US20020164286A1 - Methods for obtaining fluid and cellular material from a breast duct - Google Patents

Methods for obtaining fluid and cellular material from a breast duct Download PDF

Info

Publication number
US20020164286A1
US20020164286A1 US10/175,022 US17502202A US2002164286A1 US 20020164286 A1 US20020164286 A1 US 20020164286A1 US 17502202 A US17502202 A US 17502202A US 2002164286 A1 US2002164286 A1 US 2002164286A1
Authority
US
United States
Prior art keywords
breast
breast duct
duct
fluid
washing fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/175,022
Inventor
Susan Love
Sanford Barsky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/931,786 external-priority patent/US6168779B1/en
Priority claimed from US09/067,661 external-priority patent/US6221622B1/en
Application filed by University of California filed Critical University of California
Priority to US10/175,022 priority Critical patent/US20020164286A1/en
Assigned to THE REGENTS OF THE UNIVERSITY OF CALIFORNIA reassignment THE REGENTS OF THE UNIVERSITY OF CALIFORNIA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BARSKY, SANFORD H., LOVE, SUSAN M.
Publication of US20020164286A1 publication Critical patent/US20020164286A1/en
Assigned to ARMY, UNITED STATES GOVERNMENT, THE , SECRETARY OF THE reassignment ARMY, UNITED STATES GOVERNMENT, THE , SECRETARY OF THE CONFIRMATORY LICENSE (SEE DOCUMENT FOR DETAILS). Assignors: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0045Devices for taking samples of body liquids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • A61K49/0021Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules the fluorescent group being a small organic molecule
    • A61K49/0041Xanthene dyes, used in vivo, e.g. administered to a mice, e.g. rhodamines, rose Bengal
    • A61K49/0043Fluorescein, used in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/005Fluorescence in vivo characterised by the carrier molecule carrying the fluorescent agent
    • A61K49/0058Antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/006Biological staining of tissues in vivo, e.g. methylene blue or toluidine blue O administered in the buccal area to detect epithelial cancer cells, dyes used for delineating tissues during surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/0041Detection of breast cancer

Definitions

  • the present invention relates generally to medical methods and devices for accessing body lumens and in particular to methods and apparatus for identifying ductal orifices in human breasts and accessing the ducts through the identified orifices.
  • fluids from the breast ducts have been externally collected, analyzed, and correlated to some extent with the risk of breast cancer.
  • Such fluid collection is generally taken from the surface of the nipple and represents the entire ductal structure.
  • Information on the condition of an individual duct is generally not provided.
  • Information on individual ducts can be obtained through cannulation and endoscopic examination, but such examinations have been primarily in women with nipple discharge or for research purposes and have generally not examined each individual duct in the breast.
  • ductal access may be obtained by a magnification of the nipple and identification of ductal orifice(s) using conventional medical magnifiers, such as magnification loupes. While such magnified examination is relatively simple, it cannot be relied on to identify all orifices.
  • ductal orifices can be confused with other tissue structures, such as sebaceous glands and simple keratin-filled caruncles of the nipple.
  • tissue structures such as sebaceous glands and simple keratin-filled caruncles of the nipple.
  • the present invention provides improved methods, kits, and other apparatus for locating breast ducts in the breasts of human female patients.
  • the methods of the present invention permit reliable identification of the orifices within the nipple of a breast which lead to each of the multiple ductal networks within the breast. By reliably identifying each orifice, all of the ductal networks can be located and subsequently accessed for diagnostic, risk assessment, therapeutic, research, or other purposes.
  • a method for locating an orifice of a breast duct comprises labelling ductal cells disposed at the ductal orifice with a visible or otherwise detectable label. The orifice may then be located based on the presence of the label at the orifice. Specific and preferred methods for labeling the orifices are described below in connection with a second aspect of the present invention.
  • an access device such as a catheter or fiberoptic viewing scope, can be introduced through at least one of the orifices and into the associated breast duct.
  • the method may further comprise introducing the same or a different access device through other orifices, often into each of the orifices to permit diagnosis, treatment, or other evaluation of all of the ductal networks of a breast.
  • the present invention comprises a method for labelling the orifice of a breast duct.
  • the method includes treating a nipple to expose tissue in an orifice of each duct.
  • the treated nipple is then exposed to a labelling reagent capable of specifically binding to a tissue marker characteristic of tissue at the ductal orifice. Binding of the labelling reagent to the tissue results in immobilization of a label at the orifice, permitting subsequent location of the orifice as described above.
  • the treating step preferably comprises washing the nipple with a keratinolytic agent, such as 5% to 50% acetic acid (by weight), to remove keratin-containing materials which normally occlude the duct orifice and which could inhibit binding of the labelling reagent to the tissue marker.
  • a keratinolytic agent such as 5% to 50% acetic acid (by weight)
  • the tissue marker is typically characteristic of the ductal epithelium and represents either a membrane antigen or a cytoplasmic antigen. It has been found by the inventors herein that the ductal epithelium extends to within 0.1 mm to 0.2 mm of the nipple orifice and is sufficiently exposed to the surface of the nipple to permit labelling according to the methods of the present invention.
  • the labelling reagent comprises a polyclonal or monoclonal antibody or other specific binding substance specific for the marker.
  • the antibody may be directly labelled with a visible label, such as a fluorescent label, a dye label, a chemiluminescent label, or the like.
  • the labeling reagent may comprise two or more components, typically including a primary antibody which is specific for the marker and one or more secondary binding substances which bind to the primary antibody and provide a label, optionally a magnified label.
  • the primary antibody may be unlabelled, and a secondary labelled antibody specific for the primary antibody also be provided.
  • the primary antibody can be labelled with biotin or other hapten, and binding of the label provided via avidin, secondary antibody specific for the hapten, or the like. Numerous specific techniques for labelling of antigenic tissue markers are well known and reported in the immunocytochemical staining literature.
  • a method according to the present invention comprises labelling cellular material at a ductal orifice with a visible label and subsequently accessing the duct through the labelled orifice.
  • the labelling step usually comprises the method set forth above.
  • the accessing step may comprise introducing an access device through at least one of the labelled orifices, and preferably through all of the labelled orifices, where the access device may be a catheter, a fiber optic viewing scope, or the like.
  • kits for labelling breast duct orifices comprises a labelling reagent or reagents capable of specifically labelling a cellular marker at the ductal orifice, instructions setting forth a labelling method as described above, and a package containing the labelling reagent and the instructions for use.
  • the kits of the present invention will further include the keratinolytic agent and any other reagents that may be necessary for performing the method.
  • Instructions for use will set forth the use of all provided reagents and may further set forth the use of agents which are available in the laboratory where the assay is to be performed.
  • a kit for accessing a breast duct comprises a labelling reagent capable of specifically labelling a ductal orifice and optionally a keratinolytic agent for treating the nipple prior to exposure of the labelling reagent.
  • the kit further comprises an access device capable of being inserted through a labelled ductal orifice to a ductal lumen, such as a catheter, a fiber optic viewing scope, or the like.
  • the kit still further comprises a package containing the labelling reagent, optionally the keratinolytic agent, and the access device.
  • the accessing kit may further comprise instructions for use setting forth a method comprising the accessing steps as described above.
  • FIG. 1 is an anterior view of a human female breast, shown in section, and illustrating three of the six to nine ductal networks extending inwardly from the nipple.
  • FIG. 2 is an enlarged view of the nipple of FIG. 1 illustrating the orifices leading to each of the three ductal networks.
  • FIG. 3 is a still further enlarged view of a single orifice illustrating the distribution of tissue markers from the epithelium to the opening of the orifice, where such markers at the opening are available for binding to labelled antibodies.
  • FIG. 4 is a schematic illustration of the appearance of a nipple which has been labelled with visible markers according to the methods of the present invention.
  • the present invention comprises methods for locating, labelling, and accessing the ductal networks in human female breasts.
  • a typical breast B is illustrated in FIG. 1 and includes a nipple N and from six to nine ducts D.
  • each ductal network D 1-3 begins with an orifice O 1-3 which lies at the surface of the nipple N and extends inwardly through a ductal sinus S 1-3 and then into a branching network.
  • Each network D comprises a series of successively smaller lumens which are arranged in complex, three-dimensional patterns.
  • the networks of each duct will overlap within the breast tissue but will not be interconnected.
  • the present invention relies on identifying and labelling tissue in the orifice O of each duct D within the nipple N.
  • ductal networks there will be from six to nine orifices which open into a like number of ductal networks.
  • An abrupt transition from the ductal epithelium to the squamous epithelium of the skin is found within about 0.1 mm to 0.2 mm of the nipple surface.
  • the ductal orifice will be occluded with a conical keratin plug measuring about 0.5 mm to 1 mm in size.
  • the present invention relies on the specific labelling of tissue markers at the orifice of selected one(s) or all of the ductal network(s).
  • specific it is meant that the label will be introduced in a manner such that it will bind to the orifice region within the nipple but not bind (or will bind to a significantly lesser extent, usually at least 10-fold less) to other regions of the nipple. In this way, binding of the label to the orifice will be a discernable indication that the orifice is present and available for access to the associated ductal network.
  • the tissue marker(s) will be an antigenic or epitopic site characteristic of the epithelial lining of the breast duct. Surprisingly, it has been found that the epithelial lining extends sufficiently far into the orifice region of the duct to permit successful labelling using generally conventional immunocytochemical labelling reagents and techniques, as described in more detail below.
  • tissue markers include antigens and epitopes defined by the cytokeratins present in the epithelial cytoplasmic lining, such as cytokeratin 8, cytokeratin 18, and by molecules present in the membrane lining, such as E cadherin, epithelial membrane antigen (EMA), and the like.
  • Suitable breast epithelial tissue markers are described, for example, in Moll et al. (1982) Cell 30:11-19; Gown and Vogel (1984) Am. J. Pathol. 114:309-321; and Johnson (1991) Cancer Metastasis Rev. 10:11-22.
  • an orifice region O of a ductal network D is illustrated with a plurality of markers M lining the epithelium of the duct and extending to the perimeter of the orifice.
  • Labelled antibodies A can be used to locate and label those markers M which are near the orifice O. Frequently, it will be desirable or necessary to wash the nipple with a solution capable of unblocking the orifice to permit binding of the antibodies or other labelling reagent.
  • the orifice can frequently become plugged with keratin-containing materials, and washing with a keratinolytic solution, such as acetic acid (5% to 50% by weight) admixed in a pharmaceutical delivery vehicle, will expose sufficient marker sites at each orifice to enable labelling according to the methods of the present invention.
  • a keratinolytic solution such as acetic acid (5% to 50% by weight) admixed in a pharmaceutical delivery vehicle
  • the labelled antibodies or other labelling reagents may be formulated as liquid, typically aqueous, solutions in a generally conventional manner.
  • Suitable anti-cytokeratin antibodies may be obtained from commercial suppliers, with specific antibodies including FITC-anticytokeratin (Becton-Dickenson), CAM 5.2, and the like.
  • the antibodies may be coupled to one member of a signal-producing system capable of generating a detectable visual or other change on the tissue surface, where an element will be referred to here and after as a “visual label.”
  • Suitable signal-producing systems include fluorescent systems, color-generating systems, and luminescent systems.
  • the primary antibody can be mouse IgG and the labelled secondary antibody can be FITC goat anti-mouse IgG (Zymed).
  • Such signal-producing systems and the use on tissue and tissue samples is well described in the medical, scientific, and patent literature relating to immunocytochemical staining.
  • the nipple is first dekeratinized with 5% to 50% acetic acid to remove keratin and other potentially blocking and contaminating substances from the ductal orifices.
  • a solution of the labelled antibody preferably an antibody which directly binds to a cytokeratin or other epithelial cytoplasmic or surface membrane marker, such as the antibodies described above, is then applied to the nipple surface.
  • the antibody is preferably linked to a fluorescent marker, more preferably fluorescein, and the fluorescein-labelled antibody delivered in a buffered aqueous solution.
  • controls may be run.
  • labelled antibodies of the same Ig class as the specific antibody may be exposed to the nipple at the same dilution. By comparing the results with the specific antibody and the control antibody, non-specific binding can be discounted.
  • the labelling reagent will typically be packaged (optionally with the keratinolytic agent) together with instructions for use in a conventional assay package, such as a box, bottle, tube, pouch, or the like.
  • the instructions for use may be written out on a separate instruction sheet or may be partially or fully incorporated onto the packaging materials.
  • a second kit according to the present invention will comprise the labelling reagent (optionally with the keratinolytic agent) in a package as set forth above.
  • the package will further include an access device capable of being introduced through the ductal orifice, such as a catheter, a fiber optic scope, or the like. Suitable catheters and fiber optic scopes are described in the background art discussed above.
  • kits may further comprise instructions for use (IFU) setting forth any of the methods described above.
  • Acetic acid is mixed with Velvacrol (50% v/w), a pharmaceutical vehicle comprising an aqueous mixture of petrolatum/mineral oil, acetyl alcohol, sodium laural sulfate, cholesterol, methylparaben, butylparaben, and propylparaben.
  • methyl cellulose 100 mg is pre-added to the Velvacrol (5 g).
  • the mixture possesses a uniform pasty consistency and is applied to the nipple as an ointment or paste.
  • the keratinolytic agent is typically left on the nipple for twenty-four hours or longer to remove the keratin plugs from the ductal orifices.
  • the ductal epithelium must be solubilized with 70% by weight ethanol.
  • the solubilization step is not necessary.
  • a mouse monoclonal primary antibody is used as a dilution of 1:5 to 1:100 and maintained on the nipple for one hour at room temperature. After such incubation, the nipple is washed with phosphate buffered saline PBS and a secondary antibody (fluoresceinated goat anti-mouse antibody) used at a dilution of from 1:5 to 1:1000 fold at room temperature.
  • the nipple may be examined under ultraviolet (UV) light at a wavelength selected for the particular fluorochrome being used.
  • UV ultraviolet
  • a control can then be run using an antibody of a similar class, but without specificity for any of the ductal epithelial or other markers which may be present on the nipple. This method will provide successful labelling of the ductal orifices and permit subsequent cannulation and examination of each orifice.
  • Duct cannulation and exploration can be performed under white (visual) light.
  • One or more ducts are cannulated first with a rigid metal duct-probe (6 Fr Taber-Rothschild Galactography Kit, Manan Medical Products Inc., Northbrook, Ill.) dilated to 0.45 mm to 0.5 mm.
  • a guide wire (0.4 mm) is then inserted, and a catheter passed over the guide wire.
  • Physiological saline (0.2 ml to 0.5 ml) is instilled to wash the duct lumen. The washings may be spun down and analyzed cytologically.
  • the duct lumen is then dried by injecting 0.2 ml to 0.5 ml air.
  • the orifice is held shut by pinching the end of the nipple.
  • An endoscope (FVS-3000, M&M Company, Tokyo), which is 0.4 mm in outer diameter is then threaded into the duct orifice while dilation of the duct with air is maintained. After the endoscope is inserted for 5 mm to 10 mm, its position may be confirmed. The cannulization may then be continued as far distally as possible. Desired diagnostic, therapeutic, or other material may then be instilled into the duct.
  • the duct may be dilated with saline using a closed system with a burst adapter to allow a better view.
  • cells may be removed through the cannula (as washings).
  • the collected cells may be processed according to standard cytological methods for similar washings, such as bronchial washings and biopsy specimens.
  • the cells may be identified directly or indirectly by histopathological analysis of the duct from which the cells were obtained.

Abstract

Methods for performing medical procedures within the duct of a breast are described. An exemplary embodiment of the invention includes the steps of introducing a guiding member into a breast duct; introducing and positioning a member having an internal lumen in the breast duct; introducing a wash fluid into the breast duct through the internal lumen; removing washings from the breast duct through the internal lumen; and collecting the washings for cytological analysis.

Description

    RELATED APPLICATIONS
  • This application is a continuation-in-part application and claims priority under 37 CFR 120 to U.S. application Ser. No. 09/153,564 filed Sep. 15, 1998, which is a continuation-in-part application of U.S. application Ser. No. 08/931,786, filed Sep. 16, 1997, now U.S. Pat. No. 6,168,779; and this application is a continuation-in-part and claims priority under 37 CFR 120 to U.S. application Ser. No. 09/740,561 filed Dec. 19, 2000 which is a continuation application of U.S. application Ser. No. 09/067,661, filed Apr. 28, 1998, now U.S. Pat. No. 6,221,622, the contents of each of which are incorporated herein by reference.[0001]
  • [0002] The invention disclosed in this application was made with government support under U.S. Army Medical Research Grant Nos. DAMD17-94-J-4281 and DAMD17-96-C-6117. The government may have certain rights in the invention.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0003]
  • The present invention relates generally to medical methods and devices for accessing body lumens and in particular to methods and apparatus for identifying ductal orifices in human breasts and accessing the ducts through the identified orifices. [0004]
  • Breast cancer is the most common cancer in women, with well over 100,000 new cases being diagnosed each year. Even greater numbers of women, however, have symptoms associated with breast diseases, both benign and malignant, and must undergo further diagnosis and evaluation in order to determine whether breast cancer exists. To that end, a variety of diagnostic techniques have been developed, the most common of which are surgical techniques including core biopsy and excisional biopsy. Recently, fine needle aspiration (FNA) cytology has been developed which is less invasive than the surgical techniques, but which is not always a substitute for surgical biopsy. [0005]
  • A variety of other diagnostic techniques have been proposed for research purposes. Of particular interest to the present invention, fluids from the breast ducts have been externally collected, analyzed, and correlated to some extent with the risk of breast cancer. Such fluid collection, however, is generally taken from the surface of the nipple and represents the entire ductal structure. Information on the condition of an individual duct is generally not provided. Information on individual ducts can be obtained through cannulation and endoscopic examination, but such examinations have been primarily in women with nipple discharge or for research purposes and have generally not examined each individual duct in the breast. [0006]
  • Since breast cancer usually arises from a single ductal system and exists in a precancerous state for a number of years, endoscopy in and fluid collection from individual breast ducts holds great diagnostic promise for the identification of intermediate markers. Much of the promise, however, cannot be realized until access to each and every duct in a patient's breast can be assured. Presently, ductal access may be obtained by a magnification of the nipple and identification of ductal orifice(s) using conventional medical magnifiers, such as magnification loupes. While such magnified examination is relatively simple, it cannot be relied on to identify all orifices. Moreover, the ductal orifices can be confused with other tissue structures, such as sebaceous glands and simple keratin-filled caruncles of the nipple. Thus, before ductal techniques can be further developed for diagnostic, research, or other purposes, it will be useful to provide methods and apparatus which facilitate identification of ductal orifices to distinguish them from other orifices, and allow subsequent ductal access in selected and/or all ducts in each breast. [0007]
  • 2. Description of the Background Art [0008]
  • Publications by the inventors herein relating to breast duct access include [0009] Love and Barsky (1996) Lancet 348: 997-999; Love (1992) “Breast duct endoscopy: a pilot study of a potential technique for evaluating intraductal disease,” presented at 15th Annual San Antonio Breast Cancer Symposium, San Antonio, Tex., Abstract 197; Barsky and Love (1996) “Pathological analysis of breast duct endoscoped mastectomies,” Laboratory Investigation, Modern Pathology, Abstract 67. A description of the inventors' breast duct access work was presented in Lewis (1997) Biophotonics International, pages 27-28, May/June 1997.
  • Nipple aspiration and/or the introduction of contrast medium into breast ducts prior to imaging are described in Sartorius (1995) Breast Cancer Res. Treat. 35: 255-266; Sartorius et al. (1977) “Contrast ductography for the recognition and localization of benign and malignant breast lesions: An improved technique,” in: Logan (ed.), Breast Carcinoma, New York, Wiley, pp. 281-300; Petrakis (1993) Cancer Epidem. Biomarker Prev. 2: 3-10; Petrakis (1993) Epidem. Rev. 15: 188-195; Petrakis (1986) Breast Cancer Res. Treat. 8: 7-19; Wrensch et al. ([0010] 1992) Am. J. Epidem. 135: 130-141; Wrensch et al. (1990) Breast Cancer Res. Treat. 15: 39-51; and Wrensch et al. (1989) Cancer Res. 49: 2168-2174. The presence of abnormal biomarkers in fine needle breast aspirates is described in Fabian et al. (1993) Proc. Ann. Meet. Am. Assoc. Cancer Res. 34: A1556. The use of a rigid 1.2 mm ductoscope to identify intraductal papillomas in women with nipple discharge is described in Makita et al. (1991) Breast Cancer Res. Treat. 18: 179-188. The use of a 0.4 mm flexible scope to investigate nipple discharge is described in Okazaki et al. (1991) Jpn. J. Clin. Oncol. 21: 188-193. The detection of CEA in fluids obtained by a nipple blot is described in Imayama et al. (1996) Cancer 78: 1229-1234. Delivery of epithelium-destroying agents to breasts by ductal cannulation is described in WO 97/05898.
  • SUMMARY OF THE INVENTION
  • The present invention provides improved methods, kits, and other apparatus for locating breast ducts in the breasts of human female patients. In particular, the methods of the present invention permit reliable identification of the orifices within the nipple of a breast which lead to each of the multiple ductal networks within the breast. By reliably identifying each orifice, all of the ductal networks can be located and subsequently accessed for diagnostic, risk assessment, therapeutic, research, or other purposes. [0011]
  • In a first aspect of the present invention, a method for locating an orifice of a breast duct comprises labelling ductal cells disposed at the ductal orifice with a visible or otherwise detectable label. The orifice may then be located based on the presence of the label at the orifice. Specific and preferred methods for labeling the orifices are described below in connection with a second aspect of the present invention. After the orifices have been located, an access device, such as a catheter or fiberoptic viewing scope, can be introduced through at least one of the orifices and into the associated breast duct. The method may further comprise introducing the same or a different access device through other orifices, often into each of the orifices to permit diagnosis, treatment, or other evaluation of all of the ductal networks of a breast. [0012]
  • In a second aspect, the present invention comprises a method for labelling the orifice of a breast duct. The method includes treating a nipple to expose tissue in an orifice of each duct. The treated nipple is then exposed to a labelling reagent capable of specifically binding to a tissue marker characteristic of tissue at the ductal orifice. Binding of the labelling reagent to the tissue results in immobilization of a label at the orifice, permitting subsequent location of the orifice as described above. The treating step preferably comprises washing the nipple with a keratinolytic agent, such as 5% to 50% acetic acid (by weight), to remove keratin-containing materials which normally occlude the duct orifice and which could inhibit binding of the labelling reagent to the tissue marker. The tissue marker is typically characteristic of the ductal epithelium and represents either a membrane antigen or a cytoplasmic antigen. It has been found by the inventors herein that the ductal epithelium extends to within 0.1 mm to 0.2 mm of the nipple orifice and is sufficiently exposed to the surface of the nipple to permit labelling according to the methods of the present invention. Exemplary markers include cytokeratins, such as cytokeratin 8, cytokeratin 18, E cadherin, epithelial membrane antigen (EMA), and the like. Usually, the labelling reagent comprises a polyclonal or monoclonal antibody or other specific binding substance specific for the marker. The antibody may be directly labelled with a visible label, such as a fluorescent label, a dye label, a chemiluminescent label, or the like. Alternatively, the labeling reagent may comprise two or more components, typically including a primary antibody which is specific for the marker and one or more secondary binding substances which bind to the primary antibody and provide a label, optionally a magnified label. For example, the primary antibody may be unlabelled, and a secondary labelled antibody specific for the primary antibody also be provided. As a further alternative, the primary antibody can be labelled with biotin or other hapten, and binding of the label provided via avidin, secondary antibody specific for the hapten, or the like. Numerous specific techniques for labelling of antigenic tissue markers are well known and reported in the immunocytochemical staining literature. [0013]
  • In a third aspect, a method according to the present invention comprises labelling cellular material at a ductal orifice with a visible label and subsequently accessing the duct through the labelled orifice. The labelling step usually comprises the method set forth above. The accessing step may comprise introducing an access device through at least one of the labelled orifices, and preferably through all of the labelled orifices, where the access device may be a catheter, a fiber optic viewing scope, or the like. [0014]
  • In a fourth aspect of the present invention, a kit for labelling breast duct orifices comprises a labelling reagent or reagents capable of specifically labelling a cellular marker at the ductal orifice, instructions setting forth a labelling method as described above, and a package containing the labelling reagent and the instructions for use. Usually, the kits of the present invention will further include the keratinolytic agent and any other reagents that may be necessary for performing the method. Instructions for use will set forth the use of all provided reagents and may further set forth the use of agents which are available in the laboratory where the assay is to be performed. [0015]
  • In a fifth aspect of the present invention, a kit for accessing a breast duct comprises a labelling reagent capable of specifically labelling a ductal orifice and optionally a keratinolytic agent for treating the nipple prior to exposure of the labelling reagent. The kit further comprises an access device capable of being inserted through a labelled ductal orifice to a ductal lumen, such as a catheter, a fiber optic viewing scope, or the like. The kit still further comprises a package containing the labelling reagent, optionally the keratinolytic agent, and the access device. The accessing kit may further comprise instructions for use setting forth a method comprising the accessing steps as described above.[0016]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is an anterior view of a human female breast, shown in section, and illustrating three of the six to nine ductal networks extending inwardly from the nipple. [0017]
  • FIG. 2 is an enlarged view of the nipple of FIG. 1 illustrating the orifices leading to each of the three ductal networks. [0018]
  • FIG. 3 is a still further enlarged view of a single orifice illustrating the distribution of tissue markers from the epithelium to the opening of the orifice, where such markers at the opening are available for binding to labelled antibodies. [0019]
  • FIG. 4 is a schematic illustration of the appearance of a nipple which has been labelled with visible markers according to the methods of the present invention.[0020]
  • DESCRIPTION OF THE SPECIFIC EMBODIMENTS
  • The present invention comprises methods for locating, labelling, and accessing the ductal networks in human female breasts. A typical breast B is illustrated in FIG. 1 and includes a nipple N and from six to nine ducts D. [0021]
  • Three ductal networks D[0022] 1-3 extending inwardly from the nipple N into the breast tissue are illustrated. As best seen in FIG. 2, each ductal network D1-3 begins with an orifice O1-3 which lies at the surface of the nipple N and extends inwardly through a ductal sinus S1-3 and then into a branching network. Each network D comprises a series of successively smaller lumens which are arranged in complex, three-dimensional patterns. The networks of each duct will overlap within the breast tissue but will not be interconnected. The present invention relies on identifying and labelling tissue in the orifice O of each duct D within the nipple N. Usually, there will be from six to nine orifices which open into a like number of ductal networks. An abrupt transition from the ductal epithelium to the squamous epithelium of the skin is found within about 0.1 mm to 0.2 mm of the nipple surface. Typically, the ductal orifice will be occluded with a conical keratin plug measuring about 0.5 mm to 1 mm in size.
  • The present invention relies on the specific labelling of tissue markers at the orifice of selected one(s) or all of the ductal network(s). By “specific,” it is meant that the label will be introduced in a manner such that it will bind to the orifice region within the nipple but not bind (or will bind to a significantly lesser extent, usually at least 10-fold less) to other regions of the nipple. In this way, binding of the label to the orifice will be a discernable indication that the orifice is present and available for access to the associated ductal network. [0023]
  • In a particular aspect of the present invention, the tissue marker(s) will be an antigenic or epitopic site characteristic of the epithelial lining of the breast duct. Surprisingly, it has been found that the epithelial lining extends sufficiently far into the orifice region of the duct to permit successful labelling using generally conventional immunocytochemical labelling reagents and techniques, as described in more detail below. Exemplary tissue markers include antigens and epitopes defined by the cytokeratins present in the epithelial cytoplasmic lining, such as cytokeratin 8, cytokeratin 18, and by molecules present in the membrane lining, such as E cadherin, epithelial membrane antigen (EMA), and the like. Suitable breast epithelial tissue markers are described, for example, in Moll et al. (1982) Cell 30:11-19; Gown and Vogel (1984) Am. J. Pathol. 114:309-321; and Johnson (1991) Cancer Metastasis Rev. 10:11-22. [0024]
  • Referring now to FIG. 3, an orifice region O of a ductal network D is illustrated with a plurality of markers M lining the epithelium of the duct and extending to the perimeter of the orifice. Labelled antibodies A can be used to locate and label those markers M which are near the orifice O. Frequently, it will be desirable or necessary to wash the nipple with a solution capable of unblocking the orifice to permit binding of the antibodies or other labelling reagent. For example, the orifice can frequently become plugged with keratin-containing materials, and washing with a keratinolytic solution, such as acetic acid (5% to 50% by weight) admixed in a pharmaceutical delivery vehicle, will expose sufficient marker sites at each orifice to enable labelling according to the methods of the present invention. [0025]
  • The labelled antibodies or other labelling reagents may be formulated as liquid, typically aqueous, solutions in a generally conventional manner. Suitable anti-cytokeratin antibodies may be obtained from commercial suppliers, with specific antibodies including FITC-anticytokeratin (Becton-Dickenson), CAM 5.2, and the like. The antibodies may be coupled to one member of a signal-producing system capable of generating a detectable visual or other change on the tissue surface, where an element will be referred to here and after as a “visual label.” Suitable signal-producing systems include fluorescent systems, color-generating systems, and luminescent systems. Preferred is use of fluorescent systems which comprise a single fluorescent label, but other systems which comprise two or more components including enzymes, substrates, catalysts, enhancers, and the like, may also be employed. At least one component of the signal-producing system will be attached to the antibody or other specific binding substance which is capable of directly or indirectly binding to the tissue marker. Usually, the antibody will bind directly to the tissue marker, but it will also be possible to employ primary antibodies which are specific for the tissue marker and labelled secondary antibodies which introduce the label or component of the signal-producing system. For example, the primary antibody can be mouse IgG and the labelled secondary antibody can be FITC goat anti-mouse IgG (Zymed). Such signal-producing systems and the use on tissue and tissue samples is well described in the medical, scientific, and patent literature relating to immunocytochemical staining. [0026]
  • In an exemplary protocol according to the present invention, the nipple is first dekeratinized with 5% to 50% acetic acid to remove keratin and other potentially blocking and contaminating substances from the ductal orifices. A solution of the labelled antibody, preferably an antibody which directly binds to a cytokeratin or other epithelial cytoplasmic or surface membrane marker, such as the antibodies described above, is then applied to the nipple surface. The antibody is preferably linked to a fluorescent marker, more preferably fluorescein, and the fluorescein-labelled antibody delivered in a buffered aqueous solution. Optionally, controls may be run. For example, labelled antibodies of the same Ig class as the specific antibody may be exposed to the nipple at the same dilution. By comparing the results with the specific antibody and the control antibody, non-specific binding can be discounted. [0027]
  • The labelling reagent will typically be packaged (optionally with the keratinolytic agent) together with instructions for use in a conventional assay package, such as a box, bottle, tube, pouch, or the like. The instructions for use may be written out on a separate instruction sheet or may be partially or fully incorporated onto the packaging materials. [0028]
  • A second kit according to the present invention will comprise the labelling reagent (optionally with the keratinolytic agent) in a package as set forth above. The package will further include an access device capable of being introduced through the ductal orifice, such as a catheter, a fiber optic scope, or the like. Suitable catheters and fiber optic scopes are described in the background art discussed above. Such kits may further comprise instructions for use (IFU) setting forth any of the methods described above. [0029]
  • The following experimental descriptions are offered by way of illustration, not by way of imitation. [0030]
  • EXPERIMENTAL
  • A. Dekeratinizing the Nipple [0031]
  • Acetic acid is mixed with Velvacrol (50% v/w), a pharmaceutical vehicle comprising an aqueous mixture of petrolatum/mineral oil, acetyl alcohol, sodium laural sulfate, cholesterol, methylparaben, butylparaben, and propylparaben. To keep the acetic acid in solution, methyl cellulose (100 mg) is pre-added to the Velvacrol (5 g). The mixture possesses a uniform pasty consistency and is applied to the nipple as an ointment or paste. The keratinolytic agent is typically left on the nipple for twenty-four hours or longer to remove the keratin plugs from the ductal orifices. [0032]
  • B. Labelling of the Ductal Orifice [0033]
  • For cytoplasmic antigens, the ductal epithelium must be solubilized with 70% by weight ethanol. For a membrane or surface antigen, the solubilization step is not necessary. A mouse monoclonal primary antibody is used as a dilution of 1:5 to 1:100 and maintained on the nipple for one hour at room temperature. After such incubation, the nipple is washed with phosphate buffered saline PBS and a secondary antibody (fluoresceinated goat anti-mouse antibody) used at a dilution of from 1:5 to 1:1000 fold at room temperature. After washing with PBS, the nipple may be examined under ultraviolet (UV) light at a wavelength selected for the particular fluorochrome being used. A control can then be run using an antibody of a similar class, but without specificity for any of the ductal epithelial or other markers which may be present on the nipple. This method will provide successful labelling of the ductal orifices and permit subsequent cannulation and examination of each orifice. [0034]
  • C. Ductoscopy [0035]
  • Duct cannulation and exploration can be performed under white (visual) light. One or more ducts are cannulated first with a rigid metal duct-probe (6 Fr Taber-Rothschild Galactography Kit, Manan Medical Products Inc., Northbrook, Ill.) dilated to 0.45 mm to 0.5 mm. A guide wire (0.4 mm) is then inserted, and a catheter passed over the guide wire. Physiological saline (0.2 ml to 0.5 ml) is instilled to wash the duct lumen. The washings may be spun down and analyzed cytologically. [0036]
  • The duct lumen is then dried by injecting 0.2 ml to 0.5 ml air. At the end of the final insufflation, the orifice is held shut by pinching the end of the nipple. An endoscope (FVS-3000, M&M Company, Tokyo), which is 0.4 mm in outer diameter is then threaded into the duct orifice while dilation of the duct with air is maintained. After the endoscope is inserted for 5 mm to 10 mm, its position may be confirmed. The cannulization may then be continued as far distally as possible. Desired diagnostic, therapeutic, or other material may then be instilled into the duct. [0037]
  • Alternatively, after cannulation, the duct may be dilated with saline using a closed system with a burst adapter to allow a better view. [0038]
  • In a particular aspect of the present invention, cells may be removed through the cannula (as washings). The collected cells may be processed according to standard cytological methods for similar washings, such as bronchial washings and biopsy specimens. The cells may be identified directly or indirectly by histopathological analysis of the duct from which the cells were obtained. [0039]
  • Although the foregoing invention has been described in detail for purposes of clarity of understanding, it will be obvious that certain modifications may be practiced within the scope of the appended claims. [0040]

Claims (15)

1. A method for obtaining fluid and cellular material from a breast duct comprising:
(a) locating at least one breast duct on a nipple of a breast, wherein the orifice of the breast duct is located by labeling cellular material at the orifice with a detectable label coupled to an antibody specific for a tissue marker characteristic of the tissue at the ductal orifice and locating the orifice by observing the presence of the detectable label;
(b) introducing washing fluid into the breast duct via a catheter; and
(c) collecting the washing fluid from the breast duct with the catheter, wherein the washing fluid collected comprises fluid and cells from the breast duct.
2. A method for obtaining fluid and cellular material from a breast duct comprising:
(a) locating at least one breast duct on a nipple of a breast, wherein the breast duct exhibits no observable spontaneous discharge;
(b) introducing washing fluid into the breast duct via a catheter; and
(c) collecting the washing fluid from the breast duct with the catheter, wherein the washing fluid collected comprises fluid and cells from the breast duct.
3. A method according to claim 1, further comprising obtaining fluid and cellular material from multiple breast ducts.
4. A method according to claim 2, further comprising obtaining fluid and cellular material from multiple breast ducts.
5. A method according to claim 1 wherein the washing fluid includes saline.
6. A method according to claim 2 wherein the washing fluid includes saline.
7. A method according to claim 1, further comprising preparing the collected washing fluid for cytological analysis.
8. A method according to claim 2, further comprising preparing the collected washing fluid for cytological analysis.
9. A method according to claim 7, wherein preparing the collected washing fluid for cytological analysis includes centrifugation.
10. A method according to claim 8, wherein preparing the collected washing fluid for cytological analysis includes centrifugation.
11. A method for obtaining fluid and cellular material from a breast duct for cytological analysis comprising:
(a) locating at least one breast duct on a nipple of a breast;
(b) introducing washing fluid into the breast duct via a catheter; and
(c) collecting the washing fluid from the breast duct with the catheter, wherein the washing fluid collected comprises fluid and cells from the breast duct.
12. A method according to claim 11, further comprising obtaining fluid and cellular material from multiple breast ducts.
13. A method according to claim 11 wherein the washing fluid includes saline.
14. A method according to claim 11, further comprising preparing the collected washing fluid for cytological analysis.
15. A method according to claim 14, wherein preparing the collected washing fluid for cytological analysis includes centrifugation.
US10/175,022 1997-09-16 2002-06-19 Methods for obtaining fluid and cellular material from a breast duct Abandoned US20020164286A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/175,022 US20020164286A1 (en) 1997-09-16 2002-06-19 Methods for obtaining fluid and cellular material from a breast duct

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US08/931,786 US6168779B1 (en) 1997-09-16 1997-09-16 Methods and kits for identifying ductal orifices
US09/067,661 US6221622B1 (en) 1998-04-28 1998-04-28 Method and kit for obtaining fluids and cellular material from breast ducts
US09/153,564 US6455027B1 (en) 1997-09-16 1998-09-15 Methods and kits for identifying ductal orifices in a nipple
US09/740,561 US20010001059A1 (en) 1998-04-28 2000-12-19 Method and kit for obtaining fluids and cellular material from breast ducts
US10/175,022 US20020164286A1 (en) 1997-09-16 2002-06-19 Methods for obtaining fluid and cellular material from a breast duct

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/153,564 Continuation-In-Part US6455027B1 (en) 1997-09-16 1998-09-15 Methods and kits for identifying ductal orifices in a nipple

Publications (1)

Publication Number Publication Date
US20020164286A1 true US20020164286A1 (en) 2002-11-07

Family

ID=46278965

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/099,439 Expired - Lifetime US6890311B2 (en) 1997-09-16 2002-03-15 Methods for performing medical procedures within a breast duct
US10/175,022 Abandoned US20020164286A1 (en) 1997-09-16 2002-06-19 Methods for obtaining fluid and cellular material from a breast duct

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US10/099,439 Expired - Lifetime US6890311B2 (en) 1997-09-16 2002-03-15 Methods for performing medical procedures within a breast duct

Country Status (1)

Country Link
US (2) US6890311B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60031114T2 (en) * 1999-06-11 2007-05-03 Cytyc Corp., Marlborough LIQUID GEL FORMULATION FOR DETECTING MILK CHANNELS IN THE CHEST BEFORE SURGICAL ABLATION OF THE BREAST TISSUE
US20050165288A1 (en) * 2004-01-27 2005-07-28 Scimed Life Systems, Inc. Systems and methods for treating breast tissue
US9782565B2 (en) 2008-10-01 2017-10-10 Covidien Lp Endoscopic ultrasound-guided biliary access system
US11298113B2 (en) 2008-10-01 2022-04-12 Covidien Lp Device for needle biopsy with integrated needle protection
US9186128B2 (en) 2008-10-01 2015-11-17 Covidien Lp Needle biopsy device
US9332973B2 (en) 2008-10-01 2016-05-10 Covidien Lp Needle biopsy device with exchangeable needle and integrated needle protection
US8968210B2 (en) 2008-10-01 2015-03-03 Covidien LLP Device for needle biopsy with integrated needle protection
US20100204609A1 (en) * 2009-02-10 2010-08-12 Howard Worth Microendoscope and methods of use

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083572A (en) * 1987-02-04 1992-01-28 Pokorny Susan F Removal of secretions from the prepubertal vagina
US5405321A (en) * 1992-07-07 1995-04-11 William A. Cook Australia Pty. Ltd. Combined aspiration and flushing coupling
US5904715A (en) * 1997-06-13 1999-05-18 John D. Jeter Breast enhancement apparatus and procedure
US6413228B1 (en) * 1998-12-28 2002-07-02 Pro Duct Health, Inc. Devices, methods and systems for collecting material from a breast duct

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1047107A (en) 1951-12-26 1953-12-11 Cannula or mask for injections, instillations and similar applications under vacuum
US3786801A (en) 1969-02-24 1974-01-22 Diagnostic Inc Method and apparatus for aiding in the detection of breast cancer
US3608540A (en) 1969-02-24 1971-09-28 St Croix Research Co Method and apparatus for aiding in the detection of breast cancer
WO1985003132A1 (en) 1984-01-06 1985-07-18 The Regents Of The University Of California Cytokeratin tumor markers and assays for their detection
SE470273B (en) 1990-09-24 1993-12-20 Idl Immunodeveloplab Ab Cytokeratin fragments, their preparation and use, production of monoclonal antibodies and test kits for epithelial cancer
IT1251542B (en) * 1991-03-06 1995-05-17 D D S R L DEVICE FOR THERAPEUTIC OR HYGIENE WASHING OF INTERNAL HUMAN OR ANIMAL BODIES, WHICH ALLOWS THE DRAINAGE OF WASHING LIQUID
US5413558A (en) 1991-09-09 1995-05-09 New York University Selective aortic perfusion system for use during CPR
US5851830A (en) 1993-03-16 1998-12-22 University Of Southern California Luminal epithelial antigen
US6500114B1 (en) 1993-11-23 2002-12-31 Dofi Technologies, Inc. Method of extracting biopsy cells from the breast
US5650317A (en) 1994-09-16 1997-07-22 Michigan State University Human breast epithelial cell type with stem cell and luminal epithelial cell characteristics
US5763415A (en) 1995-08-03 1998-06-09 John Hopkins University School Of Medicine Destruction of the epithelium of an exocrine gland in the prophylactic and therapeutic treatment of cancer
WO1997005898A1 (en) 1995-08-03 1997-02-20 The Johns Hopkins University School Of Medicine Delivery of an agent to the ductal epithelium in the prophylactic and therapeutic treatment of cancer
US6221622B1 (en) * 1998-04-28 2001-04-24 The Regents Of The University Of California Method and kit for obtaining fluids and cellular material from breast ducts
US6168779B1 (en) 1997-09-16 2001-01-02 The Regents Of The University Of California Methods and kits for identifying ductal orifices
AU1820100A (en) 1998-11-13 2000-06-05 Pro Duct Health, Inc. Devices and methods to identify ductal orifices during nipple aspiration

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5083572A (en) * 1987-02-04 1992-01-28 Pokorny Susan F Removal of secretions from the prepubertal vagina
US5405321A (en) * 1992-07-07 1995-04-11 William A. Cook Australia Pty. Ltd. Combined aspiration and flushing coupling
US5904715A (en) * 1997-06-13 1999-05-18 John D. Jeter Breast enhancement apparatus and procedure
US6413228B1 (en) * 1998-12-28 2002-07-02 Pro Duct Health, Inc. Devices, methods and systems for collecting material from a breast duct

Also Published As

Publication number Publication date
US20020160431A1 (en) 2002-10-31
US6890311B2 (en) 2005-05-10

Similar Documents

Publication Publication Date Title
US6168779B1 (en) Methods and kits for identifying ductal orifices
US20010001059A1 (en) Method and kit for obtaining fluids and cellular material from breast ducts
Fritscher-Ravens et al. Comparison of endoscopic ultrasound-guided fine needle aspiration for focal pancreatic lesions in patients with normal parenchyma and chronic pancreatitis
Matsunaga et al. Mammary ductoscopy for diagnosis and treatment of intraductal lesions of the breast
US6750037B2 (en) Method of cancer screening primarily utilizing non-invasive cell collection, fluorescence detection techniques, and radio tracing detection techniques
CA2395325C (en) Method of cancer screening primarily utilizing non-invasive cell collection and fluorescence detection techniques
Maier et al. The clinical value of urinary cytology: 12 years of experience with 615 patients.
Stacker et al. A new breast carcinoma antigen defined by a monoclonal antibody
US6890311B2 (en) Methods for performing medical procedures within a breast duct
Tamura et al. Rapid on-site evaluation by endosonographers during endoscopic ultrasonography-guided fine-needle aspiration for diagnosis of gastrointestinal stromal tumors
CN110055300A (en) A kind of fungal infection detection kit and its application
US20020013539A1 (en) Methods and devices for diagnosis of precancer and cancer in breast milk ducts
Luo et al. Efficacy of indocyanine green fluorescence angiography in preventing anastomotic leakage after McKeown minimally invasive esophagectomy
Winkler et al. Orbital metastasis from prostatic carcinoma: identification by an immunoperoxidase technique
Xu et al. Preclinical evaluation of Mab CC188 for ovarian cancer imaging
Farsund et al. Local chemotherapeutic effects in bladder cancer demonstrated by selective sampling and flow cytometry
Despommier The laboratory diagnosis of Entamoeba histolytica.
US20040030264A1 (en) Method and apparatus for analyzing mammary gland fluid
Danforth Jr et al. Combined breast ductal lavage and ductal endoscopy for the evaluation of the high‐risk breast: A feasibility study
Ou et al. Application of fluorescence endoscopy with methylene blue dye and indocyanine green dual-tracer method in sentinel lymph node biopsy for women with breast cancer
Poh et al. Prostate-specific antigen in breast disease
Matsunaga et al. Intraductal approach to the detection of intraductal lesions of the breast
Fu et al. Improving oral squamous cell carcinoma diagnosis and treatment with fluorescence molecular imaging
Chuchueva et al. THE ASSESSMENT OF A CELLULAR PATTERN OF THE EPITHELIUM AS A DIAGNOSTIC TOOL FOR LARYNGEAL TUMORS DETECTION
RU2156461C2 (en) Method for diagnosing the cases of prostate carcinoma

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA, CALIF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LOVE, SUSAN M.;BARSKY, SANFORD H.;REEL/FRAME:013026/0598;SIGNING DATES FROM 20020605 TO 20020608

AS Assignment

Owner name: ARMY, UNITED STATES GOVERNMENT, THE , SECRETARY OF

Free format text: CONFIRMATORY LICENSE;ASSIGNOR:REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE;REEL/FRAME:015237/0436

Effective date: 20040115

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION