US20020071530A1 - Real time call trace capable of use with multiple elements - Google Patents

Real time call trace capable of use with multiple elements Download PDF

Info

Publication number
US20020071530A1
US20020071530A1 US10/012,464 US1246401A US2002071530A1 US 20020071530 A1 US20020071530 A1 US 20020071530A1 US 1246401 A US1246401 A US 1246401A US 2002071530 A1 US2002071530 A1 US 2002071530A1
Authority
US
United States
Prior art keywords
messages
trigger
message
call
probes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/012,464
Other versions
US7050549B2 (en
Inventor
Barry Hannigan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
McData Services Corp
Original Assignee
Inrange Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inrange Technologies Corp filed Critical Inrange Technologies Corp
Priority to US10/012,464 priority Critical patent/US7050549B2/en
Publication of US20020071530A1 publication Critical patent/US20020071530A1/en
Assigned to COMPUTER NETWORK TECHNOLOGY CORPORATION reassignment COMPUTER NETWORK TECHNOLOGY CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: INRANGE TECHNOLOGIES CORPORATION
Application granted granted Critical
Publication of US7050549B2 publication Critical patent/US7050549B2/en
Assigned to BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT reassignment BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT SECURITY AGREEMENT Assignors: BROCADE COMMUNICATIONS SYSTEMS, INC., FOUNDRY NETWORKS, INC., INRANGE TECHNOLOGIES CORPORATION, MCDATA CORPORATION
Assigned to WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT reassignment WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT SECURITY AGREEMENT Assignors: BROCADE COMMUNICATIONS SYSTEMS, INC., FOUNDRY NETWORKS, LLC, INRANGE TECHNOLOGIES CORPORATION, MCDATA CORPORATION, MCDATA SERVICES CORPORATION
Assigned to MCDATA SERVICES CORPORATION reassignment MCDATA SERVICES CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: COMPUTER NETWORK TECHNOLOGY CORPORATION
Assigned to INRANGE TECHNOLOGIES CORPORATION, BROCADE COMMUNICATIONS SYSTEMS, INC., FOUNDRY NETWORKS, LLC reassignment INRANGE TECHNOLOGIES CORPORATION RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT
Assigned to BROCADE COMMUNICATIONS SYSTEMS, INC., FOUNDRY NETWORKS, LLC reassignment BROCADE COMMUNICATIONS SYSTEMS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M3/00Automatic or semi-automatic exchanges
    • H04M3/22Arrangements for supervision, monitoring or testing
    • H04M3/2281Call monitoring, e.g. for law enforcement purposes; Call tracing; Detection or prevention of malicious calls

Definitions

  • the present invention relates generally to load sharing of a telephone system. More particularly, the present invention relates to call tracing on a load sharing telephone system.
  • Links in a telephone networking system work by load sharing, i.e. each link takes up a known percentage of the total load.
  • each link there are generally five sequences that provide identification/routing information about a signaling message being transmitted over the network.
  • five messages are used to set-up and release trunk circuits in a service switching point (SSP), namely: Initial address message (IAM), address complete message (ACM), answer message (ANM), release message (REL), and release complete message (RLC).
  • IAM Initial address message
  • ACM address complete message
  • ACM answer message
  • REL release message
  • RLC release complete message
  • An SS7 network is more formally referred to as a Common
  • Channel Signaling System No. 7 i.e., SS7 or C7
  • ITU-T International Telecommunication Union
  • PSTN public switched telephone network
  • the ITU definition of SS7 allows for national variants such as the American National Standards Institute (ANSI) and Bell Communications Research (Telcordia Technologies) standards used in North America and the European Telecommunications Standards Institute (ETSI) standard used in Europe.
  • ANSI American National Standards Institute
  • ETSI European Telecommunications Standards Institute
  • the SS7 network and protocol are used for: basic call setup, management, and tear down; wireless services such as personal communications services (PCS), wireless roaming, and mobile subscriber authentication; local number portability (LNP); toll-free (800/888) and toll (900) wireline services; enhanced call features such as call forwarding, calling party name/number display, and three-way calling; and efficient and secure worldwide telecommunications.
  • wireless services such as personal communications services (PCS), wireless roaming, and mobile subscriber authentication
  • LNP local number portability
  • toll-free (800/888) and toll (900) wireline services such as call forwarding, calling party name/number display, and three-way calling
  • enhanced call features such as call forwarding, calling party name/number display, and three-way calling
  • the processor When an LAM message is detected on one link, the processor, sometimes referred to as a probe, detecting the IAM message must send a trigger message to other probes monitoring other links because other signaling messages, ACM, ANM, REL, and RLC messages, may take other link paths due to the load sharing on the SS7 network.
  • the IAM message containing one of the codes oil-to-dielectric point code (OPC), destination point code (DPC), or circuit identification code (CIC)—has been identified in a given link set (i.e., all links between, for example, a given SSP and a given STP, see FIG.
  • OPC oil point code
  • DPC destination point code
  • CIC circuit identification code
  • monitoring link sets for messages containing a selected code related to a phone call on a link set can be difficult, if not impossible, particularly when multiple link sets must be monitored and/or viewed by an operator.
  • the only way to determine the order of various transmissions is to gather signal information from the signaling messages, store the information in a database, and sort through the stored information for purposes of troubleshooting. This process, of course, does not lend itself to real-time call tracing.
  • Sophisticated telephone network systems have been disclosed and include various mechanisms for troubleshooting inevitable errors, which occur during operation.
  • U.S. Pat. No. 6,125,177 to Whittaker shows a method and an apparatus for enhancing signaling and call routing between local and remote terminals of a telecommunications network defined by a layered hierarchy of protocols and switching between telephony and Internet services.
  • U.S. Pat. No. 5,592,530 to Brockman shows a general testing and monitoring system using an SS7 network in the operation of a phone system. This reference deals with problems of having data located at two different nodes and provides a link monitoring system located at STP sites.
  • U.S. Pat. No. 4,959,849 to Bhusri relates to a method and architecture for surveillance of network systems, which permits quality control for the network system utilizing information within message signal units received by processing elements.
  • U.S. Pat. No. 6,104,801 to Miloslavsky relates to a system for call routing telephony where routing protocols are associated with specific levels of one or more system characteristics. Appropriate routing protocols are selected and executed based upon system condition and performance.
  • the present invention relates to a monitoring system for a telephony network, such as an SS7 network, that supports real-time call tracing.
  • the monitoring system includes a multi-element manager configuration monitoring telephony nodes in mated relationship to one another.
  • a trigger is issued by a probe detecting an IAM message having a phone number that matches specified criteria.
  • the probe applies a time stamp, corresponding to the time the IAM message was asserted onto the telephony network link, to the trigger to allow element managers and monitoring probes distributed about the telephony system to capture messages stored in local, respective buffers and compare the time stamp in the captured messages to the time stamp in the trigger.
  • the time stamp also allows probes monitoring signaling messages traveling along telephony network links to: (i) temporarily store all messages in a message buffer, (ii) filter the messages in the buffer to determine which message(s), if any, meet a given signaling information and/or time stamp criteria, and (iii) forward messages, meeting the criteria, to element managers supervising the probes.
  • the time stamp and message buffer combination relaxes the high speed trigger distribution requirement, which is 100 msec, since the determination of whether a signaling message is related to a call beyond the 100 msec requirement at about which an ANM is issued in response to the IAM message. Therefore, call tracing can span multiple element managers.
  • the element manager having the messages meeting the criteria, then displays the results to an operator in a real-time or pseudo-real-time manner.
  • a remote monitoring station in communication with the monitoring system can be used to display the call tracing information.
  • FIG. 1 is a diagram of two nodes in a typical real time call trace system with combined link sets
  • FIG. 2 is a diagram showing typical SS7 signaling points
  • FIG. 3 is a diagram showing SS7 signaling link types
  • FIG. 4 is a diagram showing an embodiment of interconnections of element managers and probes to an SS7 link set
  • FIG. 5A- 5 C is a flow diagram of an embodiment of a process executed within the context of the network devices of FIG. 4.
  • Dial-up Internet access is (i) creating new challenges for public network providers as a result of increased call holding times, and (ii) creating an inability of network subscribers to have the capability to accept and trace telephone calls.
  • the call tracing processor is a general purpose computer running a suitable operating system.
  • the principles of the present invention are preferably implemented in software supported on the call trace processor and are useful, for example, where the following conditions are met:
  • the monitoring system is capable of receiving commands from the processor to direct the trace of the call.
  • an operator investigating why a phone call is problematic uses a given element manager in the monitoring system to perform the investigation.
  • a trigger message issued by a probe detecting a phone number criteria entered by the operator is time stamped by the probe detecting the trigger message and broadcast by the probe to its respective element manager.
  • the respective element manager broadcasts the trigger with time stamp to other element managers, which, in turn, send the trigger with the time stamp to respective probes.
  • each probe knows how much time has elapsed since the message was put onto the link on which the detecting probe monitors.
  • Each probe within the network can then examine messages that arrived before the trigger time stamp.
  • the time stamp being incorporated in or associated with a trigger, provides a means for the probes to identify which messages are out of order or are still sitting in respective probe buffers. Old messages so discovered are then processed as if in real-time.
  • Embodiments of the instant invention described below complement the block diagrams and flowcharts of FIGS. 1 - 5 that describe various network architecture and their respective functions.
  • the SS7 network carries a great deal of information and is critical to the operation of the phone system (see FIGS. 1 - 3 ). If the SS7 network is not functioning, the phone system cannot deliver phone calls. The actual parts of the SS7 network do not provide all the information required in network operations to manage and determine the health and state of the SS7 itself.
  • FIG. 4 is a block diagram of an example SS7 network employing several element managers, such as a 7View monitor and probes made by INRANGE Technologies Corp. of Mount Laurel, N.J., and their respective and mutual relationship to the SS7 network.
  • Each element manager is only attached to one or two probes, but each element manager can support more than sixteen probes. Sixteen probes is a limitation based on adding sixteen serial ports to a PC. However, in a TCP/IP embodiment, element managers can support more than 16 probes.
  • the element managers or client terminals (not shown) attached thereto may include protocol analysis decoding in a protocol analysis framework to decode messages to text, filter messages based on selected criteria, and filter messages based on belonging to a particular session.
  • protocol analysis decoding in a protocol analysis framework to decode messages to text, filter messages based on selected criteria, and filter messages based on belonging to a particular session.
  • the element managers and probes can synchronize to a common clock.
  • the system can use the two least significant bits of the current second and a 14 bit value that stands for the number of 100 ⁇ s periods that have elapsed in the current second.
  • the time stamp is small to minimize network traffic.
  • the element managers can also broadcast the triggers to remote element managers. Once the remote element managers receive the trigger information, they can transmit triggers onto the normal local element manager broadcast mechanism for disseminating trigger information to all subordinate probes.
  • Some existing call trace schemes work in a multi-element manager configuration only when probes are wired in a manner such that trigger information does not have to be shared between element managers.
  • the instant call trace scheme preferably employs a 100 millisecond guaranteed delivery time for the broadcast trigger information.
  • a 100 millisecond guaranteed delivery time is possible with dedicated, high-speed voice lines to interconnect the element managers and the probes or other element managers.
  • voice lines are expensive since they are high revenue generating lines, whereas TCP/IP communications are inexpensive and, therefore, more agreeable to service providers for communication between and among the element managers and their respective probes.
  • the 100 millisecond maximum delivery time cannot be guaranteed in a TCP/IP environment, leaving some call trace systems vulnerable to transit delays causing loss of call tracing integrity.
  • a modified call trace scheme can be employed according to the principles of the present invention, which also permits the use of the wildcard character ‘X’.
  • X wildcard character
  • leading and trailing X's in a telephone number are discarded. All remaining X's represent exactly one digit. This is an example of a telephone number criterion.
  • the inter-element manager, trigger broadcast system specifies that each trigger not only be broadcast to each probe under control of a given element manager, it is preferably also broadcast to each other element manager. Each element manager then broadcasts triggers to all probes that it controls (see FIGS. 4 and 5A- 5 C). Note that “800” numbers and numbers entered using wildcards 15 may be resolved to more than one telephone number, each of which is considered to be one of the four designated for the user. Therefore, “800” numbers and wildcards can diminish the total number of simultaneous call traces possible.
  • the instant call trace algorithm can overcome such limitations in many instances. The tendency of errors occurs in catching extra frames, not missing extra frames. The reason for this is found by going back in time and finding messages that were excluded.
  • the IAM trigger broadcast can be delayed as much as two seconds without loss of frames.

Abstract

A system for testing and monitoring the operation of telephone systems uses a call trace method for capturing messages associated with a phone call. The system can provide an indication as to the time a particular triggering signaling message (e.g., IAM or RLC message) was detected on a link. The present system assembles SS7 signaling messages in real-time. Time stamps are employed in triggers to identify past messages stored in a buffer that are related to the phone call. The instant method of call tracing modifies traditional trigger broadcast transmit-and-receive methods and adds an inter-element manager trigger broadcast capability

Description

  • This application claims priority to the provisional U.S. patent application entitled, Real Time Call Trace Capable of Use with Multiple Elements, filed Dec. 12, 2000, having a serial number 60/254,839, the disclosure of which is hereby incorporated by reference.[0001]
  • FIELD OF THE INVENTION
  • The present invention relates generally to load sharing of a telephone system. More particularly, the present invention relates to call tracing on a load sharing telephone system. [0002]
  • BACKGROUND OF THE INVENTION
  • Links in a telephone networking system, such as an SS7 network, work by load sharing, i.e. each link takes up a known percentage of the total load. Within each link, there are generally five sequences that provide identification/routing information about a signaling message being transmitted over the network. In other words, five messages are used to set-up and release trunk circuits in a service switching point (SSP), namely: Initial address message (IAM), address complete message (ACM), answer message (ANM), release message (REL), and release complete message (RLC). These five sequences or messages make up phone call recognition, as generally known in the area of SS7 networks and the like. [0003]
  • An SS7 network is more formally referred to as a Common [0004]
  • Channel Signaling System No. 7 (i.e., SS7 or C7 ), which is a global standard for telecommunications defined by the International Telecommunication Union (ITU) Telecommunication Standardization Sector (ITU-T). The standard defines the procedures and protocol by which network elements in the public switched telephone network (PSTN) exchange information over a digital signaling network to effect wireless (cellular) and wireline call setup, routing and control. The ITU definition of SS7 allows for national variants such as the American National Standards Institute (ANSI) and Bell Communications Research (Telcordia Technologies) standards used in North America and the European Telecommunications Standards Institute (ETSI) standard used in Europe. The SS7 and C7 standards listed above are incorporated herein by reference in their entirety. [0005]
  • The SS7 network and protocol are used for: basic call setup, management, and tear down; wireless services such as personal communications services (PCS), wireless roaming, and mobile subscriber authentication; local number portability (LNP); toll-free (800/888) and toll (900) wireline services; enhanced call features such as call forwarding, calling party name/number display, and three-way calling; and efficient and secure worldwide telecommunications. [0006]
  • When a network supervisor wishes to investigate a telephony network interruption or delay, he or she will generally resort to an element manager to perform a “call trace.” The element manager or managers may be employed as watchdogs in a telephony system, and the term “call trace” refers to the task of understanding how one connection is made to another within the network channels. [0007]
  • When an LAM message is detected on one link, the processor, sometimes referred to as a probe, detecting the IAM message must send a trigger message to other probes monitoring other links because other signaling messages, ACM, ANM, REL, and RLC messages, may take other link paths due to the load sharing on the SS7 network. After the IAM message containing one of the codes—origination point code (OPC), destination point code (DPC), or circuit identification code (CIC))—has been identified in a given link set (i.e., all links between, for example, a given SSP and a given STP, see FIG. 2), there is a fixed amount of time to alert all the probes monitoring the network links that further messages related to the phone call are likely to be passing imminently. When sending the trigger between monitoring processors via a TCP/IP system, there is a possibility that bottlenecks inherent in the TCP/IP system will cause the trigger to be delayed between the processors. Thus, the ACM message, which follows the IAM message by 100 msec typically, may go undetected by the probes. [0008]
  • Thus, monitoring link sets for messages containing a selected code related to a phone call on a link set can be difficult, if not impossible, particularly when multiple link sets must be monitored and/or viewed by an operator. Furthermore, in present systems, the only way to determine the order of various transmissions is to gather signal information from the signaling messages, store the information in a database, and sort through the stored information for purposes of troubleshooting. This process, of course, does not lend itself to real-time call tracing. [0009]
  • Sophisticated telephone network systems have been disclosed and include various mechanisms for troubleshooting inevitable errors, which occur during operation. For example, U.S. Pat. No. 6,125,177 to Whittaker shows a method and an apparatus for enhancing signaling and call routing between local and remote terminals of a telecommunications network defined by a layered hierarchy of protocols and switching between telephony and Internet services. [0010]
  • U.S. Pat. No. 5,592,530 to Brockman shows a general testing and monitoring system using an SS7 network in the operation of a phone system. This reference deals with problems of having data located at two different nodes and provides a link monitoring system located at STP sites. [0011]
  • U.S. Pat. No. 4,959,849 to Bhusri relates to a method and architecture for surveillance of network systems, which permits quality control for the network system utilizing information within message signal units received by processing elements. U.S. Pat. No. 6,104,801 to Miloslavsky relates to a system for call routing telephony where routing protocols are associated with specific levels of one or more system characteristics. Appropriate routing protocols are selected and executed based upon system condition and performance. [0012]
  • SUMMARY OF THE INVENTION
  • The present invention relates to a monitoring system for a telephony network, such as an SS7 network, that supports real-time call tracing. The monitoring system includes a multi-element manager configuration monitoring telephony nodes in mated relationship to one another. Within the monitoring system, a trigger is issued by a probe detecting an IAM message having a phone number that matches specified criteria. The probe applies a time stamp, corresponding to the time the IAM message was asserted onto the telephony network link, to the trigger to allow element managers and monitoring probes distributed about the telephony system to capture messages stored in local, respective buffers and compare the time stamp in the captured messages to the time stamp in the trigger. [0013]
  • The time stamp also allows probes monitoring signaling messages traveling along telephony network links to: (i) temporarily store all messages in a message buffer, (ii) filter the messages in the buffer to determine which message(s), if any, meet a given signaling information and/or time stamp criteria, and (iii) forward messages, meeting the criteria, to element managers supervising the probes. The time stamp and message buffer combination relaxes the high speed trigger distribution requirement, which is 100 msec, since the determination of whether a signaling message is related to a call beyond the 100 msec requirement at about which an ANM is issued in response to the IAM message. Therefore, call tracing can span multiple element managers. The element manager, having the messages meeting the criteria, then displays the results to an operator in a real-time or pseudo-real-time manner. Alternatively, a remote monitoring station in communication with the monitoring system can be used to display the call tracing information. [0014]
  • There has thus been outlined, rather broadly, the more important features of the invention in order that the detailed description thereof that follows may be better understood, and in order that the present contribution to the art may be better appreciated. There are, of course, additional features of the invention that will be described below and which will form the subject matter of the claims appended hereto. [0015]
  • In this respect, before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and to the arrangements of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein, as well as the abstract, are for the purpose of description and should not be regarded as limiting. [0016]
  • As such, those skilled in the art will appreciate that the conception upon which this disclosure is based may readily be utilized as a basis for the designing of other structures, methods and systems for carrying out the several purposes of the present invention. It is important, therefore, that the claims be regarded as including such equivalent constructions insofar as they do not depart from the spirit and scope of the present invention.[0017]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a diagram of two nodes in a typical real time call trace system with combined link sets; [0018]
  • FIG. 2 is a diagram showing typical SS7 signaling points; [0019]
  • FIG. 3 is a diagram showing SS7 signaling link types; [0020]
  • FIG. 4 is a diagram showing an embodiment of interconnections of element managers and probes to an SS7 link set; and [0021]
  • FIG. 5A-[0022] 5C is a flow diagram of an embodiment of a process executed within the context of the network devices of FIG. 4.
  • DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • A description of preferred embodiments of the invention follows. [0023]
  • With the ever-increasing use of the Internet in residential and small business environments comes the increasing use of dial-up access. Dial-up Internet access is (i) creating new challenges for public network providers as a result of increased call holding times, and (ii) creating an inability of network subscribers to have the capability to accept and trace telephone calls. [0024]
  • Although not meant to be limiting, preferably the call tracing processor is a general purpose computer running a suitable operating system. The principles of the present invention are preferably implemented in software supported on the call trace processor and are useful, for example, where the following conditions are met: [0025]
  • 1. For each call to be traced, relevant information (for example, called number, calling number, additional caller-entered digits if any) about the call can be made available by the network to the processor quickly enough to be used in deciding call tracing; and [0026]
  • 2. The monitoring system is capable of receiving commands from the processor to direct the trace of the call. [0027]
  • In accordance with the principles of the present invention, an operator investigating why a phone call is problematic uses a given element manager in the monitoring system to perform the investigation. Under the auspices of the given element manager, a trigger message issued by a probe detecting a phone number criteria entered by the operator is time stamped by the probe detecting the trigger message and broadcast by the probe to its respective element manager. The respective element manager broadcasts the trigger with time stamp to other element managers, which, in turn, send the trigger with the time stamp to respective probes. With the time stamp, each probe knows how much time has elapsed since the message was put onto the link on which the detecting probe monitors. Each probe within the network can then examine messages that arrived before the trigger time stamp. The time stamp, being incorporated in or associated with a trigger, provides a means for the probes to identify which messages are out of order or are still sitting in respective probe buffers. Old messages so discovered are then processed as if in real-time. [0028]
  • Embodiments of the instant invention described below complement the block diagrams and flowcharts of FIGS. [0029] 1-5 that describe various network architecture and their respective functions.
  • The SS7 network carries a great deal of information and is critical to the operation of the phone system (see FIGS. [0030] 1-3). If the SS7 network is not functioning, the phone system cannot deliver phone calls. The actual parts of the SS7 network do not provide all the information required in network operations to manage and determine the health and state of the SS7 itself.
  • Beyond the traditional SS7 network nodes, such as SSPS, STPs, and SCPs, element managers and probes are used to determine the health and state of the SS7 system. FIG. 4 is a block diagram of an example SS7 network employing several element managers, such as a 7View monitor and probes made by INRANGE Technologies Corp. of Mount Laurel, N.J., and their respective and mutual relationship to the SS7 network. Each element manager is only attached to one or two probes, but each element manager can support more than sixteen probes. Sixteen probes is a limitation based on adding sixteen serial ports to a PC. However, in a TCP/IP embodiment, element managers can support more than 16 probes. [0031]
  • The element managers or client terminals (not shown) attached thereto, may include protocol analysis decoding in a protocol analysis framework to decode messages to text, filter messages based on selected criteria, and filter messages based on belonging to a particular session. This is shown and described in a related U.S. Provisional Patent Application filed Sep. 7, 2000, entitled “Protocol Analysis Framework” by B. Hannigan, the teachings of which are incorporated by reference herein in its entirety. [0032]
  • In one embodiment, if the probes are using network terminal protocol time, then it is possible for the element managers and probes to synchronize to a common clock. For example, when using the common clock, the system can use the two least significant bits of the current second and a 14 bit value that stands for the number of 100 μs periods that have elapsed in the current second. Ideally, the time stamp is small to minimize network traffic. [0033]
  • Besides element managers communicating triggers, and other information to probes within their purview, the element managers can also broadcast the triggers to remote element managers. Once the remote element managers receive the trigger information, they can transmit triggers onto the normal local element manager broadcast mechanism for disseminating trigger information to all subordinate probes. [0034]
  • Some existing call trace schemes work in a multi-element manager configuration only when probes are wired in a manner such that trigger information does not have to be shared between element managers. The instant call trace scheme preferably employs a 100 millisecond guaranteed delivery time for the broadcast trigger information. [0035]
  • A 100 millisecond guaranteed delivery time is possible with dedicated, high-speed voice lines to interconnect the element managers and the probes or other element managers. However, voice lines are expensive since they are high revenue generating lines, whereas TCP/IP communications are inexpensive and, therefore, more agreeable to service providers for communication between and among the element managers and their respective probes. However, the 100 millisecond maximum delivery time cannot be guaranteed in a TCP/IP environment, leaving some call trace systems vulnerable to transit delays causing loss of call tracing integrity. [0036]
  • In order for a call trace to be successful in a multi-element manager configuration without regard to wiring or transit time delays greater than 100 milliseconds, a modified call trace scheme can be employed according to the principles of the present invention, which also permits the use of the wildcard character ‘X’. For call trace purposes, leading and trailing X's in a telephone number are discarded. All remaining X's represent exactly one digit. This is an example of a telephone number criterion. [0037]
  • The inter-element manager, trigger broadcast system specifies that each trigger not only be broadcast to each probe under control of a given element manager, it is preferably also broadcast to each other element manager. Each element manager then broadcasts triggers to all probes that it controls (see FIGS. 4 and 5A-[0038] 5C). Note that “800” numbers and numbers entered using wildcards 15 may be resolved to more than one telephone number, each of which is considered to be one of the four designated for the user. Therefore, “800” numbers and wildcards can diminish the total number of simultaneous call traces possible.
  • The user must connect links in a particular way or call tracing will not work. The instant call trace algorithm can overcome such limitations in many instances. The tendency of errors occurs in catching extra frames, not missing extra frames. The reason for this is found by going back in time and finding messages that were excluded. A delayed release complete (RLC) trigger excludes a frame from the trace and tells the element manager to drop that frame afterwards. RLC triggers receive a higher priority than IAM triggers. This is due, in part, because all links, which receive an IAM that does not match a phone number being traced, do not send that frame and broadcast a “remove immediately” trigger. The IAM trigger broadcast can be delayed as much as two seconds without loss of frames. [0039]
  • As used herein, articles such as “the”, “an” and “a” can connote the singular or plural of the object, which follows. [0040]
  • All documents referred to herein are incorporated herein by reference in their entireties. [0041]
  • The many features and advantages of the invention are apparent from the detailed specification, and thus, it is intended by the appended claims to cover all such features and advantages of the invention which fall within the true spirits and scope of the invention. Further, since numerous modifications and variations will readily occur to those skilled in the art, it is not desired to limit the invention to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the invention. [0042]

Claims (20)

What is claimed is:
1. A call tracing system for use in a telephony system having nodes in relationship to one another by communication links carrying signaling messages being used to set up voice channels in the telephony system to facilitate calls, the call tracing system comprising at least one element manager coupled to probes (i) monitoring respective communication links for signaling link messages related to a given call and (ii) issuing triggers with a time stamp to the element manager in response to detecting a signaling link message related to the given call.
2. The call tracing system set forth in claim 1, wherein the element manager broadcasts the trigger with the time stamp to a subset of other probes within the system.
3. The call tracing system set forth in claim 2, wherein once the probes know how much time has elapsed since the trigger was detected, the probes access respective buffers to look for signaling link messages that were processed before the probes receive the triggers.
4. The call tracing system set forth in claim 3, wherein messages matching a signaling criteria found in the buffer within a time window related to the time stamp are processed as if seen in real time.
5. The call tracing system as set forth in claim 4, wherein the element managers broadcast trigger information to one another so that any probe can be connected to any element manager without missing any signaling link messages.
6. A method for call tracing in a telephony system having nodes in relationship to one another by communication links carrying signaling messages being used to set up voice channels in the telephony system to facilitate calls, the method comprising the steps of:
entering telephone number criteria to be detected;
detecting message with the phone number criteria;
issuing a trigger upon detecting the telephone number criteria; and
stamping of the of the trigger with a time date stamp.
7. The method of claim 6, further comprising the step of broadcasting the trigger message by a respective element manager to at least one other probe.
8. The method of claim 6, further comprising the step of examining the time of the message in storage that arrived prior to the trigger message.
9. The method of claim 8, wherein the storage is a buffer.
10. The method of claim 8, further comprising transmitting messages in the storage which arrived prior to the trigger time stamp.
11. The method as in claim 6, wherein the step of detecting a message utilizes a probe.
12. An apparatus for call tracing in a telephony system having nodes in relationship to one another by communication links carrying signaling messages being used to set up voice channels in the telephony system to facilitate calls, comprising:
means for entering a phone number criteria to be detected;
means for detecting the phone number criteria; and
means for issuing a trigger time stamp upon detecting the phone number criteria.
13. The apparatus as in claim 12, further comprising means for broadcasting to at least one other probe.
14. The apparatus as in claim 12 further comprising means for examining messages for the phone number criteria.
15. The apparatus as in claim 14, wherein the messages are examined for similar signaling criteria are identified and processed as if in real time.
16. The apparatus as in claim 15, wherein the criteria is messages that arrived prior to the trigger.
17. The means as in claim 14, further comprising means for transmitting the message that arrived prior to the trigger message.
18. The apparatus as in claim 12, wherein the means for entering is an element manager within the monitoring system.
19. The apparatus as in claim 12, wherein the means for issuing is an element manager.
20. The apparatus as in claim 12, wherein the means for detecting is a probe.
US10/012,464 2000-12-12 2001-12-12 Real time call trace capable of use with multiple elements Expired - Fee Related US7050549B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/012,464 US7050549B2 (en) 2000-12-12 2001-12-12 Real time call trace capable of use with multiple elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25483900P 2000-12-12 2000-12-12
US10/012,464 US7050549B2 (en) 2000-12-12 2001-12-12 Real time call trace capable of use with multiple elements

Publications (2)

Publication Number Publication Date
US20020071530A1 true US20020071530A1 (en) 2002-06-13
US7050549B2 US7050549B2 (en) 2006-05-23

Family

ID=26683587

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/012,464 Expired - Fee Related US7050549B2 (en) 2000-12-12 2001-12-12 Real time call trace capable of use with multiple elements

Country Status (1)

Country Link
US (1) US7050549B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6765990B2 (en) 2001-12-20 2004-07-20 Tekelec Database driven methods and systems for real time call tracing
US20050276386A1 (en) * 2004-06-15 2005-12-15 Cisco Technology, Inc. System and method for end-to-end communications tracing
US20070230680A1 (en) * 2004-03-04 2007-10-04 Tekelec Methods, systems, and computer program products for processing mobile originated query messages for prepaid mobile subscribers in a number portability environment
US20080160954A1 (en) * 2006-12-28 2008-07-03 Tekelec Methods, systems, and computer program products for performing prepaid account balance screening
US20090274053A1 (en) * 2008-05-05 2009-11-05 Eaton Corporation Methods, Devices and Computer Program Products For Capturing Events Associated Network Anomalies
US8391833B2 (en) 2010-08-08 2013-03-05 Tekelec, Inc. Systems, methods, and computer readable media for diameter routing with number portability correction
US8547908B2 (en) 2011-03-03 2013-10-01 Tekelec, Inc. Methods, systems, and computer readable media for enriching a diameter signaling message
US8644355B2 (en) 2010-12-23 2014-02-04 Tekelec, Inc. Methods, systems, and computer readable media for modifying a diameter signaling message directed to a charging function node
US8649272B2 (en) 2010-05-17 2014-02-11 Tekelec Global, Inc. Methods, systems and computer readable media for mobile-communication-device-initiated network monitoring services
US20180083849A1 (en) * 2016-09-21 2018-03-22 Oracle International Corporation End-to-end tracing providers and session management

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE502467T1 (en) * 2002-05-02 2011-04-15 Tekelec Us FILTERING AND APPLICATION TRIGGER PLATFORM
WO2003100693A1 (en) * 2002-05-21 2003-12-04 Tekelec Methods and systems for performing a sales transaction using a mobile communications device
US20050276385A1 (en) * 2004-06-01 2005-12-15 Mccormick James S Communication network event logging systems and methods
US7643987B2 (en) * 2004-09-21 2010-01-05 Lsi Corporation Voice channel chaining in sound processors
DE102004049465B4 (en) * 2004-10-11 2006-07-06 Siemens Ag Even distribution of SS7 traffic across multiple connections
WO2006133095A2 (en) * 2005-06-03 2006-12-14 Tekelec Methods, systems, and computer program products for generic call tracing
WO2007014157A2 (en) * 2005-07-21 2007-02-01 Tekelec Methods, systems, and computer program products associating communications detail records with a mobile reference and using the mobile reference to retrieve the communications detail records
US20070294389A1 (en) * 2006-04-27 2007-12-20 Bauer Samuel M Method and apparatus for performing call trace filtering in a signal analyzer system
TWI386021B (en) * 2007-08-07 2013-02-11 Chunghwa Telecom Co Ltd Dispersed call tracking screens with versatile characters and reliability Methods and systems

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959849A (en) * 1989-07-31 1990-09-25 At&T Bell Laboratories End-to-end network surveillance
US5475732A (en) * 1993-02-16 1995-12-12 C & P Of Virginia Common channeling signaling network maintenance and testing
US5592530A (en) * 1995-01-25 1997-01-07 Inet, Inc. Telephone switch dual monitors
US5712908A (en) * 1995-12-22 1998-01-27 Unisys Corporation Apparatus and method for generating call duration billing records utilizing ISUP messages in the CCS/SS7 telecommunications network
US5793839A (en) * 1995-08-03 1998-08-11 Bell Atlantic Network Services, Inc. Common channel signaling event detection and control
US5802145A (en) * 1995-08-03 1998-09-01 Bell Atlantic Network Services, Inc. Common channel signaling event detection and control
US5867558A (en) * 1995-12-12 1999-02-02 At&T Corp. Method for remote collection of signaling messages for routing analysis and trouble detection
US6028914A (en) * 1998-04-09 2000-02-22 Inet Technologies, Inc. System and method for monitoring performance statistics in a communications network
US6104801A (en) * 1997-02-10 2000-08-15 Genesys Telecommunications, Inc. Escalatory reactive call routing
US6125177A (en) * 1997-09-15 2000-09-26 Nortel Networks Corporation Telephone communications network with enhanced signaling and call routing
US6195416B1 (en) * 1998-03-23 2001-02-27 At&T Corp. Method to trap a called number in a telecommunications network
US6327350B1 (en) * 1999-04-05 2001-12-04 Tekelec Methods and systems for collecting and processing signaling system 7 (SS7) message signal units (MSUs)
US6359976B1 (en) * 1998-06-08 2002-03-19 Inet Technologies, Inc. System and method for monitoring service quality in a communications network
US6400813B1 (en) * 1999-10-25 2002-06-04 Inrange Technologies, Inc. Mediation system for a telephone network
US6614894B1 (en) * 1998-06-05 2003-09-02 Inet Technologies, Inc. System and method for mass call onset detection in a communications network
US6765990B2 (en) * 2001-12-20 2004-07-20 Tekelec Database driven methods and systems for real time call tracing

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4959849A (en) * 1989-07-31 1990-09-25 At&T Bell Laboratories End-to-end network surveillance
US5475732A (en) * 1993-02-16 1995-12-12 C & P Of Virginia Common channeling signaling network maintenance and testing
US5592530A (en) * 1995-01-25 1997-01-07 Inet, Inc. Telephone switch dual monitors
US5793839A (en) * 1995-08-03 1998-08-11 Bell Atlantic Network Services, Inc. Common channel signaling event detection and control
US5802145A (en) * 1995-08-03 1998-09-01 Bell Atlantic Network Services, Inc. Common channel signaling event detection and control
US5867558A (en) * 1995-12-12 1999-02-02 At&T Corp. Method for remote collection of signaling messages for routing analysis and trouble detection
US5712908A (en) * 1995-12-22 1998-01-27 Unisys Corporation Apparatus and method for generating call duration billing records utilizing ISUP messages in the CCS/SS7 telecommunications network
US6104801A (en) * 1997-02-10 2000-08-15 Genesys Telecommunications, Inc. Escalatory reactive call routing
US6125177A (en) * 1997-09-15 2000-09-26 Nortel Networks Corporation Telephone communications network with enhanced signaling and call routing
US6195416B1 (en) * 1998-03-23 2001-02-27 At&T Corp. Method to trap a called number in a telecommunications network
US6028914A (en) * 1998-04-09 2000-02-22 Inet Technologies, Inc. System and method for monitoring performance statistics in a communications network
US6614894B1 (en) * 1998-06-05 2003-09-02 Inet Technologies, Inc. System and method for mass call onset detection in a communications network
US6359976B1 (en) * 1998-06-08 2002-03-19 Inet Technologies, Inc. System and method for monitoring service quality in a communications network
US6327350B1 (en) * 1999-04-05 2001-12-04 Tekelec Methods and systems for collecting and processing signaling system 7 (SS7) message signal units (MSUs)
US6400813B1 (en) * 1999-10-25 2002-06-04 Inrange Technologies, Inc. Mediation system for a telephone network
US6765990B2 (en) * 2001-12-20 2004-07-20 Tekelec Database driven methods and systems for real time call tracing

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1466465A4 (en) * 2001-12-20 2006-10-25 Tekelec Us Database driven methods and systems for real time call tracing
EP1466465A1 (en) * 2001-12-20 2004-10-13 Tekelec Database driven methods and systems for real time call tracing
US6765990B2 (en) 2001-12-20 2004-07-20 Tekelec Database driven methods and systems for real time call tracing
US20070230680A1 (en) * 2004-03-04 2007-10-04 Tekelec Methods, systems, and computer program products for processing mobile originated query messages for prepaid mobile subscribers in a number portability environment
US7936866B2 (en) * 2004-03-04 2011-05-03 Tekelec Methods, systems, and computer program products for processing mobile originated query messages for prepaid mobile subscribers in a number portability environment
US20070201621A1 (en) * 2004-06-15 2007-08-30 Cisco Technology, Inc. System and Method for End-To-End Communications Tracing
US20070201620A1 (en) * 2004-06-15 2007-08-30 Cisco Technology, Inc. System and Method for End-To-End Communications Tracing
US7283619B2 (en) * 2004-06-15 2007-10-16 Cisco Technology, Inc. System and method for end-to-end communications tracing
US7564953B2 (en) 2004-06-15 2009-07-21 Cisco Technology, Inc. System and method for end-to-end communications tracing
US20050276386A1 (en) * 2004-06-15 2005-12-15 Cisco Technology, Inc. System and method for end-to-end communications tracing
US7778393B2 (en) 2004-06-15 2010-08-17 Cisco Technlogy, Inc. System and method for end-to-end communications tracing
US8606222B2 (en) 2006-12-28 2013-12-10 Tekelec Global, Inc. Methods, systems, and computer program products for performing prepaid account balance screening
US20080160954A1 (en) * 2006-12-28 2008-07-03 Tekelec Methods, systems, and computer program products for performing prepaid account balance screening
US20090274053A1 (en) * 2008-05-05 2009-11-05 Eaton Corporation Methods, Devices and Computer Program Products For Capturing Events Associated Network Anomalies
US8279768B2 (en) * 2008-05-05 2012-10-02 Eaton Corporation Methods, devices and computer program products for capturing events associated network anomalies
US8649272B2 (en) 2010-05-17 2014-02-11 Tekelec Global, Inc. Methods, systems and computer readable media for mobile-communication-device-initiated network monitoring services
US8391833B2 (en) 2010-08-08 2013-03-05 Tekelec, Inc. Systems, methods, and computer readable media for diameter routing with number portability correction
US8644355B2 (en) 2010-12-23 2014-02-04 Tekelec, Inc. Methods, systems, and computer readable media for modifying a diameter signaling message directed to a charging function node
US8547908B2 (en) 2011-03-03 2013-10-01 Tekelec, Inc. Methods, systems, and computer readable media for enriching a diameter signaling message
US20180083849A1 (en) * 2016-09-21 2018-03-22 Oracle International Corporation End-to-end tracing providers and session management
US10567250B2 (en) * 2016-09-21 2020-02-18 Oracle International Corporation End-to-end tracing providers and session management

Also Published As

Publication number Publication date
US7050549B2 (en) 2006-05-23

Similar Documents

Publication Publication Date Title
US7050549B2 (en) Real time call trace capable of use with multiple elements
US7551565B2 (en) User semantic overlay for troubleshooting convergent network problems
US8375121B2 (en) ISDN disconnect alarm generation tool for use in voice over IP (VoIP) networks
US7623646B2 (en) Method and system for identifying telemarketer communications
US6721284B1 (en) Generating service detail records
US6111946A (en) Method and system for providing answer supervision in a switched telephone network
US8503313B1 (en) Method and apparatus for detecting a network impairment using call detail records
US8520816B2 (en) Method and apparatus for providing end-to-end call completion status
EP1672835A2 (en) Discovering network configuration
US7860461B1 (en) Method for user-aided network performance and connection quality reporting
US20030227870A1 (en) Method and system for automated voice quality statistics gathering
IL184110A (en) Lawful interception of dss1 based virtual private network
US8908557B2 (en) Method and apparatus for monitoring a packet network
US6754311B1 (en) Enhanced subscriber line call monitoring
US20070127647A1 (en) Methods, systems, and computer program products for collecting messages associated with providing prepaid communications services in a communications network
US20040160896A1 (en) Method and apparatus for adaptive capture of voice over packet (VoP) data
Cisco Troubleshooting with Call Flows
US7127054B1 (en) System and method for detecting SS7 messaging inefficiency
EP0948163A1 (en) Generating telephony service detail records
US8699681B2 (en) Method and apparatus for monitoring blocked calls in a communication network
US8107459B1 (en) Method and apparatus for executing a call blocking function
WO2007050589A2 (en) Collecting signaling messages associated with prepaid calls
US6970540B1 (en) Detection of common information elements in PSTN call processing patterns
US7215747B2 (en) Method and apparatus for producing information regarding the operation of a networked system
KR100372724B1 (en) Message Trace Method for Call Progress in Intelligent Network

Legal Events

Date Code Title Description
AS Assignment

Owner name: COMPUTER NETWORK TECHNOLOGY CORPORATION,MINNESOTA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INRANGE TECHNOLOGIES CORPORATION;REEL/FRAME:016301/0617

Effective date: 20050215

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

AS Assignment

Owner name: BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT, CAL

Free format text: SECURITY AGREEMENT;ASSIGNORS:BROCADE COMMUNICATIONS SYSTEMS, INC.;FOUNDRY NETWORKS, INC.;INRANGE TECHNOLOGIES CORPORATION;AND OTHERS;REEL/FRAME:022012/0204

Effective date: 20081218

Owner name: BANK OF AMERICA, N.A. AS ADMINISTRATIVE AGENT,CALI

Free format text: SECURITY AGREEMENT;ASSIGNORS:BROCADE COMMUNICATIONS SYSTEMS, INC.;FOUNDRY NETWORKS, INC.;INRANGE TECHNOLOGIES CORPORATION;AND OTHERS;REEL/FRAME:022012/0204

Effective date: 20081218

FPAY Fee payment

Year of fee payment: 4

AS Assignment

Owner name: WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATE

Free format text: SECURITY AGREEMENT;ASSIGNORS:BROCADE COMMUNICATIONS SYSTEMS, INC.;FOUNDRY NETWORKS, LLC;INRANGE TECHNOLOGIES CORPORATION;AND OTHERS;REEL/FRAME:023814/0587

Effective date: 20100120

AS Assignment

Owner name: MCDATA SERVICES CORPORATION, CALIFORNIA

Free format text: MERGER;ASSIGNOR:COMPUTER NETWORK TECHNOLOGY CORPORATION;REEL/FRAME:028327/0875

Effective date: 20050531

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140523

AS Assignment

Owner name: FOUNDRY NETWORKS, LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:034792/0540

Effective date: 20140114

Owner name: INRANGE TECHNOLOGIES CORPORATION, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:034792/0540

Effective date: 20140114

Owner name: BROCADE COMMUNICATIONS SYSTEMS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BANK OF AMERICA, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:034792/0540

Effective date: 20140114

AS Assignment

Owner name: FOUNDRY NETWORKS, LLC, CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:034804/0793

Effective date: 20150114

Owner name: BROCADE COMMUNICATIONS SYSTEMS, INC., CALIFORNIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:WELLS FARGO BANK, NATIONAL ASSOCIATION, AS COLLATERAL AGENT;REEL/FRAME:034804/0793

Effective date: 20150114