US20030104781A1 - Modular residential radio frequency converting repeater - Google Patents

Modular residential radio frequency converting repeater Download PDF

Info

Publication number
US20030104781A1
US20030104781A1 US09/998,238 US99823801A US2003104781A1 US 20030104781 A1 US20030104781 A1 US 20030104781A1 US 99823801 A US99823801 A US 99823801A US 2003104781 A1 US2003104781 A1 US 2003104781A1
Authority
US
United States
Prior art keywords
repeater
signal
modular
repeaters
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/998,238
Inventor
O. Son
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/998,238 priority Critical patent/US20030104781A1/en
Publication of US20030104781A1 publication Critical patent/US20030104781A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15507Relay station based processing for cell extension or control of coverage area
    • H04B7/15514Relay station based processing for cell extension or control of coverage area for shadowing compensation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/155Ground-based stations
    • H04B7/15564Relay station antennae loop interference reduction
    • H04B7/15571Relay station antennae loop interference reduction by signal isolation, e.g. isolation by frequency or by antenna pattern, or by polarization

Definitions

  • a repeater has two antennae, i.e., base station-facing antenna and mobile-facing antenna. Maintaining the proper isolation between the base station-facing antenna and the mobile-facing antenna is essential to the proper functioning of a repeater. That is because, without the proper isolation, the amplified signal which is sent out through the mobile-facing antenna feeds back to the base station-facing antenna and the signal is re-amplified causing oscillation.
  • the present invention Modular Residential Radio Frequency Converting Repeater, solves a seemingly incompatible design conflict between (1) acquiring proper isolation and (2) reducing size and eliminating wire.
  • this invention takes a modular approach, that is, two modular repeater units.
  • One is an outdoor modular repeater communicating with a base station and the other is an indoor modular repeater communicating with a mobile phone unit.
  • the two modules communicate with each other with converted radio frequency.
  • the outdoor module Upon receiving signals from a base station, for example, at 1930-1990 MHz, the outdoor module, after low noise amplification and filtering, relays signal at 180-240 MHz to the indoor module through frequency down converting. After receiving the 180-240 MHz converted signal, the indoor module recreates the original 1930-1990 MHz signal through low noise amplification, filtering, and frequency up converting and then sends it to a mobile phone.
  • Up link is basically in the reverse order.
  • a 1850-1910 MHz signal transmitted from a mobile phone is received from the indoor module. Then through low noise amplification, filtering and frequency down converting, the indoor module relays a signal at 100 MHz-160 MHz to the outdoor module. Receiving the down converted signal, the outdoor module recreates the signal at 1850-1910 MHz through low noise amplification, filtering, and frequency up converting and then transmits the recreated signal to a nearby base station.
  • this invention bypasses the oscillation problem by acquiring enough isolation between the antennae.
  • the present invention eliminates wiring between conventional outdoor antenna and indoor unit, and reduces signal loss.
  • FIG. 1 is a diagram showing all the elements of traditional radio frequency repeater.
  • FIG. 2 shows the oscillation phenomenon due to not having enough isolation between two antennae.
  • FIG. 3 is a layout of a traditional residential repeater comprising of an outdoor antenna wired to an indoor repeater unit.
  • FIG. 4 is a layout of the present invention.
  • FIG. 5 is a diagram showing all the elements of an outdoor module of the present invention.
  • FIG. 6 is a diagram showing all the elements of an indoor module of the present invention.
  • FIG. 1 is a diagram of a typical radio frequency repeater. It illustrates both the Forward Path (TX) and the Reverse Path (RX) that the signal travels inside a traditional repeater to and from a base station and a mobile unit. TX is as follows:
  • Base station-facing antenna 10 receives a signal.
  • DPX duplexer
  • LNA Low Noise Amplifier
  • VA Variable Amplifier
  • BPF Band Pass Filter
  • the amplified signal is sent to DPX 80 and finally the signal is transmitted to the air through mobile-facing antenna 90 .
  • RX is basically in the reverse of TX.
  • RX is as follows:
  • the signal received by mobile-facing antenna 90 is sent to RX through DPX 80 .
  • LNA 31 sorts out noise, amplifies the signal and then sends the signal to VA 41 .
  • VA 41 adjusts the forward path gain.
  • BPF 51 filters the signal.
  • Both AMP 61 and PA 71 amplify the filtered signal.
  • the amplified signal is sent to DPX 20 and then transmitted to a base station through base station-facing antenna 10 .
  • FIG. 2 illustrates the oscillation problem in a typical RF repeater 140 when the two antennae 130 & 150 are not isolated properly.
  • the signal transmitted from the mobile-facing antenna 150 feeds back to the base station-facing antenna 130 .
  • the latter antenna 130 picks up the already amplified signal and sends the amplified signal back to the repeater 140 .
  • This feedback and re-amplification process continues causing harm to the repeater 140 and signal loss to the mobile unit 160 .
  • FIG. 3 illustrates the simplest solution to acquire proper isolation between the antennae by maintaining sufficient distance between the base station-facing antenna 130 and the mobile-facing antenna 150 .
  • oscillation can be effectively avoided since the transmitted signal from the mobile-facing antenna 150 does not feed back to the base station-facing antenna 130 .
  • the two antennae 130 & 150 must be wired by a long cable and signal loss along the way is inevitable.
  • installing an outdoor antenna can be a hurdle for many prospective residential repeater users.
  • FIG. 4 is a simple layout of the present invention.
  • the present invention divides a repeater into two modular repeaters and allows the two modules to communicate simultaneously with down converted radio frequency.
  • the signal is received by a base station-facing antenna 130 attached to an outdoor modular repeater 141 .
  • the outdoor modular repeater 141 down converts the signal and delivers it to the indoor modular repeater 142 through indoor module-facing antenna 180 .
  • the down converted signal is received by the indoor modular repeater 142 through outdoor module-facing antenna 190 .
  • the indoor modular repeater 142 up converts the down converted signal.
  • the recreated original signal is delivered to mobile unit 160 through the mobile-facing antenna 150 .
  • the RX from the mobile unit 160 to base station 110 is as follows:
  • the mobile unit 160 transmits signal.
  • the indoor modular repeater 142 picks up the signal through mobile unit-facing antenna 150 .
  • the indoor modular repeater 142 down converts signal and delivers it to outdoor modular repeater 141 through outdoor module-facing antenna 190 .
  • the outdoor modular repeater 141 picks up down converted signal through indoor module-facing antenna 180 .
  • the outdoor modular repeater 141 recreates original signal by up converting the down converted signal and sends it out to the base station 110 through the base station-facing antenna 130 .
  • the work of both indoor and outdoor modular repeaters is explained in more detail in FIGS. 5 and 6 respectively.
  • PLL Phase Locked Loop
  • the RX of the outdoor module is the same as the TX but in a reverse order through the RX Path.
  • FIG. 6 is a diagram of an indoor module of the present invention.
  • the outdoor module-facing antenna 310 receives the down converted signal (180-240 MHz) from the outdoor module.
  • the signal is delivered to LNA 330 through TX port of DPX 320 .
  • LNA 330 sorts out the noise, amplifies the signal and then sends it to VA 340 .
  • VA 340 adjusts the gain produced along the TX.
  • Mixer 350 recreates the original signal received from the base station-facing antenna 210 in the outdoor module by mixing the down converted signal with the 1750 MHz local signal produced from PLL 321 .
  • PA 370 amplifies the filtered signal.
  • the signal is transmitted to the mobile unit through the TX port of DPX 380 .
  • the RX of the indoor module is the same as the TX above but in the reverse order through the RX path.

Abstract

The present invention aims to improve poor cellular reception at home with minimum cost and extreme ease. In order to avoid the oscillation problem and to acquire proper antenna isolation, traditional residential repeaters consist of an indoor repeater unit and an outdoor antenna wired to the indoor repeater. This design makes installation difficult and cumbersome. In addition, signal loss along the cable is inevitable.
By employing two modular repeaters, the present invention eliminates wires in a residential repeater. Two modular repeaters communicate simultaneously with each other with low radio frequency. Since the present invention does not have wire, installation is simple and easy.
The present invention enables seamless connection between home and a nearby base station or repeater, which means improved cellular reception, less dropped calls and more revenue for the service providers without building costly base stations.

Description

    CROSS REFERENCE TO RELATED APPLICATIONS
  • NOT APPLICABLE [0001]
  • STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • NOT APPLICABLE [0002]
  • REFERENCE TO MICROFICHE APPENDIX
  • NOT APPLICABLE [0003]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0004]
  • Despite the cellular phone service providers' relentless efforts to reduce shade areas by diligent cell surveys and construction of more base stations and repeaters, cellular phone subscribers' complaints about poor cellular reception or dropped calls seem to be far from diminishing. This poor reception problem is exacerbated when subscribers use their cell phones in their homes, especially in the metropolitan area where tall skyscrapers and multi-story apartment buildings are densely located. [0005]
  • Nevertheless, there are more and more people using cellular phones at home. Despite poor reception, some people find it convenient to be reached at one number wherever they are, that is, at work, at home or outdoors. Some people find it uneconomical to pay for both cellular and land line services and simply want to take advantage of free night and weekend minutes that many cellular service providers competitively offer. There is a growing number of people who are eliminating land line service completely at home and use only cellular or who are eliminating a second land line and replacing it with a cellular phone. [0006]
  • Because more airtime translates into higher revenues for cellular service providers, they are eager to improve the quality of their service by building more base stations, repeaters and cell towers. These efforts were, in general, successful in increasing outdoor cell coverage. However, they do not effectively cure the poor quality problem in the case of indoor cellular phone use. The failure lies in the fact that they are essentially designed to increase outdoor cell coverage not to improve indoor cellular quality. In addition, base stations and repeaters are very expensive to build and maintain. To sum up, building more base stations and repeaters is neither effective nor economical to reach every cellular user's living room. [0007]
  • Therefore, there is a soaring need for small indoor relay systems (“residential repeaters”) that connects seamlessly between a cellular user's home and service provider's outdoor repeater or a base station nearby. [0008]
  • 2. Description of the Prior Art [0009]
  • A few residential repeaters have been introduced into the market in an attempt to address the problem of poor cellular reception quality at home. However, ironically, none has been popularized among cellular users despite the soaring need. The need remains unmet. [0010]
  • One of the reasons why all residential repeaters failed to become popular lies in the inherent problem of implementing repeater technologies in a small package. A repeater has two antennae, i.e., base station-facing antenna and mobile-facing antenna. Maintaining the proper isolation between the base station-facing antenna and the mobile-facing antenna is essential to the proper functioning of a repeater. That is because, without the proper isolation, the amplified signal which is sent out through the mobile-facing antenna feeds back to the base station-facing antenna and the signal is re-amplified causing oscillation. [0011]
  • Therefore, to ensure the proper isolation between the two antennae, all residential repeaters currently available on the market are comprised of two or three units: an outdoor antenna, a repeater unit, and an indoor antenna; or an outdoor antenna and a repeater equipped with an indoor antenna. With these systems, wiring is necessary between the antennae and the repeater, which makes installation difficult and costly. In addition, in the case where one should implement a long cable, signal loss along the cable is inevitable. [0012]
  • SUMMARY OF THE INVENTION
  • The present invention, Modular Residential Radio Frequency Converting Repeater, solves a seemingly incompatible design conflict between (1) acquiring proper isolation and (2) reducing size and eliminating wire. Rather than dividing a residential repeater into an outdoor antenna and an indoor repeater unit, this invention takes a modular approach, that is, two modular repeater units. One is an outdoor modular repeater communicating with a base station and the other is an indoor modular repeater communicating with a mobile phone unit. The two modules communicate with each other with converted radio frequency. [0013]
  • Upon receiving signals from a base station, for example, at 1930-1990 MHz, the outdoor module, after low noise amplification and filtering, relays signal at 180-240 MHz to the indoor module through frequency down converting. After receiving the 180-240 MHz converted signal, the indoor module recreates the original 1930-1990 MHz signal through low noise amplification, filtering, and frequency up converting and then sends it to a mobile phone. [0014]
  • Up link is basically in the reverse order. A 1850-1910 MHz signal transmitted from a mobile phone is received from the indoor module. Then through low noise amplification, filtering and frequency down converting, the indoor module relays a signal at 100 MHz-160 MHz to the outdoor module. Receiving the down converted signal, the outdoor module recreates the signal at 1850-1910 MHz through low noise amplification, filtering, and frequency up converting and then transmits the recreated signal to a nearby base station. [0015]
  • By having two modular repeaters communicating with each other with low radio frequency, this invention bypasses the oscillation problem by acquiring enough isolation between the antennae. In addition, because the two modular repeaters communicate with each other with low radio frequency, the present invention eliminates wiring between conventional outdoor antenna and indoor unit, and reduces signal loss.[0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • For a better understanding of the principle and nature of the present invention, references should be made to the following detailed descriptions taken in consideration with the accompanying drawings in which: [0017]
