US20040116305A1 - Low friction hydrogel having straight chain polymers and method for preparation thereof - Google Patents

Low friction hydrogel having straight chain polymers and method for preparation thereof Download PDF

Info

Publication number
US20040116305A1
US20040116305A1 US10/466,895 US46689503A US2004116305A1 US 20040116305 A1 US20040116305 A1 US 20040116305A1 US 46689503 A US46689503 A US 46689503A US 2004116305 A1 US2004116305 A1 US 2004116305A1
Authority
US
United States
Prior art keywords
gel
polymer
linear chain
low friction
chain polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/466,895
Inventor
Yoshihito Osada
Jian Gong
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Technology Licensing Office Co Ltd
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD. reassignment HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GONG, JIAN PING, OSADA, YOSHIHITO
Publication of US20040116305A1 publication Critical patent/US20040116305A1/en
Assigned to HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD. reassignment HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD. CORRECTIVE TO CORRECT THE ASSIGNEE'S ADDRESS ON A DOCUMENT PREVIOUSLY RECORDED AT REEL 014989, FRAME 0457. (ASSIGNMENT OF ASSIGNOR'S INTEREST) Assignors: GONG, JIAN PING, OSADA, YOSHITO
Assigned to HOKKAIDO TECHNOLOGY LICENSING OFFICE CO. reassignment HOKKAIDO TECHNOLOGY LICENSING OFFICE CO. CORRECTED COVER SHEET TO CORRECT ASSIGNOR'S NAME, PREVIOUSLY RECORDED AT REEL/FRAME 016638/0470 (ASSIGNMENT OF ASSIGNOR'S INTEREST) Assignors: GONG, JIAN PING, OSADA, YOSHIHITO
Assigned to HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD. reassignment HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD. RECORD TO CORRECT THE RECEIVING PARTY'S NAME, PREVIOUSLY RECORDED AT REEL 017239 FRAME 0412. Assignors: GONG, JIAN PING, OSADA, YOSHIHITO
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/10Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of amides or imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F251/00Macromolecular compounds obtained by polymerising monomers on to polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F261/00Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00
    • C08F261/02Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols
    • C08F261/04Macromolecular compounds obtained by polymerising monomers on to polymers of oxygen-containing monomers as defined in group C08F16/00 on to polymers of unsaturated alcohols on to polymers of vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00

Definitions

  • the invention relates to a low friction hydrogel having linear chain polymer and a method for preparation thereof.
  • JP, A, 10-500038 is described a hardening material containing a polymer matrix such as silicon polymer and a hydrogel, which is used for healing on an injury site such as the joint and for a surface finish.
  • the hydrogel consists of a hydrophilic and water-insoluble polymer and reduces a surface friction force.
  • JP, A, 8-19599 is described a medical device having in the surface a layer to form a hydrogel when swollen, which consists of a water-soluble and water-swollen polymer having a reactive functional group and of an antithrombotic drug.
  • the hydrogel layer which is fixed on the surface of a medical device such as catheter, becomes a lubrication layer and reduces the friction.
  • JP JP, A, 6-71818 is described a underwater clothing small in a frictional resistance toward water, which uses a composite sheet consisting of a fiber base and a resin membrane containing a water-soluble alginate.
  • the problem of the invention is to provide a further low friction material to satisfy the above requirements.
  • the invention relates to a low friction hydrogel, wherein a linear chain polymer is admixed with or graft-polymerized to a polymer gel.
  • the invention also relates to the above low friction hydrogel wherein the linear chain polymer is graft-polymerized on a surface of the polymer gel.
  • the invention relates to the above low friction hydrogel, wherein monomers constituting the polymer gel and monomers constituting the linear chain polymer are the same kind of monomers.
  • the invention also relates to the above low friction hydrogel, wherein the frictional coefficient is not more than 0.01.
  • the invention relates to the above low friction hydrogel, wherein the content ratio of the linear chain polymer relative to the total weight of the low friction hydrogel is 2-300 wt. %.
  • the invention also relates to the above low friction hydrogel, wherein the polymer gel is an ionic gel.
  • the invention relates to use of the above low friction hydrogel on surfaces of a solid and a biological tissue.
  • the invention also relates to a method for preparing the low friction hydrogel, wherein the linear chain polymer or monomers forming the linear chain polymer is admixed with and/or graft-polymerized to a polymer gel or monomers forming the polymer gel.
  • the invention relates to the above method, wherein the linear chain polymer is admixed with and then graft-polymerized to the polymer gel.
  • the invention also relates to the above method wherein one or more species of monomers to form the linear chain polymer are admixed with and polymerized to the polymer gel, so as to involve the linear chain polymer into the polymer gel.
  • the invention relates to the above method, wherein the linear chain polymer are admixed with and polymerized with one or more species of monomers forming the polymer gel, so as to involve the linear chain polymer into the polymer gel.
  • the invention also relates to the above method wherein one or more species of monomers forming the polymer gel and one or more species of monomers forming the linear chain polymer are admixed and polymerized, so as to graft the linear chain polymer to the polymer gel.
  • the invention relates to the above low friction hydrogel, wherein monomers forming the polymer gel and monomers forming the linear chain polymer are the same type of monomers.
  • the invention also relates to the method for preparing the low friction hydrogel, wherein monomers forming the polymer gel are polymerized on a hydrophobic substrate.
  • FIG. 1 shows the results on the rate of rotation dependency of the friction force of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) gel against a glass plate.
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • FIG. 2 shows the results on the load dependency of the friction force of AMPS gel when the velocity is 0.01 rad/s.
  • FIG. 3 shows the results on the frictional coefficient of dimethyl acrylamide (DAMM) gel, AMPS gel and poly(vinyl alcohol) (PVA) gel against a glass plate.
  • DAMM dimethyl acrylamide
  • AMPS AMPS gel
  • PVA poly(vinyl alcohol)
  • FIG. 4 shows the results on the frictional coefficient of DAMM gel and AMPS gel against a glass plate
  • the monomers constituting the polymer gels used in the invention are not limited if they are monomers forming hydrogels with three-dimensional network atructure, typically illustrative are acrylic acid or methacrylic acid and a derivative thereof, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylamide or methacrylamide and a derivative thereof, stylene sulfonic acid, vinyl sulfonic acid, vinyl phosphoric acid, vinylpyridine, trimethylvinylpyridinium chloride, 3-acryloylaminopropyltrimethylammonium chloride, 3-dimethylmethacryloyloxyethylammonium propanesulfonic acid and the like.
  • Preferable are acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, acrylic acid, stylene sulfonic acid, etc.
  • a crosslinking agent to crosslink these monomers is N,N′-methylenebisacrylamide, ethyleneglycol dimethacrylate, divinylbenzene or the like.
  • any two or three components of the monomers described above can be used, though the same species of monomers as the monomers constituting the above polymer gels can also be used.
  • polysaccharide gels such as gellan gel, kappa-carrageenan gel, agarose gel, carboxymethyl cellulose gel or the like, protein gels such as gelatin, collagen or the like, nucleic acid gels such as DNA, RNA or the like, and polymer gels such as polyvinyl alcohol, polyglutamic acid, polyethylene imine, frozen-thawed gel or the like.
  • the content ratio of the linear chain polymer relative to the total weight of the low friction hydrogel is preferably 2-300 wt. %., especially 5-100 wt. % from a viewpoint of the reduction effect of the friction force.
  • the low friction hydrogels of the invention include (1) the low friction hydrogels in which the linear chain polymer is admixed with the polymer gel, or (2) the low friction hydrogels in which the linear chain polymer is graft-polymerized to the polymer gel.
  • any method may be used if it is a method in which the linear chain polymer can be admixed with the polymer gel, though typically, the following methods are illustrated.
  • the linear chain polymer is physically admixed with the polymer gel.
  • the polymer gel After forming the polymer gel, the polymer gel is fully immersed in a monomer solution forming the linear chain polymer, and the monomers are dispersed in the gel, followed by polymerization of the monomers.
  • the linear chain polymer is admixed with a material such as monomers and the gel is formed by pollymerization.
  • any method may be used if it is a method in which the linear chain polymer can be graft-polymerized to the polymer gel, though typically, the following methods are illustrated.
  • the linear chain polymer is admixed with a formed polymer gel, followed by graft-polymerization.
  • One or more species of monomers forming the polymer gel and one or more species of monomers forming the linear chain polymer are admixed and polymerized, so as to graft the linear chain polymer to the polymer gel.
  • the above f method is a novel gel synthetic method which the inventors have developed originally (refer to J. Phys. Chem. B, 103,6069-6074(1999), Biomacromolecules, 1, 162-167(2000), Proceeding of The Society of Polymer Science, Vol.48, No. 10, 2603-2604(1999), Proceeding of The Society of Polymer Science, Vol.49, No. 12, 3689-3692(2000).
  • a hydrophobic substrate such as Teflon plate, polypropylene, polyethylene, polystylene, or the like produces a concentration gradient of a hydrophilic monomer solution near the hydrophobic substrate, and a crosslinking density becomes low, resulting to form gels having graft chains on the surface.
  • This method is one step, does not need to use other reagents or the like, and is particularly preferable since a desired gel may simply be formed by the hydrophobic substrate only
  • the polymer gel having the linear chain polymer which is obtained by the above each method, contains the hydrophilic polymer chains in the gel or on the surface, a water content of the gel is further increased, and the hydrated gel or the polymer chains hydrated on the surface work as a lubricious layer at the interface of solids, enabling to obtain a low friction polymer hydrogel.
  • a low friction hydrogel which is an ionic gel
  • an electrostatic repulsion force is produced, enabling to obtain the best friction effect due to the formation of a further thick water layer at a friction interface compared with a neutral gel.
  • the hydrogels of the invention preferably contain a plenty of water in order to obtain an enough low friction effect.
  • the water content is preferably not less than 50 wt. %, in particular preferably not less than 100 wt. %.
  • the frictional coefficient of the obtained hydrogels is also preferably not more than 0.01, in particular preferably not more than 0.005.
  • the form of the hydrogels of the invention may be either form if it is a form to contain the linear chain polymer chains in the polymer gels or on the polymer gel surfaces.
  • one having the linear chain polymer on the gel surface is preferable, further, one to which the polymer chains are graft-polymerized on the surface is preferable.
  • Methylenebisacrylamide 8% as a crosslinking agent, alpha-ketoglutaric acid 0.1% as a photosensitizer, and 4 g of poly(AMPS) of molecular weight 250,000 synthesized in advance were added to an aqueous solution (AMPS) 100 ml containing 2-acrylamido-2-methylpropanesulfonic acid 20 g, followed by carrying out 400 W UV irradiation to prepare AMPS gel containing the linear chain polymer on a glass plate.
  • AMPS aqueous solution
  • PAMPS gel containing no linear chain polymer was prepared in the same way as that in the example 1.
  • DMAA gel containing a linear chain polymer was synthesized in the same way as that in the example 1.
  • DMAA gel containing no linear chain polymer was prepared in the same way as that in the example 3.
  • Methylenebisacrylamide 0.5 g as a crosslinking agent, and alpha-ketoglutaric acid 0.1 g as a photosensitizer were added to an aqueous solution 100 ml containing AMPS 10 g, followed by carrying out 400 W UV irradiation to prepare AMPS gel on a glass plate.
  • the obtained gel was immersed in an aqueous solution 100 ml containing AMPS monomer 4 g for 1 week to disperse the monomer into an inner part, followed by 400 W UV irradiation to polymerize the polymer in the inner part, thereby preparing a gel containing linear chain polymer chains.
  • FIG. 2 shows the results in which a load dependency of the friction force measured fixing the velocity at 0.01 rad/s.
  • the gel containing the linear chain polymer and the gel having graft chains on the surface both become small in the friction force by not less than one place.
  • the effect was remarkable in the low loading area, demonstrating reduction of the friction force in not less than two places.
  • Methylenebisacrylamide 1 wt. % as a crosslinking agent, and alpha-ketoglutaric acid 0.5 wt. % as a photosensitizer were added to an aqueous solution 50 ml containing DMAA 7 g, followed by carrying out 200 W UV irradiation to prepare DMAA gel on a glass plate.
  • AMPS gel was prepared in a similar method.
  • an aqueous solution 100 ml containing ethyleneglycol glycidyl ether 2 g and polyvinyl alcohol 10 g was reacted at 80° C. for 24 hours, carrying out crosslinking to prepare polyvinyl alcohol (PVA) gel.
  • PVA polyvinyl alcohol
  • FIG. 3 shows the frictional coefficient for each gel measured.
  • the upper figure are the results of the gels in which poly(DMAA) or poly(AMPS) was allowed to be contained in DMAA gel, and the lower figure are the results of the gels in which poly(AMPS) was allowed to be contained in polyvinyl alcohol (PVA) gel or AMPS gel.
  • PVA polyvinyl alcohol
  • FIG. 4 shows the frictional coefficient for each gel measured.
  • DMAA shows the gel polymerized by sandwiching between glass plates
  • DMAA graft does the gel polymerized by sandwiching between Teflon plates and having graft chains on the surface
  • PAMPS does APMS gel polymerized by sandwiching between glass plates
  • PAMPS graft does APMS gel polymerized by sandwiching between Teflon plates and having graft chains on the surface.
  • a low friction material in a degree which has not been found as yet can be prepared.

Abstract

A low friction hydrogel, wherein a linear chain polymer is admixed with or graft-polymerized to a polymer gel; and a method for preparing the hydrogel. The hydrogel exhibits improved low friction property over a conventional material.

Description

    TECHNICAL FIELD
  • The invention relates to a low friction hydrogel having linear chain polymer and a method for preparation thereof. [0001]
  • BACKGROUND ART
  • In order to realize a mechanical motion under a low friction a ball bearing is used or a method to realize a sliding friction under the presence of lubricants such as silicon oil or glycerin is conventionally used. In the former case, the apparatus not only becomes complex, but there is a defect that the friction increases under low speed. In the latter case, due to detachment or elution of the lubricant a successive supply must be made, and therefore there is a problem in durability of effect. There has been almost no example of a low friction motion without a lubricant except the only one example using a ultra-high polymer polyethylene or Teflon, and in these cases it is difficult to make the frictional coefficient not more than 0.01. [0002]
  • In the meantime the inventors are the first in the world to report that polymer hydrogels are very low as 10[0003] −2-10−3 in the surface frictional coefficient compared with other solid materials [J. Phys. Chem. B, 101,5487-5489(1997), J. Cmem. Phys., 109, 8062-8068(1998), J. Phys. Chem. B, 103,6001-6006(1999), J. Phys. Chem. B, 103,6007-6014(1999), The Japan Academy, 75,122-126(1999), J. Phys. Chem. B, 104, 3423-3428 (2000)], and the elucidation of a friction mechanism in a biological joint and further the application to an artificial joint and the like are expected.
  • In JP, A, 10-500038 is described a hardening material containing a polymer matrix such as silicon polymer and a hydrogel, which is used for healing on an injury site such as the joint and for a surface finish. The hydrogel consists of a hydrophilic and water-insoluble polymer and reduces a surface friction force. [0004]
  • In JP, A, 8-19599 is described a medical device having in the surface a layer to form a hydrogel when swollen, which consists of a water-soluble and water-swollen polymer having a reactive functional group and of an antithrombotic drug. The hydrogel layer, which is fixed on the surface of a medical device such as catheter, becomes a lubrication layer and reduces the friction. [0005]
  • In JP, A, 6-71818 is described a underwater clothing small in a frictional resistance toward water, which uses a composite sheet consisting of a fiber base and a resin membrane containing a water-soluble alginate. [0006]
  • Thus, in the development of a medical device or the like materials in which the frictional resistance of a material surface is small have been developed, though in case of considering the application to an artificial joint and the like, the frictional coefficient of the joint is 0.001-0.03, and in a view point of a low friction material similar to a biological body or the realization of a low friction under a low velocity, a satisfactory material has not been obtained yet. [0007]
  • DISCLOSURE OF THE INVENTION
  • Consequently, the problem of the invention is to provide a further low friction material to satisfy the above requirements. [0008]
  • During extensive researches to solve the above problem the inventors noticed that on the surface of fishes or marine algae or in an internal organ a certain kind of polymer is excreted and this has a big role for the reduction of the resistance from water or the friction in case of swallowing foods, and found that a further low friction hydrogel can be obtained by involving a linear chain polymer into a polymer gel. As a result of further studies the invention has been accomplished. [0009]
  • Namely, the invention relates to a low friction hydrogel, wherein a linear chain polymer is admixed with or graft-polymerized to a polymer gel. [0010]
  • The invention also relates to the above low friction hydrogel wherein the linear chain polymer is graft-polymerized on a surface of the polymer gel. [0011]
  • Further, the invention relates to the above low friction hydrogel, wherein monomers constituting the polymer gel and monomers constituting the linear chain polymer are the same kind of monomers. [0012]
  • The invention also relates to the above low friction hydrogel, wherein the frictional coefficient is not more than 0.01. [0013]
  • Further, the invention relates to the above low friction hydrogel, wherein the content ratio of the linear chain polymer relative to the total weight of the low friction hydrogel is 2-300 wt. %. [0014]
  • The invention also relates to the above low friction hydrogel, wherein the polymer gel is an ionic gel. [0015]
  • Further, the invention relates to use of the above low friction hydrogel on surfaces of a solid and a biological tissue. [0016]
  • The invention also relates to a method for preparing the low friction hydrogel, wherein the linear chain polymer or monomers forming the linear chain polymer is admixed with and/or graft-polymerized to a polymer gel or monomers forming the polymer gel. [0017]
  • Further, the invention relates to the above method, wherein the linear chain polymer is admixed with and then graft-polymerized to the polymer gel. [0018]
  • The invention also relates to the above method wherein one or more species of monomers to form the linear chain polymer are admixed with and polymerized to the polymer gel, so as to involve the linear chain polymer into the polymer gel. [0019]
  • Further, the invention relates to the above method, wherein the linear chain polymer are admixed with and polymerized with one or more species of monomers forming the polymer gel, so as to involve the linear chain polymer into the polymer gel. [0020]
  • The invention also relates to the above method wherein one or more species of monomers forming the polymer gel and one or more species of monomers forming the linear chain polymer are admixed and polymerized, so as to graft the linear chain polymer to the polymer gel. [0021]
  • Further, the invention relates to the above low friction hydrogel, wherein monomers forming the polymer gel and monomers forming the linear chain polymer are the same type of monomers. The invention also relates to the method for preparing the low friction hydrogel, wherein monomers forming the polymer gel are polymerized on a hydrophobic substrate.[0022]
  • BRIEF DESCRIPTION OF DRAWING
  • FIG. 1 shows the results on the rate of rotation dependency of the friction force of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) gel against a glass plate. [0023]
  • FIG. 2 shows the results on the load dependency of the friction force of AMPS gel when the velocity is 0.01 rad/s. [0024]
  • FIG. 3 shows the results on the frictional coefficient of dimethyl acrylamide (DAMM) gel, AMPS gel and poly(vinyl alcohol) (PVA) gel against a glass plate. [0025]
  • FIG. 4 shows the results on the frictional coefficient of DAMM gel and AMPS gel against a glass plate[0026]
  • MODE FOR CARRYING OUT THE INVENTION
  • Although the monomers constituting the polymer gels used in the invention are not limited if they are monomers forming hydrogels with three-dimensional network atructure, typically illustrative are acrylic acid or methacrylic acid and a derivative thereof, 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate, acrylamide or methacrylamide and a derivative thereof, stylene sulfonic acid, vinyl sulfonic acid, vinyl phosphoric acid, vinylpyridine, trimethylvinylpyridinium chloride, 3-acryloylaminopropyltrimethylammonium chloride, 3-dimethylmethacryloyloxyethylammonium propanesulfonic acid and the like. Preferable are acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, acrylic acid, stylene sulfonic acid, etc. [0027]
  • A crosslinking agent to crosslink these monomers is N,N′-methylenebisacrylamide, ethyleneglycol dimethacrylate, divinylbenzene or the like. [0028]
  • As the monomers forming the linear chain polymer used in the invention, any two or three components of the monomers described above can be used, though the same species of monomers as the monomers constituting the above polymer gels can also be used. [0029]
  • Further, except the above polymer gels can also be used polysaccharide gels such as gellan gel, kappa-carrageenan gel, agarose gel, carboxymethyl cellulose gel or the like, protein gels such as gelatin, collagen or the like, nucleic acid gels such as DNA, RNA or the like, and polymer gels such as polyvinyl alcohol, polyglutamic acid, polyethylene imine, frozen-thawed gel or the like. [0030]
  • The content ratio of the linear chain polymer relative to the total weight of the low friction hydrogel is preferably 2-300 wt. %., especially 5-100 wt. % from a viewpoint of the reduction effect of the friction force. [0031]
  • The low friction hydrogels of the invention include (1) the low friction hydrogels in which the linear chain polymer is admixed with the polymer gel, or (2) the low friction hydrogels in which the linear chain polymer is graft-polymerized to the polymer gel. [0032]
  • As the method for preparing the above (1) hydrogels, that is, the method for preparing the hydrogels in which the linear chain polymer is admixed with the polymer gel, any method may be used if it is a method in which the linear chain polymer can be admixed with the polymer gel, though typically, the following methods are illustrated. [0033]
  • a. The linear chain polymer is physically admixed with the polymer gel. [0034]
  • b. After forming the polymer gel, the polymer gel is fully immersed in a monomer solution forming the linear chain polymer, and the monomers are dispersed in the gel, followed by polymerization of the monomers. [0035]
  • c. In case of forming the polymer gel, the linear chain polymer is admixed with a material such as monomers and the gel is formed by pollymerization. [0036]
  • In the meantime, as the method for preparing the above (2) hydrogels, that is, the method for preparing the hydrogels in which the linear chain polymer is graft-polymerized to the polymer gel, any method may be used if it is a method in which the linear chain polymer can be graft-polymerized to the polymer gel, though typically, the following methods are illustrated. [0037]
  • d. The linear chain polymer is admixed with a formed polymer gel, followed by graft-polymerization. [0038]
  • e. One or more species of monomers forming the polymer gel and one or more species of monomers forming the linear chain polymer are admixed and polymerized, so as to graft the linear chain polymer to the polymer gel. [0039]
  • f. Polymerization of the polymer gel is made between hydrophobic substrates. [0040]
  • In particular, the above f method is a novel gel synthetic method which the inventors have developed originally (refer to J. Phys. Chem. B, 103,6069-6074(1999), Biomacromolecules, 1, 162-167(2000), Proceeding of The Society of Polymer Science, Vol.48, No. 10, 2603-2604(1999), Proceeding of The Society of Polymer Science, Vol.49, No. 12, 3689-3692(2000). In place of a gel polymerization conventionally carried out on a hydrophlic substrate such as a glass plate or the like, use of a hydrophobic substrate such as Teflon plate, polypropylene, polyethylene, polystylene, or the like produces a concentration gradient of a hydrophilic monomer solution near the hydrophobic substrate, and a crosslinking density becomes low, resulting to form gels having graft chains on the surface. This method is one step, does not need to use other reagents or the like, and is particularly preferable since a desired gel may simply be formed by the hydrophobic substrate only [0041]
  • Since the polymer gel having the linear chain polymer, which is obtained by the above each method, contains the hydrophilic polymer chains in the gel or on the surface, a water content of the gel is further increased, and the hydrated gel or the polymer chains hydrated on the surface work as a lubricious layer at the interface of solids, enabling to obtain a low friction polymer hydrogel. Further when a low friction hydrogel, which is an ionic gel, is applied to a solid surface in case of using an ionic straight polymer chain, an electrostatic repulsion force is produced, enabling to obtain the best friction effect due to the formation of a further thick water layer at a friction interface compared with a neutral gel. [0042]
  • The hydrogels of the invention preferably contain a plenty of water in order to obtain an enough low friction effect. The water content is preferably not less than 50 wt. %, in particular preferably not less than 100 wt. %. [0043]
  • The frictional coefficient of the obtained hydrogels is also preferably not more than 0.01, in particular preferably not more than 0.005. [0044]
  • As the form of the hydrogels of the invention, it may be either form if it is a form to contain the linear chain polymer chains in the polymer gels or on the polymer gel surfaces. However, in order to effectively realize the low frictional force, one having the linear chain polymer on the gel surface is preferable, further, one to which the polymer chains are graft-polymerized on the surface is preferable. [0045]
  • EXAMPLE
  • In the following, the low friction hydrogels of the invention are explained in more detail by the examples, the comparative examples and the test examples. However, the invention is not limited in any way by these. [0046]
  • Example 1
  • Methylenebisacrylamide 8% as a crosslinking agent, alpha-ketoglutaric acid 0.1% as a photosensitizer, and 4 g of poly(AMPS) of molecular weight 250,000 synthesized in advance were added to an aqueous solution (AMPS) 100 ml containing 2-acrylamido-2-methylpropanesulfonic acid 20 g, followed by carrying out 400 W UV irradiation to prepare AMPS gel containing the linear chain polymer on a glass plate. [0047]
  • Example 2
  • Except letting 8 g of poly(AMPS) of molecular weight 250,000 be contained in stead of 4 g in the example 1, AMPS gel containing the linear chain polymer was prepared in the same way as that in the example 1. [0048]
  • Comparative example 1
  • Except letting no poly(AMPS) of molecular weight 250,000 be contained, PAMPS gel containing no linear chain polymer was prepared in the same way as that in the example 1. [0049]
  • The gels of the examples 1, 2 and the comparative example 1 which were each cut out to the regular cube of one side 2 cm were placed on a glass plate, measuring the friction force in water by measurement of the shear stress in case of rotating the glass plate at various velocities. The results are shown in Table 1. Table 2 shows the results of the friction force in which the gels of the examples 2 and the comparative example 1 were each mounted not on the glass buton the same gels, measuring the friction force. [0050]
    TABLE 1
    Between Gel-Glass
    Friction force Rate of rotation (radian)
    (Newton) 10 1 0.1 0.01
    Example 1 0.04 0.005 0.0004 0.00002
    Example 2 0.03 0.007 0.0008 0.0002
    Comparative 0.1 0.04 0.02 0.01
    Example 1
  • [0051]
    TABLE 2
    Between Gel-Gel
    Friction force Rate of rotation (radian)
    (Newton) 10 1 0.1 0.01
    Example 2 0.06 0.03 0.008 0.003
    Comparative 0.3 0.04 0.03 0.02
    Example 1
  • Example 3
  • Using dimethyl acrylamide (DMAA) instead of AMPS used in the example 1 and 2 g of linear chain poly(DMAA) of molecular weight 120,000 instead of poly(AMPS) of molecular weight 250,000, DMAA gel containing a linear chain polymer was synthesized in the same way as that in the example 1. [0052]
  • Comparative example 2
  • Except letting nolinear chain poly(DMAA) of molecular weight 120,000 in the example 3 be contained, DMAA gel containing no linear chain polymer was prepared in the same way as that in the example 3. [0053]
  • Using the gels of the example 3 and the comparative example 2, the results of the friction force between the gel and glass are shown in Table 3 in the same way as the example 1. [0054]
    TABLE 3
    Between Gel-Glass
    Friction force Rate of rotation (radian)
    (Newton) 10 1 0.1 0.01
    Example 3 0.03 0.01 0.007 0.005
    Comparative 0.9 0.2 0.07 0.06
    Example 2
  • Example 4
  • In the case of the usual AMPS gel synthesis in the comparative example 1, polymerization was made not on a glass plate but on a methacryllic resin plate to prepare a graft gel having free end poly(AMPS) chains on the gel surface. The obtained gel was swollen in the water to measure the friction force between the gel and glass in the same way as the example 1. The results compared with the comparative example 1 is shown in Table 4. [0055]
    TABLE 4
    Between Gel-Glass
    Friction force Rate of rotation (radian)
    (Newton) 10 1 0.1 0.01
    Example 4 0.02 0.006 0.0007 0.0001
    Comparative 0.1 0.04 0.02 0.01
    Example 1
  • Example 5
  • 10 g of PAMPS gel synthesized in the comparative example 1 was let stand in an aqueous solution 200 ml containing 4 g of poly(DMAA) of molecular weight 100,000 synthesized in advance at room temperature for 1 week to obtain PAMPS gel containing 0.6 g of poly(DMAA). [0056]
  • After the gel thus obtained reaches to the equilibrium swelling in pure water, the friction force was measured using a viscoelasticity tester (ARES, Rheometric Scientific, Inc.), showing that the friction force was reduced to {fraction (1/12)} compared with that containing no poly(DMAA) 0.6 g. [0057]
  • Example 6
  • An aqueous solution 100 ml containing 3 g of poly(acrylamide) of molecular weight 120,000, 7 g of polyvinyl alcohol of molecular weight 80,000 and 2 g of ethyleneglycol glycidyl ether as the crosslinking agent was heated at 70° C. for 24 hours to obtain polyvinyl alcohol gel containing poly(acrylamide). This gel was cut into the regular cube of 1 cm×1 cm×1 cm to measure the friction force by the method described in the example 5, showing that the value was 15% compared with that containing no poly(acrylamide). [0058]
  • Test example 1
  • Methylenebisacrylamide 0.5 g as a crosslinking agent, and alpha-ketoglutaric acid 0.1 g as a photosensitizer were added to an aqueous solution 100 ml containing AMPS 10 g, followed by carrying out 400 W UV irradiation to prepare AMPS gel on a glass plate. The obtained gel was immersed in an aqueous solution 100 ml containing AMPS monomer 4 g for 1 week to disperse the monomer into an inner part, followed by 400 W UV irradiation to polymerize the polymer in the inner part, thereby preparing a gel containing linear chain polymer chains. [0059]
  • Separately, in the case of the AMPS gel polymerization with the same composition as the above described gel, the polymerization was made on polystyrene in place of a glass plate to prepare a gel having poly (AMPS) graft chains on the surface. [0060]
  • The results of the friction force of the gels against a glass plate measured by the method described in the example 5 are shown in FIG. 1. [0061]
  • As the figure shows, contrasting to the fact that in the usual AMPS gel prepared on the glass plate was in the order of 10[0062] −1-10−2 Nm−2, the gel containing linear chain polymer showed 100-10−2 Nm−2, and the gel containing the linear chain graft chains on the surface prepared making polystylene a substrate showed a further small friction force as 10−1-10−3 Nm−2. The calculation of the frictional coefficients according to these values gives 10−2-10−3, 10−13-10−4, and 10−4-10−5 respectively. In the area small in a relative velocity, the presence of the linear chain polymer reduced the friction force in not less than two places.
  • Test example 2
  • FIG. 2 shows the results in which a load dependency of the friction force measured fixing the velocity at 0.01 rad/s. [0063]
  • According to the figure, the gel containing the linear chain polymer and the gel having graft chains on the surface both become small in the friction force by not less than one place. In particular, the effect was remarkable in the low loading area, demonstrating reduction of the friction force in not less than two places. [0064]
  • The friction force of the gel having graft chains on the surface reduced largely, and in particular, the effect was remarkable in the area of the low velocity and low load. [0065]
  • Test example 3
  • [0066] Methylenebisacrylamide 1 wt. % as a crosslinking agent, and alpha-ketoglutaric acid 0.5 wt. % as a photosensitizer were added to an aqueous solution 50 ml containing DMAA 7 g, followed by carrying out 200 W UV irradiation to prepare DMAA gel on a glass plate. AMPS gel was prepared in a similar method. In the meantime, an aqueous solution 100 ml containing ethyleneglycol glycidyl ether 2 g and polyvinyl alcohol 10 g was reacted at 80° C. for 24 hours, carrying out crosslinking to prepare polyvinyl alcohol (PVA) gel. Each gel obtained was immersed in an aqueous DMAA monomer solution of 1.0 M or an aqueous AMPS monomer solution of 1.0 M for 1 week to disperse the monomer into an inner part, followed by 400 W UV irradiation to polymerize the polymer in the inner part, preparing a gel containing linear chain polymer chains. FIG. 3 shows the frictional coefficient for each gel measured.
  • The upper figure are the results of the gels in which poly(DMAA) or poly(AMPS) was allowed to be contained in DMAA gel, and the lower figure are the results of the gels in which poly(AMPS) was allowed to be contained in polyvinyl alcohol (PVA) gel or AMPS gel. [0067]
  • In DMAA gel the frictional coefficient was reduced to one-tenth utmost due to the inclusion of linear chain polymer chains, in one in which poly(AMPS) was allowed to be contained in AMPS gel it was reduced to one-hundredth utmost, and in one in which poly(AMPS) was allowed to be contained in PVA gel it was reduced to one-thousandth utmost. [0068]
  • Test example 4
  • In the case of synthesis for the gels of DMAA and AMPS, polymerization was carried out being sandwiched not between glass plates but Teflon plates to prepare gels having free end graft chains on the gel surface. FIG. 4 shows the frictional coefficient for each gel measured. [0069]
  • In the figure, DMAA shows the gel polymerized by sandwiching between glass plates, DMAA graft does the gel polymerized by sandwiching between Teflon plates and having graft chains on the surface, PAMPS does APMS gel polymerized by sandwiching between glass plates, and PAMPS graft does APMS gel polymerized by sandwiching between Teflon plates and having graft chains on the surface. [0070]
  • In DMAA gel the frictional coefficient changed to one tenth utmost due to the presence of free end graft chains on the surface, and in AMPS gel it did to one-thousandth utmost, showing a low value of the frictional coefficient hitherto not obtained, that is, 6×10[0071] −5.
  • INDUSTRIAL APPLICABILITY
  • According to the invention, a low friction material in a degree which has not been found as yet can be prepared. [0072]

Claims (14)

1. A low friction hydrogel, wherein a linear chain polymer is admixed with or graft-polymerized to a polymer gel.
2. The low friction hydrogel according to claim 1, wherein the linear chain polymer is graft-polymerized on a surface of the polymer gel.
3. The low friction hydrogel according to claims 1 or 2, wherein monomers constituting the polymer gel and monomers constituting the linear chain polymer are the same kind of monomers.
4. The low friction hydrogel according to any one of claims 1 to 3, wherein the frictional coefficient is not more than 0.01.
5. The low friction hydrogel according to any one of claims 1 to 4, wherein the content ratio of the linear chain polymer relative to the total weight of the low friction hydrogel is 2-300 wt. %.
6. The low friction hydrogel according to any one of claims 1 to 5, wherein the polymer gel is an ionic gel.
7. Use of the low friction hydrogel according to claim 6 on surfaces of a solid and a biological tissue.
8. A method for preparing the low friction hydrogel, wherein the linear chain polymer or monomers forming the linear chain polymer is admixed with and/or graft-polymerized to a polymer gel or monomers forming the polymer gel.
9. The method for preparing the low friction hydrogel according to claim 8, wherein the linear chain polymer is admixed with and then graft-polymerized to the polymer gel.
10. The method according to claim 8, wherein one or more species of monomers to form the linear chain polymer are admixed with and polymerized to the polymer gel, so as to involve the linear chain polymer into the polymer gel.
11. The method according to claim 8, wherein the linear chain polymer are admixed with and polymerized with one or more species of monomers forming the polymer gel, so as to involve the linear chain polymer into the polymer gel.
12. The method according to claim 8, wherein one or more species of monomers forming the polymer gel and one or more species of monomers forming the linear chain polymer are admixed and polymerized, so as to graft the linear chain polymer to the polymer gel.
13. The low friction hydrogel according to any one of claims 8 to 12, wherein monomers forming the polymer gel and monomers forming the linear chain polymer are the same type of monomers.
14. The method for preparing the low friction hydrogel, wherein monomers forming the polymer gel are polymerized on a hydrophobic substrate.
US10/466,895 2001-01-22 2001-09-07 Low friction hydrogel having straight chain polymers and method for preparation thereof Abandoned US20040116305A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001013617A JP5048183B2 (en) 2001-01-22 2001-01-22 Low friction hydrogel having linear polymer and method for producing the same
JP2001-013617 2001-01-22
PCT/JP2001/007776 WO2002057368A1 (en) 2001-01-22 2001-09-07 Low friction hydrogel having straight chain polymer and method for preparation thereof

Publications (1)

Publication Number Publication Date
US20040116305A1 true US20040116305A1 (en) 2004-06-17

Family

ID=18880439

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/466,895 Abandoned US20040116305A1 (en) 2001-01-22 2001-09-07 Low friction hydrogel having straight chain polymers and method for preparation thereof

Country Status (3)

Country Link
US (1) US20040116305A1 (en)
JP (1) JP5048183B2 (en)
WO (1) WO2002057368A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070272040A1 (en) * 2004-09-09 2007-11-29 Takaharu Okajima Device and Method for Measuring Molecule Using Gel Substrate Material
US20090130755A1 (en) * 2007-11-16 2009-05-21 Michael Detamore Hydrogel networks having living cells encapsulated therein
WO2012054107A1 (en) * 2010-07-09 2012-04-26 Lubrizol Advanced Materials, Inc. Blends of acrylic copolymer thickeners
WO2015002888A1 (en) * 2013-07-01 2015-01-08 Trustees Of Boston University Dissolvable hydrogel compositions for wound management and methods of use
US10982054B2 (en) 2014-12-26 2021-04-20 Samsung Electronics Co., Ltd. Polymer gel and preparation method therefor
CN114787248A (en) * 2019-09-30 2022-07-22 日清纺控股株式会社 Composite material

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002309026A1 (en) * 2002-05-01 2003-11-17 Hokkaido Technology Licensing Office Co., Ltd. Gel having multiple network structure and method for preparation thereof
WO2004015012A1 (en) * 2002-08-08 2004-02-19 Hokkaido Technology Licensing Office Co., Ltd. Low friction organogel
US8025696B2 (en) 2004-06-18 2011-09-27 National University Corporation Hokkaido University Artificial meniscus and process of making thereof
JP5059407B2 (en) * 2004-06-25 2012-10-24 国立大学法人北海道大学 Gel, production method thereof, water-absorbent resin, lubricant, and cell culture substrate
JP5324070B2 (en) 2007-08-27 2013-10-23 スリーエム イノベイティブ プロパティズ カンパニー Polymer gel structure and method for producing the same
JP5850417B2 (en) * 2010-08-04 2016-02-03 国立大学法人北海道大学 Polymer gel and method for producing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939049A (en) * 1974-04-10 1976-02-17 The United States Of America As Represented By The United States Energy Research And Development Administration Process for radiation grafting hydrogels onto organic polymeric substrates
US4948480A (en) * 1988-05-02 1990-08-14 Eastman Kodak Company Kit for electrophoresis gel medium
US5066376A (en) * 1988-05-02 1991-11-19 Eastman Kodak Company Electrophoresis media comprising active methylene groups
US5453467A (en) * 1991-08-30 1995-09-26 Biocompatibles Limited Polymer treatments
US5525356A (en) * 1990-03-30 1996-06-11 Medtronic, Inc. Amphoteric N-substituted acrylamide hydrogel and method
US5902832A (en) * 1996-08-20 1999-05-11 Menlo Care, Inc. Method of synthesizing swollen hydrogel for sphincter augmentation
US6897072B1 (en) * 1999-04-27 2005-05-24 Ciphergen Biosystems, Inc. Probes for a gas phase ion spectrometer

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4746551A (en) * 1985-11-20 1988-05-24 Micro-Map, Inc. Rehydratable polyacrylamide gels
JPS63228053A (en) * 1986-12-15 1988-09-22 Fuji Photo Film Co Ltd Medium for electrophoresis
US5160790A (en) * 1990-11-01 1992-11-03 C. R. Bard, Inc. Lubricious hydrogel coatings
JPH04202455A (en) * 1990-11-30 1992-07-23 Terumo Corp Polymer gel with high water content
JPH05168909A (en) * 1991-03-08 1993-07-02 Terumo Corp Hydrogel with high water content and production thereof
JP3165734B2 (en) * 1992-05-19 2001-05-14 テルモ株式会社 New high water absorption shape memory material
JPH06287392A (en) * 1993-02-03 1994-10-11 Terumo Corp Highly water-containing and highly elastic transparent hydrogel
JP3603970B2 (en) * 1994-11-21 2004-12-22 株式会社日本触媒 Method for producing powdery water-absorbent resin composition
JPH09249720A (en) * 1996-03-18 1997-09-22 Kanebo Ltd Water-absorbent resin particle and preparation thereof
JPH11140193A (en) * 1997-11-06 1999-05-25 Nippon Shokubai Co Ltd Production of hydrophilic polymer
JP3762119B2 (en) * 1998-11-17 2006-04-05 花王株式会社 Hair cosmetics
JP4397006B2 (en) * 2000-09-05 2010-01-13 三菱レイヨン株式会社 Method for producing bio-related substance-immobilized gel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3939049A (en) * 1974-04-10 1976-02-17 The United States Of America As Represented By The United States Energy Research And Development Administration Process for radiation grafting hydrogels onto organic polymeric substrates
US4948480A (en) * 1988-05-02 1990-08-14 Eastman Kodak Company Kit for electrophoresis gel medium
US5066376A (en) * 1988-05-02 1991-11-19 Eastman Kodak Company Electrophoresis media comprising active methylene groups
US5525356A (en) * 1990-03-30 1996-06-11 Medtronic, Inc. Amphoteric N-substituted acrylamide hydrogel and method
US5453467A (en) * 1991-08-30 1995-09-26 Biocompatibles Limited Polymer treatments
US5902832A (en) * 1996-08-20 1999-05-11 Menlo Care, Inc. Method of synthesizing swollen hydrogel for sphincter augmentation
US6897072B1 (en) * 1999-04-27 2005-05-24 Ciphergen Biosystems, Inc. Probes for a gas phase ion spectrometer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7559261B2 (en) * 2004-09-09 2009-07-14 National University Corporation Hakkaido University Device and method for measuring molecule using gel substrate material
US20070272040A1 (en) * 2004-09-09 2007-11-29 Takaharu Okajima Device and Method for Measuring Molecule Using Gel Substrate Material
US8715983B2 (en) 2007-11-16 2014-05-06 University Of Kansas Hudrogel network comprising thermally gelling polysaccharide or protein gel encapsulating living cells
US20090130755A1 (en) * 2007-11-16 2009-05-21 Michael Detamore Hydrogel networks having living cells encapsulated therein
US8293510B2 (en) 2007-11-16 2012-10-23 University Of Kansas Method of preparing a hydrogel network encapsulating cells
WO2012054107A1 (en) * 2010-07-09 2012-04-26 Lubrizol Advanced Materials, Inc. Blends of acrylic copolymer thickeners
CN103068856A (en) * 2010-07-09 2013-04-24 路博润高级材料公司 Blends of acrylic copolymer thickeners
US9068148B2 (en) 2010-07-09 2015-06-30 Lubrizol Advanced Materials, Inc. Blends of acrylic copolymer thickeners
WO2015002888A1 (en) * 2013-07-01 2015-01-08 Trustees Of Boston University Dissolvable hydrogel compositions for wound management and methods of use
US9993577B2 (en) 2013-07-01 2018-06-12 Trustees Of Boston University Dissolvable hydrogel compositions for wound management and methods of use
US10646614B2 (en) 2013-07-01 2020-05-12 Trustees Of Boston University Dissolvable hydrogel compositions for wound management and methods of use
US10982054B2 (en) 2014-12-26 2021-04-20 Samsung Electronics Co., Ltd. Polymer gel and preparation method therefor
CN114787248A (en) * 2019-09-30 2022-07-22 日清纺控股株式会社 Composite material

Also Published As

Publication number Publication date
WO2002057368A1 (en) 2002-07-25
JP2002212452A (en) 2002-07-31
JP5048183B2 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
EP1505093B1 (en) Hydrogel of (semi)interpenetrating network structure and process for producing the same
Brahim et al. Synthesis and hydration properties of pH-sensitive p (HEMA)-based hydrogels containing 3-(trimethoxysilyl) propyl methacrylate
Ilgin et al. Synthesis and characterization of pH responsive alginate based-hydrogels as oral drug delivery carrier
US20040116305A1 (en) Low friction hydrogel having straight chain polymers and method for preparation thereof
US7857447B2 (en) Interpenetrating polymer network hydrogel contact lenses
US4277582A (en) Water-insoluble hydrophilic copolymers
US4304591A (en) Water-insoluble hydrophilic copolymers used as carriers for medicaments and pesticides
US6331578B1 (en) Process for preparing interpenetrating polymer networks of controlled morphology
CN110804144B (en) Cationic-zwitterionic block copolymers
US4177056A (en) Water-insoluble hydrophilic copolymers used as carriers for medicaments and pesticides
Engberg et al. Protein diffusion in photopolymerized poly (ethylene glycol) hydrogel networks
CN105295073B (en) A kind of high-flexibility amphoteric ion hydrogel preparation method
Hron Hydrophilisation of silicone rubber for medical applications
Shantha et al. Synthesis and evaluation of sucrose‐containing polymeric hydrogels for oral drug delivery
Snyders et al. Mechanical and microstructural properties of hybrid poly (ethylene glycol)–soy protein hydrogels for wound dressing applications
WO2004072138A1 (en) Polymer gel containing biocompatible material, dry gel, and process for producing polymer gel
JPS5927766B2 (en) Production method of new water-insoluble water-based copolymer
Jastram et al. Rheological properties of hydrogels based on ionic liquids
Bonina et al. pH-sensitive hydrogels composed of chitosan and polyacrylamide–preparation and properties
Dharmasiri et al. Thermo-responsive poly (N-isopropyl acrylamide) hydrogel with increased response rate
US20110166247A1 (en) Interpenetrating polymer network hydrogel contact lenses
Gümüşderelioğlu et al. Superporous polyacrylate/chitosan IPN hydrogels for protein delivery
JP2004262976A (en) Polymer gel composite and production method therefor
JPH0669485B2 (en) Molded product containing silk fibroin
Zhang et al. The influences of poly (ethylene glycol) chain length on hydrophilicity, oxygen permeability, and mechanical properties of multicomponent silicone hydrogels

Legal Events

Date Code Title Description
AS Assignment

Owner name: HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD., JA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OSADA, YOSHIHITO;GONG, JIAN PING;REEL/FRAME:014989/0457

Effective date: 20030625

AS Assignment

Owner name: HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD., JA

Free format text: CORRECTIVE TO CORRECT THE ASSIGNEE'S ADDRESS ON A DOCUMENT PREVIOUSLY RECORDED AT REEL 014989, FRAME 0457. (ASSIGNMENT OF ASSIGNOR'S INTEREST);ASSIGNORS:OSADA, YOSHITO;GONG, JIAN PING;REEL/FRAME:016638/0470

Effective date: 20030623

AS Assignment

Owner name: HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., JAPAN

Free format text: CORRECTED COVER SHEET TO CORRECT ASSIGNOR'S NAME, PREVIOUSLY RECORDED AT REEL/FRAME 016638/0470 (ASSIGNMENT OF ASSIGNOR'S INTEREST);ASSIGNORS:OSADA, YOSHIHITO;GONG, JIAN PING;REEL/FRAME:017239/0412;SIGNING DATES FROM 20030623 TO 20030625

AS Assignment

Owner name: HOKKAIDO TECHNOLOGY LICENSING OFFICE CO., LTD., JA

Free format text: RECORD TO CORRECT THE RECEIVING PARTY'S NAME, PREVIOUSLY RECORDED AT REEL 017239 FRAME 0412.;ASSIGNORS:OSADA, YOSHIHITO;GONG, JIAN PING;REEL/FRAME:017335/0186;SIGNING DATES FROM 20030623 TO 20030625

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION