US20040039255A1 - Medical system and a method of controlling the system for use by a patient for medical self treatment - Google Patents

Medical system and a method of controlling the system for use by a patient for medical self treatment Download PDF

Info

Publication number
US20040039255A1
US20040039255A1 US10/342,150 US34215003A US2004039255A1 US 20040039255 A1 US20040039255 A1 US 20040039255A1 US 34215003 A US34215003 A US 34215003A US 2004039255 A1 US2004039255 A1 US 2004039255A1
Authority
US
United States
Prior art keywords
information
medical system
apparatuses
patient
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/342,150
Inventor
Jan Simonsen
Jens Poulsen
Kent Rokkjaer
Lars Christensen
Soren Aasmul
Steffen Lav
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/342,150 priority Critical patent/US20040039255A1/en
Publication of US20040039255A1 publication Critical patent/US20040039255A1/en
Priority to US11/846,028 priority patent/US20070293742A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0022Monitoring a patient using a global network, e.g. telephone networks, internet
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150015Source of blood
    • A61B5/150022Source of blood for capillary blood or interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150267Modular design or construction, i.e. subunits are assembled separately before being joined together or the device comprises interchangeable or detachable modules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150206Construction or design features not otherwise provided for; manufacturing or production; packages; sterilisation of piercing element, piercing device or sampling device
    • A61B5/150305Packages specially adapted for piercing devices or blood sampling devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/151Devices specially adapted for taking samples of capillary blood, e.g. by lancets, needles or blades
    • A61B5/15101Details
    • A61B5/15103Piercing procedure
    • A61B5/15107Piercing being assisted by a triggering mechanism
    • A61B5/15113Manually triggered, i.e. the triggering requires a deliberate action by the user such as pressing a drive button
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/157Devices characterised by integrated means for measuring characteristics of blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J1/00Containers specially adapted for medical or pharmaceutical purposes
    • A61J1/03Containers specially adapted for medical or pharmaceutical purposes for pills or tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J7/00Devices for administering medicines orally, e.g. spoons; Pill counting devices; Arrangements for time indication or reminder for taking medicine
    • A61J7/04Arrangements for time indication or reminder for taking medicine, e.g. programmed dispensers
    • A61J7/0409Arrangements for time indication or reminder for taking medicine, e.g. programmed dispensers with timers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M5/315Pistons; Piston-rods; Guiding, blocking or restricting the movement of the rod or piston; Appliances on the rod for facilitating dosing ; Dosing mechanisms
    • A61M5/31533Dosing mechanisms, i.e. setting a dose
    • A61M5/31545Setting modes for dosing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0406Constructional details of apparatus specially shaped apparatus housings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0443Modular apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150358Strips for collecting blood, e.g. absorbent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/15Devices for taking samples of blood
    • A61B5/150007Details
    • A61B5/150374Details of piercing elements or protective means for preventing accidental injuries by such piercing elements
    • A61B5/150381Design of piercing elements
    • A61B5/150412Pointed piercing elements, e.g. needles, lancets for piercing the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J7/00Devices for administering medicines orally, e.g. spoons; Pill counting devices; Arrangements for time indication or reminder for taking medicine
    • A61J7/04Arrangements for time indication or reminder for taking medicine, e.g. programmed dispensers
    • A61J7/0409Arrangements for time indication or reminder for taking medicine, e.g. programmed dispensers with timers
    • A61J7/0454Arrangements for time indication or reminder for taking medicine, e.g. programmed dispensers with timers for dispensing of multiple drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0066Inhalators with dosage or measuring devices with means for varying the dose size
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M15/00Inhalators
    • A61M15/0065Inhalators with dosage or measuring devices
    • A61M15/0068Indicating or counting the number of dispensed doses or of remaining doses
    • A61M15/008Electronic counters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/178Syringes
    • A61M5/31Details
    • A61M2005/3125Details specific display means, e.g. to indicate dose setting
    • A61M2005/3126Specific display means related to dosing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3553Range remote, e.g. between patient's home and doctor's office
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3561Range local, e.g. within room or hospital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3584Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using modem, internet or bluetooth
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/20Blood composition characteristics
    • A61M2230/201Glucose concentration
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S128/00Surgery
    • Y10S128/903Radio telemetry

Definitions

  • This invention comprises a medical system and a method of controlling the system for use by a patient for medical self treatment.
  • the individual devices may be arranged for various respective functions relevant to the treatment of e.g. diabetes, such as: a lancet device, a body fluid analyser, one or more drug administration apparatuses for administering a predetermined dose of medication to the patient.
  • a lancet device e.g., a lancet device
  • a body fluid analyser e.g., a body fluid analyser
  • drug administration apparatuses for administering a predetermined dose of medication to the patient.
  • other aids which the diabetic patient uses, e.g. test strips for the blood analyser, needles, napkins for wiping off blood, extra insulin carpoule, glucose tablets, waste containers, etc.
  • the object of the invention is to provide a method for effective monitoring of electronic data relevant to a plurality of apparatuses which are used by a patient for self-treatment of a disease, so that a greater level of safety, both functionally and emotionally, and an effective feedback to the patient are obtained.
  • the request can e.g. be initiated by a timer or other external events such as the patient performing an action.
  • the invention provides the further effect that a patient need not bring along a large apparatus technically complicated in use in order to treat his disease, but that the apparatus may be divided into several smaller and simpler units capable of communicating mutually.
  • the individual units may optionally be adapted to be interconnected mechanically, as disclosed in Danish Patent Application No. PA199800714.
  • IRQ interrupt request
  • a protocol for a self-organizing network where every apparatus retransmits all the received information until the apparatus or apparatuses which the information was meant for receive it. In this way every apparatus functions as a relay station and a temporary store of transmitted information. This structure is especially useful when the configuration of the network is not known or when the configuration of the network changes in an unpredictable manner.
  • Another feature of a network of this kind is that a maximal number of redundant transmission paths with a buffer are created so that the system can transmit information to apparatuses which were not available when the information was transmitted.
  • the unit of highest priority may be adapted to communicate with a larger communication center which may contain a patient database.
  • a larger communication center which may contain a patient database.
  • Such further use of the invention is known e.g. from U.S. Pat. No. 5,204,670, which, however, cannot offer the patient the flexible and safe use of a set of different apparatuses according to the invention which together are used in the treatment of a disease.
  • the apparatuses according to the invention communicate information such as: amount of medication, type of medication, the concentration of relevant substances in the body e.g. body fluid level/concentration, time stamp, amount of food (e.g. amount or units of carbohydrate), measurement of physical activity, notification (e.g. alert and warning) to the patient, body characteristics (e.g. weight, blood pressure etc.) and inventory logistics.
  • information such as: amount of medication, type of medication, the concentration of relevant substances in the body e.g. body fluid level/concentration, time stamp, amount of food (e.g. amount or units of carbohydrate), measurement of physical activity, notification (e.g. alert and warning) to the patient, body characteristics (e.g. weight, blood pressure etc.) and inventory logistics.
  • relevant information for e.g. a drug administration system like a doser i.e. number of units of insulin, insulin type and time and date for administering, can automatically be stored, displayed, received and transmitted to and from all the relevant apparatuses.
  • the patient, a physician or an expert care-team can obtain the behavior over time of the patient, and a check for compliance to a diet or treatment given to the patient by a physician or an expert care-team can be made. This could also be done automatically.
  • the patient may manually input information about the treatment.
  • This information may be historic information as well as information about a future scheme (behavioral pattern) e.g. planned physical exercise, administering of insulin, intake of food and other medications.
  • This information may be collected and thus serve as an electronic diabetes diary or may be used to notify the patient through the receiving means as to whether the planned actions are dangerous or not.
  • the patient can further receive recommended amounts of medication, exercise, food, etc. from a physician, an expert-team or automatically.
  • the invention also relates to an apparatus for a medical apparatus for use by a patient for medical self treatment, the treatment including a first operation and at least a second operation, the apparatus comprising a first apparatus for performing the first operation and a second apparatus for performing the second operation, wherein each apparatus comprises means for storing and/or displaying information, and comprising means for transmitting and receiving information so that each apparatus is able to exchange data with any of the other apparatuses belonging to the self treatment.
  • the relevant information could be the time and date for measurement, measured level/concentration of blood glucose which could be stored or transmitted to another apparatus.
  • the relevant information could be the type of medication (e.g. long acting or short acting insulin), number of units of insulin to be administered and the time and date of the administering. This information could both be set manually by the patient or remotely by a physician, an expert care-team or automatically.
  • the relevant information could be to keep track of the contents of the container so that every time an object (e.g. carpoule, needle, etc.) is used, the storage container will update the inventory list.
  • This list could be transferred to an unit of highest priority immediately or later, which could in turn update the patient's total holdings of objects, so that the system could notify the patient when he should order a new stock of objects.
  • the ordering could also be done automatically by the system if the inventory list is transferred to an external unit, which greatly improves the confidence, comfort and safety of the patient.
  • a specific simple communication protocol has been chosen to simplify the explanation of the invention.
  • a predefined apparatus is chosen as the unit of highest priority (master module) which controls, coordinates and monitors the mutual data communication between all the apparatuses including itself
  • the master module collects or mirrors all the data stored in the other apparatuses. This collected or mirrored data can then be redistributed to any of the other apparatuses or an external unit (e.g. a personal computer or database system ) for later retrieval and/or processing.
  • the portable system can operate even if the master module is not present, since all the relevant apparatuses comprise internal storage means, so that they can store the relevant information when it is obtained and transmit it when they can reach the master module once again.
  • the information obtained is kept in the apparatuses so that the patient on request always can be presented with the latest measurements and/or information obtained or received.
  • a cap unit for a doser has been chosen as the master module but any apparatus could have been chosen just as easily.
  • the master module should be the apparatus that the patient carries most often.
  • FIG. 1 shows a prior art doser with a conventional cap
  • FIG. 2 shows a doser and a cap with a BGM, a lancet device and a container for test strips attached;
  • FIG. 3 shows a cap with a BGM, a lancet device, a test strip container attached and an additional container together with useful/needed extras;
  • FIG. 4 shows a schematic functional diagram of a BGM according to an embodiment of the invention
  • FIG. 5 shows a schematic functional diagram of a doser according to an embodiment of the invention
  • FIG. 6 shows a schematic functional diagram of a unit of highest priority according to an embodiment of the invention.
  • FIG. 7 shows a flowchart illustrating an apparatus generating new data (e.g. a BGM) and how the apparatus behaves with respect to data generation and communication;
  • new data e.g. a BGM
  • FIG. 8 illustrates the general concept according to an embodiment of the invention with respect to communication
  • FIG. 9 illustrates two dosers and their communication paths.
  • FIG. 1 shows a prior art doser 20 and a cap 10 .
  • the doser 20 comprises a turning wheel 21 for adjusting, either electronically or manually, the level/amount of medication to be administered, and a display 22 that shows the currently selected amount of medication to be administered.
  • the doser 20 has processing means and storage facilities, like a CPU and RAM, for storing data, like the time, date and amount of medication of the last couple of administrations. This information can be shown in the display 22 at request.
  • the doser 20 further comprises a carpoule (not shown) that contains the medication, and is fitted with a needle 27 through which the medication is administered.
  • the doser 20 has a transparent window 25 so that the amount of medication left in the carpoule can readily be identified.
  • the cap 10 can be fitted to the doser 20 so that one single compact unit and protection of the doser 20 , needle 27 , etc. are obtained.
  • FIG. 2 shows a doser 20 with a cap 10 where the cap 10 functions as the master module.
  • the doser 20 corresponds to the doser 20 shown in FIG. 1 but with the additional feature of having transmitting and receiving means 12 .
  • This enables the doser 20 to transmit the stored data, i.e. the time, date, amount and type of medication, to the master module 10 for storage and presentation there via the master modules receiving means 12 .
  • Information of the last couple of administrations time, date, type and amount of medication
  • the doser 20 will just store the information locally until the master module 10 becomes available and the patient will be able to view the information on the doser 20 .
  • the doser 20 can also receive information via the receiving means 12 from the master module 10 .
  • This information could for instance be a predetermined amount of medication dictated remotely by a physician, an expert care-team or automatically. The received information is then used to automatically set the correct amount of medication to be administered so that the patient does not have to worry about that aspect, which is a great advantage especially if the patient is elderly or handicapped.
  • a BGM 30 which has means 34 for inserting test strips 52 containing a sample of blood, for analysis by the BGM 30 by operating the buttons 36 .
  • the result of the analysis is stored and either shown in the display 32 or transmitted to the master module 10 via the transmitting means 12 for storage and presentation on the larger display 11 .
  • the patient can at the same time be presented with the last couple of results over a time period.
  • a test strip container 50 is provided for the safe keeping/storing of test strips 52 in the space 55 and can be added/attached through locking means 31 . With this addition, a test strip 52 will always be available.
  • a lancet device 40 removably attached to the BGM 30 by the locking means 31 .
  • This lancet device 40 is used by first loading the lancet device through the grip 44 and then pressing the button 42 , which releases the lancet, piercing the skin, so that a blood sample can be obtained. With this inclusion, the lancet device 40 is always at hand.
  • the test strip 52 can then be inserted via the means 34 into the BGM 30 , which will start analysing the blood sample and, after completion of the analysis, will show the result in the display 32 .
  • FIG. 3 shows the same units as are shown in FIG. 2, but instead of a doser 20 , there is now provided a container unit 60 with a relative large space 69 for storing the items needed everyday for self-treatment.
  • a container unit 60 with a relative large space 69 for storing the items needed everyday for self-treatment.
  • such items could be a napkin 61 for wiping excessive blood after a sample has been taken, a waste container 62 for receiving used items, an extra carpoule 63 which could contain another type of insulin, spare needles 27 for the doser, spare lancets 65 for the lancet device 40 , some glucose in the form of glucose tablets 64 , etc.
  • the injection of insulin may be replaced by administration of pills which may be stored in the container, which thus replaces the doser described previously. All these items, or the most relevant ones for a given situation, could be held in the container space 69 for easy retrieval, when needed.
  • the container unit 60 is provided with transmitting, receiving and storage means 12 . These means are used to communicate an inventory list to the master module 10 on which the user can view and update the inventory list via the buttons 36 .
  • This list could be transferred to an external unit (e.g. computer, laptop, palmtop, etc.) immediately or later, which could update a list of the patient's total holdings of objects, so that the system could notify the patient when he should order a new stock of objects.
  • the ordering could also be done automatically by the system. In this way the patient will not have to be concerned whether he has all the necessary objects for a future span of time or not, which greatly improves the confidence and safety of the patient.
  • FIG. 4 shows a schematic functional diagram of a BGM according to an embodiment of the invention.
  • the BGM consists of the following functional blocks: ‘Controller’, ‘Receiving means’, ‘Transmitting means’, ‘storage means’, ‘Displaying means’, ‘Input means’ and ‘Measuring Blood Glucose Level/Concentration’.
  • the central block is the functional block ‘Controller’ which coordinates, monitors and controls the tasks of all the other functional blocks.
  • the ‘Receiving means’ and ‘Transmitting means’ is responsible for receiving and transmitting of information data, respectively.
  • the block ‘Measuring Blood Glucose Level/Concentration’ performs the measurement of the blood glucose level/concentration on e.g. a test strip, containing a blood sample.
  • the ‘Displaying means’ can display relevant information to the patient e.g. the result of a measurement and a time stamp containing the time and date of the measurement.
  • the result of the measurement can be stored in the ‘storage means’ for later retrieval and further be sent to another apparatus (e.g. the master module) through the ‘Transmitting means’. All these tasks take place under the supervision and coordination of the ‘Controller’ block.
  • the BGM could thus be operated in the following way.
  • the controller receives the request and activates the ‘Measuring Blood Glucose Level/Concentration’ block, which initiates and performs the measurement of the blood glucose level when the patient inserts a test strip with a sample of blood into a slot on the apparatus.
  • a calibration of the measurement equipment could be made by insertion of a calibration test-strip.
  • the result and a time stamp of the measurement are then transferred to the storage means, and the controller can send the result via the transmitting means to another device e.g. the master module if it is within range.
  • Controller could e.g. be implemented by any type of CPU, micro processor, micro controller, EEPROM or ROM containing software, firmware, etc.
  • the functional block ‘storage means’ could be standard RAM.
  • the BGM is only an example of an apparatus that could be used according to this invention. Any other body fluid analyser e.g. lipid monitor or the like could be used.
  • FIG. 5 shows a schematic functional diagram of a doser according to an embodiment of the invention.
  • the doser consists of the following functional blocks: ‘Controller’, ‘Receiving means’, ‘Transmitting means’, ‘storage means’, ‘Displaying means’, ‘Input means’ and ‘Administering a dose of Medication’.
  • These functional blocks correspond to the blocks previously described for the BGM in FIG. 4, except for the block ‘Administering a dose of Medication’, and will therefore not be explained once more.
  • the functional block ‘Administering a dose of Medication’ administers a dose of medication e.g. insulin.
  • the amount of medication could be set by the patient through the ‘Input means’ or be set electromechanically by the ‘Controller’ block according to information received via the ‘Receiving means’. This information could be prescribed by a physician, by an expert care-team or automatically, so that elderly or handicapped people would only have to activate the doser through the input means to be administered a dose of medication.
  • information e.g. type of medication (e.g. long acting or short acting insulin), amount of medication and the corresponding time stamp (date and time) is stored in the ‘storage means’ and transmitted to an apparatus (preferably the master module) if it is within range.
  • Other devices than an insulin doser could be used in accordance with the invention. These could e.g. be devices that administer growth hormones, etc.
  • a predetermined list would require the user to just enter (e.g. by icons or alphanumeric keys) the relevant text once and then later just present the user with the already entered text and only ask for the amount and type (which could also be pre-entered in the same fashion).
  • FIG. 6 shows a schematic functional diagram of a master module according to an embodiment of the invention.
  • the master module consists of the following functional blocks: ‘Controller’, ‘Receiving means’, ‘Transmitting means’, ‘Storage means’, ‘Displaying means’, ‘Input means’ and ‘External function’. These functional blocks correspond to the blocks previously described with reference to FIGS. 4 and 5, except for the block ‘External function’, and will therefore not be explained once more.
  • the master module is the module responsible for the coordination, supervision and control of the information and data exchange between itself and all the other present and activated apparatuses. These apparatuses identify themselves to the master module when they are within range so that the master module always knows which apparatuses are present and activated.
  • the master module also receives and stores all the information and data generated in the individual apparatuses for later retrieval and/or transmission to an external unit (e.g. computer or database) for further storage and processing.
  • the relevant information can be displayed on the larger display of the master module and be acted upon by the patient.
  • the master module could be any of the apparatuses as represented by the functional block ‘External function’ in FIG. 6, but is in this embodiment the cap unit 10 shown in FIGS. 2 - 3 , and has as such no external function. Other functions may readily be implemented in this block.
  • FIG. 7 shows a flowchart illustrating an apparatus generating new data (e.g. a BGM) and how the apparatus behaves with respect to data generation and communication.
  • new data e.g. a BGM
  • the apparatus determines whether or not data generation is requested. If this is the case (e.g., if the user has inserted a blood glucose measuring strip into the apparatus), the data generation block assumes priority and completes the procedures associated with the data generation (e.g. measurement of the blood glucose concentration). After completion of the data generation the data is stored in the internal memory of the apparatus.
  • the apparatus determines whether or not communication is requested—either by the apparatus itself (several criteria can issue the communication request e.g. a timing event, a user interface event, etc.) or by an apparatus different from the apparatus itself (e.g. a request from the master module). If communication is not requested, the apparatus resumes its idle mode. If communication is requested, the apparatus sends out a request for the other apparatuses within its range to identify themselves to the apparatus—enabling it to establish the present communication environment. Based on the established communication environment the apparatus identifies whether or not the master module is within range of the apparatus. If the master module is not within range of the apparatus, the communication is terminated and the apparatus returns to its idle mode.
  • the apparatus sets up a connection with the master module and identifies itself to the master module. After exchange of apparatus identification it is established whether the master module is updated with respect to the internal data contained in the internal memory of the apparatus or not. If the master module is updated, the data is not transmitted once more. If, however, the master is not updated regarding the internal data of the apparatus, the data necessary to update the master is transmitted from the apparatus to the master module. After completion of the data transmission it is likewise established if the master module contains data relevant to the apparatus which is not present in the apparatus. If this is the case, the master module transmits the relevant data to the receiving means of the apparatus after which the data is stored in the internal memory of the apparatus. After storage of the received data or if no data transmission was necessary, the apparatus returns to its idle mode and the circle is completed.
  • FIG. 8 illustrates the general concept according to an embodiment of the invention with respect to communication.
  • the system consists of the portable units: a master module, a doser, a BGM, the remote units: Remote Receiver, Physician/Expert Care-team and Stationary Unit and a Communication Interface between them.
  • the master module controls the information and data flow between itself and the other apparatuses and collects relevant data and information from all the other portable units.
  • This data and information could e.g. be amount of medication, type of medication, body fluid concentration, time stamp (date and time) and inventory logistics.
  • the patient can manually input information and data related to amount of food, measurement of physical activity in the way described above.
  • This data and information can then be transmitted via a communication interface (which may be built into the master module) to external units like a database for data acquisition of the patient's data over time or a computer which the patient uses to be kept informed about his treatment.
  • all the apparatuses could communicate to all the others.
  • the information in the database can be accessed by a physician or an expert care-team who could easily and quickly check for compliance to e.g. a diet or treatment course/progress.
  • the physician or expert care-team could send a notification (e.g. alert or warning) to the patient if the data shows an inappropriate future treatment span.
  • the patient could also be notified of a future appointment in this way or receive guidance.
  • the system also makes it possible for the physician or expert care-team to give the patient a number of choices to a given situation.
  • the patient could e.g. be informed that the blood glucose level/concentration is quite high and the patient could be presented with the choices of either exercising for given amount of time or administering a given amount of a given type of medication.
  • the possibility of choices makes the patient feet more in control of the treatment and enhances the therapeutic value of the treatment. This could also be done automatically be the systems.
  • FIG. 9 illustrates two dosers and their communication paths
  • the dosers are identical for the typical patient, one doser containing fast acting insulin, the other doser containing slow acting insulin.
  • the dosers comprise a microcontroller and memory as shown in FIG. 5.
  • the dosers are capable of holding information about the insulin type they contain. This information may either be obtained by the doser reading e.g. a bar code on the carpoule or the information may be input from the patient.
  • the features of the doser enable it to log information about the insulin treatment (insulin type size of the dose and time stamp)
  • One doser is equipped with a cap unit 73 which acts as a storage container for an extra insulin carpoule, needles etc.
  • the storage container is capable of keeping track of the contents of the container which enables it to keep the inventory list updated, as described earlier in the present document.
  • the other doser is equipped with a cap unit 74 comprising a BGM, a microcontroller and memory . This enables the cap unit 74 to log information about the blood glucose concentration (with time stamp).
  • All the dosers 71 , 72 and the cap units 73 , 74 comprise an interface which enables them to exchange data.
  • the master device is the BGM cap unit 74 , which, in addition to the local interface, comprises an interface that enables it to communicate with external units through standard communication links (RS-232, Wireless local area network, phone, cellular phone, pager, satellite link, etc.).
  • standard communication links RS-232, Wireless local area network, phone, cellular phone, pager, satellite link, etc.
  • the patient's treatment data can be transferred to the patient's own computer 80 or via e.g. the telephone system 75 to the patient's electronic medical record on a central server 76 . From here, the treatment data may be accessed by the patient e.g.
  • the care team can access the patient's treatment data.
  • the patient's master unit 74 can receive data from the central server 76 , in addition to transmitting data.
  • the treatment data are transferred to the master unit 74 , enabling it to supply the patient with a overview of his treatment as well as warnings or alarms if data shows that a potential dangerous situation may occur.

Abstract

This invention relates to an system for self treatment. The system consists of several portable modules where one of the modules is designated as a master module. The master module controls, supervises and monitors all the mutual information and data exchange between itself and the rest of the modules. The modules can e.g. consist of a BGM, a doser and a storage container. The modules may be able to generate and store data which is transmitted to the master module if it is within range. If the master module is not within range, the data is kept locally in the module until the master module is available. The master module can send the data to an external unit like a computer or database for further processing. A physician or an expert care-team can access the data in the database and give guidance to the patient on the basis of these processed data. This processing could also be done automatically by utilization of an expert system.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • This application claims priority under 35 U. S. C. 119 of U.S. non provisional application No. 09/450,193 filed Nov. 29, 1999 and provisional application No. 60/111,721 filed Dec. 9, 1998 and Danish Application No. PA 1998 01578 filed Nov. 30, 1998; the contents of all three are fully incorporated herein by reference.[0001]
  • This invention comprises a medical system and a method of controlling the system for use by a patient for medical self treatment. [0002]
  • For a number of years it has been possible to purchase various devices for the treatment of diabetes, e.g. for injecting insulin, for measuring blood sugar (such a device is referred to as BGM in the following), for withdrawing blood samples, and other accessories, the purpose of which is to enable the patient to nurse his disease discretely and with a high standard of safety. Many diabetic patients are elderly people who can easily get insecure with respect to the medical equipment. It is very reassuring and therefore also very important that the user can have feedback from the system which confirms to the user that everything is OK right from the technical function of the system to the patient's physiological condition. This stretches out a psychological safety net under the patient, which contributes to improving the quality of life of patients having a disease such as diabetes. [0003]
  • Also many young people need to assure themselves that the equipment is in order, i.e. calibrated, powered, updated and otherwise ready to be operated. [0004]
  • One way of ensuring that you have all the things needed ready at hand is to build several of the necessary devices together into a single integral unit, see e.g. U.S. Pat. No. 5,536,249. This is not an ideal solution since such a multi-functional device is usually quite complex both with respect to manufacture and use. People need to be familiar, secure and confident with the use of a device for self-treatment which such an integral multi-functional does not provide. [0005]
  • Another drawback of integrating several functions in one apparatus is that owing to the commercial outlets the manufacturer never integrates all possibilities, but just the most important ones, in order for it to be relevant to a sufficiently large group of users. The functions which are thus not integrated must be provided by means of separate apparatuses typically of different makes, which can easily create uncertainty as to whether the apparatuses work correctly together. [0006]
  • According to the invention the individual devices may be arranged for various respective functions relevant to the treatment of e.g. diabetes, such as: a lancet device, a body fluid analyser, one or more drug administration apparatuses for administering a predetermined dose of medication to the patient. Further, there is a number of other aids which the diabetic patient uses, e.g. test strips for the blood analyser, needles, napkins for wiping off blood, extra insulin carpoule, glucose tablets, waste containers, etc. [0007]
  • The object of the invention is to provide a method for effective monitoring of electronic data relevant to a plurality of apparatuses which are used by a patient for self-treatment of a disease, so that a greater level of safety, both functionally and emotionally, and an effective feedback to the patient are obtained. [0008]
  • This is achieved according to the invention in that the individual apparatuses are provided with electronic communications equipment so that the apparatuses—when in a state of mutual communication—frequently exchange information between them. Hereby a greater functional safety can be achieved and the total data capacity of the system can be increased, so that the feedback possibilities, e.g. of the system checking that every apparatus is OK and set up properly and of the patient be given a number of possible choices to choose from in a given situation, are increased. [0009]
  • More particularly, the invention relates to a method of controlling data information between a plurality of portable apparatuses for use by a patient for medical self treatment, the treatment including a first operation and at least a second operation, said portable apparatuses comprising a first apparatus for performing the first operation, and at least a second apparatus for performing the second operation, wherein each apparatus belonging to the medical self treatment has means for one or more of the following: storing, transmitting, receiving and displaying information, and an attempted data communication between said apparatuses is initiated on request. [0010]
  • The request can e.g. be initiated by a timer or other external events such as the patient performing an action. [0011]
  • The invention provides the further effect that a patient need not bring along a large apparatus technically complicated in use in order to treat his disease, but that the apparatus may be divided into several smaller and simpler units capable of communicating mutually. The individual units may optionally be adapted to be interconnected mechanically, as disclosed in Danish Patent Application No. PA199800714. [0012]
  • According to the invention, all apparatuses need not be active for communication to be established between some of the apparatuses. This requires that all the apparatuses are adapted to a specific communications protocol, there being several options in this respect. For example, one of the units may be provided with program information of highest priority with respect to the control and monitoring of data communication between the individual apparatuses. The unit of highest priority may very well be turned off, because the apparatuses may be adapted to communicate directly and perform storage of information, which is subsequently transmitted to the unit of highest priority when this is again in communication with another of the apparatuses. [0013]
  • Alternatively, other communications protocols may be implemented such as: [0014]
  • A protocol where a number of potential master modules (unit of highest priority) is predefined. These predefined master modules are given a hierarchical priority and the master module with the highest priority among the activated and present master modules becomes the functional master module. This master module polls the other activated and present apparatuses for information. [0015]
  • A protocol where all the apparatuses can request information/data exchange with one or more of the other possible apparatuses (present and activated) on the basis of an event (e.g. timer based, user operation, etc.). This is done by sending an interrupt request (IRQ) to the other apparatuses which they can act upon according to their situation. With this protocol there is not a designated master module and every apparatus can communicate/exchange data with one or more of the rest of the apparatuses. [0016]
  • A protocol for a self-organizing network where every apparatus retransmits all the received information until the apparatus or apparatuses which the information was meant for receive it. In this way every apparatus functions as a relay station and a temporary store of transmitted information. This structure is especially useful when the configuration of the network is not known or when the configuration of the network changes in an unpredictable manner. Another feature of a network of this kind is that a maximal number of redundant transmission paths with a buffer are created so that the system can transmit information to apparatuses which were not available when the information was transmitted. [0017]
  • A protocol where all the apparatuses transmits their information without any supervision of any kind. The apparatuses themselves have to decide what information is relevant for them. [0018]
  • The unit of highest priority may be adapted to communicate with a larger communication center which may contain a patient database. Such further use of the invention is known e.g. from U.S. Pat. No. 5,204,670, which, however, cannot offer the patient the flexible and safe use of a set of different apparatuses according to the invention which together are used in the treatment of a disease. [0019]
  • The apparatuses according to the invention communicate information such as: amount of medication, type of medication, the concentration of relevant substances in the body e.g. body fluid level/concentration, time stamp, amount of food (e.g. amount or units of carbohydrate), measurement of physical activity, notification (e.g. alert and warning) to the patient, body characteristics (e.g. weight, blood pressure etc.) and inventory logistics. This ensures that relevant information for e.g. a drug administration system like a doser, i.e. number of units of insulin, insulin type and time and date for administering, can automatically be stored, displayed, received and transmitted to and from all the relevant apparatuses. The doser could also receive information regarding a predetermined number of units of insulin to be administered and automatically set the amount of medication to be administered by electromechanical means. In this way elderly and handicapped people do not have to set the relevant amount of medication themselves but just activate the doser. [0020]
  • It is especially useful to transmit the data from all apparatuses to the apparatus containing the highest priority program for safe keeping, calibration and updating of data and possible transmission to e.g. an external unit like a PC or database for further data acquisition, storage and processing. [0021]
  • In this way the patient, a physician or an expert care-team can obtain the behavior over time of the patient, and a check for compliance to a diet or treatment given to the patient by a physician or an expert care-team can be made. This could also be done automatically. [0022]
  • Additionally, it is also possible for the patient to manually input information about the treatment. This information may be historic information as well as information about a future scheme (behavioral pattern) e.g. planned physical exercise, administering of insulin, intake of food and other medications. This information may be collected and thus serve as an electronic diabetes diary or may be used to notify the patient through the receiving means as to whether the planned actions are dangerous or not. [0023]
  • It is evident that since the apparatuses are to be carried by the patient, there is a potential lack of space for an advanced input device e.g. a keyboard. Therefore, information which cannot be input on a standardized form e.g. personal comments on the treatment is typed into the apparatus by the patient using a simple input device once and can subsequently be chosen from a list if needed again. [0024]
  • The patient can further receive recommended amounts of medication, exercise, food, etc. from a physician, an expert-team or automatically. [0025]
  • The invention also relates to an apparatus for a medical apparatus for use by a patient for medical self treatment, the treatment including a first operation and at least a second operation, the apparatus comprising a first apparatus for performing the first operation and a second apparatus for performing the second operation, wherein each apparatus comprises means for storing and/or displaying information, and comprising means for transmitting and receiving information so that each apparatus is able to exchange data with any of the other apparatuses belonging to the self treatment. [0026]
  • For a BGM according to an embodiment of the invention the relevant information could be the time and date for measurement, measured level/concentration of blood glucose which could be stored or transmitted to another apparatus. [0027]
  • For a doser according to an embodiment of the invention the relevant information could be the type of medication (e.g. long acting or short acting insulin), number of units of insulin to be administered and the time and date of the administering. This information could both be set manually by the patient or remotely by a physician, an expert care-team or automatically. [0028]
  • For a storage container according to an embodiment of the invention the relevant information could be to keep track of the contents of the container so that every time an object (e.g. carpoule, needle, etc.) is used, the storage container will update the inventory list. This list could be transferred to an unit of highest priority immediately or later, which could in turn update the patient's total holdings of objects, so that the system could notify the patient when he should order a new stock of objects. The ordering could also be done automatically by the system if the inventory list is transferred to an external unit, which greatly improves the confidence, comfort and safety of the patient. [0029]
  • In the following, a preferred embodiment according to the invention is described in detail. This particular embodiment is meant as one example only of the invention and should not as such limit the scope of protection. [0030]
  • In the preferred embodiment a specific simple communication protocol has been chosen to simplify the explanation of the invention. In the chosen protocol a predefined apparatus is chosen as the unit of highest priority (master module) which controls, coordinates and monitors the mutual data communication between all the apparatuses including itself The master module collects or mirrors all the data stored in the other apparatuses. This collected or mirrored data can then be redistributed to any of the other apparatuses or an external unit (e.g. a personal computer or database system ) for later retrieval and/or processing. [0031]
  • According to the invention the portable system can operate even if the master module is not present, since all the relevant apparatuses comprise internal storage means, so that they can store the relevant information when it is obtained and transmit it when they can reach the master module once again. [0032]
  • Preferably the information obtained is kept in the apparatuses so that the patient on request always can be presented with the latest measurements and/or information obtained or received. [0033]
  • A person skilled in the art could easily implement other communication protocols such as the ones described above. [0034]
  • In this embodiment a cap unit for a doser has been chosen as the master module but any apparatus could have been chosen just as easily. Preferably, the master module should be the apparatus that the patient carries most often.[0035]
  • The invention will now be explained in detail with reference to the FIGS. [0036] 1-9, in which
  • FIG. 1 shows a prior art doser with a conventional cap; [0037]
  • FIG. 2 shows a doser and a cap with a BGM, a lancet device and a container for test strips attached; [0038]
  • FIG. 3 shows a cap with a BGM, a lancet device, a test strip container attached and an additional container together with useful/needed extras; [0039]
  • FIG. 4 shows a schematic functional diagram of a BGM according to an embodiment of the invention; [0040]
  • FIG. 5 shows a schematic functional diagram of a doser according to an embodiment of the invention; [0041]
  • FIG. 6 shows a schematic functional diagram of a unit of highest priority according to an embodiment of the invention; [0042]
  • FIG. 7 shows a flowchart illustrating an apparatus generating new data (e.g. a BGM) and how the apparatus behaves with respect to data generation and communication; [0043]
  • FIG. 8 illustrates the general concept according to an embodiment of the invention with respect to communication; [0044]
  • FIG. 9 illustrates two dosers and their communication paths.[0045]
  • FIG. 1 shows a [0046] prior art doser 20 and a cap 10. The doser 20 comprises a turning wheel 21 for adjusting, either electronically or manually, the level/amount of medication to be administered, and a display 22 that shows the currently selected amount of medication to be administered. The doser 20 has processing means and storage facilities, like a CPU and RAM, for storing data, like the time, date and amount of medication of the last couple of administrations. This information can be shown in the display 22 at request. The doser 20 further comprises a carpoule (not shown) that contains the medication, and is fitted with a needle 27 through which the medication is administered. The doser 20 has a transparent window 25 so that the amount of medication left in the carpoule can readily be identified. The cap 10 can be fitted to the doser 20 so that one single compact unit and protection of the doser 20, needle 27, etc. are obtained.
  • FIG. 2 shows a [0047] doser 20 with a cap 10 where the cap 10 functions as the master module. The doser 20 corresponds to the doser 20 shown in FIG. 1 but with the additional feature of having transmitting and receiving means 12. This enables the doser 20 to transmit the stored data, i.e. the time, date, amount and type of medication, to the master module 10 for storage and presentation there via the master modules receiving means 12. Information of the last couple of administrations (time, date, type and amount of medication) can then easily be viewed on the display 11 on the master module. If the master module 10 is not present or active, the doser 20 will just store the information locally until the master module 10 becomes available and the patient will be able to view the information on the doser 20.
  • The [0048] doser 20 can also receive information via the receiving means 12 from the master module 10. This information could for instance be a predetermined amount of medication dictated remotely by a physician, an expert care-team or automatically. The received information is then used to automatically set the correct amount of medication to be administered so that the patient does not have to worry about that aspect, which is a great advantage especially if the patient is elderly or handicapped.
  • Also shown is a [0049] BGM 30 which has means 34 for inserting test strips 52 containing a sample of blood, for analysis by the BGM 30 by operating the buttons 36. The result of the analysis is stored and either shown in the display 32 or transmitted to the master module 10 via the transmitting means 12 for storage and presentation on the larger display 11. The patient can at the same time be presented with the last couple of results over a time period.
  • A [0050] test strip container 50 is provided for the safe keeping/storing of test strips 52 in the space 55 and can be added/attached through locking means 31. With this addition, a test strip 52 will always be available.
  • Further shown is a [0051] lancet device 40 removably attached to the BGM 30 by the locking means 31. This lancet device 40 is used by first loading the lancet device through the grip 44 and then pressing the button 42, which releases the lancet, piercing the skin, so that a blood sample can be obtained. With this inclusion, the lancet device 40 is always at hand. This has the advantage that a lancet device 40 is always available, for taking a blood sample and applying it to a test strip 52. The test strip 52 can then be inserted via the means 34 into the BGM 30, which will start analysing the blood sample and, after completion of the analysis, will show the result in the display 32. It is very useful to have the BGM 30 and the lancet device 40 attached together in one compact unit, since a BGM 30 would not normally be used without the lancet device 40, thereby avoiding the fuss and uncertainty of using multiple devices of perhaps different makes. On the other hand, if the user already has a lancet device and is accustomed to and familiar with the use of this particular lancet device, he can still use this original lancet device and just use the remaining items, which will be a compact set consisting of a doser 20 and a BGM 30; The cost will be reduced hereby.
  • FIG. 3 shows the same units as are shown in FIG. 2, but instead of a [0052] doser 20, there is now provided a container unit 60 with a relative large space 69 for storing the items needed everyday for self-treatment. For a diabetic, e.g. such items could be a napkin 61 for wiping excessive blood after a sample has been taken, a waste container 62 for receiving used items, an extra carpoule 63 which could contain another type of insulin, spare needles 27 for the doser, spare lancets 65 for the lancet device 40, some glucose in the form of glucose tablets 64, etc. In some situations and in certain forms of diabetes, the injection of insulin may be replaced by administration of pills which may be stored in the container, which thus replaces the doser described previously. All these items, or the most relevant ones for a given situation, could be held in the container space 69 for easy retrieval, when needed.
  • The [0053] container unit 60 is provided with transmitting, receiving and storage means 12. These means are used to communicate an inventory list to the master module 10 on which the user can view and update the inventory list via the buttons 36.
  • This list could be transferred to an external unit (e.g. computer, laptop, palmtop, etc.) immediately or later, which could update a list of the patient's total holdings of objects, so that the system could notify the patient when he should order a new stock of objects. The ordering could also be done automatically by the system. In this way the patient will not have to be concerned whether he has all the necessary objects for a future span of time or not, which greatly improves the confidence and safety of the patient. [0054]
  • FIG. 4 shows a schematic functional diagram of a BGM according to an embodiment of the invention. The BGM consists of the following functional blocks: ‘Controller’, ‘Receiving means’, ‘Transmitting means’, ‘storage means’, ‘Displaying means’, ‘Input means’ and ‘Measuring Blood Glucose Level/Concentration’. [0055]
  • The central block is the functional block ‘Controller’ which coordinates, monitors and controls the tasks of all the other functional blocks. The ‘Receiving means’ and ‘Transmitting means’ is responsible for receiving and transmitting of information data, respectively. The block ‘Measuring Blood Glucose Level/Concentration’ performs the measurement of the blood glucose level/concentration on e.g. a test strip, containing a blood sample. The ‘Displaying means’ can display relevant information to the patient e.g. the result of a measurement and a time stamp containing the time and date of the measurement. The result of the measurement can be stored in the ‘storage means’ for later retrieval and further be sent to another apparatus (e.g. the master module) through the ‘Transmitting means’. All these tasks take place under the supervision and coordination of the ‘Controller’ block. [0056]
  • The BGM according to an embodiment of the invention could thus be operated in the following way. When a request for a measurement of the blood glucose level/concentration is made either by the patient through the ‘Input means’ or by another apparatus through the ‘Receiving means’, the controller receives the request and activates the ‘Measuring Blood Glucose Level/Concentration’ block, which initiates and performs the measurement of the blood glucose level when the patient inserts a test strip with a sample of blood into a slot on the apparatus. Previously a calibration of the measurement equipment could be made by insertion of a calibration test-strip. The result and a time stamp of the measurement are then transferred to the storage means, and the controller can send the result via the transmitting means to another device e.g. the master module if it is within range. [0057]
  • All these functional blocks could be implemented by prior art/standard components. The block labeled ‘Controller’ could e.g. be implemented by any type of CPU, micro processor, micro controller, EEPROM or ROM containing software, firmware, etc. The functional block ‘storage means’ could be standard RAM. [0058]
  • The BGM is only an example of an apparatus that could be used according to this invention. Any other body fluid analyser e.g. lipid monitor or the like could be used. [0059]
  • FIG. 5 shows a schematic functional diagram of a doser according to an embodiment of the invention. The doser consists of the following functional blocks: ‘Controller’, ‘Receiving means’, ‘Transmitting means’, ‘storage means’, ‘Displaying means’, ‘Input means’ and ‘Administering a dose of Medication’. These functional blocks correspond to the blocks previously described for the BGM in FIG. 4, except for the block ‘Administering a dose of Medication’, and will therefore not be explained once more. [0060]
  • The functional block ‘Administering a dose of Medication’ administers a dose of medication e.g. insulin. The amount of medication could be set by the patient through the ‘Input means’ or be set electromechanically by the ‘Controller’ block according to information received via the ‘Receiving means’. This information could be prescribed by a physician, by an expert care-team or automatically, so that elderly or handicapped people would only have to activate the doser through the input means to be administered a dose of medication. After the activation of the doser, information e.g. type of medication (e.g. long acting or short acting insulin), amount of medication and the corresponding time stamp (date and time) is stored in the ‘storage means’ and transmitted to an apparatus (preferably the master module) if it is within range. [0061]
  • Other devices than an insulin doser could be used in accordance with the invention. These could e.g. be devices that administer growth hormones, etc. One could also have an device that obtains information of orally obtained medication like OHA (Oral Hyperglychemical Agent). This would, however, require the user to manually input the type and amount of medication, which could be done by choosing icons, selecting an object in a predetermined list or typing the information by alphanumeric keys. Preferably, a predetermined list would require the user to just enter (e.g. by icons or alphanumeric keys) the relevant text once and then later just present the user with the already entered text and only ask for the amount and type (which could also be pre-entered in the same fashion). [0062]
  • FIG. 6 shows a schematic functional diagram of a master module according to an embodiment of the invention. The master module consists of the following functional blocks: ‘Controller’, ‘Receiving means’, ‘Transmitting means’, ‘Storage means’, ‘Displaying means’, ‘Input means’ and ‘External function’. These functional blocks correspond to the blocks previously described with reference to FIGS. 4 and 5, except for the block ‘External function’, and will therefore not be explained once more. [0063]
  • The master module is the module responsible for the coordination, supervision and control of the information and data exchange between itself and all the other present and activated apparatuses. These apparatuses identify themselves to the master module when they are within range so that the master module always knows which apparatuses are present and activated. The master module also receives and stores all the information and data generated in the individual apparatuses for later retrieval and/or transmission to an external unit (e.g. computer or database) for further storage and processing. The relevant information can be displayed on the larger display of the master module and be acted upon by the patient. [0064]
  • Some of the tasks of the master module could be implemented in the external unit and vice versa. [0065]
  • The master module could be any of the apparatuses as represented by the functional block ‘External function’ in FIG. 6, but is in this embodiment the [0066] cap unit 10 shown in FIGS. 2-3, and has as such no external function. Other functions may readily be implemented in this block.
  • FIG. 7 shows a flowchart illustrating an apparatus generating new data (e.g. a BGM) and how the apparatus behaves with respect to data generation and communication. [0067]
  • In idle mode the apparatus determines whether or not data generation is requested. If this is the case (e.g., if the user has inserted a blood glucose measuring strip into the apparatus), the data generation block assumes priority and completes the procedures associated with the data generation (e.g. measurement of the blood glucose concentration). After completion of the data generation the data is stored in the internal memory of the apparatus. [0068]
  • After completion of the data generation or after determination that data generation was not requested, the apparatus determines whether or not communication is requested—either by the apparatus itself (several criteria can issue the communication request e.g. a timing event, a user interface event, etc.) or by an apparatus different from the apparatus itself (e.g. a request from the master module). If communication is not requested, the apparatus resumes its idle mode. If communication is requested, the apparatus sends out a request for the other apparatuses within its range to identify themselves to the apparatus—enabling it to establish the present communication environment. Based on the established communication environment the apparatus identifies whether or not the master module is within range of the apparatus. If the master module is not within range of the apparatus, the communication is terminated and the apparatus returns to its idle mode. If however, the master module is within range of the apparatus, the apparatus sets up a connection with the master module and identifies itself to the master module. After exchange of apparatus identification it is established whether the master module is updated with respect to the internal data contained in the internal memory of the apparatus or not. If the master module is updated, the data is not transmitted once more. If, however, the master is not updated regarding the internal data of the apparatus, the data necessary to update the master is transmitted from the apparatus to the master module. After completion of the data transmission it is likewise established if the master module contains data relevant to the apparatus which is not present in the apparatus. If this is the case, the master module transmits the relevant data to the receiving means of the apparatus after which the data is stored in the internal memory of the apparatus. After storage of the received data or if no data transmission was necessary, the apparatus returns to its idle mode and the circle is completed. [0069]
  • FIG. 8 illustrates the general concept according to an embodiment of the invention with respect to communication. Here the system consists of the portable units: a master module, a doser, a BGM, the remote units: Remote Receiver, Physician/Expert Care-team and Stationary Unit and a Communication Interface between them. [0070]
  • The master module controls the information and data flow between itself and the other apparatuses and collects relevant data and information from all the other portable units. This data and information could e.g. be amount of medication, type of medication, body fluid concentration, time stamp (date and time) and inventory logistics. Additionally, the patient can manually input information and data related to amount of food, measurement of physical activity in the way described above. This data and information can then be transmitted via a communication interface (which may be built into the master module) to external units like a database for data acquisition of the patient's data over time or a computer which the patient uses to be kept informed about his treatment. Alternatively, all the apparatuses could communicate to all the others. [0071]
  • The information in the database can be accessed by a physician or an expert care-team who could easily and quickly check for compliance to e.g. a diet or treatment course/progress. The physician or expert care-team could send a notification (e.g. alert or warning) to the patient if the data shows an inappropriate future treatment span. The patient could also be notified of a future appointment in this way or receive guidance. [0072]
  • The system also makes it possible for the physician or expert care-team to give the patient a number of choices to a given situation. The patient could e.g. be informed that the blood glucose level/concentration is quite high and the patient could be presented with the choices of either exercising for given amount of time or administering a given amount of a given type of medication. The possibility of choices makes the patient feet more in control of the treatment and enhances the therapeutic value of the treatment. This could also be done automatically be the systems. [0073]
  • Many of the above tasks could be fully automated by utilization of an expert system which is fully updated with the patient's data and condition and has access to the patient's behavior over time. [0074]
  • FIG. 9 illustrates two dosers and their communication paths The dosers are identical for the typical patient, one doser containing fast acting insulin, the other doser containing slow acting insulin. The dosers comprise a microcontroller and memory as shown in FIG. 5. The dosers are capable of holding information about the insulin type they contain. This information may either be obtained by the doser reading e.g. a bar code on the carpoule or the information may be input from the patient. Thus the features of the doser enable it to log information about the insulin treatment (insulin type size of the dose and time stamp) [0075]
  • One doser is equipped with a [0076] cap unit 73 which acts as a storage container for an extra insulin carpoule, needles etc. The storage container is capable of keeping track of the contents of the container which enables it to keep the inventory list updated, as described earlier in the present document.
  • The other doser is equipped with a [0077] cap unit 74 comprising a BGM, a microcontroller and memory . This enables the cap unit 74 to log information about the blood glucose concentration (with time stamp).
  • All the [0078] dosers 71, 72 and the cap units 73, 74 comprise an interface which enables them to exchange data. In the present example the master device is the BGM cap unit 74, which, in addition to the local interface, comprises an interface that enables it to communicate with external units through standard communication links (RS-232, Wireless local area network, phone, cellular phone, pager, satellite link, etc.). Through these communication links, the patient's treatment data can be transferred to the patient's own computer 80 or via e.g. the telephone system 75 to the patient's electronic medical record on a central server 76. From here, the treatment data may be accessed by the patient e.g. from a web page, using a stationary computer 77, a laptop computer 78, a handheld computer 79, etc. Apart from the patient, the care team can access the patient's treatment data. The patient's master unit 74 can receive data from the central server 76, in addition to transmitting data.
  • This system has the advantage that the system can function on 3 levels: [0079]
  • 1) If one of the patient's [0080] devices 71, 72, 73, 74 is isolated by means of communication, it will log data.
  • 2) When the patient's [0081] devices 71, 72, 73, 74 are within communication distance, the treatment data are transferred to the master unit 74, enabling it to supply the patient with a overview of his treatment as well as warnings or alarms if data shows that a potential dangerous situation may occur.
  • 3) When the [0082] master device 74 is connected to the central server 76 through standard communication links, the treatment data is transferred to the patient's electronic medical record. This enables an expert system on the central server to notify the care team if needed. The care team may send information back to the user or send help if needed.
  • Furthermore it is well known that due to the safety of the patient, the development of a medical device is a time consuming task. Using a local communication form between the patient's [0083] devices 71, 72, 73, 74 has the advantage that only the master device 74 need to be redesigned to keep up with the continuous change in the standard communication links.

Claims (32)

1. A method of controlling data information between a plurality of portable apparatuses for use by a patient for medical self treatment, the treatment including a first operation and at least a second operation, said portable apparatuses comprising a first apparatus for performing the first operation, and at least a second apparatus for performing the second operation, characterized in
that each apparatus belonging to the medical self treatment has means for one or more of the following: storing, transmitting, receiving and displaying information, and
that an attempted data communication between said apparatuses is initiated on request.
2. A method according to claim 1, characterized in that program information having the highest priority with respect to control and monitoring of mutual data communication between said apparatuses is stored in one of said apparatuses.
3. A method according to claim 2, characterized in that said data communication is performed as data polling.
4. A method according to claim 2 or 3, characterized in that said program information of highest priority is stored in the apparatus which the patient most often carries.
5. A method according to claims 1-4, characterized in that said means are preadjusted to handle a common set of predetermined measuring and information representations.
6. A method according to claim 5, characterized in that one or more of said representations from said common set of measuring and information representations are stored in said apparatuses and communicated to said apparatus comprising program information of highest priority when said apparatus comprising program information is within range and ready for communication.
7. A method according to claim 5 or 6, characterized in that said common set of measuring and information representations is stored as one or more of the following representations:
amount of medication
type of medication
body fluid concentration
time stamp
amount of food
measurement of physical activity
notification
inventory logistics
body characteristics (e.g. weight, blood pressure).
8. A method according to claim 7, characterized in that said common set of measuring and information representations relates to one or more of the following medications
insulin
growth hormones
OHA (Oral Hyperglychemical Agent)
HRT (Hormone Replacement Therapy).
9. A method according to any one of the previous claims, characterized in that said program information of highest priority controls storing, transmitting, receiving and/or displaying information from/to an external unit.
10. A method according to claim 9, characterized in that said external unit is a computer.
11. A method according to claim 9, characterized in that said external unit is a database.
12. A medical system for use by a patient for medical self treatment, the treatment including a first operation and at least a second operation, the system comprising a first apparatus for performing the first operation and a second apparatus for performing the second operation, characterized in that each apparatus comprises means for storing and/or displaying information, and comprising means for transmitting and receiving of information so that each apparatus is able to exchange data with any of the other apparatuses belonging to the self treatment.
13. A medical system according to claim 12, characterized in that one of said apparatuses comprises program information having the highest priority with respect to control and monitoring of mutual data communication between said apparatuses.
14. A medical system according to claim 12, characterized in that said apparatus comprising program information of highest priority comprises means for storing, transmitting, receiving and/or displaying transmitted information from the other apparatuses.
15. A medical system according to claims 12-14, characterized in that said means are preadjusted to handle a common set of measuring and information representations.
16. A medical system according to claim 15, characterized in that said apparatuses comprise storing means for storing one or more representations from said common set of measuring and information representations when said apparatus comprising program information of highest priority is out of range for communication.
17. A medical system according to claim 16, characterized in that said common set of measuring and information representations comprises one or more of the following representations:
amount of medication
type of medication
body fluid concentration
time stamp
amount of food
measurement of physical activity
notification
inventory logistics
body characteristics.
18. A medical system according to claim 17, characterized in that said common set of measuring and information representations relates to one or more of the following medication:
insulin
growth hormones
OHA (Oral Hyperglychemical Agent)
HRT (Hormone Replacement therapy).
19. A medical system according to claim 13 or 14, characterized in that said apparatus comprising program information of highest priority comprises means for storing, transmitting, receiving and/or displaying information from/to an external unit.
20. A medical system according to claim 19, characterized in that said external unit is a computer.
21. A medical system according to claim 20, characterized in that said external unit is a database.
22. A medical system according to any one of the previous claims, characterized in that said first and second apparatuses are selected from the group of
a lancet device
a body fluid analyser
a drug administration system for administering, a predetermined dose of medication to the patient
a sensor for obtaining body characteristics.
23. A medical system according to claim 17 or 22, characterized in that said body fluid concentration is the blood glucose concentration.
24. A medical system according to claim 22 or 23, characterized in that said body fluid analyser is a blood glucose monitor.
25. A medical system according to claim 22, characterized in that said body fluid analyser is a lipid monitor.
26. A medical system according to claim 22, characterized in that said body characteristics is one or more of body weight and blood pressure.
27. A medical system according to claim 22, characterized in that said drug administration system is an insulin injecting device.
28. A medical system according to any one of claims 23-27, characterized in that said apparatus has one or more storage containers for storing a supply of one of more of the following:
a supply of lancets for the body fluid analyser or blood glucose monitor
a supply of test strips for the body fluid analyser or blood glucose monitor
an extra supply (carpoule) of insulin
a supply of needles.
29. A medical system according to claim 24, characterized in that said blood glucose monitor comprises storing, transmitting and/or displaying means for blood glucose level and/or time stamp.
30. A medical system according to claim 27, characterized in that said insulin injecting device comprises storing, transmitting, receiving and/or displaying means for a number of units of medication, type of medication and/or time stamp.
31. A medical system according to claim 28, characterized in that said one or more storage containers comprise storing, transmitting, receiving and/or displaying means for inventory logistics.
32. A medical system according to any one of the previous claims, characterized in that said system comprises means for presentation of choices to the patient for a given situation, said presentation being dependent on said patient's previous choices.
US10/342,150 1998-11-30 2003-01-14 Medical system and a method of controlling the system for use by a patient for medical self treatment Abandoned US20040039255A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/342,150 US20040039255A1 (en) 1998-11-30 2003-01-14 Medical system and a method of controlling the system for use by a patient for medical self treatment
US11/846,028 US20070293742A1 (en) 1998-11-30 2007-08-28 Medical System And A Method Of Controlling The System For Use By A Patient For Medical Self Treatment

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DKPA199801578 1998-11-30
DKPA199801578 1998-11-30
US11172198P 1998-12-09 1998-12-09
US09/450,193 US6540672B1 (en) 1998-12-09 1999-11-29 Medical system and a method of controlling the system for use by a patient for medical self treatment
US10/342,150 US20040039255A1 (en) 1998-11-30 2003-01-14 Medical system and a method of controlling the system for use by a patient for medical self treatment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/450,193 Continuation US6540672B1 (en) 1998-11-30 1999-11-29 Medical system and a method of controlling the system for use by a patient for medical self treatment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/846,028 Continuation US20070293742A1 (en) 1998-11-30 2007-08-28 Medical System And A Method Of Controlling The System For Use By A Patient For Medical Self Treatment

Publications (1)

Publication Number Publication Date
US20040039255A1 true US20040039255A1 (en) 2004-02-26

Family

ID=26809167

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/450,193 Expired - Lifetime US6540672B1 (en) 1998-11-30 1999-11-29 Medical system and a method of controlling the system for use by a patient for medical self treatment
US10/342,150 Abandoned US20040039255A1 (en) 1998-11-30 2003-01-14 Medical system and a method of controlling the system for use by a patient for medical self treatment

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/450,193 Expired - Lifetime US6540672B1 (en) 1998-11-30 1999-11-29 Medical system and a method of controlling the system for use by a patient for medical self treatment

Country Status (1)

Country Link
US (2) US6540672B1 (en)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050182358A1 (en) * 2003-11-06 2005-08-18 Veit Eric D. Drug delivery pen with event notification means
US20050182306A1 (en) * 2004-02-17 2005-08-18 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
WO2006021566A2 (en) * 2004-08-24 2006-03-02 Novo Nordisk A/S Giving a service to a patient
US7072738B2 (en) 2001-04-02 2006-07-04 Glaxo Group Limited Medicament dispenser
US20060231109A1 (en) * 2004-12-20 2006-10-19 Howell Thomas A Personal and portable bottle
US20060279431A1 (en) * 2005-06-08 2006-12-14 Agamatrix, Inc. Data collection system and interface
US20070078818A1 (en) * 2005-06-09 2007-04-05 Roche Diagnostics Operations, Inc. Device and method for insulin dosing
US20070142767A1 (en) * 2005-12-12 2007-06-21 Marcel Frikart System with A Portable Patient Device and External Operating Part
US20070225578A1 (en) * 2006-03-24 2007-09-27 Howell Thomas A Medical monitoring system
US20070233395A1 (en) * 2006-04-03 2007-10-04 Home Diagnostics, Inc. Diagnostic meter
US20080177149A1 (en) * 2006-06-16 2008-07-24 Stefan Weinert System and method for collecting patient information from which diabetes therapy may be determined
US7434724B2 (en) 2006-12-22 2008-10-14 Welch Allyn, Inc. Dynamic barcode for displaying medical data
US20080281179A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US20080278332A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US20080319296A1 (en) * 2007-06-21 2008-12-25 Abbott Diabetes Care, Inc. Health monitor
US20090105571A1 (en) * 2006-06-30 2009-04-23 Abbott Diabetes Care, Inc. Method and System for Providing Data Communication in Data Management Systems
US20090237262A1 (en) * 2008-03-21 2009-09-24 Lifescan Scotland Ltd. Analyte testing method and system
US20090284372A1 (en) * 2003-06-10 2009-11-19 Abbott Diabetes Care Inc. Glucose Measuring Device For Use In Personal Area Network
USD611151S1 (en) 2008-06-10 2010-03-02 Lifescan Scotland, Ltd. Test meter
USD611489S1 (en) 2008-07-25 2010-03-09 Lifescan, Inc. User interface display for a glucose meter
USD611372S1 (en) 2008-09-19 2010-03-09 Lifescan Scotland Limited Analyte test meter
USD611853S1 (en) 2008-03-21 2010-03-16 Lifescan Scotland Limited Analyte test meter
USD612274S1 (en) 2008-01-18 2010-03-23 Lifescan Scotland, Ltd. User interface in an analyte meter
USD612275S1 (en) 2008-03-21 2010-03-23 Lifescan Scotland, Ltd. Analyte test meter
US20100076284A1 (en) * 2007-06-21 2010-03-25 Abbott Diabetes Care Inc. Health Management Devices and Methods
USD615431S1 (en) 2008-03-21 2010-05-11 Lifescan Scotland Limited Analyte test meter
US20100274220A1 (en) * 2005-11-04 2010-10-28 Abbott Diabetes Care Inc. Method and System for Providing Basal Profile Modification in Analyte Monitoring and Management Systems
US20110053844A1 (en) * 2007-08-27 2011-03-03 Walter Hinderer Liquid formulation of g-csf conjugate
US20110054282A1 (en) * 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte Monitoring System and Methods for Managing Power and Noise
US20110060530A1 (en) * 2009-08-31 2011-03-10 Abbott Diabetes Care Inc. Analyte Signal Processing Device and Methods
US8118740B2 (en) 2004-12-20 2012-02-21 Ipventure, Inc. Moisture sensor for skin
US8202217B2 (en) 2004-12-20 2012-06-19 Ip Venture, Inc. Healthcare base
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8593287B2 (en) 2007-05-08 2013-11-26 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8593109B2 (en) 2006-03-31 2013-11-26 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8597575B2 (en) 2006-03-31 2013-12-03 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8698615B2 (en) 2007-04-14 2014-04-15 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8715177B2 (en) * 2000-10-06 2014-05-06 Ip Holdings, Inc. Intelligent drug delivery appliance
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
WO2016007935A3 (en) * 2014-07-10 2016-04-07 Companion Medical, Inc. Medicine administering system including injection pen and companion device
US9526920B2 (en) 2010-10-12 2016-12-27 Smith & Nephew, Inc. Medical device
US9532737B2 (en) 2011-02-28 2017-01-03 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9574914B2 (en) 2007-05-08 2017-02-21 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9737649B2 (en) 2013-03-14 2017-08-22 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US9962091B2 (en) 2002-12-31 2018-05-08 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US10022499B2 (en) 2007-02-15 2018-07-17 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US10136816B2 (en) 2009-08-31 2018-11-27 Abbott Diabetes Care Inc. Medical devices and methods
US10155070B2 (en) 2013-08-13 2018-12-18 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10328188B2 (en) 2013-03-14 2019-06-25 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10549016B2 (en) 2014-12-30 2020-02-04 Smith & Nephew, Inc. Blockage detection in reduced pressure therapy
US10556045B2 (en) 2014-12-30 2020-02-11 Smith & Nephew, Inc. Synchronous pressure sampling and supply of negative pressure in negative pressure wound therapy
USD892819S1 (en) 2018-06-20 2020-08-11 Companion Medical, Inc. Display screen with graphical user interface
USD893020S1 (en) 2018-05-11 2020-08-11 Companion Medical, Inc. Injection pen
US10744239B2 (en) 2014-07-31 2020-08-18 Smith & Nephew, Inc. Leak detection in negative pressure wound therapy system
US10754927B2 (en) 2013-09-26 2020-08-25 Companion Medical, Inc. System for administering a medicament
US10864327B2 (en) 2016-01-29 2020-12-15 Companion Medical, Inc. Automatic medication delivery tracking
US10898653B2 (en) 2018-05-08 2021-01-26 Companion Medical, Inc. Intelligent medication delivery systems and methods for dose setting and dispensing monitoring
US11006870B2 (en) 2009-02-03 2021-05-18 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11294407B2 (en) 2001-04-27 2022-04-05 Roche Diabetes Care, Inc. Device and method for insulin dosing
US11315681B2 (en) 2015-10-07 2022-04-26 Smith & Nephew, Inc. Reduced pressure therapy device operation and authorization monitoring
US11383043B2 (en) 2017-12-12 2022-07-12 Bigfoot Biomedical, Inc. Medicine injection and disease management systems, devices, and methods
US11464459B2 (en) 2017-12-12 2022-10-11 Bigfoot Biomedical, Inc. User interface for diabetes management systems including flash glucose monitor
US11484657B2 (en) 2017-06-09 2022-11-01 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods
US11568975B2 (en) 2017-10-12 2023-01-31 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods for dose recommendation and management
US11587663B2 (en) 2018-06-20 2023-02-21 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods for medicine dose calculation and reporting
US11602461B2 (en) 2016-05-13 2023-03-14 Smith & Nephew, Inc. Automatic wound coupling detection in negative pressure wound therapy systems
US11664107B2 (en) 2018-05-08 2023-05-30 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods using a prescription-regulated software application
US11701473B2 (en) 2021-06-23 2023-07-18 Medtronic Minimed, Inc. Reusable injection pens
US11793936B2 (en) 2009-05-29 2023-10-24 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US11844923B2 (en) 2017-12-12 2023-12-19 Bigfoot Biomedical, Inc. Devices, systems, and methods for estimating active medication from injections
US11896797B2 (en) 2017-12-12 2024-02-13 Bigfoot Biomedical, Inc. Pen cap for insulin injection pens and associated methods and systems
US11918789B2 (en) 2021-08-16 2024-03-05 Bigfoot Biomedical, Inc. Therapy management systems, methods, and devices

Families Citing this family (345)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6036924A (en) 1997-12-04 2000-03-14 Hewlett-Packard Company Cassette of lancet cartridges for sampling blood
US6391005B1 (en) 1998-03-30 2002-05-21 Agilent Technologies, Inc. Apparatus and method for penetration with shaft having a sensor for sensing penetration depth
US6554798B1 (en) 1998-08-18 2003-04-29 Medtronic Minimed, Inc. External infusion device with remote programming, bolus estimator and/or vibration alarm capabilities
US6558320B1 (en) * 2000-01-20 2003-05-06 Medtronic Minimed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
US6540672B1 (en) * 1998-12-09 2003-04-01 Novo Nordisk A/S Medical system and a method of controlling the system for use by a patient for medical self treatment
JP2002531884A (en) * 1998-11-30 2002-09-24 ノボ ノルディスク アクティーゼルスカブ Method and system for assisting a user in self-treatment involving multiple actions
US9006175B2 (en) 1999-06-29 2015-04-14 Mannkind Corporation Potentiation of glucose elimination
AU2001223397A1 (en) * 2000-02-01 2001-08-14 Disetronic Licensing Ag Configurable device and method for releasing a substance
EP1267708A4 (en) * 2000-03-29 2006-04-12 Univ Virginia Method, system, and computer program product for the evaluation of glycemic control in diabetes from self-monitoring data
US11087873B2 (en) 2000-05-18 2021-08-10 Carefusion 303, Inc. Context-aware healthcare notification system
US9741001B2 (en) 2000-05-18 2017-08-22 Carefusion 303, Inc. Predictive medication safety
CZ20023818A3 (en) 2000-05-18 2003-06-18 Alaris Meidical Systems, Inc. System and method for management of information concerning provision of medical care
US7860583B2 (en) 2004-08-25 2010-12-28 Carefusion 303, Inc. System and method for dynamically adjusting patient therapy
US9427520B2 (en) 2005-02-11 2016-08-30 Carefusion 303, Inc. Management of pending medication orders
US10353856B2 (en) 2011-03-17 2019-07-16 Carefusion 303, Inc. Scalable communication system
US9069887B2 (en) 2000-05-18 2015-06-30 Carefusion 303, Inc. Patient-specific medication management system
US10062457B2 (en) 2012-07-26 2018-08-28 Carefusion 303, Inc. Predictive notifications for adverse patient events
WO2001093179A2 (en) * 2000-05-26 2001-12-06 Bayer Corporation Medical management system
US8641644B2 (en) 2000-11-21 2014-02-04 Sanofi-Aventis Deutschland Gmbh Blood testing apparatus having a rotatable cartridge with multiple lancing elements and testing means
CN100339044C (en) * 2001-03-29 2007-09-26 因弗内斯医疗有限公司 Integrated measuring apparatus for testing samples
US20020143434A1 (en) * 2001-03-29 2002-10-03 John Greeven Method and apparatus for delivering and refilling pharmaceuticals
EP1397068A2 (en) 2001-04-02 2004-03-17 Therasense, Inc. Blood glucose tracking apparatus and methods
GB0108213D0 (en) * 2001-04-02 2001-05-23 Glaxo Group Ltd Medicament dispenser
GB0108215D0 (en) * 2001-04-02 2001-05-23 Glaxo Group Ltd Medicament dispenser
GB0108208D0 (en) * 2001-04-02 2001-05-23 Glaxo Group Ltd Medicament dispenser
US9427532B2 (en) 2001-06-12 2016-08-30 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US9795747B2 (en) 2010-06-02 2017-10-24 Sanofi-Aventis Deutschland Gmbh Methods and apparatus for lancet actuation
WO2002100254A2 (en) 2001-06-12 2002-12-19 Pelikan Technologies, Inc. Method and apparatus for lancet launching device integrated onto a blood-sampling cartridge
EP1395185B1 (en) 2001-06-12 2010-10-27 Pelikan Technologies Inc. Electric lancet actuator
US7041068B2 (en) 2001-06-12 2006-05-09 Pelikan Technologies, Inc. Sampling module device and method
US8337419B2 (en) 2002-04-19 2012-12-25 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7344507B2 (en) 2002-04-19 2008-03-18 Pelikan Technologies, Inc. Method and apparatus for lancet actuation
US9226699B2 (en) 2002-04-19 2016-01-05 Sanofi-Aventis Deutschland Gmbh Body fluid sampling module with a continuous compression tissue interface surface
US7981056B2 (en) 2002-04-19 2011-07-19 Pelikan Technologies, Inc. Methods and apparatus for lancet actuation
US7682318B2 (en) 2001-06-12 2010-03-23 Pelikan Technologies, Inc. Blood sampling apparatus and method
CA2448902C (en) 2001-06-12 2010-09-07 Pelikan Technologies, Inc. Self optimizing lancing device with adaptation means to temporal variations in cutaneous properties
ES2357887T3 (en) 2001-06-12 2011-05-03 Pelikan Technologies Inc. APPARATUS FOR IMPROVING THE BLOOD OBTAINING SUCCESS RATE FROM A CAPILLARY PUNCTURE.
US7044911B2 (en) 2001-06-29 2006-05-16 Philometron, Inc. Gateway platform for biological monitoring and delivery of therapeutic compounds
US20080177154A1 (en) * 2001-08-13 2008-07-24 Novo Nordisk A/S Portable Device and Method Of Communicating Medical Data Information
WO2003015629A1 (en) * 2001-08-20 2003-02-27 Inverness Medical Limited Wireless diabetes management devices and methods for using the same
ES2425392T3 (en) 2002-03-20 2013-10-15 Mannkind Corporation Cartridge for an inhalation device
US8702624B2 (en) 2006-09-29 2014-04-22 Sanofi-Aventis Deutschland Gmbh Analyte measurement device with a single shot actuator
US8267870B2 (en) 2002-04-19 2012-09-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling with hybrid actuation
US9248267B2 (en) 2002-04-19 2016-02-02 Sanofi-Aventis Deustchland Gmbh Tissue penetration device
US7291117B2 (en) 2002-04-19 2007-11-06 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8221334B2 (en) 2002-04-19 2012-07-17 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7229458B2 (en) 2002-04-19 2007-06-12 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7331931B2 (en) 2002-04-19 2008-02-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9314194B2 (en) 2002-04-19 2016-04-19 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
US7976476B2 (en) 2002-04-19 2011-07-12 Pelikan Technologies, Inc. Device and method for variable speed lancet
US8579831B2 (en) 2002-04-19 2013-11-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7547287B2 (en) 2002-04-19 2009-06-16 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7232451B2 (en) 2002-04-19 2007-06-19 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7909778B2 (en) 2002-04-19 2011-03-22 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8372016B2 (en) 2002-04-19 2013-02-12 Sanofi-Aventis Deutschland Gmbh Method and apparatus for body fluid sampling and analyte sensing
US7491178B2 (en) 2002-04-19 2009-02-17 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US8360992B2 (en) 2002-04-19 2013-01-29 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US7674232B2 (en) 2002-04-19 2010-03-09 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7901362B2 (en) 2002-04-19 2011-03-08 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7297122B2 (en) 2002-04-19 2007-11-20 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US9795334B2 (en) 2002-04-19 2017-10-24 Sanofi-Aventis Deutschland Gmbh Method and apparatus for penetrating tissue
US8784335B2 (en) 2002-04-19 2014-07-22 Sanofi-Aventis Deutschland Gmbh Body fluid sampling device with a capacitive sensor
US7648468B2 (en) 2002-04-19 2010-01-19 Pelikon Technologies, Inc. Method and apparatus for penetrating tissue
US7892183B2 (en) 2002-04-19 2011-02-22 Pelikan Technologies, Inc. Method and apparatus for body fluid sampling and analyte sensing
US7198606B2 (en) 2002-04-19 2007-04-03 Pelikan Technologies, Inc. Method and apparatus for a multi-use body fluid sampling device with analyte sensing
US7717863B2 (en) 2002-04-19 2010-05-18 Pelikan Technologies, Inc. Method and apparatus for penetrating tissue
US7371247B2 (en) 2002-04-19 2008-05-13 Pelikan Technologies, Inc Method and apparatus for penetrating tissue
DE10219098A1 (en) * 2002-04-29 2003-11-13 Siemens Ag Patient medical data access management system comprises a centralized or decentralized data record, e.g. a CD-RW disk, with biometric or password controlled access and an expert system for preventing examination duplication
US20060213921A1 (en) * 2005-03-23 2006-09-28 Gazi Abdulhay Pill dispensing apparatus
US7048141B2 (en) * 2002-05-14 2006-05-23 Antioch Holdings, Inc. Personal medication dispenser
US20050160858A1 (en) * 2002-07-24 2005-07-28 M 2 Medical A/S Shape memory alloy actuator
JP2005533545A (en) * 2002-07-24 2005-11-10 エム2・メディカル・アクティーゼルスカブ Infusion pump system, infusion pump unit, infusion pump
CN1726059A (en) 2002-11-05 2006-01-25 M2医药有限公司 Disposable wearable insulin dispensing device, a combination of such a device and a programming controller and a method of controlling the operation of such a device
WO2004056411A2 (en) * 2002-12-23 2004-07-08 M 2 Medical A/S Flexible piston rod
ATE385814T1 (en) * 2002-12-23 2008-03-15 M2 Medical As MEDICAL DEVICE FOR DELIVERING INSULIN
US8574895B2 (en) 2002-12-30 2013-11-05 Sanofi-Aventis Deutschland Gmbh Method and apparatus using optical techniques to measure analyte levels
EP1628567B1 (en) 2003-05-30 2010-08-04 Pelikan Technologies Inc. Method and apparatus for fluid injection
ES2490740T3 (en) 2003-06-06 2014-09-04 Sanofi-Aventis Deutschland Gmbh Apparatus for blood fluid sampling and analyte detection
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
WO2006001797A1 (en) 2004-06-14 2006-01-05 Pelikan Technologies, Inc. Low pain penetrating
US20060241666A1 (en) * 2003-06-11 2006-10-26 Briggs Barry D Method and apparatus for body fluid sampling and analyte sensing
US20050055243A1 (en) * 2003-06-30 2005-03-10 Dave Arndt Method and apparatus for managing data received from a medical device
US7722536B2 (en) * 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
EP1671096A4 (en) 2003-09-29 2009-09-16 Pelikan Technologies Inc Method and apparatus for an improved sample capture device
US8065161B2 (en) 2003-11-13 2011-11-22 Hospira, Inc. System for maintaining drug information and communicating with medication delivery devices
US9123077B2 (en) 2003-10-07 2015-09-01 Hospira, Inc. Medication management system
EP1680014A4 (en) 2003-10-14 2009-01-21 Pelikan Technologies Inc Method and apparatus for a variable user interface
EP1683058A2 (en) * 2003-10-29 2006-07-26 Novo Nordisk A/S Medical advisory system
US20050108053A1 (en) * 2003-11-14 2005-05-19 Jones Miles J.Jr. Interactive internet medical pharmaceutical prescribing system
WO2005065414A2 (en) 2003-12-31 2005-07-21 Pelikan Technologies, Inc. Method and apparatus for improving fluidic flow and sample capture
US7822454B1 (en) 2005-01-03 2010-10-26 Pelikan Technologies, Inc. Fluid sampling device with improved analyte detecting member configuration
US7753879B2 (en) * 2004-01-29 2010-07-13 M2 Group Holdings, Inc. Disposable medicine dispensing device
JP2007524312A (en) * 2004-02-26 2007-08-23 ノボ・ノルデイスク・エー/エス Method and system for secure pairing of wireless communication devices
WO2005091540A1 (en) * 2004-03-19 2005-09-29 Novo Nordisk A/S A reduced size transmission data packet header format for a medical device
JP2007535974A (en) * 2004-03-26 2007-12-13 ノボ・ノルデイスク・エー/エス Display device for related data of diabetic patients
ES2772853T3 (en) * 2004-04-30 2020-07-08 Becton Dickinson Co Systems and procedures for administering a medical regimen
US8828203B2 (en) 2004-05-20 2014-09-09 Sanofi-Aventis Deutschland Gmbh Printable hydrogels for biosensors
US9775553B2 (en) 2004-06-03 2017-10-03 Sanofi-Aventis Deutschland Gmbh Method and apparatus for a fluid sampling device
WO2005120365A1 (en) 2004-06-03 2005-12-22 Pelikan Technologies, Inc. Method and apparatus for a fluid sampling device
CA3090413C (en) 2004-06-04 2023-10-10 Abbott Diabetes Care Inc. Glucose monitoring and graphical representations in a data management system
US7344500B2 (en) * 2004-07-27 2008-03-18 Medtronic Minimed, Inc. Sensing system with auxiliary display
ES2385934T3 (en) 2004-08-20 2012-08-03 Mannkind Corporation CATALYSIS OF THE SYNTHESIS OF DICETOPIPERAZINA.
WO2006023943A1 (en) 2004-08-23 2006-03-02 Mannkind Corporation Diketopiperazine salts, diketomorpholine salts or diketodioxane salts for drug delivery
US7608042B2 (en) * 2004-09-29 2009-10-27 Intellidx, Inc. Blood monitoring system
US20060229531A1 (en) * 2005-02-01 2006-10-12 Daniel Goldberger Blood monitoring system
US20070191716A1 (en) * 2004-09-29 2007-08-16 Daniel Goldberger Blood monitoring system
US20080171913A1 (en) * 2004-11-15 2008-07-17 Novo Nordisk A/S Method and Apparatus for Monitoring Long Term and Short Term Effects of a Treatment
US7749194B2 (en) 2005-02-01 2010-07-06 Intelliject, Inc. Devices, systems, and methods for medicament delivery
DE102004057503B4 (en) * 2004-11-29 2013-11-21 Roche Diagnostics Gmbh Diagnostic system for determining substance concentrations in liquid samples
EP1669020A1 (en) * 2004-12-07 2006-06-14 Roche Diagnostics GmbH Storage case with integrated functions
US8652831B2 (en) 2004-12-30 2014-02-18 Sanofi-Aventis Deutschland Gmbh Method and apparatus for analyte measurement test time
ITBO20050002A1 (en) * 2005-01-04 2006-07-05 Giacomo Vespasiani METHOD AND SYSTEM FOR INTERACTIVE MANAGEMENT OF DATA CONCERNING AN INSULIN THERAPY IN SELF-CONTROL FOR A DIABETIC PATIENT
US8202245B2 (en) * 2005-01-26 2012-06-19 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US7731686B2 (en) * 2005-02-01 2010-06-08 Intelliject, Inc. Devices, systems and methods for medicament delivery
US8206360B2 (en) 2005-02-01 2012-06-26 Intelliject, Inc. Devices, systems and methods for medicament delivery
US8361026B2 (en) 2005-02-01 2013-01-29 Intelliject, Inc. Apparatus and methods for self-administration of vaccines and other medicaments
US9022980B2 (en) 2005-02-01 2015-05-05 Kaleo, Inc. Medical injector simulation device
US8231573B2 (en) 2005-02-01 2012-07-31 Intelliject, Inc. Medicament delivery device having an electronic circuit system
US7785258B2 (en) * 2005-10-06 2010-08-31 Optiscan Biomedical Corporation System and method for determining a treatment dose for a patient
US8251907B2 (en) * 2005-02-14 2012-08-28 Optiscan Biomedical Corporation System and method for determining a treatment dose for a patient
WO2006105793A1 (en) 2005-04-06 2006-10-12 M 2 Medical A/S Method and device for dispensing liquid medicine by means of a twistable element
US20090227855A1 (en) * 2005-08-16 2009-09-10 Medtronic Minimed, Inc. Controller device for an infusion pump
ES2640282T3 (en) 2005-09-14 2017-11-02 Mannkind Corporation Drug formulation method based on increasing the affinity of crystalline microparticle surfaces for active agents
US8551046B2 (en) 2006-09-18 2013-10-08 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
EP2162168B1 (en) * 2005-09-26 2018-11-07 Bigfoot Biomedical, Inc. Modular infusion pump having two different energy sources
US7534226B2 (en) 2005-09-26 2009-05-19 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8105279B2 (en) 2005-09-26 2012-01-31 M2 Group Holdings, Inc. Dispensing fluid from an infusion pump system
US8409142B2 (en) * 2005-09-26 2013-04-02 Asante Solutions, Inc. Operating an infusion pump system
US8057436B2 (en) 2005-09-26 2011-11-15 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
US8951190B2 (en) * 2005-09-28 2015-02-10 Zin Technologies, Inc. Transfer function control for biometric monitoring system
US8764654B2 (en) 2008-03-19 2014-07-01 Zin Technologies, Inc. Data acquisition for modular biometric monitoring system
US20070073266A1 (en) * 2005-09-28 2007-03-29 Zin Technologies Compact wireless biometric monitoring and real time processing system
EP3064236B1 (en) * 2005-11-08 2020-02-05 Bigfoot Biomedical, Inc. Method and system for manual and autonomous control of an infusion pump
WO2007056504A1 (en) * 2005-11-08 2007-05-18 M2 Medical A/S Infusion pump system
DE102006051562A1 (en) * 2005-11-15 2007-05-16 Weinmann G Geraete Med Signal emitter for forming signals from measured physiological variable values, especially to control therapeutic devices, by detecting electromagnetic waves passed through or reflected from sample
US20080200838A1 (en) * 2005-11-28 2008-08-21 Daniel Goldberger Wearable, programmable automated blood testing system
US20070123801A1 (en) * 2005-11-28 2007-05-31 Daniel Goldberger Wearable, programmable automated blood testing system
JP5292104B2 (en) * 2006-01-05 2013-09-18 ユニバーシティ オブ バージニア パテント ファウンデーション Computer-implemented method, system, and computer program for evaluating blood glucose variability in diabetes from self-monitoring data
US8039431B2 (en) 2006-02-22 2011-10-18 Mannkind Corporation Method for improving the pharmaceutic properties of microparticles comprising diketopiperazine and an active agent
WO2007112034A2 (en) 2006-03-23 2007-10-04 Becton, Dickinson And Company System and methods for improved diabetes data management and use
DE502006000203D1 (en) * 2006-03-30 2008-01-10 Roche Diagnostics Gmbh Infusion system with an infusion unit and a remote control unit
US20070260480A1 (en) * 2006-05-04 2007-11-08 Johan Cederlund Managing health related variables in a remote data collection system
US8092385B2 (en) * 2006-05-23 2012-01-10 Intellidx, Inc. Fluid access interface
US20070276197A1 (en) * 2006-05-24 2007-11-29 Lifescan, Inc. Systems and methods for providing individualized disease management
CA2666509C (en) 2006-10-16 2017-05-09 Hospira, Inc. System and method for comparing and utilizing activity information and configuration information from multiple medical device management systems
US20080139910A1 (en) * 2006-12-06 2008-06-12 Metronic Minimed, Inc. Analyte sensor and method of using the same
US20080154513A1 (en) * 2006-12-21 2008-06-26 University Of Virginia Patent Foundation Systems, Methods and Computer Program Codes for Recognition of Patterns of Hyperglycemia and Hypoglycemia, Increased Glucose Variability, and Ineffective Self-Monitoring in Diabetes
WO2008091838A2 (en) 2007-01-22 2008-07-31 Intelliject, Inc. Medical injector with compliance tracking and monitoring
WO2008111937A1 (en) * 2007-03-12 2008-09-18 Bayer Healthcare Llc Analyte-testing instruments
US20100099192A1 (en) * 2007-03-12 2010-04-22 Bayer Healthcare, Llc Test-sensor cartridge
US20080235053A1 (en) * 2007-03-20 2008-09-25 Pinaki Ray Communication medium for diabetes management
US8758245B2 (en) * 2007-03-20 2014-06-24 Lifescan, Inc. Systems and methods for pattern recognition in diabetes management
US20080234943A1 (en) * 2007-03-20 2008-09-25 Pinaki Ray Computer program for diabetes management
WO2008137405A1 (en) * 2007-05-01 2008-11-13 F. Hoffmann-La Roche Ag Management of inhalable insulin data
US8417311B2 (en) 2008-09-12 2013-04-09 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US7892199B2 (en) 2007-05-21 2011-02-22 Asante Solutions, Inc. Occlusion sensing for an infusion pump
US7833196B2 (en) * 2007-05-21 2010-11-16 Asante Solutions, Inc. Illumination instrument for an infusion pump
US7794426B2 (en) 2007-05-21 2010-09-14 Asante Solutions, Inc. Infusion pump system with contamination-resistant features
US7981102B2 (en) * 2007-05-21 2011-07-19 Asante Solutions, Inc. Removable controller for an infusion pump
US7828528B2 (en) * 2007-09-06 2010-11-09 Asante Solutions, Inc. Occlusion sensing system for infusion pumps
US7717903B2 (en) * 2007-09-06 2010-05-18 M2 Group Holdings, Inc. Operating an infusion pump system
US7935105B2 (en) * 2007-09-07 2011-05-03 Asante Solutions, Inc. Data storage for an infusion pump system
US7935076B2 (en) 2007-09-07 2011-05-03 Asante Solutions, Inc. Activity sensing techniques for an infusion pump system
US8287514B2 (en) 2007-09-07 2012-10-16 Asante Solutions, Inc. Power management techniques for an infusion pump system
US7879026B2 (en) * 2007-09-07 2011-02-01 Asante Solutions, Inc. Controlled adjustment of medicine dispensation from an infusion pump device
CA2702116C (en) 2007-10-10 2021-01-05 Optiscan Biomedical Corporation Fluid component analysis system and method for glucose monitoring and control
US8517990B2 (en) 2007-12-18 2013-08-27 Hospira, Inc. User interface improvements for medical devices
DK2073135T3 (en) * 2007-12-21 2019-01-02 Hoffmann La Roche Blood glucose system with time synchronization
US9550031B2 (en) 2008-02-01 2017-01-24 Reciprocal Labs Corporation Device and method to monitor, track, map, and analyze usage of metered-dose inhalers in real-time
US8234126B1 (en) 2008-02-12 2012-07-31 Asante Solutions, Inc. Distribution of infusion pumps
US20090240127A1 (en) * 2008-03-20 2009-09-24 Lifescan, Inc. Methods of determining pre or post meal time slots or intervals in diabetes management
US9220456B2 (en) 2008-04-04 2015-12-29 Hygieia, Inc. Systems, methods and devices for achieving glycemic balance
US10624577B2 (en) 2008-04-04 2020-04-21 Hygieia, Inc. Systems, devices, and methods for alleviating glucotoxicity and restoring pancreatic beta-cell function in advanced diabetes mellitus
NO2260423T3 (en) 2008-04-04 2018-07-28
WO2009126900A1 (en) 2008-04-11 2009-10-15 Pelikan Technologies, Inc. Method and apparatus for analyte detecting device
WO2009131664A2 (en) * 2008-04-21 2009-10-29 Carl Frederick Edman Metabolic energy monitoring system
US20100256047A1 (en) * 2009-04-03 2010-10-07 Lifescan, Inc. Analyte Measurement and Management Device and Associated Methods
USD994111S1 (en) 2008-05-12 2023-08-01 Kaleo, Inc. Medicament delivery device cover
US8052645B2 (en) 2008-07-23 2011-11-08 Avant Medical Corp. System and method for an injection using a syringe needle
US8177749B2 (en) 2008-05-20 2012-05-15 Avant Medical Corp. Cassette for a hidden injection needle
EP2276527B1 (en) 2008-05-20 2018-02-28 Avant Medical Corp. Autoinjector system
US8132037B2 (en) * 2008-06-06 2012-03-06 Roche Diagnostics International Ag Apparatus and method for processing wirelessly communicated data and clock information within an electronic device
US8117481B2 (en) * 2008-06-06 2012-02-14 Roche Diagnostics International Ag Apparatus and method for processing wirelessly communicated information within an electronic device
CN104689432B (en) 2008-06-13 2018-07-06 曼金德公司 Diskus and the system for drug conveying
US8485180B2 (en) 2008-06-13 2013-07-16 Mannkind Corporation Dry powder drug delivery system
CN102065942B (en) 2008-06-20 2013-12-11 曼金德公司 An interactive apparatus and method for real-time profiling of inhalation efforts
TWI532497B (en) 2008-08-11 2016-05-11 曼凱公司 Use of ultrarapid acting insulin
US7959598B2 (en) 2008-08-20 2011-06-14 Asante Solutions, Inc. Infusion pump systems and methods
US8992464B2 (en) 2008-11-11 2015-03-31 Hygieia, Inc. Apparatus and system for diabetes management
US8314106B2 (en) 2008-12-29 2012-11-20 Mannkind Corporation Substituted diketopiperazine analogs for use as drug delivery agents
US9375169B2 (en) 2009-01-30 2016-06-28 Sanofi-Aventis Deutschland Gmbh Cam drive for managing disposable penetrating member actions with a single motor and motor and control system
JP5711157B2 (en) 2009-02-27 2015-04-30 ライフスキャン・インコーポレイテッドLifescan,Inc. Drug delivery management system and method
CA2754595C (en) 2009-03-11 2017-06-27 Mannkind Corporation Apparatus, system and method for measuring resistance of an inhaler
US8753290B2 (en) * 2009-03-27 2014-06-17 Intellectual Inspiration, Llc Fluid transfer system and method
US8271106B2 (en) 2009-04-17 2012-09-18 Hospira, Inc. System and method for configuring a rule set for medical event management and responses
WO2010144789A2 (en) 2009-06-12 2010-12-16 Mannkind Corporation Diketopiperazine microparticles with defined specific surface areas
BRPI1015922A2 (en) * 2009-06-30 2016-04-26 Lifescan Inc systems and methods for testing analytes
CA2778698A1 (en) 2009-11-03 2011-05-12 Mannkind Corporation An apparatus and method for simulating inhalation efforts
US8771251B2 (en) * 2009-12-17 2014-07-08 Hospira, Inc. Systems and methods for managing and delivering patient therapy through electronic drug delivery systems
US9750896B2 (en) * 2010-02-05 2017-09-05 Deka Products Limited Partnership Infusion pump apparatus, method and system
US11660392B2 (en) 2010-02-05 2023-05-30 Deka Products Limited Partnership Devices, methods and systems for wireless control of medical devices
WO2011112972A2 (en) * 2010-03-11 2011-09-15 Philometron, Inc. Physiological monitor system for determining medication delivery and outcome
TW201808357A (en) * 2010-03-22 2018-03-16 賽諾菲阿凡提斯德意志有限公司 Device, method, system and computer program for drtermining information related to a medical device
US8965476B2 (en) 2010-04-16 2015-02-24 Sanofi-Aventis Deutschland Gmbh Tissue penetration device
USD669165S1 (en) 2010-05-27 2012-10-16 Asante Solutions, Inc. Infusion pump
EP2582421A1 (en) 2010-06-21 2013-04-24 MannKind Corporation Dry powder drug delivery system and methods
US8676600B2 (en) 2010-08-12 2014-03-18 Fenwal, Inc Mobile applications for blood centers
US11901069B2 (en) 2010-08-12 2024-02-13 Fenwal, Inc. Processing blood donation data for presentation on operator interface
US10201296B2 (en) 2010-11-11 2019-02-12 Ascensia Diabetes Care Holdings Ag Apparatus, systems, and methods adapted to transmit analyte data having common electronic architecture
US9173999B2 (en) 2011-01-26 2015-11-03 Kaleo, Inc. Devices and methods for delivering medicaments from a multi-chamber container
US8627816B2 (en) 2011-02-28 2014-01-14 Intelliject, Inc. Medicament delivery device for administration of opioid antagonists including formulations for naloxone
US8939943B2 (en) 2011-01-26 2015-01-27 Kaleo, Inc. Medicament delivery device for administration of opioid antagonists including formulations for naloxone
US8852152B2 (en) 2011-02-09 2014-10-07 Asante Solutions, Inc. Infusion pump systems and methods
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US8454581B2 (en) 2011-03-16 2013-06-04 Asante Solutions, Inc. Infusion pump systems and methods
CA3078334C (en) 2011-04-01 2022-08-09 Mannkind Corporation Blister package for pharmaceutical cartridges
SI2699293T1 (en) 2011-04-20 2019-05-31 Amgen Inc. Autoinjector apparatus
WO2012174472A1 (en) 2011-06-17 2012-12-20 Mannkind Corporation High capacity diketopiperazine microparticles
US8585657B2 (en) 2011-06-21 2013-11-19 Asante Solutions, Inc. Dispensing fluid from an infusion pump system
AU2012299169B2 (en) 2011-08-19 2017-08-24 Icu Medical, Inc. Systems and methods for a graphical interface including a graphical representation of medical data
US8808230B2 (en) 2011-09-07 2014-08-19 Asante Solutions, Inc. Occlusion detection for an infusion pump system
EP2769357B1 (en) 2011-10-21 2023-08-30 ICU Medical, Inc. Medical device update system
MX2014004983A (en) 2011-10-24 2014-09-22 Mannkid Corp Methods and compositions for treating pain.
US10022498B2 (en) 2011-12-16 2018-07-17 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
WO2013148798A1 (en) 2012-03-30 2013-10-03 Hospira, Inc. Air detection system and method for detecting air in a pump of an infusion system
USD898908S1 (en) 2012-04-20 2020-10-13 Amgen Inc. Pharmaceutical product cassette for an injection device
US9522235B2 (en) 2012-05-22 2016-12-20 Kaleo, Inc. Devices and methods for delivering medicaments from a multi-chamber container
US20130338464A1 (en) * 2012-06-19 2013-12-19 DENNIS Ryan STAINKEN Self-contained blood glucose testing apparatus
US11253661B2 (en) 2012-06-25 2022-02-22 Gecko Health Innovations, Inc. Devices, systems, and methods for adherence monitoring and patient interaction
CA3098386C (en) 2012-07-12 2022-11-29 Mannkind Corporation Dry powder drug delivery systems and methods
US8454557B1 (en) 2012-07-19 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
US8454562B1 (en) 2012-07-20 2013-06-04 Asante Solutions, Inc. Infusion pump system and method
CA3089257C (en) 2012-07-31 2023-07-25 Icu Medical, Inc. Patient care system for critical medications
GB2507104A (en) * 2012-10-19 2014-04-23 Nicoventures Holdings Ltd Electronic inhalation device
WO2014066856A1 (en) 2012-10-26 2014-05-01 Mannkind Corporation Inhalable influenza vaccine compositions and methods
US9402954B1 (en) * 2012-12-10 2016-08-02 Richard S. Slevin Medical injector
US9427523B2 (en) 2012-12-10 2016-08-30 Bigfoot Biomedical, Inc. Infusion pump system and method
US20140276536A1 (en) 2013-03-14 2014-09-18 Asante Solutions, Inc. Infusion Pump System and Methods
CA2896746A1 (en) 2012-12-27 2014-07-03 Kaleo, Inc. Devices, systems and methods for locating and interacting with medicament delivery systems
US9351670B2 (en) 2012-12-31 2016-05-31 Abbott Diabetes Care Inc. Glycemic risk determination based on variability of glucose levels
US10383580B2 (en) 2012-12-31 2019-08-20 Abbott Diabetes Care Inc. Analysis of glucose median, variability, and hypoglycemia risk for therapy guidance
JP6366607B2 (en) 2013-01-15 2018-08-01 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Auxiliary devices attached to medical injection devices to generate usage reports in digital image format for use of injection devices
US11182728B2 (en) 2013-01-30 2021-11-23 Carefusion 303, Inc. Medication workflow management
US10430554B2 (en) 2013-05-23 2019-10-01 Carefusion 303, Inc. Medication preparation queue
US9446186B2 (en) 2013-03-01 2016-09-20 Bigfoot Biomedical, Inc. Operating an infusion pump system
EP2964079B1 (en) 2013-03-06 2022-02-16 ICU Medical, Inc. Medical device communication method
EP4195119A1 (en) 2013-03-13 2023-06-14 Carefusion 303 Inc. Predictive medication safety
CN105074765B (en) 2013-03-13 2022-05-24 康尔福盛303公司 Patient-specific medication management system
JP6336564B2 (en) 2013-03-15 2018-06-06 アムゲン・インコーポレーテッド Drug cassette, auto-injector, and auto-injector system
WO2014144895A1 (en) 2013-03-15 2014-09-18 Mannkind Corporation Microcrystalline diketopiperazine compositions and methods
TWI614041B (en) 2013-03-15 2018-02-11 安美基公司 Cassette for an injector
EP3409201A1 (en) 2013-03-15 2018-12-05 Abbott Diabetes Care, Inc. System and method to manage diabetes based on glucose median, glucose variability, and hypoglycemic risk
US9237866B2 (en) * 2013-04-29 2016-01-19 Birch Narrows Development, LLC Blood glucose management
US10046112B2 (en) 2013-05-24 2018-08-14 Icu Medical, Inc. Multi-sensor infusion system for detecting air or an occlusion in the infusion system
EP3003441B1 (en) 2013-05-29 2020-12-02 ICU Medical, Inc. Infusion system which utilizes one or more sensors and additional information to make an air determination regarding the infusion system
AU2014274122A1 (en) 2013-05-29 2016-01-21 Icu Medical, Inc. Infusion system and method of use which prevents over-saturation of an analog-to-digital converter
US9446187B2 (en) 2013-06-03 2016-09-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US9457141B2 (en) 2013-06-03 2016-10-04 Bigfoot Biomedical, Inc. Infusion pump system and method
AU2014290438B2 (en) 2013-07-18 2019-11-07 Mannkind Corporation Heat-stable dry powder pharmaceutical compositions and methods
US9561324B2 (en) 2013-07-19 2017-02-07 Bigfoot Biomedical, Inc. Infusion pump system and method
JP2016530930A (en) 2013-08-05 2016-10-06 マンカインド コーポレイション Ventilation device and method
CN105492058B (en) 2013-08-28 2020-05-19 杰科健康创新公司 Apparatus and method for monitoring use of consumable dispenser
JP6621748B2 (en) 2013-08-30 2019-12-18 アイシーユー・メディカル・インコーポレーテッド System and method for monitoring and managing a remote infusion regimen
US9662436B2 (en) 2013-09-20 2017-05-30 Icu Medical, Inc. Fail-safe drug infusion therapy system
US10311972B2 (en) 2013-11-11 2019-06-04 Icu Medical, Inc. Medical device system performance index
EP3071253B1 (en) 2013-11-19 2019-05-22 ICU Medical, Inc. Infusion pump automation system and method
US10569015B2 (en) 2013-12-02 2020-02-25 Bigfoot Biomedical, Inc. Infusion pump system and method
EP3797680A1 (en) 2014-01-10 2021-03-31 Ascensia Diabetes Care Holdings AG Setup synchronization apparatus and methods for end user medical devices
GB2523989B (en) 2014-01-30 2020-07-29 Insulet Netherlands B V Therapeutic product delivery system and method of pairing
US9233204B2 (en) 2014-01-31 2016-01-12 Aseko, Inc. Insulin management
US9486580B2 (en) 2014-01-31 2016-11-08 Aseko, Inc. Insulin management
EP3110474B1 (en) 2014-02-28 2019-12-18 ICU Medical, Inc. Infusion system and method which utilizes dual wavelength optical air-in-line detection
WO2015148905A1 (en) 2014-03-28 2015-10-01 Mannkind Corporation Use of ultrarapid acting insulin
CN106461638A (en) 2014-04-11 2017-02-22 安晟信医疗科技控股公司 Wireless transmitter adapters for battery-operated biosensor meters and methods of providing same
AU2015253001A1 (en) 2014-04-30 2016-10-20 Icu Medical, Inc. Patient care system with conditional alarm forwarding
CA2947045C (en) 2014-05-29 2022-10-18 Hospira, Inc. Infusion system and pump with configurable closed loop delivery rate catch-up
US9724470B2 (en) 2014-06-16 2017-08-08 Icu Medical, Inc. System for monitoring and delivering medication to a patient and method of using the same to minimize the risks associated with automated therapy
US9629901B2 (en) 2014-07-01 2017-04-25 Bigfoot Biomedical, Inc. Glucagon administration system and methods
US10306444B2 (en) * 2014-07-07 2019-05-28 Ascensia Diabetes Care Holdings Ag Device pairing with a dual use piezoelectric acoustic component and vibration sensor
US9517307B2 (en) 2014-07-18 2016-12-13 Kaleo, Inc. Devices and methods for delivering opioid antagonists including formulations for naloxone
US10137246B2 (en) 2014-08-06 2018-11-27 Bigfoot Biomedical, Inc. Infusion pump assembly and method
US9919096B2 (en) 2014-08-26 2018-03-20 Bigfoot Biomedical, Inc. Infusion pump system and method
US9539383B2 (en) 2014-09-15 2017-01-10 Hospira, Inc. System and method that matches delayed infusion auto-programs with manually entered infusion programs and analyzes differences therein
US10561806B2 (en) 2014-10-02 2020-02-18 Mannkind Corporation Mouthpiece cover for an inhaler
EP3933845A3 (en) 2014-10-27 2022-06-22 Aseko, Inc. Subcutaneous outpatient management
US11081226B2 (en) 2014-10-27 2021-08-03 Aseko, Inc. Method and controller for administering recommended insulin dosages to a patient
US11344668B2 (en) 2014-12-19 2022-05-31 Icu Medical, Inc. Infusion system with concurrent TPN/insulin infusion
CN107405446B (en) 2015-02-18 2020-09-29 英赛罗公司 Fluid delivery and infusion device and method of use
US10850024B2 (en) 2015-03-02 2020-12-01 Icu Medical, Inc. Infusion system, device, and method having advanced infusion features
WO2016154427A2 (en) 2015-03-24 2016-09-29 Kaleo, Inc. Devices and methods for delivering a lyophilized medicament
US9878097B2 (en) 2015-04-29 2018-01-30 Bigfoot Biomedical, Inc. Operating an infusion pump system
WO2016174206A1 (en) 2015-04-29 2016-11-03 Ascensia Diabetes Care Holdings Ag Location-based wireless diabetes management systems, methods and apparatus
EP3304370B1 (en) 2015-05-26 2020-12-30 ICU Medical, Inc. Infusion pump system and method with multiple drug library editor source capability
US10576206B2 (en) 2015-06-30 2020-03-03 Kaleo, Inc. Auto-injectors for administration of a medicament within a prefilled syringe
EP3337402A4 (en) 2015-08-20 2019-04-24 Aseko, Inc. Diabetes management therapy advisor
GB201517089D0 (en) 2015-09-28 2015-11-11 Nicoventures Holdings Ltd Vaping heat map system and method for electronic vapour provision systems
US10255412B2 (en) 2015-11-13 2019-04-09 Reciprocal Labs Corporation Real time adaptive controller medication dosing
US9737254B2 (en) 2015-11-23 2017-08-22 Novtex Llc Personal medical testing housing
US10449294B1 (en) 2016-01-05 2019-10-22 Bigfoot Biomedical, Inc. Operating an infusion pump system
US10987468B2 (en) 2016-01-05 2021-04-27 Bigfoot Biomedical, Inc. Operating multi-modal medicine delivery systems
CN108495665B (en) 2016-01-14 2021-04-09 比格福特生物医药公司 Adjusting insulin delivery rate
USD809134S1 (en) 2016-03-10 2018-01-30 Bigfoot Biomedical, Inc. Infusion pump assembly
US10857304B2 (en) 2016-03-25 2020-12-08 Eli Lilly And Company Determination of a dose set and delivered in a medication delivery device
WO2017184401A1 (en) 2016-04-19 2017-10-26 Eli Lilly And Company Determination of a dose in a medication delivery device using two moving arrays with teeth and a sensor
US11246985B2 (en) 2016-05-13 2022-02-15 Icu Medical, Inc. Infusion pump system and method with common line auto flush
JP2019516485A (en) 2016-05-19 2019-06-20 マンカインド コーポレイション Device, system and method for detecting and monitoring inhalation
CA3027176A1 (en) 2016-06-10 2017-12-14 Icu Medical, Inc. Acoustic flow sensor for continuous medication flow measurements and feedback control of infusion
EP3484541A4 (en) 2016-07-14 2020-03-25 ICU Medical, Inc. Multi-communication path selection and security system for a medical device
ES2841325T3 (en) 2016-08-12 2021-07-08 Lilly Co Eli Determination of a dose in a drug delivery device
EP3515535A1 (en) 2016-09-23 2019-07-31 Insulet Corporation Fluid delivery device with sensor
US11229751B2 (en) 2016-09-27 2022-01-25 Bigfoot Biomedical, Inc. Personalizing preset meal sizes in insulin delivery system
USD836769S1 (en) 2016-12-12 2018-12-25 Bigfoot Biomedical, Inc. Insulin delivery controller
AU2017376111B2 (en) 2016-12-12 2023-02-02 Bigfoot Biomedical, Inc. Alarms and alerts for medication delivery devices and related systems and methods
CN110049794B (en) 2016-12-15 2021-11-16 伊莱利利公司 Drug delivery device with sensing system
CA3046354A1 (en) 2017-01-17 2018-07-26 Kaleo, Inc. Medicament delivery devices with wireless connectivity and event detection
USD839294S1 (en) 2017-06-16 2019-01-29 Bigfoot Biomedical, Inc. Display screen with graphical user interface for closed-loop medication delivery
WO2019014594A1 (en) 2017-07-13 2019-01-17 Desborough Lane Multi-scale display of blood glucose information
US10089055B1 (en) 2017-12-27 2018-10-02 Icu Medical, Inc. Synchronized display of screen content on networked devices
US11804303B2 (en) 2018-03-01 2023-10-31 Reciprocal Labs Corporation Evaluation of respiratory disease risk in a geographic region based on medicament device monitoring
CN112236826A (en) 2018-05-04 2021-01-15 英赛罗公司 Safety constraints for drug delivery systems based on control algorithms
US10861592B2 (en) 2018-07-17 2020-12-08 Icu Medical, Inc. Reducing infusion pump network congestion by staggering updates
WO2020018388A1 (en) 2018-07-17 2020-01-23 Icu Medical, Inc. Updating infusion pump drug libraries and operational software in a networked environment
US11152108B2 (en) 2018-07-17 2021-10-19 Icu Medical, Inc. Passing authentication token to authorize access to rest calls via web sockets
EP3824383B1 (en) 2018-07-17 2023-10-11 ICU Medical, Inc. Systems and methods for facilitating clinical messaging in a network environment
US10692595B2 (en) 2018-07-26 2020-06-23 Icu Medical, Inc. Drug library dynamic version management
EP3827337A4 (en) 2018-07-26 2022-04-13 ICU Medical, Inc. Drug library management system
CN112789070A (en) 2018-09-28 2021-05-11 英赛罗公司 Mode of activity of the artificial pancreas System
US11565039B2 (en) 2018-10-11 2023-01-31 Insulet Corporation Event detection for drug delivery system
USD930972S1 (en) * 2018-11-02 2021-09-21 Ondosis Ab Tablet dispenser for medications
EP4009936A4 (en) 2019-08-09 2023-08-09 Kaleo, Inc. Devices and methods for delivery of substances within a prefilled syringe
US11801344B2 (en) 2019-09-13 2023-10-31 Insulet Corporation Blood glucose rate of change modulation of meal and correction insulin bolus quantity
JP1669717S (en) * 2019-11-07 2020-10-05 tablet dispenser
US11278671B2 (en) 2019-12-04 2022-03-22 Icu Medical, Inc. Infusion pump with safety sequence keypad
US11833329B2 (en) 2019-12-20 2023-12-05 Insulet Corporation Techniques for improved automatic drug delivery performance using delivery tendencies from past delivery history and use patterns
US11551802B2 (en) 2020-02-11 2023-01-10 Insulet Corporation Early meal detection and calorie intake detection
US11547800B2 (en) 2020-02-12 2023-01-10 Insulet Corporation User parameter dependent cost function for personalized reduction of hypoglycemia and/or hyperglycemia in a closed loop artificial pancreas system
US11324889B2 (en) 2020-02-14 2022-05-10 Insulet Corporation Compensation for missing readings from a glucose monitor in an automated insulin delivery system
US20210251572A1 (en) * 2020-02-16 2021-08-19 Shimmer Research Ltd Wearable data collection device
US11607493B2 (en) 2020-04-06 2023-03-21 Insulet Corporation Initial total daily insulin setting for user onboarding
CA3189781A1 (en) 2020-07-21 2022-01-27 Icu Medical, Inc. Fluid transfer devices and methods of use
US11684716B2 (en) 2020-07-31 2023-06-27 Insulet Corporation Techniques to reduce risk of occlusions in drug delivery systems
US11135360B1 (en) 2020-12-07 2021-10-05 Icu Medical, Inc. Concurrent infusion with common line auto flush
US11904140B2 (en) 2021-03-10 2024-02-20 Insulet Corporation Adaptable asymmetric medicament cost component in a control system for medicament delivery
US11738144B2 (en) 2021-09-27 2023-08-29 Insulet Corporation Techniques enabling adaptation of parameters in aid systems by user input
US11439754B1 (en) 2021-12-01 2022-09-13 Insulet Corporation Optimizing embedded formulations for drug delivery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US5665065A (en) * 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
US5687717A (en) * 1996-08-06 1997-11-18 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
US5772586A (en) * 1996-02-12 1998-06-30 Nokia Mobile Phones, Ltd. Method for monitoring the health of a patient
US6218958B1 (en) * 1998-10-08 2001-04-17 International Business Machines Corporation Integrated touch-skin notification system for wearable computing devices
US6302855B1 (en) * 1998-05-20 2001-10-16 Novo Nordisk A/S Medical apparatus for use by a patient for medical self treatment of diabetes
US6540672B1 (en) * 1998-12-09 2003-04-01 Novo Nordisk A/S Medical system and a method of controlling the system for use by a patient for medical self treatment

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3786510A (en) * 1972-07-26 1974-01-15 F Hodges Medical testing and data recording apparatus
FR2483657B1 (en) * 1980-05-30 1986-11-21 Bull Sa PORTABLE MACHINE FOR CALCULATING OR PROCESSING INFORMATION
US5204670A (en) 1988-08-29 1993-04-20 B. I. Incorporated Adaptable electric monitoring and identification system
SE500122C2 (en) * 1992-08-27 1994-04-18 Rudolf Valentin Sillen Method and apparatus for individually controlled, adaptive medication
US5371687A (en) * 1992-11-20 1994-12-06 Boehringer Mannheim Corporation Glucose test data acquisition and management system
US5313941A (en) * 1993-01-28 1994-05-24 Braig James R Noninvasive pulsed infrared spectrophotometer
US5536249A (en) * 1994-03-09 1996-07-16 Visionary Medical Products, Inc. Pen-type injector with a microprocessor and blood characteristic monitor
US5704366A (en) * 1994-05-23 1998-01-06 Enact Health Management Systems System for monitoring and reporting medical measurements
US5752976A (en) * 1995-06-23 1998-05-19 Medtronic, Inc. World wide patient location and data telemetry system for implantable medical devices
US5842976A (en) * 1996-05-16 1998-12-01 Pyxis Corporation Dispensing, storage, control and inventory system with medication and treatment chart record
WO1998002086A1 (en) 1996-07-16 1998-01-22 Kyoto Daiichi Kagaku Co., Ltd. Distributed inspection/measurement system and distributed health caring system
US6363416B1 (en) * 1998-08-28 2002-03-26 3Com Corporation System and method for automatic election of a representative node within a communications network with built-in redundancy

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4494950A (en) * 1982-01-19 1985-01-22 The Johns Hopkins University Plural module medication delivery system
US5665065A (en) * 1995-05-26 1997-09-09 Minimed Inc. Medication infusion device with blood glucose data input
US5772586A (en) * 1996-02-12 1998-06-30 Nokia Mobile Phones, Ltd. Method for monitoring the health of a patient
US5687717A (en) * 1996-08-06 1997-11-18 Tremont Medical, Inc. Patient monitoring system with chassis mounted or remotely operable modules and portable computer
US6302855B1 (en) * 1998-05-20 2001-10-16 Novo Nordisk A/S Medical apparatus for use by a patient for medical self treatment of diabetes
US6218958B1 (en) * 1998-10-08 2001-04-17 International Business Machines Corporation Integrated touch-skin notification system for wearable computing devices
US6540672B1 (en) * 1998-12-09 2003-04-01 Novo Nordisk A/S Medical system and a method of controlling the system for use by a patient for medical self treatment

Cited By (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715177B2 (en) * 2000-10-06 2014-05-06 Ip Holdings, Inc. Intelligent drug delivery appliance
US7072738B2 (en) 2001-04-02 2006-07-04 Glaxo Group Limited Medicament dispenser
US7454267B2 (en) 2001-04-02 2008-11-18 Glaxo Group Limited Medicament dispenser
US11294407B2 (en) 2001-04-27 2022-04-05 Roche Diabetes Care, Inc. Device and method for insulin dosing
US10039881B2 (en) 2002-12-31 2018-08-07 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US9962091B2 (en) 2002-12-31 2018-05-08 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US10750952B2 (en) 2002-12-31 2020-08-25 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
US9730584B2 (en) 2003-06-10 2017-08-15 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US8512239B2 (en) * 2003-06-10 2013-08-20 Abbott Diabetes Care Inc. Glucose measuring device for use in personal area network
US20090284372A1 (en) * 2003-06-10 2009-11-19 Abbott Diabetes Care Inc. Glucose Measuring Device For Use In Personal Area Network
US20050182358A1 (en) * 2003-11-06 2005-08-18 Veit Eric D. Drug delivery pen with event notification means
US7713229B2 (en) 2003-11-06 2010-05-11 Lifescan, Inc. Drug delivery pen with event notification means
US20110184343A1 (en) * 2003-11-06 2011-07-28 Lifescan, Inc. Drug delivery with event notification
US8333752B2 (en) 2003-11-06 2012-12-18 Lifescan, Inc. Drug delivery with event notification
US8551039B2 (en) 2003-11-06 2013-10-08 Lifescan, Inc. Drug delivery with event notification
US20050182306A1 (en) * 2004-02-17 2005-08-18 Therasense, Inc. Method and system for providing data communication in continuous glucose monitoring and management system
US8771183B2 (en) 2004-02-17 2014-07-08 Abbott Diabetes Care Inc. Method and system for providing data communication in continuous glucose monitoring and management system
WO2006021566A3 (en) * 2004-08-24 2006-07-27 Novo Nordisk As Giving a service to a patient
US20080270186A1 (en) * 2004-08-24 2008-10-30 Soren Mikkelsen Giving a Service to a Patient
WO2006021566A2 (en) * 2004-08-24 2006-03-02 Novo Nordisk A/S Giving a service to a patient
US8202217B2 (en) 2004-12-20 2012-06-19 Ip Venture, Inc. Healthcare base
US20060231109A1 (en) * 2004-12-20 2006-10-19 Howell Thomas A Personal and portable bottle
US8118740B2 (en) 2004-12-20 2012-02-21 Ipventure, Inc. Moisture sensor for skin
US8652037B2 (en) 2005-06-08 2014-02-18 AgaMatrix, LLC Data collection system and interface
US20060279431A1 (en) * 2005-06-08 2006-12-14 Agamatrix, Inc. Data collection system and interface
US20070078818A1 (en) * 2005-06-09 2007-04-05 Roche Diagnostics Operations, Inc. Device and method for insulin dosing
US10311209B2 (en) 2005-06-09 2019-06-04 Roche Diabetes Care, Inc. Device and method for insulin dosing
US8251904B2 (en) 2005-06-09 2012-08-28 Roche Diagnostics Operations, Inc. Device and method for insulin dosing
US20100274220A1 (en) * 2005-11-04 2010-10-28 Abbott Diabetes Care Inc. Method and System for Providing Basal Profile Modification in Analyte Monitoring and Management Systems
US8585591B2 (en) 2005-11-04 2013-11-19 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US11538580B2 (en) 2005-11-04 2022-12-27 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9669162B2 (en) 2005-11-04 2017-06-06 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US9323898B2 (en) 2005-11-04 2016-04-26 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
US20070142767A1 (en) * 2005-12-12 2007-06-21 Marcel Frikart System with A Portable Patient Device and External Operating Part
US8758240B2 (en) * 2005-12-12 2014-06-24 Roche Diagnostics International Ag System with a portable patient device and external operating part
US8112293B2 (en) 2006-03-24 2012-02-07 Ipventure, Inc Medical monitoring system
US20070225578A1 (en) * 2006-03-24 2007-09-27 Howell Thomas A Medical monitoring system
US9039975B2 (en) 2006-03-31 2015-05-26 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8593109B2 (en) 2006-03-31 2013-11-26 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US8597575B2 (en) 2006-03-31 2013-12-03 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US8933664B2 (en) 2006-03-31 2015-01-13 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9625413B2 (en) 2006-03-31 2017-04-18 Abbott Diabetes Care Inc. Analyte monitoring devices and methods therefor
US9743863B2 (en) 2006-03-31 2017-08-29 Abbott Diabetes Care Inc. Method and system for powering an electronic device
US9380971B2 (en) 2006-03-31 2016-07-05 Abbott Diabetes Care Inc. Method and system for powering an electronic device
AU2007234940B2 (en) * 2006-04-03 2013-05-09 Trividia Health, Inc. Diagnostic meter
US8696597B2 (en) * 2006-04-03 2014-04-15 Nipro Diagnostics, Inc. Diagnostic meter
US20070233395A1 (en) * 2006-04-03 2007-10-04 Home Diagnostics, Inc. Diagnostic meter
US20080177149A1 (en) * 2006-06-16 2008-07-24 Stefan Weinert System and method for collecting patient information from which diabetes therapy may be determined
US20090105571A1 (en) * 2006-06-30 2009-04-23 Abbott Diabetes Care, Inc. Method and System for Providing Data Communication in Data Management Systems
US7434724B2 (en) 2006-12-22 2008-10-14 Welch Allyn, Inc. Dynamic barcode for displaying medical data
US10022499B2 (en) 2007-02-15 2018-07-17 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US10617823B2 (en) 2007-02-15 2020-04-14 Abbott Diabetes Care Inc. Device and method for automatic data acquisition and/or detection
US9095290B2 (en) 2007-03-01 2015-08-04 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9801545B2 (en) 2007-03-01 2017-10-31 Abbott Diabetes Care Inc. Method and apparatus for providing rolling data in communication systems
US9743866B2 (en) 2007-04-14 2017-08-29 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US9402584B2 (en) 2007-04-14 2016-08-02 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8698615B2 (en) 2007-04-14 2014-04-15 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US10194846B2 (en) 2007-04-14 2019-02-05 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US8937540B2 (en) 2007-04-14 2015-01-20 Abbott Diabetes Care Inc. Method and apparatus for providing dynamic multi-stage signal amplification in a medical device
US9574914B2 (en) 2007-05-08 2017-02-21 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US9314198B2 (en) 2007-05-08 2016-04-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US20080278332A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US8593287B2 (en) 2007-05-08 2013-11-26 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9949678B2 (en) 2007-05-08 2018-04-24 Abbott Diabetes Care Inc. Method and device for determining elapsed sensor life
US20080281179A1 (en) * 2007-05-08 2008-11-13 Abbott Diabetes Care, Inc. Analyte monitoring system and methods
US8461985B2 (en) 2007-05-08 2013-06-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US10952611B2 (en) 2007-05-08 2021-03-23 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9000929B2 (en) 2007-05-08 2015-04-07 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9035767B2 (en) 2007-05-08 2015-05-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US8456301B2 (en) 2007-05-08 2013-06-04 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US10653317B2 (en) 2007-05-08 2020-05-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9649057B2 (en) 2007-05-08 2017-05-16 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US9177456B2 (en) 2007-05-08 2015-11-03 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US11696684B2 (en) 2007-05-08 2023-07-11 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US10178954B2 (en) 2007-05-08 2019-01-15 Abbott Diabetes Care Inc. Analyte monitoring system and methods
US20100076280A1 (en) * 2007-06-21 2010-03-25 Abbott Diabetes Care Inc. Health Monitor
US11264133B2 (en) 2007-06-21 2022-03-01 Abbott Diabetes Care Inc. Health management devices and methods
US11276492B2 (en) 2007-06-21 2022-03-15 Abbott Diabetes Care Inc. Health management devices and methods
US20080319296A1 (en) * 2007-06-21 2008-12-25 Abbott Diabetes Care, Inc. Health monitor
US8597188B2 (en) 2007-06-21 2013-12-03 Abbott Diabetes Care Inc. Health management devices and methods
US20100076290A1 (en) * 2007-06-21 2010-03-25 Abbott Diabetes Care Inc. Health Monitor
US20100076284A1 (en) * 2007-06-21 2010-03-25 Abbott Diabetes Care Inc. Health Management Devices and Methods
US20100076289A1 (en) * 2007-06-21 2010-03-25 Abbott Diabetes Care Inc. Health Monitor
US20100076291A1 (en) * 2007-06-21 2010-03-25 Abbott Diabetes Care Inc. Health Monitor
US8617069B2 (en) 2007-06-21 2013-12-31 Abbott Diabetes Care Inc. Health monitor
US20110053844A1 (en) * 2007-08-27 2011-03-03 Walter Hinderer Liquid formulation of g-csf conjugate
US8546328B2 (en) * 2007-08-27 2013-10-01 Biogenerix Ag Liquid formulation of G-CSF conjugate
USD612274S1 (en) 2008-01-18 2010-03-23 Lifescan Scotland, Ltd. User interface in an analyte meter
USD612279S1 (en) 2008-01-18 2010-03-23 Lifescan Scotland Limited User interface in an analyte meter
US20090237262A1 (en) * 2008-03-21 2009-09-24 Lifescan Scotland Ltd. Analyte testing method and system
US9626480B2 (en) 2008-03-21 2017-04-18 Lifescan Scotland Limited Analyte testing method and system
USD612275S1 (en) 2008-03-21 2010-03-23 Lifescan Scotland, Ltd. Analyte test meter
US8917184B2 (en) 2008-03-21 2014-12-23 Lifescan Scotland Limited Analyte testing method and system
USD615431S1 (en) 2008-03-21 2010-05-11 Lifescan Scotland Limited Analyte test meter
USD611853S1 (en) 2008-03-21 2010-03-16 Lifescan Scotland Limited Analyte test meter
USD611151S1 (en) 2008-06-10 2010-03-02 Lifescan Scotland, Ltd. Test meter
USD611489S1 (en) 2008-07-25 2010-03-09 Lifescan, Inc. User interface display for a glucose meter
USD611372S1 (en) 2008-09-19 2010-03-09 Lifescan Scotland Limited Analyte test meter
US11202591B2 (en) 2009-02-03 2021-12-21 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11166656B2 (en) 2009-02-03 2021-11-09 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11006870B2 (en) 2009-02-03 2021-05-18 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11213229B2 (en) 2009-02-03 2022-01-04 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11006872B2 (en) 2009-02-03 2021-05-18 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US11006871B2 (en) 2009-02-03 2021-05-18 Abbott Diabetes Care Inc. Analyte sensor and apparatus for insertion of the sensor
US9226701B2 (en) 2009-04-28 2016-01-05 Abbott Diabetes Care Inc. Error detection in critical repeating data in a wireless sensor system
US11872370B2 (en) 2009-05-29 2024-01-16 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US11793936B2 (en) 2009-05-29 2023-10-24 Abbott Diabetes Care Inc. Medical device antenna systems having external antenna configurations
US20110054282A1 (en) * 2009-08-31 2011-03-03 Abbott Diabetes Care Inc. Analyte Monitoring System and Methods for Managing Power and Noise
US10429250B2 (en) 2009-08-31 2019-10-01 Abbott Diabetes Care, Inc. Analyte monitoring system and methods for managing power and noise
US11150145B2 (en) 2009-08-31 2021-10-19 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US10492685B2 (en) 2009-08-31 2019-12-03 Abbott Diabetes Care Inc. Medical devices and methods
US11045147B2 (en) 2009-08-31 2021-06-29 Abbott Diabetes Care Inc. Analyte signal processing device and methods
USD1010133S1 (en) 2009-08-31 2024-01-02 Abbott Diabetes Care Inc. Analyte sensor assembly
US9314195B2 (en) 2009-08-31 2016-04-19 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US9968302B2 (en) 2009-08-31 2018-05-15 Abbott Diabetes Care Inc. Analyte signal processing device and methods
US20110060530A1 (en) * 2009-08-31 2011-03-10 Abbott Diabetes Care Inc. Analyte Signal Processing Device and Methods
US10136816B2 (en) 2009-08-31 2018-11-27 Abbott Diabetes Care Inc. Medical devices and methods
US11635332B2 (en) 2009-08-31 2023-04-25 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US8993331B2 (en) 2009-08-31 2015-03-31 Abbott Diabetes Care Inc. Analyte monitoring system and methods for managing power and noise
US10639502B2 (en) 2010-10-12 2020-05-05 Smith & Nephew, Inc. Medical device
US9526920B2 (en) 2010-10-12 2016-12-27 Smith & Nephew, Inc. Medical device
US10086216B2 (en) 2010-10-12 2018-10-02 Smith & Nephew, Inc. Medical device
US11565134B2 (en) 2010-10-12 2023-01-31 Smith & Nephew, Inc. Medical device
US9532737B2 (en) 2011-02-28 2017-01-03 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US9069536B2 (en) 2011-10-31 2015-06-30 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9465420B2 (en) 2011-10-31 2016-10-11 Abbott Diabetes Care Inc. Electronic devices having integrated reset systems and methods thereof
US9980669B2 (en) 2011-11-07 2018-05-29 Abbott Diabetes Care Inc. Analyte monitoring device and methods
US11612363B2 (en) 2012-09-17 2023-03-28 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US9968306B2 (en) 2012-09-17 2018-05-15 Abbott Diabetes Care Inc. Methods and apparatuses for providing adverse condition notification with enhanced wireless communication range in analyte monitoring systems
US11633533B2 (en) 2013-03-14 2023-04-25 Smith & Nephew, Inc. Control architecture for reduced pressure wound therapy apparatus
US10610624B2 (en) 2013-03-14 2020-04-07 Smith & Nephew, Inc. Reduced pressure therapy blockage detection
US9737649B2 (en) 2013-03-14 2017-08-22 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10328188B2 (en) 2013-03-14 2019-06-25 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10905806B2 (en) 2013-03-14 2021-02-02 Smith & Nephew, Inc. Reduced pressure wound therapy control and data communication
US10912870B2 (en) 2013-08-13 2021-02-09 Smith & Nephew, Inc. Canister fluid level detection in reduced pressure therapy systems
US10155070B2 (en) 2013-08-13 2018-12-18 Smith & Nephew, Inc. Systems and methods for applying reduced pressure therapy
US10754927B2 (en) 2013-09-26 2020-08-25 Companion Medical, Inc. System for administering a medicament
US10483000B2 (en) 2014-07-10 2019-11-19 Companion Medical, Inc. Medicine administering system including injection pen and companion device
US11563485B2 (en) 2014-07-10 2023-01-24 Medtronic Minimed, Inc. Medicine administering system including injection pen and companion device
WO2016007935A3 (en) * 2014-07-10 2016-04-07 Companion Medical, Inc. Medicine administering system including injection pen and companion device
US9959391B2 (en) 2014-07-10 2018-05-01 Companion Medical, Inc. Medicine administering system including injection pen and companion device
US10744239B2 (en) 2014-07-31 2020-08-18 Smith & Nephew, Inc. Leak detection in negative pressure wound therapy system
US10556045B2 (en) 2014-12-30 2020-02-11 Smith & Nephew, Inc. Synchronous pressure sampling and supply of negative pressure in negative pressure wound therapy
US10549016B2 (en) 2014-12-30 2020-02-04 Smith & Nephew, Inc. Blockage detection in reduced pressure therapy
US11524106B2 (en) 2014-12-30 2022-12-13 Smith & Nephew, Inc. Blockage detection in reduced pressure therapy
US11315681B2 (en) 2015-10-07 2022-04-26 Smith & Nephew, Inc. Reduced pressure therapy device operation and authorization monitoring
US11783943B2 (en) 2015-10-07 2023-10-10 Smith & Nephew, Inc. Reduced pressure therapy device operation and authorization monitoring
US11826555B2 (en) 2016-01-29 2023-11-28 Medtronic Minimed, Inc. Automatic medication delivery tracking
US10864327B2 (en) 2016-01-29 2020-12-15 Companion Medical, Inc. Automatic medication delivery tracking
US11602461B2 (en) 2016-05-13 2023-03-14 Smith & Nephew, Inc. Automatic wound coupling detection in negative pressure wound therapy systems
US11484657B2 (en) 2017-06-09 2022-11-01 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods
US11568975B2 (en) 2017-10-12 2023-01-31 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods for dose recommendation and management
US11844923B2 (en) 2017-12-12 2023-12-19 Bigfoot Biomedical, Inc. Devices, systems, and methods for estimating active medication from injections
US11547805B2 (en) 2017-12-12 2023-01-10 Bigfoot Biomedical, Inc. Therapy management systems, methods, and devices
US11904145B2 (en) 2017-12-12 2024-02-20 Bigfoot Biomedical, Inc. Diabetes therapy management systems, methods, and devices
US11896797B2 (en) 2017-12-12 2024-02-13 Bigfoot Biomedical, Inc. Pen cap for insulin injection pens and associated methods and systems
US11771835B2 (en) 2017-12-12 2023-10-03 Bigfoot Biomedical, Inc. Therapy assist information and/or tracking device and related methods and systems
US11464459B2 (en) 2017-12-12 2022-10-11 Bigfoot Biomedical, Inc. User interface for diabetes management systems including flash glucose monitor
US11383043B2 (en) 2017-12-12 2022-07-12 Bigfoot Biomedical, Inc. Medicine injection and disease management systems, devices, and methods
US11664107B2 (en) 2018-05-08 2023-05-30 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods using a prescription-regulated software application
US10898653B2 (en) 2018-05-08 2021-01-26 Companion Medical, Inc. Intelligent medication delivery systems and methods for dose setting and dispensing monitoring
US11878151B2 (en) 2018-05-08 2024-01-23 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods for dose setting and dispensing monitoring
US11369743B2 (en) 2018-05-08 2022-06-28 Companion Medical, Inc. Intelligent medication delivery systems and methods for dose setting and dispensing monitoring
USD908210S1 (en) 2018-05-11 2021-01-19 Companion Medical, Inc. Injection pen
USD893020S1 (en) 2018-05-11 2020-08-11 Companion Medical, Inc. Injection pen
USD960895S1 (en) 2018-06-20 2022-08-16 Medtronic Minimed, Inc. Display screen with graphical user interface
US11587663B2 (en) 2018-06-20 2023-02-21 Medtronic Minimed, Inc. Intelligent medication delivery systems and methods for medicine dose calculation and reporting
USD892819S1 (en) 2018-06-20 2020-08-11 Companion Medical, Inc. Display screen with graphical user interface
US11701473B2 (en) 2021-06-23 2023-07-18 Medtronic Minimed, Inc. Reusable injection pens
US11918789B2 (en) 2021-08-16 2024-03-05 Bigfoot Biomedical, Inc. Therapy management systems, methods, and devices

Also Published As

Publication number Publication date
US6540672B1 (en) 2003-04-01

Similar Documents

Publication Publication Date Title
US20040039255A1 (en) Medical system and a method of controlling the system for use by a patient for medical self treatment
AU763478B2 (en) A medical system and a method of controlling the system for use by a patient for medical self treatment
US20070293742A1 (en) Medical System And A Method Of Controlling The System For Use By A Patient For Medical Self Treatment
EP1406540B1 (en) Method and system for controlling data information between two portable medical apparatuses
AU2002351605B2 (en) Method and apparatus for clinical trials
US8551039B2 (en) Drug delivery with event notification
KR100627990B1 (en) A method and a system for assisting a user in a medical self treatment, said self treatment comprising a plurality of actions
US20080228057A1 (en) Method and system for controlling data information between two portable apparatuses
AU2002354523A1 (en) Method and system for controlling data information between two portable medical apparatuses
MXPA01005388A (en) A medical system and a method of controlling the system for use by a patient for medical self treatment

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION