and processes for making and using
US5874134A (en) * 1996-01-29 1999-02-23 Regents Of The University Of Minnesota Production of nanostructured materials by hypersonic plasma particle deposition
US5897945A (en) * 1996-02-26 1999-04-27 President And Fellows Of Harvard College Metal oxide nanorods
US6036774A (en) * 1996-02-26 2000-03-14 President And Fellows Of Harvard College Method of producing metal oxide nanorods
US6042900A (en) * 1996-03-12 2000-03-28 Alexander Rakhimov CVD method for forming diamond films
US5739193A (en) * 1996-05-07 1998-04-14 Hoechst Celanese Corp. Polymeric compositions having a temperature-stable dielectric constant
US5858080A (en) * 1996-05-31 1999-01-12 Ciba Specialty Chemicals Corporation Bismuth vanadate pigments
US5726247A (en) * 1996-06-14 1998-03-10 E. I. Du Pont De Nemours And Company Fluoropolymer nanocomposites
US5905000A (en) * 1996-09-03 1999-05-18 Nanomaterials Research Corporation Nanostructured ion conducting solid electrolytes
US6849109B2 (en) * 1996-09-03 2005-02-01 Nanoproducts Corporation Inorganic dopants, inks and related nanotechnology
US6855749B1 (en) * 1996-09-03 2005-02-15 Nanoproducts Corporation Polymer nanocomposite implants with enhanced transparency and mechanical properties for administration within humans or animals
US6057637A (en) * 1996-09-13 2000-05-02 The Regents Of The University Of California Field emission electron source
US5891986A (en) * 1996-10-29 1999-04-06 Ube Industries, Ltd. Aromatic polyimide film and its precursor composition
US6180389B1 (en) * 1997-01-03 2001-01-30 The Research And Development Institute, Inc. Virion-constrained nanoparticles comprising a plant virion coat protein shell and encapsulated guest molecules
US6479156B1 (en) * 1997-05-14 2002-11-12 Institut für Neue Materialien Gemeinnützige GmbH Nanocomposite for thermal insulation
US6045925A (en) * 1997-08-05 2000-04-04 Kansas State University Research Foundation Encapsulated nanometer magnetic particles
US6693143B2 (en) * 1997-10-03 2004-02-17 Dentsply Detrey Gmbh Dental materials having a nanoscale filler
US6020419A (en) * 1998-03-18 2000-02-01 Bayer Aktiengesellschaft Transparent coating compositions containing nanoscale particles and having improved scratch resistance
US6170292B1 (en) * 1998-03-26 2001-01-09 Visteon Global Technologies, Inc. Medium gray colored glass with improved UV and IR absorption and nitrate-free manufacturing process therefor
US6503475B1 (en) * 1998-05-15 2003-01-07 Advanced Nano Technologies Pty Ltd. Process for the production of ultrafine powders of metal oxides
US6229937B1 (en) * 1998-09-17 2001-05-08 Corning Incorporated Circularly polarized fiber in optical circuits
US6726992B1 (en) * 1998-11-06 2004-04-27 Nanoproducts Corporation Nano-engineered phosphors and related nanotechnology
US6716525B1 (en) * 1998-11-06 2004-04-06 Tapesh Yadav Nano-dispersed catalysts particles
US6344271B1 (en) * 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
US6375864B1 (en) * 1998-11-10 2002-04-23 M.A. Hannacolor, A Division Of M.A. Hanna Company Daylight/nightglow colored phosphorescent plastic compositions and articles
US6548171B1 (en) * 1998-11-10 2003-04-15 Emilio Barbera-Guillem Fluorescent nanocrystal-embedded microspheres for fluorescence analyses
US20020033131A1 (en) * 1999-02-19 2002-03-21 Equistar Chemicals, Lp Coated polymeric particles having improved anti-block characteristics, method of making such particles, and apparatus therefor
US6689823B1 (en) * 1999-03-31 2004-02-10 The Brigham And Women's Hospital, Inc. Nanocomposite surgical materials and method of producing them
US6194481B1 (en) * 1999-05-19 2001-02-27 Board Of Regents Of The University Of Texas System Mechanically strong and transparent or translucent composites made using zirconium oxide nanoparticles
US6387519B1 (en) * 1999-07-30 2002-05-14 Ppg Industries Ohio, Inc. Cured coatings having improved scratch resistance, coated substrates and methods thereto
US6226904B1 (en) * 1999-09-01 2001-05-08 Hamilton Beach/Proctor-Silex, Inc. Burn guard electric iron soleplate
US6528029B1 (en) * 1999-10-13 2003-03-04 Engelhard Corporation Catalyst compositions employing sol gel particles and methods of using the same
US6387981B1 (en) * 1999-10-28 2002-05-14 3M Innovative Properties Company Radiopaque dental materials with nano-sized particles
US6569397B1 (en) * 2000-02-15 2003-05-27 Tapesh Yadav Very high purity fine powders and methods to produce such powders
US6361161B1 (en) * 2000-03-01 2002-03-26 Eastman Kodak Company Nanoparticles for printing images
US6541112B1 (en) * 2000-06-07 2003-04-01 Dmc2 Degussa Metals Catalysts Cerdec Ag Rare earth manganese oxide pigments
US6503316B1 (en) * 2000-09-22 2003-01-07 Dmc2 Degussa Metals Catalysts Cerdec Ag Bismuth-containing laser markable compositions and methods of making and using same
US20030035955A1 (en) * 2001-08-08 2003-02-20 Tapesh Yadav Methods for producing composite nanoparticles
US6689192B1 (en) * 2001-12-13 2004-02-10 The Regents Of The University Of California Method for producing metallic nanoparticles
US6682872B2 (en) * 2002-01-22 2004-01-27 International Business Machines Corporation UV-curable compositions and method of use thereof in microelectronics
US6680279B2 (en) * 2002-01-24 2004-01-20 General Motors Corporation Nanostructured catalyst particle/catalyst carrier particle system

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8058337B2 (en) 1996-09-03 2011-11-15 Ppg Industries Ohio, Inc. Conductive nanocomposite films
US8389603B2 (en) 1996-09-03 2013-03-05 Ppg Industries Ohio, Inc. Thermal nanocomposites
US7708974B2 (en) 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
US20090133474A1 (en) * 2003-06-03 2009-05-28 Nano-Proprietary, Inc. Method and apparatus for sensing hydrogen gas
US7762121B2 (en) 2003-06-03 2010-07-27 Applied Nanotech Holdings, Inc. Method and apparatus for sensing hydrogen gas
US20070240491A1 (en) * 2003-06-03 2007-10-18 Nano-Proprietary, Inc. Hydrogen Sensor
US20060244164A1 (en) * 2003-10-10 2006-11-02 The Board Of Trustees Of The University Of Illinois Controlled chemical aerosol flow synthesis of nanometer-sized particles and other nanometer-sized products
US7160489B2 (en) * 2003-10-10 2007-01-09 The Board Of Trustees Of The University Of Illinois Controlled chemical aerosol flow synthesis of nanometer-sized particles and other nanometer-sized products
US20070276072A1 (en) * 2004-02-06 2007-11-29 Thomas Schmidt Method for the Production of Polyester Resins Containing Nanoscale Additives for Coating Powders
US20050210859A1 (en) * 2004-03-23 2005-09-29 Bossmann Stefan H Electro-thermal nanoparticle generator
US7454893B2 (en) 2004-03-23 2008-11-25 Bossmann Stefan H Electro-thermal nanoparticle generator
US20080006954A1 (en) * 2004-09-07 2008-01-10 Kazuhiro Yubuta Process and Apparatus for Producing Fine Particles
US7828999B2 (en) * 2004-09-07 2010-11-09 Nisshin Seifun Group Inc. Process and apparatus for producing fine particles
EP2028228A2 (en) 2004-10-25 2009-02-25 Ciba Holding Inc. Functionalized nanoparticles
US20060184251A1 (en) * 2005-01-07 2006-08-17 Zongtao Zhang Coated medical devices and methods of making and using
US20060291827A1 (en) * 2005-02-11 2006-12-28 Suib Steven L Process and apparatus to synthesize materials
US8079838B2 (en) * 2005-03-16 2011-12-20 Horiba, Ltd. Pure particle generator
US20060208399A1 (en) * 2005-03-16 2006-09-21 Horiba Instruments, Inc. Pure particle generator
US9599405B2 (en) 2005-04-19 2017-03-21 SDCmaterials, Inc. Highly turbulent quench chamber
US9719727B2 (en) 2005-04-19 2017-08-01 SDCmaterials, Inc. Fluid recirculation system for use in vapor phase particle production system
US20080296144A1 (en) * 2005-07-28 2008-12-04 Strouse Geoffrey F Nanoparticle Synthesis and Associated Methods
US8414746B2 (en) * 2005-07-28 2013-04-09 Florida State University Research Foundation, Inc. Nanoparticle synthesis and associated methods
US20100005853A1 (en) * 2005-08-03 2010-01-14 Nano-Proprietary, Inc. Continuous Range Hydrogen Sensor
US20090084163A1 (en) * 2005-08-23 2009-04-02 Junhong Chen Ambient-temperature gas sensor
US8268405B2 (en) 2005-08-23 2012-09-18 Uwm Research Foundation, Inc. Controlled decoration of carbon nanotubes with aerosol nanoparticles
US8240190B2 (en) 2005-08-23 2012-08-14 Uwm Research Foundation, Inc. Ambient-temperature gas sensor
US8211388B2 (en) 2006-02-16 2012-07-03 Brigham Young University Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys
US20080032132A1 (en) * 2006-02-16 2008-02-07 Woodfield Brian F Preparation of uniform nanoparticles of ultra-high purity metal oxides, mixed metal oxides, metals, and metal alloys
WO2007124408A2 (en) * 2006-04-20 2007-11-01 Applied Nanotech Holdings, Inc. Hydrogen sensor
WO2007124408A3 (en) * 2006-04-20 2007-12-21 Nano Proprietary Inc Hydrogen sensor
CN101467030B (en) * 2006-04-20 2013-02-27 应用纳米技术控股股份有限公司 Hydrogen sensor
US20080124373A1 (en) * 2006-08-02 2008-05-29 Inframat Corporation Lumen - supporting devices and methods of making and using
US20080069854A1 (en) * 2006-08-02 2008-03-20 Inframat Corporation Medical devices and methods of making and using
US8231369B2 (en) * 2006-10-24 2012-07-31 Beneq Oy Device and method for producing nanoparticles
US20090317504A1 (en) * 2006-10-24 2009-12-24 Beneq Oy Device and method for producing nanoparticles
US9592492B2 (en) 2007-10-15 2017-03-14 SDCmaterials, Inc. Method and system for forming plug and play oxide catalysts
US9737878B2 (en) 2007-10-15 2017-08-22 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
US9597662B2 (en) 2007-10-15 2017-03-21 SDCmaterials, Inc. Method and system for forming plug and play metal compound catalysts
US20100055440A1 (en) * 2008-08-27 2010-03-04 Seoul National University Industry Foundation Composite nanoparticles
US20100087911A1 (en) * 2008-10-02 2010-04-08 Mueller Dr Heinz Implant with a base body of a biocorrodible manganese alloy
DE102008042578A1 (en) * 2008-10-02 2010-04-08 Biotronik Vi Patent Ag Implant with a body made of a biocorrodible manganese alloy
US9522388B2 (en) 2009-12-15 2016-12-20 SDCmaterials, Inc. Pinning and affixing nano-active material
US9533289B2 (en) 2009-12-15 2017-01-03 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8404199B2 (en) 2010-08-06 2013-03-26 Empire Technology Development Llc Fluorine based vanadium boride nanoparticle synthesis
EP2425915A3 (en) * 2010-09-01 2012-07-04 Directa Plus S.p.A. Multi mode production complex for nano-particles of metal
EP2425916A3 (en) * 2010-09-01 2012-11-07 Directa Plus S.p.A. Multiple feeder reactor for the production of nano-particles of metal
US8986602B2 (en) 2010-09-01 2015-03-24 Directa Plus S.P.A. Multiple feeder reactor for the production of nano-particles of metal
US9433938B2 (en) 2011-02-23 2016-09-06 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PTPD catalysts
US9114378B2 (en) 2012-03-26 2015-08-25 Brigham Young University Iron and cobalt based fischer-tropsch pre-catalysts and catalysts
US9079164B2 (en) 2012-03-26 2015-07-14 Brigham Young University Single reaction synthesis of texturized catalysts
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9533299B2 (en) 2012-11-21 2017-01-03 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9289750B2 (en) 2013-03-09 2016-03-22 Brigham Young University Method of making highly porous, stable aluminum oxides doped with silicon
US9586179B2 (en) 2013-07-25 2017-03-07 SDCmaterials, Inc. Washcoats and coated substrates for catalytic converters and methods of making and using same
US9566568B2 (en) 2013-10-22 2017-02-14 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9517448B2 (en) 2013-10-22 2016-12-13 SDCmaterials, Inc. Compositions of lean NOx trap (LNT) systems and methods of making and using same
US9427732B2 (en) 2013-10-22 2016-08-30 SDCmaterials, Inc. Catalyst design for heavy-duty diesel combustion engines
US9950316B2 (en) 2013-10-22 2018-04-24 Umicore Ag & Co. Kg Catalyst design for heavy-duty diesel combustion engines
US9687811B2 (en) 2014-03-21 2017-06-27 SDCmaterials, Inc. Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10086356B2 (en) 2014-03-21 2018-10-02 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
US10413880B2 (en) 2014-03-21 2019-09-17 Umicore Ag & Co. Kg Compositions for passive NOx adsorption (PNA) systems and methods of making and using same
WO2016033526A1 (en) * 2014-08-29 2016-03-03 SDCmaterials, Inc. Composition comprising nanoparticles with desired sintering and melting point temperatures and methods of making thereof
US20210162392A1 (en) * 2019-12-03 2021-06-03 The Governing Council Of The University Of Toronto Electrocatalysts comprising transition metals and chalcogen for oxygen evolution reactions (oer) and manufacturing thereof

Also Published As

Publication number Publication date
WO2003045610A3 (en) 2003-12-11
US6726992B1 (en) 2004-04-27
US20030102099A1 (en) 2003-06-05
US20040067355A1 (en) 2004-04-08
US6652967B2 (en) 2003-11-25
WO2003045610A2 (en) 2003-06-05

Similar Documents

Publication Publication Date Title
US6716525B1 (en) Nano-dispersed catalysts particles
US6726992B1 (en) Nano-engineered phosphors and related nanotechnology
US20190105804A1 (en) Gas dispersion manufacture of nanoparticulates, and nanoparticulate-containing products and processing thereof
US7387673B2 (en) Color pigment nanotechnology
US5984997A (en) Combustion of emulsions: A method and process for producing fine powders
US6786950B2 (en) High purity fine metal powders and methods to produce such powder
CA2627567C (en) Luminescent compositions, methods for making luminescent compositions and inks incorporating the same
US7922936B2 (en) Luminescent compositions, methods for making luminescent compositions and inks incorporating the same
US7229600B2 (en) Nanoparticles of rare earth oxides
US10428186B2 (en) Multi-component particles comprising inorganic nanoparticles distributed in an organic matrix and processes for making and using same
WO2002100924A2 (en) Precursors of engineered powders
KR100666728B1 (en) Method for Manufacturing Metal Oxide Hollow Nanoparticles
JP2012255163A (en) Tungsten comprising nanomaterials and related nanotechnology
WO2006078828A2 (en) Method of making nanoparticulates and use of the nanoparticulates to make products using a flame reactor
US20060248982A1 (en) Nanomaterials manufacturing methods and products thereof
Tani et al. Evolution of the morphology of zinc oxide/silica particles made by spray combustion
Casey Nanoparticle technologies and applications
LU Synthesis, Characterization, and Processing
Cheng Synthesis of Nanometer-sized Yttrium Oxide Particles in Diisooctyl Sodium Sulphosuccinate/Isooctane Reverse Micelle Solution

Legal Events

Date Code Title Description
AS Assignment

Owner name: NANOPRODUCTS CORPORATION, COLORADO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YADAV, TAPESH;PFAFFENBACH, KARL;DIRSTINE, ROGER;REEL/FRAME:019429/0583

Effective date: 20011203

AS Assignment

Owner name: PPG INDUSTRIES OHIO, INC., OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NANOPRODUCTS CORPORATION;REEL/FRAME:020540/0506

Effective date: 20080128

Owner name: PPG INDUSTRIES OHIO, INC.,OHIO

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NANOPRODUCTS CORPORATION;REEL/FRAME:020540/0506

Effective date: 20080128

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION