US20040073287A1 - Bifurcated endoluminal prosthesis - Google Patents

Bifurcated endoluminal prosthesis Download PDF

Info

Publication number
US20040073287A1
US20040073287A1 US10/682,483 US68248303A US2004073287A1 US 20040073287 A1 US20040073287 A1 US 20040073287A1 US 68248303 A US68248303 A US 68248303A US 2004073287 A1 US2004073287 A1 US 2004073287A1
Authority
US
United States
Prior art keywords
stent
introducer
prosthesis
proximal
distal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/682,483
Inventor
George Goicoechea
Claude Mialhe
John Hudson
Andrew Cragg
Michael Dake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lifeport Sciences LLC
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56289802&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20040073287(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from US08/317,763 external-priority patent/US5609627A/en
Application filed by Individual filed Critical Individual
Priority to US10/682,483 priority Critical patent/US20040073287A1/en
Publication of US20040073287A1 publication Critical patent/US20040073287A1/en
Assigned to ACACIA RESEARCH GROUP LLC reassignment ACACIA RESEARCH GROUP LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BOSTON SCIENTIFIC SCIMED, INC.
Assigned to LIFEPORT SCIENCES LLC reassignment LIFEPORT SCIENCES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ACACIA RESEARCH GROUP LLC
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/852Two or more distinct overlapping stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/954Instruments specially adapted for placement or removal of stents or stent-grafts for placing stents or stent-grafts in a bifurcation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/061Blood vessels provided with means for allowing access to secondary lumens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2002/065Y-shaped blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/04Hollow or tubular parts of organs, e.g. bladders, tracheae, bronchi or bile ducts
    • A61F2/06Blood vessels
    • A61F2/07Stent-grafts
    • A61F2002/075Stent-grafts the stent being loosely attached to the graft material, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2002/828Means for connecting a plurality of stents allowing flexibility of the whole structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/848Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs
    • A61F2002/8486Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents having means for fixation to the vessel wall, e.g. barbs provided on at least one of the ends
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2210/00Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2210/0014Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol
    • A61F2210/0019Particular material properties of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof using shape memory or superelastic materials, e.g. nitinol operated at only one temperature whilst inside or touching the human body, e.g. constrained in a non-operative shape during surgery, another temperature only occurring before the operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0008Fixation appliances for connecting prostheses to the body
    • A61F2220/0016Fixation appliances for connecting prostheses to the body with sharp anchoring protrusions, e.g. barbs, pins, spikes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0033Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements made by longitudinally pushing a protrusion into a complementary-shaped recess, e.g. held by friction fit
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0066Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements stapled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2220/00Fixations or connections for prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2220/0025Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements
    • A61F2220/0075Connections or couplings between prosthetic parts, e.g. between modular parts; Connecting elements sutured, ligatured or stitched, retained or tied with a rope, string, thread, wire or cable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2230/00Geometry of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2230/0063Three-dimensional shapes
    • A61F2230/0067Three-dimensional shapes conical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2250/00Special features of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2250/0058Additional features; Implant or prostheses properties not otherwise provided for
    • A61F2250/0096Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers
    • A61F2250/0098Markers and sensors for detecting a position or changes of a position of an implant, e.g. RF sensors, ultrasound markers radio-opaque, e.g. radio-opaque markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters
    • A61M25/06Body-piercing guide needles or the like
    • A61M25/0662Guide tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S623/00Prosthesis, i.e. artificial body members, parts thereof, or aids and accessories therefor
    • Y10S623/902Method of implanting
    • Y10S623/903Blood vessel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49826Assembling or joining

Definitions

  • the present invention relates to a bifurcated endoluminal prosthesis for use in a bifurcated blood vessel such, for example, as the infrarenal portion of a mammalian aortic artery where it bifurcates to the common iliac arteries.
  • the present invention also embraces a stent connecting means for connecting a stent (e.g. a stent which forms part of an endoluminal prosthesis) to another stent, as well as apparatus and method for introducing prostheses to the vasculature and methods of treating angeological diseases.
  • a stent is used to provide a prosthetic intraluminal wall e.g. in the case of a stenosis to provide an unobstructed conduit for blood in the area of the stenosis.
  • An endoluminal prosthesis comprises a stent which carries a prosthetic graft layer of fabric and is used e.g. to treat an aneurysm by removing the pressure on a weakened part of an artery so as to reduce the risk of embolism, or of the natural artery wall bursting.
  • a stent or endoluminal prosthesis is implanted in a blood vessel at the site of a stenosis or aneurysm by so-called “minimally invasive techniques” in which the stent is compressed radially inwards and is delivered by a catheter to the site where it is required through the patient's skin or by a “cut down” technique in which the blood vessel concerned is exposed by minor surgical means.
  • minimally invasive techniques in which the stent is compressed radially inwards and is delivered by a catheter to the site where it is required through the patient's skin or by a “cut down” technique in which the blood vessel concerned is exposed by minor surgical means.
  • U.S. Pat. No. 4,886,062 discloses a vascular stent which comprises a length of sinuous or “zig-zag” wire formed into a helix; the helix defines a generally cylindrical wall which, in use, constitutes a prosthetic intraluminal wall.
  • the sinuous configuration of the wire permits radial expansion and compression of the stent;
  • U.S. Pat. No. 4,886,062 discloses that the stent can be delivered percutaneously and expanded in situ using a balloon catheter.
  • U.S. Pat. No. 4,733,665 discloses an expandable intraluminal graft which is constituted by a tubular member formed from a plurality of intersecting elongate members which permit radial expansion and compression of the stent.
  • EP-A-0556850 discloses an intraluminal stent which is constituted by a sinuous wire formed into a helix; juxtaposed apices of the wire are secured to one another so that each hoop of the helix is supported by its neighboring hoops to increase the overall strength of the stent and to minimize the risk of plaque herniation; in some embodiments the stent of EP-A-0556850 further comprises a tubular graft member to form an endoluminal prosthesis.
  • the prior art stents and prostheses are not wholly satisfactory for use where the site of desired application of the stent or prosthesis is juxtaposed or extends across a bifurcation in an artery or vein such, for example, as the bifurcation in the mammalian aortic artery into the common iliac arteries.
  • proximal shall mean “nearest to the heart,” and the term “distal” shall mean “furthest from the heart.”
  • a stent connecting means for connecting two intraluminal stents one to the other to define a continuous lumen through the two stents, the stent connecting means including a first stent including a male engaging portion which can be compressed radially inwardly, and a second stent including a female cooperating portion.
  • the male engaging portion may be entered into the female cooperating portion in a radially compressed state and thereafter caused or allowed to expand in the female cooperating portion; the arrangement being such that in service the interengagement of the male engaging portion and the female cooperating portion serves to resist longitudinal separation of the two stents one from the other.
  • the first stent may include a proximal male engaging portion; the second stent may include a distal female cooperation portion.
  • the male engaging portion may be flared radially outwardly towards its extremity, and the female cooperating portion may be tapered radially inwardly towards its extremity.
  • the male engaging portion may comprise a frustoconical wall which flares outwardly towards its longitudinal extremity; the female engaging portion may comprise a frustoconical wall which tapers radially inwardly towards its longitudinal extremity.
  • said male engaging and female cooperating portions may be substantially untapered; they may be substantially cylindrical.
  • the male engaging portion of the first stent may be resiliently compressible in a radially inwards direction such that in the radially compressed state it is capable of self-reexpansion to engage in the female cooperating portion.
  • each of said first and second stents may be resiliently compressible.
  • the second stent may be delivered in a radially compressed state by using a catheter; when the second stent is located at the site of use, the catheter may be withdrawn thereby allowing the second stent to re-expand to engage the endoluminal surface of the blood vessel.
  • the first stent may then be delivered percutaneously or by a “cut down” technique to a site distal of the second stent such that the male engaging portion of the first stent in the radially compressed state is entered into the expanded female cooperating portion of the second stent; the catheter may then be withdrawn allowing the first stent to re-expand such that the male engaging portion engages in the female cooperating portion of the second stent.
  • the second stent may have two transversely spaced distal female cooperating portions; the second stent may therefore constitute a bifurcated stent for use in juxtaposition with a bifurcation in a blood vessel.
  • Each of the two transversely spaced distal female cooperating portions may be adapted for connection to a first male stent which, in use, extends across the bifurcation into a respective one of the branched blood vessels.
  • a bifurcated intraluminal stent for use in juxtaposition with an angeological bifurcation; the bifurcated intraluminal stent comprising a proximal portion adapted to be positioned in service in a blood vessel in juxtaposition with a bifurcation, a first distal stent portion adapted to extend across the bifurcation into one of the branched blood vessels and a second distal stent portion adapted to allow blood to flow from the proximal portion into the other branched vessel.
  • the first distal stent portion may be formed integrally with the proximal portion.
  • the second distal stent portion may comprise a female cooperating portion which is adapted to engage a male engaging portion of a another stent adapted to extend in the other branched blood vessel such that, in use, the bifurcated stent can be connected in situ to the other stent.
  • the bifurcated intraluminal stent may therefore constitute a second stent in accordance with the present invention comprising a distal female cooperating portion disposed intermediate the proximal and distal extremities of the stent; the other stent may constitute a first stent in accordance with the present invention.
  • the proximal end of said second stent may be flared radially outwardly towards its extremity to engage the endoluminal surface of the artery thereby to resist longitudinal movement of the second stent in service.
  • Each of the first and second stents may comprise a sinuous wire formed into a tubular configuration.
  • the sinuous and tubular configurations may be imparted to the wire by winding it on a mandrel.
  • each stent may be made from a shape memory nitinol (nickel-titanium) wire which may be wound on to the mandrel to form the stent in a tubular configuration of slightly greater diameter than the diameter of the blood vessel in which the stent is intended to be used.
  • the stent may be annealed at an elevated temperature and then allowed to cool in air so that the nitinol wire “remembers” the configuration in which it was wound on the mandrel.
  • Said nitinol wire may be type “M” nitinol wire which is martensitic at temperatures below about 13° C. and is austenitic at temperatures above about 25° C.; it will be appreciated therefore that the type “M” wire will be austenitic at body temperature of 37° C.
  • the annealing may be conducted at about 500° C. or more for at least about 60 minutes; after cooling the wire may be immersed in cold water to facilitate removal of the wire from the mandrel with the wire in its maleable martensitic form.
  • the cold water may have temperature of less than about 10° C.; the wire may be immersed for about 5 minutes or more.
  • nitinol wire is “super elastic” in its austenitic state; the radial outward force exerted by the stent on the wall of the blood vessel in use is therefore substantially constant irrespective of the diameter of the vessel and the expanded stent.
  • the wire may have a helical configuration as disclosed in EP-A-0556850.
  • the wire may be of an entirely novel configuration, namely one in which the wire forms a plurality of hoops such that the plane of the circumference of each hoop is substantially perpendicular to the longitudinal axis of the stent.
  • Each hoop may comprise a substantially complete turn of the wire having a sinuous configuration; optionally, as each hoop is completed, the point of winding the wire may be displaced longitudinally with respect to the winding axis to form the next hoop. When the next hoop is complete, the point of winding is moved further longitudinally with respect to the winding axis to the form the next succeeding hoop and so on.
  • an advantage of this novel arrangement is that the planes of the hoops are not skewed with respect to the longitudinal axis of the stent; the longitudinal ends of the stent are “square” to said longitudinal axis, so that when the stent is caused or allowed to expand in situ there is substantially no twisting of the stent as it shortens in length. It will be appreciated that this represents a significant advantage, as in areas of stenosis or aneurysm it is desirable to minimize the movement of the stent within the blood vessel so as to reduce the potential trauma to the patient.
  • a stent of this configuration may be used, apart from the bifurcated embodiment otherwise taught herein, in any application which in stents generally have heretofor been used.
  • the stents of this invention also comprise a securing means for securing an apex of the sinuous wire in one hoop to a juxtaposed apex of a neighboring hoop so that each hoop is supported by its neighbors.
  • the securing means may comprise a loop element of a suture material, for example, to tie the juxtaposed apices together; the loop element may also comprise a loop formed of a thermoplastics material such, for example, as polypropylene.
  • the securing means may be a bead formed of a thermoplastic material around juxtaposed apices.
  • the securing means may be a loop, ring, or staple formed of wire such as nitinol.
  • the male engaging portion and female cooperating portion, of the first and second interengaging stents of this invention may be formed separately from the remainder of the respective non-engaging portions of these stents and then the engaging and non-engaging portions secured to one another by securing means.
  • the proximal and distal stent portions of the bifurcated stent in accordance with the present invention may be formed separately; the distal end of the proximal stent portion may be secured to the wider proximal end of a first intermediate frustoconical stent portion; the narrower distal end of the first intermediate frustoconical stent portion may be secured to the proximal end of the distal stent portion.
  • the female cooperating portion of the bifurcated stent may be constituted by a second frustoconical stent portion which is secured to the distal end of the proximal stent portion in juxtaposition with the first frustoconical portion.
  • first and second frustoconical portions may be omitted; the proximal and distal stent portions may be secured directly one to the other.
  • the female cooperating portion may be constituted by a generally cylindrical stent portion secured to said proximal stent portion in transversely spaced relation to the distal portion.
  • Each of the first and second stents of the bifurcated form of the present invention may carry a tubular graft layer formed from a biocompatible fabric in juxtaposition with the stent; the combined stent and graft layer constituting an endoluminal prosthesis.
  • the graft layer may be disposed externally of the stent; it will be appreciated however that in some embodiments the graft layer may be disposed internally of the stent.
  • the graft layer may be secured to the stent by loop elements such, for example, as loops of polypropylene.
  • the biocompatible fabric may be a polyester fabric or a polytetrafluoroethylene fabric; typically said fabric may be woven or a warp knitted polyester fabric.
  • the woven or a warp knitted fabric may be formed in a seam-free bifurcated configuration as a sleeve for a bifurcated stent.
  • the male engaging portion of the first stent and the female cooperating portion of the second stent may be left uncovered.
  • the fabric graft layer may extend to the proximal extremity on the external surface of the male engaging portion, and may be folded over the distal extremity of the female engaging portion to form an inner sleeve; in use the external fabric of the male engaging portion may butt against the folded over portion of the fabric internally of the female cooperating portion to form a substantially blood tight seal.
  • the present invention in one aspect therefore includes a bifurcated endoluminal prosthesis comprising a bifurcated stent in accordance with the invention and a tubular graft layer.
  • the first stent having the male engaging portion may also have a tubular graft layer. If required the first prosthesis may be introduced in a radially compressed state such that the male engaging portion of the first prosthesis is engaged in the intermediate female cooperating portion of the bifurcated prosthesis; the first prosthesis is then caused to be allowed to re-expand in situ such that the male engaging portion engages in the female cooperating portion to resist longitudinal separation of the two prosthesis in service.
  • the bifurcated prosthesis may be adapted for use in the infrarenal portion of a mammalian aorta in juxtaposition with the bifurcation of the common iliac arteries for the treatment of abdominal aortic aneurysms.
  • the bifurcated endoluminal prosthesis may be introduced into the infrarenal portion of the aorta using a catheter such that the first distal stent portion extends into one of the branched iliac arteries; the catheter may then be withdrawn allowing the prosthesis to re-expand in situ.
  • prostheses may be introduced to the site of use percutaneously or by “cut down” techniques.
  • any of the stents according to this invention may be provided on its external surface with circumferentially spaced wire barbs or hooks adapted to engage in the endoluminal surface of the host artery to resist longitudinal movement or slippage of the stent in use.
  • the barbs or hooks may be disposed on part of the stent which is provided with a fabric graft layer such that in use the points of the artery which are engaged by the barbs or hooks are covered by the fabric graft. It will be appreciated by a person skilled in the art that the trauma to the artery wall caused by the hooks or barbs may cause emboli; the provision of the fabric graft over the barbs or hooks in use will therefore help to prevent the introduction of such emboli into the blood stream.
  • the male engaging portion for the first stent may be provided with circumferentially spaced hooks or barbs on its external surface to engage the internal surface of said female cooperating means, thereby to reinforce the connecting means against longitudinal separation of the stents one from the other in the service.
  • the present invention therefore provides a connecting means for connecting two stents longitudinally one to the other. It will be appreciated that this represents a significant step forward in the art as it allows the provision of a bifurcated endoluminal prosthesis for use in juxtaposition e.g. with arterial bifurcations without requiring by-pass surgery to connect one of the branched arteries to the other branched artery.
  • the invention provides a bifurcated endoluminal prosthesis which can be positioned in an artery in juxtaposition with a bifurcation to extend into one of the branched arteries; the bifurcated prosthesis can be connected to another prosthesis which extends into the other branched artery.
  • the prosthesis can be delivered percutaneously or by “cut down” methods and connected together in situ thereby to provide effective treatment of an angeological disease such, for example, as an aneurysm or a stenosis which extends across a bifurcation in a blood vessel without the need for by-pass surgery.
  • this invention provides an introducer for delivering, into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, a bifurcated endoluminal stent or prosthesis having a proximal portion adapted to be disposed in the blood vessel and a distal portion adapted to be disposed at least partially in one of the two branched vessels.
  • the introducer comprises a tubular outer sheath, a proximal portion pusher disposed at least partially within the outer sheath, and a distal portion pusher disposed at least partially within the proximal portion pusher.
  • the present invention further provides an introducer for delivering into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, an endoluminal prosthesis having a proximal stent portion and a distal stent portion.
  • the introducer comprises a tubular outer sheath, a proximal portion pusher disposed at least partially within the outer sheath and having a proximal end adapted to contact the proximal stent portion, a distal portion pusher disposed at least partially within the proximal portion pusher and having a proximal end adapted to contact the distal stent portion; and a balloon catheter, having a balloon attached thereto, disposed at least partially within the distal portion pusher.
  • This invention in another aspect provides a method for delivering a bifurcated endoluminal stent or prosthesis having a proximal portion and a first distal portion into the vasculature at an angeological bifurcation where a blood vessel branches into a first branched vessel and a second branched vessel.
  • the method comprises inserting a first introducer containing the stent or prosthesis into the vasculature to a predetermined delivery location, the first introducer comprising an outer sheath, a proximal portion pusher, and a distal portion pusher; withdrawing the outer sheath of the first introducer while maintaining the proximal portion pusher in a fixed position until the proximal portion of the stent or prosthesis is deployed from the first introducer into the blood vessel; withdrawing the outer sheath and the proximal portion pusher while maintaining the distal portion pusher in a fixed position until the first distal portion of the stent or prosthesis is deployed from the first introducer at least partially into the first branched vessel; and withdrawing the first introducer from the vasculature.
  • This invention further provides a method for delivering, into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, an endoluminal prosthesis having a proximal stent portion, and a distal stent portion.
  • the method comprises the steps of inserting an introducer containing the prosthesis into the vasculature to a predetermined delivery location, the introducer comprising an outer sheath, a proximal stent portion pusher, a distal stent portion pusher, and a balloon catheter having a balloon attached thereto; inflating the balloon to at least partially block blood flow in the blood vessel; withdrawing the outer sheath of the introducer while maintaining the proximal stent portion pusher in a fixed position until the proximal stent portion of the prosthesis is deployed from the introducer into the blood vessel; withdrawing the outer sheath and the proximal stent portion pusher while maintaining the distal stent portion pusher in a fixed position until the distal stent portion of the prosthesis is deployed from the introducer into the blood vessel; and withdrawing the introducer from the vasculature.
  • this invention provides a method of treating an angeological disease at a bifurcation site where a blood vessel branches into a first branched vessel and a second branched vessel comprising the steps of disposing in the blood vessel a proximal portion of an endoluminal stent; directing blood flow from the blood vessel into the first branched vessel through a first distal portion of the endoluminal stent, the first distal portion being connected to the proximal portion and extending into the first branched vessel; and directing blood flow from the blood vessel into the second branched vessel through a second distal portion of the endoluminal stent, the second distal portion being connected to the proximal portion and extending into the second branched vessel.
  • This method may be applied to aneurysms, occlusions, or stenosis.
  • FIG. 1 a is a front view of a bifurcated intraluminal stent in accordance with the present invention constituting part of an endoluminal prosthesis.
  • FIG. 1 b is a front view of another stent which is adapted to be connected to the bifurcated stent of FIG. 1 a.
  • FIG. 2( a ) is a side view of part of the bifurcated stent of FIG. 1 a opened up to show its construction.
  • FIG. 2( b ) is a side view of an exemplary is mandrel used to form the part of the bifurcated stent shown in FIG. 2( a ).
  • FIG. 3 is a side view of another part of the bifurcated stent of FIG. 1 a opened up to show its construction.
  • FIG. 4( a ) is a side view of yet another part of the bifurcated stent of FIG. 1 a opened up to show its construction.
  • FIGS. 4 ( b )- 4 ( f ) are partial exploded views of the exemplary stent of FIG. 4( a ) illustrating alternative means for securing juxtaposed apices according to the present invention.
  • FIG. 5 is a schematic perspective view of a bifurcated endoluminal prosthesis in accordance with the present invention.
  • FIG. 6 is a schematic view of another bifurcated endoluminal prosthesis in accordance with the present invention.
  • FIG. 7 is a schematic view of yet another bifurcated endoluminal prosthesis in accordance with the present invention.
  • FIG. 8( a ) is a cross-sectional view of an exemplary assembled introducer according to the present invention.
  • FIGS. 8 ( b )- 8 ( e ) are side views of the component parts of the introducer of FIG. 8( a ).
  • FIG. 8( f ) is a partial cross-sectional view of the introducer of FIG. 8( a ).
  • FIG. 8( g ) is a cross-sectional view of part of the introducer of FIG. 8( f ) taken along the line A-A.
  • FIG. 9 is a side cross-sectional view of a portion an alternative embodiment of an introducer according to the present invention.
  • FIGS. 10 ( a ) and 10 ( b ) are side views of other alternative embodiments of an introducer according to the present invention.
  • FIGS. 11 through 20 are sequential cross-sectional views of the bifurcation of the abdominal aortic artery during introduction of an exemplary prosthesis according to the present invention.
  • FIGS. 21 ( a )- 21 ( c ) are cross-sectional views is of alternative insertion apparatus according to the present invention.
  • FIGS. 22 and 23 are side views of alternative stents according to the present invention.
  • FIGS. 24 ( a ), 24 ( b ), 25 , 26 and 27 are sequential cross-sectional views of the bifurcation of the abdominal aortic artery during introduction of an exemplary prosthesis according to the present invention.
  • FIGS. 28 and 29 are cross-sectional side views of alternative delivery apparatus according to the present invention.
  • FIGS. 30 - 34 are sequential cross-sectional views of the bifurcation of the abdominal aortic artery during introduction of an exemplary prosthesis according to the present invention.
  • the present invention includes apparatus and method for treating angeological diseases in any bifurcated blood vessel.
  • a bifurcated blood vessel is the infrarenal portion of a mammalian aortic artery where it bifurcates to the common iliac arteries.
  • diseases that can be treated using the apparatus and method of the present invention include aneurysm, stenosis, and occlusion.
  • a bifurcated stent in accordance with the present invention which is indicated at 10 in FIG. 1 a comprises a wire skeleton which is constructed in four separate parts, namely a proximal part 12 , a first frustoconical part 14 , a first distal part 16 and a second frustoconical part 18 .
  • Said bifurcated stent 10 carries a fabric graft layer (FIGS. 5, 6, and 7 ) for use as an endoluminal prosthesis e.g. in the infrarenal portion of a mammalian aorta in juxtaposition with the bifurcation of the common iliac arteries.
  • a fabric graft layer FIGS. 5, 6, and 7
  • bifurcated stents (with or without fabric graft layers) for use in different parts of the angeological system and for different mammals can be constructed in accordance with the invention by varying the dimensions of the stent accordingly.
  • Each of the four parts of the bifurcated stent 10 is made in substantially the same way by winding a shape memory nitinol wire, typically nitinol type M wire, onto a mandrel 46 .
  • the winding surface of mandrel 46 is provided with a plurality of upstanding pins 47 disposed in a zig-zag pattern for each of the hoops 20 so that in each hoop 20 the nitinol wire follows a sinuous path to define a plurality of circumferentially spaced apices 22 .
  • Each hoop 20 is wound onto mandrel 46 such that the plane of the circumference of each hoop 20 is substantially perpendicular to the longitudinal axis of the mandrel.
  • the point of winding of the nitinol wire is displaced longitudinally with respect to the axis of mandrel 46 to form the next successive hoop 20 b .
  • the stent shown in FIG. 2( a ) is the stent formed on mandrel 46 shown in FIG. 2( b ) after cutting the stent longitudinally and rotating it 45 degrees to show the construction of the stent.
  • the proximal part of the exemplary bifurcated stent of FIG. 1 a is formed on the mandrel with a diameter of about 24 mm and a length in the longitudinal direction of about 55 mm. From FIGS. 1 ( a ), 2 ( a ), and 2 ( b ) it will be noted that the proximal part 12 is constituted by three hoops 20 of unit width at the proximal end 24 of the proximal part 12 , two intermediate hoops 25 of twice unit width and, at its distal end 26 , by a single hoop 20 of unit width. In the illustrated embodiment, intermediate hoops 25 have a plurality of offsets 25 a .
  • Offsets 25 a are formed when the wire is passed around pins 47 on mandrel 46 . Offsets 25 a add stability to the stent.
  • the nitinol wire is annealed at an elevated temperature and then allowed to cool.
  • the wire is annealed at a temperature of about 500° C. for 60 minutes and is then allowed to cool in air.
  • the purpose of the annealing is so that the nitinol wire in its austenitic form “remembers” its configuration as wound on mandrel 46 ; it will be appreciated therefore that other temperatures and durations for the annealing are included within the present invention provided the nitinol wire “remembers” its wound configuration.
  • the wire After annealing and cooling, the wire is immersed in cold water at less than 10° C. for about 5 minutes; the wire is then removed from the mandrel, and juxtaposed apices 22 of neighboring hoops 20 are secured together by securing means 99 (see FIG. 4( a )), which are, in this example, 0.003′′ polypropylene filaments.
  • securing means 99 which are, in this example, 0.003′′ polypropylene filaments.
  • Each apex 22 of each hoop 20 which has a juxtaposed apex of a neighboring hoop 20 is tied to the juxtaposed apex 22 . It will be appreciated, however, that in other embodiments of the invention only some of the juxtaposed apices 22 may be secured in this way.
  • the securing means may comprise a loop element 99 a of a suture material, for example, to tie the juxtaposed apices together, as shown in FIG. 4( b ).
  • the securing means may also comprise bead 99 b formed of a thermoplastic material around juxtaposed apices, as shown in FIG. 4( c ).
  • the securing means may be a loop 99 c , ring 99 d , or staple 99 e formed of wire such as nitinol, as shown in FIGS. 4 ( d ), 4 ( e ), and 4 ( f ) respectively.
  • the exemplary first and second frustoconical parts 14 , 18 of the skeleton shown in the figures are formed in substantially the same way as the proximal part 12 by winding nitinol wire onto a mandrel and then annealing the wire before removing it from the mandrel.
  • the first and second frustoconical parts 14 , 18 are each constituted by three hoops 20 of unit width.
  • the mandrel is tapered such that the proximal end of each of the exemplary frustoconical parts 14 , 18 is formed with a diameter of about 12 mm and the distal end 32 of each is formed with a diameter of about 9 mm.
  • each of the exemplary frustoconical parts 14 , 18 is about 18 mm.
  • the wire used for the frustoconical parts 14 , 18 is nitinol type M wire having a diameter of 0.28 mm (0.011′′).
  • Juxtaposed apices 22 of each of the exemplary frustoconical parts 14 , 18 are tied together using 0.03′′ polypropylene filaments as described above.
  • the first and second frustoconical parts 14 , 18 are secured to the distal end 26 of the proximal part 12 of the stent 10 in transversely spaced relation as shown in FIG.
  • the exemplary first distal part 16 of the bifurcated stent 10 is formed by winding nitinol type M wire typically having a diameter of 0.28 mm (0.011′′) onto a mandrel to form twelve longitudinally spaced hoops 20 as shown in FIG. 4; the exemplary first distal part has an overall length of about 66 mm and a uniform diameter of about 9 mm.
  • the proximal end 34 of the distal part 16 is secured to the narrower distal end 32 of the first frustoconical part 14 by tying each apex 22 on the proximal end 34 of the first distal part 16 to a juxtaposed apex on the distal end 32 of the first frustoconical part 14 using, in this embodiment, 0.003′′ polypropylene filaments.
  • the proximal part 12 , the first and second frustoconical parts 14 , 18 , and the first distal part 16 are each covered with a tubular graft layer of a biocompatible woven fabric (FIGS. 5, 6, and 7 ) such, for example, as a plain woven fabric made from 30 or 40 denier polyester.
  • the tubular fabric layers may be attached to the proximal and distal parts 12 , 16 of the stent 10 by stitching with, for example, 0.003′′ polypropylene filaments around the apices 22 of the underlying skeleton.
  • the fabric covered stent constitutes one form of an endoluminal prosthesis.
  • the proximal part 12 of the wire skeleton may be provided with a plurality of circumferentially spaced hooks or barbs 43 which project through the tubular fabric layer to engage in the endoluminal surface of a host artery in service.
  • each turn 20 of the wire skeleton of the stent 10 allows the prosthesis to be compressed resiliently radially inwards so that it can be received in a catheter e.g. a 16 or 18 French catheter for percutaneous or cut down delivery, e.g. to an intraluminal site in the infrarenal section of the aortic artery. Larger diameter catheters up to, e.g., 20 French, may be used to deliver the prosthesis using “cut down” procedures.
  • An x-ray opaque marker may be attached to one or more ends of a stent so that the delivery of the stent can be monitored using x-rays.
  • a radiopaque marker may typically comprise a gold or platinum wire 17 crimped onto an end of stent 16 .
  • the radiopaque marker may be a tube 17 a disposed around a length of wire on the stent, also as shown in FIG. 4( a ).
  • the marker is secured to the stent in line with the distal stent portion so that the distal stent portion can be aligned with and inserted into one of the branched arteries in situ.
  • the bifurcated endoprosthesis is positioned in the infrarenal section of the aortic artery in juxtaposition with the bifurcation of the common iliac arteries such that the first distal part 16 of the prosthesis extends into one of the common iliac arteries.
  • the catheter is then withdrawn allowing the stent 10 to re-expand towards its configuration as wound on the mandrel in which it was annealed until the stent engages the endoluminal surface of the host artery.
  • the barbs or hooks engage the endoluminal surface of the host artery to resist longitudinal displacement or slipping of the prosthesis in use.
  • a second prosthesis comprising a second stent 40 as shown in FIG. 1 b can be used.
  • the second stent 40 includes a wire skeleton comprising a proximal frustoconical part 42 and a distal part 44 .
  • the distal part 44 of the second stent 40 also may be covered with a tubular graft layer of a biocompatible fabric such, for example, as polyester or polytetrafluoroethylene fabric (FIGS. 5, 6, and 7 ).
  • the frustoconical proximal part 42 is constructed in the same way as the frustoconical parts 14 , 18 of the bifurcated stent 10 ; the distal part 44 is constructed in the same way as the distal part 16 of the bifurcated stent 10 .
  • the distal end of the frustoconical proximal part 42 is secured to the proximal end of the distal part 44 by securing juxtaposed apices using polypropylene filaments as described above.
  • the second prosthesis is compressed radially inwards and is received in a catheter for percutaneous or “cut down” delivery to the other common iliac artery.
  • the frustoconical proximal part 42 is guided, in the radially compressed state, into the second frustoconical part 18 of the bifurcated stent 10 .
  • the catheter is then withdrawn allowing the second stent 40 to re-expand towards its remembered configuration, until the distal part 14 engages the endoluminal surface of the other common iliac artery, and the outer surface of the frustoconical proximal part 42 engages the interior surface of the second frustoconical part 18 of the bifurcated stent 10 .
  • the frustoconical proximal part 42 may be formed with circumferentially spaced barbs or hooks 43 , as shown in FIG. 1 b , which engage in the wire skeleton of the second frustoconical part 18 of the bifurcated stent 10 .
  • barbs 43 When barbs 43 are on proximal portion 12 , they engage the inner wall of the artery.
  • the tapered configurations of the second frustoconical part 18 of the bifurcated stent 10 and of the proximal frustoconical part 42 of the second stent 40 are such that in the fitted position as described, the prosthesis are locked together to resist longitudinal separation in service. Barbs or hooks on the second stent 40 and/or an frustoconical proximal part 42 help to resist such longitudinal separation.
  • a bifurcated endoluminal prosthesis 50 as shown in FIG. 5 includes a bifurcated stent comprising a proximal portion 52 which tapers radially inwardly from its proximal end 54 to its distal end 56 , and first and second transversely spaced frustoconical distal portions 58 , 60 which are secured to the distal end 56 of the proximal portion 52 ; the proximal portion 52 is covered with a tubular graft layer of a biocompatible fabric 62 .
  • the prosthesis In use the prosthesis is delivered percutaneously or by “cut down” methods to an artery in juxtaposition with an arterial bifurcation; blood can flow through the frustoconical proximal portion 52 into each of the branched arteries through the first and second distal frustoconical portions 58 , 60 . If a prosthesis is required in one or both of the branched arteries, a separate prosthesis comprising a stent of the type shown in FIG.
  • FIG. 6 shows a bifurcated endoluminal prosthesis 70 having a proximal portion 72 which is secured at its distal end 74 to two transversely spaced frustoconical intermediate portions 76 , 78 .
  • One of said frustoconical intermediate portions 76 is secured at its distal end to an elongate distal portion 80 .
  • the proximal end 82 of the proximal portion 72 is flared radially outwards towards its proximal end 82 to engage the intraluminal surface of the host blood vessel in service.
  • the entire endoprosthesis is covered with a fabric graft layer as shown in FIG. 6; said graft layer is carried externally of the wire skeleton and is folded over the distal extremity 84 of the other frustoconical intermediate portion 78 to form an internal lining in said other frustoconical immediate portion 78 .
  • Said other frustoconical intermediate portion 78 constitutes a female cooperating portion in accordance with the present invention which is adapted to receive a male engaging portion of another prosthesis as indicated at 86 in FIG. 6.
  • Said other prosthesis 86 includes a frustoconical proximal portion 88 which constitutes the male engaging portion and an elongate distal portion 90 .
  • the whole of the other prosthesis 86 is covered with a fabric graft layer as shown in FIG. 6.
  • the male engaging portion 88 of the other prosthesis 86 is entered into and engaged with the female cooperating portion 78 of the bifurcated prosthesis 70 in situ in the manner herein before described.
  • the fabric layer on the male engaging portion 88 butts face-to-face on the folded over portion of the fabric layer disposed internally of the female cooperating portion 78 to form a substantially blood-tight seal therewith.
  • FIG. 7 Yet another example of the present invention is shown in FIG. 7 in which a bifurcated endoluminal prosthesis 91 has a generally cylindrical proximal portion 92 ; said proximal portion 92 is connected at its distal end 93 to an elongate, generally cylindrical distal portion 94 . Said proximal portion 92 is also connected at its distal end 93 to a generally cylindrical intermediate portion 95 which is secured in transversely spaced relation to the elongate distal portion 94 . Said cylindrical intermediate portion 95 constitutes a female engaging portion which is adapted to receive a generally cylindrical male engaging portion of a second elongate prosthesis (not shown).
  • the male engaging portion is equipped with circumferentially spaced external barbs to engage in the female cooperating portion in service.
  • the whole of the bifurcated prosthesis 91 is covered with an external fabric graft layer save for a flared portion 96 towards the proximal end 97 of the proximal portion 92 .
  • FIGS. 8 ( a )- 8 ( f ) an exemplary embodiment of a delivery system according to the present invention will be described.
  • This system is used to deploy the bifurcated stent 10 when it is covered with a fabric graft layer to create an endoluminal prosthesis.
  • Introducer 100 includes outer sheath 101 .
  • Outer sheath 101 is a cylindrical tube adapted to be inserted either percutaneously or by “cut-down” procedures into the vasculature from an entry point to the bifurcation site where the prosthesis is to be deployed.
  • Proximal portion pusher 102 Housed within outer sheath 101 is proximal portion pusher 102 .
  • Proximal portion pusher 102 is a cylindrical tube having an outside diameter smaller than the inside diameter of outer sheath 101 .
  • Proximal portion pusher 102 is preferably slidable throughout the length of outer sheath 101 .
  • Disposed within proximal portion pusher 102 is distal portion pusher 103 .
  • Distal portion pusher 103 is a cylindrical tube slidably contained within distal portion pusher 102 .
  • Distal portion pusher 103 is preferably adapted to slide throughout the entire length of proximal portion pusher 102 .
  • balloon catheter 104 Disposed within distal portion 103 is balloon catheter 104 .
  • Balloon catheter 104 is adapted to slide within distal portion pusher 103 .
  • At the leading end 105 of balloon catheter 104 is nose cone 106 .
  • Balloon 107 is attached to balloon catheter 104 between nose cone 106 and proximal end 115 of proximal portion pusher 102 .
  • balloon catheter 104 has a guide wire conduit 104 a .
  • Guide wire conduit 104 a extends throughout the length of balloon catheter 104 for passing a guide wire (not shown) through introducer 100 .
  • balloon catheter 104 also includes injection orifice 109 and an injection conduit 109 a .
  • Injection conduit 109 a connects injection orifice 109 to an injection site 108 at or near the distal end of balloon catheter 104 as shown in FIG. 8( e ).
  • Radiopaque liquid may be injected into injection site 108 , through injection conduit 109 a , out injection orifice 109 , and into the vasculature to monitor deployment of the prosthesis.
  • balloon catheter 104 has an inflation orifice 110 located at a point where balloon 107 is attached to balloon catheter 104 .
  • a balloon inflation conduit 110 a connects balloon inflation orifice 110 to balloon inflation site 111 (FIG. 8( e )).
  • Balloon 107 may be inflated and deflated from balloon inflation site ill during delivery of the prosthesis.
  • seals 150 , 151 may be disposed around the distal ends 160 , 161 of outer sheath 10 and proximal portion pusher 102 .
  • Seals 150 , 151 may be formed of silicone tubes.
  • FIG. 10( a ) shows an alternative embodiment of introducer 100 .
  • wings 112 and 113 are provided at the distal end of introducer 100 .
  • Wing 112 is connected to proximal portion pusher 102
  • wing 113 is connected to outer sheath 101 .
  • Wings 112 and 113 indicate the rotational orientation of proximal portion pusher 102 and outer sheath 101 , respectively. This in turn indicates the orientation of proximal portion 12 within outer sheath 101 and distal portion 16 within proximal portion pusher 102 .
  • Wings 112 and 113 in the illustrated embodiment are also provided with holes 112 a and 113 a.
  • a rod 128 or other fixation device may be attached to wings 112 and 113 using e.g. bolts through holes 112 a and 113 a secured by wing nuts 129 or other securing means.
  • Rod 128 prevents relative movement of proximal portion pusher 102 and outer sheath 101 .
  • Wings may also be provided on distal portion pusher 103 and used to secure distal portion pusher 103 to either proximal portion pusher 102 or outer sheath 101 using a fixation device as described above.
  • hemostasis valve 114 Also shown in FIG. 10( a ) as part of introducer 100 is hemostasis valve 114 .
  • Hemostasis valve 114 is connected to distal portion pusher 103 and acts as a simple seal around balloon catheter 104 . Although it prevents fluid loss, hemostasis valve 114 allows balloon catheter 104 to slide within distal portion pusher 103 .
  • a Touhy-Borst valve (not shown) may be used instead of hemostasis valve 114 .
  • the Touhy-Borst valve is a device that may be manually tightened over balloon catheter 104 . Lightly tightening such a valve permits balloon catheter 104 to slide; firmly tightening such a valve clamps balloon catheter 104 in place.
  • the prosthesis In use, the prosthesis must first be loaded into introducer 100 . Outer sheath 101 is first removed from introducer 100 . Balloon catheter 104 is then threaded through distal portion 16 and proximal portion 12 of the prosthesis. The prosthesis is then cooled to a temperature of approximately 10° C. or below and radially compressed. For this purpose, the prosthesis may be immersed in cold water. The prosthesis should preferrably remain in the water during the loading operation.
  • Distal portion 16 of the prosthesis in the radially compressed state is then inserted into proximal portion pusher 102 .
  • Outer sheath 101 is then pulled over proximal portion 12 of the prosthesis and over proximal portion pusher 102 .
  • a thread (not shown) may be attached to the proximal end of proximal portion 12 of the prosthesis and threaded through outer sheath 101 . This thread may then be used to pull proximal portion 12 through outer sheath 101 .
  • Marks may be placed on the outside of outer sheath 101 and proximal portion pusher 102 to ensure proper alignment.
  • the prosthesis is inserted such that the outer surface of proximal portion contacts and is radially restrained by outer sheath 101 , and the outer surface of distal portion 16 contacts and is radially restrained by proximal portion pusher 102 .
  • End 115 of proximal portion pusher 102 longitudinally engages proximal portion 12 of the prosthesis as shown in FIG. 8( f ).
  • Balloon catheter 104 is positioned such that nose cone 106 just clears proximal end 117 of outer sheath 101 .
  • the introducer is now in condition for insertion into the patient.
  • introducer 100 is passed through an entry point (not shown) either in the patient's skin (percutaneous operation) or into the vasculature itself which has been surgically exposed (“cut-down” operation). Introducer 100 is inserted over a guide wire 170 into the vasculature from the entry point to the desired delivery location at an angeological bifurcation.
  • introducer 100 is positioned such that end 117 of outer sheath 101 is approximately level with renal arteries 180 as shown in FIG. 11.
  • Balloon catheter 104 is then extended while maintaining outer sheath 101 in a fixed position.
  • Balloon catheter 104 in this embodiment is extended until distal end 105 of nose cone 106 is approximately 35 mm above the proximal tip 117 of outer sheath 101 .
  • outer sheath 101 is withdrawn until the proximal tip of the prosthesis is level with proximal tip 117 of outer sheath 101 . It will be noted that balloon catheter 104 does not move while outer sheath 101 is so withdrawn.
  • Introducer 100 is then repositioned to place the prosthesis in the desired deployment location. Proper placement may be facilitated with the use of radiopaque markers as described above. Balloon catheter 104 is then extended such that balloon 107 is above renal arteries 180 . Balloon 107 is then inflated to occlude the aorta as shown in FIG. 12.
  • radiopaque marker 120 is a platinum wire twisted around an apex of the prosthesis in a “V” shape. To ensure proper alignment, the stent should be rotated until only the profile of the V is seen and shows up as a straight line rather than a “V”.
  • Outer sheath 101 is further withdrawn while maintaining proximal portion pusher 102 fixed until proximal portion 12 is fully deployed from the end of outer sheath 101 , and the frustoconical portion 18 of the prosthesis just clears end 117 , as shown in FIG. 14.
  • Balloon 107 is then deflated to allow blood to flow through proximal portion 12 and out frustoconical portion 18 of the prosthesis. Balloon 107 is withdrawn into the prosthesis until the distal end 118 of nose cone 106 is just above the proximal end of the prosthesis. Balloon 107 is then inflated to seat the prosthesis, which may be provided with barbs (not shown) at its proximal end, against the wall of the aorta, as shown in FIG. 15.
  • Distal portion pusher 103 is then maintained in a fixed position while outer sheath 101 is withdrawn. Once outer sheath 101 has been withdrawn to the point at which proximal end 117 of outer sheath 101 is flush with proximal end 115 of proximal portion pusher 102 , both outer sheath 101 and proximal portion pusher 102 are withdrawn, still maintaining distal portion pusher 103 in a fixed position. Outer sheath 101 and proximal portion pusher 102 are withdrawn until distal portion 16 of the prosthesis is deployed clear of proximal end 116 of distal portion pusher 103 as shown in FIG. 16.
  • Balloon 107 is slowly deflated to allow blood flow to be established through the proximal portion 12 of the prosthesis and out through frustoconical portion 18 . Balloon 107 may be used to model distal portion 16 of the prosthesis as necessary by inflating balloon 107 where needed to expand distal portion 16 . Balloon 107 is then deflated, and introducer 100 is withdrawn from the vasculature, leaving the guide wire 170 in place, as shown in FIG. 17.
  • FIG. 21( a ) illustrates an exemplary second introducer 300 used for deploying second distal part 44 .
  • Second introducer 300 of the illustrated embodiment comprises cylindrical outer sheath 301 and female Luer lock assembly 310 .
  • Second introducer 300 also has hemostasis valve 361 contained within a hub 362 thereof.
  • Cartridge 311 shown in FIG. 21( b ) is adapted to be attached to second introducer 300 .
  • Cartridge 311 has threaded male Luer lock assembly 312 provided on its proximal end.
  • Cartridge 311 has outer tube 313 which houses inner tube 314 .
  • a thin-walled tube (not shown) is first threaded through distal portion 44 .
  • This tube serves as a guide wire guide, allowing a guide wire to be threaded straight through distal portion 44 as discussed below.
  • Distal portion 44 containing the thin-walled tube is then cooled, radially compressed, and inserted into inner tube 314 of cartridge 311 in a manner similar to that described for inserting the bifurcated prosthesis into proximal portion pusher 102 and outer sheath 101 .
  • the thin-walled tube serving as a guide wire guide extends out both ends of cartridge 311 .
  • a guide wire 171 is then inserted into the vasculature to the bifurcation site and through distal stent portion 12 as shown in FIG. 18.
  • a dialator 359 (FIG. 21( c )) having an outer diameter slightly less than the inner diameter of second introducer 300 is then inserted into second introducer 300 such that tapered end 360 extends out end 320 of second introducer 300 .
  • End 360 of dialator 359 has a hole therein that is just slightly larger than guide wire 171 and tapers gradually outward from the hole to the outer diameter of dialator 359 .
  • Second introducer 300 is then inserted into the vasculature over guide wire 171 by passing guide wire 171 into and through dialator 359 .
  • Dialator 359 with tapered end 360 provides a smooth transition within the blood vessel from the diameter of guide wire 171 to the diameter of second introducer 300 .
  • Second introducer 300 is maneuvered such that outer sheath 301 is inside frustoconical portion 18 of proximal portion 12 by at least 20 mm in this embodiment, as shown in FIG. 19. Dialator 359 is then removed from second introducer 300 and from the vasculature and is discarded.
  • Cartridge 311 is then passed over guide wire 171 by passing guide wire 171 through the thin-walled guide wire guide within distal portion 44 contained in cartridge 311 .
  • the guide wire guide is then removed and discarded.
  • Cartridge 311 is then lockingly engaged with introducer 300 by mating male Luer lock assembly 310 with female Luer lock assembly 312 .
  • Such locking engagement prevents relative movement of cartridge 311 and introducer 300 . Preventing relative movement lends stability and reliability to the insertion process that has not heretofore been achieved.
  • a pusher 315 is then inserted into inner tube 314 of cartridge 311 such that proximal end 317 of pusher 315 longitudinally contacts a distal end of distal portion 44 within inner tube 314 .
  • Pusher 315 pushes distal portion 44 through cartridge 311 and into outer sheath 301 of introducer 300 .
  • Distal portion 44 is pushed through outer sheath 301 , which remains in a fixed position, until distal portion 44 is at proximal end 320 of outer sheath 301 (see FIG. 19).
  • radiopaque markers 120 may be used to align distal portion 44 properly with proximal portion 12 .
  • Pusher 302 is held firmly in place, and outer sheath 301 is withdrawn approximately 2 cm. This deploys frustoconical part 42 of distal part 44 inside the frustoconical part 18 as shown in FIG. 19.
  • the outer surface of frustoconical part 42 engages the inner surface of frustoconical part 18 such that distal portion 44 is connected to proximal portion 12 to resist longitudinal separation.
  • Outer sheath 301 may then be withdrawn while maintaining pusher 302 in a fixed position to fully deploy distal portion 44 , as shown in FIG. 20. If necessary, balloon catheter 104 may be inserted through sheath 301 in order to model distal portion 44 . Introducer 301 and guide wires 170 , 171 are then removed from the vasculature and the entry points are closed.
  • a straight (i.e. non-bifurcated) stent may be used.
  • the straight stent comprises a composite of at least two axially aligned stent segments.
  • straight stent 400 comprises proximal stent portion (or segment) 401 , distal stent portion 402 , and an intermediate portion 403 .
  • Proximal portion 401 is a ring formed of a number of longitudinally spaced hoops 20 as described in connection with the formation of stent 10 above. In the illustrated embodiment, two hoops 20 are used, each hoop 20 having a unit width.
  • Distal portion 402 is also a ring formed of longitudinally displaced hoops 20 in the manner described above.
  • Distal ring 402 has two hoops 20 of unit width in the illustrated embodiment.
  • Intermediate portion 403 of straight stent 400 is formed of biocompatible woven fabric such as, for example, a plain woven fabric made from 30 or 40 denier polyester.
  • intermediate fabric section 403 does not cover a stent.
  • Fabric portion 403 is attached at its proximal and distal ends to the proximal and distal stent portions, respectively, by stitching, for example, with 0.003 inch polypropylene filaments around apices 22 of the stent portions. Other than such connections at its longitudinal ends, intermediate fabric section 403 is unsupported by any stent.
  • Straight stent 450 includes stent portion 451 , constructed of wire loops as described above with reference to stent portions 401 and 402 .
  • Stent portion 451 is partially covered by fabric 452 .
  • fabric portion 451 covers and is supported by stent 451 , whereas with stent 400 , the fabric portion 403 is not supported by a stent.
  • straight stent 400 (or 450 ) is disposed as illustrated in FIG. 26.
  • Proximal stent portion 401 engages the inner walls of the aorta above the aneurysm.
  • Distal stent portion 402 engages the inner wall of the aorta below the aneurysm.
  • Intermediate fabric portion 403 extends across the aneurysm, providing a strong, stable lumen for blood flow through the aorta.
  • FIG. 28 illustrates the delivery apparatus used to implant straight stent 400 in the vasculature. This apparatus is very similar to that described above for the delivery system to be used with the bifurcated stent or prosthesis. Accordingly, like reference numerals refer to the same components.
  • proximal portion pusher 102 engages proximal stent portion 401 .
  • Distal portion pusher 103 engages distal stent portion 402 .
  • straight stent 400 is first charged into the introducer by cooling it to temperatures below 10° C., radially compressing it, and inserting it within outer sheath 101 , as described above in connection with the bifurcated stent or prosthesis.
  • the remainder of introducer 410 is also assembled as described in connection with introducer 100 .
  • Introducer 410 is passed through an entry point (not shown) over guide wire 411 as shown in FIG. 24( a ). This insertion may be accomplished using percutaneous or cut-down techniques. Introducer 410 is then inserted to the desired delivery location.
  • introducer 410 is positioned and balloon 107 is inflated above the renal arteries in the same manner as described above in connection with the bifurcated stent and as illustrated in FIG. 24( a ).
  • outer sheath 101 While maintaining proximal portion pusher 102 in a fixed position, outer sheath 101 is withdrawn until proximal portion 401 of stent 400 emerges from outer sheath 101 as shown in FIG. 24( b ). Using a radiopaque marker 420 disposed on the proximal end of the proximal portion 401 , stent 400 is optimally aligned within the aorta. Outer sheath 101 is further withdrawn until proximal portion 401 emerges therefrom, as shown in FIG. 25. Outer sheath 101 is then further withdrawn until it is flush with proximal portion pusher 102 . Then both outer sheath 101 and proximal portion pusher 102 are withdrawn while maintaining distal portion pusher 103 in a fixed position. Distal portion 402 is thus deployed from the end of outer sheath 101 , as shown in FIG. 26.
  • Balloon 107 is then deflated and withdrawn inside proximal portion 401 where balloon 107 is re-inflated to seat the stent 400 , as shown in FIG. 27. Balloon 107 is then withdrawn, along with the introducer 410 as described above, and the entry point is closed.
  • FIG. 29 illustrates the apparatus used to deploy straight stent 450 , shown in FIG. 23, of the present invention.
  • This apparatus is very similar to that described above for the delivery system to be used with the bifurcated stent or prosthesis. Accordingly, like reference numerals refer to the same components.
  • Proximal portion pusher 102 in this embodiment is glued to distal portion pusher 103 such that ends 115 and 116 are flush. These flush ends are adapted to engage stent 450 within outer sheath 101 .
  • straight stent 450 is first charged into introducer 490 by cooling it to temperatures below 10° C., radially compressing it, and inserting it within outer sheath 101 , as described above in connection with the bifurcated stent or prosthesis.
  • the remainder of introducer 490 is also assembled as described in connection with introducer 100 .
  • Introducer 490 is passed through an entry point (not shown) over a guide wire 411 as shown in FIG. 30. This insertion may be accomplished using percutaneous or cut-down techniques. Introducer 490 is then inserted to the desired delivery location.
  • introducer 490 is positioned and balloon 107 is inflated above the renal arteries in the same manner as described above in connection with the bifurcated stent and as illustrated in FIG. 31.
  • outer sheath 101 While maintaining attached proximal portion pusher 102 and distal portion pusher 103 in a fixed position, outer sheath 101 is withdrawn until proximal portion 451 of stent 450 emerges from outer sheath 101 as shown in FIG. 32. Using a radiopaque marker 420 disposed on the proximal end of the proximal portion 451 , stent 450 is optimally aligned within the aorta. Outer sheath 101 is then completely withdrawn until stent 450 is deployed into the aorta as shown in FIG. 33.
  • Balloon 107 is then deflated and withdrawn inside proximal portion 451 where balloon 107 is re-inflated to seat the stent 450 , as shown in FIG. 34. Balloon 107 is then withdrawn, along with the introducer 490 as described above, and the entry point is closed.
  • the angeological disease of occlusion is the blockage of an artery resulting from a buildup or clot of soft thrombus.
  • a canalization is first made through the thrombus by methods known in the art.
  • a bifurcated endoluminal prosthesis according to the present invention is then implanted at the bifurcation site to provide an unobstructed lumen extending from the aorta into each of the iliac arteries. Blood can thus flow freely from the aorta to the iliac arteries.
  • the bifurcated endoluminal prosthesis according to the present invention that is used to treat an occlusion must be fabric covered. This is necessary to prevent embolization from the thrombus remaining on the wall of the recanalized artery.
  • An occlusion at the bifurcation is treated by recanalizing the artery as above.
  • a bifurcated endoluminal prosthesis according to the present invention may be implanted at the bifurcation. Because the occlusion is limited to the immediate bifurcation site, however, the proximal portion of the prosthesis may be shorter than that discussed above.
  • the delivery system comprising introducer 100 discussed above for delivering the bifurcated endoluminal prosthesis to treat an abdominal aortic aneurysm is used.
  • the same delivery method discussed above for implanting the bifurcated endoluminal prosthesis to treat abdominal aortic aneurysms is used to implant the device to treat the occlusion.
  • Using the method and apparatus of this invention to treat occlusion provides an unobstructed lumen through which blood can flow from the aorta to the iliac arteries.
  • the angeological disease of stenosis is a narrowing of an artery caused by a buildup of hard calcified plaque. This is usually caused by a buildup of cholesterol.
  • angioplasty is performed on the plaque according to methods well known in the art.
  • the bifurcated endoluminal stent according to the present invention is then implanted at the bifurcation site.
  • This stent is the same as that described above for treatment of an abdominal aortic aneurysm.
  • the delivery system used to implant the bifurcated endoluminal stent used to treat stenosis is the same as that illustrated in FIG. 8 except that balloon 107 is not required. Because there is no fabric around the stent to be affected by blood flow in the arteries and cause migration of the bifurcated stent, it is not necessary to block the blood flow with the balloon. Otherwise, the delivery system for implanting the bifurcated stent to treat stenosis is the same as that for implanting the bifurcated prosthesis to treat abdominal aortic aneurysm.
  • the method of delivering the bifurcated endoluminal stent to treat stenosis is the same as that described above for delivering the bifurcated endoluminal prosthesis to treat abdominal aortic aneurysm.

Abstract

The invention comprises:
An introducer for delivering into the vasculature a straight or bifurcated stent or prosthesis; a method for delivering into the vasculature a straight or bifurcated stent or prosthesis; a method of treating and angeological disease using a bifurcated stent; an endoluminal stent having perpendicular hoop members, each hoop member formed of wire in a sinuous configuration, at least some of juxtaposed apices in neighboring hoops being secured to one another, such stents also forming axially aligned segments in straight stents, and segments of bifurcated stents in particular embodiments. Certain embodiments of such stents also include barbs, fabric covering and radiopaque markers.

Description

  • This is a continuation-in-part application of the application of common assignment herewith of inventors George Goicoechea, Claude Mialhe, John Hudson and Andrew Cragg, entitled BIFURCATED ENDOLUMINAL PROSTHESIS, filed on Sep. 27, 1994, for which application a serial number had not yet been assigned as of the date of filing this continuation-in-part application.[0001]
  • BACKGROUND OF THE INVENTION
  • The present invention relates to a bifurcated endoluminal prosthesis for use in a bifurcated blood vessel such, for example, as the infrarenal portion of a mammalian aortic artery where it bifurcates to the common iliac arteries. The present invention also embraces a stent connecting means for connecting a stent (e.g. a stent which forms part of an endoluminal prosthesis) to another stent, as well as apparatus and method for introducing prostheses to the vasculature and methods of treating angeological diseases. [0002]
  • A stent is used to provide a prosthetic intraluminal wall e.g. in the case of a stenosis to provide an unobstructed conduit for blood in the area of the stenosis. An endoluminal prosthesis comprises a stent which carries a prosthetic graft layer of fabric and is used e.g. to treat an aneurysm by removing the pressure on a weakened part of an artery so as to reduce the risk of embolism, or of the natural artery wall bursting. Typically, a stent or endoluminal prosthesis is implanted in a blood vessel at the site of a stenosis or aneurysm by so-called “minimally invasive techniques” in which the stent is compressed radially inwards and is delivered by a catheter to the site where it is required through the patient's skin or by a “cut down” technique in which the blood vessel concerned is exposed by minor surgical means. When the stent is positioned at the correct location, the catheter is withdrawn and the stent is caused or allowed to re-expand to a predetermined diameter in the vessel. [0003]
  • U.S. Pat. No. 4,886,062 discloses a vascular stent which comprises a length of sinuous or “zig-zag” wire formed into a helix; the helix defines a generally cylindrical wall which, in use, constitutes a prosthetic intraluminal wall. The sinuous configuration of the wire permits radial expansion and compression of the stent; U.S. Pat. No. 4,886,062 discloses that the stent can be delivered percutaneously and expanded in situ using a balloon catheter. [0004]
  • U.S. Pat. No. 4,733,665 discloses an expandable intraluminal graft which is constituted by a tubular member formed from a plurality of intersecting elongate members which permit radial expansion and compression of the stent. [0005]
  • EP-A-0556850 discloses an intraluminal stent which is constituted by a sinuous wire formed into a helix; juxtaposed apices of the wire are secured to one another so that each hoop of the helix is supported by its neighboring hoops to increase the overall strength of the stent and to minimize the risk of plaque herniation; in some embodiments the stent of EP-A-0556850 further comprises a tubular graft member to form an endoluminal prosthesis. [0006]
  • The prior art stents and prostheses mentioned above are generally satisfactory for the treatment of aneurysms, stenoses and other angeological diseases at sites in continuous unbifurcated portions of arteries or veins. [0007]
  • However, the prior art stents and prostheses are not wholly satisfactory for use where the site of desired application of the stent or prosthesis is juxtaposed or extends across a bifurcation in an artery or vein such, for example, as the bifurcation in the mammalian aortic artery into the common iliac arteries. For example, in the case of an abdominal aortic aneurysm (“AAA”) in the infrarenal portion of the aorta which extends into one of the common iliac arteries, the use of one of the prior art prosthesis referred to above across the bifurcation into the one iliac artery will result in obstruction of the proximal end of the other common iliac artery; by-pass surgery is therefore required to connect the one iliac artery in juxtaposition with the distal end of the prosthesis to the other blocked iliac artery. It will be appreciated by a person skilled in the art that it is desirable to avoid surgery wherever possible; the requirement for by-pass surgery associated with the use of the prior art prosthesis in juxtaposition with a bifurcation in an artery therefore constitutes a significant disadvantage. [0008]
  • SUMMARY OF THE INVENTION
  • Throughout this specification, the term “proximal” shall mean “nearest to the heart,” and the term “distal” shall mean “furthest from the heart.”[0009]
  • According to one aspect of the present invention there is provided a stent connecting means for connecting two intraluminal stents one to the other to define a continuous lumen through the two stents, the stent connecting means including a first stent including a male engaging portion which can be compressed radially inwardly, and a second stent including a female cooperating portion. The male engaging portion may be entered into the female cooperating portion in a radially compressed state and thereafter caused or allowed to expand in the female cooperating portion; the arrangement being such that in service the interengagement of the male engaging portion and the female cooperating portion serves to resist longitudinal separation of the two stents one from the other. [0010]
  • Typically, the first stent may include a proximal male engaging portion; the second stent may include a distal female cooperation portion. The male engaging portion may be flared radially outwardly towards its extremity, and the female cooperating portion may be tapered radially inwardly towards its extremity. In some embodiments, the male engaging portion may comprise a frustoconical wall which flares outwardly towards its longitudinal extremity; the female engaging portion may comprise a frustoconical wall which tapers radially inwardly towards its longitudinal extremity. [0011]
  • Alternatively, said male engaging and female cooperating portions may be substantially untapered; they may be substantially cylindrical. [0012]
  • The male engaging portion of the first stent may be resiliently compressible in a radially inwards direction such that in the radially compressed state it is capable of self-reexpansion to engage in the female cooperating portion. Typically, each of said first and second stents may be resiliently compressible. [0013]
  • In use therefore the second stent may be delivered in a radially compressed state by using a catheter; when the second stent is located at the site of use, the catheter may be withdrawn thereby allowing the second stent to re-expand to engage the endoluminal surface of the blood vessel. [0014]
  • The first stent may then be delivered percutaneously or by a “cut down” technique to a site distal of the second stent such that the male engaging portion of the first stent in the radially compressed state is entered into the expanded female cooperating portion of the second stent; the catheter may then be withdrawn allowing the first stent to re-expand such that the male engaging portion engages in the female cooperating portion of the second stent. [0015]
  • In some embodiments of the present invention the second stent may have two transversely spaced distal female cooperating portions; the second stent may therefore constitute a bifurcated stent for use in juxtaposition with a bifurcation in a blood vessel. [0016]
  • Each of the two transversely spaced distal female cooperating portions may be adapted for connection to a first male stent which, in use, extends across the bifurcation into a respective one of the branched blood vessels. [0017]
  • In a particular aspect of the present invention there is provided a bifurcated intraluminal stent for use in juxtaposition with an angeological bifurcation; the bifurcated intraluminal stent comprising a proximal portion adapted to be positioned in service in a blood vessel in juxtaposition with a bifurcation, a first distal stent portion adapted to extend across the bifurcation into one of the branched blood vessels and a second distal stent portion adapted to allow blood to flow from the proximal portion into the other branched vessel. The first distal stent portion may be formed integrally with the proximal portion. [0018]
  • In some embodiments the second distal stent portion may comprise a female cooperating portion which is adapted to engage a male engaging portion of a another stent adapted to extend in the other branched blood vessel such that, in use, the bifurcated stent can be connected in situ to the other stent. The bifurcated intraluminal stent may therefore constitute a second stent in accordance with the present invention comprising a distal female cooperating portion disposed intermediate the proximal and distal extremities of the stent; the other stent may constitute a first stent in accordance with the present invention. [0019]
  • Typically, the proximal end of said second stent may be flared radially outwardly towards its extremity to engage the endoluminal surface of the artery thereby to resist longitudinal movement of the second stent in service. [0020]
  • Each of the first and second stents may comprise a sinuous wire formed into a tubular configuration. The sinuous and tubular configurations may be imparted to the wire by winding it on a mandrel. Typically, each stent may be made from a shape memory nitinol (nickel-titanium) wire which may be wound on to the mandrel to form the stent in a tubular configuration of slightly greater diameter than the diameter of the blood vessel in which the stent is intended to be used. The stent may be annealed at an elevated temperature and then allowed to cool in air so that the nitinol wire “remembers” the configuration in which it was wound on the mandrel. [0021]
  • Said nitinol wire may be type “M” nitinol wire which is martensitic at temperatures below about 13° C. and is austenitic at temperatures above about 25° C.; it will be appreciated therefore that the type “M” wire will be austenitic at body temperature of 37° C. Typically, the annealing may be conducted at about 500° C. or more for at least about 60 minutes; after cooling the wire may be immersed in cold water to facilitate removal of the wire from the mandrel with the wire in its maleable martensitic form. Typically, the cold water may have temperature of less than about 10° C.; the wire may be immersed for about 5 minutes or more. An advantage of using nitinol wire to form the stent in accordance with the present invention is that the nitinol wire is “super elastic” in its austenitic state; the radial outward force exerted by the stent on the wall of the blood vessel in use is therefore substantially constant irrespective of the diameter of the vessel and the expanded stent. [0022]
  • In some embodiments the wire may have a helical configuration as disclosed in EP-A-0556850. Alternatively, the wire may be of an entirely novel configuration, namely one in which the wire forms a plurality of hoops such that the plane of the circumference of each hoop is substantially perpendicular to the longitudinal axis of the stent. Each hoop may comprise a substantially complete turn of the wire having a sinuous configuration; optionally, as each hoop is completed, the point of winding the wire may be displaced longitudinally with respect to the winding axis to form the next hoop. When the next hoop is complete, the point of winding is moved further longitudinally with respect to the winding axis to the form the next succeeding hoop and so on. [0023]
  • It will appreciated that an advantage of this novel arrangement is that the planes of the hoops are not skewed with respect to the longitudinal axis of the stent; the longitudinal ends of the stent are “square” to said longitudinal axis, so that when the stent is caused or allowed to expand in situ there is substantially no twisting of the stent as it shortens in length. It will be appreciated that this represents a significant advantage, as in areas of stenosis or aneurysm it is desirable to minimize the movement of the stent within the blood vessel so as to reduce the potential trauma to the patient. A stent of this configuration may be used, apart from the bifurcated embodiment otherwise taught herein, in any application which in stents generally have heretofor been used. [0024]
  • Typically, the stents of this invention whether of the helical or perpendicular variety, also comprise a securing means for securing an apex of the sinuous wire in one hoop to a juxtaposed apex of a neighboring hoop so that each hoop is supported by its neighbors. The securing means may comprise a loop element of a suture material, for example, to tie the juxtaposed apices together; the loop element may also comprise a loop formed of a thermoplastics material such, for example, as polypropylene. Alternatively, the securing means may be a bead formed of a thermoplastic material around juxtaposed apices. Also alternatively, the securing means may be a loop, ring, or staple formed of wire such as nitinol. [0025]
  • The male engaging portion and female cooperating portion, of the first and second interengaging stents of this invention, may be formed separately from the remainder of the respective non-engaging portions of these stents and then the engaging and non-engaging portions secured to one another by securing means. [0026]
  • In one embodiment of the present invention, the proximal and distal stent portions of the bifurcated stent in accordance with the present invention may be formed separately; the distal end of the proximal stent portion may be secured to the wider proximal end of a first intermediate frustoconical stent portion; the narrower distal end of the first intermediate frustoconical stent portion may be secured to the proximal end of the distal stent portion. The female cooperating portion of the bifurcated stent may be constituted by a second frustoconical stent portion which is secured to the distal end of the proximal stent portion in juxtaposition with the first frustoconical portion. [0027]
  • Alternatively the first and second frustoconical portions may be omitted; the proximal and distal stent portions may be secured directly one to the other. [0028]
  • The female cooperating portion may be constituted by a generally cylindrical stent portion secured to said proximal stent portion in transversely spaced relation to the distal portion. [0029]
  • Each of the first and second stents of the bifurcated form of the present invention may carry a tubular graft layer formed from a biocompatible fabric in juxtaposition with the stent; the combined stent and graft layer constituting an endoluminal prosthesis. Typically the graft layer may be disposed externally of the stent; it will be appreciated however that in some embodiments the graft layer may be disposed internally of the stent. In some embodiments the graft layer may be secured to the stent by loop elements such, for example, as loops of polypropylene. The biocompatible fabric may be a polyester fabric or a polytetrafluoroethylene fabric; typically said fabric may be woven or a warp knitted polyester fabric. In some embodiments the woven or a warp knitted fabric may be formed in a seam-free bifurcated configuration as a sleeve for a bifurcated stent. [0030]
  • In some embodiments the male engaging portion of the first stent and the female cooperating portion of the second stent may be left uncovered. Alternatively, the fabric graft layer may extend to the proximal extremity on the external surface of the male engaging portion, and may be folded over the distal extremity of the female engaging portion to form an inner sleeve; in use the external fabric of the male engaging portion may butt against the folded over portion of the fabric internally of the female cooperating portion to form a substantially blood tight seal. [0031]
  • The present invention in one aspect therefore includes a bifurcated endoluminal prosthesis comprising a bifurcated stent in accordance with the invention and a tubular graft layer. [0032]
  • The first stent having the male engaging portion may also have a tubular graft layer. If required the first prosthesis may be introduced in a radially compressed state such that the male engaging portion of the first prosthesis is engaged in the intermediate female cooperating portion of the bifurcated prosthesis; the first prosthesis is then caused to be allowed to re-expand in situ such that the male engaging portion engages in the female cooperating portion to resist longitudinal separation of the two prosthesis in service. [0033]
  • The bifurcated prosthesis may be adapted for use in the infrarenal portion of a mammalian aorta in juxtaposition with the bifurcation of the common iliac arteries for the treatment of abdominal aortic aneurysms. In use the bifurcated endoluminal prosthesis may be introduced into the infrarenal portion of the aorta using a catheter such that the first distal stent portion extends into one of the branched iliac arteries; the catheter may then be withdrawn allowing the prosthesis to re-expand in situ. [0034]
  • It will be appreciated by a person skilled in the art that the prostheses may be introduced to the site of use percutaneously or by “cut down” techniques. [0035]
  • Any of the stents according to this invention may be provided on its external surface with circumferentially spaced wire barbs or hooks adapted to engage in the endoluminal surface of the host artery to resist longitudinal movement or slippage of the stent in use. Typically the barbs or hooks may be disposed on part of the stent which is provided with a fabric graft layer such that in use the points of the artery which are engaged by the barbs or hooks are covered by the fabric graft. It will be appreciated by a person skilled in the art that the trauma to the artery wall caused by the hooks or barbs may cause emboli; the provision of the fabric graft over the barbs or hooks in use will therefore help to prevent the introduction of such emboli into the blood stream. [0036]
  • The male engaging portion for the first stent may be provided with circumferentially spaced hooks or barbs on its external surface to engage the internal surface of said female cooperating means, thereby to reinforce the connecting means against longitudinal separation of the stents one from the other in the service. [0037]
  • The present invention therefore provides a connecting means for connecting two stents longitudinally one to the other. It will be appreciated that this represents a significant step forward in the art as it allows the provision of a bifurcated endoluminal prosthesis for use in juxtaposition e.g. with arterial bifurcations without requiring by-pass surgery to connect one of the branched arteries to the other branched artery. [0038]
  • In particular, the invention provides a bifurcated endoluminal prosthesis which can be positioned in an artery in juxtaposition with a bifurcation to extend into one of the branched arteries; the bifurcated prosthesis can be connected to another prosthesis which extends into the other branched artery. The prosthesis can be delivered percutaneously or by “cut down” methods and connected together in situ thereby to provide effective treatment of an angeological disease such, for example, as an aneurysm or a stenosis which extends across a bifurcation in a blood vessel without the need for by-pass surgery. [0039]
  • In another aspect, this invention provides an introducer for delivering, into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, a bifurcated endoluminal stent or prosthesis having a proximal portion adapted to be disposed in the blood vessel and a distal portion adapted to be disposed at least partially in one of the two branched vessels. The introducer comprises a tubular outer sheath, a proximal portion pusher disposed at least partially within the outer sheath, and a distal portion pusher disposed at least partially within the proximal portion pusher. [0040]
  • The present invention further provides an introducer for delivering into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, an endoluminal prosthesis having a proximal stent portion and a distal stent portion. The introducer comprises a tubular outer sheath, a proximal portion pusher disposed at least partially within the outer sheath and having a proximal end adapted to contact the proximal stent portion, a distal portion pusher disposed at least partially within the proximal portion pusher and having a proximal end adapted to contact the distal stent portion; and a balloon catheter, having a balloon attached thereto, disposed at least partially within the distal portion pusher. [0041]
  • This invention in another aspect provides a method for delivering a bifurcated endoluminal stent or prosthesis having a proximal portion and a first distal portion into the vasculature at an angeological bifurcation where a blood vessel branches into a first branched vessel and a second branched vessel. The method comprises inserting a first introducer containing the stent or prosthesis into the vasculature to a predetermined delivery location, the first introducer comprising an outer sheath, a proximal portion pusher, and a distal portion pusher; withdrawing the outer sheath of the first introducer while maintaining the proximal portion pusher in a fixed position until the proximal portion of the stent or prosthesis is deployed from the first introducer into the blood vessel; withdrawing the outer sheath and the proximal portion pusher while maintaining the distal portion pusher in a fixed position until the first distal portion of the stent or prosthesis is deployed from the first introducer at least partially into the first branched vessel; and withdrawing the first introducer from the vasculature. [0042]
  • This invention further provides a method for delivering, into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, an endoluminal prosthesis having a proximal stent portion, and a distal stent portion. The method comprises the steps of inserting an introducer containing the prosthesis into the vasculature to a predetermined delivery location, the introducer comprising an outer sheath, a proximal stent portion pusher, a distal stent portion pusher, and a balloon catheter having a balloon attached thereto; inflating the balloon to at least partially block blood flow in the blood vessel; withdrawing the outer sheath of the introducer while maintaining the proximal stent portion pusher in a fixed position until the proximal stent portion of the prosthesis is deployed from the introducer into the blood vessel; withdrawing the outer sheath and the proximal stent portion pusher while maintaining the distal stent portion pusher in a fixed position until the distal stent portion of the prosthesis is deployed from the introducer into the blood vessel; and withdrawing the introducer from the vasculature. [0043]
  • In general, this invention provides a method of treating an angeological disease at a bifurcation site where a blood vessel branches into a first branched vessel and a second branched vessel comprising the steps of disposing in the blood vessel a proximal portion of an endoluminal stent; directing blood flow from the blood vessel into the first branched vessel through a first distal portion of the endoluminal stent, the first distal portion being connected to the proximal portion and extending into the first branched vessel; and directing blood flow from the blood vessel into the second branched vessel through a second distal portion of the endoluminal stent, the second distal portion being connected to the proximal portion and extending into the second branched vessel. This method may be applied to aneurysms, occlusions, or stenosis. [0044]
  • Following is a description by way of example only and with reference to the accompanying drawings of the present invention, including novel stent constructions and methods of manufacture and use thereof.[0045]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The aspects, features and advantages of the present invention will be more readily understood from the following detailed description when read in conjunction with the accompanying drawings, in which: [0046]
  • FIG. 1[0047] a is a front view of a bifurcated intraluminal stent in accordance with the present invention constituting part of an endoluminal prosthesis.
  • FIG. 1[0048] b is a front view of another stent which is adapted to be connected to the bifurcated stent of FIG. 1a.
  • FIG. 2([0049] a) is a side view of part of the bifurcated stent of FIG. 1a opened up to show its construction.
  • FIG. 2([0050] b) is a side view of an exemplary is mandrel used to form the part of the bifurcated stent shown in FIG. 2(a).
  • FIG. 3 is a side view of another part of the bifurcated stent of FIG. 1[0051] a opened up to show its construction.
  • FIG. 4([0052] a) is a side view of yet another part of the bifurcated stent of FIG. 1a opened up to show its construction.
  • FIGS. [0053] 4(b)-4(f) are partial exploded views of the exemplary stent of FIG. 4(a) illustrating alternative means for securing juxtaposed apices according to the present invention.
  • FIG. 5 is a schematic perspective view of a bifurcated endoluminal prosthesis in accordance with the present invention. [0054]
  • FIG. 6 is a schematic view of another bifurcated endoluminal prosthesis in accordance with the present invention. [0055]
  • FIG. 7 is a schematic view of yet another bifurcated endoluminal prosthesis in accordance with the present invention. [0056]
  • FIG. 8([0057] a) is a cross-sectional view of an exemplary assembled introducer according to the present invention.
  • FIGS. [0058] 8(b)-8(e) are side views of the component parts of the introducer of FIG. 8(a).
  • FIG. 8([0059] f) is a partial cross-sectional view of the introducer of FIG. 8(a).
  • FIG. 8([0060] g) is a cross-sectional view of part of the introducer of FIG. 8(f) taken along the line A-A.
  • FIG. 9 is a side cross-sectional view of a portion an alternative embodiment of an introducer according to the present invention. [0061]
  • FIGS. [0062] 10(a) and 10(b) are side views of other alternative embodiments of an introducer according to the present invention.
  • FIGS. 11 through 20 are sequential cross-sectional views of the bifurcation of the abdominal aortic artery during introduction of an exemplary prosthesis according to the present invention. [0063]
  • FIGS. [0064] 21(a)-21(c) are cross-sectional views is of alternative insertion apparatus according to the present invention.
  • FIGS. 22 and 23 are side views of alternative stents according to the present invention. [0065]
  • FIGS. [0066] 24(a), 24(b), 25, 26 and 27 are sequential cross-sectional views of the bifurcation of the abdominal aortic artery during introduction of an exemplary prosthesis according to the present invention.
  • FIGS. 28 and 29 are cross-sectional side views of alternative delivery apparatus according to the present invention. [0067]
  • FIGS. [0068] 30-34 are sequential cross-sectional views of the bifurcation of the abdominal aortic artery during introduction of an exemplary prosthesis according to the present invention.
  • DETAILED DESCRIPTION
  • The present invention includes apparatus and method for treating angeological diseases in any bifurcated blood vessel. One example of such a bifurcated blood vessel is the infrarenal portion of a mammalian aortic artery where it bifurcates to the common iliac arteries. Examples of diseases that can be treated using the apparatus and method of the present invention include aneurysm, stenosis, and occlusion. [0069]
  • A bifurcated stent in accordance with the present invention which is indicated at [0070] 10 in FIG. 1a comprises a wire skeleton which is constructed in four separate parts, namely a proximal part 12, a first frustoconical part 14, a first distal part 16 and a second frustoconical part 18. Said bifurcated stent 10 carries a fabric graft layer (FIGS. 5, 6, and 7) for use as an endoluminal prosthesis e.g. in the infrarenal portion of a mammalian aorta in juxtaposition with the bifurcation of the common iliac arteries. It will be appreciated, however, that bifurcated stents (with or without fabric graft layers) for use in different parts of the angeological system and for different mammals can be constructed in accordance with the invention by varying the dimensions of the stent accordingly.
  • Each of the four parts of the [0071] bifurcated stent 10 is made in substantially the same way by winding a shape memory nitinol wire, typically nitinol type M wire, onto a mandrel 46.
  • The construction of the exemplary [0072] proximal part 12 of the bifurcated stent 10 is shown in FIGS. 2(a) and 2(b); nitinol wire type M wire typically having a diameter of 0.46 mm (0.018″) is wound around mandrel 46 to form a plurality of hoops 20. The winding surface of mandrel 46 is provided with a plurality of upstanding pins 47 disposed in a zig-zag pattern for each of the hoops 20 so that in each hoop 20 the nitinol wire follows a sinuous path to define a plurality of circumferentially spaced apices 22. Each hoop 20 is wound onto mandrel 46 such that the plane of the circumference of each hoop 20 is substantially perpendicular to the longitudinal axis of the mandrel.
  • When one [0073] hoop 20 e.g. the hoop indicated at 20 a has been formed, the point of winding of the nitinol wire is displaced longitudinally with respect to the axis of mandrel 46 to form the next successive hoop 20 b. The stent shown in FIG. 2(a) is the stent formed on mandrel 46 shown in FIG. 2(b) after cutting the stent longitudinally and rotating it 45 degrees to show the construction of the stent.
  • The proximal part of the exemplary bifurcated stent of FIG. 1[0074] a is formed on the mandrel with a diameter of about 24 mm and a length in the longitudinal direction of about 55 mm. From FIGS. 1(a), 2(a), and 2(b) it will be noted that the proximal part 12 is constituted by three hoops 20 of unit width at the proximal end 24 of the proximal part 12, two intermediate hoops 25 of twice unit width and, at its distal end 26, by a single hoop 20 of unit width. In the illustrated embodiment, intermediate hoops 25 have a plurality of offsets 25 a. Offsets 25 a are formed when the wire is passed around pins 47 on mandrel 46. Offsets 25 a add stability to the stent. When the nitinol wire has been wound onto mandrel 46, the nitinol wire is annealed at an elevated temperature and then allowed to cool.
  • In this embodiment of the invention the wire is annealed at a temperature of about 500° C. for 60 minutes and is then allowed to cool in air. The purpose of the annealing is so that the nitinol wire in its austenitic form “remembers” its configuration as wound on [0075] mandrel 46; it will be appreciated therefore that other temperatures and durations for the annealing are included within the present invention provided the nitinol wire “remembers” its wound configuration.
  • After annealing and cooling, the wire is immersed in cold water at less than 10° C. for about 5 minutes; the wire is then removed from the mandrel, and juxtaposed [0076] apices 22 of neighboring hoops 20 are secured together by securing means 99 (see FIG. 4(a)), which are, in this example, 0.003″ polypropylene filaments. Each apex 22 of each hoop 20 which has a juxtaposed apex of a neighboring hoop 20 is tied to the juxtaposed apex 22. It will be appreciated, however, that in other embodiments of the invention only some of the juxtaposed apices 22 may be secured in this way.
  • In addition to polypropylene filaments, the securing means may comprise a loop element [0077] 99 a of a suture material, for example, to tie the juxtaposed apices together, as shown in FIG. 4(b). The securing means may also comprise bead 99 b formed of a thermoplastic material around juxtaposed apices, as shown in FIG. 4(c). Also alternatively, the securing means may be a loop 99 c, ring 99 d, or staple 99 e formed of wire such as nitinol, as shown in FIGS. 4(d), 4(e), and 4(f) respectively.
  • The exemplary first and second [0078] frustoconical parts 14, 18 of the skeleton shown in the figures are formed in substantially the same way as the proximal part 12 by winding nitinol wire onto a mandrel and then annealing the wire before removing it from the mandrel. As shown in FIG. 3, the first and second frustoconical parts 14, 18 are each constituted by three hoops 20 of unit width. The mandrel is tapered such that the proximal end of each of the exemplary frustoconical parts 14, 18 is formed with a diameter of about 12 mm and the distal end 32 of each is formed with a diameter of about 9 mm. The overall length of each of the exemplary frustoconical parts 14, 18 is about 18 mm. The wire used for the frustoconical parts 14, 18 is nitinol type M wire having a diameter of 0.28 mm (0.011″). Juxtaposed apices 22 of each of the exemplary frustoconical parts 14, 18 are tied together using 0.03″ polypropylene filaments as described above. The first and second frustoconical parts 14, 18 are secured to the distal end 26 of the proximal part 12 of the stent 10 in transversely spaced relation as shown in FIG. 1a by securing the apices 22 of the hoop 20 forming the wider proximal end 30 of each of the frustoconical parts 14, 18 to juxtaposed apices 22 of the hoop 20 on the distal end 26 of the proximal part 12.
  • The exemplary first [0079] distal part 16 of the bifurcated stent 10 is formed by winding nitinol type M wire typically having a diameter of 0.28 mm (0.011″) onto a mandrel to form twelve longitudinally spaced hoops 20 as shown in FIG. 4; the exemplary first distal part has an overall length of about 66 mm and a uniform diameter of about 9 mm. The proximal end 34 of the distal part 16 is secured to the narrower distal end 32 of the first frustoconical part 14 by tying each apex 22 on the proximal end 34 of the first distal part 16 to a juxtaposed apex on the distal end 32 of the first frustoconical part 14 using, in this embodiment, 0.003″ polypropylene filaments.
  • The [0080] proximal part 12, the first and second frustoconical parts 14, 18, and the first distal part 16 are each covered with a tubular graft layer of a biocompatible woven fabric (FIGS. 5, 6, and 7) such, for example, as a plain woven fabric made from 30 or 40 denier polyester. The tubular fabric layers may be attached to the proximal and distal parts 12, 16 of the stent 10 by stitching with, for example, 0.003″ polypropylene filaments around the apices 22 of the underlying skeleton. The fabric covered stent constitutes one form of an endoluminal prosthesis.
  • The [0081] proximal part 12 of the wire skeleton may be provided with a plurality of circumferentially spaced hooks or barbs 43 which project through the tubular fabric layer to engage in the endoluminal surface of a host artery in service.
  • The sinuous configuration of each turn 20 of the wire skeleton of the [0082] stent 10 allows the prosthesis to be compressed resiliently radially inwards so that it can be received in a catheter e.g. a 16 or 18 French catheter for percutaneous or cut down delivery, e.g. to an intraluminal site in the infrarenal section of the aortic artery. Larger diameter catheters up to, e.g., 20 French, may be used to deliver the prosthesis using “cut down” procedures.
  • An x-ray opaque marker may be attached to one or more ends of a stent so that the delivery of the stent can be monitored using x-rays. As shown in FIG. 4([0083] a), such a radiopaque marker may typically comprise a gold or platinum wire 17 crimped onto an end of stent 16. Alternatively, the radiopaque marker may be a tube 17 a disposed around a length of wire on the stent, also as shown in FIG. 4(a). Typically, in the bifurcated stent the marker is secured to the stent in line with the distal stent portion so that the distal stent portion can be aligned with and inserted into one of the branched arteries in situ.
  • The bifurcated endoprosthesis is positioned in the infrarenal section of the aortic artery in juxtaposition with the bifurcation of the common iliac arteries such that the first [0084] distal part 16 of the prosthesis extends into one of the common iliac arteries. The catheter is then withdrawn allowing the stent 10 to re-expand towards its configuration as wound on the mandrel in which it was annealed until the stent engages the endoluminal surface of the host artery. The barbs or hooks engage the endoluminal surface of the host artery to resist longitudinal displacement or slipping of the prosthesis in use.
  • It will be appreciated that when the bifurcated prosthesis is positioned and re-expanded in the fitted position, blood can flow from the aortic artery into the [0085] proximal part 12 of the prosthesis from where it can flow into the one common iliac artery through the frustoconical part 14 and the first distal part 16 and also into the other common iliac artery through the second frustoconical part 18.
  • In cases where it is required to implant a prosthesis in the other common iliac artery a second prosthesis comprising a [0086] second stent 40 as shown in FIG. 1b can be used. The second stent 40 includes a wire skeleton comprising a proximal frustoconical part 42 and a distal part 44. The distal part 44 of the second stent 40 also may be covered with a tubular graft layer of a biocompatible fabric such, for example, as polyester or polytetrafluoroethylene fabric (FIGS. 5, 6, and 7).
  • The frustoconical [0087] proximal part 42 is constructed in the same way as the frustoconical parts 14, 18 of the bifurcated stent 10; the distal part 44 is constructed in the same way as the distal part 16 of the bifurcated stent 10. The distal end of the frustoconical proximal part 42 is secured to the proximal end of the distal part 44 by securing juxtaposed apices using polypropylene filaments as described above.
  • In use, the second prosthesis is compressed radially inwards and is received in a catheter for percutaneous or “cut down” delivery to the other common iliac artery. The frustoconical [0088] proximal part 42 is guided, in the radially compressed state, into the second frustoconical part 18 of the bifurcated stent 10. The catheter is then withdrawn allowing the second stent 40 to re-expand towards its remembered configuration, until the distal part 14 engages the endoluminal surface of the other common iliac artery, and the outer surface of the frustoconical proximal part 42 engages the interior surface of the second frustoconical part 18 of the bifurcated stent 10.
  • As with other stents described herein, the frustoconical [0089] proximal part 42 may be formed with circumferentially spaced barbs or hooks 43, as shown in FIG. 1b, which engage in the wire skeleton of the second frustoconical part 18 of the bifurcated stent 10. When barbs 43 are on proximal portion 12, they engage the inner wall of the artery.
  • The tapered configurations of the second [0090] frustoconical part 18 of the bifurcated stent 10 and of the proximal frustoconical part 42 of the second stent 40 are such that in the fitted position as described, the prosthesis are locked together to resist longitudinal separation in service. Barbs or hooks on the second stent 40 and/or an frustoconical proximal part 42 help to resist such longitudinal separation.
  • In another example of the present invention a [0091] bifurcated endoluminal prosthesis 50 as shown in FIG. 5 includes a bifurcated stent comprising a proximal portion 52 which tapers radially inwardly from its proximal end 54 to its distal end 56, and first and second transversely spaced frustoconical distal portions 58, 60 which are secured to the distal end 56 of the proximal portion 52; the proximal portion 52 is covered with a tubular graft layer of a biocompatible fabric 62.
  • In use the prosthesis is delivered percutaneously or by “cut down” methods to an artery in juxtaposition with an arterial bifurcation; blood can flow through the frustoconical [0092] proximal portion 52 into each of the branched arteries through the first and second distal frustoconical portions 58, 60. If a prosthesis is required in one or both of the branched arteries, a separate prosthesis comprising a stent of the type shown in FIG. 1b referred to above covered with fabric can be connected to the bifurcated prosthesis 50 is by inserting and re-expanding the proximal end of such a separate prosthesis in one or both of the distal frustoconical portions 58, 60 of the prosthesis 50 for engagement therein.
  • Another variant of the present invention is shown in FIG. 6 which shows a [0093] bifurcated endoluminal prosthesis 70 having a proximal portion 72 which is secured at its distal end 74 to two transversely spaced frustoconical intermediate portions 76, 78.
  • One of said frustoconical intermediate portions [0094] 76 is secured at its distal end to an elongate distal portion 80. The proximal end 82 of the proximal portion 72 is flared radially outwards towards its proximal end 82 to engage the intraluminal surface of the host blood vessel in service. Save for this flared portion, the entire endoprosthesis is covered with a fabric graft layer as shown in FIG. 6; said graft layer is carried externally of the wire skeleton and is folded over the distal extremity 84 of the other frustoconical intermediate portion 78 to form an internal lining in said other frustoconical immediate portion 78.
  • Said other frustoconical intermediate portion [0095] 78 constitutes a female cooperating portion in accordance with the present invention which is adapted to receive a male engaging portion of another prosthesis as indicated at 86 in FIG. 6. Said other prosthesis 86 includes a frustoconical proximal portion 88 which constitutes the male engaging portion and an elongate distal portion 90. The whole of the other prosthesis 86 is covered with a fabric graft layer as shown in FIG. 6. In service, the male engaging portion 88 of the other prosthesis 86 is entered into and engaged with the female cooperating portion 78 of the bifurcated prosthesis 70 in situ in the manner herein before described. The fabric layer on the male engaging portion 88 butts face-to-face on the folded over portion of the fabric layer disposed internally of the female cooperating portion 78 to form a substantially blood-tight seal therewith.
  • Yet another example of the present invention is shown in FIG. 7 in which a [0096] bifurcated endoluminal prosthesis 91 has a generally cylindrical proximal portion 92; said proximal portion 92 is connected at its distal end 93 to an elongate, generally cylindrical distal portion 94. Said proximal portion 92 is also connected at its distal end 93 to a generally cylindrical intermediate portion 95 which is secured in transversely spaced relation to the elongate distal portion 94. Said cylindrical intermediate portion 95 constitutes a female engaging portion which is adapted to receive a generally cylindrical male engaging portion of a second elongate prosthesis (not shown). The male engaging portion is equipped with circumferentially spaced external barbs to engage in the female cooperating portion in service. As shown in FIG. 7, the whole of the bifurcated prosthesis 91 is covered with an external fabric graft layer save for a flared portion 96 towards the proximal end 97 of the proximal portion 92.
  • Referring to FIGS. [0097] 8(a)-8(f), an exemplary embodiment of a delivery system according to the present invention will be described. This system is used to deploy the bifurcated stent 10 when it is covered with a fabric graft layer to create an endoluminal prosthesis. Introducer 100 includes outer sheath 101. Outer sheath 101 is a cylindrical tube adapted to be inserted either percutaneously or by “cut-down” procedures into the vasculature from an entry point to the bifurcation site where the prosthesis is to be deployed.
  • Housed within [0098] outer sheath 101 is proximal portion pusher 102. Proximal portion pusher 102 is a cylindrical tube having an outside diameter smaller than the inside diameter of outer sheath 101. Proximal portion pusher 102 is preferably slidable throughout the length of outer sheath 101.
  • Disposed within [0099] proximal portion pusher 102 is distal portion pusher 103. Distal portion pusher 103 is a cylindrical tube slidably contained within distal portion pusher 102. Distal portion pusher 103 is preferably adapted to slide throughout the entire length of proximal portion pusher 102.
  • Disposed within [0100] distal portion 103 is balloon catheter 104. Balloon catheter 104 is adapted to slide within distal portion pusher 103. At the leading end 105 of balloon catheter 104 is nose cone 106. Balloon 107 is attached to balloon catheter 104 between nose cone 106 and proximal end 115 of proximal portion pusher 102.
  • As shown in FIG. 8([0101] g), which is a cross-sectional view of balloon catheter 104 in the direction A-A of FIG. 8(f), balloon catheter 104 has a guide wire conduit 104 a. Guide wire conduit 104 a extends throughout the length of balloon catheter 104 for passing a guide wire (not shown) through introducer 100. In the illustrated embodiment, balloon catheter 104 also includes injection orifice 109 and an injection conduit 109 a. Injection conduit 109 a connects injection orifice 109 to an injection site 108 at or near the distal end of balloon catheter 104 as shown in FIG. 8(e). Radiopaque liquid may be injected into injection site 108, through injection conduit 109 a, out injection orifice 109, and into the vasculature to monitor deployment of the prosthesis.
  • Also in the illustrated embodiment of FIGS. [0102] 8(f) and 8(g), balloon catheter 104 has an inflation orifice 110 located at a point where balloon 107 is attached to balloon catheter 104. A balloon inflation conduit 110 a connects balloon inflation orifice 110 to balloon inflation site 111 (FIG. 8(e)). Balloon 107 may be inflated and deflated from balloon inflation site ill during delivery of the prosthesis.
  • In an alternative embodiment illustrated in FIG. 9, seals [0103] 150, 151 may be disposed around the distal ends 160, 161 of outer sheath 10 and proximal portion pusher 102. Seals 150, 151 may be formed of silicone tubes.
  • FIG. 10([0104] a) shows an alternative embodiment of introducer 100. As shown in FIG. 10(a), wings 112 and 113 are provided at the distal end of introducer 100. Wing 112 is connected to proximal portion pusher 102, and wing 113 is connected to outer sheath 101. Wings 112 and 113 indicate the rotational orientation of proximal portion pusher 102 and outer sheath 101, respectively. This in turn indicates the orientation of proximal portion 12 within outer sheath 101 and distal portion 16 within proximal portion pusher 102. Wings 112 and 113 in the illustrated embodiment are also provided with holes 112 a and 113 a.
  • As shown in FIG. 10([0105] b), a rod 128 or other fixation device may be attached to wings 112 and 113 using e.g. bolts through holes 112 a and 113 a secured by wing nuts 129 or other securing means. Rod 128 prevents relative movement of proximal portion pusher 102 and outer sheath 101. Wings may also be provided on distal portion pusher 103 and used to secure distal portion pusher 103 to either proximal portion pusher 102 or outer sheath 101 using a fixation device as described above.
  • Also shown in FIG. 10([0106] a) as part of introducer 100 is hemostasis valve 114. Hemostasis valve 114 is connected to distal portion pusher 103 and acts as a simple seal around balloon catheter 104. Although it prevents fluid loss, hemostasis valve 114 allows balloon catheter 104 to slide within distal portion pusher 103. Alternatively, a Touhy-Borst valve (not shown) may be used instead of hemostasis valve 114. The Touhy-Borst valve is a device that may be manually tightened over balloon catheter 104. Lightly tightening such a valve permits balloon catheter 104 to slide; firmly tightening such a valve clamps balloon catheter 104 in place.
  • In use, the prosthesis must first be loaded into [0107] introducer 100. Outer sheath 101 is first removed from introducer 100. Balloon catheter 104 is then threaded through distal portion 16 and proximal portion 12 of the prosthesis. The prosthesis is then cooled to a temperature of approximately 10° C. or below and radially compressed. For this purpose, the prosthesis may be immersed in cold water. The prosthesis should preferrably remain in the water during the loading operation.
  • As supporting [0108] stent 10 is compressed beneath the fabric covering of the prosthesis, excess fabric is produced. This excess fabric may simply be pinched together and laid over the compressed prosthesis in longitudinal folds.
  • [0109] Distal portion 16 of the prosthesis in the radially compressed state is then inserted into proximal portion pusher 102. Outer sheath 101 is then pulled over proximal portion 12 of the prosthesis and over proximal portion pusher 102. A thread (not shown) may be attached to the proximal end of proximal portion 12 of the prosthesis and threaded through outer sheath 101. This thread may then be used to pull proximal portion 12 through outer sheath 101. During the loading process, it is important to keep proximal portion 12 and distal portion 16 of the prosthesis properly aligned with outer sheath 101 and proximal portion pusher 102. Marks may be placed on the outside of outer sheath 101 and proximal portion pusher 102 to ensure proper alignment.
  • Referring again to FIG. 8([0110] f), the prosthesis is inserted such that the outer surface of proximal portion contacts and is radially restrained by outer sheath 101, and the outer surface of distal portion 16 contacts and is radially restrained by proximal portion pusher 102. End 115 of proximal portion pusher 102 longitudinally engages proximal portion 12 of the prosthesis as shown in FIG. 8(f).
  • [0111] Balloon catheter 104 is positioned such that nose cone 106 just clears proximal end 117 of outer sheath 101. The introducer is now in condition for insertion into the patient.
  • Referring to FIG. 11, [0112] introducer 100 is passed through an entry point (not shown) either in the patient's skin (percutaneous operation) or into the vasculature itself which has been surgically exposed (“cut-down” operation). Introducer 100 is inserted over a guide wire 170 into the vasculature from the entry point to the desired delivery location at an angeological bifurcation.
  • In the aorta, [0113] introducer 100 is positioned such that end 117 of outer sheath 101 is approximately level with renal arteries 180 as shown in FIG. 11. Balloon catheter 104 is then extended while maintaining outer sheath 101 in a fixed position. Balloon catheter 104 in this embodiment is extended until distal end 105 of nose cone 106 is approximately 35 mm above the proximal tip 117 of outer sheath 101. Then, while maintaining proximal portion pusher 102 in a fixed position, outer sheath 101 is withdrawn until the proximal tip of the prosthesis is level with proximal tip 117 of outer sheath 101. It will be noted that balloon catheter 104 does not move while outer sheath 101 is so withdrawn.
  • [0114] Introducer 100 is then repositioned to place the prosthesis in the desired deployment location. Proper placement may be facilitated with the use of radiopaque markers as described above. Balloon catheter 104 is then extended such that balloon 107 is above renal arteries 180. Balloon 107 is then inflated to occlude the aorta as shown in FIG. 12.
  • While maintaining [0115] proximal portion pusher 102 in a fixed position, outer sheath 101 is withdrawn until the proximal end of the prosthesis emerges from outer sheath 101 as shown in FIG. 13. Using a radiopaque marker 120 disposed on proximal end of the prosthesis, the introducer is rotated until proper alignment of the prosthesis is obtained. In the illustrated embodiment, radiopaque marker 120 is a platinum wire twisted around an apex of the prosthesis in a “V” shape. To ensure proper alignment, the stent should be rotated until only the profile of the V is seen and shows up as a straight line rather than a “V”.
  • [0116] Outer sheath 101 is further withdrawn while maintaining proximal portion pusher 102 fixed until proximal portion 12 is fully deployed from the end of outer sheath 101, and the frustoconical portion 18 of the prosthesis just clears end 117, as shown in FIG. 14.
  • [0117] Balloon 107 is then deflated to allow blood to flow through proximal portion 12 and out frustoconical portion 18 of the prosthesis. Balloon 107 is withdrawn into the prosthesis until the distal end 118 of nose cone 106 is just above the proximal end of the prosthesis. Balloon 107 is then inflated to seat the prosthesis, which may be provided with barbs (not shown) at its proximal end, against the wall of the aorta, as shown in FIG. 15.
  • [0118] Distal portion pusher 103 is then maintained in a fixed position while outer sheath 101 is withdrawn. Once outer sheath 101 has been withdrawn to the point at which proximal end 117 of outer sheath 101 is flush with proximal end 115 of proximal portion pusher 102, both outer sheath 101 and proximal portion pusher 102 are withdrawn, still maintaining distal portion pusher 103 in a fixed position. Outer sheath 101 and proximal portion pusher 102 are withdrawn until distal portion 16 of the prosthesis is deployed clear of proximal end 116 of distal portion pusher 103 as shown in FIG. 16. Balloon 107 is slowly deflated to allow blood flow to be established through the proximal portion 12 of the prosthesis and out through frustoconical portion 18. Balloon 107 may be used to model distal portion 16 of the prosthesis as necessary by inflating balloon 107 where needed to expand distal portion 16. Balloon 107 is then deflated, and introducer 100 is withdrawn from the vasculature, leaving the guide wire 170 in place, as shown in FIG. 17.
  • FIG. 21([0119] a) illustrates an exemplary second introducer 300 used for deploying second distal part 44. Second introducer 300 of the illustrated embodiment comprises cylindrical outer sheath 301 and female Luer lock assembly 310. Second introducer 300 also has hemostasis valve 361 contained within a hub 362 thereof. Cartridge 311 shown in FIG. 21(b) is adapted to be attached to second introducer 300. Cartridge 311 has threaded male Luer lock assembly 312 provided on its proximal end. Cartridge 311 has outer tube 313 which houses inner tube 314.
  • In use, a thin-walled tube (not shown) is first threaded through [0120] distal portion 44. This tube serves as a guide wire guide, allowing a guide wire to be threaded straight through distal portion 44 as discussed below. Distal portion 44 containing the thin-walled tube is then cooled, radially compressed, and inserted into inner tube 314 of cartridge 311 in a manner similar to that described for inserting the bifurcated prosthesis into proximal portion pusher 102 and outer sheath 101. When distal portion 44 has been loaded into inner tube 314 of cartridge 311, the thin-walled tube serving as a guide wire guide extends out both ends of cartridge 311.
  • A [0121] guide wire 171 is then inserted into the vasculature to the bifurcation site and through distal stent portion 12 as shown in FIG. 18. A dialator 359 (FIG. 21(c)) having an outer diameter slightly less than the inner diameter of second introducer 300 is then inserted into second introducer 300 such that tapered end 360 extends out end 320 of second introducer 300. End 360 of dialator 359 has a hole therein that is just slightly larger than guide wire 171 and tapers gradually outward from the hole to the outer diameter of dialator 359.
  • [0122] Second introducer 300 is then inserted into the vasculature over guide wire 171 by passing guide wire 171 into and through dialator 359. Dialator 359 with tapered end 360 provides a smooth transition within the blood vessel from the diameter of guide wire 171 to the diameter of second introducer 300. Second introducer 300 is maneuvered such that outer sheath 301 is inside frustoconical portion 18 of proximal portion 12 by at least 20 mm in this embodiment, as shown in FIG. 19. Dialator 359 is then removed from second introducer 300 and from the vasculature and is discarded.
  • Cartridge [0123] 311 is then passed over guide wire 171 by passing guide wire 171 through the thin-walled guide wire guide within distal portion 44 contained in cartridge 311. The guide wire guide is then removed and discarded.
  • Cartridge [0124] 311 is then lockingly engaged with introducer 300 by mating male Luer lock assembly 310 with female Luer lock assembly 312. Such locking engagement prevents relative movement of cartridge 311 and introducer 300. Preventing relative movement lends stability and reliability to the insertion process that has not heretofore been achieved.
  • A [0125] pusher 315 is then inserted into inner tube 314 of cartridge 311 such that proximal end 317 of pusher 315 longitudinally contacts a distal end of distal portion 44 within inner tube 314. Pusher 315 pushes distal portion 44 through cartridge 311 and into outer sheath 301 of introducer 300. Distal portion 44 is pushed through outer sheath 301, which remains in a fixed position, until distal portion 44 is at proximal end 320 of outer sheath 301 (see FIG. 19). Again, radiopaque markers 120 may be used to align distal portion 44 properly with proximal portion 12.
  • Pusher [0126] 302 is held firmly in place, and outer sheath 301 is withdrawn approximately 2 cm. This deploys frustoconical part 42 of distal part 44 inside the frustoconical part 18 as shown in FIG. 19. The outer surface of frustoconical part 42 engages the inner surface of frustoconical part 18 such that distal portion 44 is connected to proximal portion 12 to resist longitudinal separation.
  • [0127] Outer sheath 301 may then be withdrawn while maintaining pusher 302 in a fixed position to fully deploy distal portion 44, as shown in FIG. 20. If necessary, balloon catheter 104 may be inserted through sheath 301 in order to model distal portion 44. Introducer 301 and guide wires 170, 171 are then removed from the vasculature and the entry points are closed.
  • The delivery apparatus and method described above are particularly useful in treating an abdominal aortic aneurysm with a bifurcated prosthesis according to the present invention. Other diseases and alternative embodiments of the prosthesis and delivery method will now be described. [0128]
  • In the case of an abdominal aortic aneurysm confined to the aorta and not extending far enough to affect the iliac arteries, a straight (i.e. non-bifurcated) stent may be used. Preferably, for such applications, the straight stent comprises a composite of at least two axially aligned stent segments. Two embodiments of such straight stents are described herein, each comprising axially aligned stent requests, each of the requests comprising one or more adjacent hoops, perpendicular to a common axis, and each hoop being formed of wire in a sinuous or zigzag configuration with some or all of the juxtaposed apices in adjacent hoops secured to one another. [0129]
  • First, referring to FIG. 22, [0130] straight stent 400 comprises proximal stent portion (or segment) 401, distal stent portion 402, and an intermediate portion 403.
  • [0131] Proximal portion 401 is a ring formed of a number of longitudinally spaced hoops 20 as described in connection with the formation of stent 10 above. In the illustrated embodiment, two hoops 20 are used, each hoop 20 having a unit width.
  • [0132] Distal portion 402 is also a ring formed of longitudinally displaced hoops 20 in the manner described above. Distal ring 402 has two hoops 20 of unit width in the illustrated embodiment.
  • [0133] Intermediate portion 403 of straight stent 400 is formed of biocompatible woven fabric such as, for example, a plain woven fabric made from 30 or 40 denier polyester. In this embodiment, intermediate fabric section 403 does not cover a stent. Fabric portion 403 is attached at its proximal and distal ends to the proximal and distal stent portions, respectively, by stitching, for example, with 0.003 inch polypropylene filaments around apices 22 of the stent portions. Other than such connections at its longitudinal ends, intermediate fabric section 403 is unsupported by any stent.
  • The second embodiment of a straight stent that may be used according to this invention is illustrated in FIG. 23. [0134] Straight stent 450 includes stent portion 451, constructed of wire loops as described above with reference to stent portions 401 and 402. Stent portion 451 is partially covered by fabric 452. In this embodiment, fabric portion 451 covers and is supported by stent 451, whereas with stent 400, the fabric portion 403 is not supported by a stent.
  • To treat an abdominal aortic aneurysm that does not extend down over the walls of the iliac arteries, as shown in FIG. 24([0135] a), straight stent 400 (or 450) is disposed as illustrated in FIG. 26. Proximal stent portion 401 engages the inner walls of the aorta above the aneurysm. Distal stent portion 402 engages the inner wall of the aorta below the aneurysm. Intermediate fabric portion 403 extends across the aneurysm, providing a strong, stable lumen for blood flow through the aorta.
  • FIG. 28 illustrates the delivery apparatus used to implant [0136] straight stent 400 in the vasculature. This apparatus is very similar to that described above for the delivery system to be used with the bifurcated stent or prosthesis. Accordingly, like reference numerals refer to the same components.
  • In the [0137] introducer 410 shown in FIG. 28, proximal portion pusher 102 engages proximal stent portion 401. Distal portion pusher 103 engages distal stent portion 402.
  • In use, [0138] straight stent 400 is first charged into the introducer by cooling it to temperatures below 10° C., radially compressing it, and inserting it within outer sheath 101, as described above in connection with the bifurcated stent or prosthesis. The remainder of introducer 410 is also assembled as described in connection with introducer 100.
  • [0139] Introducer 410 is passed through an entry point (not shown) over guide wire 411 as shown in FIG. 24(a). This insertion may be accomplished using percutaneous or cut-down techniques. Introducer 410 is then inserted to the desired delivery location.
  • In the aorta, [0140] introducer 410 is positioned and balloon 107 is inflated above the renal arteries in the same manner as described above in connection with the bifurcated stent and as illustrated in FIG. 24(a).
  • While maintaining [0141] proximal portion pusher 102 in a fixed position, outer sheath 101 is withdrawn until proximal portion 401 of stent 400 emerges from outer sheath 101 as shown in FIG. 24(b). Using a radiopaque marker 420 disposed on the proximal end of the proximal portion 401, stent 400 is optimally aligned within the aorta. Outer sheath 101 is further withdrawn until proximal portion 401 emerges therefrom, as shown in FIG. 25. Outer sheath 101 is then further withdrawn until it is flush with proximal portion pusher 102. Then both outer sheath 101 and proximal portion pusher 102 are withdrawn while maintaining distal portion pusher 103 in a fixed position. Distal portion 402 is thus deployed from the end of outer sheath 101, as shown in FIG. 26.
  • [0142] Balloon 107 is then deflated and withdrawn inside proximal portion 401 where balloon 107 is re-inflated to seat the stent 400, as shown in FIG. 27. Balloon 107 is then withdrawn, along with the introducer 410 as described above, and the entry point is closed.
  • FIG. 29 illustrates the apparatus used to deploy [0143] straight stent 450, shown in FIG. 23, of the present invention. This apparatus is very similar to that described above for the delivery system to be used with the bifurcated stent or prosthesis. Accordingly, like reference numerals refer to the same components.
  • [0144] Proximal portion pusher 102 in this embodiment is glued to distal portion pusher 103 such that ends 115 and 116 are flush. These flush ends are adapted to engage stent 450 within outer sheath 101.
  • In use, [0145] straight stent 450 is first charged into introducer 490 by cooling it to temperatures below 10° C., radially compressing it, and inserting it within outer sheath 101, as described above in connection with the bifurcated stent or prosthesis. The remainder of introducer 490 is also assembled as described in connection with introducer 100.
  • [0146] Introducer 490 is passed through an entry point (not shown) over a guide wire 411 as shown in FIG. 30. This insertion may be accomplished using percutaneous or cut-down techniques. Introducer 490 is then inserted to the desired delivery location.
  • In the aorta, [0147] introducer 490 is positioned and balloon 107 is inflated above the renal arteries in the same manner as described above in connection with the bifurcated stent and as illustrated in FIG. 31.
  • While maintaining attached [0148] proximal portion pusher 102 and distal portion pusher 103 in a fixed position, outer sheath 101 is withdrawn until proximal portion 451 of stent 450 emerges from outer sheath 101 as shown in FIG. 32. Using a radiopaque marker 420 disposed on the proximal end of the proximal portion 451, stent 450 is optimally aligned within the aorta. Outer sheath 101 is then completely withdrawn until stent 450 is deployed into the aorta as shown in FIG. 33.
  • [0149] Balloon 107 is then deflated and withdrawn inside proximal portion 451 where balloon 107 is re-inflated to seat the stent 450, as shown in FIG. 34. Balloon 107 is then withdrawn, along with the introducer 490 as described above, and the entry point is closed.
  • The angeological disease of occlusion is the blockage of an artery resulting from a buildup or clot of soft thrombus. There are two types of occlusions that can occur at the aorta-iliac bifurcation. The first is infrarenal occlusion. In this case, the blockage extends in the aorta from just below the renal arteries into the iliac arteries. The second type is an occlusion that is limited to the immediate area of the bifurcation. [0150]
  • To treat an infrarenal occlusion, a canalization is first made through the thrombus by methods known in the art. A bifurcated endoluminal prosthesis according to the present invention is then implanted at the bifurcation site to provide an unobstructed lumen extending from the aorta into each of the iliac arteries. Blood can thus flow freely from the aorta to the iliac arteries. [0151]
  • The bifurcated endoluminal prosthesis according to the present invention that is used to treat an occlusion must be fabric covered. This is necessary to prevent embolization from the thrombus remaining on the wall of the recanalized artery. [0152]
  • An occlusion at the bifurcation is treated by recanalizing the artery as above. A bifurcated endoluminal prosthesis according to the present invention may be implanted at the bifurcation. Because the occlusion is limited to the immediate bifurcation site, however, the proximal portion of the prosthesis may be shorter than that discussed above. [0153]
  • To implant the bifurcated endoluminal prosthesis to treat both types of occlusion, the delivery [0154] system comprising introducer 100 discussed above for delivering the bifurcated endoluminal prosthesis to treat an abdominal aortic aneurysm is used. The same delivery method discussed above for implanting the bifurcated endoluminal prosthesis to treat abdominal aortic aneurysms is used to implant the device to treat the occlusion.
  • Using the method and apparatus of this invention to treat occlusion provides an unobstructed lumen through which blood can flow from the aorta to the iliac arteries. [0155]
  • The angeological disease of stenosis is a narrowing of an artery caused by a buildup of hard calcified plaque. This is usually caused by a buildup of cholesterol. To treat such an angeological disease, angioplasty is performed on the plaque according to methods well known in the art. The bifurcated endoluminal stent according to the present invention is then implanted at the bifurcation site. This stent is the same as that described above for treatment of an abdominal aortic aneurysm. To treat the stenosis, however, it is not necessary to cover the stent with a fabric, thus creating a prosthesis. Because restenosis is rare at the bifurcation site, there is no need to isolate the blood flowing in the lumen from the walls of the arteries. [0156]
  • The delivery system used to implant the bifurcated endoluminal stent used to treat stenosis is the same as that illustrated in FIG. 8 except that [0157] balloon 107 is not required. Because there is no fabric around the stent to be affected by blood flow in the arteries and cause migration of the bifurcated stent, it is not necessary to block the blood flow with the balloon. Otherwise, the delivery system for implanting the bifurcated stent to treat stenosis is the same as that for implanting the bifurcated prosthesis to treat abdominal aortic aneurysm.
  • Similarly, with the exception of the steps involving inflation of [0158] balloon 107 to block blood flow, the method of delivering the bifurcated endoluminal stent to treat stenosis is the same as that described above for delivering the bifurcated endoluminal prosthesis to treat abdominal aortic aneurysm.

Claims (53)

What is claimed:
1. An introducer for delivering, into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, a bifurcated endoluminal stent or prosthesis having a proximal portion adapted to be disposed in said blood vessel and a distal portion adapted to be disposed at least partially in one of said two branched vessels, said introducer comprising:
(a) a tubular outer sheath;
(b) a proximal portion pusher disposed at least partially within said outer sheath; and
(c) a distal portion pusher disposed at least partially within said proximal portion pusher.
2. An introducer for delivering a bifurcated endoluminal stent or prosthesis as claimed in claim 1 further comprising a balloon catheter, having a balloon attached thereto, disposed at least partially within said distal portion pusher.
3. An introducer for delivering a bifurcated endoluminal stent or prosthesis as claimed in claim 2 further comprising a hemostasis valve attached to the distal end of said distal portion pusher.
4. An introducer for delivering a bifurcated endoluminal stent or prosthesis as claimed in claim 2 further comprising wings on said outer sheath and said proximal portion pusher.
5. An introducer for delivering a bifurcated endoluminal stent or prosthesis as claimed in claim 2, wherein said balloon catheter has an injection orifice and an injection conduit therein.
6. An introducer for delivering a bifurcated endoluminal stent or prosthesis as claimed in claim 2, wherein said balloon catheter has an inflation orifice and an inflation conduit therein.
7. An introducer for delivering a bifurcated endoluminal stent or prosthesis as claimed in claim 2, wherein said balloon catheter has a proximal end with a nose cone attached thereto.
8. An introducer for delivering into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, an endoluminal prosthesis having a proximal stent portion and a distal stent portion, said introducer comprising:
(a) a tubular outer sheath;
(b) a proximal portion pusher disposed at least partially within said outer sheath and having a proximal end adapted to contact said proximal stent portion;
(c) a distal portion pusher disposed at least partially within said proximal portion pusher and having a proximal end adapted to contact said distal stent portion; and
(d) a balloon catheter, having a balloon attached thereto, disposed at least partially within said distal portion pusher.
9. An introducer for delivering an endoluminal stent into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, said introducer comprising:
(a) a tubular outer sheath;
(b) a proximal portion pusher disposed at least partially within said outer sheath and having a proximal end adapted to contact a distal end of said stent; and
(c) a distal portion pusher disposed at least partially within said proximal portion pusher and secured to said proximal portion pusher such that proximal ends of said distal portion pusher and said proximal portion pusher are flush with one another.
10. A method for delivering a bifurcated endoluminal stent or prosthesis having a proximal portion and a first distal portion into the vasculature at an angeological bifurcation where a blood vessel branches into a first branched vessel and a second branched vessel, said method comprising the steps of:
(a) inserting a first introducer containing said stent or prosthesis into the vasculature to a predetermined delivery location, said first introducer comprising an outer sheath, a proximal portion pusher, and a distal portion pusher;
(b) withdrawing said outer sheath of said first introducer while maintaining said proximal portion pusher in a fixed position until said proximal portion of said stent or prosthesis is deployed from said first introducer into said blood vessel;
(c) withdrawing said outer sheath and said proximal portion pusher while maintaining said distal portion pusher in a fixed position until said first distal portion of said stent or prosthesis is deployed from said first introducer at least partially into said first branched vessel; and
(d) withdrawing said first introducer from the vasculature.
11. A method for delivering a bifurcated endoluminal stent or prosthesis as claimed in claim 10 further comprising the steps of:
(a) inserting into the vasculature a second introducer containing a second distal portion of said stent or prosthesis and comprising an outer sheath and a pusher;
(b) withdrawing said outer sheath of said second introducer while maintaining said pusher of said second introducer in a fixed position until said second distal portion of said stent or prosthesis is deployed from said second introducer such that a proximal end of said second distal portion securely connects to said proximal portion of said stent or prosthesis, and such that a distal end of said second distal portion extends at least partially into said second branched vessel; and
(c) withdrawing said second introducer from the vasculature.
12. A method for delivering a bifurcated endoluminal stent or prosthesis as claimed in claim 10 wherein said first introducer further comprises a balloon catheter having a balloon attached thereto and said method further comprises the step of inflating said balloon to at least partially block blood flow in said blood vessel after inserting said first introducer into the vasculature.
13. A method for delivering, into the vasculature at an angeological bifurcation where a blood vessel branches into two branched vessels, an endoluminal prosthesis having a proximal stent portion, and a distal stent portion, said method comprising the steps of:
(a) inserting an introducer containing said prosthesis into the vasculature to a predetermined delivery location, said introducer comprising an outer sheath, a proximal stent portion pusher, a distal stent portion pusher, and a balloon catheter having a balloon attached thereto;
(b) inflating said balloon to at least partially block blood flow in said blood vessel;
(c) withdrawing said outer sheath of said introducer while maintaining said proximal stent portion pusher in a fixed position until said proximal stent portion of said prosthesis is deployed from said introducer into said blood vessel;
(d) withdrawing said outer sheath and said proximal stent portion pusher while maintaining said distal stent portion pusher in a fixed position until said distal stent portion of said prosthesis is deployed from said introducer into said blood vessel; and
(e) withdrawing said introducer from the vasculature.
14. A method of treating an angeological disease at a bifurcation site where a blood vessel branches into a first branched vessel and a second branched vessel comprising the steps of:
(a) disposing in said blood vessel a proximal portion of an endoluminal stent;
(b) directing blood flow from said blood vessel into said first branched vessel through a first distal portion of said endoluminal stent, said first distal portion being connected to said proximal portion and extending into said first branched vessel; and
(c) directing blood flow from said blood vessel into said second branched vessel through a second distal portion of said endoluminal stent, said second distal portion being connected to said proximal portion and extending into said second branched vessel.
15. A method of treating an angeological disease at a bifurcation site where a blood vessel branches into a first branched vessel and a second branched vessel as claimed in claim 14 wherein said disease is stenosis.
16. A method of treating an angeological disease at a bifurcation site where a blood vessel branches into a first branched vessel and a second branched vessel as claimed in claim 14 that further comprises covering any of said proximal portion, said first distal portion, and said second distal portion with fabric.
17. A method of treating an angeological disease at a bifurcation site where a blood vessel branches into a first branched vessel and a second branched vessel as claimed in claim 16 wherein said disease is an aneurysm.
18. A method of treating an angeological disease at a bifurcation site where a blood vessel branches into a first branched vessel and a second branched vessel as claimed in claim 16 wherein said disease is an occlusion.
19. An endoluminal stent comprising a plurality of hoops which are axially displaced in a tubular configuration along a common axis, each of said hoops
(a) being formed by a substantially complete turn of a sinuous wire having apices, and
(b) having a circumference that lies in a plane substantially perpendicular to the longitudinal axis of said stent;
wherein apices of adjacent hoops are juxtaposed to one another, and at least two juxtaposed apices are connected by a securing means.
20. A stent as recited in claim 19 in combination with one or more additional stent segments.
21. A stent as recited in claim 20 wherein at least one of said additional stent segments comprises a plurality of hoops which are axially displaced in a tubular configuration along a common axis, each of said hoops
(a) being formed by a substantially complete turn of a sinuous wire having apices, and
(b) having a circumference that lies in a plane substantially perpendicular to the longitudinal axis of said stent;
wherein apices of adjacent hoops are juxtaposed to one another, and at least two juxtaposed apices are connected by a securing means.
22. A stent as recited in claim 20 wherein said one or more additional segments are axially aligned with one another.
23. A stent as recited in claim 20 wherein said one or more additional segments are secured to one another by connecting means connecting at least some of the apices of hoops at mating ends of said stent and said additional segments.
24. A stent as recited in claim 20 wherein adjacent hoops are of the same diameter.
25. A stent as recited in claim 20 wherein adjacent hoops are of a different diameter.
26. A stent as recited in claim 22 wherein said axially aligned segments are connected to one another by a tubular fabric element.
27. A stent as recited in claim 20 wherein a first additional segment is axially parallel to, but non-common co-axial with, said stent.
28. A stent as recited in claim 27 further comprising a second additional segment axially parallel to said stent, but non-co-axial with either said stent or said first additional stent segment.
29. A stent as recited in claim 28 wherein at least one of said additional stent segments is of frustoconical shape and is further combined with an additional stent segment, one end of which includes a mating frustoconical shape.
30. At stent as recited in claim 29, wherein said mating frustoconical stent segments are adapted to be separately placed in a bifurcated artery and then, by expansion of one of said frustoconical stent segments, secured to one another
31. An endoluminal stent as claimed in claim 19 wherein said hoops are formed of a single continuous wire.
32. An endoluminal stent as-claimed in claim 19 wherein said securing means is a suture.
33. An endoluminal stent as claimed in claim 32 wherein said suture is a tied loop of thermoplastic material.
34. An endoluminal stent as claimed in claim 19 wherein said securing means is a ring.
35. An endoluminal stent as claimed in claim 19 wherein said securing means is a staple.
36. An endoluminal stent as claimed in claim 19 wherein said securing means is wire twisted into loop.
37. An endoluminal stent as claimed in claim 36 wherein said wire is nitinol.
38. An endoluminal stent as claimed in claim 19 wherein said securing means is bead of thermoplastic material.
39. An endoluminal stent as claimed in claim 19 wherein the plane of the circumference at each longitudinal end of the stent is square to the longitudinal axis of the stent.
40. An endoluminal stent as claimed in claim 19 wherein said stent is at least partially covered in fabric.
41. An endoluminal stent as claimed in claim 31 wherein said wire is nitinol.
42. A method of making an endoluminal stent having a plurality of hoops which are axially displaced in a tubular configuration, each of said hoops being formed by a substantially complete turn of a sinuous wire with apices and having a circumference that lies in a plane substantially perpendicular to the longitudinal axis of the stent, said method comprising the steps of:
(a) winding a wire in a zig-zag pattern around a mandrel having a plurality of upstanding pins defining said zig-zag pattern to form a first hoop having apices and a circumference that lies in a plane substantially perpendicular to the longitudinal axis of said mandrel;
(b) longitudinally displacing said wire with respect to the axis of said mandrel;
(c) winding said wire in a zig-zag pattern around a plurality of upstanding pins on said mandrel to form a second hoop, adjacent said first hoop, having apices juxtaposed to the apices of said first circumferential hoop and a circumference that lies in a plane substantially perpendicular to the longitudinal axis of said mandrel;
(d) longitudinally displacing said wire with respect to the axis of said mandrel;
(e) repeating steps (a)-(d) to form additional hoops until a predetermined number of hoops are formed;
(f) annealing said wire on said mandrel;
(g) cooling said wire on said mandrel;
(h) removing said wire from said mandrel; and
(i) securing together at least two juxtaposed apices of adjacent hoops.
43. An endoluminal stent comprising a radiopaque marker disposed on at least one end of the stent.
44. An endoluminal stent as claimed in claim 43 wherein said radiopaque marker comprises a radiopaque element attached to one end of said stent.
45. An endoluminal stent as claimed in claim 44 wherein said element is a platinum wire.
46. An endoluminal stent as claimed in claim 44 wherein said element is a gold wire.
47. An endoluminal stent as claimed in claim 43 wherein said radiopaque marker comprises a radiopaque tube disposed around a part of said stent.
48. An endoluminal stent as claimed in claim 47 wherein said tube is platinum.
49. An endoluminal stent as claimed in claim 47 wherein said tube is gold.
50. A bifurcated stent for use in juxtaposition with an angeological bifurcation comprising a proximal stent portion adapted to be disposed within a blood vessel in juxtaposition with a bifurcation, a first distal stent portion adapted to extend across the bifurcation into one of the branched blood vessels, and a second distal stent portion adapted to allow blood to flow from the proximal portion into the other branched vessel and, at least one barb extending radially outward from any of said proximal stent portion, said first distal stent portion, and said second distal stent portion.
51. Apparatus for delivering an endoluminal stent or prosthesis into the vasculature comprising:
(a) an introducer having a on a distal end thereof; and
(b) a cartridge having an inner tubular member containing said stent or prosthesis in a compressed state, an outer sheath, and a second portion of said lock fitting;
wherein said first portion of said lock fitting on said introducer mates with said second portion of said lock fitting on said cartidge to prevent relative movement of said introducer and said cartridge.
52. Apparatus as claimed in claim 51 wherein said lock fitting is a Luer lock.
53. Apparatus as claimed in claim 51 further comprising a hemostasis valve on said introducer and a pusher adapted to push said compressed stent or prosthesis through said cartridge, through said introducer, and into the vasculature.
US10/682,483 1994-02-09 2003-10-09 Bifurcated endoluminal prosthesis Abandoned US20040073287A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/682,483 US20040073287A1 (en) 1994-02-09 2003-10-09 Bifurcated endoluminal prosthesis

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
EPEP94400284.9 1994-02-09
EP94400284 1994-02-09
EPEP94401306.9 1994-06-10
EP94401306 1994-06-10
US31288194A 1994-09-27 1994-09-27
US08/317,763 US5609627A (en) 1994-02-09 1994-10-04 Method for delivering a bifurcated endoluminal prosthesis
US46398795A 1995-06-05 1995-06-05
US10/682,483 US20040073287A1 (en) 1994-02-09 2003-10-09 Bifurcated endoluminal prosthesis

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US31288194A Continuation-In-Part 1994-02-09 1994-09-27
US46398795A Continuation 1994-02-09 1995-06-05

Publications (1)

Publication Number Publication Date
US20040073287A1 true US20040073287A1 (en) 2004-04-15

Family

ID=56289802

Family Applications (8)

Application Number Title Priority Date Filing Date
US08/960,282 Expired - Lifetime US6051020A (en) 1994-02-09 1997-10-29 Bifurcated endoluminal prosthesis
US09/387,696 Expired - Fee Related US7510570B1 (en) 1994-02-09 1999-08-31 Bifurcated endoluminal prosthesis
US10/616,274 Abandoned US20040106979A1 (en) 1994-02-09 2003-07-09 Bifurcated endoluminal prosthesis
US10/682,483 Abandoned US20040073287A1 (en) 1994-02-09 2003-10-09 Bifurcated endoluminal prosthesis
US10/692,886 Expired - Fee Related US7780720B2 (en) 1994-02-09 2003-10-24 Bifurcated endoluminal prosthesis
US10/703,659 Abandoned US20040098115A1 (en) 1994-02-09 2003-11-07 Bifurcated endoluminal prosthesis
US10/784,378 Expired - Fee Related US7942919B2 (en) 1994-02-09 2004-02-23 Bifurcated endoluminal prosthesis
US11/879,685 Expired - Fee Related US7901449B2 (en) 1994-02-09 2007-07-18 Bifurcated endoluminal prosthesis

Family Applications Before (3)

Application Number Title Priority Date Filing Date
US08/960,282 Expired - Lifetime US6051020A (en) 1994-02-09 1997-10-29 Bifurcated endoluminal prosthesis
US09/387,696 Expired - Fee Related US7510570B1 (en) 1994-02-09 1999-08-31 Bifurcated endoluminal prosthesis
US10/616,274 Abandoned US20040106979A1 (en) 1994-02-09 2003-07-09 Bifurcated endoluminal prosthesis

Family Applications After (4)

Application Number Title Priority Date Filing Date
US10/692,886 Expired - Fee Related US7780720B2 (en) 1994-02-09 2003-10-24 Bifurcated endoluminal prosthesis
US10/703,659 Abandoned US20040098115A1 (en) 1994-02-09 2003-11-07 Bifurcated endoluminal prosthesis
US10/784,378 Expired - Fee Related US7942919B2 (en) 1994-02-09 2004-02-23 Bifurcated endoluminal prosthesis
US11/879,685 Expired - Fee Related US7901449B2 (en) 1994-02-09 2007-07-18 Bifurcated endoluminal prosthesis

Country Status (1)

Country Link
US (8) US6051020A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030004560A1 (en) * 2001-04-11 2003-01-02 Trivascular, Inc. Delivery system and method for bifurcated graft
US20030120331A1 (en) * 2001-12-20 2003-06-26 Trivascular, Inc. Advanced endovascular graft
US20030220681A1 (en) * 2000-02-02 2003-11-27 Trivascular, Inc. Delivery system and method for expandable intracorporeal device
US20040220664A1 (en) * 1997-11-25 2004-11-04 Trivascular, Inc. Layered endovascular graft
US20040251827A1 (en) * 2003-06-10 2004-12-16 Kang Tae-Min Organic electro luminescent display and method for fabricating the same
US20050216018A1 (en) * 2004-03-29 2005-09-29 Sennett Andrew R Orthopedic surgery access devices
US20100016943A1 (en) * 2001-12-20 2010-01-21 Trivascular2, Inc. Method of delivering advanced endovascular graft
US7901449B2 (en) 1994-02-09 2011-03-08 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US8361136B2 (en) 1998-02-09 2013-01-29 Trivascular, Inc. Endovascular graft
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US9233015B2 (en) 2012-06-15 2016-01-12 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting

Families Citing this family (270)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8709067B2 (en) * 1994-02-09 2014-04-29 Lifeshield Sciences, LLC Bifurcated endoluminal prosthesis
US5609627A (en) * 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US6039749A (en) 1994-02-10 2000-03-21 Endovascular Systems, Inc. Method and apparatus for deploying non-circular stents and graftstent complexes
JP4046760B2 (en) * 1994-05-19 2008-02-13 ボストン サイエンティフィック サイムド, インコーポレイテッド Improved tissue support device
US5683449A (en) 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
EP1163889B1 (en) * 1995-03-01 2008-05-14 Boston Scientific Scimed, Inc. Improved longitudinally flexible expandable stent
US7204848B1 (en) 1995-03-01 2007-04-17 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US6818014B2 (en) 1995-03-01 2004-11-16 Scimed Life Systems, Inc. Longitudinally flexible expandable stent
US7591846B2 (en) * 1996-11-04 2009-09-22 Boston Scientific Scimed, Inc. Methods for deploying stents in bifurcations
JP4042998B2 (en) 1997-01-29 2008-02-06 クック インコーポレイテッド Bell bottom modular stent graft
US6070589A (en) 1997-08-01 2000-06-06 Teramed, Inc. Methods for deploying bypass graft stents
US6165195A (en) 1997-08-13 2000-12-26 Advanced Cardiovascylar Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6361544B1 (en) 1997-08-13 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6221090B1 (en) 1997-08-13 2001-04-24 Advanced Cardiovascular Systems, Inc. Stent delivery assembly
US6077296A (en) * 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US6290731B1 (en) 1998-03-30 2001-09-18 Cordis Corporation Aortic graft having a precursor gasket for repairing an abdominal aortic aneurysm
US6656215B1 (en) 2000-11-16 2003-12-02 Cordis Corporation Stent graft having an improved means for attaching a stent to a graft
WO1999065419A1 (en) * 1998-06-19 1999-12-23 Endologix, Inc. Self expanding bifurcated endovascular prosthesis
US6461380B1 (en) 1998-07-28 2002-10-08 Advanced Cardiovascular Systems, Inc. Stent configuration
US6117117A (en) * 1998-08-24 2000-09-12 Advanced Cardiovascular Systems, Inc. Bifurcated catheter assembly
US6187036B1 (en) 1998-12-11 2001-02-13 Endologix, Inc. Endoluminal vascular prosthesis
US6660030B2 (en) * 1998-12-11 2003-12-09 Endologix, Inc. Bifurcation graft deployment catheter
US6733523B2 (en) 1998-12-11 2004-05-11 Endologix, Inc. Implantable vascular graft
DE69927055T2 (en) 1998-12-11 2006-06-29 Endologix, Inc., Irvine ENDOLUMINAL VASCULAR PROSTHESIS
CA2329213C (en) * 1999-01-22 2005-08-09 Gore Enterprise Holdings, Inc. Low profile stent and graft combination
US8034100B2 (en) 1999-03-11 2011-10-11 Endologix, Inc. Graft deployment system
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
SE514718C2 (en) * 1999-06-29 2001-04-09 Jan Otto Solem Apparatus for treating defective closure of the mitral valve apparatus
US6997951B2 (en) * 1999-06-30 2006-02-14 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US7192442B2 (en) * 1999-06-30 2007-03-20 Edwards Lifesciences Ag Method and device for treatment of mitral insufficiency
US6440161B1 (en) 1999-07-07 2002-08-27 Endologix, Inc. Dual wire placement catheter
US6383213B2 (en) 1999-10-05 2002-05-07 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6673107B1 (en) 1999-12-06 2004-01-06 Advanced Cardiovascular Systems, Inc. Bifurcated stent and method of making
US6387120B2 (en) 1999-12-09 2002-05-14 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6254593B1 (en) 1999-12-10 2001-07-03 Advanced Cardiovascular Systems, Inc. Bifurcated stent delivery system having retractable sheath
US6361555B1 (en) 1999-12-15 2002-03-26 Advanced Cardiovascular Systems, Inc. Stent and stent delivery assembly and method of use
US6402781B1 (en) * 2000-01-31 2002-06-11 Mitralife Percutaneous mitral annuloplasty and cardiac reinforcement
US7296577B2 (en) * 2000-01-31 2007-11-20 Edwards Lifescience Ag Transluminal mitral annuloplasty with active anchoring
US6989028B2 (en) 2000-01-31 2006-01-24 Edwards Lifesciences Ag Medical system and method for remodeling an extravascular tissue structure
US20010046493A1 (en) * 2000-02-24 2001-11-29 Alex Margolin Lipase-containing composition and methods of use thereof
US8092511B2 (en) * 2000-03-03 2012-01-10 Endovascular Technologies, Inc. Modular stent-graft for endovascular repair of aortic arch aneurysms and dissections
US6814752B1 (en) 2000-03-03 2004-11-09 Endovascular Technologies, Inc. Modular grafting system and method
US6942691B1 (en) 2000-04-27 2005-09-13 Timothy A. M. Chuter Modular bifurcated graft for endovascular aneurysm repair
US7226474B2 (en) * 2000-05-01 2007-06-05 Endovascular Technologies, Inc. Modular graft component junctions
US7666221B2 (en) * 2000-05-01 2010-02-23 Endovascular Technologies, Inc. Lock modular graft component junctions
US7135037B1 (en) 2000-05-01 2006-11-14 Endovascular Technologies, Inc. System and method for forming a junction between elements of a modular endovascular prosthesis
US6616689B1 (en) 2000-05-03 2003-09-09 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6482211B1 (en) 2000-07-31 2002-11-19 Advanced Cardiovascular Systems, Inc. Angulated stent delivery system and method of use
US6986786B1 (en) 2000-09-11 2006-01-17 Scimed Life Systerms, Inc. Endovascular prostethic devices having hook and loop structures
US6485512B1 (en) * 2000-09-27 2002-11-26 Advanced Cardiovascular Systems, Inc. Two-stage light curable stent and delivery system
AU2002229026A1 (en) 2000-11-13 2002-05-21 Young Cho Device and method for reducing blood pressure
US6582394B1 (en) 2000-11-14 2003-06-24 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcated vessels
EP1337200A2 (en) * 2000-11-17 2003-08-27 Evysio Medical Devices Ulc Endovascular prosthesis
US6544219B2 (en) 2000-12-15 2003-04-08 Advanced Cardiovascular Systems, Inc. Catheter for placement of therapeutic devices at the ostium of a bifurcation of a body lumen
US6929660B1 (en) 2000-12-22 2005-08-16 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6810882B2 (en) 2001-01-30 2004-11-02 Ev3 Santa Rosa, Inc. Transluminal mitral annuloplasty
US7510576B2 (en) * 2001-01-30 2009-03-31 Edwards Lifesciences Ag Transluminal mitral annuloplasty
CA2433881C (en) * 2001-01-30 2009-08-18 Randall T. Lashinski Medical system and method for remodeling an extravascular tissue structure
WO2002062263A2 (en) * 2001-02-05 2002-08-15 Viacor, Inc. Apparatus and method for reducing mitral regurgitation
WO2002062408A2 (en) * 2001-02-05 2002-08-15 Viacor, Inc. Method and apparatus for improving mitral valve function
WO2002067815A1 (en) 2001-02-26 2002-09-06 Scimed Life Systems, Inc. Bifurcated stent
AU2002250189A1 (en) * 2001-02-26 2002-09-12 Scimed Life Systems, Inc. Bifurcated stent and delivery system
US7799064B2 (en) * 2001-02-26 2010-09-21 Boston Scientific Scimed, Inc. Bifurcated stent and delivery system
WO2002070167A1 (en) * 2001-03-05 2002-09-12 Idev Technologies, Inc. Methods for securing strands of woven medical devices
WO2002096275A2 (en) * 2001-03-05 2002-12-05 Viacor, Incorporated Apparatus and method for reducing mitral regurgitation
FR2822370B1 (en) * 2001-03-23 2004-03-05 Perouse Lab TUBULAR ENDOPROSTHESIS COMPRISING A DEFORMABLE RING AND REQUIRED OF INTERVENTION FOR ITS IMPLANTATION
CA2441886C (en) * 2001-03-23 2009-07-21 Viacor, Incorporated Method and apparatus for reducing mitral regurgitation
US7186264B2 (en) * 2001-03-29 2007-03-06 Viacor, Inc. Method and apparatus for improving mitral valve function
US20040138734A1 (en) * 2001-04-11 2004-07-15 Trivascular, Inc. Delivery system and method for bifurcated graft
US6733521B2 (en) 2001-04-11 2004-05-11 Trivascular, Inc. Delivery system and method for endovascular graft
US6749628B1 (en) 2001-05-17 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US6939373B2 (en) * 2003-08-20 2005-09-06 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6629994B2 (en) 2001-06-11 2003-10-07 Advanced Cardiovascular Systems, Inc. Intravascular stent
US6635083B1 (en) 2001-06-25 2003-10-21 Advanced Cardiovascular Systems, Inc. Stent with non-linear links and method of use
US6749629B1 (en) 2001-06-27 2004-06-15 Advanced Cardiovascular Systems, Inc. Stent pattern with figure-eights
US20030078654A1 (en) * 2001-08-14 2003-04-24 Taylor Daniel C. Method and apparatus for improving mitral valve function
GB0121980D0 (en) 2001-09-11 2001-10-31 Cathnet Science Holding As Expandable stent
US20030060872A1 (en) * 2001-09-26 2003-03-27 Gary Gomringer Stent with radiopaque characteristics
US6752825B2 (en) 2001-10-02 2004-06-22 Scimed Life Systems, Inc Nested stent apparatus
US7052487B2 (en) 2001-10-26 2006-05-30 Cohn William E Method and apparatus for reducing mitral regurgitation
US7351255B2 (en) 2001-12-03 2008-04-01 Xtent, Inc. Stent delivery apparatus and method
US7294146B2 (en) 2001-12-03 2007-11-13 Xtent, Inc. Apparatus and methods for delivery of variable length stents
US20040186551A1 (en) 2003-01-17 2004-09-23 Xtent, Inc. Multiple independent nested stent structures and methods for their preparation and deployment
US7137993B2 (en) 2001-12-03 2006-11-21 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7147656B2 (en) 2001-12-03 2006-12-12 Xtent, Inc. Apparatus and methods for delivery of braided prostheses
US20030135266A1 (en) 2001-12-03 2003-07-17 Xtent, Inc. Apparatus and methods for delivery of multiple distributed stents
US7309350B2 (en) 2001-12-03 2007-12-18 Xtent, Inc. Apparatus and methods for deployment of vascular prostheses
US7182779B2 (en) 2001-12-03 2007-02-27 Xtent, Inc. Apparatus and methods for positioning prostheses for deployment from a catheter
US7892273B2 (en) 2001-12-03 2011-02-22 Xtent, Inc. Custom length stent apparatus
US20050121411A1 (en) * 2002-10-29 2005-06-09 Microfabrica Inc. Medical devices and EFAB methods and apparatus for producing them
US6682537B2 (en) 2001-12-20 2004-01-27 The Cleveland Clinic Foundation Apparatus and method for capturing a wire in a blood vessel
US6641606B2 (en) 2001-12-20 2003-11-04 Cleveland Clinic Foundation Delivery system and method for deploying an endovascular prosthesis
US7014653B2 (en) * 2001-12-20 2006-03-21 Cleveland Clinic Foundation Furcated endovascular prosthesis
JP2005517490A (en) * 2001-12-21 2005-06-16 カルディオバスク, インコーポレイテッド Composite stent with polymeric covering and bioactive coating
WO2003055417A1 (en) * 2001-12-28 2003-07-10 Edwards Lifesciences Ag Delayed memory device
SE524709C2 (en) * 2002-01-11 2004-09-21 Edwards Lifesciences Ag Device for delayed reshaping of a heart vessel and a heart valve
US7125420B2 (en) * 2002-02-05 2006-10-24 Viacor, Inc. Method and apparatus for improving mitral valve function
US7708771B2 (en) * 2002-02-26 2010-05-04 Endovascular Technologies, Inc. Endovascular graft device and methods for attaching components thereof
WO2003071929A2 (en) * 2002-02-26 2003-09-04 Endovascular Technologies, Inc. Endovascular grafting device
US7942924B1 (en) 2002-03-04 2011-05-17 Endovascular Technologies, Inc. Staged endovascular graft delivery system
US7655036B2 (en) * 2002-04-24 2010-02-02 Medtronic Vascular, Inc. Bifurcated endoluminal prosthetic assembly and method
US6656220B1 (en) 2002-06-17 2003-12-02 Advanced Cardiovascular Systems, Inc. Intravascular stent
US7122051B1 (en) 2002-07-12 2006-10-17 Endovascular Technologies, Inc. Universal length sizing and dock for modular bifurcated endovascular graft
US6802859B1 (en) 2002-07-12 2004-10-12 Endovascular Technologies, Inc. Endovascular stent-graft with flexible bifurcation
US8425549B2 (en) 2002-07-23 2013-04-23 Reverse Medical Corporation Systems and methods for removing obstructive matter from body lumens and treating vascular defects
US6945995B2 (en) * 2002-08-29 2005-09-20 Boston Scientific Scimed, Inc. Stent overlap point markers
US8535370B1 (en) 2003-01-23 2013-09-17 Endovascular Technologies, Inc. Radiopaque markers for endovascular graft alignment
US7481834B2 (en) * 2003-04-14 2009-01-27 Tryton Medical, Inc. Stent for placement at luminal os
US7758630B2 (en) 2003-04-14 2010-07-20 Tryton Medical, Inc. Helical ostium support for treating vascular bifurcations
US7717953B2 (en) * 2004-10-13 2010-05-18 Tryton Medical, Inc. Delivery system for placement of prosthesis at luminal OS
US7972372B2 (en) * 2003-04-14 2011-07-05 Tryton Medical, Inc. Kit for treating vascular bifurcations
US8083791B2 (en) 2003-04-14 2011-12-27 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US8109987B2 (en) * 2003-04-14 2012-02-07 Tryton Medical, Inc. Method of treating a lumenal bifurcation
US7731747B2 (en) * 2003-04-14 2010-06-08 Tryton Medical, Inc. Vascular bifurcation prosthesis with multiple thin fronds
US20040215328A1 (en) * 2003-04-25 2004-10-28 Ronan Thornton Bifurcated stent with concentric body portions
US20050033416A1 (en) * 2003-05-02 2005-02-10 Jacques Seguin Vascular graft and deployment system
US20060161244A1 (en) * 2003-05-02 2006-07-20 Jacques Seguin Vascular graft and deployment system
US20060136053A1 (en) * 2003-05-27 2006-06-22 Rourke Jonathan M Method and apparatus for improving mitral valve function
US7241308B2 (en) 2003-06-09 2007-07-10 Xtent, Inc. Stent deployment systems and methods
US20040254628A1 (en) 2003-06-13 2004-12-16 Patrice Nazzaro One-branch stent-graft for bifurcated lumens
WO2005018507A2 (en) * 2003-07-18 2005-03-03 Ev3 Santa Rosa, Inc. Remotely activated mitral annuloplasty system and methods
EP1653889A4 (en) * 2003-07-23 2007-04-04 Viacor Inc Method and apparatus for improving mitral valve function
US7959665B2 (en) * 2003-07-31 2011-06-14 Abbott Cardiovascular Systems Inc. Intravascular stent with inverted end rings
US20070198078A1 (en) 2003-09-03 2007-08-23 Bolton Medical, Inc. Delivery system and method for self-centering a Proximal end of a stent graft
US11596537B2 (en) 2003-09-03 2023-03-07 Bolton Medical, Inc. Delivery system and method for self-centering a proximal end of a stent graft
US9198786B2 (en) 2003-09-03 2015-12-01 Bolton Medical, Inc. Lumen repair device with capture structure
US8292943B2 (en) 2003-09-03 2012-10-23 Bolton Medical, Inc. Stent graft with longitudinal support member
US8500792B2 (en) 2003-09-03 2013-08-06 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US11259945B2 (en) 2003-09-03 2022-03-01 Bolton Medical, Inc. Dual capture device for stent graft delivery system and method for capturing a stent graft
US7763063B2 (en) 2003-09-03 2010-07-27 Bolton Medical, Inc. Self-aligning stent graft delivery system, kit, and method
US20080264102A1 (en) 2004-02-23 2008-10-30 Bolton Medical, Inc. Sheath Capture Device for Stent Graft Delivery System and Method for Operating Same
US7235083B1 (en) 2003-09-10 2007-06-26 Endovascular Technologies, Inc. Methods and devices for aiding in situ assembly of repair devices
US20050060025A1 (en) * 2003-09-12 2005-03-17 Mackiewicz David A. Radiopaque markers for medical devices
US20050177228A1 (en) * 2003-12-16 2005-08-11 Solem Jan O. Device for changing the shape of the mitral annulus
AU2004299108B2 (en) * 2003-12-17 2010-04-22 Cook Medical Technologies Llc Interconnected leg extensions for an endoluminal prostehsis
US7326236B2 (en) 2003-12-23 2008-02-05 Xtent, Inc. Devices and methods for controlling and indicating the length of an interventional element
US7803178B2 (en) 2004-01-30 2010-09-28 Trivascular, Inc. Inflatable porous implants and methods for drug delivery
CA2558573A1 (en) * 2004-03-11 2005-09-22 Trivascular, Inc. Modular endovascular graft
US7323006B2 (en) 2004-03-30 2008-01-29 Xtent, Inc. Rapid exchange interventional devices and methods
US7674284B2 (en) * 2004-03-31 2010-03-09 Cook Incorporated Endoluminal graft
US7993397B2 (en) * 2004-04-05 2011-08-09 Edwards Lifesciences Ag Remotely adjustable coronary sinus implant
US8317859B2 (en) 2004-06-28 2012-11-27 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US20050288766A1 (en) 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US20060064064A1 (en) * 2004-09-17 2006-03-23 Jang G D Two-step/dual-diameter balloon angioplasty catheter for bifurcation and side-branch vascular anatomy
EP1655001A1 (en) * 2004-11-08 2006-05-10 Inderbitzi, Rolf, Dr. med. Vascular prosthesis with attachment means and connecting means
US7211110B2 (en) 2004-12-09 2007-05-01 Edwards Lifesciences Corporation Diagnostic kit to assist with heart valve annulus adjustment
US20070150051A1 (en) * 2005-01-10 2007-06-28 Duke Fiduciary, Llc Vascular implants and methods of fabricating the same
US8287583B2 (en) * 2005-01-10 2012-10-16 Taheri Laduca Llc Apparatus and method for deploying an implantable device within the body
US20080188803A1 (en) * 2005-02-03 2008-08-07 Jang G David Triple-profile balloon catheter
CA2608160C (en) 2005-05-09 2013-12-03 Jurgen Dorn Implant delivery device
US7500989B2 (en) * 2005-06-03 2009-03-10 Edwards Lifesciences Corp. Devices and methods for percutaneous repair of the mitral valve via the coronary sinus
CA2829353C (en) 2005-07-27 2016-03-15 Cook Medical Technologies Llc Stent/graft device and method for open surgical placement
US20080221673A1 (en) * 2005-08-12 2008-09-11 Donald Bobo Medical implant with reinforcement mechanism
US20070038297A1 (en) * 2005-08-12 2007-02-15 Bobo Donald E Jr Medical implant with reinforcement mechanism
US8043366B2 (en) * 2005-09-08 2011-10-25 Boston Scientific Scimed, Inc. Overlapping stent
US20070073391A1 (en) * 2005-09-28 2007-03-29 Henry Bourang System and method for delivering a mitral valve repair device
US20100196344A1 (en) * 2005-10-14 2010-08-05 Cystic Fibrosis Foundation Therapeutics, Inc. Compositions and methods for treating pancreatic insufficiency
US8764820B2 (en) * 2005-11-16 2014-07-01 Edwards Lifesciences Corporation Transapical heart valve delivery system and method
WO2007067820A2 (en) * 2005-12-09 2007-06-14 Edwards Lifesciences Corporation Improved anchoring system for medical implant
US8343211B2 (en) * 2005-12-14 2013-01-01 Boston Scientific Scimed, Inc. Connectors for bifurcated stent
US8435284B2 (en) * 2005-12-14 2013-05-07 Boston Scientific Scimed, Inc. Telescoping bifurcated stent
US20070156228A1 (en) * 2006-01-03 2007-07-05 Majercak David C Prosthetic stent graft for treatment of abdominal aortic aneurysm
US8083792B2 (en) * 2006-01-24 2011-12-27 Cordis Corporation Percutaneous endoprosthesis using suprarenal fixation and barbed anchors
US7637946B2 (en) 2006-02-09 2009-12-29 Edwards Lifesciences Corporation Coiled implant for mitral valve repair
US20070191926A1 (en) * 2006-02-14 2007-08-16 Advanced Cardiovascular Systems, Inc. Stent pattern for high stent retention
US20070208414A1 (en) * 2006-03-06 2007-09-06 Shawn Sorenson Tapered strength rings on a bifurcated stent petal
US8652198B2 (en) 2006-03-20 2014-02-18 J.W. Medical Systems Ltd. Apparatus and methods for deployment of linked prosthetic segments
US20070233233A1 (en) * 2006-03-31 2007-10-04 Boston Scientific Scimed, Inc Tethered expansion columns for controlled stent expansion
US8029558B2 (en) * 2006-07-07 2011-10-04 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US20080065205A1 (en) * 2006-09-11 2008-03-13 Duy Nguyen Retrievable implant and method for treatment of mitral regurgitation
US7988720B2 (en) 2006-09-12 2011-08-02 Boston Scientific Scimed, Inc. Longitudinally flexible expandable stent
US8778009B2 (en) * 2006-10-06 2014-07-15 Abbott Cardiovascular Systems Inc. Intravascular stent
US20080099170A1 (en) * 2006-10-31 2008-05-01 The Procter & Gamble Company Process of making wet-microcontracted paper
US8216298B2 (en) 2007-01-05 2012-07-10 Medtronic Vascular, Inc. Branch vessel graft method and delivery system
US8523931B2 (en) 2007-01-12 2013-09-03 Endologix, Inc. Dual concentric guidewire and methods of bifurcated graft deployment
US8388679B2 (en) 2007-01-19 2013-03-05 Maquet Cardiovascular Llc Single continuous piece prosthetic tubular aortic conduit and method for manufacturing the same
BRPI0807260A2 (en) * 2007-02-09 2014-06-10 Taheri Laduca Llc "IMPLANTABLE STENT AND METHOD OF MANUFACTURING A TUBULAR GRAFT"
US20080199510A1 (en) 2007-02-20 2008-08-21 Xtent, Inc. Thermo-mechanically controlled implants and methods of use
US8486132B2 (en) 2007-03-22 2013-07-16 J.W. Medical Systems Ltd. Devices and methods for controlling expandable prostheses during deployment
US8545548B2 (en) 2007-03-30 2013-10-01 DePuy Synthes Products, LLC Radiopaque markers for implantable stents and methods for manufacturing the same
US20080255447A1 (en) * 2007-04-16 2008-10-16 Henry Bourang Diagnostic catheter
US20090012601A1 (en) * 2007-07-05 2009-01-08 Abbott Cardiovascular Systems, Inc. Stent and catheter assembly and method for treating bifurcations
US8100820B2 (en) 2007-08-22 2012-01-24 Edwards Lifesciences Corporation Implantable device for treatment of ventricular dilation
US8066755B2 (en) 2007-09-26 2011-11-29 Trivascular, Inc. System and method of pivoted stent deployment
US8663309B2 (en) 2007-09-26 2014-03-04 Trivascular, Inc. Asymmetric stent apparatus and method
US8226701B2 (en) 2007-09-26 2012-07-24 Trivascular, Inc. Stent and delivery system for deployment thereof
WO2009046372A2 (en) 2007-10-04 2009-04-09 Trivascular2, Inc. Modular vascular graft for low profile percutaneous delivery
US11337714B2 (en) 2007-10-17 2022-05-24 Covidien Lp Restoring blood flow and clot removal during acute ischemic stroke
US8066757B2 (en) * 2007-10-17 2011-11-29 Mindframe, Inc. Blood flow restoration and thrombus management methods
US8926680B2 (en) 2007-11-12 2015-01-06 Covidien Lp Aneurysm neck bridging processes with revascularization systems methods and products thereby
US9198687B2 (en) * 2007-10-17 2015-12-01 Covidien Lp Acute stroke revascularization/recanalization systems processes and products thereby
US8585713B2 (en) 2007-10-17 2013-11-19 Covidien Lp Expandable tip assembly for thrombus management
US9220522B2 (en) 2007-10-17 2015-12-29 Covidien Lp Embolus removal systems with baskets
US10123803B2 (en) 2007-10-17 2018-11-13 Covidien Lp Methods of managing neurovascular obstructions
US8088140B2 (en) 2008-05-19 2012-01-03 Mindframe, Inc. Blood flow restorative and embolus removal methods
US8083789B2 (en) 2007-11-16 2011-12-27 Trivascular, Inc. Securement assembly and method for expandable endovascular device
US8328861B2 (en) 2007-11-16 2012-12-11 Trivascular, Inc. Delivery system and method for bifurcated graft
BRPI0908500A8 (en) 2008-02-22 2018-10-23 Micro Therapeutics Inc imaging methods of restoration of thrombus-occluded blood vessel blood flow, partial or substantial dissolution and thrombus dislocation, self-expanding thrombus removal equipment and integrated removable thrombus mass
WO2009105699A1 (en) 2008-02-22 2009-08-27 Endologix, Inc. Design and method of placement of a graft or graft system
US9101503B2 (en) 2008-03-06 2015-08-11 J.W. Medical Systems Ltd. Apparatus having variable strut length and methods of use
US8236040B2 (en) 2008-04-11 2012-08-07 Endologix, Inc. Bifurcated graft deployment systems and methods
WO2009126935A2 (en) 2008-04-11 2009-10-15 Mindframe, Inc. Monorail neuro-microcatheter for delivery of medical devices to treat stroke, processes and products thereby
US20100305686A1 (en) * 2008-05-15 2010-12-02 Cragg Andrew H Low-profile modular abdominal aortic aneurysm graft
WO2010005524A2 (en) 2008-06-30 2010-01-14 Bolton Medical, Inc. Abdominal aortic aneurysms: systems and methods of use
WO2010002931A1 (en) 2008-07-01 2010-01-07 Endologix, Inc. Catheter system
US9039756B2 (en) 2008-07-21 2015-05-26 Jenesis Surgical, Llc Repositionable endoluminal support structure and its applications
CN102245129B (en) * 2008-07-21 2015-03-18 詹妮弗·K·怀特 Repositionable endoluminal support structure and its applications
US20100063578A1 (en) * 2008-09-05 2010-03-11 Aga Medical Corporation Bifurcated medical device for treating a target site and associated method
US8821562B2 (en) 2008-09-25 2014-09-02 Advanced Bifurcation Systems, Inc. Partially crimped stent
US11298252B2 (en) 2008-09-25 2022-04-12 Advanced Bifurcation Systems Inc. Stent alignment during treatment of a bifurcation
US8769796B2 (en) 2008-09-25 2014-07-08 Advanced Bifurcation Systems, Inc. Selective stent crimping
CA2739007C (en) 2008-09-25 2017-10-31 Advanced Bifurcation Systems Inc. Partially crimped stent
US8979917B2 (en) 2008-09-25 2015-03-17 Advanced Bifurcation Systems, Inc. System and methods for treating a bifurcation
KR20110138350A (en) 2009-03-13 2011-12-27 볼턴 메디컬 인코퍼레이티드 System and method for deploying an endoluminal prosthesis at a surgical site
US20110054586A1 (en) 2009-04-28 2011-03-03 Endologix, Inc. Apparatus and method of placement of a graft or graft system
US10772717B2 (en) 2009-05-01 2020-09-15 Endologix, Inc. Percutaneous method and device to treat dissections
EP2424447A2 (en) 2009-05-01 2012-03-07 Endologix, Inc. Percutaneous method and device to treat dissections
US8858613B2 (en) 2010-09-20 2014-10-14 Altura Medical, Inc. Stent graft delivery systems and associated methods
US8382818B2 (en) * 2009-07-02 2013-02-26 Tryton Medical, Inc. Ostium support for treating vascular bifurcations
WO2011008989A2 (en) 2009-07-15 2011-01-20 Endologix, Inc. Stent graft
JP5588511B2 (en) 2009-07-27 2014-09-10 エンドロジックス、インク Stent graft
WO2011068915A1 (en) * 2009-12-01 2011-06-09 Altura Medical, Inc. Modular endograft devices and associated systems and methods
EP2549959A4 (en) * 2010-03-22 2016-12-14 Scitech Produtos Medicos Ltda Endoprosthesis and delivery system for delivering the endoprosthesis within a vessel of a patient
AU2011232360B2 (en) 2010-03-24 2015-10-08 Advanced Bifurcation Systems Inc. Methods and systems for treating a bifurcation with provisional side branch stenting
WO2011119883A1 (en) 2010-03-24 2011-09-29 Advanced Bifurcation Systems, Inc. Stent alignment during treatment of a bifurcation
EP2635241B1 (en) 2010-11-02 2019-02-20 Endologix, Inc. Apparatus for placement of a graft or graft system
WO2012068298A1 (en) 2010-11-17 2012-05-24 Endologix, Inc. Devices and methods to treat vascular dissections
US9707108B2 (en) 2010-11-24 2017-07-18 Tryton Medical, Inc. Support for treating vascular bifurcations
US8696741B2 (en) 2010-12-23 2014-04-15 Maquet Cardiovascular Llc Woven prosthesis and method for manufacturing the same
EP2672932B1 (en) 2011-02-08 2018-09-19 Advanced Bifurcation Systems, Inc. System for treating a bifurcation with a fully crimped stent
EP2672925B1 (en) 2011-02-08 2017-05-03 Advanced Bifurcation Systems, Inc. Multi-stent and multi-balloon apparatus for treating bifurcations
US8808350B2 (en) 2011-03-01 2014-08-19 Endologix, Inc. Catheter system and methods of using same
US9393136B2 (en) * 2012-03-27 2016-07-19 Medtronic Vascular, Inc. Variable zone high metal to vessel ratio stent and method
US8992595B2 (en) 2012-04-04 2015-03-31 Trivascular, Inc. Durable stent graft with tapered struts and stable delivery methods and devices
US9498363B2 (en) 2012-04-06 2016-11-22 Trivascular, Inc. Delivery catheter for endovascular device
EP2846743B1 (en) 2012-04-12 2016-12-14 Bolton Medical Inc. Vascular prosthetic delivery device
WO2013162724A1 (en) 2012-04-26 2013-10-31 Tryton Medical, Inc. Support for treating vascular bifurcations
US9700399B2 (en) 2012-04-26 2017-07-11 Medtronic Vascular, Inc. Stopper to prevent graft material slippage in a closed web stent-graft
JP6220386B2 (en) 2012-05-14 2017-10-25 シー・アール・バード・インコーポレーテッドC R Bard Incorporated Uniformly expandable stent
EP2869886B1 (en) 2012-07-09 2020-02-12 A.V. Medical Technologies, Ltd. Systems for blood vessel dilatation and visualization
CN105050549B (en) 2012-08-10 2017-07-21 阿尔图拉医疗公司 Stent delivery system and associated method
CN109432543A (en) 2013-01-15 2019-03-08 A.V.医疗科技有限公司 Infusion catheter with seal wire valve tune
USD723165S1 (en) 2013-03-12 2015-02-24 C. R. Bard, Inc. Stent
US10561509B2 (en) 2013-03-13 2020-02-18 DePuy Synthes Products, Inc. Braided stent with expansion ring and method of delivery
CN105517509B (en) 2013-03-13 2017-08-08 爱德华兹生命科学卡迪尔克有限责任公司 Radial type joint valve bracket and method
US9320592B2 (en) 2013-03-15 2016-04-26 Covidien Lp Coated medical devices and methods of making and using same
WO2014144809A1 (en) 2013-03-15 2014-09-18 Altura Medical, Inc. Endograft device delivery systems and associated methods
US9545301B2 (en) 2013-03-15 2017-01-17 Covidien Lp Coated medical devices and methods of making and using same
US9439751B2 (en) 2013-03-15 2016-09-13 Bolton Medical, Inc. Hemostasis valve and delivery systems
SG10201804045TA (en) 2013-11-11 2018-06-28 Edwards Lifesciences Cardiaq Llc Systems and methods for manufacturing a stent frame
US9668890B2 (en) 2013-11-22 2017-06-06 Covidien Lp Anti-thrombogenic medical devices and methods
AU2015205391B2 (en) 2014-01-08 2018-11-08 A.V. Medical Technologies, Ltd Devices and methods for imaging and treating blood vessels
US10206796B2 (en) 2014-08-27 2019-02-19 DePuy Synthes Products, Inc. Multi-strand implant with enhanced radiopacity
US10231857B2 (en) * 2014-11-18 2019-03-19 A.V. Medical Technologies LTD Treating endoleakages in aortic aneurysm repairs
US9789228B2 (en) 2014-12-11 2017-10-17 Covidien Lp Antimicrobial coatings for medical devices and processes for preparing such coatings
EP3313495B1 (en) 2015-06-25 2021-12-15 A.V. Medical Technologies, Ltd. Balloon catheter with fortified proximal infusion outlet port
US11129737B2 (en) 2015-06-30 2021-09-28 Endologix Llc Locking assembly for coupling guidewire to delivery system
US10034785B1 (en) 2015-10-13 2018-07-31 W. L. Gore & Associates, Inc. Single site access aortic aneurysm repair method
US10076428B2 (en) 2016-08-25 2018-09-18 DePuy Synthes Products, Inc. Expansion ring for a braided stent
US10111742B2 (en) * 2016-09-15 2018-10-30 Medtronic Vascular, Inc. Stent-graft having supported transition stent and method
US10292851B2 (en) 2016-09-30 2019-05-21 DePuy Synthes Products, Inc. Self-expanding device delivery apparatus with dual function bump
US10182927B2 (en) * 2016-10-21 2019-01-22 DePuy Synthes Products, Inc. Expansion ring for a braided stent
US10660770B2 (en) * 2017-07-18 2020-05-26 Cook Medical Technologies Llc Method of making an internal bidirectional branch
US10238513B2 (en) 2017-07-19 2019-03-26 Abbott Cardiovascular Systems Inc. Intravascular stent
AU2019204522A1 (en) 2018-07-30 2020-02-13 DePuy Synthes Products, Inc. Systems and methods of manufacturing and using an expansion ring
US10456280B1 (en) 2018-08-06 2019-10-29 DePuy Synthes Products, Inc. Systems and methods of using a braided implant
US10278848B1 (en) 2018-08-06 2019-05-07 DePuy Synthes Products, Inc. Stent delivery with expansion assisting delivery wire
US11039944B2 (en) 2018-12-27 2021-06-22 DePuy Synthes Products, Inc. Braided stent system with one or more expansion rings
CN113853178A (en) 2019-03-20 2021-12-28 Inqb8医疗科技有限责任公司 Aortic dissection implant
US11324583B1 (en) 2021-07-06 2022-05-10 Archo Medical LTDA Multi-lumen stent-graft and related surgical methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357732A (en) * 1966-06-13 1967-12-12 Edgar L Seal Door stop
US5236447A (en) * 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5507769A (en) * 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft
US5645559A (en) * 1992-05-08 1997-07-08 Schneider (Usa) Inc Multiple layer stent
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US6613073B1 (en) * 1993-09-30 2003-09-02 Endogad Research Pty Limited Intraluminal graft

Family Cites Families (234)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1417396A (en) 1920-11-24 1922-05-23 Columbus K Lassiter Return bend and method and apparatus for making same
US3357432A (en) * 1965-02-09 1967-12-12 Edwards Lab Inc Anastomotic coupling
SE325986B (en) * 1965-07-05 1970-07-13 T Almen
US3304557A (en) 1965-09-28 1967-02-21 Ethicon Inc Surgical prosthesis
GB1205743A (en) 1966-07-15 1970-09-16 Nat Res Dev Surgical dilator
US3657744A (en) * 1970-05-08 1972-04-25 Univ Minnesota Method for fixing prosthetic implants in a living body
US3878565A (en) * 1971-07-14 1975-04-22 Providence Hospital Vascular prosthesis with external pile surface
US3868956A (en) * 1972-06-05 1975-03-04 Ralph J Alfidi Vessel implantable appliance and method of implanting it
US3805301A (en) 1972-07-28 1974-04-23 Meadox Medicals Inc Tubular grafts having indicia thereon
US3818511A (en) * 1972-11-17 1974-06-25 Medical Prod Corp Medical prosthesis for ducts or conduits
GB1491202A (en) 1973-10-17 1977-11-09 Warne Surgical Products Ltd Catheter or tube having a tip which is high in opacity to x-rays
US3890977A (en) * 1974-03-01 1975-06-24 Bruce C Wilson Kinetic memory electrodes, catheters and cannulae
US3996938A (en) * 1975-07-10 1976-12-14 Clark Iii William T Expanding mesh catheter
GB1600000A (en) * 1977-01-24 1981-10-14 Raychem Ltd Memory metal member
US4140126A (en) * 1977-02-18 1979-02-20 Choudhury M Hasan Method for performing aneurysm repair
US4130904A (en) 1977-06-06 1978-12-26 Thermo Electron Corporation Prosthetic blood conduit
US4202349A (en) 1978-04-24 1980-05-13 Jones James W Radiopaque vessel markers
JPS6037734B2 (en) * 1978-10-12 1985-08-28 住友電気工業株式会社 Tubular organ prosthesis material and its manufacturing method
US4214587A (en) * 1979-02-12 1980-07-29 Sakura Chester Y Jr Anastomosis device and method
JPS55146456A (en) 1979-05-04 1980-11-14 Canon Inc Recording method
SE444640B (en) * 1980-08-28 1986-04-28 Bergentz Sven Erik IN ANIMAL OR HUMAN IMPLANTABLE KERLPROTES AND SET FOR ITS MANUFACTURING
GB2106190A (en) 1981-07-31 1983-04-07 Leuven Res & Dev Vzw Thermally responsive actuators utilising shape memory, and exercising devices utilising the same
US4553545A (en) * 1981-09-16 1985-11-19 Medinvent S.A. Device for application in blood vessels or other difficultly accessible locations and its use
US4425908A (en) * 1981-10-22 1984-01-17 Beth Israel Hospital Blood clot filter
GR77865B (en) 1982-03-25 1984-09-25 Coats Ltd J & P
SE445884B (en) * 1982-04-30 1986-07-28 Medinvent Sa DEVICE FOR IMPLANTATION OF A RODFORM PROTECTION
US4494531A (en) 1982-12-06 1985-01-22 Cook, Incorporated Expandable blood clot filter
US4512338A (en) * 1983-01-25 1985-04-23 Balko Alexander B Process for restoring patency to body vessels
US4503569A (en) * 1983-03-03 1985-03-12 Dotter Charles T Transluminally placed expandable graft prosthesis
US4530113A (en) 1983-05-20 1985-07-23 Intervascular, Inc. Vascular grafts with cross-weave patterns
US5067957A (en) * 1983-10-14 1991-11-26 Raychem Corporation Method of inserting medical devices incorporating SIM alloy elements
CA1246956A (en) 1983-10-14 1988-12-20 James Jervis Shape memory alloys
US4665906A (en) * 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4560374A (en) * 1983-10-17 1985-12-24 Hammerslag Julius G Method for repairing stenotic vessels
US6221102B1 (en) 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US4787899A (en) 1983-12-09 1988-11-29 Lazarus Harrison M Intraluminal graft device, system and method
US5669936A (en) * 1983-12-09 1997-09-23 Endovascular Technologies, Inc. Endovascular grafting system and method for use therewith
US5275622A (en) 1983-12-09 1994-01-04 Harrison Medical Technologies, Inc. Endovascular grafting apparatus, system and method and devices for use therewith
US5104399A (en) * 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US4562596A (en) * 1984-04-25 1986-01-07 Elliot Kornberg Aortic graft, device and method for performing an intraluminal abdominal aortic aneurysm repair
US4617932A (en) * 1984-04-25 1986-10-21 Elliot Kornberg Device and method for performing an intraluminal abdominal aortic aneurysm repair
US4727044A (en) * 1984-05-18 1988-02-23 Semiconductor Energy Laboratory Co., Ltd. Method of making a thin film transistor with laser recrystallized source and drain
US4580568A (en) * 1984-10-01 1986-04-08 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
US4795463A (en) 1984-10-03 1989-01-03 Baylor College Of Medicine Labeled breast prosthesis and methods for detecting and predicting rupture of the prosthesis
US4728328A (en) * 1984-10-19 1988-03-01 Research Corporation Cuffed tubular organic prostheses
US4577631A (en) * 1984-11-16 1986-03-25 Kreamer Jeffry W Aneurysm repair apparatus and method
ES8705239A1 (en) * 1984-12-05 1987-05-01 Medinvent Sa A device for implantation and a method of implantation in a vessel using such device.
US4781703A (en) 1985-10-17 1988-11-01 Menlo Care, Inc. Catheter assembly
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
DE3640745A1 (en) * 1985-11-30 1987-06-04 Ernst Peter Prof Dr M Strecker Catheter for producing or extending connections to or between body cavities
US4681110A (en) * 1985-12-02 1987-07-21 Wiktor Dominik M Catheter arrangement having a blood vessel liner, and method of using it
US4665918A (en) * 1986-01-06 1987-05-19 Garza Gilbert A Prosthesis system and method
US4649922A (en) * 1986-01-23 1987-03-17 Wiktor Donimik M Catheter arrangement having a variable diameter tip and spring prosthesis
JPH067454Y2 (en) 1986-01-27 1994-02-23 株式会社ケンウッド Cassette tape player operation notification device
EP0257091B1 (en) * 1986-02-24 1993-07-28 Robert E. Fischell An intravascular stent and percutaneous insertion system
US4878906A (en) * 1986-03-25 1989-11-07 Servetus Partnership Endoprosthesis for repairing a damaged vessel
US4772264A (en) * 1986-06-23 1988-09-20 Regents Of The University Of Minnesota Catheter introduction set
US4762128A (en) * 1986-12-09 1988-08-09 Advanced Surgical Intervention, Inc. Method and apparatus for treating hypertrophy of the prostate gland
IT1202558B (en) * 1987-02-17 1989-02-09 Alberto Arpesani INTERNAL PROSTHESIS FOR THE REPLACEMENT OF A PART OF THE HUMAN BODY PARTICULARLY IN THE VASCULAR OPERATIONS
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US5041126A (en) * 1987-03-13 1991-08-20 Cook Incorporated Endovascular stent and delivery system
JPS63238872A (en) * 1987-03-25 1988-10-04 テルモ株式会社 Instrument for securing inner diameter of cavity of tubular organ and catheter equipped therewith
US4969458A (en) * 1987-07-06 1990-11-13 Medtronic, Inc. Intracoronary stent and method of simultaneous angioplasty and stent implant
JPH088933B2 (en) * 1987-07-10 1996-01-31 日本ゼオン株式会社 Catheter
DE3855725T2 (en) * 1987-10-08 1997-04-17 Terumo Corp INSTRUMENT AND DEVICE FOR MAINTAINING THE INNER LUMEN DIAMETER OF A TUBULAR ORGAN
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5133732A (en) * 1987-10-19 1992-07-28 Medtronic, Inc. Intravascular stent
US4820298A (en) * 1987-11-20 1989-04-11 Leveen Eric G Internal vascular prosthesis
JPH01145074A (en) * 1987-12-01 1989-06-07 Terumo Corp Balloon catheter
FR2627982B1 (en) * 1988-03-02 1995-01-27 Artemis TUBULAR ENDOPROSTHESIS FOR ANATOMICAL CONDUITS, AND INSTRUMENT AND METHOD FOR ITS PLACEMENT
US4830003A (en) 1988-06-17 1989-05-16 Wolff Rodney G Compressive stent and delivery system
US4886065A (en) * 1988-08-08 1989-12-12 California Institute Of Technology In vivo electrode implanting system
US5019090A (en) 1988-09-01 1991-05-28 Corvita Corporation Radially expandable endoprosthesis and the like
US4913141A (en) * 1988-10-25 1990-04-03 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
US5019085A (en) * 1988-10-25 1991-05-28 Cordis Corporation Apparatus and method for placement of a stent within a subject vessel
JPH0748897Y2 (en) 1988-11-08 1995-11-08 正照 新村 Lifting equipment for pools, etc.
US4856516A (en) * 1989-01-09 1989-08-15 Cordis Corporation Endovascular stent apparatus and method
US5078726A (en) * 1989-02-01 1992-01-07 Kreamer Jeffry W Graft stent and method of repairing blood vessels
US5163958A (en) 1989-02-02 1992-11-17 Cordis Corporation Carbon coated tubular endoprosthesis
US4994071A (en) * 1989-05-22 1991-02-19 Cordis Corporation Bifurcating stent apparatus and method
US5609626A (en) * 1989-05-31 1997-03-11 Baxter International Inc. Stent devices and support/restrictor assemblies for use in conjunction with prosthetic vascular grafts
DE3918736C2 (en) 1989-06-08 1998-05-14 Christian Dr Vallbracht Plastic-coated metal mesh stents
US5207695A (en) 1989-06-19 1993-05-04 Trout Iii Hugh H Aortic graft, implantation device, and method for repairing aortic aneurysm
JPH07106213B2 (en) 1989-06-19 1995-11-15 ヒュー,エイチ.ザ サード トラウト Aortic splint. And implant device for treating aortic aneurysm
US5084065A (en) * 1989-07-10 1992-01-28 Corvita Corporation Reinforced graft assembly
US5292331A (en) * 1989-08-24 1994-03-08 Applied Vascular Engineering, Inc. Endovascular support device
CA2026604A1 (en) 1989-10-02 1991-04-03 Rodney G. Wolff Articulated stent
US5035706A (en) * 1989-10-17 1991-07-30 Cook Incorporated Percutaneous stent and method for retrieval thereof
JPH067843B2 (en) 1990-02-15 1994-02-02 寛治 井上 Artificial blood vessel with frame
US5057092A (en) * 1990-04-04 1991-10-15 Webster Wilton W Jr Braided catheter with low modulus warp
US5123917A (en) * 1990-04-27 1992-06-23 Lee Peter Y Expandable intraluminal vascular graft
US5078736A (en) * 1990-05-04 1992-01-07 Interventional Thermodynamics, Inc. Method and apparatus for maintaining patency in the body passages
AU653159B2 (en) 1990-05-18 1994-09-22 Howard G. Clark Iii Bioabsorbable stent
US5085635A (en) * 1990-05-18 1992-02-04 Cragg Andrew H Valved-tip angiographic catheter
US5360443A (en) * 1990-06-11 1994-11-01 Barone Hector D Aortic graft for repairing an abdominal aortic aneurysm
EP0461791B1 (en) 1990-06-11 1997-01-02 Hector D. Barone Aortic graft and apparatus for repairing an abdominal aortic aneurysm
US5578071A (en) 1990-06-11 1996-11-26 Parodi; Juan C. Aortic graft
US5064435A (en) 1990-06-28 1991-11-12 Schneider (Usa) Inc. Self-expanding prosthesis having stable axial length
CA2052981C (en) 1990-10-09 1995-08-01 Cesare Gianturco Percutaneous stent assembly
DE9014230U1 (en) 1990-10-13 1991-11-21 Angiomed Ag, 7500 Karlsruhe, De
WO1992006734A1 (en) * 1990-10-18 1992-04-30 Ho Young Song Self-expanding endovascular stent
US5161547A (en) * 1990-11-28 1992-11-10 Numed, Inc. Method of forming an intravascular radially expandable stent
US5135536A (en) * 1991-02-05 1992-08-04 Cordis Corporation Endovascular stent and method
US5628783A (en) 1991-04-11 1997-05-13 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system and method
CA2202800A1 (en) 1991-04-11 1992-10-12 Alec A. Piplani Endovascular graft having bifurcation and apparatus and method for deploying the same
CA2104121C (en) * 1991-04-24 1998-12-22 Blair D. Walker Exchangeable integrated-wire balloon catheter
US5197978B1 (en) 1991-04-26 1996-05-28 Advanced Coronary Tech Removable heat-recoverable tissue supporting device
US5304200A (en) * 1991-05-29 1994-04-19 Cordis Corporation Welded radially expandable endoprosthesis and the like
US5314472A (en) * 1991-10-01 1994-05-24 Cook Incorporated Vascular stent
FR2678508B1 (en) 1991-07-04 1998-01-30 Celsa Lg DEVICE FOR REINFORCING VESSELS OF THE HUMAN BODY.
US5192310A (en) 1991-09-16 1993-03-09 Atrium Medical Corporation Self-sealing implantable vascular graft
US5183085A (en) * 1991-09-27 1993-02-02 Hans Timmermans Method and apparatus for compressing a stent prior to insertion
US5207295A (en) * 1991-10-01 1993-05-04 Otis Elevator Company Lightweight prefabricated elevator cab
US5443498A (en) * 1991-10-01 1995-08-22 Cook Incorporated Vascular stent and method of making and implanting a vacsular stent
US5151105A (en) * 1991-10-07 1992-09-29 Kwan Gett Clifford Collapsible vessel sleeve implant
US5366504A (en) * 1992-05-20 1994-11-22 Boston Scientific Corporation Tubular medical prosthesis
US5290305A (en) * 1991-10-11 1994-03-01 Kanji Inoue Appliance collapsible for insertion into human organs and capable of resilient restoration
US5354309A (en) * 1991-10-11 1994-10-11 Angiomed Ag Apparatus for widening a stenosis in a body cavity
AU669338B2 (en) * 1991-10-25 1996-06-06 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm and method for implanting
US5387235A (en) * 1991-10-25 1995-02-07 Cook Incorporated Expandable transluminal graft prosthesis for repair of aneurysm
US5456713A (en) * 1991-10-25 1995-10-10 Cook Incorporated Expandable transluminal graft prosthesis for repairs of aneurysm and method for implanting
CA2079417C (en) 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
FR2683449A1 (en) 1991-11-08 1993-05-14 Cardon Alain ENDOPROTHESIS FOR TRANSLUMINAL IMPLANTATION.
US5395349A (en) * 1991-12-13 1995-03-07 Endovascular Technologies, Inc. Dual valve reinforced sheath and method
US5192297A (en) * 1991-12-31 1993-03-09 Medtronic, Inc. Apparatus and method for placement and implantation of a stent
US5316023A (en) 1992-01-08 1994-05-31 Expandable Grafts Partnership Method for bilateral intra-aortic bypass
US5507767A (en) 1992-01-15 1996-04-16 Cook Incorporated Spiral stent
JP3133446B2 (en) 1992-01-20 2001-02-05 三洋電機株式会社 Head rotation device
US5405377A (en) 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5683448A (en) 1992-02-21 1997-11-04 Boston Scientific Technology, Inc. Intraluminal stent and graft
US5282823A (en) * 1992-03-19 1994-02-01 Medtronic, Inc. Intravascular radially expandable stent
ES2116406T3 (en) 1992-03-25 1998-07-16 Cook Inc STENT VASCULAR.
US5370683A (en) * 1992-03-25 1994-12-06 Cook Incorporated Vascular stent
US5201757A (en) * 1992-04-03 1993-04-13 Schneider (Usa) Inc. Medial region deployment of radially self-expanding stents
GB2269104A (en) 1992-04-09 1994-02-02 Taha Roudan Lazim Vascular graft apparatus
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
WO1995014500A1 (en) 1992-05-01 1995-06-01 Beth Israel Hospital A stent
US5354308A (en) 1992-05-01 1994-10-11 Beth Israel Hospital Association Metal wire stent
US5383928A (en) * 1992-06-10 1995-01-24 Emory University Stent sheath for local drug delivery
US5507771A (en) * 1992-06-15 1996-04-16 Cook Incorporated Stent assembly
US5342387A (en) 1992-06-18 1994-08-30 American Biomed, Inc. Artificial support for a blood vessel
FR2693366B1 (en) 1992-07-09 1994-09-02 Celsa Lg Device forming a vascular prosthesis usable for the treatment of aneurysms.
US5306294A (en) 1992-08-05 1994-04-26 Ultrasonic Sensing And Monitoring Systems, Inc. Stent construction of rolled configuration
US5429144A (en) 1992-10-30 1995-07-04 Wilk; Peter J. Coronary artery by-pass method
JP3151983B2 (en) 1992-12-25 2001-04-03 株式会社ノーリツ Bath water heater
US5398981A (en) 1993-01-04 1995-03-21 Modine Manufacturing Company Self-centering, self-seating, double-sealing, intereference fit tube joint
US5370691A (en) * 1993-01-26 1994-12-06 Target Therapeutics, Inc. Intravascular inflatable stent
DE4303181A1 (en) 1993-02-04 1994-08-11 Angiomed Ag Implantable catheter
WO1994023782A1 (en) 1993-04-14 1994-10-27 Pharmacyclics, Inc. Medical devices and materials having enhanced magnetic images visibility
AU689094B2 (en) 1993-04-22 1998-03-26 C.R. Bard Inc. Non-migrating vascular prosthesis and minimally invasive placement system therefor
DE69317548T2 (en) 1993-04-23 1998-08-13 Schneider Europ Gmbh Stent with a coating of elastic material and method for applying the coating on the stent
US5913894A (en) 1994-12-05 1999-06-22 Meadox Medicals, Inc. Solid woven tubular prosthesis
US5464449A (en) * 1993-07-08 1995-11-07 Thomas J. Fogarty Internal graft prosthesis and delivery system
ES2157977T3 (en) 1993-07-23 2001-09-01 Cook Inc FLEXIBLE PROBE THAT HAS A CONFORMED CONFIGURATION FROM A MATERIAL SHEET.
KR970004845Y1 (en) 1993-09-27 1997-05-21 주식회사 수호메디테크 Stent for expanding a lumen
US6685736B1 (en) * 1993-09-30 2004-02-03 Endogad Research Pty Limited Intraluminal graft
AU8012394A (en) 1993-10-01 1995-05-01 Emory University Self-expanding intraluminal composite prosthesis
US5639278A (en) 1993-10-21 1997-06-17 Corvita Corporation Expandable supportive bifurcated endoluminal grafts
US5632772A (en) 1993-10-21 1997-05-27 Corvita Corporation Expandable supportive branched endoluminal grafts
US5389106A (en) * 1993-10-29 1995-02-14 Numed, Inc. Impermeable expandable intravascular stent
DE69419877T2 (en) 1993-11-04 1999-12-16 Bard Inc C R Fixed vascular prosthesis
AU1091095A (en) * 1993-11-08 1995-05-29 Harrison M. Lazarus Intraluminal vascular graft and method
US5443497A (en) * 1993-11-22 1995-08-22 The Johns Hopkins University Percutaneous prosthetic by-pass graft and method of use
US5419324A (en) * 1993-11-24 1995-05-30 Endovascular Technologies, Inc. Radiological marker board with movable indicators
DE9319267U1 (en) 1993-12-15 1994-02-24 Vorwerk Dierk Dr Aortic endoprosthesis
JP2703510B2 (en) 1993-12-28 1998-01-26 アドヴァンスド カーディオヴァスキュラー システムズ インコーポレーテッド Expandable stent and method of manufacturing the same
US6165213A (en) 1994-02-09 2000-12-26 Boston Scientific Technology, Inc. System and method for assembling an endoluminal prosthesis
US5609627A (en) 1994-02-09 1997-03-11 Boston Scientific Technology, Inc. Method for delivering a bifurcated endoluminal prosthesis
US6051020A (en) 1994-02-09 2000-04-18 Boston Scientific Technology, Inc. Bifurcated endoluminal prosthesis
US5549663A (en) 1994-03-09 1996-08-27 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
US5415664A (en) * 1994-03-30 1995-05-16 Corvita Corporation Method and apparatus for introducing a stent or a stent-graft
US6165210A (en) 1994-04-01 2000-12-26 Gore Enterprise Holdings, Inc. Self-expandable helical intravascular stent and stent-graft
EP0679372B1 (en) 1994-04-25 1999-07-28 Advanced Cardiovascular Systems, Inc. Radiopaque stent markers
US5824044A (en) 1994-05-12 1998-10-20 Endovascular Technologies, Inc. Bifurcated multicapsule intraluminal grafting system
DE29522101U1 (en) 1994-06-08 1999-12-09 Cardiovascular Concepts Inc Endoluminal prosthesis
ES2199993T3 (en) 1994-06-13 2004-03-01 Endomed, Inc. EXPANSIBLE ENDOVASCULAR GRAFT AND METHOD FOR FORMATION.
CA2147547C (en) 1994-08-02 2006-12-19 Peter J. Schmitt Thinly woven flexible graft
US5575817A (en) 1994-08-19 1996-11-19 Martin; Eric C. Aorto femoral bifurcation graft and method of implantation
US5609605A (en) 1994-08-25 1997-03-11 Ethicon, Inc. Combination arterial stent
US5562727A (en) 1994-10-07 1996-10-08 Aeroquip Corporation Intraluminal graft and method for insertion thereof
US5741332A (en) 1995-01-23 1998-04-21 Meadox Medicals, Inc. Three-dimensional braided soft tissue prosthesis
US5662675A (en) 1995-02-24 1997-09-02 Intervascular, Inc. Delivery catheter assembly
US5683449A (en) * 1995-02-24 1997-11-04 Marcade; Jean Paul Modular bifurcated intraluminal grafts and methods for delivering and assembling same
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US6193745B1 (en) 1995-10-03 2001-02-27 Medtronic, Inc. Modular intraluminal prosteheses construction and methods
US5591195A (en) * 1995-10-30 1997-01-07 Taheri; Syde Apparatus and method for engrafting a blood vessel
US6348066B1 (en) * 1995-11-07 2002-02-19 Corvita Corporation Modular endoluminal stent-grafts and methods for their use
US6576009B2 (en) * 1995-12-01 2003-06-10 Medtronic Ave, Inc. Bifurcated intraluminal prostheses construction and methods
US5824040A (en) 1995-12-01 1998-10-20 Medtronic, Inc. Endoluminal prostheses and therapies for highly variable body lumens
ATE320771T1 (en) * 1996-01-04 2006-04-15 Timothy A M Dr Chuter FLAT WIRE STENT
WO1997025002A1 (en) 1996-01-05 1997-07-17 Medtronic, Inc. Expansible endoluminal prostheses
US5824042A (en) 1996-04-05 1998-10-20 Medtronic, Inc. Endoluminal prostheses having position indicating markers
US6251133B1 (en) 1996-05-03 2001-06-26 Medinol Ltd. Bifurcated stent with improved side branch aperture and method of making same
US5676697A (en) 1996-07-29 1997-10-14 Cardiovascular Dynamics, Inc. Two-piece, bifurcated intraluminal graft for repair of aneurysm
US6325819B1 (en) * 1996-08-19 2001-12-04 Cook Incorporated Endovascular prosthetic device, an endovascular graft prothesis with such a device, and a method for repairing an abdominal aortic aneurysm
US6325826B1 (en) * 1998-01-14 2001-12-04 Advanced Stent Technologies, Inc. Extendible stent apparatus
US6010529A (en) 1996-12-03 2000-01-04 Atrium Medical Corporation Expandable shielded vessel support
US6551350B1 (en) * 1996-12-23 2003-04-22 Gore Enterprise Holdings, Inc. Kink resistant bifurcated prosthesis
DE19703482A1 (en) * 1997-01-31 1998-08-06 Ernst Peter Prof Dr M Strecker Stent
US6090128A (en) 1997-02-20 2000-07-18 Endologix, Inc. Bifurcated vascular graft deployment device
US5843175A (en) * 1997-06-13 1998-12-01 Global Therapeutics, Inc. Enhanced flexibility surgical stent
US6102938A (en) 1997-06-17 2000-08-15 Medtronic Inc. Endoluminal prosthetic bifurcation shunt
US5984955A (en) * 1997-09-11 1999-11-16 Wisselink; Willem System and method for endoluminal grafting of bifurcated or branched vessels
US6395019B2 (en) 1998-02-09 2002-05-28 Trivascular, Inc. Endovascular graft
US6280467B1 (en) 1998-02-26 2001-08-28 World Medical Manufacturing Corporation Delivery system for deployment and endovascular assembly of a multi-stage stented graft
US6077296A (en) * 1998-03-04 2000-06-20 Endologix, Inc. Endoluminal vascular prosthesis
US6129756A (en) 1998-03-16 2000-10-10 Teramed, Inc. Biluminal endovascular graft system
US6524336B1 (en) 1998-04-09 2003-02-25 Cook Incorporated Endovascular graft
US6159239A (en) 1998-08-14 2000-12-12 Prodesco, Inc. Woven stent/graft structure
US6368345B1 (en) * 1998-09-30 2002-04-09 Edwards Lifesciences Corporation Methods and apparatus for intraluminal placement of a bifurcated intraluminal garafat
US6273909B1 (en) 1998-10-05 2001-08-14 Teramed Inc. Endovascular graft system
US6197049B1 (en) 1999-02-17 2001-03-06 Endologix, Inc. Articulating bifurcation graft
AU772868C (en) * 1999-02-01 2005-08-11 Board Of Regents, The University Of Texas System Woven bifurcated and trifurcated stents and methods for making the same
US6398803B1 (en) 1999-02-02 2002-06-04 Impra, Inc., A Subsidiary Of C.R. Bard, Inc. Partial encapsulation of stents
US6361557B1 (en) 1999-02-05 2002-03-26 Medtronic Ave, Inc. Staplebutton radiopaque marker
US6162246A (en) 1999-02-16 2000-12-19 Barone; Hector Daniel Aortic graft and method of treating abdominal aortic aneurysms
WO2000048530A1 (en) 1999-02-16 2000-08-24 Talison Research, Inc. Multilayer and multifunction vascular graft
US6200339B1 (en) 1999-02-23 2001-03-13 Datascope Investment Corp. Endovascular split-tube bifurcated graft prosthesis and an implantation method for such a prosthesis
US6251134B1 (en) 1999-02-28 2001-06-26 Inflow Dynamics Inc. Stent with high longitudinal flexibility
US6261316B1 (en) 1999-03-11 2001-07-17 Endologix, Inc. Single puncture bifurcation graft deployment system
US6287335B1 (en) 1999-04-26 2001-09-11 William J. Drasler Intravascular folded tubular endoprosthesis
US6312462B1 (en) * 1999-09-22 2001-11-06 Impra, Inc. Prosthesis for abdominal aortic aneurysm repair
US6344056B1 (en) * 1999-12-29 2002-02-05 Edwards Lifesciences Corp. Vascular grafts for bridging a vessel side branch
FR2799362B1 (en) * 1999-10-11 2002-01-18 Perouse Implant Lab COLLAR PROSTHESIS
US6652567B1 (en) 1999-11-18 2003-11-25 David H. Deaton Fenestrated endovascular graft
US6280466B1 (en) * 1999-12-03 2001-08-28 Teramed Inc. Endovascular graft system
US6409756B1 (en) * 2000-01-24 2002-06-25 Edward G. Murphy Endovascular aortic graft
US6398807B1 (en) * 2000-01-31 2002-06-04 Scimed Life Systems, Inc. Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
US6547820B1 (en) 2000-10-03 2003-04-15 Scimed Life Systems, Inc. High profile fabric graft for arteriovenous access
US6645242B1 (en) 2000-12-11 2003-11-11 Stephen F. Quinn Bifurcated side-access intravascular stent graft
US6540777B2 (en) * 2001-02-15 2003-04-01 Scimed Life Systems, Inc. Locking stent
US6552567B1 (en) * 2001-09-28 2003-04-22 Microchip Technology Incorporated Functional pathway configuration at a system/IC interface
JP4025755B2 (en) 2004-07-02 2007-12-26 オリンパス株式会社 Endoscope
JP3151983U (en) 2009-01-27 2009-07-16 株式会社アイ・アンド・プラス Bowl cover barbecue furnace

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357732A (en) * 1966-06-13 1967-12-12 Edgar L Seal Door stop
US5236447A (en) * 1990-06-29 1993-08-17 Nissho Corporation Artificial tubular organ
US5645559A (en) * 1992-05-08 1997-07-08 Schneider (Usa) Inc Multiple layer stent
US6613073B1 (en) * 1993-09-30 2003-09-02 Endogad Research Pty Limited Intraluminal graft
US5653743A (en) * 1994-09-09 1997-08-05 Martin; Eric C. Hypogastric artery bifurcation graft and method of implantation
US5507769A (en) * 1994-10-18 1996-04-16 Stentco, Inc. Method and apparatus for forming an endoluminal bifurcated graft

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901449B2 (en) 1994-02-09 2011-03-08 Scimed Life Systems, Inc. Bifurcated endoluminal prosthesis
US20040220664A1 (en) * 1997-11-25 2004-11-04 Trivascular, Inc. Layered endovascular graft
US8801769B2 (en) 1998-02-09 2014-08-12 Trivascular, Inc. Endovascular graft
US9867727B2 (en) 1998-02-09 2018-01-16 Trivascular, Inc. Endovascular graft
US8361136B2 (en) 1998-02-09 2013-01-29 Trivascular, Inc. Endovascular graft
US10548750B2 (en) 1998-02-09 2020-02-04 Trivascular, Inc. Endovascular graft
US9925074B2 (en) 1999-02-01 2018-03-27 Board Of Regents, The University Of Texas System Plain woven stents
US8974516B2 (en) 1999-02-01 2015-03-10 Board Of Regents, The University Of Texas System Plain woven stents
US8414635B2 (en) 1999-02-01 2013-04-09 Idev Technologies, Inc. Plain woven stents
US8876880B2 (en) 1999-02-01 2014-11-04 Board Of Regents, The University Of Texas System Plain woven stents
US20060224227A1 (en) * 2000-02-02 2006-10-05 Trivascular. Inc. Delivery system and method for expandable intracorporeal device
US20030220681A1 (en) * 2000-02-02 2003-11-27 Trivascular, Inc. Delivery system and method for expandable intracorporeal device
US20060009833A1 (en) * 2001-04-11 2006-01-12 Trivascular, Inc. Delivery system and method for bifurcated graft
US20030004560A1 (en) * 2001-04-11 2003-01-02 Trivascular, Inc. Delivery system and method for bifurcated graft
US20030120331A1 (en) * 2001-12-20 2003-06-26 Trivascular, Inc. Advanced endovascular graft
US20100016943A1 (en) * 2001-12-20 2010-01-21 Trivascular2, Inc. Method of delivering advanced endovascular graft
US8864814B2 (en) 2001-12-20 2014-10-21 Trivascular, Inc. Method of delivering advanced endovascular graft and system
US8241346B2 (en) 2001-12-20 2012-08-14 Trivascular, Inc. Endovascular graft and method of delivery
US20040251827A1 (en) * 2003-06-10 2004-12-16 Kang Tae-Min Organic electro luminescent display and method for fabricating the same
US7959634B2 (en) 2004-03-29 2011-06-14 Soteira Inc. Orthopedic surgery access devices
US20050216018A1 (en) * 2004-03-29 2005-09-29 Sennett Andrew R Orthopedic surgery access devices
US9408730B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US8419788B2 (en) 2006-10-22 2013-04-16 Idev Technologies, Inc. Secured strand end devices
US8876881B2 (en) 2006-10-22 2014-11-04 Idev Technologies, Inc. Devices for stent advancement
US10470902B2 (en) 2006-10-22 2019-11-12 Idev Technologies, Inc. Secured strand end devices
US9149374B2 (en) 2006-10-22 2015-10-06 Idev Technologies, Inc. Methods for manufacturing secured strand end devices
US8966733B2 (en) 2006-10-22 2015-03-03 Idev Technologies, Inc. Secured strand end devices
US9895242B2 (en) 2006-10-22 2018-02-20 Idev Technologies, Inc. Secured strand end devices
US9629736B2 (en) 2006-10-22 2017-04-25 Idev Technologies, Inc. Secured strand end devices
US9408729B2 (en) 2006-10-22 2016-08-09 Idev Technologies, Inc. Secured strand end devices
US8739382B2 (en) 2006-10-22 2014-06-03 Idev Technologies, Inc. Secured strand end devices
US9585776B2 (en) 2006-10-22 2017-03-07 Idev Technologies, Inc. Secured strand end devices
US9480485B2 (en) 2006-12-15 2016-11-01 Globus Medical, Inc. Devices and methods for vertebrostenting
US9237916B2 (en) 2006-12-15 2016-01-19 Gmedeleware 2 Llc Devices and methods for vertebrostenting
US8623025B2 (en) 2006-12-15 2014-01-07 Gmedelaware 2 Llc Delivery apparatus and methods for vertebrostenting
US9192397B2 (en) 2006-12-15 2015-11-24 Gmedelaware 2 Llc Devices and methods for fracture reduction
US7909873B2 (en) 2006-12-15 2011-03-22 Soteira, Inc. Delivery apparatus and methods for vertebrostenting
US9687255B2 (en) 2008-06-17 2017-06-27 Globus Medical, Inc. Device and methods for fracture reduction
US10588646B2 (en) 2008-06-17 2020-03-17 Globus Medical, Inc. Devices and methods for fracture reduction
US9023095B2 (en) 2010-05-27 2015-05-05 Idev Technologies, Inc. Stent delivery system with pusher assembly
US9233015B2 (en) 2012-06-15 2016-01-12 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
US10034787B2 (en) 2012-06-15 2018-07-31 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme
US11013626B2 (en) 2012-06-15 2021-05-25 Trivascular, Inc. Endovascular delivery system with an improved radiopaque marker scheme

Also Published As

Publication number Publication date
US7901449B2 (en) 2011-03-08
US7780720B2 (en) 2010-08-24
US20040098115A1 (en) 2004-05-20
US7942919B2 (en) 2011-05-17
US20040167599A1 (en) 2004-08-26
US20040106979A1 (en) 2004-06-03
US20070265697A1 (en) 2007-11-15
US6051020A (en) 2000-04-18
US20040098086A1 (en) 2004-05-20
US7510570B1 (en) 2009-03-31

Similar Documents

Publication Publication Date Title
US5776180A (en) Bifurcated endoluminal prosthesis
US7942919B2 (en) Bifurcated endoluminal prosthesis
US6165213A (en) System and method for assembling an endoluminal prosthesis
AU725720B2 (en) Bifurcated endoluminal prosthesis
AU776868B2 (en) Bifurcated endoluminal prosthesis
AU2004242479B2 (en) Bifurcated endoluminal prosthesis

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ACACIA RESEARCH GROUP LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BOSTON SCIENTIFIC SCIMED, INC.;REEL/FRAME:029940/0514

Effective date: 20121220

AS Assignment

Owner name: LIFEPORT SCIENCES LLC, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ACACIA RESEARCH GROUP LLC;REEL/FRAME:030003/0055

Effective date: 20121227