  • FIG. 1 is a diagram showing all the elements of traditional radio frequency repeater. [0018]
  • FIG. 2 shows the oscillation phenomenon due to not having enough isolation between two antennae. [0019]
  • FIG. 3 is a layout of a traditional residential repeater comprising of an outdoor antenna wired to an indoor repeater unit. [0020]
  • FIG. 4 is a layout of the present invention. [0021]
  • FIG. 5 is a diagram showing all the elements of an outdoor module of the present invention. [0022]
  • FIG. 6 is a diagram showing all the elements of an indoor module of the present invention.[0023]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT
  • FIG. 1 is a diagram of a typical radio frequency repeater. It illustrates both the Forward Path (TX) and the Reverse Path (RX) that the signal travels inside a traditional repeater to and from a base station and a mobile unit. TX is as follows: [0024]
  • Base station-facing [0025] antenna 10 receives a signal. Through duplexer (DPX) 20, the signal is sent to TX. Low Noise Amplifier (LNA) 30 sorts out the noise and amplifies the signal. Variable Amplifier (VA) 40 adjusts the forward path gain. Band Pass Filter (BPF) 50 filters the signal and both Middle Amplifier 60 and Power Amplifier 70 amplify the signal. The amplified signal is sent to DPX 80 and finally the signal is transmitted to the air through mobile-facing antenna 90.
  • RX is basically in the reverse of TX. RX is as follows: [0026]
  • The signal received by mobile-facing [0027] antenna 90 is sent to RX through DPX 80. LNA 31 sorts out noise, amplifies the signal and then sends the signal to VA 41. VA 41 adjusts the forward path gain. BPF 51 filters the signal. Both AMP 61 and PA 71 amplify the filtered signal. The amplified signal is sent to DPX 20 and then transmitted to a base station through base station-facing antenna 10.
  • FIG. 2 illustrates the oscillation problem in a [0028] typical RF repeater 140 when the two antennae 130 & 150 are not isolated properly. As FIG. 2 illustrates, without proper isolation, the signal transmitted from the mobile-facing antenna 150 feeds back to the base station-facing antenna 130. The latter antenna 130 picks up the already amplified signal and sends the amplified signal back to the repeater 140. This feedback and re-amplification process continues causing harm to the repeater 140 and signal loss to the mobile unit 160.
  • Acquiring proper isolation to avoid the oscillation has been the major hurdle in embodying a small residential repeater that has the two antennae and other RF components all in one small box. Therefore, the traditional radio frequency residential repeaters simply detach a base station-facing antenna as an outdoor unit from the repeater. However, by separating the base station-facing antenna this way, the detached antenna and the other unit must be wired by cable and suffer signal loss along the way. In addition, wiring is difficult and cumbersome and, therefore, works as a disincentive for home users. [0029]
  • FIG. 3 illustrates the simplest solution to acquire proper isolation between the antennae by maintaining sufficient distance between the base station-facing [0030] antenna 130 and the mobile-facing antenna 150. With this layout, oscillation can be effectively avoided since the transmitted signal from the mobile-facing antenna 150 does not feed back to the base station-facing antenna 130. However, the two antennae 130 & 150 must be wired by a long cable and signal loss along the way is inevitable. In addition, installing an outdoor antenna can be a hurdle for many prospective residential repeater users.
  • FIG. 4 is a simple layout of the present invention. In order to solve the oscillation problem without using an outdoor antenna wired to an indoor unit, the present invention divides a repeater into two modular repeaters and allows the two modules to communicate simultaneously with down converted radio frequency. [0031]
  • Regarding the TX of the signal transmitted from [0032] base station 110, the signal is received by a base station-facing antenna 130 attached to an outdoor modular repeater 141. The outdoor modular repeater 141 down converts the signal and delivers it to the indoor modular repeater 142 through indoor module-facing antenna 180. The down converted signal is received by the indoor modular repeater 142 through outdoor module-facing antenna 190. The indoor modular repeater 142 up converts the down converted signal. The recreated original signal is delivered to mobile unit 160 through the mobile-facing antenna 150.
  • The RX from the [0033] mobile unit 160 to base station 110 is as follows:
  • The [0034] mobile unit 160 transmits signal. The indoor modular repeater 142 picks up the signal through mobile unit-facing antenna 150. The indoor modular repeater 142 down converts signal and delivers it to outdoor modular repeater 141 through outdoor module-facing antenna 190. The outdoor modular repeater 141 picks up down converted signal through indoor module-facing antenna 180. The outdoor modular repeater 141 recreates original signal by up converting the down converted signal and sends it out to the base station 110 through the base station-facing antenna 130. The work of both indoor and outdoor modular repeaters is explained in more detail in FIGS. 5 and 6 respectively.
  • FIG. 5 illustrates the elements of an outdoor module of the present invention. How it works is as follows: Base station-facing [0035] antenna 210 receives a weak signal from the base station. This signal is delivered to LNA 230 through TX port in DPX 220. LNA 230 sorts out noise, amplifies the signal, and sends it to VA 240. VA 240 adjusts the signal gain produced during the path. Mixer 250 down converted the signal to 180-240 MHz by mixing the 1930-1990 MHz signal from VA 240 and 1750 MHz local signal produced at Phase Locked Loop (PLL) 221. BPF 260 filters the down converted signal (180-240 MHz, Band Width=60 MHz) and eliminates spurious images and signal. PA 270 amplifies the signal. The signal is transmitted to the indoor modular repeater through DPX 280 and indoor module-facing antenna 290.
  • The RX of the outdoor module is the same as the TX but in a reverse order through the RX Path. [0036]
  • FIG. 6 is a diagram of an indoor module of the present invention. The way it works is as follows: The outdoor module-facing [0037] antenna 310 receives the down converted signal (180-240 MHz) from the outdoor module. The signal is delivered to LNA 330 through TX port of DPX 320. LNA 330 sorts out the noise, amplifies the signal and then sends it to VA 340. VA 340 adjusts the gain produced along the TX. Mixer 350 recreates the original signal received from the base station-facing antenna 210 in the outdoor module by mixing the down converted signal with the 1750MHz local signal produced from PLL 321. BPF 360 filters the up converted signal (1930-1990 MHz, BW=60 MHz) and eliminates spurious images and signal. PA 370 amplifies the filtered signal. The signal is transmitted to the mobile unit through the TX port of DPX 380.
  • The RX of the indoor module is the same as the TX above but in the reverse order through the RX path. [0038]

Claims (1)

What is claimed as being new and therefore desired to be protected by Letter Patent of the United States is as follows:
1. A modular residential radio frequency converting repeater for both PCS (1,850-1,990 MHz) and DCS (824-894 MHz) systems comprised of the following:
(a) An outdoor modular repeater and an indoor modular repeater.
(b) Two modular repeaters communicating simultaneously with each other with converted low radio frequencies.
US09/998,238 2001-12-03 2001-12-03 Modular residential radio frequency converting repeater Abandoned US20030104781A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/998,238 US20030104781A1 (en) 2001-12-03 2001-12-03 Modular residential radio frequency converting repeater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/998,238 US20030104781A1 (en) 2001-12-03 2001-12-03 Modular residential radio frequency converting repeater

Publications (1)

Publication Number Publication Date
US20030104781A1 true US20030104781A1 (en) 2003-06-05

Family

ID=25544957

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/998,238 Abandoned US20030104781A1 (en) 2001-12-03 2001-12-03 Modular residential radio frequency converting repeater

Country Status (1)

Country Link
US (1) US20030104781A1 (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030216121A1 (en) * 2001-10-11 2003-11-20 Mark Yarkosky Method for in-building distribution using wireless access technology
US20040110469A1 (en) * 2000-01-14 2004-06-10 Judd Mano D. Repeaters for wireless communication systems
WO2005025078A2 (en) 2003-09-03 2005-03-17 Behzad Mohebbi Short-range cellular booster
US20050068902A1 (en) * 2003-07-09 2005-03-31 Kamlesh Rath Scalable broadband wireless mesh access network
US20050250442A1 (en) * 2002-07-10 2005-11-10 Renaud Dore Radio communication repeater
US20050272367A1 (en) * 2004-05-26 2005-12-08 Rodgers Michael W Wireless repeater implementing low-level oscillation detection and protection for a duplex communication system
EP1622287A2 (en) * 2004-07-29 2006-02-01 Lucent Technologies Inc. Extending wireless communication RF coverage inside buildings
US20060105705A1 (en) * 2004-11-16 2006-05-18 Andrew Corporation Consumer installer repeater for wireless communication
US20060205343A1 (en) * 2005-03-11 2006-09-14 Runyon Donald L Wireless repeater with feedback suppression features
US20080045174A1 (en) * 2006-08-18 2008-02-21 Fujitsu Limited System and method for Implementing a Multi-Radio Wireless Network
US20090061939A1 (en) * 2007-08-29 2009-03-05 Telefonaktiebolaget Lm Ericsson (Publ) System and method for indoor coverage of user equipment terminals
US20090117899A1 (en) * 2005-02-10 2009-05-07 Cellvine Ltd. Apparatus and method for repeater-based cellular coverage switching
US20090270027A1 (en) * 2003-03-04 2009-10-29 Bandwidth Wireless Limited Liability Company Repeater system for strong signal environments
US20160309338A1 (en) * 2013-12-31 2016-10-20 Huawei Technologies Co., Ltd. Method and apparatus for transmitting data
CN107026775A (en) * 2017-04-19 2017-08-08 太仓鸿策锐达认证咨询有限公司 Multiterminal household network communication system
US20170257894A1 (en) * 2016-03-07 2017-09-07 Adtran, Inc. System and method for accessing broadband connectivity over local wireless network
WO2018094203A1 (en) 2016-11-18 2018-05-24 Intel IP Corporation 5g mmwave wireless remote radio head system
EP3289730A4 (en) * 2015-04-27 2018-12-26 CommScope Technologies LLC Transport of modulated radio communication signals over data networks
CN110521277A (en) * 2017-03-22 2019-11-29 尼克根合伙Ip有限责任公司 The regeneration and forwarding of millimeter wave for building penetration
JP2019207519A (en) * 2018-05-29 2019-12-05 パナソニックIpマネジメント株式会社 Relay and fire alarm system
US11088755B2 (en) 2017-03-22 2021-08-10 Nxgen Partners Ip, Llc Re-generation and re-transmission of millimeter waves using roof mounted CPE unit
US11283522B2 (en) 2014-04-04 2022-03-22 Nxgen Partners Ip, Llc System and method for powering re-generation and re-transmission of millimeter waves for building penetration
US11492114B1 (en) * 2014-03-15 2022-11-08 Micro Mobio Corporation Handy base station with through barrier radio frequency transmission system and method
US11553857B1 (en) 2012-09-25 2023-01-17 Micro Mobio Corporation System and method for through window personal cloud transmission
US20230246798A1 (en) * 2010-08-26 2023-08-03 Golba Llc Method and system for distributed communication

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023930A (en) * 1987-08-03 1991-06-11 Orion Industries, Inc. Booster with detectable boost operation
US5095528A (en) * 1988-10-28 1992-03-10 Orion Industries, Inc. Repeater with feedback oscillation control
US5402523A (en) * 1991-08-30 1995-03-28 Telefonaktiebolaget L M Ericsson Combined mobile radio communication system
US5404570A (en) * 1992-11-23 1995-04-04 Telefonaktiebolaget L M Ericsson Radio coverage in closed environments
US5533027A (en) * 1993-02-16 1996-07-02 Telefonaktiebolaget Lm Ericsson Digital fixed radio access system providing local mobility
US5604789A (en) * 1994-07-01 1997-02-18 U S West Technologies, Inc. Method and system for providing a digital wireless local loop
US5832365A (en) * 1996-09-30 1998-11-03 Lucent Technologies Inc. Communication system comprising an active-antenna repeater
US5870665A (en) * 1995-01-27 1999-02-09 Nec Corporation Mobile satellite communication terminal
US5890055A (en) * 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US5912641A (en) * 1997-01-21 1999-06-15 Globalstar L.P. Indoor satellite cellular repeater system
US6005853A (en) * 1995-10-13 1999-12-21 Gwcom, Inc. Wireless network access scheme
US6459881B1 (en) * 1996-12-02 2002-10-01 T. Mobile Deutschland Gmbh Repeater for radio signals

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023930A (en) * 1987-08-03 1991-06-11 Orion Industries, Inc. Booster with detectable boost operation
US5095528A (en) * 1988-10-28 1992-03-10 Orion Industries, Inc. Repeater with feedback oscillation control
US5402523A (en) * 1991-08-30 1995-03-28 Telefonaktiebolaget L M Ericsson Combined mobile radio communication system
US5404570A (en) * 1992-11-23 1995-04-04 Telefonaktiebolaget L M Ericsson Radio coverage in closed environments
US5533027A (en) * 1993-02-16 1996-07-02 Telefonaktiebolaget Lm Ericsson Digital fixed radio access system providing local mobility
US5604789A (en) * 1994-07-01 1997-02-18 U S West Technologies, Inc. Method and system for providing a digital wireless local loop
US5870665A (en) * 1995-01-27 1999-02-09 Nec Corporation Mobile satellite communication terminal
US5890055A (en) * 1995-07-28 1999-03-30 Lucent Technologies Inc. Method and system for connecting cells and microcells in a wireless communications network
US6005853A (en) * 1995-10-13 1999-12-21 Gwcom, Inc. Wireless network access scheme
US5832365A (en) * 1996-09-30 1998-11-03 Lucent Technologies Inc. Communication system comprising an active-antenna repeater
US6459881B1 (en) * 1996-12-02 2002-10-01 T. Mobile Deutschland Gmbh Repeater for radio signals
US5912641A (en) * 1997-01-21 1999-06-15 Globalstar L.P. Indoor satellite cellular repeater system

Cited By (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8971796B2 (en) 1999-07-20 2015-03-03 Andrew Llc Repeaters for wireless communication systems
US8630581B2 (en) 1999-07-20 2014-01-14 Andrew Llc Repeaters for wireless communication systems
US8358970B2 (en) 1999-07-20 2013-01-22 Andrew Corporation Repeaters for wireless communication systems
US20040110469A1 (en) * 2000-01-14 2004-06-10 Judd Mano D. Repeaters for wireless communication systems
US7577398B2 (en) * 2000-01-14 2009-08-18 Andrew Llc Repeaters for wireless communication systems
US20030216121A1 (en) * 2001-10-11 2003-11-20 Mark Yarkosky Method for in-building distribution using wireless access technology
US6895218B2 (en) * 2001-10-11 2005-05-17 Sprint Spectrum L.P. Method for in-building distribution using wireless access technology
US7310497B2 (en) * 2002-07-10 2007-12-18 Thomson Licensing Radio communication repeater
US20050250442A1 (en) * 2002-07-10 2005-11-10 Renaud Dore Radio communication repeater
US20120202419A1 (en) * 2003-03-04 2012-08-09 Bandwidth Wireless Limited Liability Company Repeater system for strong signal environments
US8175521B2 (en) * 2003-03-04 2012-05-08 Bandwidth Wireless Limited Liability Company Repeater system for strong signal environments
US20090270027A1 (en) * 2003-03-04 2009-10-29 Bandwidth Wireless Limited Liability Company Repeater system for strong signal environments
US8346158B2 (en) * 2003-03-04 2013-01-01 Bandwidth Wireless Limited Liability Company Repeater system for strong signal environments
US20050068902A1 (en) * 2003-07-09 2005-03-31 Kamlesh Rath Scalable broadband wireless mesh access network
US20060172781A1 (en) * 2003-09-03 2006-08-03 Behzad Mohebbi Short-range cellular booster
EP1668781A4 (en) * 2003-09-03 2010-09-01 Behzad Mohebbi Short-range cellular booster
EP1668781A2 (en) * 2003-09-03 2006-06-14 Behzad Mohebbi Short-range cellular booster
US9130641B2 (en) 2003-09-03 2015-09-08 Nextivity, Inc. Short-range cellular booster
EP1668781B1 (en) * 2003-09-03 2015-04-08 Nextivity, Inc. Short-range cellular booster
WO2005025078A2 (en) 2003-09-03 2005-03-17 Behzad Mohebbi Short-range cellular booster
WO2005119936A2 (en) * 2004-05-26 2005-12-15 Wireless Extenders, Inc. Wireless repeater for a duplex communication system implementing a protection based on oscillation detection
US20050272367A1 (en) * 2004-05-26 2005-12-08 Rodgers Michael W Wireless repeater implementing low-level oscillation detection and protection for a duplex communication system
WO2005119936A3 (en) * 2004-05-26 2006-04-20 Wireless Extenders Inc Wireless repeater for a duplex communication system implementing a protection based on oscillation detection
US7706744B2 (en) 2004-05-26 2010-04-27 Wireless Extenders, Inc. Wireless repeater implementing low-level oscillation detection and protection for a duplex communication system
US7406300B2 (en) * 2004-07-29 2008-07-29 Lucent Technologies Inc. Extending wireless communication RF coverage inside building
US20060025072A1 (en) * 2004-07-29 2006-02-02 Lucent Technologies, Inc. Extending wireless communication RF coverage inside building
EP1622287A2 (en) * 2004-07-29 2006-02-01 Lucent Technologies Inc. Extending wireless communication RF coverage inside buildings
EP1622287A3 (en) * 2004-07-29 2006-02-08 Lucent Technologies Inc. Extending wireless communication RF coverage inside buildings
US20060105705A1 (en) * 2004-11-16 2006-05-18 Andrew Corporation Consumer installer repeater for wireless communication
US7835694B2 (en) * 2005-02-10 2010-11-16 Yoni Shiff Apparatus and method for repeater-based cellular coverage switching
US20090117899A1 (en) * 2005-02-10 2009-05-07 Cellvine Ltd. Apparatus and method for repeater-based cellular coverage switching
US20060205343A1 (en) * 2005-03-11 2006-09-14 Runyon Donald L Wireless repeater with feedback suppression features
US20080045174A1 (en) * 2006-08-18 2008-02-21 Fujitsu Limited System and method for Implementing a Multi-Radio Wireless Network
US8126392B2 (en) * 2006-08-18 2012-02-28 Fujitsu Limited System and method for implementing a multi-radio wireless network
US8055300B2 (en) * 2007-08-29 2011-11-08 Telefonaktiebolaget Lm Ericsson (Publ) System and method for indoor coverage of user equipment terminals
US20090061939A1 (en) * 2007-08-29 2009-03-05 Telefonaktiebolaget Lm Ericsson (Publ) System and method for indoor coverage of user equipment terminals
US11924147B2 (en) * 2010-08-26 2024-03-05 Golba Llc Method and system for distributed communication
US20230246798A1 (en) * 2010-08-26 2023-08-03 Golba Llc Method and system for distributed communication
US11553857B1 (en) 2012-09-25 2023-01-17 Micro Mobio Corporation System and method for through window personal cloud transmission
US20160309338A1 (en) * 2013-12-31 2016-10-20 Huawei Technologies Co., Ltd. Method and apparatus for transmitting data
US9924374B2 (en) * 2013-12-31 2018-03-20 Huawei Technologies Co., Ltd. Method and apparatus for transmitting data
US11492114B1 (en) * 2014-03-15 2022-11-08 Micro Mobio Corporation Handy base station with through barrier radio frequency transmission system and method
US11901943B2 (en) 2014-04-04 2024-02-13 Nxgen Partners Ip, Llc System and method for powering re-generation and re-transmission of millimeter waves for building penetration
US11283522B2 (en) 2014-04-04 2022-03-22 Nxgen Partners Ip, Llc System and method for powering re-generation and re-transmission of millimeter waves for building penetration
EP3289730A4 (en) * 2015-04-27 2018-12-26 CommScope Technologies LLC Transport of modulated radio communication signals over data networks
US10797782B2 (en) 2015-04-27 2020-10-06 Commscope Technologies Llc Transport of modulated radio communication signals over data networks
US10879993B2 (en) 2015-04-27 2020-12-29 Commscope Technologies Llc Transport of modulated radio communication signals over data networks
US10021730B2 (en) * 2016-03-07 2018-07-10 Adtran, Inc. System and method for accessing broadband connectivity over local wireless network
US20170257894A1 (en) * 2016-03-07 2017-09-07 Adtran, Inc. System and method for accessing broadband connectivity over local wireless network
EP3542467A4 (en) * 2016-11-18 2020-06-17 Intel IP Corporation 5g mmwave wireless remote radio head system
US11083047B2 (en) 2016-11-18 2021-08-03 Apple Inc. 5G mmWave wireless remote radio head system
WO2018094203A1 (en) 2016-11-18 2018-05-24 Intel IP Corporation 5g mmwave wireless remote radio head system
EP3603329A4 (en) * 2017-03-22 2021-04-21 NxGen Partners IP, LLC Re-generation and re-transmission of millimeter waves for building penetration
US11088755B2 (en) 2017-03-22 2021-08-10 Nxgen Partners Ip, Llc Re-generation and re-transmission of millimeter waves using roof mounted CPE unit
CN110521277A (en) * 2017-03-22 2019-11-29 尼克根合伙Ip有限责任公司 The regeneration and forwarding of millimeter wave for building penetration
CN107026775A (en) * 2017-04-19 2017-08-08 太仓鸿策锐达认证咨询有限公司 Multiterminal household network communication system
JP7266200B2 (en) 2018-05-29 2023-04-28 パナソニックIpマネジメント株式会社 repeaters and fire alarm systems
JP2019207519A (en) * 2018-05-29 2019-12-05 パナソニックIpマネジメント株式会社 Relay and fire alarm system

Similar Documents

Publication Publication Date Title
US20030104781A1 (en) Modular residential radio frequency converting repeater
US11601190B2 (en) Apparatus and methods for radio frequency signal boosters
US6151480A (en) System and method for distributing RF signals over power lines within a substantially closed environment
AU2005251169B2 (en) Wireless repeater for a duplex communication system implementing a protection based on oscillation detection
US6615021B1 (en) Method and apparatus for transmitting radio frequency signals to and from a pager
JPH0744494B2 (en) Zone enhancer for a wireless zoned wireless telephone system having a bandpass filter structure.
CN101094032A (en) Radio signal coverage system
US20010038670A1 (en) Multibit spread spectrum signalling
US20070010198A1 (en) Method and apparatus for utilizing selective signal polarization and interference cancellation for wireless communication
EP0873014A1 (en) Process and system for distributing television signals
KR100862370B1 (en) Asymmetry type line repeater using dual bands
CN101461150A (en) A system for carrying out signal distribution using indoor television cable
KR100871460B1 (en) An apparatus for providing integrated relay service
KR100375836B1 (en) Unified repeating system for mobile communication service
KR100306888B1 (en) Repeater for portable communication system used in radio wave shadow area
KR100920122B1 (en) Repeater method for mobile communicationservice using hfc network and system thereby
KR101094496B1 (en) Integrated Radio Repeater
KR100645356B1 (en) Method and RF Repeater System for Enhancing Communication Quality in Shadow Area by Using CCTV Facility
KR101052175B1 (en) Apparatus and method for mobile communication signal relay using CYPEN reserve circuit
US20030114135A1 (en) Wireless phone link
KR200360431Y1 (en) unified radio frequency repeater
US20040166833A1 (en) Mobile radio service over catv network
KR19990018816A (en) Indoor subscriber device communication method and device therefor in WLL and IMT-2000 system
CN101873676B (en) GSM (Global System for Mobile) micropower distribution system
JPH08508377A (en) Wireless repeater

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION