US20040168193A1 - Satellite digital radio broadcast receiver - Google Patents

Satellite digital radio broadcast receiver Download PDF

Info

Publication number
US20040168193A1
US20040168193A1 US10/781,726 US78172604A US2004168193A1 US 20040168193 A1 US20040168193 A1 US 20040168193A1 US 78172604 A US78172604 A US 78172604A US 2004168193 A1 US2004168193 A1 US 2004168193A1
Authority
US
United States
Prior art keywords
satellite
signal
digital radio
broadcast receiver
radio broadcast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/781,726
Other versions
US7317894B2 (en
Inventor
Koji Hirose
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JVCKenwood Corp
Original Assignee
Kenwood KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenwood KK filed Critical Kenwood KK
Assigned to KABUSHIKI KAISHA KENWOOD reassignment KABUSHIKI KAISHA KENWOOD ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HIROSE, KOJI
Publication of US20040168193A1 publication Critical patent/US20040168193A1/en
Application granted granted Critical
Publication of US7317894B2 publication Critical patent/US7317894B2/en
Assigned to JVC Kenwood Corporation reassignment JVC Kenwood Corporation MERGER (SEE DOCUMENT FOR DETAILS). Assignors: KENWOOD CORPORATION
Expired - Fee Related legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/90Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for satellite broadcast receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/65Arrangements characterised by transmission systems for broadcast
    • H04H20/71Wireless systems
    • H04H20/74Wireless systems of satellite networks

Definitions

  • the present invention relates to a satellite digital radio broadcast receiver for receiving a broadcast program having the same contents but different modulation methods.
  • Satellite digital radio broadcasting from a plurality of elliptical orbit satellites moving along a so-called FIG. 8 orbit is presented, for example, by US SIRIUS Satellite Radio Incorporated.
  • the outline of the whole system of satellite broadcast is shown in FIG. 1.
  • This broadcast system uses one Geo stationary satellite and three elliptical orbit satellites (not stationary satellite) each moving along a FIG. 8 orbit. Since the service area is the North America, if a Geo stationary satellite only is used, the elevation angle of an antenna is low so that this is not suitable for mobile stations.
  • An elliptical orbit satellite moves along the FIG. 8 orbit so that it does not always locate overhead. Therefore, a radio broadcast receiver sequentially and alternately receives a signal from any two satellites among the three elliptical orbit satellites.
  • a radio broadcast receiver receives in some cases a radio wave (ground wave) from a ground repeater which is controlled by a Geo stationary orbit satellite. Therefore, the satellite radio broadcast receiver receives three radio waves in total, two satellite waves and one ground wave, at the same time at its wide band RF amplifier.
  • FIG. 2 shows the spectrum of radio waves to be received by the receiver. The center frequency of this spectrum is approximately 2.3 GHz, and the satellite wave and ground wave have both the band width of about 4 MHz.
  • the satellite wave #1 and the ground wave are received at the same timing, the satellite wave #2 is received at the timing delayed by several seconds, and so time diversity is presented. Of three satellite waves from the elliptical orbits, the satellite wave #1 or #2 is used depending upon their orbits so that the control for the time diversity and also fine frequency tuning are carried out.
  • a band-pass filter built in the tuner unit separates each band, and the received signals are demodulated, combined and thereafter synthesized through synchronization.
  • the satellite wave Since the satellite wave is transmitted from a satellite on the elliptical orbit, it is received by the receiver at a high elevation angle. Since the propagation path does not change largely, the satellite wave can be received reliably unless the mobile station enters a tunnel or passes under a high way.
  • the receiver receives three waves containing the same contents. However, each radio wave has different frequency and propagation path, and a different time period while the same data is received. These radio waves are synthesized and demodulated so that the effects of frequency diversity, space diversity and time diversity can be obtained.
  • FIG. 3 shows the structure of a tuner unit of a satellite digital broadcast receiver 20 of the current system.
  • an antenna 11 receives a radio wave signal from a ground repeater, i.e., a ground signal, the antenna having the directional characteristics matching the ground signal.
  • the band of the received signal is limited by a band-pass filter 12 , and an output of the band-pass filter 12 is selectively supplied either to a high frequency amplifier 13 or an attenuator 14 to be amplified or attenuated.
  • An antenna 21 receives a radio wave signal from a satellite, i.e., a satellite signal, the antenna having the directional characteristics matching the satellite signal.
  • the band of the received signal is limited by a band-pass filter 22 .
  • An output signal from the high frequency amplifier 13 or an output signal from the attenuator 14 is amplified by a variable gain amplifier 15 , and an output of this amplifier is supplied to a mixer 16 whereat it is converted into an intermediate frequency easy to be processed.
  • An output of the mixer 16 is detected by a detector 17 to obtain a detection voltage corresponding to the input signal level. This detection voltage is supplied to a control circuit 18 which determines a gain of the variable gain amplifier 15 in accordance with the supplied detection voltage, to thereby perform an automatic gain control (AGC).
  • An output of the mixer 16 is also sent as a ground signal to an intermediate frequency stage to be subjected to an intermediate frequency process.
  • An output of the intermediate frequency stage is supplied to a demodulation stage to be subjected to a demodulation process. If the input signal level is judged small from the detection voltage, the high frequency amplifier 13 is selected by switches 19 a and 19 b , whereas if the input signal level is large, the attenuator 14 is selected by the switches 19 a and 19 b.
  • An output signal from the band-pass filter 22 is amplified at a variable gain amplifier 25 , and an output of this amplifier is supplied to a mixer 26 whereat it is converted into an intermediate frequency easy to be processed.
  • An output of the mixer 26 is detected by a detector 27 to obtain a detection voltage corresponding to the input signal level. This detection voltage is supplied to a control circuit 28 which determines a gain of the variable gain amplifier 25 in accordance with the supplied detection voltage, to thereby perform AGC.
  • An output of the mixer 26 is also sent as a satellite signal to an intermediate frequency stage to be subjected to an intermediate frequency process.
  • An output of the intermediate frequency stage is supplied to a demodulation stage to be subjected to a demodulation process.
  • variable gain amplifiers 15 and 25 , mixers 16 and 26 , detectors 17 and 27 and control circuits 18 and 28 are fabricated in an integrated circuit IC. There are two series, a ground wave signal series including the variable gain amplifier 15 , mixer 16 , detector 17 and control circuit 18 , and a satellite wave signal series including the variable gain amplifier 25 , mixer 26 , detector 27 and control circuit 28 .
  • the reason of division into two series is that although the broadcast contents are the same, the modulation methods are different between the ground wave signal of an OFDM modulation and the satellite wave signal of a QPSK modulation, the bands at the succeeding intermediate frequency stages are different and the gain distributions are different.
  • the frequency of a received satellite wave signal is adjacent to that of a received ground wave signal.
  • These two signals, the satellite wave reception signal and ground wave reception signal are input to the two series of the tuner. Since different gain settings are performed in the integrated circuit IC of the tuner because of different levels of the satellite wave reception signal and ground wave reception signals and the like, the tuner is divided into the two series in the integrated circuit IC.
  • the tuner of the satellite digital radio broadcast receiver 20 receives an adjacent disturbance wave signal b such as shown in FIG. 4.
  • the switching circuit for switching between the high frequency amplifier 13 and attenuator 14 is provided at the front stage of the integrated circuit IC in the ground wave signal reception series. This switching circuit operates in response to the output level of the detector 17 provided in the integrated circuit IC to thereby control the level of an input signal to the integrated circuit IC.
  • reference character a represents the level of a desired reception signal.
  • a digital AGC method is known as disclosed, for example, in Japanese Patent Laid-open Gazette No. 10-56343.
  • the gain of a variable gain amplifier is controlled, and an output of the variable gain amplifier is orthogonally detected, and in accordance with a difference between the orthogonally detected IQ output signal amplitudes and desired IQ output signal amplitudes, the gain of the variable gain amplifier is finely adjusted.
  • a satellite digital radio broadcast receiver has as its one objective using it mounted on a vehicle.
  • the reception condition during vehicle running is influenced by a multi-path and the like so that the signal level may change abruptly by 15 dB or more.
  • the switching hysteresis is 15 dB or larger. Further, since a digital modulation method is incorporated for the satellite digital radio broadcast, if the reception signal is once intercepted, there is some idle time before sounds can be reproduced, because data synchronization and the like are necessary. A complicated control process is therefore required such as matching the switching timing for signal level control to the data transition period and fixing the synchronization circuit and the like during such period.
  • FIG. 5 shows the disturbance wave elimination characteristics actually measured. As shown, the characteristics are stepwise and there are an input signal level having the bad disturbance wave elimination characteristics and an input signal level having the good disturbance wave elimination characteristics. There is a difference of 10 dB or more between these signal levels. If a signal cannot be received once because of the switching hysteresis control, even if the disturbance signal level lowers somewhat, it is not so fast until the reception is recovered.
  • the hatched area in FIG. 5 indicates a reception enabled range.
  • a satellite digital radio broadcast receiver having an integrated circuit including a first reception series for performing a reception processing of a satellite wave signal from a satellite and a second reception series for performing a reception processing of a ground wave signal from a repeater in order to receive both the satellite wave signal and the ground wave signal having the same broadcast contents and different modulation methods
  • the satellite digital radio broadcast receiver comprising: automatic gain control means for amplifying a signal from a single antenna at a variable gain amplifier, and in accordance with a level of a signal outputted from the variable gain amplifier, for controlling a gain of the variable gain amplifier to control the level of the signal outputted from the variable gain amplifier; and a two-way distributor for distributing an output of the automatic control means to two distribution outputs, wherein one distribution output from the two-way distributor is supplied to the integrated circuit as an input signal to the first reception series, and the other distribution output from the two-way distributor is supplied to the integrated circuit as an input signal to the second reception series.
  • the input signals to the first and second reception series of the integrated circuit have the levels controlled by the automatic gain control means. Therefore, the input signal level can be maintained generally constant even if there is a sharp change in a disturbance signal level.
  • FIG. 1 is a diagram showing the outline of a satellite digital radio broadcast system.
  • FIG. 2 is a diagram showing the spectrum of radio waves to be received by a satellite digital radio broadcast receiver.
  • FIG. 3 is a block diagram showing the structure of a tuner unit of a conventional satellite digital radio broadcast receiver.
  • FIG. 4 is the characteristic diagram explaining the disturbance signal elimination characteristics of a conventional satellite digital radio broadcast receiver.
  • FIG. 5 is a schematic diagram explaining a disturbance radio wave to be received by a conventional satellite digital radio broadcast receiver.
  • FIG. 6 is a block diagram showing the structure of a tuber unit of a satellite digital radio broadcast receiver according to an embodiment of the invention.
  • FIG. 7 is the characteristic diagram explaining the disturbance signal elimination characteristics of the satellite digital radio broadcast receiver of the embodiment.
  • FIG. 8 is a schematic diagram explaining a disturbance radio wave to be received by the satellite digital radio broadcast receivers of the embodiment and the prior art.
  • FIG. 6 is a block diagram showing the structure of a tuner unit of a satellite digital radio broadcast receiver according to the embodiment of the invention.
  • an antenna 31 receives a satellite wave signal and a ground wave signal.
  • the band of the received signal is limited by a band-pass filter 32 , and an output of the band-pass filter 32 is supplied to and amplified at a voltage control type variable gain amplifier 33 .
  • An output signal from the voltage control type variable gain amplifier 33 is supplied to a two-way distributor 34 which inputs two-way distributed output signals to variable gain amplifiers 15 an 25 of an integrated circuit IC, respectively.
  • the integrated circuit IC has the same structure as the integrated circuit IC shown in FIG. 3, and so the description of the structure and operation thereof is omitted.
  • An output of the voltage control type variable gain amplifier 33 is detected by a detector 35 to obtain a detection voltage corresponding to the input signal level. This detection voltage is supplied to a control circuit 36 which converts it into an AGC control voltage.
  • the AGC control voltage is supplied as a gain control voltage to the voltage control type variable gain amplifier 33 to perform AGC and control the level of an input signal to the integrated circuit IC.
  • the antenna 31 is either an antenna for receiving a satellite wave signal or an antenna for receiving a ground wave signal.
  • the two-way distributor 34 distributes an input at a distribution ratio suitable for gains of two series in the integrated circuit IC and supplies the distributed signals to the variable gain amplifiers 15 and 25 , respectively. A better one of the demodulation signals of the two series is selected and output, similar to conventional techniques.
  • the level of an input signal to the integrated circuit IC is controlled by AGC, and signals having AGC controlled levels are distributed to the two series of the integrated circuit IC. Therefore, the level of an input signal to the integrated circuit IC is controlled continuously in an analog fashion, so that the input signal level is not switched intermittently as in the case of conventional techniques. As indicated at b in FIG. 7, the disturbance signal elimination characteristics will not be degraded abruptly so that even a sharp change in a disturbance signal level can be followed smoothly. In addition, even if the receiver is mounted on a vehicle, broadcast reception is hardly broken.
  • the disturbance signal elimination characteristics indicated at a in FIG. 7 are the same as those shown in FIG. 5.
  • FIG. 8 is a schematic diagram showing actual measurements by the satellite digital radio broadcast receiver 30 of the embodiment and the conventional receiver 20 , both mounted on a vehicle running through the New York city.
  • the level of a disturbance wave is indicated at a in FIG. 8.
  • a line indicated at b in FIG. 8 shows the selection state between the high frequency amplifier 13 and attenuator 14 .
  • the high level line indicates a selection of the high frequency amplifier 13
  • the low level line indicates a selection of the attenuator 14 .
  • a line indicated at c in FIG. 8 schematically illustrates a muting state of an audio output when the level of an input signal to the integrated circuit IC is controlled by switching between the high frequency amplifier 13 and attenuator 14 upon reception of the disturbance wave a.
  • the high level line indicates the period while the muting state is removed and an audio signal is obtained
  • the low level line indicates the period while the muting state is effected and an audio signal cannot be obtained.
  • a line indicated at d in FIG. 8 schematically illustrates a muting state of an audio signal when the level of an input signal to the integrated circuit IC is controlled by the voltage control type variable gain amplifier 33 upon reception of the disturbance wave a.
  • the high level line indicates the period while the muting state is removed and an audio signal is obtained
  • the low level line indicates the period while the muting state is effected and an audio signal cannot be obtained.
  • the satellite digital radio broadcast receiver 30 has a shorter sound interception period and a shorter reception stop period.
  • the satellite digital radio broadcast receiver 30 Since the satellite digital radio broadcast receiver 30 has only one series as the front end of the integrated circuit IC, it can be made compact and the cost can be reduced.
  • the satellite digital radio broadcast receiver As described so far, according to the satellite digital radio broadcast receiver, only one series is used as the front end of the integrated circuit, and the level of an input signal to the integrated circuit is controlled by AGC. Accordingly, the satellite digital radio broadcast receiver has a shorter sound interception period and a shorter reception stop period. Furthermore, since the satellite digital radio broadcast receiver 30 has only one series as the front end of the integrated circuit IC, it can be made compact and the cost can be reduced.

Abstract

A satellite digital radio broadcast receiver has an integrated circuit including a first reception series for processing a satellite wave signal from a satellite and a second reception series for processing a ground wave signal from a repeater in order to receive both the satellite wave signal and the ground wave signal having the same broadcast contents and different modulation methods. The receiver has an automatic gain control unit for amplifying a signal from a single antenna at a variable gain amplifier, and in accordance with the level of a signal outputted from the variable gain amplifier, for controlling the gain of the variable gain amplifier; and a two-way distributor for distributing an output of the automatic control unit to two distribution outputs, wherein one distribution output of the two-way distributor is supplied to the first reception series of the integrated circuit and the other distribution output is supplied to the second reception series of the integrated circuit.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0001]
  • The present invention relates to a satellite digital radio broadcast receiver for receiving a broadcast program having the same contents but different modulation methods. [0002]
  • 2. Related Background Art [0003]
  • Satellite digital radio broadcasting from a plurality of elliptical orbit satellites moving along a so-called FIG. 8 orbit is presented, for example, by US SIRIUS Satellite Radio Incorporated. The outline of the whole system of satellite broadcast is shown in FIG. 1. This broadcast system uses one Geo stationary satellite and three elliptical orbit satellites (not stationary satellite) each moving along a FIG. 8 orbit. Since the service area is the North America, if a Geo stationary satellite only is used, the elevation angle of an antenna is low so that this is not suitable for mobile stations. An elliptical orbit satellite moves along the FIG. 8 orbit so that it does not always locate overhead. Therefore, a radio broadcast receiver sequentially and alternately receives a signal from any two satellites among the three elliptical orbit satellites. [0004]
  • In an area where it is difficult to receive a radio wave from an elliptical orbit satellite or in an urban area where it is difficult to receive a satellite broadcast radio wave, a radio broadcast receiver receives in some cases a radio wave (ground wave) from a ground repeater which is controlled by a Geo stationary orbit satellite. Therefore, the satellite radio broadcast receiver receives three radio waves in total, two satellite waves and one ground wave, at the same time at its wide band RF amplifier. FIG. 2 shows the spectrum of radio waves to be received by the receiver. The center frequency of this spectrum is approximately 2.3 GHz, and the satellite wave and ground wave have both the band width of about 4 MHz. Although the [0005] satellite wave #1 and the ground wave are received at the same timing, the satellite wave #2 is received at the timing delayed by several seconds, and so time diversity is presented. Of three satellite waves from the elliptical orbits, the satellite wave #1 or #2 is used depending upon their orbits so that the control for the time diversity and also fine frequency tuning are carried out. In the receiver, a band-pass filter built in the tuner unit separates each band, and the received signals are demodulated, combined and thereafter synthesized through synchronization.
  • The features of this satellite digital radio broadcast system are summarized as in the following: [0006]
  • 1) Features of Radio Waves [0007]
  • Since a ground wave has a propagation path different from that of a satellite wave, the way how the level fluctuates and the like are different from those of the satellite wave. [0008]
  • Since the satellite wave is transmitted from a satellite on the elliptical orbit, it is received by the receiver at a high elevation angle. Since the propagation path does not change largely, the satellite wave can be received reliably unless the mobile station enters a tunnel or passes under a high way. [0009]
  • 2) Features of Reception System [0010]
  • The receiver receives three waves containing the same contents. However, each radio wave has different frequency and propagation path, and a different time period while the same data is received. These radio waves are synthesized and demodulated so that the effects of frequency diversity, space diversity and time diversity can be obtained. [0011]
  • FIG. 3 shows the structure of a tuner unit of a satellite digital broadcast receiver [0012] 20 of the current system.
  • In the tuner having the structure shown in FIG. 3, an [0013] antenna 11 receives a radio wave signal from a ground repeater, i.e., a ground signal, the antenna having the directional characteristics matching the ground signal. The band of the received signal is limited by a band-pass filter 12, and an output of the band-pass filter 12 is selectively supplied either to a high frequency amplifier 13 or an attenuator 14 to be amplified or attenuated. An antenna 21 receives a radio wave signal from a satellite, i.e., a satellite signal, the antenna having the directional characteristics matching the satellite signal. The band of the received signal is limited by a band-pass filter 22.
  • An output signal from the [0014] high frequency amplifier 13 or an output signal from the attenuator 14 is amplified by a variable gain amplifier 15, and an output of this amplifier is supplied to a mixer 16 whereat it is converted into an intermediate frequency easy to be processed. An output of the mixer 16 is detected by a detector 17 to obtain a detection voltage corresponding to the input signal level. This detection voltage is supplied to a control circuit 18 which determines a gain of the variable gain amplifier 15 in accordance with the supplied detection voltage, to thereby perform an automatic gain control (AGC). An output of the mixer 16 is also sent as a ground signal to an intermediate frequency stage to be subjected to an intermediate frequency process. An output of the intermediate frequency stage is supplied to a demodulation stage to be subjected to a demodulation process. If the input signal level is judged small from the detection voltage, the high frequency amplifier 13 is selected by switches 19 a and 19 b, whereas if the input signal level is large, the attenuator 14 is selected by the switches 19 a and 19 b.
  • An output signal from the band-[0015] pass filter 22 is amplified at a variable gain amplifier 25, and an output of this amplifier is supplied to a mixer 26 whereat it is converted into an intermediate frequency easy to be processed. An output of the mixer 26 is detected by a detector 27 to obtain a detection voltage corresponding to the input signal level. This detection voltage is supplied to a control circuit 28 which determines a gain of the variable gain amplifier 25 in accordance with the supplied detection voltage, to thereby perform AGC. An output of the mixer 26 is also sent as a satellite signal to an intermediate frequency stage to be subjected to an intermediate frequency process. An output of the intermediate frequency stage is supplied to a demodulation stage to be subjected to a demodulation process.
  • The [0016] variable gain amplifiers 15 and 25, mixers 16 and 26, detectors 17 and 27 and control circuits 18 and 28 are fabricated in an integrated circuit IC. There are two series, a ground wave signal series including the variable gain amplifier 15, mixer 16, detector 17 and control circuit 18, and a satellite wave signal series including the variable gain amplifier 25, mixer 26, detector 27 and control circuit 28. The reason of division into two series is that although the broadcast contents are the same, the modulation methods are different between the ground wave signal of an OFDM modulation and the satellite wave signal of a QPSK modulation, the bands at the succeeding intermediate frequency stages are different and the gain distributions are different.
  • In the satellite digital radio broadcast receiver described above, the frequency of a received satellite wave signal is adjacent to that of a received ground wave signal. These two signals, the satellite wave reception signal and ground wave reception signal, are input to the two series of the tuner. Since different gain settings are performed in the integrated circuit IC of the tuner because of different levels of the satellite wave reception signal and ground wave reception signals and the like, the tuner is divided into the two series in the integrated circuit IC. [0017]
  • The tuner of the satellite digital radio broadcast receiver [0018] 20 receives an adjacent disturbance wave signal b such as shown in FIG. 4. In order to process this disturbance signal, the switching circuit for switching between the high frequency amplifier 13 and attenuator 14 is provided at the front stage of the integrated circuit IC in the ground wave signal reception series. This switching circuit operates in response to the output level of the detector 17 provided in the integrated circuit IC to thereby control the level of an input signal to the integrated circuit IC. In FIG. 4, reference character a represents the level of a desired reception signal.
  • A digital AGC method is known as disclosed, for example, in Japanese Patent Laid-open Gazette No. 10-56343. With this method, in accordance with an electric field intensity detected from an output of an intermediate frequency signal, the gain of a variable gain amplifier is controlled, and an output of the variable gain amplifier is orthogonally detected, and in accordance with a difference between the orthogonally detected IQ output signal amplitudes and desired IQ output signal amplitudes, the gain of the variable gain amplifier is finely adjusted. [0019]
  • With the conventional tuner structure of the satellite digital radio broadcast receiver described above, it is, however, necessary to set a hysteresis to the switching circuit in order to prevent the switching between the [0020] high frequency amplifier 13 and attenuator 14 from being fluttered due to a reception signal level. A satellite digital radio broadcast receiver has as its one objective using it mounted on a vehicle. The reception condition during vehicle running is influenced by a multi-path and the like so that the signal level may change abruptly by 15 dB or more.
  • It is therefore necessary that the switching hysteresis is 15 dB or larger. Further, since a digital modulation method is incorporated for the satellite digital radio broadcast, if the reception signal is once intercepted, there is some idle time before sounds can be reproduced, because data synchronization and the like are necessary. A complicated control process is therefore required such as matching the switching timing for signal level control to the data transition period and fixing the synchronization circuit and the like during such period. [0021]
  • From these reasons, the level adjustment of a ground wave signal input to the integrated circuit IC is something intermittent. FIG. 5 shows the disturbance wave elimination characteristics actually measured. As shown, the characteristics are stepwise and there are an input signal level having the bad disturbance wave elimination characteristics and an input signal level having the good disturbance wave elimination characteristics. There is a difference of 10 dB or more between these signal levels. If a signal cannot be received once because of the switching hysteresis control, even if the disturbance signal level lowers somewhat, it is not so fast until the reception is recovered. The hatched area in FIG. 5 indicates a reception enabled range. [0022]
  • SUMMARY OF THE INVENTION
  • It is an objective of the present invention to provide a satellite digital radio broadcast receiver capable of eliminating the above-described disadvantages and improving the disturbance wave elimination characteristics with a simple structure. [0023]
  • According to one aspect of the present invention, there is provided a satellite digital radio broadcast receiver having an integrated circuit including a first reception series for performing a reception processing of a satellite wave signal from a satellite and a second reception series for performing a reception processing of a ground wave signal from a repeater in order to receive both the satellite wave signal and the ground wave signal having the same broadcast contents and different modulation methods, the satellite digital radio broadcast receiver comprising: automatic gain control means for amplifying a signal from a single antenna at a variable gain amplifier, and in accordance with a level of a signal outputted from the variable gain amplifier, for controlling a gain of the variable gain amplifier to control the level of the signal outputted from the variable gain amplifier; and a two-way distributor for distributing an output of the automatic control means to two distribution outputs, wherein one distribution output from the two-way distributor is supplied to the integrated circuit as an input signal to the first reception series, and the other distribution output from the two-way distributor is supplied to the integrated circuit as an input signal to the second reception series. [0024]
  • According to the satellite digital radio broadcast receiver, the input signals to the first and second reception series of the integrated circuit have the levels controlled by the automatic gain control means. Therefore, the input signal level can be maintained generally constant even if there is a sharp change in a disturbance signal level. [0025]
  • As above, according to the satellite digital radio broadcast receiver of this invention, only one series can suffice for the input signals to the integrated circuit so that the receiver can be made compact and the cost can be reduced.[0026]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram showing the outline of a satellite digital radio broadcast system. [0027]
  • FIG. 2 is a diagram showing the spectrum of radio waves to be received by a satellite digital radio broadcast receiver. [0028]
  • FIG. 3 is a block diagram showing the structure of a tuner unit of a conventional satellite digital radio broadcast receiver. [0029]
  • FIG. 4 is the characteristic diagram explaining the disturbance signal elimination characteristics of a conventional satellite digital radio broadcast receiver. [0030]
  • FIG. 5 is a schematic diagram explaining a disturbance radio wave to be received by a conventional satellite digital radio broadcast receiver. [0031]
  • FIG. 6 is a block diagram showing the structure of a tuber unit of a satellite digital radio broadcast receiver according to an embodiment of the invention. [0032]
  • FIG. 7 is the characteristic diagram explaining the disturbance signal elimination characteristics of the satellite digital radio broadcast receiver of the embodiment. [0033]
  • FIG. 8 is a schematic diagram explaining a disturbance radio wave to be received by the satellite digital radio broadcast receivers of the embodiment and the prior art.[0034]
  • DESCRIPTION OF THE PREFERRED EMBODIMENT
  • Description will be made on a satellite digital radio broadcast receiver according to an embodiment of the invention. [0035]
  • FIG. 6 is a block diagram showing the structure of a tuner unit of a satellite digital radio broadcast receiver according to the embodiment of the invention. [0036]
  • In the satellite digital [0037] radio broadcast receiver 30 of the embodiment, an antenna 31 receives a satellite wave signal and a ground wave signal. The band of the received signal is limited by a band-pass filter 32, and an output of the band-pass filter 32 is supplied to and amplified at a voltage control type variable gain amplifier 33. An output signal from the voltage control type variable gain amplifier 33 is supplied to a two-way distributor 34 which inputs two-way distributed output signals to variable gain amplifiers 15 an 25 of an integrated circuit IC, respectively. The integrated circuit IC has the same structure as the integrated circuit IC shown in FIG. 3, and so the description of the structure and operation thereof is omitted.
  • An output of the voltage control type [0038] variable gain amplifier 33 is detected by a detector 35 to obtain a detection voltage corresponding to the input signal level. This detection voltage is supplied to a control circuit 36 which converts it into an AGC control voltage. The AGC control voltage is supplied as a gain control voltage to the voltage control type variable gain amplifier 33 to perform AGC and control the level of an input signal to the integrated circuit IC. The antenna 31 is either an antenna for receiving a satellite wave signal or an antenna for receiving a ground wave signal.
  • The two-[0039] way distributor 34 distributes an input at a distribution ratio suitable for gains of two series in the integrated circuit IC and supplies the distributed signals to the variable gain amplifiers 15 and 25, respectively. A better one of the demodulation signals of the two series is selected and output, similar to conventional techniques.
  • As described above, in the tuner unit of the satellite digital [0040] radio broadcast receiver 30, the level of an input signal to the integrated circuit IC is controlled by AGC, and signals having AGC controlled levels are distributed to the two series of the integrated circuit IC. Therefore, the level of an input signal to the integrated circuit IC is controlled continuously in an analog fashion, so that the input signal level is not switched intermittently as in the case of conventional techniques. As indicated at b in FIG. 7, the disturbance signal elimination characteristics will not be degraded abruptly so that even a sharp change in a disturbance signal level can be followed smoothly. In addition, even if the receiver is mounted on a vehicle, broadcast reception is hardly broken. The disturbance signal elimination characteristics indicated at a in FIG. 7 are the same as those shown in FIG. 5.
  • FIG. 8 is a schematic diagram showing actual measurements by the satellite digital [0041] radio broadcast receiver 30 of the embodiment and the conventional receiver 20, both mounted on a vehicle running through the New York city. The level of a disturbance wave is indicated at a in FIG. 8. A line indicated at b in FIG. 8 shows the selection state between the high frequency amplifier 13 and attenuator 14. The high level line indicates a selection of the high frequency amplifier 13, and the low level line indicates a selection of the attenuator 14. A line indicated at c in FIG. 8 schematically illustrates a muting state of an audio output when the level of an input signal to the integrated circuit IC is controlled by switching between the high frequency amplifier 13 and attenuator 14 upon reception of the disturbance wave a. The high level line indicates the period while the muting state is removed and an audio signal is obtained, and the low level line indicates the period while the muting state is effected and an audio signal cannot be obtained. A line indicated at d in FIG. 8 schematically illustrates a muting state of an audio signal when the level of an input signal to the integrated circuit IC is controlled by the voltage control type variable gain amplifier 33 upon reception of the disturbance wave a. The high level line indicates the period while the muting state is removed and an audio signal is obtained, and the low level line indicates the period while the muting state is effected and an audio signal cannot be obtained.
  • As apparent from the comparison between the lines c and d in FIG. 8, as compared to the satellite digital radio broadcast receiver [0042] 20, the satellite digital radio broadcast receiver 30 has a shorter sound interception period and a shorter reception stop period.
  • Since the satellite digital [0043] radio broadcast receiver 30 has only one series as the front end of the integrated circuit IC, it can be made compact and the cost can be reduced.
  • As described so far, according to the satellite digital radio broadcast receiver, only one series is used as the front end of the integrated circuit, and the level of an input signal to the integrated circuit is controlled by AGC. Accordingly, the satellite digital radio broadcast receiver has a shorter sound interception period and a shorter reception stop period. Furthermore, since the satellite digital [0044] radio broadcast receiver 30 has only one series as the front end of the integrated circuit IC, it can be made compact and the cost can be reduced.

Claims (3)

What is claimed is:
1. A satellite digital radio broadcast receiver having an integrated circuit including a first reception series for performing a reception processing of a satellite wave signal from a satellite and a second reception series for performing a reception processing of a ground wave signal from a repeater in order to receive both the satellite wave signal and the ground wave signal having the same broadcast contents and different modulation methods, the satellite digital radio broadcast receiver comprising:
automatic gain control means for amplifying a signal from a single antenna at a variable gain amplifier, and in accordance with a level of a signal outputted from the variable gain amplifier, for controlling a gain of the variable gain amplifier to control the level of the signal outputted from the variable gain amplifier; and
a two-way distributor for distributing an output of the automatic gain control means to two distribution outputs,
wherein one of the two distribution outputs from the two-way distributor is supplied to said integrated circuit as an input signal to the first reception series, and the other of the two distribution outputs from the two-way distributor is supplied to the integrated circuit as an input signal to the second reception series.
2. The satellite digital radio broadcast receiver according to claim 1, wherein the two-way distributor operate to distribute an input at a distribution ratio according to for a gain of the first reception series and a gain of the second reception series.
3. The satellite digital radio broadcast receiver according to claim 1, wherein the antenna is either an antenna for receiving the satellite wave signal or an antenna for receiving the ground wave signal.
US10/781,726 2003-02-26 2004-02-20 Satellite digital radio broadcast receiver Expired - Fee Related US7317894B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003-048572 2003-02-26
JP2003048572A JP3999685B2 (en) 2003-02-26 2003-02-26 Satellite digital radio broadcast receiver

Publications (2)

Publication Number Publication Date
US20040168193A1 true US20040168193A1 (en) 2004-08-26
US7317894B2 US7317894B2 (en) 2008-01-08

Family

ID=32866604

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/781,726 Expired - Fee Related US7317894B2 (en) 2003-02-26 2004-02-20 Satellite digital radio broadcast receiver

Country Status (2)

Country Link
US (1) US7317894B2 (en)
JP (1) JP3999685B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040121729A1 (en) * 2002-10-24 2004-06-24 Chris Herndon Telecommunications infrastructure linkage method and system
US20070049194A1 (en) * 2005-09-01 2007-03-01 Visteon Global Technologies, Inc. System to combine antenna topologies to improve performance of satellite receivers
US20080008054A1 (en) * 2006-07-06 2008-01-10 Canon Kabushiki Kaisha Content recording apparatus and method
EP1755245A3 (en) * 2005-08-16 2014-08-20 Agere Systems, Inc. A single path architecture and automatic gain control (AGC) algorithm for low power SDARS receivers
GB2553579A (en) * 2016-09-13 2018-03-14 Jebsee Electronics Co Ltd Built-in antenna signal amplifier module

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9026070B2 (en) 2003-12-18 2015-05-05 Qualcomm Incorporated Low-power wireless diversity receiver with multiple receive paths
DE102004021867B4 (en) * 2004-05-04 2012-02-16 Infineon Technologies Ag Method for signal processing, in particular in a high-frequency receiver and signal conditioning circuit
US20060026650A1 (en) * 2004-07-30 2006-02-02 Samsung Electronics Co., Ltd. Apparatus and method for detecting external antenna in a mobile terminal supporting digital multimedia broadcasting service
KR100728293B1 (en) * 2005-10-05 2007-06-13 삼성전자주식회사 tuner and control method for having attenuator function
US9450665B2 (en) 2005-10-19 2016-09-20 Qualcomm Incorporated Diversity receiver for wireless communication
US9178669B2 (en) 2011-05-17 2015-11-03 Qualcomm Incorporated Non-adjacent carrier aggregation architecture
US9252827B2 (en) 2011-06-27 2016-02-02 Qualcomm Incorporated Signal splitting carrier aggregation receiver architecture
US9154179B2 (en) 2011-06-29 2015-10-06 Qualcomm Incorporated Receiver with bypass mode for improved sensitivity
US9172402B2 (en) 2012-03-02 2015-10-27 Qualcomm Incorporated Multiple-input and multiple-output carrier aggregation receiver reuse architecture
US9362958B2 (en) 2012-03-02 2016-06-07 Qualcomm Incorporated Single chip signal splitting carrier aggregation receiver architecture
US9118439B2 (en) 2012-04-06 2015-08-25 Qualcomm Incorporated Receiver for imbalanced carriers
US9154356B2 (en) 2012-05-25 2015-10-06 Qualcomm Incorporated Low noise amplifiers for carrier aggregation
US9867194B2 (en) 2012-06-12 2018-01-09 Qualcomm Incorporated Dynamic UE scheduling with shared antenna and carrier aggregation
US9300420B2 (en) 2012-09-11 2016-03-29 Qualcomm Incorporated Carrier aggregation receiver architecture
US9543903B2 (en) 2012-10-22 2017-01-10 Qualcomm Incorporated Amplifiers with noise splitting
US8995591B2 (en) 2013-03-14 2015-03-31 Qualcomm, Incorporated Reusing a single-chip carrier aggregation receiver to support non-cellular diversity
US10177722B2 (en) 2016-01-12 2019-01-08 Qualcomm Incorporated Carrier aggregation low-noise amplifier with tunable integrated power splitter

Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095533A (en) * 1990-03-23 1992-03-10 Rockwell International Corporation Automatic gain control system for a direct conversion receiver
US5301352A (en) * 1991-07-04 1994-04-05 Sony Corporation Satellite broadcast receiving system and change-over divider for use in same
US5319673A (en) * 1992-04-10 1994-06-07 Cd Radio Inc. Radio frequency broadcasting systems and methods using two low-cost geosynchronous satellites
US5794138A (en) * 1997-02-26 1998-08-11 Cd Radio Inc. Satellite broadcast system receiver
US5966186A (en) * 1996-07-12 1999-10-12 Kabushiki Kaisha Toshiba Digital broadcast receiving device capable of indicating a receiving signal strength or quality
US6078796A (en) * 1998-01-29 2000-06-20 Motorola, Inc. Method and apparatus for receiving a wideband signal using multiple automatic gain controllers
US6091931A (en) * 1997-06-18 2000-07-18 Lsi Logic Corporation Frequency synthesis architecture in a satellite receiver
US20010022821A1 (en) * 2000-03-15 2001-09-20 Masaki Ichihara Amplitude deviation correction circuit
US6301313B1 (en) * 1998-11-02 2001-10-09 Hughes Electronics Corporation Mobile digital radio system with spatial and time diversity capability
US20010041532A1 (en) * 1997-02-28 2001-11-15 Martin Tomasz Direct-conversion tuner integrated circuit for direct broadcast satellite television
US20020025792A1 (en) * 2000-08-29 2002-02-28 Hiroshi Isoda AGC amplifier circuit for use in a digital satellite broadcast receiver apparatus
US6484042B1 (en) * 1999-08-25 2002-11-19 Skyworks Solutions, Inc. Secondary automatic gain control loops for direct conversion CDMA receivers
US6498927B2 (en) * 2001-03-28 2002-12-24 Gct Semiconductor, Inc. Automatic gain control method for highly integrated communication receiver
US6510317B1 (en) * 1999-11-04 2003-01-21 Xm Satellite Radio, Inc. Satellite digital audio radio service tuner architecture for reception of satellite and terrestrial signals
US6549774B1 (en) * 1999-11-04 2003-04-15 Xm Satellite Radio Inc. Digital audio service satellite receiver having switchable operating modes for stationary or mobile use
US6557029B2 (en) * 1999-06-28 2003-04-29 Micro Design Services, Llc System and method for distributing messages
US6584090B1 (en) * 1999-04-23 2003-06-24 Skyworks Solutions, Inc. System and process for shared functional block CDMA and GSM communication transceivers
US6735416B1 (en) * 1999-05-25 2004-05-11 Xm Satellite Radio, Inc. Receiver architecture for SDARS full band signal reception having an analog conversion to baseband stage
US20040229583A1 (en) * 2003-02-19 2004-11-18 Hitoshi Ogino Digital broadcast receiving tuner and receiving device incorporating it
US20050124289A1 (en) * 2002-06-27 2005-06-09 Microsoft Corporation Method and apparatus for adjusting signal component strength
US20070004351A1 (en) * 2001-04-17 2007-01-04 Nokia Corporation Methods for determining the gains of different carriers, radio transmission units and modules for such units

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5095533A (en) * 1990-03-23 1992-03-10 Rockwell International Corporation Automatic gain control system for a direct conversion receiver
US5301352A (en) * 1991-07-04 1994-04-05 Sony Corporation Satellite broadcast receiving system and change-over divider for use in same
US5319673A (en) * 1992-04-10 1994-06-07 Cd Radio Inc. Radio frequency broadcasting systems and methods using two low-cost geosynchronous satellites
US5966186A (en) * 1996-07-12 1999-10-12 Kabushiki Kaisha Toshiba Digital broadcast receiving device capable of indicating a receiving signal strength or quality
US5794138A (en) * 1997-02-26 1998-08-11 Cd Radio Inc. Satellite broadcast system receiver
US20010041532A1 (en) * 1997-02-28 2001-11-15 Martin Tomasz Direct-conversion tuner integrated circuit for direct broadcast satellite television
US6091931A (en) * 1997-06-18 2000-07-18 Lsi Logic Corporation Frequency synthesis architecture in a satellite receiver
US6078796A (en) * 1998-01-29 2000-06-20 Motorola, Inc. Method and apparatus for receiving a wideband signal using multiple automatic gain controllers
US6301313B1 (en) * 1998-11-02 2001-10-09 Hughes Electronics Corporation Mobile digital radio system with spatial and time diversity capability
US6584090B1 (en) * 1999-04-23 2003-06-24 Skyworks Solutions, Inc. System and process for shared functional block CDMA and GSM communication transceivers
US6735416B1 (en) * 1999-05-25 2004-05-11 Xm Satellite Radio, Inc. Receiver architecture for SDARS full band signal reception having an analog conversion to baseband stage
US6557029B2 (en) * 1999-06-28 2003-04-29 Micro Design Services, Llc System and method for distributing messages
US6484042B1 (en) * 1999-08-25 2002-11-19 Skyworks Solutions, Inc. Secondary automatic gain control loops for direct conversion CDMA receivers
US6510317B1 (en) * 1999-11-04 2003-01-21 Xm Satellite Radio, Inc. Satellite digital audio radio service tuner architecture for reception of satellite and terrestrial signals
US6549774B1 (en) * 1999-11-04 2003-04-15 Xm Satellite Radio Inc. Digital audio service satellite receiver having switchable operating modes for stationary or mobile use
US20010022821A1 (en) * 2000-03-15 2001-09-20 Masaki Ichihara Amplitude deviation correction circuit
US20020025792A1 (en) * 2000-08-29 2002-02-28 Hiroshi Isoda AGC amplifier circuit for use in a digital satellite broadcast receiver apparatus
US6498927B2 (en) * 2001-03-28 2002-12-24 Gct Semiconductor, Inc. Automatic gain control method for highly integrated communication receiver
US20070004351A1 (en) * 2001-04-17 2007-01-04 Nokia Corporation Methods for determining the gains of different carriers, radio transmission units and modules for such units
US20050124289A1 (en) * 2002-06-27 2005-06-09 Microsoft Corporation Method and apparatus for adjusting signal component strength
US20040229583A1 (en) * 2003-02-19 2004-11-18 Hitoshi Ogino Digital broadcast receiving tuner and receiving device incorporating it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040121729A1 (en) * 2002-10-24 2004-06-24 Chris Herndon Telecommunications infrastructure linkage method and system
EP1755245A3 (en) * 2005-08-16 2014-08-20 Agere Systems, Inc. A single path architecture and automatic gain control (AGC) algorithm for low power SDARS receivers
US20070049194A1 (en) * 2005-09-01 2007-03-01 Visteon Global Technologies, Inc. System to combine antenna topologies to improve performance of satellite receivers
US20080008054A1 (en) * 2006-07-06 2008-01-10 Canon Kabushiki Kaisha Content recording apparatus and method
US8351515B2 (en) * 2006-07-06 2013-01-08 Canon Kabushiki Kaisha Content recording apparatus and method
GB2553579A (en) * 2016-09-13 2018-03-14 Jebsee Electronics Co Ltd Built-in antenna signal amplifier module

Also Published As

Publication number Publication date
JP3999685B2 (en) 2007-10-31
JP2004260519A (en) 2004-09-16
US7317894B2 (en) 2008-01-08

Similar Documents

Publication Publication Date Title
US7317894B2 (en) Satellite digital radio broadcast receiver
US20120157029A1 (en) Antenna switch circuit and method of switching the same
US20080119148A1 (en) Radio receiver and method of dynamically setting tuning parameters based on location
US7466959B2 (en) Apparatus and method for IF switching in a dual-tuner, dual-IF, HD radio and FM/AM radio receiver
JP4287855B2 (en) Integrated circuits for mobile television receivers
US7212796B2 (en) Antenna unit and receiving circuit
EP1686704A2 (en) Vehicle-mounted receiving apparatus
JPH1075191A (en) Receiver wtih antenna booster
EP2009814B1 (en) System and method for receiving and combining multiple antenna signals
US7095757B2 (en) System and method for optimizing terrestrial signal acquisition in a communication system
KR100664256B1 (en) An apparatus for improving receive sensitivity of digital multimedia broadcasting
KR100466070B1 (en) Digital audio broadcasting tuner
JP3188398B2 (en) Antenna with phase synthesizer
JP2003125231A (en) Booster for receiving television program
KR100244890B1 (en) Broadband amplification circuit
JPH11251820A (en) Interfering wave removal reception antenna system
KR20070040858A (en) Tuner auto-detecting channel selectively
KR19980044694A (en) Car TV RF Receiver
JPH1093459A (en) Receiver with antenna booster
JPH0851390A (en) Fm multiplex receiver of diversity system
KR970007605B1 (en) Radio frequency broadcasting systems
KR100503319B1 (en) receiver for radio broadcast of pulse code modulation
JPH08251057A (en) Multiplex broadcast reception equipment
JP2003283940A (en) Bs digital tuner
JPH07202778A (en) Radio receiver

Legal Events

Date Code Title Description
AS Assignment

Owner name: KABUSHIKI KAISHA KENWOOD, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HIROSE, KOJI;REEL/FRAME:015006/0660

Effective date: 20040213

STCF Information on status: patent grant

Free format text: PATENTED CASE

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: JVC KENWOOD CORPORATION, JAPAN

Free format text: MERGER;ASSIGNOR:KENWOOD CORPORATION;REEL/FRAME:028001/0636

Effective date: 20111001

FPAY Fee payment

Year of fee payment: 8

FEPP Fee payment procedure

Free format text: MAINTENANCE FEE REMINDER MAILED (ORIGINAL EVENT CODE: REM.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

LAPS Lapse for failure to pay maintenance fees

Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20200108