US20040051496A1 - Method and apparatus for controlling electronically commutated motor operating characteristics - Google Patents

Method and apparatus for controlling electronically commutated motor operating characteristics Download PDF

Info

Publication number
US20040051496A1
US20040051496A1 US10/242,537 US24253702A US2004051496A1 US 20040051496 A1 US20040051496 A1 US 20040051496A1 US 24253702 A US24253702 A US 24253702A US 2004051496 A1 US2004051496 A1 US 2004051496A1
Authority
US
United States
Prior art keywords
motor
control module
circuit
electronically commutated
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/242,537
Other versions
US6895176B2 (en
Inventor
William Archer
Brian Archer
Brian Beifus
Roger Becerra
Kamron Wright
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Regal Beloit America Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/242,537 priority Critical patent/US6895176B2/en
Assigned to GENERAL ELECTRIC COMPANY reassignment GENERAL ELECTRIC COMPANY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARCHER, WILLIAM R., BECERRA, ROGER C., BEIFUS, BRIAN J., WRIGHT, KAMRON M.
Publication of US20040051496A1 publication Critical patent/US20040051496A1/en
Application granted granted Critical
Publication of US6895176B2 publication Critical patent/US6895176B2/en
Assigned to RBC MANUFACTURING CORPORATION reassignment RBC MANUFACTURING CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GENERAL ELECTRIC COMPANY
Assigned to REGAL BELOIT AMERICA, INC. reassignment REGAL BELOIT AMERICA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: RBC MANUFACTURING CORPORATION
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/34Modelling or simulation for control purposes

Definitions

  • This invention relates to electrically commutated motors, and more particularly, to methods and approaches used to control the operating characteristics of an electrically commutated motor.
  • ECMs Electrically commutated motors
  • the ECMs are used in a wide variety of systems operating in a wide variety of industries.
  • the ECMs are subject to many operating conditions and often, the operating conditions necessitate that the operating characteristics of the ECM be changed to match the requirements of the associated application (i.e. different speeds or airflow requirements for heating, cooling, and constant fan for residential HVAC applications).
  • the ECM control circuits and interfaces must typically be changed to enable the ECM to be used with different operating characteristics in different applications.
  • the ECM configuration problem may be further complicated when motor manufacturers produce a base motor and then develop a product line of motors with different operating characteristics based upon the base motor.
  • Changing motor characteristics such as, variable speed, for example, may require time-consuming changes of the control circuit or motor internals.
  • many different components must be designed, manufactured, and stocked to manufacture motors with different operating characteristics based on the base motor product line. Designing, manufacturing, and stocking different parts is more expensive than designing, manufacturing, and stocking one standardized part which can be programmed for many different applications or coupled with different modules to satisfy the needs of different applications.
  • a method for selecting operating characteristics of a permanent magnet DC brushless motor using a control module.
  • the method includes coupling an electronic commutator to the permanent magnet DC brushless motor, electrically coupling at least one control module to the commutator and selecting operating characteristics for the motor through the control module, the control modules are configured for controlling operating characteristics of the electronically commutated permanent magnet DC brushless motor.
  • a control assembly for an electronically commutated motor includes a permanent magnet DC brushless motor, an electronic commutator comprising an H-bridge inverter circuit, rotor position sensing circuit, low voltage power supply and gate-drive circuit, the electronic commutator coupled to the motor and electrically coupled to the motor and a control module configured to control operating characteristics of the permanent magnet DC brushless motor.
  • a control module for an electronically commutated motor comprising at least one of: a power supply regulating circuit, an electromagnetic interference filter, an electronically commutated motor speed modulator, an electronically commutated motor torque modulator, a transient suppression circuit, an active power factor correction circuit, and a passive power factor correction circuit and a process parameter control circuit.
  • an electronically commutated motor assembly includes a permanent magnet DC brushless motor, the motor includes a plurality of external winding connections coupled to an external surface of the electronically commutated motor, at least one stator winding electrically coupled to the plurality of external winding connections, an electronic commutator circuit electrically coupled to the at least one stator winding, a position sensing electronic circuit electrically connected to the commutation electronic circuit, and an electronic commutator, the electronic commutator coupled to the motor end shield and electrically coupled to the motor.
  • FIG. 1 is a block diagram of an electrically commutated motor (ECM) and control assembly.
  • FIG. 2 is a general layout diagram of an exemplary control module.
  • FIG. 3. is a schematic diagram of an exemplary permanent magnet DC brush-less motor and control.
  • FIG. 1 is a block diagram of an electrically commutated motor (ECM) control assembly 10 including a control module 12 , a permanent magnet DC brush-less motor 14 and a commutator 16 .
  • ECM electrically commutated motor
  • Control module 12 includes an enclosure 18 and a printed circuit board 20 (not shown).
  • printed circuit board 20 includes a microprocessor configured to control the output of the printed circuit board to control the operating characteristics of motor 14 .
  • printed circuit board 20 is populated with a plurality of electronic components (not shown) coupled to printed circuit board 20 and each other to control the output of the printed circuit board 20 to control the operating characteristics of motor 14 .
  • printed circuit board 20 is potted in enclosure 18 .
  • the potting compound is UR-330, parts A and B, commercially available from Thermoset, Lord Chemical, Indianapolis, Ind.
  • the configuration of the microprocessor and the electronic components is variable based on at least one requirement of a user.
  • control module 12 is mounted remotely from permanent magnet DC brush-less motor 14 and commutator 16 .
  • control module 12 is mounted to an external surface of permanent magnet DC brush-less motor 14 .
  • a plurality of control modules are electrically coupled serially, each control module configured to control a motor operating characteristic.
  • Control module 12 is electrically coupled to commutator 16 by a cable 22 .
  • Control module 12 is also electrically coupled to a user's power supply and interface circuitry (not shown) by cable 23 .
  • Commutator 16 includes an H-bridge inverter 24 electrically coupled to a gate-drive circuit 26 .
  • H-bridge inverter 24 and gate-drive circuit 26 are electrically coupled to a low voltage power supply 30 .
  • the gate drive circuit is electrically coupled to a motor rotor position sensing circuit by a cable 34 .
  • the gate-drive circuit is also electrically coupled to permanent magnet DC brush-less motor 14 by a cable 36 .
  • Motor 14 is a basic permanent magnet DC brush-less motor.
  • motor 14 is includes a single phase salient pole stator assembly, indicated generally at 38 , including a stator core 40 formed from a stack of laminations made of a highly magnetically permeable material, and windings (not shown) of magnet wire wound on stator core 40 in a way known to those of ordinary skill in the art.
  • a rotor 44 includes a rotor core (not shown) formed from a stack of laminations made of a magnetically permeable material substantially received in a central bore of stator core 40 .
  • Rotor 44 and stator 38 are illustrated as being solid in FIG. 1 for simplicity, their construction being well known to those of ordinary skill in the art.
  • control module circuitry is configured according to the user's requirements.
  • the circuitry may be configured as any of the following non-exclusive circuits alone or in combination: a power supply regulating circuit, an electromagnetic interference filter, an electronically commutated motor speed modulator, an electronically commutated motor torque modulator, a transient suppression circuit, an active power factor correction circuit, a passive power factor correction circuit and a process parameter control circuit.
  • FIG. 2 is a general layout diagram of an exemplary printed circuit board.
  • control module 12 shown in FIG. 1 includes printed circuit board 20 potted in enclosure 18 (shown in FIG. 1).
  • Printed circuit board 20 has printed wiring (not shown) on a first side of circuit board 20 .
  • a plurality of electronic components, shown generally at 50 are mounted on a second side of circuit board 20 and are electrically connected to the printed wiring on the first side of circuit board 20 .
  • Electronic components 42 are variably selected for controlling operation of permanent magnet DC brushless motor 14 (shown in FIG. 1) in accordance with a user's specification.
  • FIG. 3. is a schematic diagram of an exemplary permanent magnet DC brush-less motor and control.
  • single phase alternating current (AC) power is coupled to a connection 52 and a connection 54 .
  • direct current (DC) power is coupled to a connection 53 and a connection 55 .
  • Connection 52 electrically couples to a node 56 .
  • Connection 54 electrically couples to a node 58 .
  • Node 56 also electrically couples to an anode of a diode 60 and a cathode of a diode 62 .
  • Node 58 electrically couples to an anode of a diode 64 and a cathode of a diode 66 .
  • a cathode of diode 60 and a cathode of diode 64 are electrically coupled to a node 68 .
  • An anode of diode 62 and an anode of diode 66 are electrically coupled to a node 70 .
  • Diodes 60 , 62 , 64 and 66 are electrically coupled as a bridge rectifier 71 .
  • Node 68 is electrically coupled to connection 53 , a first lead of a capacitor 72 and a node 74 on an H-bridge commutation circuit 75 .
  • Node 70 is electrically coupled to connection 55 , a first lead of a capacitor 74 and a first lead of a resistor 76 .
  • a second lead of resistor 76 is electrically coupled to a node 77 on H-bridge commutation circuit 75 and a ground 78 .
  • a second lead on capacitors 72 and a second lead on capacitor 74 are connected to a node 79 .
  • a node 82 and a node 84 on H-bridge commutation circuit 75 are electrically coupled to a plurality of ECM windings 86 .
  • the ECM windings 86 are further connected to a plurality of winding tap connections 88 .
  • the winding tap connections 88 couple to an external switching device, for example, a relay or contactor (not shown).
  • Node 79 is further electrically coupled to a node 90 in a low voltage power supply circuit 92 .
  • Node 90 electrically connects to a first lead on a resistor 94 and a first lead on a capacitor 96 .
  • a second lead on resistor 94 and a second lead on capacitor 96 further electrically couple to a node 98 .
  • Node 98 electrically couples to a first lead on a resistor 100 , a first lead on a capacitor 102 and a first lead on a resistor 104 .
  • a second lead on resistor 100 and a second lead on capacitor 102 further electrically connect to a node 106 .
  • Node 106 is further electrically coupled to a anode on a zener diode 108 and a first lead on a capacitor 110 .
  • a second lead on resistor 104 , a cathode on zener diode 108 and a second lead on capacitor 110 are electrically coupled to a node 112 .
  • Node 112 is electrically coupled to a first lead on resistor 116 and to a first lead on a resistor 118 in a position sensing/gate drive circuit 120 . Comment: This is also one of many possible embodiments.
  • a second lead on resistor 116 is electrically coupled to a first lead on a resistor 122 and an inverting input on a operational amplifier (op-amp) 124 .
  • op-amp operational amplifier
  • a non-inverting input of op-amp 124 is electrically coupled to node 70 .
  • a second lead on resistor 122 is electrically connected to ground 78 and to a first lead on connector 126 (Hall effect device common).
  • the first lead of resistor 118 is electrically coupled to a second lead of connector 126 (Hall effect device V+).
  • the second lead of resistor 118 is electrically coupled to a first input to a NOR gate 128 and to a third lead on connector 126 (Hall effect device output).
  • An output lead of op-amp 124 is electrically coupled to a second input to NOR gate 128 and to a first input to a NOR gate 130 .
  • the output of NOR gate 128 is electrically coupled to a second input to NOR gate 130 , a first lead on a resistor 132 and a cathode on a diode 134 .
  • An anode on diode 134 , a second lead on resistor 132 and a first lead on capacitor 136 are electrically coupled to a node 138 .
  • a second lead on capacitor 136 is electrically coupled to ground 78 .
  • Ground 78 is electrically coupled to a first lead on a capacitor 140 .
  • a second lead on capacitor 140 is electrically coupled to a node 142 .
  • Node 142 is further electrically coupled to an anode lead on a diode 144 , to a first lead on a resistor 146 and to a node 148 on H-bridge commutation circuit 75 .
  • a node 150 on H-bridge commutation circuit 75 is electrically coupled to node 138 .
  • An output lead of NOR gate 130 is electrically coupled to a second lead on resistor 146 and to a cathode lead on diode 144
  • control module 12 is supplied with single phase alternating current (AC) power from a user's power supply.
  • the AC input power is rectified to full-wave direct current (DC) power by bridge rectifier 71 .
  • the DC power is supplied to the H-bridge commutation circuit 75 (which then supplies the AC to the motor as described above) and the low voltage power supply 92 .
  • the low voltage power supply provides power to the position sensing circuit 120 .
  • the position sensing circuit uses a Hall effect sensor (not shown) to determine the position of rotor 44 .
  • the position sensing circuit provides a position signal to properly drive the H-bridge commutation circuit 75 .
  • the H-bridge commutation circuit 75 supplies power to the ECM stator windings 86 to drive the rotor of permanent magnet DC brushless motor 14 .
  • further conditioning of the power to the windings is provided by the winding tap connections 88 , providing a simple means of varying the operating conditions.
  • the winding tap connections 88 electrically couple to an external switch to control the fraction of the total winding being powered by the commutator.
  • the total winding is connected to a more complex module to control the operating characteristics (variable speed, torque, or air flow, etc.) of permanent magnet DC brushless motor 14 .
  • the electronically commutated motor control assembly is highly efficient and reliable. It permits a user to select ECM operating characteristics by determining the desired operating characteristics and selecting the appropriate control module to interface with the ECM.
  • the assembly will allow an affordable base motor to fulfill a greater variety of applicational requirements thereby reducing the inventory and spare parts needed to be stocked, while maintaining flexible and efficient performance.

Abstract

A permanent magnet DC brushless motor control assembly permits a user to select the permanent magnet DC brushless motor operating characteristics by selecting appropriate control circuits to interface with the motor. The assembly includes a permanent magnet DC brushless motor, a commutator electrically coupled to the motor, and at least one control module electrically coupled to the commutator, to control operating characteristics of the permanent magnet DC brushless motor.

Description

    BACKGROUND OF THE INVENTION
  • This invention relates to electrically commutated motors, and more particularly, to methods and approaches used to control the operating characteristics of an electrically commutated motor. [0001]
  • Electrically commutated motors (ECMs) are used in a wide variety of systems operating in a wide variety of industries. As such, the ECMs are subject to many operating conditions and often, the operating conditions necessitate that the operating characteristics of the ECM be changed to match the requirements of the associated application (i.e. different speeds or airflow requirements for heating, cooling, and constant fan for residential HVAC applications). Because of the complexity of the many possible desired operating characteristics, it may be difficult to remove an ECM from one system for installation in another system. More specifically, the ECM control circuits and interfaces must typically be changed to enable the ECM to be used with different operating characteristics in different applications. [0002]
  • The ECM configuration problem may be further complicated when motor manufacturers produce a base motor and then develop a product line of motors with different operating characteristics based upon the base motor. Changing motor characteristics, such as, variable speed, for example, may require time-consuming changes of the control circuit or motor internals. Accordingly, many different components must be designed, manufactured, and stocked to manufacture motors with different operating characteristics based on the base motor product line. Designing, manufacturing, and stocking different parts is more expensive than designing, manufacturing, and stocking one standardized part which can be programmed for many different applications or coupled with different modules to satisfy the needs of different applications. [0003]
  • BRIEF DESCRIPTION OF THE INVENTION
  • In one aspect, a method is provided for selecting operating characteristics of a permanent magnet DC brushless motor using a control module. The method includes coupling an electronic commutator to the permanent magnet DC brushless motor, electrically coupling at least one control module to the commutator and selecting operating characteristics for the motor through the control module, the control modules are configured for controlling operating characteristics of the electronically commutated permanent magnet DC brushless motor. [0004]
  • In another aspect, a control assembly for an electronically commutated motor is provided that includes a permanent magnet DC brushless motor, an electronic commutator comprising an H-bridge inverter circuit, rotor position sensing circuit, low voltage power supply and gate-drive circuit, the electronic commutator coupled to the motor and electrically coupled to the motor and a control module configured to control operating characteristics of the permanent magnet DC brushless motor. [0005]
  • In yet another aspect, a control module for an electronically commutated motor is provided. The control module comprising at least one of: a power supply regulating circuit, an electromagnetic interference filter, an electronically commutated motor speed modulator, an electronically commutated motor torque modulator, a transient suppression circuit, an active power factor correction circuit, and a passive power factor correction circuit and a process parameter control circuit. [0006]
  • In still another aspect, an electronically commutated motor assembly is provided. The motor includes a permanent magnet DC brushless motor, the motor includes a plurality of external winding connections coupled to an external surface of the electronically commutated motor, at least one stator winding electrically coupled to the plurality of external winding connections, an electronic commutator circuit electrically coupled to the at least one stator winding, a position sensing electronic circuit electrically connected to the commutation electronic circuit, and an electronic commutator, the electronic commutator coupled to the motor end shield and electrically coupled to the motor.[0007]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a block diagram of an electrically commutated motor (ECM) and control assembly. [0008]
  • FIG. 2 is a general layout diagram of an exemplary control module. [0009]
  • FIG. 3. is a schematic diagram of an exemplary permanent magnet DC brush-less motor and control.[0010]
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 1 is a block diagram of an electrically commutated motor (ECM) [0011] control assembly 10 including a control module 12, a permanent magnet DC brush-less motor 14 and a commutator 16. When fully assembled, commutator 16 is mechanically coupled to a motor end shield 17 to form an electronically commutated motor. Control module 12 includes an enclosure 18 and a printed circuit board 20 (not shown). In one embodiment, printed circuit board 20 includes a microprocessor configured to control the output of the printed circuit board to control the operating characteristics of motor 14. In another embodiment, printed circuit board 20 is populated with a plurality of electronic components (not shown) coupled to printed circuit board 20 and each other to control the output of the printed circuit board 20 to control the operating characteristics of motor 14. In an exemplary embodiment, printed circuit board 20 is potted in enclosure 18. In one embodiment, the potting compound is UR-330, parts A and B, commercially available from Thermoset, Lord Chemical, Indianapolis, Ind. The configuration of the microprocessor and the electronic components is variable based on at least one requirement of a user. In an exemplary embodiment, control module 12 is mounted remotely from permanent magnet DC brush-less motor 14 and commutator 16. In another embodiment, control module 12 is mounted to an external surface of permanent magnet DC brush-less motor 14. In still another embodiment, a plurality of control modules are electrically coupled serially, each control module configured to control a motor operating characteristic.
  • [0012] Control module 12 is electrically coupled to commutator 16 by a cable 22. Control module 12 is also electrically coupled to a user's power supply and interface circuitry (not shown) by cable 23. Commutator 16 includes an H-bridge inverter 24 electrically coupled to a gate-drive circuit 26. H-bridge inverter 24 and gate-drive circuit 26 are electrically coupled to a low voltage power supply 30. The gate drive circuit is electrically coupled to a motor rotor position sensing circuit by a cable 34. The gate-drive circuit is also electrically coupled to permanent magnet DC brush-less motor 14 by a cable 36.
  • Motor [0013] 14 is a basic permanent magnet DC brush-less motor. In the exemplary embodiment, motor 14 is includes a single phase salient pole stator assembly, indicated generally at 38, including a stator core 40 formed from a stack of laminations made of a highly magnetically permeable material, and windings (not shown) of magnet wire wound on stator core 40 in a way known to those of ordinary skill in the art. A rotor 44 includes a rotor core (not shown) formed from a stack of laminations made of a magnetically permeable material substantially received in a central bore of stator core 40. Rotor 44 and stator 38 are illustrated as being solid in FIG. 1 for simplicity, their construction being well known to those of ordinary skill in the art.
  • In operation, the control module circuitry is configured according to the user's requirements. The circuitry may be configured as any of the following non-exclusive circuits alone or in combination: a power supply regulating circuit, an electromagnetic interference filter, an electronically commutated motor speed modulator, an electronically commutated motor torque modulator, a transient suppression circuit, an active power factor correction circuit, a passive power factor correction circuit and a process parameter control circuit. [0014]
  • FIG. 2 is a general layout diagram of an exemplary printed circuit board. In the exemplary embodiment, control module [0015] 12 (shown in FIG. 1) includes printed circuit board 20 potted in enclosure 18 (shown in FIG. 1). Printed circuit board 20 has printed wiring (not shown) on a first side of circuit board 20. A plurality of electronic components, shown generally at 50 are mounted on a second side of circuit board 20 and are electrically connected to the printed wiring on the first side of circuit board 20. Electronic components 42 are variably selected for controlling operation of permanent magnet DC brushless motor 14 (shown in FIG. 1) in accordance with a user's specification.
  • FIG. 3. is a schematic diagram of an exemplary permanent magnet DC brush-less motor and control. In an exemplary embodiment, single phase alternating current (AC) power is coupled to a [0016] connection 52 and a connection 54. In another embodiment, direct current (DC) power is coupled to a connection 53 and a connection 55. Connection 52 electrically couples to a node 56. Connection 54 electrically couples to a node 58. Node 56 also electrically couples to an anode of a diode 60 and a cathode of a diode 62. Node 58 electrically couples to an anode of a diode 64 and a cathode of a diode 66. A cathode of diode 60 and a cathode of diode 64 are electrically coupled to a node 68. An anode of diode 62 and an anode of diode 66 are electrically coupled to a node 70. Diodes 60, 62, 64 and 66 are electrically coupled as a bridge rectifier 71. Node 68 is electrically coupled to connection 53, a first lead of a capacitor 72 and a node 74 on an H-bridge commutation circuit 75. Node 70 is electrically coupled to connection 55, a first lead of a capacitor 74 and a first lead of a resistor 76. A second lead of resistor 76 is electrically coupled to a node 77 on H-bridge commutation circuit 75 and a ground 78. A second lead on capacitors 72 and a second lead on capacitor 74 are connected to a node 79. A node 82 and a node 84 on H-bridge commutation circuit 75 are electrically coupled to a plurality of ECM windings 86. The ECM windings 86 are further connected to a plurality of winding tap connections 88. In one embodiment, the winding tap connections 88 couple to an external switching device, for example, a relay or contactor (not shown).
  • [0017] Node 79 is further electrically coupled to a node 90 in a low voltage power supply circuit 92. Node 90 electrically connects to a first lead on a resistor 94 and a first lead on a capacitor 96. A second lead on resistor 94 and a second lead on capacitor 96 further electrically couple to a node 98. Node 98 electrically couples to a first lead on a resistor 100, a first lead on a capacitor 102 and a first lead on a resistor 104. A second lead on resistor 100 and a second lead on capacitor 102 further electrically connect to a node 106. Node 106 is further electrically coupled to a anode on a zener diode 108 and a first lead on a capacitor 110. A second lead on resistor 104, a cathode on zener diode 108 and a second lead on capacitor 110 are electrically coupled to a node 112.
  • [0018] Node 112 is electrically coupled to a first lead on resistor 116 and to a first lead on a resistor 118 in a position sensing/gate drive circuit 120. Comment: This is also one of many possible embodiments. A second lead on resistor 116 is electrically coupled to a first lead on a resistor 122 and an inverting input on a operational amplifier (op-amp) 124. A non-inverting input of op-amp 124 is electrically coupled to node 70. A second lead on resistor 122 is electrically connected to ground 78 and to a first lead on connector 126 (Hall effect device common). The first lead of resistor 118 is electrically coupled to a second lead of connector 126 (Hall effect device V+). The second lead of resistor 118 is electrically coupled to a first input to a NOR gate 128 and to a third lead on connector 126 (Hall effect device output). An output lead of op-amp 124 is electrically coupled to a second input to NOR gate 128 and to a first input to a NOR gate 130. The output of NOR gate 128 is electrically coupled to a second input to NOR gate 130, a first lead on a resistor 132 and a cathode on a diode 134. An anode on diode 134, a second lead on resistor 132 and a first lead on capacitor 136 are electrically coupled to a node 138. A second lead on capacitor 136 is electrically coupled to ground 78. Ground 78 is electrically coupled to a first lead on a capacitor 140. A second lead on capacitor 140 is electrically coupled to a node 142. Node 142 is further electrically coupled to an anode lead on a diode 144, to a first lead on a resistor 146 and to a node 148 on H-bridge commutation circuit 75. A node 150 on H-bridge commutation circuit 75 is electrically coupled to node 138. An output lead of NOR gate 130 is electrically coupled to a second lead on resistor 146 and to a cathode lead on diode 144
  • In operation, in an exemplary embodiment, [0019] control module 12 is supplied with single phase alternating current (AC) power from a user's power supply. The AC input power is rectified to full-wave direct current (DC) power by bridge rectifier 71. The DC power is supplied to the H-bridge commutation circuit 75 (which then supplies the AC to the motor as described above) and the low voltage power supply 92. The low voltage power supply provides power to the position sensing circuit 120. In one embodiment, the position sensing circuit uses a Hall effect sensor (not shown) to determine the position of rotor 44. The position sensing circuit provides a position signal to properly drive the H-bridge commutation circuit 75. The H-bridge commutation circuit 75 supplies power to the ECM stator windings 86 to drive the rotor of permanent magnet DC brushless motor 14. In this embodiment further conditioning of the power to the windings is provided by the winding tap connections 88, providing a simple means of varying the operating conditions. In one embodiment, the winding tap connections 88 electrically couple to an external switch to control the fraction of the total winding being powered by the commutator. In another embodiment, the total winding is connected to a more complex module to control the operating characteristics (variable speed, torque, or air flow, etc.) of permanent magnet DC brushless motor 14.
  • The electronically commutated motor control assembly is highly efficient and reliable. It permits a user to select ECM operating characteristics by determining the desired operating characteristics and selecting the appropriate control module to interface with the ECM. The assembly will allow an affordable base motor to fulfill a greater variety of applicational requirements thereby reducing the inventory and spare parts needed to be stocked, while maintaining flexible and efficient performance. [0020]
  • While the invention has been described in terms of various specific embodiments, those skilled in the art will recognize that the invention can be practiced with modification within the spirit and scope of the claims. [0021]

Claims (24)

What is claimed is:
1. A method for selecting operating characteristics of a permanent magnet DC brushless motor using a control module, said method comprising:
coupling an electronic commutator to the permanent magnet DC brushless motor;
electrically coupling at least one control module to the commutator; and
selecting operating characteristics for the motor through the control module, the control module for controlling operating characteristics of the electronically commutated permanent magnet DC brushless motor.
2. A method in accordance with claim 1 wherein the control module comprises at least one of a power supply regulating circuit, an electromagnetic interference filter, an electronically commutated motor speed modulator, an electronically commutated motor torque modulator, a transient suppression circuit, an active power factor correction circuit, a passive power factor correction circuit, and a process parameter control circuit.
3. A method in accordance with claim 1 wherein the control module is configured to mount remotely from the motor.
4. A method in accordance with claim 1 wherein the control module is configured to couple to an external surface of the motor.
5. A control assembly for an electronically commutated motor, said control assembly comprising:
a permanent magnet DC brushless motor;
an electronic commutator comprising at least one of an H-bridge inverter circuit, a rotor position sensing circuit, a low voltage power supply, and a gate-drive circuit, said electronic commutator electrically coupled to said motor; and
a control module coupled to said commutator for controlling operating characteristics of said permanent magnet DC brushless motor.
6. A control assembly in accordance with claim 5 wherein said control module comprises a power supply regulating circuit.
7. A control assembly in accordance with claim 6 wherein said power supply regulating circuit comprises a bridge rectifier circuit
8. A control assembly in accordance with claim 5 wherein said control module comprises an electromagnetic interference filter.
9. A control assembly in accordance with claim 5 wherein said control module comprises an electronically commutated motor speed modulator.
10. A control assembly in accordance with claim 5 wherein said control module comprises an electronically commutated motor torque modulator.
11. A control assembly in accordance with claim 5 wherein said control module comprises a transient suppression circuit.
12. A control assembly in accordance with claim 5 wherein said control module comprises an active power factor correction circuit.
13. A control assembly in accordance with claim 5 wherein said control module comprises a passive power factor correction circuit
14. A control assembly in accordance with claim 5 wherein said control module comprises a process parameter control circuit.
15. A control assembly in accordance with claim 5 wherein said control module mounts remotely from said permanent magnet DC brushless motor.
16. A control assembly in accordance with claim 5 wherein said control module mounts to an external surface of a permanent magnet DC brushless motor shell.
17. A control module for an electronically commutated motor, said control module comprising at least one of: a power supply regulating circuit, an electromagnetic interference filter, an electronically commutated motor speed modulator, an electronically commutated motor torque modulator, a transient suppression circuit, an active power factor correction circuit, a passive power factor correction circuit, and a process parameter control circuit.
18. A control module in accordance with claim 17 wherein said control module couples to an external surface of the motor.
19. An electronically commutated motor assembly comprising:
a permanent magnet DC brushless motor comprising a plurality of external winding connections coupled to an external surface of said electronically commutated motor, at least one stator winding electrically coupled to said plurality of external winding connections;
an electronic commutator, said electronic commutator coupled to said motor end shield and electrically coupled to said motor; and
a position sensing electronic circuit electrically connected to said electronic commutator.
20. An electronically commutated motor assembly in accordance with claim 19 wherein said commutator comprises a simplified H-bridge.
21. An electronically commutated motor assembly in accordance with claim 19 wherein said commutator comprises an over-current protection electronic circuit.
22. An electronically commutated motor assembly comprising a permanent magnet DC brushless motor, said permanent magnet DC brushless motor comprising a plurality of external winding connections coupled to an external surface of the motor, at least one stator winding electrically coupled to said plurality of external winding connections, a commutator electrically coupled to the at least one stator winding, said commutator comprising an H-bridge inverter and at least one of a bridge rectifier, an over-current protection circuit, and a position sensing electronic circuit electrically connected to said commutator, and a control module for controlling operating characteristics of said motor, said control module comprising at least one of a power supply regulating circuit, an electromagnetic interference filter, an electronically commutated motor speed modulator, an electronically commutated motor torque modulator, a transient suppression circuit, an active power factor correction circuit, a passive power factor correction circuit and a process parameter control circuit.
23. An electronically commutated motor assembly in accordance with claim 22 wherein said control module mounts remotely from the electronically commutated motor.
24. An electronically commutated motor assembly in accordance with claim 22 wherein said commutator couples to an external surface of the electronically commutated motor shell.
US10/242,537 2002-09-12 2002-09-12 Method and apparatus for controlling electronically commutated motor operating characteristics Expired - Lifetime US6895176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/242,537 US6895176B2 (en) 2002-09-12 2002-09-12 Method and apparatus for controlling electronically commutated motor operating characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/242,537 US6895176B2 (en) 2002-09-12 2002-09-12 Method and apparatus for controlling electronically commutated motor operating characteristics

Publications (2)

Publication Number Publication Date
US20040051496A1 true US20040051496A1 (en) 2004-03-18
US6895176B2 US6895176B2 (en) 2005-05-17

Family

ID=31991432

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/242,537 Expired - Lifetime US6895176B2 (en) 2002-09-12 2002-09-12 Method and apparatus for controlling electronically commutated motor operating characteristics

Country Status (1)

Country Link
US (1) US6895176B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212475A1 (en) * 2004-03-29 2005-09-29 Sanyo Electric Co., Ltd. Actuator, motor unit and controller unit
US20080058966A1 (en) * 2006-09-05 2008-03-06 Honeywell International Inc. Single line control for hvac actuator
US20080099192A1 (en) * 2006-10-26 2008-05-01 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Rotating mechanism for solid-solid direct-heating reaction disc
US20130156609A1 (en) * 2011-12-16 2013-06-20 John C. Kunze Air circulator powered by an electronically commuted motor (ecm) and associated method of use
US20140312813A1 (en) * 2013-04-19 2014-10-23 Dyson Technology Limited Air moving appliance with on-board diagnostics
EP3154177A1 (en) * 2015-10-09 2017-04-12 Johnson Electric S.A. Air flow regulating device
US20170099929A1 (en) * 2015-10-09 2017-04-13 Johnson Electric S.A. Hair Dryer
US9631811B2 (en) 2012-11-08 2017-04-25 Regal Beloit America, Inc. Draft inducer for low power multistage furnaces utilizing an electronically commutated motor system and an associated method of use
US10327769B2 (en) * 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US11378300B2 (en) * 2012-02-29 2022-07-05 Carrier Corporation Energy recovery ventilator with reduced power consumption

Families Citing this family (395)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
JP4379702B2 (en) * 2004-02-10 2009-12-09 株式会社デンソー Brushless motor control device
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US7466089B2 (en) * 2005-12-01 2008-12-16 Regal Beloit Corporation Methods and systems for controlling an electronically commutated motor
US7671555B2 (en) * 2005-12-21 2010-03-02 A. O. Smith Corporation Motor, a method of operating a motor, and a system including a motor
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US7535186B2 (en) * 2006-02-23 2009-05-19 Regal-Beloit Corporation Methods and systems for controlling operation of electronicallly commutated motors
US20070205731A1 (en) * 2006-03-01 2007-09-06 Regal-Beloit Corporation Methods and systems for dynamically braking an electronically commutated motor
US7436138B2 (en) * 2006-03-01 2008-10-14 Regal-Beloit Corporation Methods and systems for emulating an induction motor utilizing an electronically commutated motor
US20070209377A1 (en) * 2006-03-07 2007-09-13 Regal-Beloit Corporation Method and systems for operating compressors and fan coils using electronically commutated motors
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20080044314A1 (en) * 2006-06-23 2008-02-21 Cephalon, Inc. Pharmaceutical measuring and dispensing cup
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20080078802A1 (en) 2006-09-29 2008-04-03 Hess Christopher J Surgical staples and stapling instruments
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8672733B2 (en) * 2007-02-06 2014-03-18 Nordyne Llc Ventilation airflow rate control
US7675257B2 (en) 2007-03-09 2010-03-09 Regal Beloit Corporation Methods and systems for recording operating information of an electronically commutated motor
US20090001121A1 (en) 2007-03-15 2009-01-01 Hess Christopher J Surgical staple having an expandable portion
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11672531B2 (en) 2007-06-04 2023-06-13 Cilag Gmbh International Rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US20080307803A1 (en) * 2007-06-12 2008-12-18 Nordyne Inc. Humidity control and air conditioning
US7770806B2 (en) 2007-06-19 2010-08-10 Nordyne Inc. Temperature control in variable-capacity HVAC system
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US10390823B2 (en) 2008-02-15 2019-08-27 Ethicon Llc End effector comprising an adjunct
TWI404324B (en) * 2008-05-15 2013-08-01 Delta Electronics Inc Motor control apparatus and control method thereof
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
BRPI1008667A2 (en) 2009-02-06 2016-03-08 Ethicom Endo Surgery Inc improvement of the operated surgical stapler
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
JP5644184B2 (en) * 2010-05-31 2014-12-24 ミネベア株式会社 Single-phase AC synchronous motor
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9861361B2 (en) 2010-09-30 2018-01-09 Ethicon Llc Releasable tissue thickness compensator and fastener cartridge having the same
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9839420B2 (en) 2010-09-30 2017-12-12 Ethicon Llc Tissue thickness compensator comprising at least one medicament
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US8864009B2 (en) 2010-09-30 2014-10-21 Ethicon Endo-Surgery, Inc. Tissue thickness compensator for a surgical stapler comprising an adjustable anvil
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
MX2013004659A (en) * 2010-11-10 2013-08-29 Wellington Drive Technologies Programmable motor and method.
JP6026509B2 (en) 2011-04-29 2016-11-16 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Staple cartridge including staples disposed within a compressible portion of the staple cartridge itself
US9071183B2 (en) 2011-05-27 2015-06-30 Regal Beloit America, Inc. Methods and systems for providing combined blower motor and draft inducer motor control
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
JP6305979B2 (en) 2012-03-28 2018-04-04 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Tissue thickness compensator with multiple layers
MX353040B (en) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Retainer assembly including a tissue thickness compensator.
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9649111B2 (en) 2012-06-28 2017-05-16 Ethicon Endo-Surgery, Llc Replaceable clip cartridge for a clip applier
US20140001234A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Coupling arrangements for attaching surgical end effectors to drive systems therefor
EP2866686A1 (en) 2012-06-28 2015-05-06 Ethicon Endo-Surgery, Inc. Empty clip cartridge lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US11202631B2 (en) 2012-06-28 2021-12-21 Cilag Gmbh International Stapling assembly comprising a firing lockout
AU2014209656B2 (en) * 2013-01-28 2016-06-16 Dixon Pumps Inc. System, apparatus, and method for controlling a motor
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
BR112015021098B1 (en) 2013-03-01 2022-02-15 Ethicon Endo-Surgery, Inc COVERAGE FOR A JOINT JOINT AND SURGICAL INSTRUMENT
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9808244B2 (en) 2013-03-14 2017-11-07 Ethicon Llc Sensor arrangements for absolute positioning system for surgical instruments
US9219397B2 (en) 2013-04-03 2015-12-22 Trane International Inc. Motor and switching apparatuses, systems and methods
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US9775609B2 (en) 2013-08-23 2017-10-03 Ethicon Llc Tamper proof circuit for surgical instrument battery pack
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9826977B2 (en) 2014-03-26 2017-11-28 Ethicon Llc Sterilization verification circuit
US9820738B2 (en) 2014-03-26 2017-11-21 Ethicon Llc Surgical instrument comprising interactive systems
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
BR112016023807B1 (en) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc CARTRIDGE SET OF FASTENERS FOR USE WITH A SURGICAL INSTRUMENT
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
CN106456158B (en) 2014-04-16 2019-02-05 伊西康内外科有限责任公司 Fastener cartridge including non-uniform fastener
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
US9801628B2 (en) 2014-09-26 2017-10-31 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
US10295236B2 (en) * 2014-08-13 2019-05-21 Trane International Inc. Compressor heating system
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10016199B2 (en) 2014-09-05 2018-07-10 Ethicon Llc Polarity of hall magnet to identify cartridge type
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
BR112017005981B1 (en) 2014-09-26 2022-09-06 Ethicon, Llc ANCHOR MATERIAL FOR USE WITH A SURGICAL STAPLE CARTRIDGE AND SURGICAL STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en) 2014-12-18 2018-04-17 Ethicon Llc Surgical instruments with articulatable end effectors and movable firing beam support arrangements
BR112017012996B1 (en) 2014-12-18 2022-11-08 Ethicon Llc SURGICAL INSTRUMENT WITH AN ANvil WHICH IS SELECTIVELY MOVABLE ABOUT AN IMMOVABLE GEOMETRIC AXIS DIFFERENT FROM A STAPLE CARTRIDGE
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10056807B2 (en) 2014-12-23 2018-08-21 Orange Motor Company L.L.C. Electronically commutated fan motors and systems
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10052044B2 (en) 2015-03-06 2018-08-21 Ethicon Llc Time dependent evaluation of sensor data to determine stability, creep, and viscoelastic elements of measures
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10245029B2 (en) 2016-02-09 2019-04-02 Ethicon Llc Surgical instrument with articulating and axially translatable end effector
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10426469B2 (en) 2016-04-18 2019-10-01 Ethicon Llc Surgical instrument comprising a primary firing lockout and a secondary firing lockout
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168619A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling systems
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10758229B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument comprising improved jaw control
CN110087565A (en) 2016-12-21 2019-08-02 爱惜康有限责任公司 Surgical stapling system
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US10835245B2 (en) 2016-12-21 2020-11-17 Ethicon Llc Method for attaching a shaft assembly to a surgical instrument and, alternatively, to a surgical robot
US10675026B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Methods of stapling tissue
US10568626B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaw opening features for increasing a jaw opening distance
US10758230B2 (en) 2016-12-21 2020-09-01 Ethicon Llc Surgical instrument with primary and safety processors
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US11141154B2 (en) 2017-06-27 2021-10-12 Cilag Gmbh International Surgical end effectors and anvils
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10588633B2 (en) 2017-06-28 2020-03-17 Ethicon Llc Surgical instruments with open and closable jaws and axially movable firing member that is initially parked in close proximity to the jaws prior to firing
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
EP4070740A1 (en) 2017-06-28 2022-10-12 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
CA3080814A1 (en) 2017-10-30 2019-05-09 Annexair Inc. System for controlling a plurality of synchronous permanent magnet electronically commutated motors
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11583274B2 (en) 2017-12-21 2023-02-21 Cilag Gmbh International Self-guiding stapling instrument
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11241235B2 (en) 2019-06-28 2022-02-08 Cilag Gmbh International Method of using multiple RFID chips with a surgical assembly
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309735A (en) * 1979-10-30 1982-01-05 Harnischfeger Corporation Protective circuits for converter-supplied D.C. motor
US5006744A (en) * 1988-12-27 1991-04-09 General Electric Company Integrated electronically commutated motor and control circuit assembly
US5019757A (en) * 1990-03-19 1991-05-28 General Electric Company Method and apparatus for controlling a blower motor in an air handling system to provide constant pressure
US5045741A (en) * 1990-02-23 1991-09-03 Battelle Memorial Institute Dual-motion apparatus
US5838127A (en) * 1996-12-05 1998-11-17 General Electric Company Single phase motor for laundering apparatus
US5994869A (en) * 1997-12-05 1999-11-30 General Electric Company Power conversion circuit for a motor
US6020660A (en) * 1997-12-10 2000-02-01 General Electric Company Dynamoelectric machine
US6091170A (en) * 1997-07-18 2000-07-18 Switched Reluctance Drives Limited Starting of single-phase motors
US6215261B1 (en) * 1999-05-21 2001-04-10 General Electric Company Application specific integrated circuit for controlling power devices for commutating a motor based on the back emf of motor
US6356044B1 (en) * 1999-12-03 2002-03-12 General Electric Company Motor with programming module
US6369535B1 (en) * 2001-07-31 2002-04-09 General Electric Company Method and apparatus for current shaping in electronically commutated motors
US6369536B2 (en) * 1999-12-27 2002-04-09 General Electric Company Methods and apparatus for selecting an electronically commutated motor speed
US6388405B2 (en) * 2000-01-18 2002-05-14 Sagem Sa Electronically-commutated motor
US6392372B1 (en) * 2000-03-31 2002-05-21 Ljm Products, Inc. Brushless DC fan module incorporating integral fan control circuit with a communication port for receiving digital commands to control fan
US6423118B1 (en) * 2000-09-05 2002-07-23 General Electric Company Methods and systems for controlling air filtration systems
US6424114B1 (en) * 1998-09-25 2002-07-23 Fumito Komatsu Synchronous motor
US6465977B1 (en) * 2001-11-29 2002-10-15 Ecostar Electric Drive Systems L.L.C. System and method for controlling torque in an electrical machine

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4309735A (en) * 1979-10-30 1982-01-05 Harnischfeger Corporation Protective circuits for converter-supplied D.C. motor
US5006744A (en) * 1988-12-27 1991-04-09 General Electric Company Integrated electronically commutated motor and control circuit assembly
US5045741A (en) * 1990-02-23 1991-09-03 Battelle Memorial Institute Dual-motion apparatus
US5019757A (en) * 1990-03-19 1991-05-28 General Electric Company Method and apparatus for controlling a blower motor in an air handling system to provide constant pressure
US5838127A (en) * 1996-12-05 1998-11-17 General Electric Company Single phase motor for laundering apparatus
US6091170A (en) * 1997-07-18 2000-07-18 Switched Reluctance Drives Limited Starting of single-phase motors
US5994869A (en) * 1997-12-05 1999-11-30 General Electric Company Power conversion circuit for a motor
US6181033B1 (en) * 1997-12-10 2001-01-30 General Electric Company Printed circuit assembly for a dynamoelectric machine
US6020660A (en) * 1997-12-10 2000-02-01 General Electric Company Dynamoelectric machine
US6424114B1 (en) * 1998-09-25 2002-07-23 Fumito Komatsu Synchronous motor
US6215261B1 (en) * 1999-05-21 2001-04-10 General Electric Company Application specific integrated circuit for controlling power devices for commutating a motor based on the back emf of motor
US6356044B1 (en) * 1999-12-03 2002-03-12 General Electric Company Motor with programming module
US6369536B2 (en) * 1999-12-27 2002-04-09 General Electric Company Methods and apparatus for selecting an electronically commutated motor speed
US6388405B2 (en) * 2000-01-18 2002-05-14 Sagem Sa Electronically-commutated motor
US6392372B1 (en) * 2000-03-31 2002-05-21 Ljm Products, Inc. Brushless DC fan module incorporating integral fan control circuit with a communication port for receiving digital commands to control fan
US6423118B1 (en) * 2000-09-05 2002-07-23 General Electric Company Methods and systems for controlling air filtration systems
US6369535B1 (en) * 2001-07-31 2002-04-09 General Electric Company Method and apparatus for current shaping in electronically commutated motors
US6465977B1 (en) * 2001-11-29 2002-10-15 Ecostar Electric Drive Systems L.L.C. System and method for controlling torque in an electrical machine

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050212475A1 (en) * 2004-03-29 2005-09-29 Sanyo Electric Co., Ltd. Actuator, motor unit and controller unit
US7166981B2 (en) * 2004-03-29 2007-01-23 Sanyo Electric Co., Ltd. Actuator, motor unit and controller unit
US20080058966A1 (en) * 2006-09-05 2008-03-06 Honeywell International Inc. Single line control for hvac actuator
US7787994B2 (en) 2006-09-05 2010-08-31 Honeywell International Inc. Single line control for HVAC actuator
US20080099192A1 (en) * 2006-10-26 2008-05-01 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Rotating mechanism for solid-solid direct-heating reaction disc
US8263021B2 (en) * 2006-10-26 2012-09-11 Shenzhen Mindray Bio-Medical Electronics Co., Ltd. Rotating mechanism for solid-solid direct-heating reaction disc
US9512850B2 (en) * 2011-12-16 2016-12-06 Regal Beloit America, Inc. Air circulator powered by an electronically commuted motor (ECM) and associated method of use
US20130156609A1 (en) * 2011-12-16 2013-06-20 John C. Kunze Air circulator powered by an electronically commuted motor (ecm) and associated method of use
US11378300B2 (en) * 2012-02-29 2022-07-05 Carrier Corporation Energy recovery ventilator with reduced power consumption
US9631811B2 (en) 2012-11-08 2017-04-25 Regal Beloit America, Inc. Draft inducer for low power multistage furnaces utilizing an electronically commutated motor system and an associated method of use
US9739486B2 (en) 2012-11-08 2017-08-22 Regal Beloit America, Inc. Draft inducer for low power multistage furnaces utilizing an electronically commutated motor system and an associated method of use
US20140312813A1 (en) * 2013-04-19 2014-10-23 Dyson Technology Limited Air moving appliance with on-board diagnostics
US9763551B2 (en) * 2013-04-19 2017-09-19 Dyson Technology Limited Air moving appliance with on-board diagnostics
US10327769B2 (en) * 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US20210282776A1 (en) * 2015-09-23 2021-09-16 Ethicon Llc Surgical stapler having motor control based on a drive system component
EP3154177A1 (en) * 2015-10-09 2017-04-12 Johnson Electric S.A. Air flow regulating device
US20170099929A1 (en) * 2015-10-09 2017-04-13 Johnson Electric S.A. Hair Dryer

Also Published As

Publication number Publication date
US6895176B2 (en) 2005-05-17

Similar Documents

Publication Publication Date Title
US6895176B2 (en) Method and apparatus for controlling electronically commutated motor operating characteristics
US7688011B2 (en) Control circuit for an electronically commutated motor
EP1830462B1 (en) Methods and systems for emulating an induction motor utilising an electronically commuted motor
US8896248B2 (en) Methods and systems for controlling a motor
JP5455784B2 (en) DC motor and ventilation fan
CN107306105B (en) Motor controller for high moisture applications and method of manufacture
JP2008125315A (en) Motor drive device
US8754606B2 (en) Power supply circuit and motor device
US7671551B2 (en) Universal brushless DC motor
KR100786433B1 (en) Brushless dc motor coupled directly to ac source and electric apparatus using the same motor
US8878470B2 (en) Methods and apparatus for reducing size and costs of motor controllers for electric motors
KR100971594B1 (en) Ac-input type brushless dc motor and electric appliance mounting the same
EP1684408B1 (en) Electric motor system
EP0688091A1 (en) High efficiency power supply and control for brushless permanent magnet motor
JP2006149048A (en) Ac power supply direct-coupling brushless dc motor and electrical device equipped therewith
US20170110942A1 (en) Induction motor and method of manufacture
US7482770B2 (en) Methods and systems for providing PWM control signals to an electronically commutated motor
CN102763319B (en) Brushless motor drive device, brushless motor, and air conditioner
CN101771319B (en) Brushless DC motor and drive unit thereof
WO2019026257A1 (en) Electric motor system and outdoor unit equipped with electric motor system
KR100231028B1 (en) The revolving velocity control apparatus of brushless direct motor
JP2005102500A (en) Method of driving brushless motor
JP2002112574A (en) Controller for brushless motor

Legal Events

Date Code Title Description
AS Assignment

Owner name: GENERAL ELECTRIC COMPANY, NEW YORK

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ARCHER, WILLIAM R.;BEIFUS, BRIAN J.;BECERRA, ROGER C.;AND OTHERS;REEL/FRAME:013310/0929;SIGNING DATES FROM 20020726 TO 20020729

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

SULP Surcharge for late payment
AS Assignment

Owner name: RBC MANUFACTURING CORPORATION, WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GENERAL ELECTRIC COMPANY;REEL/FRAME:027112/0169

Effective date: 20111014

FPAY Fee payment

Year of fee payment: 8

AS Assignment

Owner name: REGAL BELOIT AMERICA, INC., WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:RBC MANUFACTURING CORPORATION;REEL/FRAME:029582/0236

Effective date: 20121231

FPAY Fee payment

Year of fee payment: 12