US20040023596A1 - Backer inserts for blocking backwall water jet strikes - Google Patents

Backer inserts for blocking backwall water jet strikes Download PDF

Info

Publication number
US20040023596A1
US20040023596A1 US10/384,536 US38453603A US2004023596A1 US 20040023596 A1 US20040023596 A1 US 20040023596A1 US 38453603 A US38453603 A US 38453603A US 2004023596 A1 US2004023596 A1 US 2004023596A1
Authority
US
United States
Prior art keywords
insert
backer
wall
cavity
water jet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/384,536
Inventor
Robert Devine
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Priority to US10/384,536 priority Critical patent/US20040023596A1/en
Publication of US20040023596A1 publication Critical patent/US20040023596A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F3/00Severing by means other than cutting; Apparatus therefor
    • B26F3/004Severing by means other than cutting; Apparatus therefor by means of a fluid jet
    • B26F3/008Energy dissipating devices therefor, e.g. catchers; Supporting beds therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26FPERFORATING; PUNCHING; CUTTING-OUT; STAMPING-OUT; SEVERING BY MEANS OTHER THAN CUTTING
    • B26F1/00Perforating; Punching; Cutting-out; Stamping-out; Apparatus therefor
    • B26F1/26Perforating by non-mechanical means, e.g. by fluid jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P2700/00Indexing scheme relating to the articles being treated, e.g. manufactured, repaired, assembled, connected or other operations covered in the subgroups
    • B23P2700/06Cooling passages of turbine components, e.g. unblocking or preventing blocking of cooling passages of turbine components

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Earth Drilling (AREA)

Abstract

A method of drilling holes in an component, such as a turbine airfoil or bucket platform, the method including disposing a protective insert including a water jet blocking material adjacent a backside of the structure to be drilled and water jet drilling at least one hole in the structure, through to the backside. In one embodiment, the jet blocking material is comprised of carbide or a similar material that is more resistant to water jet drilling forces than the structure being drilled.

Description

    BACKGROUND OF THE INVENTION
  • Airfoils of turbine blades and vanes of gas turbine engines often require a complex cooling scheme in which cooling air flows through the airfoil and is then discharged through carefully configured cooling holes in the side wall of the airfoil and/or its associated structures. The performance of a turbine airfoil is directly related to the ability to provide uniform cooling of its external surfaces. Consequently, control of cooling hole size and shape is critical in many turbine airfoil designs, because the size and shape of the opening determines the amount of flow exiting a given opening, its distribution across the surface of the component, and the overall flow distribution within the cooling circuit that contains the opening. Other factors, such as back flow margin (the pressure differential between the cooling air exiting the cooling holes and combustion gas impinging on the airfoil) are also affected by variations in opening size. [0001]
  • Conventional hole drilling techniques include laser machining and electrical-discharge machining (EDM). These techniques yield airfoil castings with dimensionally correct openings in order to repeatably control opening size. [0002]
  • Water jet drilling is another versatile drilling method for precision drilling operations. However, conventional water jet drilling is primarily performed on structures that do not have a shallow drop through region. This is due to the physical limitations of being able to stop the drilling jet before it hits an opposing surface. While sacrifices could be made to allow for the opposing wall to be part-drilled, this would necessarily result in a decrease in part life and field performance. Such a sacrifice is illogical where other drilling techniques that do not decrease part life are available. Thus, water jet drilling is generally considered unsuitable for drilling nozzles and buckets. Nevertheless it would be advantageous to provide a method for drilling airfoil cavities with a water jet in a manner that avoids damage to an adjacent wall, once the hole has been drilled through and before the application of the jet is terminated. [0003]
  • BRIEF DESCRIPTION OF THE INVENTION
  • The invention is embodied in a method for water jet drilling structures, such as nozzles and buckets used in gas turbines, wherein the opposite wall and/or adjacent structures are shielded from the water jet by providing a backer insert as a jet-stop to prevent unwanted erosion or drilling of the airfoil structure. [0004]
  • In one embodiment of the invention, in order to increase the durability of the backer, the backer is at least one of formed from or coated with a material that wears at a slow rate. More specifically, any water jet blocking material that is more resistant to water jet drilling forces than the material of the structure being drilled may be used to advantage in a method and/or insert embodying the invention. An exemplary material that may be adopted for the backer of the invention is carbide. Carbide by its physical nature is slow to wear, thus offering the durability required in part to part processing in any manufacturing environment. [0005]
  • According to a first aspect of the invention, a method is provided for drilling holes in a wall of a component having a hollow interior cavity, the method comprising disposing a backer insert comprising a water jet blocking material in the hollow interior cavity adjacent to a back surface of the wall to be drilled; water jet drilling at least one hole in the wall through to the hollow interior cavity; and removing the backer insert. [0006]
  • In one embodiment, the backer insert is formed from or coated with a blocking material, such as carbide, that is more resistant to water jet drilling forces that the material of the component wall. [0007]
  • According to another aspect of the invention, a backer insert is provided for being disposed in a cavity of a gas turbine component to intercept and disperse a water jet for drilling of a hole through a wall of the cavity, the backer insert comprising an insert component having a configuration generally corresponding but smaller than to a configuration of a back surface of the wall of the cavity. The insert component is formed from or coated with a water jet blocking material. In one embodiment, the blocking material is more resistant to water jet drilling forces that the material of the wall being drilled.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These, as well as other objects and advantages of this invention, will be more completely understood and appreciated by careful study of the following more detailed description of the presently preferred exemplary embodiments of the invention taken in conjunction with the accompanying drawings, in which: [0009]
  • FIG. 1 is a schematic perspective view illustrating backer components provided as inserts to a nozzle airfoil; [0010]
  • FIG. 2 is a cross-sectional view of a nozzle airfoil showing first and second backer insert components in place in respective cavities of the nozzle airfoil consistent with the backer insert placement shown in FIG. 1; [0011]
  • FIG. 3 is an elevational view of a bucket having a backer insert component provided in the pocket area of the bucket shank; [0012]
  • FIG. 4 is an end elevational view, partly in cross-section of the bucket of FIG. 3 showing the backer insert exploded away from the bucket shank to illustrate its placement therein; [0013]
  • FIG. 5 is a schematic cross-sectional view taken along lines [0014] 5-5 of FIG. 3 showing the backer insert exploded away from the bucket shank pocket according to an embodiment of the invention; and
  • FIG. 6 is a cross-sectional view taken along lines [0015] 5-5 of FIG. 3 illustrating the backer insert in position in the bucket shank pocket.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The invention provides a method and backer insert to allow the use of a water jet process to drill cooling holes in airfoil walls and vane platforms by using a backer insert having a configuration generally corresponding to the back surface of the structure to be drilled, to intercept the water jet on hole completion, to prevent damage to adjacent structures. [0016]
  • In the embodiment illustrated in FIG. 2, a [0017] nozzle 10 is being drilled using an otherwise conventional water jet apparatus schematically shown at 12. To prevent the water jet from eroded or drilling the opposite wall of the airfoil, backer inserts 14,16 are inserted into the respective cavity 18, 20 of the nozzle 10 for intercepting the drilling jets 22, 24 during the drilling operation. In the embodiment illustrated in FIGS. 1 and 2, the backing inserts are respectively placed inside the part during the drilling operation and removed on completion of the drilling process with respect to that cavity, or with respect to the nozzle.
  • As illustrated in FIG. 2, the [0018] backing inserts 14, 16 are measurably smaller than their respective cavity 18, 20 to define a small gap 26, 28 between the backer insert and the cavity wall, to allow for the disbursal of the water jet and any added abrasive material, such as garnet, to allow a clean through hole into the cavity to be formed. The backer insert is formed from or coated with a material that is slow to wear on exposure to the water jet. Forming the backer insert from Carbide, as schematically shown at 30 and/or coating a substrate 32 with Carbide, as schematically shown by layer 34, to form the backer insert advantageously meets this criteria.
  • As noted, the function of the backer insert is to limit penetration of the water jet into the interior of the cavity. As such, the backer insert is advantageously placed adjacent to but spaced from the backsurface of the structure to be drilled, as described above. It is not necessary, however, for the backer insert to otherwise fill the cavity and/or to be a solid component. Thus, as an alternative to providing an insert that effectively fills the cavity but for the gap from the peripheral walls, as illustrated and described above, a hollow insert may be provided that is shaped, for example, as a conventional hollow impingement insert, but with imperforate wall(s) and formed from a water jet resistant material, as mentioned above. As a further alternative, the backer insert may be in the form of insert rod(s), tube(s), or plate(s) adapted to be disposed adjacent to but spaced from the inner wall of the structure to be drilled. [0019]
  • Where water jet drilling is to be performed sequentially or simultaneously on opposite side walls of the nozzle cavity, the backer insert advantageously includes wall members disposed adjacent each sidewall of the nozzle. This can be accomplished by providing a generally solid or hollow insert in the configuration of an impingement insert as described above. In the alternative, first and second backer insert plates may be provided and interconnected by a scaffold or other transverse support structure to define e.g., an I beam type assembly. By providing plates that are pivotally attached to the transverse support structure, and/or by providing a transverse support structure that can be dimensionally adjusted to alter a gap between the backer insert plates, further versatility can be afforded for using a single backer insert in a variety of nozzle cavities. It is to be appreciated, however, that the material and weight savings achieved by providing a hollow insert or supported plates rather than a solid insert is at the expense of durability and thus life span of the component. [0020]
  • As illustrated in FIGS. [0021] 3-6, the process of the invention can be used as well for water jet drilling of holes in structures bordering non-cavity pockets, such as for the formation of bucket platform holes, to prevent unwanted strike of the pocket area of the shank. More specifically, a typical bucket structure 50 is schematically illustrated in the elevational views of FIGS. 3 and 4, except that a backer insert 64 is illustrated as selectively disposed in a pocket area 72 of the bucket shank. Thus, referring particularly to FIGS. 3 and 4 there is illustrated a turbine bucket 50 that includes an airfoil 52 mounted on a platform 54 that is in turn carried by a shank 56. The radial inner end of the shank carries a dovetail 58 for coupling the blade to a turbine wheel (not shown). In the illustrated embodiment, the airfoil has a compound curvature with suction and pressure sides 60, 62. As such, the turbine blade structure generally corresponds to that disclosed in U.S. Pat. No. 5,980,209, the entire disclosure of which is incorporated herein by this reference.
  • As illustrated in FIG. 3, cooling holes as schematically shown at [0022] 66 may be formed to advantage through the platform 54 in the vicinity of the pocket area on one or each side of the airfoil 52, at its base. In an embodiment of the invention, the cooling holes are formed using drilling water jet(s) 68 generated by a water jet apparatus, schematically shown at 70. To protect the peripheral wall of the pocket area from potential damage from the drilling water jet, a backer insert 64 is selectively inserted into the pocket area 72 during the drilling operation. As illustrated in FIG. 3, the backer insert 64 may take the form of a plate or shell, or a solid insert, that is shaped to generally correspond to the shape of the wall of the pocket area 72. However, as illustrated in FIGS. 5 and 6, to facilitate flow of the fluid and debris during and following the water jet drilling process, a gap 74 is advantageously defined between the backer insert and the associated pocket area.
  • As such, the water jets for drilling the cooling holes, as schematically shown by dash-[0023] dot lines 68, will engage and be dissipated by the backer insert upon penetration through the bucket platform to define the air-cooling holes 66.
  • While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiment, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims. [0024]

Claims (19)

What is claimed is:
1. A method of forming drilled holes in a wall of a component having a hollow interior cavity, said method comprising:
disposing a backer insert comprising a water jet blocking material in said hollow interior cavity adjacent to a back surface of said wall to be drilled;
water jet drilling at least one hole in the wall through to the hollow interior cavity;
and removing the backer insert.
2. A method as claimed in claim 1, wherein said backer insert is one of formed from and coated with said blocking material.
3. A method as claimed in claim 2, wherein said blocking material is more resistant to water jet drilling forces than a material of said wall.
4. A method as claimed in claim 3, wherein said blocking material comprises carbide.
5. A method as claimed in claim 1, wherein said backer insert has a configuration generally corresponding to said back surface.
6. A method as claimed in claim 1, wherein said backer insert is disposed adjacent to but spaced from said back surface, to define a gap for fluid to flow away from said at least one hole.
7. A method as claimed in claim 6, wherein said backer insert has a configuration generally corresponding to but smaller than to a configuration of at least a part of said cavity so as to define said gap between said back surface of said wall and said insert.
8. A method as claimed in claim 1, wherein said backer insert is substantially solid and fills a substantial portion of said cavity.
9. A method as claimed in claim 1, wherein said component comprises a nozzle of a gas turbine.
10. A method as claimed in claim 1, wherein said wall is a side wall of an airfoil of said nozzle, and wherein said hollow interior cavity is a vane cavity of said airfoil.
11. A method as claimed in claim 1, wherein said component comprises a bucket of a gas turbine.
12. A method as claimed in claim 1, wherein said wall is a platform of the bucket, and said hollow interior cavity is a shank pocket of the bucket.
13. A backer insert for being disposed in a cavity of a gas turbine component to intercept and disperse a water jet for drilling of a hole through a wall of the cavity, comprising:
an insert component having a configuration generally corresponding to but smaller than to a configuration of a back surface of the wall of the cavity, said insert component being one of formed from and coated with a water jet blocking material, said blocking material being more resistant to water jet drilling forces than a material of said wall.
14. A backer insert as in claim 13, wherein said blocking material comprises carbide.
15. A backer insert as in claim 13, wherein said insert component is substantially solid and is configured to fill a substantial portion of the cavity.
16. A backer insert as in claim 13, wherein said gas turbine component comprises a nozzle of the gas turbine.
17. A backer insert as in claim 16, wherein said wall is a side wall of an airfoil of the nozzle, and wherein said cavity is a vane cavity of said airfoil.
18. A backer insert as in claim 13, wherein said gas turbine component comprises a bucket of the gas turbine.
19. A backer insert as in claim 18, wherein said wall is a platform of the bucket, and said cavity is a shank pocket of the bucket.
US10/384,536 2001-08-27 2003-03-11 Backer inserts for blocking backwall water jet strikes Abandoned US20040023596A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/384,536 US20040023596A1 (en) 2001-08-27 2003-03-11 Backer inserts for blocking backwall water jet strikes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/682,372 US6547645B2 (en) 2001-08-27 2001-08-27 Method and backer inserts for blocking backwall water jet strikes
US10/384,536 US20040023596A1 (en) 2001-08-27 2003-03-11 Backer inserts for blocking backwall water jet strikes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/682,372 Division US6547645B2 (en) 2001-08-27 2001-08-27 Method and backer inserts for blocking backwall water jet strikes

Publications (1)

Publication Number Publication Date
US20040023596A1 true US20040023596A1 (en) 2004-02-05

Family

ID=24739402

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/682,372 Expired - Fee Related US6547645B2 (en) 2001-08-27 2001-08-27 Method and backer inserts for blocking backwall water jet strikes
US10/384,536 Abandoned US20040023596A1 (en) 2001-08-27 2003-03-11 Backer inserts for blocking backwall water jet strikes

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/682,372 Expired - Fee Related US6547645B2 (en) 2001-08-27 2001-08-27 Method and backer inserts for blocking backwall water jet strikes

Country Status (4)

Country Link
US (2) US6547645B2 (en)
EP (1) EP1291142A3 (en)
JP (1) JP2003106167A (en)
KR (1) KR20030019099A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075814A1 (en) * 2007-09-14 2009-03-19 Rentech, Inc. Promoted, attrition resistant, silica supported precipitated iron catalyst
US20140235140A1 (en) * 2013-02-21 2014-08-21 Waterjet Robotics AG Method for drilling at least one hole into a workpiece
US9278462B2 (en) 2013-11-20 2016-03-08 General Electric Company Backstrike protection during machining of cooling features

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10029467C1 (en) * 2000-06-21 2002-04-18 Daimler Chrysler Ag Process for stiffening circumferentially closed hollow profiles
US20070141385A1 (en) * 2005-12-21 2007-06-21 General Electric Company Method of coating gas turbine components
US8380338B2 (en) * 2008-04-29 2013-02-19 Huffman Corporation Method and apparatus for stripping holes in a metal substrate
DE102008036364A1 (en) * 2008-08-05 2010-02-18 Khs Ag Method for producing container cells
US8967078B2 (en) * 2009-08-27 2015-03-03 United Technologies Corporation Abrasive finish mask and method of polishing a component
US20110076405A1 (en) * 2009-09-25 2011-03-31 United Technologies Corporation Hole drilling with close proximity backwall
DE102015118610A1 (en) * 2015-10-30 2017-05-04 Nienstedt Gmbh Device for dividing food
JP7064076B2 (en) 2018-03-27 2022-05-10 三菱重工業株式会社 How to tune turbine blades, turbines, and natural frequencies of turbine blades
CN109648651B (en) * 2018-12-05 2020-07-07 南京航空航天大学 Device and method for solving problem of hole blockage of thermal barrier coating of turbine blade by using array water jet
CN109685890A (en) * 2018-12-24 2019-04-26 厦门大学 A kind of hollow turbine vane film cooling holes back wall damage active protection method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081892A (en) * 1976-11-01 1978-04-04 Flow Industries, Inc. Method of making composite structure
US4612737A (en) * 1985-07-05 1986-09-23 Rohr Industries, Inc. Grit blast drilling of advanced composite perforated sheet
US4698939A (en) * 1985-11-08 1987-10-13 Flow System, Inc. Two stage waterjet and abrasive jet catcher
US5140127A (en) * 1989-09-20 1992-08-18 Rolls-Royce Plc Laser barrier material
GB2243320B (en) * 1990-04-26 1993-08-25 Ae Turbine Components Laser drilling
GB2249279B (en) * 1990-10-17 1994-01-05 Rolls Royce Plc Improvements in or relating to drilling turbine blades
FR2699850B1 (en) * 1992-12-30 1995-02-03 Snecma Abrasive liquid jet stop device.
US5591002A (en) 1994-08-23 1997-01-07 General Electric Co. Closed or open air cooling circuits for nozzle segments with wheelspace purge
US6383602B1 (en) * 1996-12-23 2002-05-07 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream which flows through a substrate, and related articles of manufacture
US5773790A (en) 1997-01-21 1998-06-30 General Electric Company Beam blocking material and method for beam drilling and inspecting cooling holes
DE19711512C1 (en) * 1997-03-19 1998-10-15 Foracon Maschinen Und Anlagenb Water jet cutting in pipe walls
US5980209A (en) 1997-06-27 1999-11-09 General Electric Co. Turbine blade with enhanced cooling and profile optimization
US6139303A (en) 1998-11-20 2000-10-31 United Technologies Corporation Fixture for disposing a laser blocking material in an airfoil
US6224361B1 (en) 1998-11-20 2001-05-01 United Technologies Corportion Tool for disposing laser blocking material in an airfoil
US6183347B1 (en) * 1999-08-24 2001-02-06 General Electric Company Sustained surface step scrubbing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090075814A1 (en) * 2007-09-14 2009-03-19 Rentech, Inc. Promoted, attrition resistant, silica supported precipitated iron catalyst
US20140235140A1 (en) * 2013-02-21 2014-08-21 Waterjet Robotics AG Method for drilling at least one hole into a workpiece
US9381663B2 (en) * 2013-02-21 2016-07-05 Microwaterjet Ag Method for drilling at least one hole into a workpiece
US9884403B2 (en) 2013-02-21 2018-02-06 Microwaterjet Ag Machining arrangement for drilling at least one hole into a workpiece
US9278462B2 (en) 2013-11-20 2016-03-08 General Electric Company Backstrike protection during machining of cooling features

Also Published As

Publication number Publication date
EP1291142A2 (en) 2003-03-12
US20030040262A1 (en) 2003-02-27
JP2003106167A (en) 2003-04-09
KR20030019099A (en) 2003-03-06
EP1291142A3 (en) 2004-07-28
US6547645B2 (en) 2003-04-15

Similar Documents

Publication Publication Date Title
US6547645B2 (en) Method and backer inserts for blocking backwall water jet strikes
EP1087102B1 (en) Gas turbine bucket with impingement cooled platform
EP1731710B1 (en) Turbine airfoil with integrated impingement and serpentine cooling circuit
US3973874A (en) Impingement baffle collars
KR100526088B1 (en) Turbine blade
EP2519437B1 (en) Composite gas turbine engine component
RU2623600C2 (en) Cooling turbine blade (versions) and method of turbine blade cooling
US6527514B2 (en) Turbine blade with rub tolerant cooling construction
EP2592229B1 (en) Film hole trench
EP1514999B1 (en) Turbine blade platform cooling system
JP5546732B2 (en) Impingement cooled bucket shroud, turbine rotor incorporating the shroud, and cooling method
US5337805A (en) Airfoil core trailing edge region
US20060056968A1 (en) Apparatus and methods for cooling turbine bucket platforms
KR20040058059A (en) Compressor blade with dovetail slotted to reduce stress on the airfoil leading edge
JP2009162224A (en) Method of forming cooling hole and turbine airfoil with hybrid-formed cooling holes
EP1160418A3 (en) Steam exit flow design for aft cavities of an airfoil
EP1106781A1 (en) Coolable vane or blade for a turbomachine
EP3059044B1 (en) Component repair using confined laser drilling
EP1614860A2 (en) Turbine blade
KR20060051506A (en) Airfoil with large fillet and micro-circuit cooling
EP1205634A3 (en) Cooling of a gas turbine blade
JP2010112374A (en) Method and apparatus involving shroud cooling
US9903208B2 (en) Turbine blade machining method, machining tool, and turbine blade
SE503323C2 (en) Drill bit, preferably lower drill bit
EP0992315B1 (en) Method for reducing void volumes in cavities for laser drilling

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION