US20020160249A1 - Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity - Google Patents

Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity Download PDF

Info

Publication number
US20020160249A1
US20020160249A1 US10/105,753 US10575302A US2002160249A1 US 20020160249 A1 US20020160249 A1 US 20020160249A1 US 10575302 A US10575302 A US 10575302A US 2002160249 A1 US2002160249 A1 US 2002160249A1
Authority
US
United States
Prior art keywords
sheet
channels
article
graphite
assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/105,753
Inventor
Robert Mercuri
Thomas Weber
Michael Warddrip
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US10/105,753 priority Critical patent/US20020160249A1/en
Priority to US10/273,756 priority patent/US20030108731A1/en
Publication of US20020160249A1 publication Critical patent/US20020160249A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/82Asbestos; Glass; Fused silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/536Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite based on expanded graphite or complexed graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0003Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof containing continuous channels, e.g. of the "dead-end" type or obtained by pushing bars in the green ceramic product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0234Carbonaceous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0241Composites
    • H01M8/0245Composites in the form of layered or coated products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0265Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant the reactant or coolant channels having varying cross sections
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00612Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00853Uses not provided for elsewhere in C04B2111/00 in electrochemical cells or batteries, e.g. fuel cells
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5224Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5228Silica and alumina, including aluminosilicates, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5232Silica or silicates other than aluminosilicates, e.g. quartz
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/522Oxidic
    • C04B2235/5236Zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5244Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5216Inorganic
    • C04B2235/524Non-oxidic, e.g. borides, carbides, silicides or nitrides
    • C04B2235/5248Carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2918Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2927Rod, strand, filament or fiber including structurally defined particulate matter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the present invention relates to an article useful in an electrode assembly for an electrochemical fuel cell.
  • the inventive assembly includes an article formed of flexible graphite sheet that is fluid permeable and has enhanced isotropy with respect to thermal and electrical conductivity.
  • Graphites are made up of layer planes of hexagonal arrays or networks of carbon atoms. These layer planes of hexagonally arranged carbon atoms are substantially flat and are oriented or ordered so as to be substantially parallel and equidistant to one another.
  • the substantially flat, parallel equidistant sheets or layers of carbon atoms usually referred to as basal planes, are linked or bonded together and groups thereof are arranged in crystallites.
  • Highly ordered graphites consist of crystallites of considerable size: the crystallites being highly aligned or oriented with respect to each other and having well ordered carbon layers. In other words, highly ordered graphites have a high degree of preferred crystallite orientation.
  • graphites possess anisotropic structures and thus exhibit or possess many properties that are highly directional, especially thermal and electrical conductivity and fluid diffusion.
  • graphites may be characterized as laminated structures of carbon, that is, structures consisting of superposed layers or laminae of carbon atoms joined together by weak van der Waals forces.
  • two axes or directions are usually noted, to wit, the “c” axis or direction and the “a” axes or directions.
  • the “c” axis or direction may be considered as the direction perpendicular to the carbon layers.
  • the “a” axes or directions may be considered as the directions parallel to the carbon layers or the directions perpendicular to the “c” direction.
  • the natural graphites suitable for manufacturing flexible graphite possess a very high degree of orientation.
  • the bonding forces holding the parallel layers of carbon atoms together are only weak van der Waals forces.
  • Graphites can be treated so that the spacing between the superposed carbon layers or laminae can be appreciably opened up so as to provide a marked expansion in the direction perpendicular to the layers, that is, in the “c” direction and thus form an expanded or intumesced graphite structure in which the laminar character of the carbon layers is substantially retained.
  • Natural graphite flake which has been greatly expanded and more particularly expanded so as to have a final thickness or “c” direction dimension which is at least about 80 or more times the original “c” direction dimension can be formed without the use of a binder into cohesive or integrated flexible graphite sheets of expanded graphite, e.g. webs, papers, strips, tapes, or the like.
  • the formation of graphite particles which have been expanded to have a final thickness or “c” dimension which is at least about 80 times the original “c” direction dimension into integrated flexible sheets by compression, without the use of any binding material is believed to be possible due to the excellent mechanical interlocking, or cohesion which is achieved between the voluminously expanded graphite particles.
  • the sheet material has also been found to possess a high degree of anisotropy with respect to thermal and electrical conductivity and fluid diffusion, comparable to the natural graphite starting material due to orientation of the expanded graphite particles substantially parallel to the opposed faces of the sheet resulting from very high compression, e.g. roll pressing.
  • Sheet material thus produced has excellent flexibility, good strength and a very high degree of orientation.
  • the process of producing flexible, binderless anisotropic graphite sheet material comprises compressing or compacting under a predetermined load and in the absence of a binder, expanded graphite particles which have a “c” direction dimension which is at least about 80 times that of the original particles so as to form a substantially flat, flexible, integrated graphite sheet.
  • the expanded graphite particles which generally are worm-like or vermiform in appearance, once compressed, will maintain the compression set and alignment with the opposed major surfaces of the sheet.
  • the density and thickness of the sheet material can be varied by controlling the degree of compression.
  • the density of the sheet material can be within the range of from about 5 pounds per cubic foot to about 125 pounds per cubic foot.
  • the flexible graphite sheet material exhibits an appreciable degree of anisotropy due to the alignment of graphite particles parallel to the major opposed, parallel surfaces of the sheet, with the degree of anisotropy increasing upon roll pressing of the sheet material to increased density.
  • the thickness, i.e. the direction perpendicular to the opposed, parallel sheet surfaces comprises the “c” direction and the directions ranging along the length and width, i.e. along or parallel to the opposed, major surfaces comprises the “a” directions and the thermal, electrical and fluid diffusion properties of the sheet are very different, by orders of magnitude, for the “c” and “a” directions.
  • the resistivity of anisotropic flexible graphite sheet is high in the direction transverse to the major surfaces (“c” direction) of the flexible graphite sheet, and very substantially less in the direction parallel to and between the major faces of the flexible graphite sheet (“a” direction).
  • c major surfaces
  • a major faces of the flexible graphite sheet
  • the thermal conductivity of a flexible graphite sheet in a direction parallel to the upper and lower surfaces of the flexible graphite sheet is relatively high, while it is relatively very low in the “c” direction transverse to the upper and lower surfaces.
  • a membrane electrode assembly for an electro-chemical fuel cell comprising a pair of electrodes and an ion exchange membrane positioned between the electrodes, at least one of the electrodes being formed of a sheet of a compressed mass of expanded graphite particles having a plurality of transverse fluid channels passing through the sheet between first and second opposed surfaces of the sheet, one of the opposed surfaces abutting the ion exchange membrane.
  • the transverse fluid channels are formed by mechanically impacting an opposed surface of the sheet to displace graphite within the sheet at predetermined locations.
  • the transverse fluid channels are adjacently positioned and separated by walls of compressed expanded graphite at least some of which permit interconnection between adjacent channels (such as by having grooves therein) to enable fluid flow therebetween.
  • FIG. 1 is a plan view of a transversely permeable sheet of flexible graphite having interconnected transverse channels in accordance with the present invention
  • FIG. 1(A) shows a flat-ended protrusion element used in making the channels in the perforated sheet of FIG. 1;
  • FIG. 2 is a side elevation view in section of the sheet of FIG. 1;
  • FIGS. 2 (A), (B), (C) show various suitable flat-ended configurations for transverse interconnected channels in accordance with the present invention
  • FIGS. 3 , 3 (A), 3 (B) show a mechanism for making the article of FIG. 1;
  • FIGS. 3 (C), 3 (D) show enlarged perspective views of portions of transversely permeable flexible graphite sheet in accordance with the present invention
  • FIG. 3(E) is a photograph of a portion of transversely permeable flexible graphite sheet corresponding to FIG. 3(C);
  • FIG. 4 shows an enlarged sketch of an elevation view of the oriented expanded graphite particles of flexible graphite sheet material
  • FIG. 5 is a sketch of an enlarged elevation view of an article formed of flexible graphite sheet in accordance with the present invention.
  • FIG. 5, 6, 7 and 7 (A) show a fluid permeable electrode assembly which includes a transversely permeable article in accordance with the present invention.
  • FIG. 8 is a photograph at 100 ⁇ (original magnification) corresponding to a portion of the side elevation view sketch of FIG. 5.
  • Graphite is a crystalline form of carbon comprising atoms covalently bonded in flat layered planes with weaker bonds between the planes.
  • an intercalant of, for instance, a solution of sulfuric and nitric acid
  • the treated particles of graphite are hereafter referred to as “particles of intercalated graphite”.
  • the particles of intercalated graphite Upon exposure to high temperature, the particles of intercalated graphite expand in dimension as much as about 80 or more times its original volume in an accordion-like fashion in the “c” direction, i.e., in the direction perpendicular to the crystalline planes of the graphite.
  • the exfoliated graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
  • the worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact.
  • a common method for manufacturing graphite sheet, e.g., foil from flexible graphite is described by Shane et al. in U.S. Pat. No. 3,404,061, the disclosure of which is incorporated herein by reference.
  • natural graphite flakes are intercalated by dispersing the flakes in a solution containing an oxidizing agent of, for example, a mixture of nitric and sulfuric acid.
  • the intercalation solution contains oxidizing and other intercalating agents known in the art.
  • Examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, such as trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid.
  • oxidizing agents and oxidizing mixtures such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, such as trifluoroacetic acid, and
  • the intercalating agent is a solution of a mixture of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e., nitric acid, perchloric acid, chromic acid, potassium permanganate, hydrogen peroxide, iodic or periodic acids, or the like.
  • the intercalation solutions may contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halide, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent.
  • any excess solution is drained from the flakes and the flakes are water-washed.
  • the quantity of intercalation solution retained on the flakes after draining may range from 20 to 150 parts of solution by weight per 100 parts by weight of graphite flakes (pph) and more typically about 50 to 120 pph.
  • the quantity of the intercalation solution may be limited to between 10 to 50 parts of solution per hundred parts of graphite by weight (pph) which permits the washing step to be eliminated as taught and described in U.S. Pat. No. 4,895,713, the disclosure of which is also herein incorporated by reference.
  • the thus treated particles of graphite are sometimes referred to as “particles of intercalated graphite”.
  • the particles of intercalated graphite Upon exposure to high temperature, e.g. up to about 700° C. to 1000° C. and higher, the particles of intercalated graphite expand as much as about 80 to 1000 or more times its original volume in an accordion-like fashion in the c-direction, i.e., in the direction perpendicular to the crystalline planes of the constituent graphite particles.
  • the expanded (or exfoliated) graphite particles are vermiform in appearance, and are therefore commonly referred to as worms.
  • the worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact as hereinafter described.
  • Flexible graphite sheet and foil are coherent, with good handling strength, and are suitably compressed, such as by roll-pressing, to a thickness of 0.003 to 0.15 inch and a density of 0.1 to 1.5 grams per cubic centimeter.
  • ceramic additives can be blended with the intercalated graphite flakes as described in U.S. Pat. No. 5,902,762 (which is incorporated herein by reference) to provide enhanced resin impregnation in the final flexible graphite product.
  • the additives include ceramic fiber particles having a length of 0.15 to 1.5 millimeters. The width of the particles is suitably from 0.04 to 0.004 mm.
  • the ceramic fiber particles are non-reactive and non-adhering to graphite and are stable at temperatures up to 2000° F., preferably 2500° F..
  • Suitable ceramic fiber particles are formed of macerated quartz glass fibers, carbon and graphite fibers, zirconia, boron nitride, silicon carbide and magnesia fibers, naturally occurring mineral fibers such as calcium metasilicate fibers, calcium aluminum silicate fibers, aluminum oxide fibers and the like.
  • a compressed mass of expanded graphite particles, in the form of a flexible graphite sheet is shown at 10 .
  • the flexible graphite sheet 10 is provided with channels 20 , which are preferably smooth-sided as indicated at 67 in FIGS. 5 and 8, and which pass between the parallel, opposed surfaces 30 , 40 of flexible graphite sheet 10 , and are separated by walls 3 of compressed expandable graphite.
  • the walls 3 are advantageously provided with grooves 5 , having a depth of ⁇ fraction (1/10) ⁇ to 1 ⁇ 3 the depth of the channels in accordance with the present invention.
  • the channels 20 preferably have openings 50 on one of the opposed surfaces 30 which are larger than the openings 60 in the other opposed surface 40 .
  • the channels 20 can have different configurations as shown at 20 ′- 20 ′′′′ in FIGS. 2 (A), 2 (B), 2 (C) which are formed using flat-ended protrusion elements of different shapes as shown at 75 , 175 , 275 , 375 in FIGS. 1 (A) and 2 (A), 2 (B), 2 (C), 2 (D), suitably formed of metal, e.g. steel, and integral with and extending from the pressing roller 70 of the impacting device shown in FIG. 3.
  • metal e.g. steel
  • the groove-forming protrusion elements 675 , 775 , 875 , 975 also result in deformation and displacement of graphite within the flexible graphite sheet.
  • Preferred channel-forming protrusion elements 77 have decreasing cross-section in the direction away from the pressing roller 70 to provide larger channel openings on the side of the sheet which is initially impacted.
  • the development of smooth, unobstructed surfaces 63 surrounding channel openings 60 enables the free flow of fluid into and through smooth-sided (at 67 ) channels 20 .
  • openings at one of the opposed surfaces are larger than the channel openings in the other opposed surface, e.g. from 1 to 200 times greater in area, and result from the use of protrusion elements having converging sides such as shown at 76 , 276 , 376 .
  • the transverse channels 20 are formed in the flexible graphite sheet 10 at a plurality of pre-determined locations by mechanical impact at the predetermined locations in sheet 10 using a mechanism such as shown in FIG. 3 comprising a pair of steel rollers 70 , 72 with one of the rollers having truncated, i.e.
  • channel-forming protrusions 75 which impact surface 30 of flexible graphite sheet 10 to displace graphite and penetrate sheet 10 to form open channels 20 .
  • the channel-forming protrusions 75 are bridged by groove-forming protrusions 675 which form interconnecting grooves 5 between channels 20 in a row of aligned channels concurrently with formation of channels 20 which is illustrated in the sketch of FIG. 3(C) and the photograph of FIG. 3(E).
  • groove-forming protrusion elements 675 ′ can be included as shown in FIGS. 3 (A), 3 (B) to form interconnecting grooves 5 ′ in a parallel row of transverse channels 20 as shown in FIG. 3(D).
  • both rollers 70 , 72 can be provided with “out-of-register” protrusions, and a flat metal plate indicated at 79 , can be used in place of smooth-surfaced roller 72 .
  • FIG. 4 is an enlarged sketch of a sheet of flexible graphite 110 that shows a typical prior art orientation of compressed expanded graphite particles 80 substantially parallel to the opposed surfaces 130 , 140 .
  • This orientation of the expanded graphite particles 80 results in anisotropic properties in flexible graphite sheets; i.e. the electrical conductivity and thermal conductivity of the sheet is substantially lower in the direction transverse to opposed surfaces 130 , 140 (“c ” direction) than in the direction (“a” direction) parallel to opposed surfaces 130 , 140 .
  • the perforated gas permeable flexible graphite sheet 10 of FIG. 1 can be used as an electrode in an electrochemical fuel cell 500 shown schematically in FIGS. 6, 7 and 7 (A).
  • FIG. 6, FIG. 7 and FIG. 7(A) show, schematically, the basic elements of an electrochemical Fuel Cell, more complete details of which are disclosed in U.S. Pat. Nos. 4,988,583 and 5,300,370 and PCT WO 95/16287 (Jun. 15, 1995) and each of which is incorporated herein by reference.
  • the Fuel Cell indicated generally at 500 comprises electrolyte in the form of a plastic e.g. a solid polymer ion exchange membrane 550 catalyst coated at surfaces 601 , 603 , e.g. coated with platinum 600 as shown in FIG. 7(A); perforated flexible graphite sheet electrodes 10 in accordance with the present invention; and flow field plates 1000 , 1100 which respectively abut electrodes 10 .
  • Pressurized fuel is circulated through grooves 1400 of fuel flow field pate 1100 and pressurized oxidant is circulated through grooves 1200 .
  • the fuel flow field plate 1100 becomes an anode
  • the oxidant flow field plate 1000 becomes a cathode with the result that an electric potential, i.e. voltage is developed between the fuel flow field plate 1000 and the oxidant flow field plate 1100 .
  • the above described electrochemical fuel cell is combined with others in a fuel cell stack to provide the desired level of electric power as described in the above-noted U.S. Pat. No. 5,300,370.
  • fluid from adjacent channels can flow through grooves 5 so that gas-catalyst contact adjacent the blocked channel is maintained.
  • the initial velocity of the gas at the smaller openings 60 is higher than the gas flow at the larger openings 50 with the result that the gas is slowed down when it contacts the catalyst 600 and the residence time of gas-catalyst contact is increased and the area of gas exposure at the membrane 550 is maximized.
  • FIG. 8 is a photograph (original magnification 100 ⁇ ) of a body of flexible graphite corresponding to a portion of the sketch of FIG. 5.
  • FIGS. 1 and 5 and the material shown in the photograph (100 ⁇ ) of FIG. 8 can be shown to have increased thermal and electrical conductivity in the direction transverse to opposed parallel, planar surfaces 30 , 40 as compared to the thermal and electrical conductivity in the direction transverse to surfaces 130 , 140 of the material of FIG. 4 in which particles of expanded natural graphite unaligned with the opposed planar surfaces are not optically detectable.
  • transverse gas permeability of channeled flexible graphite sheet samples was measured, using a Gurley Model 4118 for Gas Permeability Measurement.
  • the preferred channel density is from 1000 to 3000 channels per square inch and the preferred channel size is a channel in which the ratio of the area of larger channel opening to the smaller is from 50:1 to 150:1.
  • the flexible graphite sheet can, at times, be advantageously treated with resin and the absorbed resin, after curing, enhances the moisture resistance and handling strength, i.e. stiffness of the flexible graphite sheet.
  • Suitable resin content is preferably 20 to 30% by weight, suitably up 60% by weight.
  • the article of the present invention can be used as electrical and thermal coupling elements for integrated circuits in computer applications, as conformal electrical contact pads and as electrically energized grids in de-icing equipment.

Abstract

A graphite article useful in producing a membrane electrode assembly comprising a pair of electrodes and an ion exchange membrane positioned between the electrodes is presented. At least one of the electrodes is formed of a sheet of a compressed mass of expanded graphite particles having a plurality of transverse fluid channels passing through the sheet between first and second opposed surfaces of the sheet, one of opposed surfaces abutting the ion exchange membrane when used in a membrane electrode assembly. At least some of the fluid channels are interconnected to enable flow of fluid therebetween.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an article useful in an electrode assembly for an electrochemical fuel cell. The inventive assembly includes an article formed of flexible graphite sheet that is fluid permeable and has enhanced isotropy with respect to thermal and electrical conductivity. [0001]
  • BACKGROUND OF THE INVENTION
  • Graphites are made up of layer planes of hexagonal arrays or networks of carbon atoms. These layer planes of hexagonally arranged carbon atoms are substantially flat and are oriented or ordered so as to be substantially parallel and equidistant to one another. The substantially flat, parallel equidistant sheets or layers of carbon atoms, usually referred to as basal planes, are linked or bonded together and groups thereof are arranged in crystallites. Highly ordered graphites consist of crystallites of considerable size: the crystallites being highly aligned or oriented with respect to each other and having well ordered carbon layers. In other words, highly ordered graphites have a high degree of preferred crystallite orientation. It should be noted that graphites possess anisotropic structures and thus exhibit or possess many properties that are highly directional, especially thermal and electrical conductivity and fluid diffusion. Briefly, graphites may be characterized as laminated structures of carbon, that is, structures consisting of superposed layers or laminae of carbon atoms joined together by weak van der Waals forces. In considering the graphite structure, two axes or directions are usually noted, to wit, the “c” axis or direction and the “a” axes or directions. For simplicity, the “c” axis or direction may be considered as the direction perpendicular to the carbon layers. The “a” axes or directions may be considered as the directions parallel to the carbon layers or the directions perpendicular to the “c” direction. The natural graphites suitable for manufacturing flexible graphite possess a very high degree of orientation. [0002]
  • As noted above, the bonding forces holding the parallel layers of carbon atoms together are only weak van der Waals forces. Graphites can be treated so that the spacing between the superposed carbon layers or laminae can be appreciably opened up so as to provide a marked expansion in the direction perpendicular to the layers, that is, in the “c” direction and thus form an expanded or intumesced graphite structure in which the laminar character of the carbon layers is substantially retained. [0003]
  • Natural graphite flake which has been greatly expanded and more particularly expanded so as to have a final thickness or “c” direction dimension which is at least about 80 or more times the original “c” direction dimension can be formed without the use of a binder into cohesive or integrated flexible graphite sheets of expanded graphite, e.g. webs, papers, strips, tapes, or the like. The formation of graphite particles which have been expanded to have a final thickness or “c” dimension which is at least about 80 times the original “c” direction dimension into integrated flexible sheets by compression, without the use of any binding material is believed to be possible due to the excellent mechanical interlocking, or cohesion which is achieved between the voluminously expanded graphite particles. [0004]
  • In addition to flexibility, the sheet material, as noted above, has also been found to possess a high degree of anisotropy with respect to thermal and electrical conductivity and fluid diffusion, comparable to the natural graphite starting material due to orientation of the expanded graphite particles substantially parallel to the opposed faces of the sheet resulting from very high compression, e.g. roll pressing. Sheet material thus produced has excellent flexibility, good strength and a very high degree of orientation. [0005]
  • Briefly, the process of producing flexible, binderless anisotropic graphite sheet material, such as web, paper, strip, tape, foil, mat, or the like, comprises compressing or compacting under a predetermined load and in the absence of a binder, expanded graphite particles which have a “c” direction dimension which is at least about 80 times that of the original particles so as to form a substantially flat, flexible, integrated graphite sheet. The expanded graphite particles, which generally are worm-like or vermiform in appearance, once compressed, will maintain the compression set and alignment with the opposed major surfaces of the sheet. The density and thickness of the sheet material can be varied by controlling the degree of compression. The density of the sheet material can be within the range of from about 5 pounds per cubic foot to about 125 pounds per cubic foot. The flexible graphite sheet material exhibits an appreciable degree of anisotropy due to the alignment of graphite particles parallel to the major opposed, parallel surfaces of the sheet, with the degree of anisotropy increasing upon roll pressing of the sheet material to increased density. In roll pressed anisotropic sheet material, the thickness, i.e. the direction perpendicular to the opposed, parallel sheet surfaces comprises the “c” direction and the directions ranging along the length and width, i.e. along or parallel to the opposed, major surfaces comprises the “a” directions and the thermal, electrical and fluid diffusion properties of the sheet are very different, by orders of magnitude, for the “c” and “a” directions. [0006]
  • This very considerable difference in properties, known as anisotropy, which is directionally dependent, can be disadvantageous in some applications. For example, in gasket applications where flexible graphite sheet is used as the gasket material and in use is held tightly between metal surfaces, the diffusion of fluid, e.g. gases or liquids, occurs more readily parallel to and between the major surfaces of the flexible graphite sheet. It would, in most instances, provide for greater gasket performance, if the resistance to fluid flow parallel to the major surfaces of the graphite sheet (“a” direction) were increased, even at the expense of reduced resistance to fluid diffusion flow transverse to the major faces of the graphite sheet (“c” direction). With respect to electrical properties, the resistivity of anisotropic flexible graphite sheet is high in the direction transverse to the major surfaces (“c” direction) of the flexible graphite sheet, and very substantially less in the direction parallel to and between the major faces of the flexible graphite sheet (“a” direction). In applications such as fluid flow field plates for fuel cells and seals for fuel cells, it would be of advantage if the electrical resistance transverse to the major surfaces of the flexible graphite sheet (“c” direction) were decreased, even at the expense of an increase in electrical resistivity in the direction parallel to the major faces of the flexible graphite sheet (“a” direction). [0007]
  • With respect to thermal properties, the thermal conductivity of a flexible graphite sheet in a direction parallel to the upper and lower surfaces of the flexible graphite sheet is relatively high, while it is relatively very low in the “c” direction transverse to the upper and lower surfaces. [0008]
  • The foregoing situations are accommodated by the present invention. [0009]
  • SUMMARY OF THE INVENTION
  • In accordance with the present invention, a membrane electrode assembly for an electro-chemical fuel cell is provided, comprising a pair of electrodes and an ion exchange membrane positioned between the electrodes, at least one of the electrodes being formed of a sheet of a compressed mass of expanded graphite particles having a plurality of transverse fluid channels passing through the sheet between first and second opposed surfaces of the sheet, one of the opposed surfaces abutting the ion exchange membrane. Advantageously, the transverse fluid channels are formed by mechanically impacting an opposed surface of the sheet to displace graphite within the sheet at predetermined locations. The transverse fluid channels are adjacently positioned and separated by walls of compressed expanded graphite at least some of which permit interconnection between adjacent channels (such as by having grooves therein) to enable fluid flow therebetween.[0010]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a plan view of a transversely permeable sheet of flexible graphite having interconnected transverse channels in accordance with the present invention; [0011]
  • FIG. 1(A) shows a flat-ended protrusion element used in making the channels in the perforated sheet of FIG. 1; [0012]
  • FIG. 2 is a side elevation view in section of the sheet of FIG. 1; [0013]
  • FIGS. [0014] 2(A), (B), (C) show various suitable flat-ended configurations for transverse interconnected channels in accordance with the present invention;
  • FIGS. [0015] 3, 3(A), 3(B) show a mechanism for making the article of FIG. 1;
  • FIGS. [0016] 3(C), 3(D) show enlarged perspective views of portions of transversely permeable flexible graphite sheet in accordance with the present invention;
  • FIG. 3(E) is a photograph of a portion of transversely permeable flexible graphite sheet corresponding to FIG. 3(C); [0017]
  • FIG. 4 shows an enlarged sketch of an elevation view of the oriented expanded graphite particles of flexible graphite sheet material; [0018]
  • FIG. 5 is a sketch of an enlarged elevation view of an article formed of flexible graphite sheet in accordance with the present invention; [0019]
  • FIG. 5, 6, [0020] 7 and 7(A) show a fluid permeable electrode assembly which includes a transversely permeable article in accordance with the present invention; and
  • FIG. 8 is a photograph at 100× (original magnification) corresponding to a portion of the side elevation view sketch of FIG. 5. [0021]
  • DETAILED DESCRIPTION OF THE INVENTION
  • Graphite is a crystalline form of carbon comprising atoms covalently bonded in flat layered planes with weaker bonds between the planes. By treating particles of graphite, such as natural graphite flake, with an intercalant of, for instance, a solution of sulfuric and nitric acid, the crystal structure of the graphite reacts to form a compound of graphite and the intercalant. The treated particles of graphite are hereafter referred to as “particles of intercalated graphite”. Upon exposure to high temperature, the particles of intercalated graphite expand in dimension as much as about 80 or more times its original volume in an accordion-like fashion in the “c” direction, i.e., in the direction perpendicular to the crystalline planes of the graphite. The exfoliated graphite particles are vermiform in appearance, and are therefore commonly referred to as worms. The worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact. [0022]
  • A common method for manufacturing graphite sheet, e.g., foil from flexible graphite is described by Shane et al. in U.S. Pat. No. 3,404,061, the disclosure of which is incorporated herein by reference. In the typical practice of the Shane et al. method, natural graphite flakes are intercalated by dispersing the flakes in a solution containing an oxidizing agent of, for example, a mixture of nitric and sulfuric acid. The intercalation solution contains oxidizing and other intercalating agents known in the art. Examples include those containing oxidizing agents and oxidizing mixtures, such as solutions containing nitric acid, potassium chlorate, chromic acid, potassium permanganate, potassium chromate, potassium dichromate, perchloric acid, and the like, or mixtures, such as for example, concentrated nitric acid and chlorate, chromic acid and phosphoric acid, sulfuric acid and nitric acid, or mixtures of a strong organic acid, such as trifluoroacetic acid, and a strong oxidizing agent soluble in the organic acid. [0023]
  • In a preferred embodiment, the intercalating agent is a solution of a mixture of sulfuric acid, or sulfuric acid and phosphoric acid, and an oxidizing agent, i.e., nitric acid, perchloric acid, chromic acid, potassium permanganate, hydrogen peroxide, iodic or periodic acids, or the like. Although less preferred, the intercalation solutions may contain metal halides such as ferric chloride, and ferric chloride mixed with sulfuric acid, or a halide, such as bromine as a solution of bromine and sulfuric acid or bromine in an organic solvent. [0024]
  • After the flakes are intercalated, any excess solution is drained from the flakes and the flakes are water-washed. The quantity of intercalation solution retained on the flakes after draining may range from 20 to 150 parts of solution by weight per 100 parts by weight of graphite flakes (pph) and more typically about 50 to 120 pph. Alternatively, the quantity of the intercalation solution may be limited to between 10 to 50 parts of solution per hundred parts of graphite by weight (pph) which permits the washing step to be eliminated as taught and described in U.S. Pat. No. 4,895,713, the disclosure of which is also herein incorporated by reference. The thus treated particles of graphite are sometimes referred to as “particles of intercalated graphite”. Upon exposure to high temperature, e.g. up to about 700° C. to 1000° C. and higher, the particles of intercalated graphite expand as much as about 80 to 1000 or more times its original volume in an accordion-like fashion in the c-direction, i.e., in the direction perpendicular to the crystalline planes of the constituent graphite particles. The expanded (or exfoliated) graphite particles are vermiform in appearance, and are therefore commonly referred to as worms. The worms may be compressed together into flexible sheets that, unlike the original graphite flakes, can be formed and cut into various shapes and provided with small transverse openings by deforming mechanical impact as hereinafter described. [0025]
  • Flexible graphite sheet and foil are coherent, with good handling strength, and are suitably compressed, such as by roll-pressing, to a thickness of 0.003 to 0.15 inch and a density of 0.1 to 1.5 grams per cubic centimeter. From about 1.5-30% by weight of ceramic additives, can be blended with the intercalated graphite flakes as described in U.S. Pat. No. 5,902,762 (which is incorporated herein by reference) to provide enhanced resin impregnation in the final flexible graphite product. The additives include ceramic fiber particles having a length of 0.15 to 1.5 millimeters. The width of the particles is suitably from 0.04 to 0.004 mm. The ceramic fiber particles are non-reactive and non-adhering to graphite and are stable at temperatures up to 2000° F., preferably 2500° F.. Suitable ceramic fiber particles are formed of macerated quartz glass fibers, carbon and graphite fibers, zirconia, boron nitride, silicon carbide and magnesia fibers, naturally occurring mineral fibers such as calcium metasilicate fibers, calcium aluminum silicate fibers, aluminum oxide fibers and the like. [0026]
  • With reference to FIG. 1 and FIG. 2, a compressed mass of expanded graphite particles, in the form of a flexible graphite sheet is shown at [0027] 10. The flexible graphite sheet 10 is provided with channels 20, which are preferably smooth-sided as indicated at 67 in FIGS. 5 and 8, and which pass between the parallel, opposed surfaces 30, 40 of flexible graphite sheet 10, and are separated by walls 3 of compressed expandable graphite. The walls 3 are advantageously provided with grooves 5, having a depth of {fraction (1/10)} to ⅓ the depth of the channels in accordance with the present invention. The channels 20 preferably have openings 50 on one of the opposed surfaces 30 which are larger than the openings 60 in the other opposed surface 40. The channels 20 can have different configurations as shown at 20′-20″″ in FIGS. 2(A), 2(B), 2(C) which are formed using flat-ended protrusion elements of different shapes as shown at 75, 175, 275, 375 in FIGS. 1(A) and 2(A), 2(B), 2(C), 2(D), suitably formed of metal, e.g. steel, and integral with and extending from the pressing roller 70 of the impacting device shown in FIG. 3. The smooth flat-ends of the channel-forming protrusion elements 75, 175, 275, 375, shown at 77, 177, 277, 377, and the smooth flat ends of the groove-forming protrusion elements 675, 775, 875, 975 shown at 677, 777, 877, 977, and the smooth bearing surface 73, of roller 70, and the smooth bearing surface 78 of roller 72 (or alternatively flat metal plate 79), ensure deformation and displacement of graphite within the flexible graphite sheet, preferably such that there are no rough or ragged edges or debris resulting from the channel-forming impact. The groove-forming protrusion elements 675, 775, 875, 975 also result in deformation and displacement of graphite within the flexible graphite sheet. Preferred channel-forming protrusion elements 77 have decreasing cross-section in the direction away from the pressing roller 70 to provide larger channel openings on the side of the sheet which is initially impacted. The development of smooth, unobstructed surfaces 63 surrounding channel openings 60, enables the free flow of fluid into and through smooth-sided (at 67) channels 20.
  • In a preferred embodiment, openings at one of the opposed surfaces are larger than the channel openings in the other opposed surface, e.g. from 1 to 200 times greater in area, and result from the use of protrusion elements having converging sides such as shown at [0028] 76, 276, 376. The transverse channels 20 are formed in the flexible graphite sheet 10 at a plurality of pre-determined locations by mechanical impact at the predetermined locations in sheet 10 using a mechanism such as shown in FIG. 3 comprising a pair of steel rollers 70, 72 with one of the rollers having truncated, i.e. flat-ended, prism-shaped protrusions 75 which impact surface 30 of flexible graphite sheet 10 to displace graphite and penetrate sheet 10 to form open channels 20. In the present invention, the channel-forming protrusions 75 are bridged by groove-forming protrusions 675 which form interconnecting grooves 5 between channels 20 in a row of aligned channels concurrently with formation of channels 20 which is illustrated in the sketch of FIG. 3(C) and the photograph of FIG. 3(E). Additionally, groove-forming protrusion elements 675′ can be included as shown in FIGS. 3(A), 3(B) to form interconnecting grooves 5′ in a parallel row of transverse channels 20 as shown in FIG. 3(D). In practice, both rollers 70, 72 can be provided with “out-of-register” protrusions, and a flat metal plate indicated at 79, can be used in place of smooth-surfaced roller 72. FIG. 4 is an enlarged sketch of a sheet of flexible graphite 110 that shows a typical prior art orientation of compressed expanded graphite particles 80 substantially parallel to the opposed surfaces 130, 140. This orientation of the expanded graphite particles 80 results in anisotropic properties in flexible graphite sheets; i.e. the electrical conductivity and thermal conductivity of the sheet is substantially lower in the direction transverse to opposed surfaces 130, 140 (“c ” direction) than in the direction (“a” direction) parallel to opposed surfaces 130, 140. In the course of impacting flexible graphite sheet 10 to form channels 20, as illustrated in FIG. 3, graphite is displaced within flexible graphite sheet 10 by flat-ended (at 77) channel-forming protrusions 75 to push aside graphite as it travels to and bears against smooth surface 73 of roller 70 to disrupt and deform the parallel orientation of expanded graphite particles 80 as shown at 800 in FIG. 5. Groove forming protrusions 675 concurrently deform the parallel orientation of expanded graphite particles. This region of 800, adjacent channels 20 and grooves 5, shows disruption of the parallel orientation into an oblique, non-parallel orientation is optically observable at magnifications of 100× and higher. In effect the displaced graphite is being “die-molded” by the sides 76 of adjacent protrusions 75 and the smooth surface 73 of roller 70 as illustrated in FIG. 5. This reduces the anisotropy in flexible graphite sheet 10 and thus increases the electrical and thermal conductivity of sheet 10 in the direction transverse to the opposed surfaces 30, 40. A similar effect is achieved with frusto-conical and parallel-sided peg-shaped flat-ended protrusions 275 and 175. The perforated gas permeable flexible graphite sheet 10 of FIG. 1 can be used as an electrode in an electrochemical fuel cell 500 shown schematically in FIGS. 6, 7 and 7(A).
  • FIG. 6, FIG. 7 and FIG. 7(A) show, schematically, the basic elements of an electrochemical Fuel Cell, more complete details of which are disclosed in U.S. Pat. Nos. 4,988,583 and 5,300,370 and PCT WO 95/16287 (Jun. 15, 1995) and each of which is incorporated herein by reference. [0029]
  • With reference to FIG. 6, FIG. 7 and FIG. 7(A), the Fuel Cell indicated generally at [0030] 500, comprises electrolyte in the form of a plastic e.g. a solid polymer ion exchange membrane 550 catalyst coated at surfaces 601, 603, e.g. coated with platinum 600 as shown in FIG. 7(A); perforated flexible graphite sheet electrodes 10 in accordance with the present invention; and flow field plates 1000, 1100 which respectively abut electrodes 10. Pressurized fuel is circulated through grooves 1400 of fuel flow field pate 1100 and pressurized oxidant is circulated through grooves 1200. In operation, the fuel flow field plate 1100 becomes an anode, and the oxidant flow field plate 1000 becomes a cathode with the result that an electric potential, i.e. voltage is developed between the fuel flow field plate 1000 and the oxidant flow field plate 1100. The above described electrochemical fuel cell is combined with others in a fuel cell stack to provide the desired level of electric power as described in the above-noted U.S. Pat. No. 5,300,370.
  • The operation of [0031] Fuel Cell 500 requires that the electrodes 10 be porous to the fuel and oxidant fluids, e.g. hydrogen and oxygen, to permit these components to readily pass from the grooves 1400, 1200 through electrodes 10 to contact the catalyst 600, as shown in FIG. 7(A), and enable protons derived from hydrogen to migrate through ion exchange membrane 550. In the electrode 10 of the present invention, channels 20 are positioned to adjacently cover grooves 1400, 1200 of the flow field plates so that the pressurized gas from the grooves passes through the smaller openings 60 of channels 20 and exits the larger openings 50 of channels 20. In the event of a blockage in a channel 20, such as indicated at 7 in FIGS. 6 and 7, fluid from adjacent channels can flow through grooves 5 so that gas-catalyst contact adjacent the blocked channel is maintained. The initial velocity of the gas at the smaller openings 60 is higher than the gas flow at the larger openings 50 with the result that the gas is slowed down when it contacts the catalyst 600 and the residence time of gas-catalyst contact is increased and the area of gas exposure at the membrane 550 is maximized. This feature, together with the increased electrical conductivity of the flexible graphite electrode of the present invention enables more efficient fuel cell operation.
  • FIG. 8 is a photograph (original magnification 100×) of a body of flexible graphite corresponding to a portion of the sketch of FIG. 5. [0032]
  • The articles of FIGS. 1 and 5 and the material shown in the photograph (100×) of FIG. 8 can be shown to have increased thermal and electrical conductivity in the direction transverse to opposed parallel, [0033] planar surfaces 30, 40 as compared to the thermal and electrical conductivity in the direction transverse to surfaces 130, 140 of the material of FIG. 4 in which particles of expanded natural graphite unaligned with the opposed planar surfaces are not optically detectable.
  • A sample of a sheet of flexible graphite 0.01 inch thick having a density of 0.3 grams/cc, representative of FIG. 4, was mechanically impacted by a device similar to that of FIG. 3 to provide channels of different size in the flexible graphite sheet. The transverse (“c” direction) electrical resistance of the sheet material samples was measured and the results are shown in the table below. [0034]
  • Also, the transverse gas permeability of channeled flexible graphite sheet samples, in accordance with the present invention, was measured, using a Gurley Model 4118 for Gas Permeability Measurement. [0035]
  • Samples of channeled flexible graphite sheet in accordance with the present invention were placed at the bottom opening (⅜ in. diam.) of a vertical cylinder (3 inch diameter cross-section). The cylinder was filled with 300 cc of air and a weighted piston (5 oz.) was set in place at the top of the cylinder. The rate of gas flow through the channeled samples was measured as a function of the time of descent of the piston and the results are shown in the table below. [0036]
    Flexible Graphite Sheet
    (0.01 inch thick; density = 0.3 gms/cc)
    1600 channels per 250 channels per
    square inch—0.020 square inch—0.020
    inch wide at top; inch wide at top;
    No 0.005 inch wide at 0.007 inch wide at
    Channels bottom bottom
    Transverse
    80 8 0.3
    Electrical
    Resistance (micro
    ohms)
    Diffusion Rate- 8 seconds 30 seconds
    Seconds
  • In the present invention, for a flexible graphite sheet having a thickness of 0.003 inch to 0.015 inch adjacent the channels and a density of 0.5 to 1.5 grams per cubic centimeter, the preferred channel density is from 1000 to 3000 channels per square inch and the preferred channel size is a channel in which the ratio of the area of larger channel opening to the smaller is from 50:1 to 150:1. [0037]
  • In the practice of the present invention, the flexible graphite sheet can, at times, be advantageously treated with resin and the absorbed resin, after curing, enhances the moisture resistance and handling strength, i.e. stiffness of the flexible graphite sheet. Suitable resin content is preferably 20 to 30% by weight, suitably up 60% by weight. [0038]
  • The article of the present invention can be used as electrical and thermal coupling elements for integrated circuits in computer applications, as conformal electrical contact pads and as electrically energized grids in de-icing equipment. [0039]
  • The above description is intended to enable the person skilled in the art to practice the invention. It is not intended to detail all of the possible variations and modifications which will become apparent to the skilled worker upon reading the description. It is intended, however, that all such modifications and variations be included within the scope of the invention which is defined by the following claims. The claims are intended to cover the indicated elements and steps in any arrangement or sequence which is effective to meet the objectives intended for the invention, unless the context specifically indicates the contrary. [0040]

Claims (20)

What is claimed is:
1. A membrane electrode assembly comprising a pair of electrodes and an ion exchange membrane positioned between the electrodes, at least one of the electrodes being formed of a sheet of a compressed mass of expanded graphite particles having a plurality of transverse fluid channels passing through the sheet between first and second opposed surfaces thereof and separated by walls of compressed expanded graphite particles, at least some of the walls permitting interconnection of adjacent channels, one of the opposed surfaces abutting the ion exchange membrane.
2. The assembly of claim 1 wherein the transverse fluid channels are formed by mechanically impacting an opposed surface of the sheet to displace graphite within the sheet at a plurality of predetermined locations.
3. The assembly of claim 1 wherein interconnection of at least some of the adjacent channels is permitted by grooves formed in at least some of the walls.
4. The assembly of claim 3 wherein the interconnecting grooves are formed by mechanically impacting an opposed surface of the sheet at walls separating adjacent channels to enable fluid flow between adjacent channels.
5. The assembly of claim 1 wherein the compressed mass of expanded graphite particles is characterized by expanded graphite particles adjacent said channels extending obliquely with respect to opposed surfaces of the sheet.
6. The assembly of claim 1 wherein the channel openings at the second surface of the sheet are surrounded by a smooth graphite surface.
7. The assembly of claim 1 wherein the channel openings at the first surface are larger than the channel openings at the second surface.
8. The assembly of claim 7 wherein the channel openings at the first surface are from 50 to 150 times larger in area than the channel openings at the second surface.
9. The assembly of claim 1 wherein 1000 to 3000 channels per square inch are present in the sheet.
10. The assembly of claim 1 wherein the graphite sheet has a thickness of 0.003 inch to 0.015 inch adjacent said channels and a density of 0.5 to 1.5 grams per cubic centimeter.
11. A graphite article comprising a sheet of a compressed mass of expanded graphite particles having a plurality of transverse fluid channels passing through the sheet between first and second opposed surfaces thereof and separated by walls of compressed expanded graphite particles, at least some of the walls permitting interconnection of adjacent channels.
12. The article of claim 11 wherein the transverse fluid channels are formed by mechanically impacting an opposed surface of the sheet to displace graphite within the sheet at a plurality of predetermined locations.
13. The article of claim 11 wherein interconnection of at least some of the adjacent channels is permitted by grooves formed in at least some of the walls.
14. The article of claim 13 wherein the interconnecting grooves are formed by mechanically impacting an opposed surface of the sheet at walls separating adjacent channels to enable fluid flow between adjacent channels.
15. The article of claim 11 wherein the compressed mass of expanded graphite particles is characterized by expanded graphite particles adjacent said channels extending obliquely with respect to opposed surfaces of the sheet.
16. The article of claim 11 wherein the channel openings at the second surface of the sheet are surrounded by a smooth graphite surface.
17. The article of claim 11 wherein the channel openings at the first surface are larger than the channel openings at the second surface.
18. The article of claim 17 wherein the channel openings at the first surface are from 50 to 150 times larger in area than the channel openings at the second surface.
19. The article of claim 11 wherein 1000 to 3000 channels per square inch are present in the sheet.
20. The article of claim 11 wherein the graphite sheet has a thickness of 0.003 inch to 0.015 inch adjacent said channels and a density of 0.5 to 1.5 grams per cubic centimeter.
US10/105,753 2000-01-24 2002-03-25 Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity Abandoned US20020160249A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/105,753 US20020160249A1 (en) 2000-04-10 2002-03-25 Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
US10/273,756 US20030108731A1 (en) 2000-01-24 2002-10-18 Molding of fluid permeable flexible graphite components for fuel cells

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/545,956 US6413671B1 (en) 2000-04-10 2000-04-10 Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
US10/105,753 US20020160249A1 (en) 2000-04-10 2002-03-25 Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity

Related Parent Applications (3)

Application Number Title Priority Date Filing Date
US09/545,956 Continuation US6413671B1 (en) 2000-01-24 2000-04-10 Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
US09/549,865 Continuation US6528199B1 (en) 2000-01-24 2000-04-14 Graphite article useful as an electrode for an electrochemical fuel cell
US09/675,027 Continuation US6479182B1 (en) 2000-01-24 2000-09-28 Fuel cell electrode assembly with selective catalyst loading

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/273,756 Continuation-In-Part US20030108731A1 (en) 2000-01-24 2002-10-18 Molding of fluid permeable flexible graphite components for fuel cells

Publications (1)

Publication Number Publication Date
US20020160249A1 true US20020160249A1 (en) 2002-10-31

Family

ID=24178228

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/545,956 Expired - Fee Related US6413671B1 (en) 2000-01-24 2000-04-10 Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
US10/105,753 Abandoned US20020160249A1 (en) 2000-01-24 2002-03-25 Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/545,956 Expired - Fee Related US6413671B1 (en) 2000-01-24 2000-04-10 Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity

Country Status (1)

Country Link
US (2) US6413671B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080014493A1 (en) * 2006-07-05 2008-01-17 Samsung Sdi Co., Ltd. Fuel cell having water recirculation plate

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6924058B2 (en) * 1999-11-17 2005-08-02 Leroy J. Ohlsen Hydrodynamic transport and flow channel passageways associated with fuel cell electrode structures and fuel cell electrode stack assemblies
US6468686B1 (en) * 2000-01-24 2002-10-22 Graftech Inc. Fluid permeable flexible graphite fuel cell electrode with enhanced electrical and thermal conductivity
US20040072055A1 (en) * 2000-04-14 2004-04-15 Getz Matthew George Graphite article useful as a fuel cell component substrate
US6555271B1 (en) * 2000-06-20 2003-04-29 Graftech Inc. Anode for lithium-ion battery
FR2812119B1 (en) * 2000-07-24 2002-12-13 Commissariat Energie Atomique CONDUCTIVE COMPOSITE MATERIAL AND ELECTRODE FOR FUEL CELL USING THE THERMO-COMPRESSED MATERIAL
FR2812120B1 (en) * 2000-07-24 2006-11-03 Commissariat Energie Atomique CONDUCTIVE COMPOSITE MATERIAL AND ELECTRODE FOR FUEL CELL USING THE MATERIAL
US6663807B2 (en) * 2001-05-14 2003-12-16 Advanced Energy Technology Inc. Process for complex shape formation using flexible graphite sheets
US7232601B2 (en) * 2001-05-31 2007-06-19 Advanced Energy Technology Inc. Method for preparing composite flexible graphite material
US20030039876A1 (en) * 2001-08-27 2003-02-27 Knights Shanna Denine Electrochemical fuel cell with fluid distribution layer having non-uniform perforations
TWI256168B (en) * 2001-12-19 2006-06-01 Polyfuel Inc Printing of catalyst on the membrane of fuel cells
US6884745B2 (en) * 2002-06-28 2005-04-26 Advanced Energy Technology Inc. Perforated cylindrical fuel cells
US6960402B2 (en) * 2002-06-28 2005-11-01 Advanced Energy Technology Inc. Perforated cylindrical fuel cells
US20040062977A1 (en) * 2002-10-01 2004-04-01 Graftech, Inc. Fuel cell power packs and methods of making such packs
US20040121122A1 (en) * 2002-12-20 2004-06-24 Graftech, Inc. Carbonaceous coatings on flexible graphite materials
US20050104243A1 (en) * 2003-11-14 2005-05-19 Mercuri Robert A. Method of forming impressions in a flexible graphite material
US20050136187A1 (en) * 2003-12-23 2005-06-23 Weber Thomas W. Method of improving adhesion of a coating to a flexible graphite material
US20050189673A1 (en) * 2004-02-26 2005-09-01 Jeremy Klug Treatment of flexible graphite material and method thereof
EP2104958A2 (en) * 2006-11-07 2009-09-30 Polyfuel, Inc. Passive recovery of liquid water produced by fuel cells
US20080199751A1 (en) * 2007-02-20 2008-08-21 Commonwealth Scientific And Industrial Research Organisation Bipolar plate for an air breathing fuel cell stack
WO2012125804A2 (en) * 2011-03-15 2012-09-20 Pridgeon & Clay, Inc. Method and apparatus for manufacturing a fuel cell electrode
US9706684B2 (en) 2013-12-26 2017-07-11 Terrella Energy Systems Ltd. Exfoliated graphite materials and composite materials and devices for thermal management
US9700968B2 (en) * 2013-12-26 2017-07-11 Terrella Energy Systems Ltd. Apparatus and methods for processing exfoliated graphite materials
US11840013B2 (en) 2018-02-27 2023-12-12 Matthews International Corporation Graphite materials and devices with surface micro-texturing

Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404061A (en) * 1962-03-21 1968-10-01 Union Carbide Corp Flexible graphite material of expanded particles compressed together
US4190257A (en) * 1978-02-01 1980-02-26 Union Carbide Corporation Packing ring containing flexible graphite
US4226821A (en) * 1977-12-28 1980-10-07 Nippon Carbon Co., Ltd. Process for producing flexible graphite
US4752518A (en) * 1986-07-31 1988-06-21 Polycarbon, Inc. Flexible surface deformation-resistant graphite foil
US4794043A (en) * 1985-04-30 1988-12-27 Kureha Kagaku Kogyo Kabushiki Kaisha Carbon product comprising carbonaceous materials joined together, said carbon product for electrode substrate of fuel cells and process for production thereof
US4826181A (en) * 1988-02-09 1989-05-02 Union Carbide Corporation Seal utilizing composites of flexible graphite particles and amorphous carbon
US4895713A (en) * 1987-08-31 1990-01-23 Union Carbide Corporation Intercalation of graphite
US4988583A (en) * 1989-08-30 1991-01-29 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Novel fuel cell fluid flow field plate
US5102855A (en) * 1990-07-20 1992-04-07 Ucar Carbon Technology Corporation Process for producing high surface area activated carbon
US5108849A (en) * 1989-08-30 1992-04-28 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fuel cell fluid flow field plate
US5176863A (en) * 1991-08-06 1993-01-05 Ucar Carbon Technology Corporation Flexible graphite composite fire retardant wallpaper and method
US5225262A (en) * 1991-04-29 1993-07-06 A. W. Chesterton Co. Braided high-temperature packing comprising a core of folded flexible graphite sheet
US5225379A (en) * 1988-02-09 1993-07-06 Ucar Carbon Technology Corporation Composites of flexible graphite particles and amorphous carbon
US5228701A (en) * 1988-03-22 1993-07-20 Ucar Carbon Technology Corporation Flexible graphite articles with an amorphous carbon phase at the surface
US5300370A (en) * 1992-11-13 1994-04-05 Ballard Power Systems Inc. Laminated fluid flow field assembly for electrochemical fuel cells
US5476679A (en) * 1991-08-29 1995-12-19 Ucar Carbon Technology Corporation Method for making a graphite component covered with a layer of glassy carbon
US5494506A (en) * 1995-01-17 1996-02-27 Ucar Carbon Technology Corporation Gas filtering device for air bag gas generator
US5531454A (en) * 1994-12-29 1996-07-02 Indian Head Industries, Inc. Expandable gasket, sealed joint and method of forming same
US5683778A (en) * 1992-12-09 1997-11-04 Crosier; Robert A. Braided graphite-foil and method of production
US5707755A (en) * 1996-12-09 1998-01-13 General Motors Corporation PEM/SPE fuel cell
US5902762A (en) * 1997-04-04 1999-05-11 Ucar Carbon Technology Corporation Flexible graphite composite
US5976726A (en) * 1997-05-01 1999-11-02 Ballard Power Systems Inc. Electrochemical cell with fluid distribution layer having integral sealing capability
US5981098A (en) * 1997-08-28 1999-11-09 Plug Power, L.L.C. Fluid flow plate for decreased density of fuel cell assembly
US6087034A (en) * 1998-07-09 2000-07-11 Ucar Graph-Tech Inc. Flexible graphite composite
US6210652B1 (en) * 1996-10-21 2001-04-03 Centre National De La Recherche Scientifique Active composite having a laminate structure comprising an active in the form of granules

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5488911A (en) 1977-12-26 1979-07-14 Matsushita Electric Ind Co Ltd Production of thin ceramic sheet
EP0248918A1 (en) 1986-06-07 1987-12-16 SIGRI GmbH Thermal insulation
JPS63157747A (en) 1986-12-22 1988-06-30 Tokyo Yogyo Co Ltd Submerged nozzle for continuous casting
JP2503497B2 (en) 1987-03-30 1996-06-05 日立化成工業株式会社 Graphite / fiber composite material
JPH01123991A (en) 1987-11-09 1989-05-16 Nikkiso Co Ltd Heat-insulating structure of internal heat type high-temperature high-pressure device
JP2619818B2 (en) 1994-11-21 1997-06-11 日本ピラー工業株式会社 Thermal expansion inorganic fiber sealing material
JPH08169478A (en) 1994-12-20 1996-07-02 Taiyo Chem Kk Heat generating sheet for microwave heating cooking and production thereof

Patent Citations (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3404061A (en) * 1962-03-21 1968-10-01 Union Carbide Corp Flexible graphite material of expanded particles compressed together
US4226821A (en) * 1977-12-28 1980-10-07 Nippon Carbon Co., Ltd. Process for producing flexible graphite
US4190257A (en) * 1978-02-01 1980-02-26 Union Carbide Corporation Packing ring containing flexible graphite
US4794043A (en) * 1985-04-30 1988-12-27 Kureha Kagaku Kogyo Kabushiki Kaisha Carbon product comprising carbonaceous materials joined together, said carbon product for electrode substrate of fuel cells and process for production thereof
US4752518A (en) * 1986-07-31 1988-06-21 Polycarbon, Inc. Flexible surface deformation-resistant graphite foil
US4895713A (en) * 1987-08-31 1990-01-23 Union Carbide Corporation Intercalation of graphite
US5225379A (en) * 1988-02-09 1993-07-06 Ucar Carbon Technology Corporation Composites of flexible graphite particles and amorphous carbon
US4826181A (en) * 1988-02-09 1989-05-02 Union Carbide Corporation Seal utilizing composites of flexible graphite particles and amorphous carbon
US5228701A (en) * 1988-03-22 1993-07-20 Ucar Carbon Technology Corporation Flexible graphite articles with an amorphous carbon phase at the surface
US4988583A (en) * 1989-08-30 1991-01-29 Her Majesty The Queen As Represented By The Minister Of National Defence Of Her Majesty's Canadian Government Novel fuel cell fluid flow field plate
US5108849A (en) * 1989-08-30 1992-04-28 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Fuel cell fluid flow field plate
US5102855A (en) * 1990-07-20 1992-04-07 Ucar Carbon Technology Corporation Process for producing high surface area activated carbon
US5225262A (en) * 1991-04-29 1993-07-06 A. W. Chesterton Co. Braided high-temperature packing comprising a core of folded flexible graphite sheet
US5176863A (en) * 1991-08-06 1993-01-05 Ucar Carbon Technology Corporation Flexible graphite composite fire retardant wallpaper and method
US5476679A (en) * 1991-08-29 1995-12-19 Ucar Carbon Technology Corporation Method for making a graphite component covered with a layer of glassy carbon
US5300370A (en) * 1992-11-13 1994-04-05 Ballard Power Systems Inc. Laminated fluid flow field assembly for electrochemical fuel cells
US5683778A (en) * 1992-12-09 1997-11-04 Crosier; Robert A. Braided graphite-foil and method of production
US5531454A (en) * 1994-12-29 1996-07-02 Indian Head Industries, Inc. Expandable gasket, sealed joint and method of forming same
US5494506A (en) * 1995-01-17 1996-02-27 Ucar Carbon Technology Corporation Gas filtering device for air bag gas generator
US6210652B1 (en) * 1996-10-21 2001-04-03 Centre National De La Recherche Scientifique Active composite having a laminate structure comprising an active in the form of granules
US5707755A (en) * 1996-12-09 1998-01-13 General Motors Corporation PEM/SPE fuel cell
US5902762A (en) * 1997-04-04 1999-05-11 Ucar Carbon Technology Corporation Flexible graphite composite
US5976726A (en) * 1997-05-01 1999-11-02 Ballard Power Systems Inc. Electrochemical cell with fluid distribution layer having integral sealing capability
US5981098A (en) * 1997-08-28 1999-11-09 Plug Power, L.L.C. Fluid flow plate for decreased density of fuel cell assembly
US6087034A (en) * 1998-07-09 2000-07-11 Ucar Graph-Tech Inc. Flexible graphite composite

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080014493A1 (en) * 2006-07-05 2008-01-17 Samsung Sdi Co., Ltd. Fuel cell having water recirculation plate

Also Published As

Publication number Publication date
US6413671B1 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
US6413671B1 (en) Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
US6413663B1 (en) Fluid permeable flexible graphite fuel cell electrode
US6528199B1 (en) Graphite article useful as an electrode for an electrochemical fuel cell
US6468686B1 (en) Fluid permeable flexible graphite fuel cell electrode with enhanced electrical and thermal conductivity
US6506484B1 (en) Fluid permeable flexible graphite article with enhanced electrical and thermal conductivity
US6479182B1 (en) Fuel cell electrode assembly with selective catalyst loading
EP1258046B1 (en) Fluid permeable flexible graphite article with enhanced electrical and thermal conductivity
AU2000243369B2 (en) Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
AU2000243369A1 (en) Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
EP1273064B1 (en) Graphite article useful as an electrode for an electrochemical fuel cell
KR100515742B1 (en) Flexible graphite article and fuel cell electrode with enhanced electrical and thermal conductivity
KR20030066320A (en) Graphite article useful as an electrode for an electrochemical fuel cell
CA2398180A1 (en) Flexible graphite article
MXPA01000238A (en) Flexible graphite composite for use in the form of a fuel cell flow field plate

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE