US20040142620A1 - Nonwoven fiber webs with poly(phenylene sulfide) binder - Google Patents

Nonwoven fiber webs with poly(phenylene sulfide) binder Download PDF

Info

Publication number
US20040142620A1
US20040142620A1 US10/657,116 US65711603A US2004142620A1 US 20040142620 A1 US20040142620 A1 US 20040142620A1 US 65711603 A US65711603 A US 65711603A US 2004142620 A1 US2004142620 A1 US 2004142620A1
Authority
US
United States
Prior art keywords
fibers
web
comprised
poly
phenylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/657,116
Inventor
Homan Kinsley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neenah Northeast LLC
Original Assignee
FiberMark Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FiberMark Inc filed Critical FiberMark Inc
Priority to US10/657,116 priority Critical patent/US20040142620A1/en
Priority to PCT/US2003/028384 priority patent/WO2004025009A2/en
Priority to AU2003287004A priority patent/AU2003287004A1/en
Assigned to FIBERMARK, INC. reassignment FIBERMARK, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KINSLEY, HOMAN B. JR.
Publication of US20040142620A1 publication Critical patent/US20040142620A1/en
Assigned to SILVER POINT FINANCE, LLC, AS AGENT reassignment SILVER POINT FINANCE, LLC, AS AGENT SECURITY AGREEMENT Assignors: FIBERMARK NORTH AMERICA, INC., FIBERMARK, INC.
Assigned to FIBERMARK NORTH AMERICA, INC. reassignment FIBERMARK NORTH AMERICA, INC. INTELLECTUAL PROPERTY ASSIGNMENT Assignors: FIBERMARK, INC.
Assigned to GENERAL ELECTRIC CAPITAL CORPORATION reassignment GENERAL ELECTRIC CAPITAL CORPORATION SECOND AMENDED AND RESTATED PATENT SECURITY AGREEMENT Assignors: FIBERMARK NORTH AMERICA, INC., FIBERMARK, INC.
Assigned to GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT reassignment GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT THIRD AMENDED AND RESTATED PATENT SECURITY AGREEMENT Assignors: FIBERMARK HOLDINGS, LLC, FIBERMARK NORTH AMERICA, INC.
Assigned to SILVER POINT FINANCE, LLC, AS AGENT reassignment SILVER POINT FINANCE, LLC, AS AGENT SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: FIBERMARK HOLDING, LLC, FIBERMARK NORTH AMERICA, INC.
Assigned to FIBERMARK HOLDINGS, LLC, FIBERMARK NORTH AMERICA, INC. reassignment FIBERMARK HOLDINGS, LLC TERMINATION AND RELEASE OF SECURITY AGREEMENT Assignors: SILVER POINT FINANCE, L.L.C., AS AGENT
Assigned to FIBERMARK NORTH AMERICA, INC., FIBERMARK HOLDINGS, LLC reassignment FIBERMARK NORTH AMERICA, INC. TERMINATION AND RELEASE OF SECOND AMENDED AND RESTATED PATENT SECURITY AGREEMENT Assignors: GENERAL ELECTRIC CAPITAL CORPORATION
Assigned to FIBERMARK HOLDINGS, LLC, FIBERMARK NORTH AMERICA, INC. reassignment FIBERMARK HOLDINGS, LLC TERMINATION AND RELEASE OF SECURITY INTEREST Assignors: SILVER POINT FINANCE, L.L.C., AS AGENT
Assigned to FIBERMARK NORTH AMERICA, INC., FIBERMARK HOLDINGS, LLC reassignment FIBERMARK NORTH AMERICA, INC. TERMINATION AND RELEASE OF THIRD AMENDED AND RESTATED PATENT SECURITY AGREEMENT Assignors: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT
Assigned to GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT reassignment GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT SECURITY AGREEMENT Assignors: FIBERMARK NORTH AMERICA, INC.
Assigned to FIBERMARK NORTH AMERICA, INC. reassignment FIBERMARK NORTH AMERICA, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC CAPITAL CORPORATION
Abandoned legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F11/00Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines
    • D21F11/002Processes for making continuous lengths of paper, or of cardboard, or of wet web for fibre board production, on paper-making machines by using a foamed suspension
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/48Metal or metallised fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/36Inorganic fibres or flakes
    • D21H13/46Non-siliceous fibres, e.g. from metal oxides
    • D21H13/50Carbon fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H13/00Pulp or paper, comprising synthetic cellulose or non-cellulose fibres or web-forming material
    • D21H13/10Organic non-cellulose fibres
    • D21H13/20Organic non-cellulose fibres from macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/58Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H25/00After-treatment of paper not provided for in groups D21H17/00 - D21H23/00
    • D21H25/04Physical treatment, e.g. heating, irradiating
    • D21H25/06Physical treatment, e.g. heating, irradiating of impregnated or coated paper
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/654Including a free metal or alloy constituent
    • Y10T442/655Metal or metal-coated strand or fiber material

Definitions

  • the present invention relates to a process for making wet-layed fibrous, nonwoven webs or sheets.
  • the present invention relates to such webs comprised of metal or refractory fibers, with poly(phenylene sulfide) as a binder.
  • Papers comprised primarily of metal or refractory fibers have been desired by the industry for many years.
  • Various methods have been developed for the preparation of metal fiber sheets.
  • the manufacture of metal fiber nonwoven fabric-like paper structures on papermaking equipment has also been actively pursued due to its commercial attractiveness.
  • Interest in such techniques is described, for example, in the chapter on metal fibers by Hanns F. Arledter in Synthetic Fibers in Papermaking, Editor O. Battista, chapter 6, pages 118-184. See also U.S. Pat. No. 2,971,877.
  • the problem in making metal fiber webs or sheets using conventional papermaking techniques is that the metal fibers tend to clump together. This can also be true for refractory fibers, particularly when the fibers are of some length, e.g., greater than 1 ⁇ 4 inch.
  • refractory fibers particularly when the fibers are of some length, e.g., greater than 1 ⁇ 4 inch.
  • an appropriate binder for metal and refractory fibers is also an important issue.
  • the binder stabilizes the non-woven web and provides strength.
  • the same binders useful for cellulose fibers may not be as useful for metal or refractory fibers. Therefore, use of an appropriate binder can improve metal fiber or refractory fiber sheets for particular applications, or in general, while continuing to use conventional processing.
  • Yet another object of the present invention is to provide a process for making a wet-layed metal fiber nonwoven sheet which is efficient and effective.
  • a nonwoven fiber web which employs poly(phenylene sulfide) as the binder.
  • the web is preferably comprised of metal or refractory fibers, for which the poly(phenylene sulfide) binder is believed to work extremely well, especially, with refractory fibers such as carbon fibers.
  • a binder it provides excellent strength and a very suitable melting point for applications in which the metal fiber sheets or refractory fiber sheets would be used, particularly high temperature applications.
  • the present invention provides a process for making a wet-layed, metal fiber or refractory fiber nonwoven web.
  • the process comprises forming a foam furnish by agitating metal fibers or refractory fibers in a foamed medium with an apparatus comprising agitating means mounted for displacement within the foamed medium and including a leading surface facing in the direction of displacement.
  • the leading surface comprises upper and lower portions converging in the direction of displacement to form a generally convex leading surface.
  • the agitating means includes a non-convex trailing surface facing away from the direction of displacement, the surface being generally concave.
  • the apparatus used in agitating the fibers also comprises driving means for displacing the agitating means in the direction of displacement for dispersing and mutually separating the fibers within the foamed medium.
  • the foam furnish is then passed onto a screen and defoamed to form the nonwoven fibrous web.
  • the present invention is at least partly based upon the recognition that poly(phenylene sulfide) is a uniquely applicable binder for metal fibers or refractory fibers such as carbon.
  • poly(phenylene sulfide) permits one to form strong, nonwoven webs of metal fibers or refractory fibers, which have applicability in harsh environments.
  • employing the process of the present invention one can form extremely uniform webs of the metal fibers and refractory fibers, with the poly(phenylene sulfide) binder binding the fiber structures at the interstices.
  • the nonwoven, fibrous web of the present invention is comprised of metal fibers and/or refractory fibers, and poly(phenylene sulfide) as the binder.
  • Poly(phenylene sulfide) works extremely well as a binder for metal fibers, and refractory fibers such as carbon, in a nonwoven structure.
  • the use of poly(phenylene sulfide) as a binder in a metal or refractory fibrous sheet provides the necessary strength, as well as thermal and chemical resistance properties, to permit use of the sheets in many different environments.
  • the amount of poly(phenylene sulfide) employed can vary greatly, but is generally in the range of from 3 to 20 wt %, more preferably in the range of from 5 to 15 wt %, and most preferably in the range of from 5 to 10 wt %.
  • Poly(phenylene sulfide) exhibits exceptional chemical stability and a high melting point.
  • the polymer displays extreme resistance to aggressive liquids, better than polyamides, polyphenylene oxide, polycarbonate or polysulfones.
  • the polymer also has high thermal stability. The presence of sulfur atoms between the aromatic rings provides flexibility with regard to the polymer.
  • the polymer is generally isolated as an off white powder when made commercially.
  • the polymer is also available and made into fibers, and used on a commercial basis as a molding resin.
  • Poly(phenylene sulfide) is available commercially. At one time it was available under the trademark Ryton® as prepared by Phillips Petroleum Company. It is generally available in a variety of forms such as powder grades, but is also available as fibers.
  • Poly(phenylene sulfide) resins are manufactured from p-dichlorobenzene and sodium sulfide in a dipolar aprotic solvent. The commercial polymer has a melting point of about 285° C.
  • poly(phenylene sulfide) polymer available is a polymer wherein the aromatic rings are disubstituted in the para positions (p-phenylene) and the sulfur atoms are present as divalent moieties. (sulfide). This is the polymer that has a melting point about 285° C., and a moderate glass transition temperature of about 85° C.
  • Poly(phenylene sulfide) copolymers can be prepared by substituting other polyhalogenated aromatics for all or part of the p-dichlorobenzene used in its preparation. A series of copolymers can be based on mixtures of m- and p-dichlorobenzene and sodium sulfide.
  • the melting point and glass transition temperature of the polymers decrease. Above 50% meta content, however, the polymer is no longer crystalized. In a preferred embodiment, the meta content is less than 25% such that the melting point of the copolymer is greater than 205° C.
  • a poly(phenylene sulfide) polymer having a para content ranging from 75 to 100% is preferred in order that the melting temperature of the polymer is in a range of from about 205 to 285° C.
  • Some meta content may be preferable in order that the melting point is somewhat lower so that it is easier to dry/melt the poly(phenylene sulfide) and allow its action as a binder at the interstices of a non-woven web.
  • the poly(phenylene sulfide) binder is generally employed as a fiber.
  • the length of the binder fiber can vary greatly, and is somewhat dependent on the final application of the web. Generally, fibers of about 1 ⁇ 8 to 1 ⁇ 4 inch can be used, but even longer fibers of poly(phenylene sulfide) can also be used, e.g. from 1 ⁇ 4 inch to 2 inches, more preferably for 1 ⁇ 4 inch to 1 inch, or about 1 ⁇ 2 inch.
  • Other forms of poly(phenylene sulfide) binder can be employed, e.g., a powder, but the use of a fiber is preferred due to its expediency and efficiency in use.
  • the poly(phenylene sulfide) binder can be comprised of a single polymer or a mixture of polymers.
  • the fibers would simply be added to a furnish comprised of the base fibers to be used in creating the nonwoven sheet, e.g., metal fibers or refractory fibers, and then the sheet or web being formed from the furnish. Once the sheet has been formed, the sheet is then heated to a temperature sufficient to melt the poly(phenylene sulfide) such that the poly(phenylene sulfide) can melt around the interstices of the base fibers used to construct the nonwoven sheet, and thereby bind the base fibers into a nonwoven, but integral structure.
  • the poly(phenylene sulfide) polymer binder can be added to the furnish in other forms as well, e.g., as a powder. Better retention results, however, when the binder is used as a fiber.
  • the metal fibers can be any useful metal fiber, with nickel, zinc and stainless steel fibers being most preferred.
  • the stainless steel fibers can, for example, be stainless steel 304 fibers, stainless steel 16 fibers or stainless steel Hastelloy X fibers. All are commercially available.
  • the nickel fibers can be any commercially available fiber as well.
  • Zinc fibers are generally made from a foil of zinc, from which tinsel is made, and the tinsel is chopped to make the fibers. Such zinc fibers, nickel fibers and stainless steel fibers are most preferred because their potential uses are exceptional.
  • the refractory fibers can be any refractory fiber, having any length.
  • refractory fibers is meant fibers prepared from a refractory material.
  • Refractory materials can be earthy, ceramic materials of low thermal conductivity that are capable of withstanding extremely high temperatures (3000-4000° F.) without essential change.
  • acidic e.g., silica, fireclay
  • basic e.g., magnesite, dolomite
  • amphoteric e.g., alumina, carbon and silicon carbide
  • Carbon fibers are generally prepared by the controlled pyrolysis of an organic precursor in fibrous form.
  • Commercial products are based on rayon (a regenerated cellulose), pitch (petroleum and coal tar based), and PAN (polyacrylonitrile).
  • the carbon fibers can also be graphite fibers, or activated carbon fibers.
  • carbon fiber generally refers to materials that have been heat treated at temperatures of 1000-3000° C. and have markedly different properties and structure, i.e., they contain at least 92% carbon.
  • carbon fiber sometimes refers to materials treated in the range of from 1000-2000° C.
  • graphite fiber refers to fibers processed at or in excess of 2500° C.
  • Activated carbon and its fibers are obtained by “activating” a carbon fiber by heating at 800-900° C. with steam or carbon dioxide to result in a porous internal structure (honeycomb like).
  • the internal surface of activated carbon in general averages about 10,000 square feet/gm, and the specific gravity is from 0.08 to 0.5.
  • inorganic fibers qualify as refractory fibers in accordance with the present invention.
  • Such inorganic fibers include glass fibers, quartz and silica fibers, and ceramic fibers.
  • Glass is an amorphous material obtained by supercooling the molten glass, so that no ordered regions are formed. Glass fibers are prepared generally by melt spinning glass.
  • Silica fibers are smooth-surfaced, glasslike fibers, with a near round cross section. They are spun from silicon dioxide, which may be pure or contain a small amount of other materials. Silica fibers can be produced indirectly from glass filaments from which all constituents other than silica have been removed or through spinning a viscous filament that contains a high amount of silica. The organic materials are burned away, leaving a porous silica filament.
  • Quartz fibers are made from natural quartz crystals by softening quartz rods in an oxy-hydrogen flame and drawing the rods into filaments. Because high purity quartz crystals are rare, the cost of quartz fibers is considerably higher than that of fiberglass and high silica fibers.
  • Ceramic fibers are polycrystalline refractory materials composed of metal oxides, metal carbides, metal nitrides, and their mixtures. Starting materials include aluminum silicate, alumina, zirconia, boron nitride, silicon nitride, thoria, aluminum nitride, silicon nitride, potassium titanate, and polymeric materials such as polycarbosilane. Compared to glass fiber, ceramic fibers have higher thermal and chemical resistance, and higher oxidation resistance than carbon and graphite fibers. The densities of ceramic fibers are generally higher than those of glass, carbon, and graphite fibers.
  • the length of the fibers used as the base fibers to create the web can be of any length, the present invention is most uniquely and advantageously applicable to long fibers, i.e., at least one-half inch.
  • Refractory or metal fibers of a length of one inch, one and one-half inch, two inches or more, even four inches in length can also be readily incorporated into a non-woven fibrous web using the present agitator and foam process of the present invention, and are therefore preferred.
  • the present invention is uniquely applicable to the formation of a non-woven fibrous web comprised of metal or refractory fibers, which can be in mixture with each other, or with other fibers, such as cellulosic, and synthetic fibers, in minor amounts.
  • the nonwoven, fibrous webs of the present invention using poly(phenylene sulfide) as a binder can be prepared using any conventional wet laying method, it is preferred that a foam method is employed to make the sheets of the present invention.
  • the process of the present invention comprises the steps of first forming a foam furnish by agitating a fiber mixture comprised of the metal or refractory fibers, and the poly(phenylene sulfide), preferably in fiber form.
  • the fiber mixture is agitated in a foamed medium with the agitation apparatus of the present invention, with the foam furnish then being passed onto a screen, e.g., a wire or plastic fabricated screen, and the furnish defoamed.
  • a screen e.g., a wire or plastic fabricated screen
  • the agitating apparatus used in the process of the present invention is mounted for displacement within the foamed medium and includes a leading surface facing in a direction of displacement.
  • a leading surface includes upper and lower portions converging in the direction of displacement to form a generally convex leading surface, and preferably includes a non-convex trailing surface facing away from the direction of displacement, which trailing surface is generally concave.
  • the agitating means also comprises driving means for displacing the agitating means in the direction of displacement or disbursing and mutually separating the fibers within the foamed medium.
  • the agitator generally comprises a plurality of legs or blades projecting radially from an axis.
  • the number of legs can vary, and can be in different planes.
  • Each leg includes a leading surface facing in the direction of rotational displacement, which surface is of convex shape as is the leg viewed in cross-section.
  • convex is meant that the upper and lower portions of the leading surface converge in the direction of rotation and meet at a relatively blunt junction. The bluntness of the junction precludes the collection of fibers.
  • the leading surface be smooth so that the fibers slip over its surface without forming flocks, spindles, or other forms of fiber aggregates.
  • the leading surface terminates in vertically spaced upper and lower trailing ends which form edges.
  • the trailing surface of the leg is therefore non-convex, e.g., concave.
  • the truncation of a hollow cylinder represents a convenient way of forming the agitator, but, of course, other techniques could be used to form an agitator of the desired shape.
  • the foamed medium in which the refractory fibers are agitated can be formed during the agitation, or can be formed prior to the agitation of the fibers.
  • the order of addition of water, chemicals (binder), surfactant and fiber is not important.
  • the surfactant, water and metal and/or refractory fiber can be added into the mixing chamber in any order.
  • a successful foam dispersed refractory fiber will result. It is generally preferred, however, to not mix the fibers in the water without the presence of a surfactant. Since no foam would be generated without the surfactant, the refractory fibers would tend to tangle and agglomerate. It is possible, however, to successfully disperse the refractory fibers in a pre-existing foam.
  • rotation of the agitator is initiated after the mixture of fibers, water, and surfactant is placed within an agitation chamber.
  • the surfactant and water produce a foamed medium in which the fibers are entrained.
  • fibers impacted by the agitator are displaced upwardly or downwardly by the convex leading surface.
  • the convex leading surface of the agitator and the trailing concave following edge are important to the proper function of the apparatus. Fibers are impacted by the leading convex surface. This surface is made to be smooth so that the refractory fibers will slide along this surface without forming multi-fiber aggregates. As the metal and/or refractory fibers leave this smooth convex surface they enter the abrupt transition to a concave surface. Intense cavitation occurs at this transition. Air pulled into this zone from the tank vortex or air added to the tank from some other source such as a pipe at the bottom, forms a foam which is stabilized by the presence of a surfactant which has been added to the water. This foam is characterized by small bubble size.
  • the refractory fibers entering this zone of bubble formation are immediately surrounded by foam. Since the foam possesses a high viscosity and low density, the refractory fibers surrounded by foam are prevented from tangling or flocculating as would be the case if they were in water. This apparatus is unique in its ability to disperse fibers into a foam uniformly.
  • the concentration of the surfactant used depends on the surfactant. Generally, a concentration of about 0.1 wt % in the solution is preferred for a strong foam forming surfactant. If the surfactant is a weaker foam former, a stronger concentration may be preferred. Anionic, non-ionic and cationic surfactants can all be used, with appropriate adjustments in concentration where needed.
  • the time the foam furnish is mixed by the agitator of the present invention can vary greatly, as it is only important that a good dispersion of the fiber in the foam is achieved. Once a good dispersion has been achieved, longer mixing or agitation is generally neither helpful or harmful.
  • the temperature of the foam furnish can also vary greatly.
  • the temperature need only be such so as to allow a foam to be generated.
  • foam furnish can also be added to the foam furnish, as long as they do not interfere with the foaming nature of the surfactant.
  • Additional polymeric binders can be added, if desired.
  • polyvinyl alcohol powder has provided good results, and is a preferred additive as an additional binder.
  • the foam furnish is then passed onto a screen, such as that generally used in a typical Foudrinier machine.
  • the foam furnish is then defoamed by using vacuum or suction boxes.
  • the foam furnish can be formed on a screen by using a pressure former.
  • Any of the conventional methods and apparatus for forming a fibrous web while using a foam can be employed with the foam furnish of the present invention.
  • the use of the agitation means of the present invention provides a foam furnish with a uniform dispersion of the fibers.
  • the fibrous web obtained upon defoaming is a web exhibiting good individual fiber separation and a very uniform distribution.
  • there is no directionality of the fibers i.e., the fiber direction is random, but with a uniform distribution of the fibers.
  • Such a uniform fibrous web is obtained even when one employs very long fibers, such as fibers having a length of one-half inch, one inch, two inches or longer, and even if cellulosic or synthetic fibers are mixed with the refractory or metal fibers.
  • This is one of the greatest advantages of the present invention in that it permits one to make a fibrous web comprised of long refractory or metal fibers, if desired, even in combination with other types of fibers, as easily and as quickly as one could make a paper web.
  • the prepared webs, once dried to effect the binding capabilities of the poly(phenylene sulfide), also exhibit excellent high temperature properties and characteristics.
  • the nonwoven sheets of the present invention employ poly(phenylene sulfide) as the binder and find many useful applications.
  • poly(phenylene sulfide) as the binder improves its performance for use in fuel cells.
  • the poly(phenylene sulfide) is quite resistant to the environment in the fuel cell and thus is an extraordinary binder for the carbon nonwoven sheet.
  • the poly(phenylene sulfide) binder can also be used with metal fibers for use in electrodes to make sheets useful in electrodes or in filters.
  • the poly(phenylene sulfide) binder is used in combination with zinc fibers to form a non-woven fibrous zinc sheet.
  • a zinc or other metal fiber sheet can be used as an electrode, or a filter for plant effluent.
  • Poly(phenylene sulfide) as the binder is uniquely suited for such environments, and works quite well with the zinc fibers in terms of providing strength to the overall structure.
  • the amount of poly(phenylene sulfide) binder in the final nonwoven sheet ranges from 5 to 10 wt %, whereas the amount of zinc fiber generally ranges from about 90 to 95%.

Abstract

The present invention relates to a nonwoven web comprised of metal or refractory fibers with poly(phenylene sulfide) as a binder. The nonwoven web is prepared by forming a foam furnish by agitating the fibers in a foamed medium, and passing the foam furnish onto a screen and defoaming the furnish. It is preferred that the poly(phenylene sulfide) binder is added to the foam furnish in the form of fibers. Once the furnish is defoamed to form a nonwoven web, the sheet is heated at a temperature sufficient to melt the poly(phenylene sulfide) binder.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Application No. 60/409,187, filed on Sep. 10, 2002, which is hereby incorporated by reference in its entirety.[0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to a process for making wet-layed fibrous, nonwoven webs or sheets. In particular, the present invention relates to such webs comprised of metal or refractory fibers, with poly(phenylene sulfide) as a binder. [0003]
  • 2. Description of the Related Art [0004]
  • Papers comprised primarily of metal or refractory fibers have been desired by the industry for many years. Various methods have been developed for the preparation of metal fiber sheets. The manufacture of metal fiber nonwoven fabric-like paper structures on papermaking equipment has also been actively pursued due to its commercial attractiveness. Interest in such techniques is described, for example, in the chapter on metal fibers by Hanns F. Arledter in [0005] Synthetic Fibers in Papermaking, Editor O. Battista, chapter 6, pages 118-184. See also U.S. Pat. No. 2,971,877.
  • The problem in making metal fiber webs or sheets using conventional papermaking techniques is that the metal fibers tend to clump together. This can also be true for refractory fibers, particularly when the fibers are of some length, e.g., greater than ¼ inch. Before paper can be made, it is necessary to open fiber bundles to achieve individual fibers and to disperse the fibers uniformly in a fluid. With most wood pulps, the opening is not usually a difficult task. The pulp or source of fibers is placed in water and the mixture is sheared until the bundles open. [0006]
  • With metal and refractory fibers, both the opening of the bundles and the dispersion of the fibers in order to keep the fibers separated are difficult. Normal types of mixing or shearing devices can easily damage metal and refractory fibers. When metal fibers are bent, they will remain bent and eventually will interact to form balls of tangled fibers. Refractory fibers also tend to tangle or break. Paper made from fibers in this form is unacceptable. [0007]
  • In addition to an improved process, an appropriate binder for metal and refractory fibers is also an important issue. The binder stabilizes the non-woven web and provides strength. The same binders useful for cellulose fibers may not be as useful for metal or refractory fibers. Therefore, use of an appropriate binder can improve metal fiber or refractory fiber sheets for particular applications, or in general, while continuing to use conventional processing. [0008]
  • It would therefore be of great interest to the industry to improve sheets of metal fibers and refractory fibers by using an improved binder therefor. [0009]
  • It would also be of great advantage to the industry if a process for making a metal or refractory fiber sheet using conventional papermaking techniques, i.e., a wet-laying technique, was available. Such a process should offer efficiency and commercial viability particularly in terms of cost and performance. A combination of an improved binder with such a process would be highly valued. [0010]
  • Accordingly, it is an object of the present invention to provide a nonwoven metal or refractory fiber sheet with a novel binder. [0011]
  • Yet another object of the present invention is to provide a process for making a wet-layed metal fiber nonwoven sheet which is efficient and effective. [0012]
  • These and other objects of the present invention will become apparent upon a review of the following specification and the claims appended thereto. [0013]
  • SUMMARY OF THE INVENTION
  • In accordance with the foregoing objectives, provided by the present invention is a nonwoven fiber web which employs poly(phenylene sulfide) as the binder. The web is preferably comprised of metal or refractory fibers, for which the poly(phenylene sulfide) binder is believed to work extremely well, especially, with refractory fibers such as carbon fibers. As a binder, it provides excellent strength and a very suitable melting point for applications in which the metal fiber sheets or refractory fiber sheets would be used, particularly high temperature applications. [0014]
  • In another embodiment, the present invention provides a process for making a wet-layed, metal fiber or refractory fiber nonwoven web. The process comprises forming a foam furnish by agitating metal fibers or refractory fibers in a foamed medium with an apparatus comprising agitating means mounted for displacement within the foamed medium and including a leading surface facing in the direction of displacement. The leading surface comprises upper and lower portions converging in the direction of displacement to form a generally convex leading surface. Preferably, the agitating means includes a non-convex trailing surface facing away from the direction of displacement, the surface being generally concave. The apparatus used in agitating the fibers also comprises driving means for displacing the agitating means in the direction of displacement for dispersing and mutually separating the fibers within the foamed medium. The foam furnish is then passed onto a screen and defoamed to form the nonwoven fibrous web. [0015]
  • Among other factors, the present invention is at least partly based upon the recognition that poly(phenylene sulfide) is a uniquely applicable binder for metal fibers or refractory fibers such as carbon. The use of poly(phenylene sulfide) permits one to form strong, nonwoven webs of metal fibers or refractory fibers, which have applicability in harsh environments. Furthermore, employing the process of the present invention one can form extremely uniform webs of the metal fibers and refractory fibers, with the poly(phenylene sulfide) binder binding the fiber structures at the interstices.[0016]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The nonwoven, fibrous web of the present invention is comprised of metal fibers and/or refractory fibers, and poly(phenylene sulfide) as the binder. Poly(phenylene sulfide) works extremely well as a binder for metal fibers, and refractory fibers such as carbon, in a nonwoven structure. The use of poly(phenylene sulfide) as a binder in a metal or refractory fibrous sheet provides the necessary strength, as well as thermal and chemical resistance properties, to permit use of the sheets in many different environments. The amount of poly(phenylene sulfide) employed can vary greatly, but is generally in the range of from 3 to 20 wt %, more preferably in the range of from 5 to 15 wt %, and most preferably in the range of from 5 to 10 wt %. [0017]
  • Poly(phenylene sulfide) exhibits exceptional chemical stability and a high melting point. The polymer displays extreme resistance to aggressive liquids, better than polyamides, polyphenylene oxide, polycarbonate or polysulfones. The polymer also has high thermal stability. The presence of sulfur atoms between the aromatic rings provides flexibility with regard to the polymer. The polymer is generally isolated as an off white powder when made commercially. The polymer is also available and made into fibers, and used on a commercial basis as a molding resin. [0018]
  • Poly(phenylene sulfide) is available commercially. At one time it was available under the trademark Ryton® as prepared by Phillips Petroleum Company. It is generally available in a variety of forms such as powder grades, but is also available as fibers. Poly(phenylene sulfide) resins are manufactured from p-dichlorobenzene and sodium sulfide in a dipolar aprotic solvent. The commercial polymer has a melting point of about 285° C. [0019]
  • Generally, the most prevalent poly(phenylene sulfide) polymer available is a polymer wherein the aromatic rings are disubstituted in the para positions (p-phenylene) and the sulfur atoms are present as divalent moieties. (sulfide). This is the polymer that has a melting point about 285° C., and a moderate glass transition temperature of about 85° C. Poly(phenylene sulfide) copolymers can be prepared by substituting other polyhalogenated aromatics for all or part of the p-dichlorobenzene used in its preparation. A series of copolymers can be based on mixtures of m- and p-dichlorobenzene and sodium sulfide. As the meta content increases, the melting point and glass transition temperature of the polymers decrease. Above 50% meta content, however, the polymer is no longer crystalized. In a preferred embodiment, the meta content is less than 25% such that the melting point of the copolymer is greater than 205° C. Thus, a poly(phenylene sulfide) polymer having a para content ranging from 75 to 100% is preferred in order that the melting temperature of the polymer is in a range of from about 205 to 285° C. Some meta content may be preferable in order that the melting point is somewhat lower so that it is easier to dry/melt the poly(phenylene sulfide) and allow its action as a binder at the interstices of a non-woven web. [0020]
  • The poly(phenylene sulfide) binder is generally employed as a fiber. The length of the binder fiber can vary greatly, and is somewhat dependent on the final application of the web. Generally, fibers of about ⅛ to ¼ inch can be used, but even longer fibers of poly(phenylene sulfide) can also be used, e.g. from ¼ inch to 2 inches, more preferably for ¼ inch to 1 inch, or about ½ inch. Other forms of poly(phenylene sulfide) binder can be employed, e.g., a powder, but the use of a fiber is preferred due to its expediency and efficiency in use. The poly(phenylene sulfide) binder can be comprised of a single polymer or a mixture of polymers. [0021]
  • In using poly(phenylene sulfide) fibers, the fibers would simply be added to a furnish comprised of the base fibers to be used in creating the nonwoven sheet, e.g., metal fibers or refractory fibers, and then the sheet or web being formed from the furnish. Once the sheet has been formed, the sheet is then heated to a temperature sufficient to melt the poly(phenylene sulfide) such that the poly(phenylene sulfide) can melt around the interstices of the base fibers used to construct the nonwoven sheet, and thereby bind the base fibers into a nonwoven, but integral structure. Similarly, the poly(phenylene sulfide) polymer binder can be added to the furnish in other forms as well, e.g., as a powder. Better retention results, however, when the binder is used as a fiber. [0022]
  • The metal fibers can be any useful metal fiber, with nickel, zinc and stainless steel fibers being most preferred. The stainless steel fibers can, for example, be stainless steel 304 fibers, stainless steel 16 fibers or stainless steel Hastelloy X fibers. All are commercially available. The nickel fibers can be any commercially available fiber as well. Zinc fibers are generally made from a foil of zinc, from which tinsel is made, and the tinsel is chopped to make the fibers. Such zinc fibers, nickel fibers and stainless steel fibers are most preferred because their potential uses are exceptional. [0023]
  • The refractory fibers can be any refractory fiber, having any length. By refractory fibers is meant fibers prepared from a refractory material. Refractory materials can be earthy, ceramic materials of low thermal conductivity that are capable of withstanding extremely high temperatures (3000-4000° F.) without essential change. There are three broad groups of such materials, (i) acidic (e.g., silica, fireclay), (ii) basic (e.g., magnesite, dolomite); and (iii) amphoteric (e.g., alumina, carbon and silicon carbide). The outstanding property of these materials, and the fibrous webs prepared from their fibers, is the ability to act as insulators. [0024]
  • The present invention is particularly useful with and applicable to carbon fibers. Carbon fibers are generally prepared by the controlled pyrolysis of an organic precursor in fibrous form. Commercial products are based on rayon (a regenerated cellulose), pitch (petroleum and coal tar based), and PAN (polyacrylonitrile). The carbon fibers can also be graphite fibers, or activated carbon fibers. [0025]
  • More specifically, the term carbon fiber generally refers to materials that have been heat treated at temperatures of 1000-3000° C. and have markedly different properties and structure, i.e., they contain at least 92% carbon. In practice, the term carbon fiber sometimes refers to materials treated in the range of from 1000-2000° C., and the term graphite fiber refers to fibers processed at or in excess of 2500° C. Activated carbon and its fibers are obtained by “activating” a carbon fiber by heating at 800-900° C. with steam or carbon dioxide to result in a porous internal structure (honeycomb like). The internal surface of activated carbon in general averages about 10,000 square feet/gm, and the specific gravity is from 0.08 to 0.5. [0026]
  • Many inorganic fibers qualify as refractory fibers in accordance with the present invention. Such inorganic fibers include glass fibers, quartz and silica fibers, and ceramic fibers. [0027]
  • Glass is an amorphous material obtained by supercooling the molten glass, so that no ordered regions are formed. Glass fibers are prepared generally by melt spinning glass. [0028]
  • Silica fibers are smooth-surfaced, glasslike fibers, with a near round cross section. They are spun from silicon dioxide, which may be pure or contain a small amount of other materials. Silica fibers can be produced indirectly from glass filaments from which all constituents other than silica have been removed or through spinning a viscous filament that contains a high amount of silica. The organic materials are burned away, leaving a porous silica filament. [0029]
  • Quartz fibers are made from natural quartz crystals by softening quartz rods in an oxy-hydrogen flame and drawing the rods into filaments. Because high purity quartz crystals are rare, the cost of quartz fibers is considerably higher than that of fiberglass and high silica fibers. [0030]
  • Ceramic fibers are polycrystalline refractory materials composed of metal oxides, metal carbides, metal nitrides, and their mixtures. Starting materials include aluminum silicate, alumina, zirconia, boron nitride, silicon nitride, thoria, aluminum nitride, silicon nitride, potassium titanate, and polymeric materials such as polycarbosilane. Compared to glass fiber, ceramic fibers have higher thermal and chemical resistance, and higher oxidation resistance than carbon and graphite fibers. The densities of ceramic fibers are generally higher than those of glass, carbon, and graphite fibers. [0031]
  • While the length of the fibers used as the base fibers to create the web can be of any length, the present invention is most uniquely and advantageously applicable to long fibers, i.e., at least one-half inch. Refractory or metal fibers of a length of one inch, one and one-half inch, two inches or more, even four inches in length, can also be readily incorporated into a non-woven fibrous web using the present agitator and foam process of the present invention, and are therefore preferred. [0032]
  • As noted above, the present invention is uniquely applicable to the formation of a non-woven fibrous web comprised of metal or refractory fibers, which can be in mixture with each other, or with other fibers, such as cellulosic, and synthetic fibers, in minor amounts. [0033]
  • While the nonwoven, fibrous webs of the present invention using poly(phenylene sulfide) as a binder can be prepared using any conventional wet laying method, it is preferred that a foam method is employed to make the sheets of the present invention. In a preferred embodiment, the process of the present invention comprises the steps of first forming a foam furnish by agitating a fiber mixture comprised of the metal or refractory fibers, and the poly(phenylene sulfide), preferably in fiber form. The fiber mixture is agitated in a foamed medium with the agitation apparatus of the present invention, with the foam furnish then being passed onto a screen, e.g., a wire or plastic fabricated screen, and the furnish defoamed. Once the nonwoven web is formed, it is dried using conventional means, such as drying cans, at a temperature sufficient to melt the poly(phenylene sulfide) and have it coalesce around the interstices of the base fibers employed in the nonwoven sheets. [0034]
  • The agitating apparatus used in the process of the present invention is mounted for displacement within the foamed medium and includes a leading surface facing in a direction of displacement. A leading surface includes upper and lower portions converging in the direction of displacement to form a generally convex leading surface, and preferably includes a non-convex trailing surface facing away from the direction of displacement, which trailing surface is generally concave. The agitating means also comprises driving means for displacing the agitating means in the direction of displacement or disbursing and mutually separating the fibers within the foamed medium. [0035]
  • More specifically, the agitator generally comprises a plurality of legs or blades projecting radially from an axis. The number of legs can vary, and can be in different planes. Each leg includes a leading surface facing in the direction of rotational displacement, which surface is of convex shape as is the leg viewed in cross-section. By convex is meant that the upper and lower portions of the leading surface converge in the direction of rotation and meet at a relatively blunt junction. The bluntness of the junction precludes the collection of fibers. It is also preferred that the leading surface be smooth so that the fibers slip over its surface without forming flocks, spindles, or other forms of fiber aggregates. [0036]
  • The leading surface terminates in vertically spaced upper and lower trailing ends which form edges. The trailing surface of the leg is therefore non-convex, e.g., concave. The truncation of a hollow cylinder represents a convenient way of forming the agitator, but, of course, other techniques could be used to form an agitator of the desired shape. [0037]
  • The foamed medium in which the refractory fibers are agitated can be formed during the agitation, or can be formed prior to the agitation of the fibers. When forming the foamed medium in situ, the order of addition of water, chemicals (binder), surfactant and fiber is not important. The surfactant, water and metal and/or refractory fiber can be added into the mixing chamber in any order. Once the agitator is started, a successful foam dispersed refractory fiber will result. It is generally preferred, however, to not mix the fibers in the water without the presence of a surfactant. Since no foam would be generated without the surfactant, the refractory fibers would tend to tangle and agglomerate. It is possible, however, to successfully disperse the refractory fibers in a pre-existing foam. [0038]
  • In a preferred embodiment, rotation of the agitator is initiated after the mixture of fibers, water, and surfactant is placed within an agitation chamber. In response to that rotation, the surfactant and water produce a foamed medium in which the fibers are entrained. As the agitator travels through the mixture, fibers impacted by the agitator are displaced upwardly or downwardly by the convex leading surface. [0039]
  • The convex leading surface of the agitator and the trailing concave following edge are important to the proper function of the apparatus. Fibers are impacted by the leading convex surface. This surface is made to be smooth so that the refractory fibers will slide along this surface without forming multi-fiber aggregates. As the metal and/or refractory fibers leave this smooth convex surface they enter the abrupt transition to a concave surface. Intense cavitation occurs at this transition. Air pulled into this zone from the tank vortex or air added to the tank from some other source such as a pipe at the bottom, forms a foam which is stabilized by the presence of a surfactant which has been added to the water. This foam is characterized by small bubble size. Thus the refractory fibers entering this zone of bubble formation are immediately surrounded by foam. Since the foam possesses a high viscosity and low density, the refractory fibers surrounded by foam are prevented from tangling or flocculating as would be the case if they were in water. This apparatus is unique in its ability to disperse fibers into a foam uniformly. [0040]
  • Further detail regarding the agitator and its use in a foam process is found in copending U.S. application “Process and Apparatus for Making Sheet of Fibers Using a Foamed Medium,” U.S. Ser. No. 10/118,893, filed Apr. 10, 2002; and, “Process and Apparatus for Making a Sheet of Refractory Fibers Using a Foamed Medium”, U.S. Pat. No. 6,618,802, issued Sep. 9, 2003, both of which are hereby expressly incorporated by reference in their entirety. [0041]
  • The concentration of the surfactant used depends on the surfactant. Generally, a concentration of about 0.1 wt % in the solution is preferred for a strong foam forming surfactant. If the surfactant is a weaker foam former, a stronger concentration may be preferred. Anionic, non-ionic and cationic surfactants can all be used, with appropriate adjustments in concentration where needed. [0042]
  • The time the foam furnish is mixed by the agitator of the present invention can vary greatly, as it is only important that a good dispersion of the fiber in the foam is achieved. Once a good dispersion has been achieved, longer mixing or agitation is generally neither helpful or harmful. [0043]
  • The temperature of the foam furnish can also vary greatly. The temperature need only be such so as to allow a foam to be generated. [0044]
  • Other conventional, functional additives can also be added to the foam furnish, as long as they do not interfere with the foaming nature of the surfactant. Additional polymeric binders can be added, if desired. For example, polyvinyl alcohol powder has provided good results, and is a preferred additive as an additional binder. [0045]
  • Once the foam furnish has been made, the foam furnish is then passed onto a screen, such as that generally used in a typical Foudrinier machine. The foam furnish is then defoamed by using vacuum or suction boxes. Alternatively, the foam furnish can be formed on a screen by using a pressure former. Any of the conventional methods and apparatus for forming a fibrous web while using a foam can be employed with the foam furnish of the present invention. The use of the agitation means of the present invention provides a foam furnish with a uniform dispersion of the fibers. As a result, the fibrous web obtained upon defoaming is a web exhibiting good individual fiber separation and a very uniform distribution. As well, there is no directionality of the fibers, i.e., the fiber direction is random, but with a uniform distribution of the fibers. [0046]
  • Such a uniform fibrous web is obtained even when one employs very long fibers, such as fibers having a length of one-half inch, one inch, two inches or longer, and even if cellulosic or synthetic fibers are mixed with the refractory or metal fibers. This is one of the greatest advantages of the present invention in that it permits one to make a fibrous web comprised of long refractory or metal fibers, if desired, even in combination with other types of fibers, as easily and as quickly as one could make a paper web. The prepared webs, once dried to effect the binding capabilities of the poly(phenylene sulfide), also exhibit excellent high temperature properties and characteristics. [0047]
  • The nonwoven sheets of the present invention employ poly(phenylene sulfide) as the binder and find many useful applications. For example, when a refractory fiber such as carbon is used to make a carbon fiber sheet, poly(phenylene sulfide) as the binder improves its performance for use in fuel cells. The poly(phenylene sulfide) is quite resistant to the environment in the fuel cell and thus is an extraordinary binder for the carbon nonwoven sheet. The poly(phenylene sulfide) binder can also be used with metal fibers for use in electrodes to make sheets useful in electrodes or in filters. The use of nickel fibers alone, or nickel fibers in combination with ceramic fibers, find application in filter media. [0048]
  • In a preferred embodiment, the poly(phenylene sulfide) binder is used in combination with zinc fibers to form a non-woven fibrous zinc sheet. Such a zinc or other metal fiber sheet can be used as an electrode, or a filter for plant effluent. Poly(phenylene sulfide) as the binder is uniquely suited for such environments, and works quite well with the zinc fibers in terms of providing strength to the overall structure. In general, the amount of poly(phenylene sulfide) binder in the final nonwoven sheet ranges from 5 to 10 wt %, whereas the amount of zinc fiber generally ranges from about 90 to 95%. [0049]
  • While the invention has been described with preferred embodiments, it is to be understood that variations and modifications may be resorted to as will be apparent to those skilled in the art. Such variations and modifications are to be considered within the purview and the scope of the claims appended hereto. [0050]

Claims (17)

What is claimed is:
1. A nonwoven fibrous web comprised of metal or refractory fibers and poly(phenylene sulfide) as a binder for said fibers.
2. The nonwoven web of claim 1, wherein the web is comprised of metal fibers.
3. The nonwoven web of claim 1, wherein the web is comprised of refractory fibers.
4. The web of claim 3, wherein the web is comprised of carbon fibers.
5. The nonwoven web of claim 4, wherein the carbon fibers are comprised of activated carbon fibers.
6. The nonwoven web of claim 1, wherein the web is comprised of zinc, nickel and/or stainless steel fibers.
7. The nonwoven web of claim 1, wherein the poly(phenylene sulfide) binder comprises a poly(phenylene sulfide) having a para content greater than 75%.
8. The nonwoven web of claim 1, wherein the web is comprised of ceramic fibers.
9. The nonwoven web of claim 1, wherein the web is comprised of zinc fibers.
10. A method for forming a nonwoven fibrous web comprised of metal or refractory fibers with poly(phenylene sulfide) as a binder, which comprises:
(i) forming a foam furnish by agitating metal and/or refractory fibers, and poly(phenylene sulfide) in a foamed medium with an apparatus comprising agitation means mounted for displacement within the foamed medium and including a leading surface facing in a direction of displacement, the leading surface including upper and lower portions converging in the direction of displacement to form a generally convex leading surface, with the agitating means including a non-convex trailing surface facing away from the direction of displacement; and driving means for displacing the agitating means in the direction of displacement for dispersing and separating the fibers within the foamed medium; and
(ii) passing the foam furnish onto a screen and defoaming the furnish to form a nonwoven web; and
(iii) heating the formed web at a temperature sufficient to melt the poly(phenylene sulfide) contained in the web.
11. The method of claim 10, wherein the fibers are comprised of carbon fibers.
12. The method of claim 10, wherein the fibers are comprised of metal fibers.
13. The method of claim 12, wherein the fibers are comprised of zinc, nickel or stainless steel fibers.
14. The method of claim 10, wherein the poly(phenylene sulfide) is present in the foam furnish in the form of poly(phenylene sulfide) fiber.
15. A filter comprised of the nonwoven web of claim 1.
16. A fuel cell comprised of a nonwoven web as defined in claim 1.
17. An electrode comprised of a nonwoven web as defined in claim 1.
US10/657,116 2002-09-10 2003-09-09 Nonwoven fiber webs with poly(phenylene sulfide) binder Abandoned US20040142620A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/657,116 US20040142620A1 (en) 2002-09-10 2003-09-09 Nonwoven fiber webs with poly(phenylene sulfide) binder
PCT/US2003/028384 WO2004025009A2 (en) 2002-09-10 2003-09-10 Non-woven fiber webs with poly(phenylene sulfide) binder
AU2003287004A AU2003287004A1 (en) 2002-09-10 2003-09-10 Non-woven fiber webs with poly(phenylene sulfide) binder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40918702P 2002-09-10 2002-09-10
US10/657,116 US20040142620A1 (en) 2002-09-10 2003-09-09 Nonwoven fiber webs with poly(phenylene sulfide) binder

Publications (1)

Publication Number Publication Date
US20040142620A1 true US20040142620A1 (en) 2004-07-22

Family

ID=31997797

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/657,116 Abandoned US20040142620A1 (en) 2002-09-10 2003-09-09 Nonwoven fiber webs with poly(phenylene sulfide) binder

Country Status (3)

Country Link
US (1) US20040142620A1 (en)
AU (1) AU2003287004A1 (en)
WO (1) WO2004025009A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140302A2 (en) * 2006-05-26 2007-12-06 Propex Inc. Hot gas filtration fabrics with silica and flame resistant fibers
DE102014226266A1 (en) * 2014-12-17 2016-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Insulating and filtering material and its use as an inert sound-absorbing material
WO2016159389A1 (en) * 2015-03-31 2016-10-06 株式会社巴川製紙所 Low-resistance metal fiber sheet and production method thereof
WO2017127638A1 (en) * 2016-01-22 2017-07-27 Bha Altair, Llc Filter and filter media having a fiber blend
US10519606B2 (en) 2016-12-22 2019-12-31 Kimberly-Clark Wordlwide, Inc. Process and system for reorienting fibers in a foam forming process
US11255051B2 (en) 2017-11-29 2022-02-22 Kimberly-Clark Worldwide, Inc. Fibrous sheet with improved properties
US11313061B2 (en) 2018-07-25 2022-04-26 Kimberly-Clark Worldwide, Inc. Process for making three-dimensional foam-laid nonwovens
US11591755B2 (en) 2015-11-03 2023-02-28 Kimberly-Clark Worldwide, Inc. Paper tissue with high bulk and low lint

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971877A (en) * 1956-03-05 1961-02-14 Hurlbut Paper Company Synthetic fiber paper and process for producing the same
US4814224A (en) * 1987-01-02 1989-03-21 Phillips Petroleum Company Poly(arylene sulfide ketone) composites
US5085938A (en) * 1989-11-29 1992-02-04 Ppg Industries, Inc. Chemically treated fibers and method of preparing and method of using to reinforce polymers
US6099621A (en) * 1997-03-14 2000-08-08 Exxon Research And Engineering Company Membranes comprising aminoacid salts in polyamine polymers and blends
US6618802B1 (en) * 1999-09-07 2003-09-09 Hewlett-Packard Company, L.P. Superscalar processing system and method for selectively stalling instructions within an issue group
US20030220039A1 (en) * 1998-05-22 2003-11-27 Fung-Jou Chen Fibrous absorbent material and methods of making the same
US6682215B2 (en) * 2002-04-10 2004-01-27 Fibermark, Inc. Process and apparatus for making sheet of fibers using a foamed medium
US20040053049A1 (en) * 2000-12-26 2004-03-18 Makoto Tsunashima Metal coated fiber and electroconductive compositionthe same and method for production thereof and use thereof
US6830656B2 (en) * 2002-04-30 2004-12-14 Fibermark, Inc. Non-woven fiber webs with nylon binder

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2971877A (en) * 1956-03-05 1961-02-14 Hurlbut Paper Company Synthetic fiber paper and process for producing the same
US4814224A (en) * 1987-01-02 1989-03-21 Phillips Petroleum Company Poly(arylene sulfide ketone) composites
US5085938A (en) * 1989-11-29 1992-02-04 Ppg Industries, Inc. Chemically treated fibers and method of preparing and method of using to reinforce polymers
US6099621A (en) * 1997-03-14 2000-08-08 Exxon Research And Engineering Company Membranes comprising aminoacid salts in polyamine polymers and blends
US20030220039A1 (en) * 1998-05-22 2003-11-27 Fung-Jou Chen Fibrous absorbent material and methods of making the same
US6618802B1 (en) * 1999-09-07 2003-09-09 Hewlett-Packard Company, L.P. Superscalar processing system and method for selectively stalling instructions within an issue group
US20040053049A1 (en) * 2000-12-26 2004-03-18 Makoto Tsunashima Metal coated fiber and electroconductive compositionthe same and method for production thereof and use thereof
US6682215B2 (en) * 2002-04-10 2004-01-27 Fibermark, Inc. Process and apparatus for making sheet of fibers using a foamed medium
US6830656B2 (en) * 2002-04-30 2004-12-14 Fibermark, Inc. Non-woven fiber webs with nylon binder

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007140302A3 (en) * 2006-05-26 2008-03-20 Propex Inc Hot gas filtration fabrics with silica and flame resistant fibers
US20090301304A1 (en) * 2006-05-26 2009-12-10 Propex Inc. Hot Gas Filtration Fabrics With Silica And Flame Resistant Fibers
US8211195B2 (en) * 2006-05-26 2012-07-03 Propex Inc. Hot gas filtration fabrics with silica and flame resistant fibers
WO2007140302A2 (en) * 2006-05-26 2007-12-06 Propex Inc. Hot gas filtration fabrics with silica and flame resistant fibers
DE102014226266A1 (en) * 2014-12-17 2016-06-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Insulating and filtering material and its use as an inert sound-absorbing material
WO2016159389A1 (en) * 2015-03-31 2016-10-06 株式会社巴川製紙所 Low-resistance metal fiber sheet and production method thereof
JPWO2016159389A1 (en) * 2015-03-31 2018-01-25 株式会社巴川製紙所 Low resistance metal fiber sheet and manufacturing method thereof
US11591755B2 (en) 2015-11-03 2023-02-28 Kimberly-Clark Worldwide, Inc. Paper tissue with high bulk and low lint
WO2017127638A1 (en) * 2016-01-22 2017-07-27 Bha Altair, Llc Filter and filter media having a fiber blend
US10512875B2 (en) 2016-01-22 2019-12-24 Bha Altair, Llc Filter and filter media having a fiber blend
US10519606B2 (en) 2016-12-22 2019-12-31 Kimberly-Clark Wordlwide, Inc. Process and system for reorienting fibers in a foam forming process
US11255051B2 (en) 2017-11-29 2022-02-22 Kimberly-Clark Worldwide, Inc. Fibrous sheet with improved properties
US11313061B2 (en) 2018-07-25 2022-04-26 Kimberly-Clark Worldwide, Inc. Process for making three-dimensional foam-laid nonwovens
US11788221B2 (en) 2018-07-25 2023-10-17 Kimberly-Clark Worldwide, Inc. Process for making three-dimensional foam-laid nonwovens

Also Published As

Publication number Publication date
WO2004025009A2 (en) 2004-03-25
AU2003287004A8 (en) 2004-04-30
AU2003287004A1 (en) 2004-04-30
WO2004025009A3 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US3998689A (en) Process for the production of carbon fiber paper
US6830656B2 (en) Non-woven fiber webs with nylon binder
US4032607A (en) Process for producing self-bonded webs of non-woven carbon fibers
NO782278L (en) MINERAL FIBER COMPOSITION.
US20040142620A1 (en) Nonwoven fiber webs with poly(phenylene sulfide) binder
JPS63230312A (en) Reinforced thermoplastic material and manufacture thereof
KR102653334B1 (en) Self-supporting pleatable fibrous web especially useful as oil filter media and oil filter comprising the same
EP1275162A2 (en) Conductive sheet material
US6616802B1 (en) Process and apparatus for making a sheet of refractory fibers using a foamed medium
EP0023512A1 (en) Sheet material containing exfoliated vermiculite.
JPH0260795B2 (en)
DE2434445A1 (en) INORGANIC FELT PRODUCTS
FI62158B (en) FOERFARINGSSAETT FOER FRAMSTAELLNING AV EN FIBERKOMPOSITION
CA1160404A (en) Calcined serpentine as inorganic charge in sheet materials
IE45447B1 (en) Improvements relating to asbestos-free fibre reinforced cementitious products
EP0972109B1 (en) Process for making a wet-layed metal fiber/metal powder sheet
JP2006037269A (en) Heat-resistant ceramic sheet
US20020060011A1 (en) Method of making a metal fiber sheet
JP2505307B2 (en) Non-combustible paper
JP2501058B2 (en) Non-combustible sheet
EP0048278A1 (en) Process for manufacturing boron nitride fiber felt using a fourdrinier machine.
EP0048275B1 (en) Process for manufacturing boron nitride fiber mats
JPH06240595A (en) Fine fibrous polyolefin composition and its production
JPH0798129B2 (en) Precision filter paper
SU446571A1 (en) Fiber production mass

Legal Events

Date Code Title Description
AS Assignment

Owner name: FIBERMARK, INC., VERMONT

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:KINSLEY, HOMAN B. JR.;REEL/FRAME:015171/0626

Effective date: 20040322

AS Assignment

Owner name: SILVER POINT FINANCE, LLC, AS AGENT, VERMONT

Free format text: SECURITY AGREEMENT;ASSIGNORS:FIBERMARK, INC.;FIBERMARK NORTH AMERICA, INC.;REEL/FRAME:017065/0063

Effective date: 20060103

AS Assignment

Owner name: FIBERMARK NORTH AMERICA, INC., VERMONT

Free format text: INTELLECTUAL PROPERTY ASSIGNMENT;ASSIGNOR:FIBERMARK, INC.;REEL/FRAME:018375/0366

Effective date: 20061006

AS Assignment

Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, NEW YORK

Free format text: SECOND AMENDED AND RESTATED PATENT SECURITY AGREEMENT;ASSIGNORS:FIBERMARK, INC.;FIBERMARK NORTH AMERICA, INC.;REEL/FRAME:018375/0170

Effective date: 20060103

AS Assignment

Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, NE

Free format text: THIRD AMENDED AND RESTATED PATENT SECURITY AGREEMENT;ASSIGNORS:FIBERMARK HOLDINGS, LLC;FIBERMARK NORTH AMERICA, INC.;REEL/FRAME:018616/0690

Effective date: 20061211

Owner name: SILVER POINT FINANCE, LLC, AS AGENT, CONNECTICUT

Free format text: SECURITY INTEREST;ASSIGNORS:FIBERMARK HOLDING, LLC;FIBERMARK NORTH AMERICA, INC.;REEL/FRAME:018635/0263

Effective date: 20061211

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: FIBERMARK HOLDINGS, LLC, VERMONT

Free format text: TERMINATION AND RELEASE OF THIRD AMENDED AND RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT;REEL/FRAME:020309/0150

Effective date: 20071228

Owner name: FIBERMARK NORTH AMERICA, INC., VERMONT

Free format text: TERMINATION AND RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SILVER POINT FINANCE, L.L.C., AS AGENT;REEL/FRAME:020309/0031

Effective date: 20071228

Owner name: FIBERMARK HOLDINGS, LLC, VERMONT

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST;ASSIGNOR:SILVER POINT FINANCE, L.L.C., AS AGENT;REEL/FRAME:020309/0049

Effective date: 20071228

Owner name: FIBERMARK NORTH AMERICA, INC., VERMONT

Free format text: TERMINATION AND RELEASE OF SECURITY INTEREST;ASSIGNOR:SILVER POINT FINANCE, L.L.C., AS AGENT;REEL/FRAME:020309/0049

Effective date: 20071228

Owner name: FIBERMARK HOLDINGS, LLC, VERMONT

Free format text: TERMINATION AND RELEASE OF SECOND AMENDED AND RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION;REEL/FRAME:020309/0141

Effective date: 20071228

Owner name: FIBERMARK HOLDINGS, LLC, VERMONT

Free format text: TERMINATION AND RELEASE OF SECURITY AGREEMENT;ASSIGNOR:SILVER POINT FINANCE, L.L.C., AS AGENT;REEL/FRAME:020309/0031

Effective date: 20071228

Owner name: FIBERMARK NORTH AMERICA, INC., VERMONT

Free format text: TERMINATION AND RELEASE OF THIRD AMENDED AND RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT;REEL/FRAME:020309/0150

Effective date: 20071228

Owner name: FIBERMARK NORTH AMERICA, INC., VERMONT

Free format text: TERMINATION AND RELEASE OF SECOND AMENDED AND RESTATED PATENT SECURITY AGREEMENT;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION;REEL/FRAME:020309/0141

Effective date: 20071228

AS Assignment

Owner name: GENERAL ELECTRIC CAPITAL CORPORATION, AS AGENT, IL

Free format text: SECURITY AGREEMENT;ASSIGNOR:FIBERMARK NORTH AMERICA, INC.;REEL/FRAME:029427/0231

Effective date: 20121207

AS Assignment

Owner name: FIBERMARK NORTH AMERICA, INC., VERMONT

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:GENERAL ELECTRIC CAPITAL CORPORATION;REEL/FRAME:036256/0384

Effective date: 20150731