Search Images Maps Play YouTube News Gmail Drive More »
Sign in
Screen reader users: click this link for accessible mode. Accessible mode has the same essential features but works better with your reader.

Patents

  1. Advanced Patent Search
Publication numberUS20040087886 A1
Publication typeApplication
Application numberUS 10/283,873
Publication date6 May 2004
Filing date30 Oct 2002
Priority date30 Oct 2002
Also published asCA2504150A1, EP1556115A1, EP1556115B1, US8007702, US8241548, US8568643, US9060888, US20090030363, US20100072659, US20100076574, US20110290404, US20120285607, WO2004041345A1
Publication number10283873, 283873, US 2004/0087886 A1, US 2004/087886 A1, US 20040087886 A1, US 20040087886A1, US 2004087886 A1, US 2004087886A1, US-A1-20040087886, US-A1-2004087886, US2004/0087886A1, US2004/087886A1, US20040087886 A1, US20040087886A1, US2004087886 A1, US2004087886A1
InventorsBarry Gellman
Original AssigneeScimed Life Systems, Inc.
Export CitationBiBTeX, EndNote, RefMan
External Links: USPTO, USPTO Assignment, Espacenet
Linearly expandable ureteral stent
US 20040087886 A1
Abstract
A ureteral stent including an elongated member defining a lumen, the member having a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen. A distal retention structure is connected to a distal end of the elongated member for retention in a kidney. A proximal retention structure is connected to a proximal end of the elongated member for retention in a bladder.
Images(8)
Previous page
Next page
Claims(38)
What is claimed is:
1. A ureteral stent comprising:
an elongated member defining a lumen, the member having a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen;
a distal retention structure connected to a distal end of the elongated member for retention in a kidney; and
a proximal retention structure connected to a proximal end of the elongated member for retention in a bladder.
2. The stent of claim 1 wherein the member comprises a spring having a spring force of less than one pound.
3. The stent of claim 2 wherein the member comprises a wire spring.
4. The stent of claim 3 wherein the wire spring comprises a metal alloy.
5. The stent of claim 4 wherein the metal alloy comprises at least one of titanium, nickel, copper, cobalt, vanadium, and iron.
6. The stent of claim 5 wherein the metal alloy comprises nitonol.
7. The stent of claim 6 wherein nitonol comprises nickel and titanium.
8. The stent of claim 7 wherein nitonol comprises about 50% to about 52% nickel.
9. The stent of claim 8 wherein nitonol comprises about 48% to about 50% titanium.
10. The stent of claim 3 wherein the wire spring is coated with a polymer.
11. The stent of claim 10 wherein the polymer comprises at least one of urethane, nylon, thermoplastic polyurethane (TPU), thermoplastic polyester elastomer, polyethyl, and silicone.
12. The stent of claim 1 wherein the elongated member comprises a tube having the solid sidewall and defining the lumen, and the spiral-shaped opening is defined by a slit formed in the sidewall of the tube.
13. The stent of claim 12 wherein the elongated member comprises a polymer.
14. The stent of claim 13 wherein the polymer comprises at least one of urethane, nylon, thermoplastic polyurethane (TPU), thermoplastic polyester elastomer, polyethyl, and silicone.
15. The stent of claim 1 wherein the elongated member comprises an inner liner and an outer cover.
16. The stent of claim 15, further comprising:
a wire spring sandwiched between the inner liner and the outer cover,
wherein the spiral-shaped opening is defined by slits formed in the inner liner and the outer cover, between a plurality of coils of the wire spring.
17. The stent of claim 16 wherein the wire spring comprises a metal alloy.
18. The stent of claim 17 wherein the metal alloy comprises at least one of titanium, nickel, copper, cobalt, vanadium, and iron.
19. The stent of claim 17 wherein the metal alloy comprises nitonol.
20. The stent of claim 19 wherein nitonol comprises nickel and titanium.
21. The stent of claim 15 wherein at least one of the inner liner and the outer cover comprises a polymer.
22. The stent of claim 21 wherein the polymer comprises at least one of urethane, nylon, thermoplastic polyurethane (TPU), thermoplastic polyester elastomer, polyethyl, and silicone.
23. The stent of claim 1, further comprising:
a removable introducer sized for placement within the lumen.
24. A ureteral stent comprising:
an elongated member defining a lumen, the member having a solid sidewall with at least one slit formed therein such that the member is linearly expandable along a longitudinal axis of the lumen;
a distal retention structure connected to a distal end of the elongated member for retention in a kidney; and
a proximal retention structure connected to a proximal end of the elongated member for retention in a bladder.
25. A method of facilitating urinary drainage from a kidney to a bladder in a patient that reduces discomfort to the patient, comprising:
positioning a ureteral stent in a ureter of a patient, the ureteral stent having an elongated member defining a lumen, the member having a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen, a distal retention structure connected to a distal end of the elongated member for retention in the kidney, and a proximal retention structure connected to a proximal end of the elongated member for retention in the bladder; and
allowing the elongated member to linearly expand and contract between an expanded position and a retracted position, based on at least one of: relative positioning of organs within the patient, a breathing pattern of the patient, and relative positions of the kidney and the bladder.
26. The method of claim 25 wherein the organs comprise the kidney and the bladder.
27. The method of claim 25 wherein the organs are the kidney and the bladder.
28. The method of claim 25 wherein the allowing step comprises providing the elongated member biased to the retracted position.
29. A method of manufacturing a linearly expandable ureteral stent, comprising the steps of:
providing an elongated member defining a lumen, the member having a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen, a distal retention structure, and a proximal retention structure;
connecting the distal retention structure to a distal end of the elongated member; and
connecting the proximal retention structure to a proximal end of the elongated member.
30. The method of claim 29 wherein providing the elongated member comprises providing a wire spring.
31. The method of claim 30 wherein providing the wire spring comprises coating the wire spring with a polymer.
32. The method of claim 30 wherein providing the wire spring comprises sandwiching the wire spring between an inner lining and an outer cover.
33. The method of claim 32 wherein the inner lining and outer cover comprise extruded sheets.
34. The method of claim 32, further comprising;
shrinking the inner lining and outer cover; and
forming slits through the inner lining and outer cover between a plurality of coils of the wire spring.
35. The method of claim 32, further comprising:
melting the inner lining and the outer cover; and
forming slits through the inner lining and outer cover between a plurality of coils of the wire spring.
36. The method of claim 29 wherein providing the elongated member comprises forming a tube comprising a polymer and forming a spiral slit through the tube.
37. A method of placing a ureteral stent in a patient, the method comprising:
providing a ureteral stent comprising:
an elongated member defining a lumen, the member having a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen;
a distal retention structure connected to a distal end of the elongated member; and
a proximal retention structure connected to a proximal end of the elongated member;
inserting the ureteral stent into a ureter of the patient; and
positioning the ureteral stent in the patient with the distal retention structure substantially within the kidney of the patient, the elongated member substantially within the intramural tunnel portion of the ureter, and the proximal retention structure substantially within the bladder of the patient.
38. The method of claim 37 wherein the ureteral stent further comprises a removable introducer sized to fit within the lumen and inserting the ureteral stent includes inserting the stent with the removable introducer into the ureter.
Description
    FIELD OF THE INVENTION
  • [0001]
    The invention generally relates generally to medical devices for the drainage of fluids, and more specifically to ureteral stents.
  • BACKGROUND OF THE INVENTION
  • [0002]
    A ureter is a tubular passageway in a human body that conveys urine from a kidney to a bladder. The ureter begins with the renal pelvis and ends at the trigone region of the bladder, i.e., the triangulated area between both ureteral orifices and the bladder neck. Urine is transported through the ureter under the influence of hydrostatic pressure, assisted by contractions of muscles located within the walls (lining) of the ureter. Some patients experience a urological condition known as ureteral blockage or obstruction. Some common causes of ureteral blockage are the formation of tumors or abnormalities within the ureteral lining, or the formation and passage of kidney stones.
  • [0003]
    Ureteral stents are used to facilitate urinary drainage from the kidneys to the bladder in patients having a ureteral obstruction or injury, or to protect the integrity of the ureter in a variety of surgical manipulations. Stents may be used to treat or avoid ureter obstructions (such as ureteral stones or ureteral tumors) which disrupt the flow of urine from the kidneys to the bladder. Serious obstructions may cause urine to back up into the kidneys, threatening renal function. Ureteral stents may also be used after endoscopic inspection of the ureter.
  • [0004]
    A stent may be uncomfortable to a patient because of intramural tunnel pain, imposed by the stent itself or in combination with intraoperative trauma inflicted from device passage. Pain may also be caused by urine reflux back up the ureter during increased bladder pressure, e.g., during voiding. Further, pain may stem from trigome irritation resulting from constant irritation, imposed by the bladder anchoring features or in combination with intraoperative trauma inflicted from device passage. Moreover, discomfort may arise from flank pain, caused by reflux or kidney anchoring.
  • [0005]
    Ureteral stents typically are tubular in shape, terminating in two opposing ends: a kidney distal end and a bladder proximal end. Existing ureteral stents compensate for the motion between the kidney and bladder by employing a pair of coil end-effectors, with one effector placed in the bladder proximal end and the other in the kidney distal end. As motion occurs, the ureter slides up and down the stent body. Any other travel results in an uncurling of the end effector(s).
  • SUMMARY OF THE INVENTION
  • [0006]
    It is an objective of the invention to provide a patient, male or female, with a flexible device designed to maintain the patency of the ureter and enable fluid drainage while minimizing the pains and discomfort commonly associate with an in-dwelling device.
  • [0007]
    Discomfort may be related to the stent rubbing against a wall of the ureter, caused by the constant relative motion between the kidney and the bladder. This motion may be as much as 5 centimeters (cm) (approximately 2 inches) and cycles with each breath of the patient. This is equal to approximately 17,000 cycles per day, assuming 1 breath every 5 seconds. The present invention alleviates discomfort by providing a stent that, like the ureter, linearly expands and contracts in response to relative motion between the kidney and the bladder, thereby reducing friction caused by a stent rubbing against a wall of the ureter.
  • [0008]
    In one aspect, the invention features a ureteral stent having an elongated member defining a lumen. The member has a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen. A distal retention structure is connected to a distal end of the elongated member for retention in a kidney, and a proximal retention structure is connected to a proximal end of the elongated member for retention in a bladder.
  • [0009]
    One or more of the following features may also be included. The member includes a spring having a spring force of less than one pound. The member includes a wire spring. The wire spring includes a metal alloy, that may include at least one of titanium, nickel, copper, cobalt, vanadium, and iron. The metal alloy includes nitonol. The wire spring is coated with a polymer. The polymer includes at least one of urethane, nylon, thermoplastic polyurethane (TPU), thermoplastic polyester elastomer, polyethyl, and silicone.
  • [0010]
    The stent has an elongated member including a tube having the solid sidewall and defining the lumen. The spiral-shaped opening is defined by a slit formed in the sidewall of the tube. The elongated member may include a polymer, such as at least one of urethane, nylon, TPU, thermoplastic polyester elastomer, polyethyl, and silicone.
  • [0011]
    The elongated member includes an inner liner and an outer cover. A wire spring is sandwiched between the inner liner and the outer cover, with the spiral-shaped opening being defined by slits formed in the inner liner and the outer cover, between a plurality of coils of the wire spring. The wire spring includes a metal alloy including, e.g., at least one of titanium, nickel, copper, cobalt, vanadium, and iron. The metal alloy includes nitonol. At least one of the inner liner and the outer cover includes a polymer. The polymer includes at least one of urethane, nylon, TPU, thermoplastic polyester elastomer, polyethyl, and silicone.
  • [0012]
    A removable introducer is sized for placement within the lumen.
  • [0013]
    In another aspect of the invention, a ureteral stent includes an elongated member defining a lumen, the member having a solid sidewall with at least one slit formed therein such that the member is linearly expandable along a longitudinal axis of the lumen. A distal retention structure is connected to a distal end of the elongated member for retention in a kidney, and a proximal retention structure is connected to a proximal end of the elongated member for retention in a bladder.
  • [0014]
    In yet another aspect of the invention, a method of facilitating urinary drainage from a kidney to a bladder in a patient that reduces discomfort to the patient includes positioning a ureteral stent in a ureter of a patient, the ureteral stent having an elongated member defining a lumen, the member having a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen, a distal retention structure connected to a distal end of the elongated member for retention in the kidney, and a proximal retention structure connected to a proximal end of the elongated member for retention in the bladder. The elongated member is allowed to linearly expand and contract between an expanded position and a retracted position, based on at least one of: relative positioning of organs within the patient, a breathing pattern of the patient, and relative positions of the kidney and the bladder. In addition, the elongated member can be biased to the retracted position.
  • [0015]
    In yet another aspect of the invention, a method of manufacturing a linearly expandable ureteral stent includes providing an elongated member defining a lumen, the member having a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen. The stent also includes a distal retention structure and a proximal retention structure. The distal retention structure is connected to a distal end of the elongated member, and the proximal retention structure is connected to a proximal end of the elongated member.
  • [0016]
    The following features may be included. Providing the elongated member includes providing a wire spring. Providing the wire spring includes coating the wire spring with a polymer. Providing the wire spring includes sandwiching the wire spring between an inner lining and an outer cover. The inner lining and outer cover include extruded sheets. The inner lining and outer cover are shrunk, and slits are formed through the inner lining and outer cover between a plurality of coils of the wire spring. The inner lining and the outer cover are melted, and slits are formed through the inner lining and outer cover between a plurality of coils of the wire spring. The elongated member is provided by forming a tube including a polymer, and forming a spiral slit through the tube.
  • [0017]
    In yet another aspect of the invention, a method of placing a ureteral stent in a patient includes providing a ureteral stent. The ureteral stent includes an elongated member defining a lumen, the member having a solid sidewall defining a spiral-shaped opening such that the member is linearly expandable along a longitudinal axis of the lumen. The ureteral stent also includes a distal retention structure connected to a distal end of the elongated member, and a proximal retention structure connected to a proximal end of the elongated member. The ureteral stent is inserted into a ureter of the patient. The ureteral stent is positioned in the patient with the distal retention structure substantially within the kidney of the patient, the elongated member substantially within the intramural tunnel portion of the ureter, and the proximal retention structure substantially within the bladder of the patient. In a detailed embodiment, the ureteral stent can further include a removable introducer sized to fit within the lumen and inserting the ureteral stent includes inserting the stent with the removable introducer into the ureter.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • [0018]
    In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
  • [0019]
    [0019]FIG. 1A is a schematic view of a human urinary tract, illustrating the placement of one embodiment of the invention within the ureter of a patient, in an expanded position;
  • [0020]
    FIGS. 1B-1C are detailed sectional views of a portion of the embodiment of the invention of FIG. 1A;
  • [0021]
    FIGS. 2A-2B are schematic representations of the embodiment of the invention illustrated in FIGS. 1A-1C in a retracted position;
  • [0022]
    FIGS. 3A-3B are schematic representations of another embodiment of the invention in an expanded position;
  • [0023]
    FIGS. 4A-4C are schematic representations of the embodiment of the invention illustrated in FIGS. 3A-3B in a retracted position;
  • [0024]
    FIGS. 5A-5C are schematic representations of yet another embodiment of the invention at various stages of fabrication;
  • [0025]
    FIGS. 6A-6C are schematic representations of yet another embodiment of the invention in retracted and expanded positions; and
  • [0026]
    [0026]FIG. 7 is a schematic representation of an introducer.
  • DETAILED DESCRIPTION
  • [0027]
    The invention features temporary ureteral stents that, when positioned within the ureter of a patient, significantly reduce discomfort to the patient. As used herein, proximal refers to the end of a stent closest to a medical professional when placing a stent in a patient. As used herein, distal refers to the end of a stent furthest from a medical professional when placing a stent in a patient.
  • [0028]
    Referring to FIG. 1A, a human urinary tract 100 includes a ureter 105 that transports urine from a kidney 110 to a bladder 115. When ureter 105 becomes blocked or obstructed due to, for example, post-kidney stone fragmentation/removal and ureteral stricture therapy, fluid drainage can become restricted. Ureteral stents are medical devices that are implanted within ureter 105 to restore patency and fluid drainage. A ureteral stent 120 is located within the ureter 105 of a patient, with a distal retention structure 125 in a pelvis 130 of kidney 110, and a proximal retention structure 135 in the bladder 115, proximate ureteral orifice 136. A lumen 137 extends within distal retention structure 25, an elongated member 140, and proximal retention structure 135 to provide for the passage of fluid. Distal retention structure 125 is connected to a distal end 142 of elongated member 120, and proximal retention structure 135 is connected to a proximal end 144 of elongated member 140. Distal retention structure 125 secures distal end 142 of elongated member in or proximate to kidney 110. Proximal retention structure 135 secures proximal end 144 of elongated member 140 in or proximate bladder 115, as well as facilitates the removal of stent 120 by providing a loop suitable for grasping by a hook.
  • [0029]
    Distal retention structure 125 and proximal retention structure 135 can be fabricated of materials such as nylon, polyurethane, or the like. Heat bonding of these materials to elongated member 140 is conveniently accomplished by, for example, using an RF heat source as is commonly employed for plastic tubes and catheters. The desired shape of distal and proximal retention structures 125, 135 can be formed by injection molding or extrusion. They can also be heat-formed, for example, by flaring the working piece over an anvil of an appropriate shape, with the application of heat. The shape of distal retention structure 125 can be, for example, a coil, a pig-tail coil, J-shaped, or a helical coil. The shape of proximal retention structure 135 can be, for example, a coil, a pig-tail coil, J-shaped or a helical coil. In the illustrated embodiment, both distal and proximal retention structures 125, 135 are J-shaped.
  • [0030]
    Referring to FIGS. 1A-1C, elongated member 140 includes a tube 145 having a solid sidewall 150. A slit 155 is formed in sidewall 150, defining a spiral-shaped opening 160, so that elongated member 140 is linearly expandable along a longitudinal axis 165 of lumen 137. Elongated member 140 can be formed from a polymer, such as, e.g., urethane, nylon, TPU, thermoplastic polyester elastomer, polyethyl, and silicone.
  • [0031]
    Elongated member 140 can be manufactured by, for example, injection molding or extrusion and optionally a combination of subsequent machining operations. Extrusion processes, for example, can be used to provide a uniform shape, such as a single monolithic tube. Spiral-shaped opening 160 can be created in the desired locations by a subsequent machining operation.
  • [0032]
    Referring also to FIGS. 2A and 2B, elongated member 140 is linearly expandable between an expanded position (see, e.g., FIGS. 1A-1B) and a retracted position (see FIGS. 2A-2B). When elongated member 140 is retracted, spiral-shaped opening 160 is closed. A difference in an expanded length L1 of elongated member 140 in its expanded position and a retracted length L2 of elongated member 140 in its retracted position can be approximately 5 cm (approximately 2 inches). For example, elongated member 140 can be sized so that retracted length L2 is approximately 8 cm to 30 cm, and expanded length L1 is approximately 13 cm to 35 cm. Elongated member 140 can have, in its retracted position, an outer diameter d1 corresponding to approximately 3.7 French to 14.0 French. Lumen 137 can have a diameter d2 of ______ when elongated member 140 is in its retracted position, to allow the introduction of a guide wire.
  • [0033]
    In use, elongated member 140 can expand linearly up to 2 inches to expanded length L1, to provide comfort to the patient by compensating for at least one of: relative positioning of organs within the patient, a breathing pattern of the patient, and relative positions of kidney 110 and bladder 115. Because of the possibility of linear expansion, a physician may be able to select ureteral stent 120 with a smaller size than would be required with a conventional stent.
  • [0034]
    Referring to FIGS. 3A-3B, in another embodiment, ureteral stent 300 has an elongated member 310 including a spring 315. Distal retention structure 125 is connected to a distal end 312 of elongated member 310, and proximal retention structure 135 is connected to a proximal end 314 of elongated member 310.
  • [0035]
    Spring 315 has a plurality of coils 320 having, in some embodiments, a spring force less than one pound. Spring 315 includes a wire 325 formed from a superelastic material. Materials with superelastic properties make it possible to configure a component into a particular shape, such as a coil or a sleeve, and then modify reversibly the geometry of the component, such as by straightening it out. Once the device is straightened, after removal of the straightening force, the component reverts spontaneously to its predetermined configuration, thereby regaining its former geometry. In so doing, the component provides a biasing force back to its original configuration.
  • [0036]
    Superelastic materials can include alloys of In—Ti, Fe—Mn, Ni—Ti, Ag—Cd, Au—Cd, Au—Cu, Cu—Al—Ni, Cu—Au—Zn, Cu—Zn—Al, Cu—Zn—Sn, Cu—Zn—Xe, Fe3Be, Fe3Pt, Ni—Ti—V, Fe—Ni—Ti—Co, and Cu—Sn. Preferably, wire 325 includes a superelastic material comprising a nickel and titanium alloy, known commonly as nitinol, available from Memory Corp. of Brookfield, Conn. or SMA Inc. of San Jose, Calif. The ratio of nickel and titanium in nitinol can be varied. Examples include a ratio of about 50% to about 52% nickel by weight, or a ratio of about 48% to about 50% titanium by weight. Nitinol has shape retention properties in its superelastic phase.
  • [0037]
    Wire 320 can have a coating 330 including a biocompatible material, such as a polymer like urethane, nylon, TPU, thermoplastic polyester elastomer, polyethyl, or silicone. Coating 330 can be applied to wire 320 by various methods, such as spray coating or painting.
  • [0038]
    Ureteral stent 300 has an expanded position (see, e.g., FIGS. 3A-3B) and a retracted position (see, e.g., FIGS. 4A-4C). In the retracted position, coils 320 abut each other, defining a lumen 332 that is substantially enclosed. In the expanded position, coils 320 define a spiral-shaped opening 335, formed by a plurality of gaps 340 between coils 320. Elongated member 310 is linearly expandable along a longitudinal axis 345 of lumen 332.
  • [0039]
    Referring to FIGS. 5A-5C, in another embodiment, a stent 500 is formed by placing a wire spring 510, having a plurality of coils 512, between an inner lining 515 and an outer cover 520. Wire spring 510 can be made from a metal alloy including, for example, titanium, nickel, copper, cobalt, vanadium, or iron. The metal alloy can include nitonol, a material including nickel and titanium. Inner lining 515 and outer cover 520 can each be formed from an extruded sheet. Inner lining 515 and outer cover 520 can each be made from a polymer, such as urethane, nylon, TPU, thermoplastic polyester elastomer, polyethyl, and silicone.
  • [0040]
    Inner lining 515 and outer cover 520 are deformed at elevated temperatures to fully surround wire spring 510. For example, inner lining 515 and outer cover 520 can be shrunk by, e.g., exposure to a heat lamp. Alternatively, inner lining 515 and outer cover 520 can be melted by, e.g., heating in an oven. After deformation, a plurality of slits 525 are formed through inner lining 515 and outer cover 520 between coils 512 to form an elongated member 530. Elongated member 530 is linearly expandable along a longitudinal axis 535 of a lumen 540 extending through elongated member 530. Elongated member 530 is connected at a distal end 545 to a distal retention structure 125, and at a proximal end 555 to a proximal retention structure 135.
  • [0041]
    Referring to FIGS. 6A-6C, in yet another embodiment, a stent 600 has an elongated member 610 connected to distal retention structure 125 for retention in a kidney and proximal retention structure 135 for retention in a bladder. Elongated member 610 defines a lumen 620, and has a solid sidewall 625. Solid sidewall 625 can be made of a biocompatible material, such as a polymer, e.g., urethane, nylon, TPU, thermoplastic polyester elastomer, polyethyl, or silicone. Solid sidewall 625 has at least one slit 630 formed in it, so that elongated member 610 is linearly expandable along a longitudinal axis 635 of lumen 620.
  • [0042]
    Referring to FIG. 7, in another aspect, the invention provides an apparatus for delivering a stent into a patient. An introducer 700 includes a guide wire 710. A proximal end 720 of guide wire 710 includes a grip 725 to assist in using the device.
  • [0043]
    Referring to FIG. 7 and also to FIG. 1A, in use, a stent, (e.g., stent 120) is mounted on introducer 700. Distal retention structure 125 is threaded over guide wire 710, and most of its inherent curvature is removed. Next, the guide wire 710 is inserted into bladder 115 through ureteral orifice 136 up ureter 105, and into kidney 110. A pusher (not shown) is then moved along guide wire 710, pushing stent 120 along guide wire 710 towards kidney 110. Proximal end 144 of elongated member 140 can be positioned either at or distal to ureteral orifice 136. Stent 120 can also be positioned such that proximal retention structure 135 is at or distal to ureteral orifice 136.
  • [0044]
    Once the surgeon has achieved the desired positioning of stent 120, guide wire 710 is removed, while holding the pusher stationary to maintain stent 120 in position. Finally, the pusher is removed from within the patient, leaving stent 120 in place. Using this method, the stent of the invention can be precisely positioned within ureter 105 of the patient. The method can also be used to accurately position proximal retention structure 135 in bladder 115, and distal retention structure 125 within kidney 110.
  • [0045]
    In one embodiment of the invention, the guide wire, pusher, and stent are inserted into ureter 105 percutaneously through a surgical opening. In another embodiment, they are inserted into the ureter via the urinary tract of the patient.
  • [0046]
    While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Patent Citations
Cited PatentFiling datePublication dateApplicantTitle
US4503569 *3 Mar 198312 Mar 1985Dotter Charles TTransluminally placed expandable graft prosthesis
US4531933 *7 Dec 198230 Jul 1985C. R. Bard, Inc.Helical ureteral stent
US4643716 *15 May 198617 Feb 1987The Kendall CompanyMulti-size ureteral stent
US4671795 *19 Nov 19849 Jun 1987Mulchin William LPermanent/retrievable ureteral catheter
US4681570 *26 Dec 198521 Jul 1987Dalton Michael JPeritoneal catheter
US4813925 *21 Apr 198721 Mar 1989Medical Engineering CorporationSpiral ureteral stent
US5057114 *18 Sep 199015 Oct 1991Cook IncorporatedMedical retrieval basket
US5116309 *20 May 199126 May 1992Coll Milton EUreteral stent-catheter system having varying diameter stent
US5129910 *26 Jul 199114 Jul 1992The Regents Of The University Of CaliforniaStone expulsion stent
US5282860 *8 Oct 19921 Feb 1994Olympus Optical Co., Ltd.Stent tube for medical use
US5514176 *20 Jan 19957 May 1996Vance Products Inc.Pull apart coil stent
US5554189 *27 Feb 199510 Sep 1996De La Torre; Fernando I.Ureteral prosthesis
US5562641 *20 May 19948 Oct 1996A Bromberg & Co. Ltd.Two way shape memory alloy medical stent
US5647843 *24 May 199615 Jul 1997Vance Products IncorporatedAnti-reflux ureteral stent
US5681274 *31 Mar 199528 Oct 1997Boston Scientific CorporationVariable length uretheral stent
US5782916 *13 Aug 199621 Jul 1998Galt Laboratories, Inc.Device for maintaining urinary continence
US5827321 *7 Feb 199727 Oct 1998Cornerstone Devices, Inc.Non-Foreshortening intraluminal prosthesis
US5962007 *19 Dec 19975 Oct 1999Indigo Medical, Inc.Use of a multi-component coil medical construct
US5964744 *3 Oct 199412 Oct 1999Menlo Care, Inc.Polymeric medical device systems having shape memory
US6019779 *9 Oct 19981 Feb 2000Intratherapeutics Inc.Multi-filar coil medical stent
US6027516 *4 May 199522 Feb 2000The United States Of America As Represented By The Department Of Health And Human ServicesHighly elastic, adjustable helical coil stent
US6214042 *10 Nov 199810 Apr 2001Precision Vascular Systems, Inc.Micro-machined stent for vessels, body ducts and the like
US6241691 *8 Jan 19995 Jun 2001Micrus CorporationCoated superelastic stent
US6306105 *14 May 199823 Oct 2001Scimed Life Systems, Inc.High performance coil wire
US6332892 *2 Mar 199925 Dec 2001Scimed Life Systems, Inc.Medical device with one or more helical coils
US6887215 *6 Dec 20013 May 2005Boston Scientific Scimed, Inc.Compressible ureteral stent for comfort
US20020183852 *6 Dec 20015 Dec 2002Mcweeney John O.Compressible ureteral stent for comfort
US20030040803 *23 Aug 200127 Feb 2003Rioux Robert F.Maintaining an open passageway through a body lumen
US20030171708 *7 Mar 200211 Sep 2003Joseph SeguraUreteral stent
US20030176831 *18 Mar 200218 Sep 2003Gellman Barry N.Expandable ureteral stent
US20030181842 *19 Mar 200225 Sep 2003Scimed Life Systems, Inc.Stent retention element and related methods
US20050131547 *3 Feb 200516 Jun 2005Joseph SeguraUreteral stent
Referenced by
Citing PatentFiling datePublication dateApplicantTitle
US7044981 *22 Jan 200316 May 2006Boston Scientific Scimed, Inc.Ureteral stent configured for improved patient comfort and aftercare
US7470247 *26 Apr 200430 Dec 2008Gyrus Acmi, Inc.Ureteral stent
US750721826 Apr 200424 Mar 2009Gyrus Acmi, Inc.Stent with flexible elements
US7550012 *31 Aug 200523 Jun 2009Cook Ireland LimitedStent for implantation
US7789915 *14 May 20077 Sep 2010Vance Products IncorporatedStent for implantation
US863260626 Sep 201121 Jan 2014Olympus Medical Systems Corp.Medical stent
US8961468 *31 Mar 201424 Feb 2015Covidien LpAccess assembly
US903395627 Aug 201219 May 2015Cook Medical Technologies LlcElectrically charged medical device
US910801722 Mar 201218 Aug 2015Applied Medical Resources CorporationMethod of making tubing have drainage holes
US914937710 Oct 20086 Oct 2015Veryan Medical Ltd.Stent suitable for deployment in a blood vessel
US919240319 Dec 201324 Nov 2015Pneumrx, Inc.Elongated lung volume reduction devices, methods, and systems
US919249323 Dec 201324 Nov 2015Olympus CorporationMedical stent having a marker coil
US9314353 *12 Oct 200919 Apr 2016Veryan Medical LimitedStent suitable for deployment in a blood vessel
US938110230 Mar 20155 Jul 2016Cook Medical Technologies LlcElectrically charged medical device
US940263224 Apr 20142 Aug 2016Pneumrx, Inc.Lung volume reduction devices, methods, and systems
US940263313 Mar 20142 Aug 2016Pneumrx, Inc.Torque alleviating intra-airway lung volume reduction compressive implant structures
US940297123 Jan 20142 Aug 2016Pneumrx, Inc.Minimally invasive lung volume reduction devices, methods, and systems
US947453326 Mar 201425 Oct 2016Pneumrx, Inc.Cross-sectional modification during deployment of an elongate lung volume reduction device
US949835613 Dec 201322 Nov 2016Cook Medical Technologies, LLCFlexible stent and delivery system
US976381413 Oct 201519 Sep 2017Cook Medical Technologies LlcElongate medical device
US97825586 Aug 201410 Oct 2017Pneumrx, Inc.Minimally invasive lung volume reduction devices, methods, and systems
US20040143209 *22 Jan 200322 Jul 2004Liu Clifford M.Ureteral stent configured for improved patient comfort and aftercare
US20050240141 *26 Apr 200427 Oct 2005Peter AliskiStent kidney curl improvements
US20050240277 *26 Apr 200427 Oct 2005Peter AliskiStent with flexible elements
US20050240278 *26 Apr 200427 Oct 2005Peter AliskiStent improvements
US20050240280 *26 Apr 200427 Oct 2005Peter AliskiUreteral stent
US20070050006 *30 Aug 20061 Mar 2007Cook Ireland LimitedCoaxial dilatation method for stent implantation
US20070078446 *31 Aug 20055 Apr 2007Cook Ireland Limited And Cook IncorporatedStent for implantation
US20070276466 *14 May 200729 Nov 2007Vance Products Inc., D/B/A/ Cook Urological Inc.Stent for implantation
US20090299488 *22 May 20073 Dec 2009Marian DevonecProstatic stent
US20110251671 *12 Oct 200913 Oct 2011Kevin HeratyStent suitable for deployment in a blood vessel
US20120158025 *15 Dec 201121 Jun 2012Christopher AndersonAnastomosis device and related methods
US20150005864 *20 Jun 20141 Jan 2015Gadelius Medical, K. K.Stent kit
US20160015509 *21 Jul 201421 Jan 2016Ardle Tomás McDonoughImplantable stent
CN102655824A *12 Nov 20105 Sep 2012奥林巴斯医疗株式会社Medical stent
CN104001257A *13 Jun 201427 Aug 2014胡冰Double-pigtail stent placed in left hepatic duct of human body
EP2489334A1 *12 Nov 201022 Aug 2012Olympus Medical Systems Corp.Medical stent
EP2489334A4 *12 Nov 201022 Aug 2012Olympus Medical Systems CorpMedical stent
EP2567727A1 *5 Sep 201213 Mar 2013Cook Medical Technologies LLCElectrically charged medical device
EP2609892A1 *20 Dec 20123 Jul 2013Cook Medical Technologies LLCUreteral stent
EP2803339A1 *12 Nov 201019 Nov 2014Olympus Medical Systems Corp.Medical stent
EP3045201A1 *6 Jan 201620 Jul 2016Cook Medical Technologies LLCUreteral stent with sideports
WO2007135564A2 *22 May 200729 Nov 2007Marian DevonecProstatic stent
WO2007135564A3 *22 May 200717 Apr 2008Marian DevonecProstatic stent
WO2014151557A2 *13 Mar 201425 Sep 2014Pneumrx, Inc.Torque alleviating intra-airway lung volume reduction compressive implant structures
WO2014151557A3 *13 Mar 201413 Nov 2014Pneumrx, Inc.Torque alleviating intra-airway lung volume reduction compressive implant structures
Classifications
U.S. Classification604/8
International ClassificationA61F2/04, A61M25/00, A61F2/88
Cooperative ClassificationA61M27/008, A61F2/04, A61F2/88
European ClassificationA61M27/00C3, A61F2/04B, A61F2/88
Legal Events
DateCodeEventDescription
30 Oct 2002ASAssignment
Owner name: SCIMED LIFE SYSTEMS, INC., MINNESOTA
Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GELLMAN, BARRY N.;REEL/FRAME:013448/0230
Effective date: 20021015
14 Mar 2006ASAssignment
Owner name: BOSTON SCIENTIFIC SCIMED, INC., MINNESOTA
Free format text: CHANGE OF NAME;ASSIGNOR:SCIMED LIFE SYSTEMS, INC.;REEL/FRAME:017335/0736
Effective date: 20041222