US20020066811A1 - Screen cleaning and comminuting system - Google Patents

Screen cleaning and comminuting system Download PDF

Info

Publication number
US20020066811A1
US20020066811A1 US09/968,696 US96869601A US2002066811A1 US 20020066811 A1 US20020066811 A1 US 20020066811A1 US 96869601 A US96869601 A US 96869601A US 2002066811 A1 US2002066811 A1 US 2002066811A1
Authority
US
United States
Prior art keywords
screen
grinder
comminuting
solids
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/968,696
Inventor
William Galanty
Alexander Vilensky
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/968,696 priority Critical patent/US20020066811A1/en
Publication of US20020066811A1 publication Critical patent/US20020066811A1/en
Priority to US10/266,890 priority patent/US6830207B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/0084Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating garbage, waste or sewage
    • B02C18/0092Disintegrating by knives or other cutting or tearing members which chop material into fragments specially adapted for disintegrating garbage, waste or sewage for waste water or for garbage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/03Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements self-supporting
    • B01D29/035Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements self-supporting with curved filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/62Regenerating the filter material in the filter
    • B01D29/64Regenerating the filter material in the filter by scrapers, brushes, nozzles, or the like, acting on the cake side of the filtering element
    • B01D29/6469Regenerating the filter material in the filter by scrapers, brushes, nozzles, or the like, acting on the cake side of the filtering element scrapers
    • B01D29/6476Regenerating the filter material in the filter by scrapers, brushes, nozzles, or the like, acting on the cake side of the filtering element scrapers with a rotary movement with respect to the filtering element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/76Handling the filter cake in the filter for purposes other than for regenerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C18/00Disintegrating by knives or other cutting or tearing members which chop material into fragments
    • B02C18/06Disintegrating by knives or other cutting or tearing members which chop material into fragments with rotating knives
    • B02C18/16Details
    • B02C18/24Drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B1/00Sieving, screening, sifting, or sorting solid materials using networks, gratings, grids, or the like
    • B07B1/18Drum screens
    • B07B1/20Stationary drums with moving interior agitators

Definitions

  • the present invention relates to a screen cleaning and comminuting system for sewage.
  • the system comprises an intercepting and filtering screen for sweeping agglomerated or captured solids of large size and means for subsequently comminuting such particles into smaller solids that may pass through the screen.
  • Prior art processing of sewage and wastewater often involves handling large volumes of sewage and wastewater flow in a channel to separate solid and agglomerated matter therein and comminuting such matter by means of various screening and shredding devices in combination which are positioned in the wastewater flow within the channel.
  • U.S. Pat. No. 5,490,922 discloses a sewage water installation that has a discharge basin in which is arranged a screening unit linked to a back-and-forth movable cleaning carriage.
  • the mesh screen unit is depicted schematically and includes a plurality of parallel spaced bars forming the screen.
  • a cleaning cap which moves back and forth is allocated to the mesh screen. If the mesh screen is longer, several cleaning cars can be provided.
  • a preferred cleaning car is provided with teeth that are designed correspondingly and arranged to protrude between the screen bars of the mesh screen and is intended for cleaning between the screen bars.
  • U.S. Pat. No. 2,672,985 discloses a transverse linear screen extending across an influent channel that intercepts all solids too large to pass therethrough.
  • the screen consists of a plurality of parallelly disposed U-shaped members, with the U-shaped portions extending towards the inflowing sewage, forming a series of slots of the screen.
  • a comminuting unit is disposed in parallel spaced relationship and in close proximity with the screen surface to remove collected solid materials therefrom by means of a cutting cylinder having a rotable shaft to which a plurality of cutting cylinders and combs are secured.
  • U.S. Pat. No. 5,833,152 discloses that a unitary comminuting system adapted for wastewater channel use is provided with devices which include a single or dual semi-cylindrical-like sizing screen, each having a circular rotating sweeping mechanism of interactive slotted comb bars or blades which sweep and clear lodged or agglomerated solids adhering to the outer convex circumference surface of the screen, disposed in parallelly spaced relationship with a twin shaft shredder device having two parallel shafts with shredder or grinder teeth along the length thereof that rotate in opposite senses.
  • the unitary system of devices is positioned perpendicularly between the influent and effluent sides of the wastewater flow in a channel so that solids therein will encounter the convex surface of the semi-cylindrical-like sizing screens or the twin shaft shredder as the wastewater flows through the channel.
  • Both the single or dual semi-cylindrical-like screen devices cause solids which do not flow directly therethrough to be forcefully swept from the outer convex surface of the sizing screen by the separate rotating sweeping interactive blade mechanism into surrounding the wastewater flow so as to cause and divert or direct the solids to flow toward or into the contiguous twin shaft shredder device, aided by circulating wastewater currents generated in the wastewater flow near the entrance to the twin shaft shredder which is generated in part by the rotating sweeping interactive blades of the screening devices, whereupon the removed solids are channeled into the twin shaft shredder device along with the other wastewater and solids flow where they are reduced in particle size.
  • the grinder unit is disposed towards the outside of a rotary turn-table held on a central axis with top and bottom bearing supports and coupled to a drive means to create an oscillating or reciprocating motion, with its cutters rotating at close clearance to the concave side of the stationary semi-cylindrical surface of the sizing screen.
  • the cutters of the grinder sweep the solids in the opposite direction of the other and propel the solids back into the flow or into the upstream side of the cutters, where they ultimately encounter the grinder cutters and are reduced to a size that can freely pass through the screen openings such as slots, mesh or other configuration.
  • removed particles may be recirculated more than once before they pass through the grinder for size reduction.
  • the counter-rotating intermeshing teeth of the twin shaft grinder do not protrude into the openings of the screen's surface, but are disposed and held rigidly fixed and close enough thereto so that the grinder teeth are able to push or drag the solids from the surface of the screen as they move in either direction.
  • FIG. 1 shows a side view of an exemplary system of the present invention depicting a direct drive for a twin shaft grinder mounted on a support frame supported by upper and lower bearing devices, wherein the support frame is actuated by a separate hydraulic cylinder for imparting reciprocal motion to the support frame of the grinder unit;
  • FIG. 2 shows a top view of the system of FIG. 1 taken along lines 2 - 2 ;
  • FIG. 3 shows a side view of the upper portion of a second exemplary apparatus or embodiment of the present invention depicting a single means for driving the twin shafts of a grinder mounted on a support frame supported by upper and lower bearing devices, wherein the support frame is actuated by the same single drive means for imparting reciprocal motion to the support frame of the grinder;
  • FIG. 4 shows a top view of the system of FIG. 3, when viewed as taken along lines 4 - 4 ;
  • FIG. 5 is a partial schematic view of a twin shaft grinder and a filtering screen, depicting a close space relationship between teeth of the grinder and the concave semi-circular filtering screen surface and solid material in the fluid flow.
  • FIG. 1 there is shown a side view of an exemplary screen cleaning and comminution system 10 in accordance with the present invention that includes an electrical or hydraulic drive motor 12 operately connected to the twin shafts of a twin shaft grinder 14 that is supported by an upper bearing device 16 and a lower bearing device 20 that are connected to an upper horizontal support plate 18 and a lower horizontal support plate 22 respectively.
  • Horizontal support plates 18 and 22 are connected to a pair of parallel disposed vertical support members 24 forming a U-shaped frame-like structure that adds stiffness and rigidity to the three component arrangement so that twin shaft grinder 14 is held fixedly and rigidly in place with respect to the filtering screen.
  • FIG. 1 As shown in FIG.
  • a filtering screen member 26 is disposed between vertical support members 24 and twin shaft grinder 14 , extending vertically between upper and lower horizontal support members 18 and 22 .
  • the filtering screen 14 may have openings therein of different configuration, such as slots formed by spaced apart parallel elements, a mesh or other configuration. Since the grinder unit does not contact or penetrate the openings in the screen, the screen may have openings therein of a wide variety of configurations without departing from the scope of the present invention.
  • the system 10 has an upper horizontal cover plate 28 having an arcuate-like opening 30 therein (not shown in this FIG. 1), through which drive motor 12 extends and where it is connected to the top of twin shaft grinder 14 .
  • a hydraulic cylinder device 32 is connected to a frame member 34 of the system at its rear end in a swivel-linking arrangement 36 .
  • the front end of the hydraulic cylinder 32 has a piston 38 extending therefrom that is connected and linked to a reciprocating device 40 that is connected to and supported by an upper horizontal cover plate 28 .
  • the reciprocating device 40 is connected to the U-shaped frame-like structure noted above, including upper support plate 18 , lower support plate 22 and parallel vertical support members 24 , at the top of an upper bearing device 42 and a lower bearing device 44 .
  • reciprocating device 40 By connecting reciprocating device 40 to the U-shaped frame-like structure it is possible to move the drive motor 12 , twin shaft grinder 14 and the parallel pair of support members 24 along an arcuate path in reciprocating motion through arcuate-like opening 30 , while twin shaft grinder 14 is held in fixed and rigid spaced relationship to a screen 26 as the combination of the elements moves back and forth along the concave surface of the screen 26 so as to sweep and remove any solids contained on the screen.
  • the lower bearing device 44 is connected to the lower support plate 22 and is further connected to and supported by a lower frame member 46 .
  • the lower frame member 46 is connected to a bottom base support member 48 upon which system 10 resides.
  • FIG. 2 there is shown a top view of the system shown in FIG. 1, taken along lines 2 - 2 , wherein the same reference numbers used in FIG. 1 are used in FIG. 2.
  • the reciprocating device 40 has a crank arm 50 connected thereto at one end and is connected at the other end in linking or swivel manner so that twin shaft grinder 14 is moved back and forth through opening 30 along a path indicated by the curved arrows 52 and 54 , in close proximity to the surface of concave filtering screen 26 .
  • the grinder 14 is not shown in FIG. 2 since it is hidden from view by drive motor 12 .
  • Hydraulic cylinder 32 is actuated by a typical hydraulic system arrangement known in the prior art and in the interest of brevity is not shown here. If drive motor 12 is a hydraulic motor, it will also be actuated by a similar prior art hydraulic system and is also not shown.
  • FIG. 3 a second exemplary system 56 or embodiment of the invention that is similar to the system shown in FIG. 1.
  • the primary difference between the two systems resides in the fact that the embodiment shown in FIG. 3 has a single drive means 58 for driving the twin shaft grinder 14 and for moving it in reciprocal motion, i.e., in back and forth motion in close proximity to the filtering screen 26 .
  • FIG. 3 illustrates a side view of the apparatus 56 of the invention, where the lower portion has been omitted in the interest of brevity since it is constructed in essentially the same as the lower portion of the apparatus shown in FIG. 1.
  • a shaft 59 of drive means 58 can be linked to a coupling device 60 by means of chain, belt or gear arrangements.
  • Coupling device 60 is connected to a speed control device 62 , which is in turn connected to a crank-like linking device 64 .
  • Crank-like linking device 64 is connected to a first end of a reciprocal motion control arm 66 via a linking swivel connection 68 while the other end of control arm 66 is connected to means 72 for driving twin shaft grinder 14 and providing a bearing 78 for supporting the upper end of the twin shaft grinder 14 .
  • a support member 74 covers means 72 and also is a support for a bearing device 80 for coupling shaft 82 of drive 58 .
  • FIG. 4 shows a view of screen cleaning apparatus 56 partly in cross-section, illustrating that means 72 for driving twin shaft grinder 14 back and forth along the concave surface of screen 26 is accomplished by crank-like linking device 64 and reciprocal motion control arm 66 .
  • crank-like linking device 64 is connected to the first end of the reciprocal motion control arm 66 at a swivel connection 68 and a second end of control arm is connected to a second swivel joint connection 70 that is part of means 72 .
  • Means 72 is partially covered by a cover plate 74 , such that only a coupling shaft 82 of single drive means 58 is seen.
  • Coupling shaft 82 is the axis about which means 72 pivots as it moves the grinder back and forth in reciprocating motion adjacent to the concave surface of screen 26 .
  • the parallel support members 24 can also be seen as part of the U-shaped frame structure which supports the grinder in fixed rigid relationship to screen 26 . It should be noted that support members 24 are considered important to the integrity of the apparatus where the members are connected to upper and lower support plates 18 and 22 , respectively, to thereby form a component of the U-shaped frame structure noted above.
  • a broken-line circle with the arrow heads designated by the reference number 96 illustrates the direction of rotation of crank-like linking device 64 which moves means 72 back and forth along paths indicated by curved arrows 52 and 54 .
  • FIG. 5 is a fragmented cross-sectional view of the screen cleaning and comminuting system of the present invention which clearly depicts the twin shaft grinder 14 , including a pair of parallel rotatable shafts 86 and a pair of intermeshing grinder teeth 88 disposed on the twin shafts 86 . As shown, each of the shafts 86 rotates in opposite sense to one another as indicated by the curved arrows 92 and 94 . Also shown in FIG. 5 are a plurality of solid material particles designated by reference number 90 .
  • the drawing illustrates the solid particles 90 being pushed in opposite directions on either side of grinder 14 , whereby the concave surface of screen 26 is swept clean as the grinder passes close enough to make contact with the solid particles 90 , but not so close to the screen that the grinder teeth touch the surface of the screen.
  • removal of the solids from the surface of the screen is the result of the grinder teeth 88 intercepting the solids so as to remove them from the screen as illustrated, while the back and forth motion of the grinder generates significant fluid motion near the surface of the screen in either direction, and this fluid motion or flow is an additional aid in the removal of solids from the surface of the screen.
  • the solid matter which is removed from the screen surface is returned to a position upstream of flow where it is ultimately comminuted by grinder 14 .
  • the grinder unit 14 includes two drive shafts 86 whose lengths extend to essentially the full depth of the liquid substance flow in channel and they rotate in opposite sense to one another. Each shaft has a shredding member disposed thereon containing shredding teeth 88 which extend to the full length thereof for shredding and grinding solid matter contained in the liquid flow of the channel such as a sewage channel. It should be noted that the twin shaft grinder unit of the present invention has two novel functions, that is to operate as a grinder for sizing solids while simultaneously operating as a sweeper to remove solid material from the surface of filtering screen 26 without making physical contact therewith.
  • rotatable turn-table with central support is provided for ease of screening and securing through conventional means.
  • Arc screen and U-shaped frame of the invention have smooth shape to prevent from hangup and promote complete processing and smooth flow.
  • support means behind screen of the invention is provided for support of grinder structures, and unique design of the invention eliminates gaps formed in prior art which can cause incomplete processing by allowing solid to pass therethrough.
  • the simple and unique construction provides a system which allows the liquid sewage being processed to flow therethrough with minimum hindrance.
  • the filtering screen, screen sweeping device and grinder may operate in a variety of configuration and are more compatible for maximum through-put performance than prior art devices and systems.
  • the directional clearing properties of the reciprocating grinding member insure that solids which impact the screen can be aggressively removed from the screen surface and redirected by the grinder back into flow path of the sewage system during each cycle, thereby to keep the filtering screen clear of solids and enhance the performance and efficiency of the system. While the use of a single means to drive the various moving parts of any apparatus may be advantageous, the use of the novel screening and sweeping action in accordance with the present invention is most important when assessing whether one or more drives are utilized.

Abstract

A sewage cleaning and comminuting system is provided with a transverse semi-circular concave filtering screen that extends across an influent channel which intercepts all solids too large to pass therethrough. A combined screen cleaning and comminuting grinder unit is mounted in front of the screen in close relationship, having a concave surface for reciprocating motion therebetween along the full extent of the screen, so as to clean and remove large solids intercepted by the screen surface, and to subsequently comminute such larger solids as they are recirculated back into incoming flow of sewage, wherein the large solids can be ground into smaller solids by the grinder so that they can pass through the screen. A semi-circular screen in combination with a grinder is a preferred embodiment of the system. The system includes a single or multiple drive means whereby the comminuting grinder is actuated and provided with the reciprocating motion along the surface of the screen.

Description

    FIELD OF INVENTION
  • The present invention relates to a screen cleaning and comminuting system for sewage. The system comprises an intercepting and filtering screen for sweeping agglomerated or captured solids of large size and means for subsequently comminuting such particles into smaller solids that may pass through the screen. [0001]
  • BACKGROUND OF THE INVENTION
  • Prior art processing of sewage and wastewater often involves handling large volumes of sewage and wastewater flow in a channel to separate solid and agglomerated matter therein and comminuting such matter by means of various screening and shredding devices in combination which are positioned in the wastewater flow within the channel. [0002]
  • U.S. Pat. No. 5,490,922 discloses a sewage water installation that has a discharge basin in which is arranged a screening unit linked to a back-and-forth movable cleaning carriage. The mesh screen unit is depicted schematically and includes a plurality of parallel spaced bars forming the screen. A cleaning cap which moves back and forth is allocated to the mesh screen. If the mesh screen is longer, several cleaning cars can be provided. A preferred cleaning car is provided with teeth that are designed correspondingly and arranged to protrude between the screen bars of the mesh screen and is intended for cleaning between the screen bars. [0003]
  • U.S. Pat. No. 2,672,985 discloses a transverse linear screen extending across an influent channel that intercepts all solids too large to pass therethrough. The screen consists of a plurality of parallelly disposed U-shaped members, with the U-shaped portions extending towards the inflowing sewage, forming a series of slots of the screen. A comminuting unit is disposed in parallel spaced relationship and in close proximity with the screen surface to remove collected solid materials therefrom by means of a cutting cylinder having a rotable shaft to which a plurality of cutting cylinders and combs are secured. As the comminuting unit travels back and forth along the width of a single linear screen by means of a direct drive motor in engagement with a rack device, the teeth project into the U-shaped portion of the slot members so as to remove solids intercepted by the screen. More details may be seen in FIGS. 5, 9, [0004] 10, 11 and 12 of the patent.
  • U.S. Pat. No. 5,833,152 discloses that a unitary comminuting system adapted for wastewater channel use is provided with devices which include a single or dual semi-cylindrical-like sizing screen, each having a circular rotating sweeping mechanism of interactive slotted comb bars or blades which sweep and clear lodged or agglomerated solids adhering to the outer convex circumference surface of the screen, disposed in parallelly spaced relationship with a twin shaft shredder device having two parallel shafts with shredder or grinder teeth along the length thereof that rotate in opposite senses. The unitary system of devices is positioned perpendicularly between the influent and effluent sides of the wastewater flow in a channel so that solids therein will encounter the convex surface of the semi-cylindrical-like sizing screens or the twin shaft shredder as the wastewater flows through the channel. Both the single or dual semi-cylindrical-like screen devices cause solids which do not flow directly therethrough to be forcefully swept from the outer convex surface of the sizing screen by the separate rotating sweeping interactive blade mechanism into surrounding the wastewater flow so as to cause and divert or direct the solids to flow toward or into the contiguous twin shaft shredder device, aided by circulating wastewater currents generated in the wastewater flow near the entrance to the twin shaft shredder which is generated in part by the rotating sweeping interactive blades of the screening devices, whereupon the removed solids are channeled into the twin shaft shredder device along with the other wastewater and solids flow where they are reduced in particle size. [0005]
  • From a review of the foregoing prior art, it can be readily appreciated that it is desirable to find a comminution and screen cleaning system that is simple and cost effective in construction and having low maintenance requirements, while remaining rugged, efficient and effective for cleaning large size matter from the surface of a sizing screen and subsequently comminuting such removed matter along with other matter contained in the flow of wastewater at all levels in a sewage channel to smaller particle sizes. [0006]
  • SUMMARY OF THE INVENTION
  • It is an object of the present invention to provide a comminution and screening system for reducing particle sizes in high flow sewage, comprising two primary interacting components, which are a traveling grinder unit having intermeshing cutters on parallel shafts rotating in oppose sense to one another and a continuous concave stationary semi-cylindrical filtering and sizing screen where the grinder unit acts to clear larger sizes of solid particles off and away from a screen surface as it travels in close proximity to the screen. The grinder unit is disposed towards the outside of a rotary turn-table held on a central axis with top and bottom bearing supports and coupled to a drive means to create an oscillating or reciprocating motion, with its cutters rotating at close clearance to the concave side of the stationary semi-cylindrical surface of the sizing screen. As the twin shaft grinder clears the concave front surface of the screen, the cutters of the grinder sweep the solids in the opposite direction of the other and propel the solids back into the flow or into the upstream side of the cutters, where they ultimately encounter the grinder cutters and are reduced to a size that can freely pass through the screen openings such as slots, mesh or other configuration. It should be recognized that removed particles may be recirculated more than once before they pass through the grinder for size reduction. In addition, it should be noted that the counter-rotating intermeshing teeth of the twin shaft grinder do not protrude into the openings of the screen's surface, but are disposed and held rigidly fixed and close enough thereto so that the grinder teeth are able to push or drag the solids from the surface of the screen as they move in either direction. Thus, there is no physical wear and tear to the surface of the screen as it is known to occur in the screen cleaning devices and systems of the prior art. [0007]
  • Therefore, it is another object of the invention to provide an effective and efficient self cleaning screen and grinder system that can handle very high flows of sewage with low power requirements with minimal system parts for greater reliability.[0008]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects and features of the invention will become apparent from the following description of preferred embodiments, given in conjunction with the accompanying drawings, in which: [0009]
  • FIG. 1 shows a side view of an exemplary system of the present invention depicting a direct drive for a twin shaft grinder mounted on a support frame supported by upper and lower bearing devices, wherein the support frame is actuated by a separate hydraulic cylinder for imparting reciprocal motion to the support frame of the grinder unit; [0010]
  • FIG. 2 shows a top view of the system of FIG. 1 taken along lines [0011] 2-2;
  • FIG. 3 shows a side view of the upper portion of a second exemplary apparatus or embodiment of the present invention depicting a single means for driving the twin shafts of a grinder mounted on a support frame supported by upper and lower bearing devices, wherein the support frame is actuated by the same single drive means for imparting reciprocal motion to the support frame of the grinder; [0012]
  • FIG. 4 shows a top view of the system of FIG. 3, when viewed as taken along lines [0013] 4-4; and
  • FIG. 5 is a partial schematic view of a twin shaft grinder and a filtering screen, depicting a close space relationship between teeth of the grinder and the concave semi-circular filtering screen surface and solid material in the fluid flow.[0014]
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • Referring now to FIG. 1, there is shown a side view of an exemplary screen cleaning and [0015] comminution system 10 in accordance with the present invention that includes an electrical or hydraulic drive motor 12 operately connected to the twin shafts of a twin shaft grinder 14 that is supported by an upper bearing device 16 and a lower bearing device 20 that are connected to an upper horizontal support plate 18 and a lower horizontal support plate 22 respectively. Horizontal support plates 18 and 22 are connected to a pair of parallel disposed vertical support members 24 forming a U-shaped frame-like structure that adds stiffness and rigidity to the three component arrangement so that twin shaft grinder 14 is held fixedly and rigidly in place with respect to the filtering screen. As shown in FIG. 1, a filtering screen member 26 is disposed between vertical support members 24 and twin shaft grinder 14, extending vertically between upper and lower horizontal support members 18 and 22. The filtering screen 14 may have openings therein of different configuration, such as slots formed by spaced apart parallel elements, a mesh or other configuration. Since the grinder unit does not contact or penetrate the openings in the screen, the screen may have openings therein of a wide variety of configurations without departing from the scope of the present invention.
  • Continuing with the description of FIG. 1, the [0016] system 10 has an upper horizontal cover plate 28 having an arcuate-like opening 30 therein (not shown in this FIG. 1), through which drive motor 12 extends and where it is connected to the top of twin shaft grinder 14. A hydraulic cylinder device 32 is connected to a frame member 34 of the system at its rear end in a swivel-linking arrangement 36. The front end of the hydraulic cylinder 32 has a piston 38 extending therefrom that is connected and linked to a reciprocating device 40 that is connected to and supported by an upper horizontal cover plate 28. The reciprocating device 40 is connected to the U-shaped frame-like structure noted above, including upper support plate 18, lower support plate 22 and parallel vertical support members 24, at the top of an upper bearing device 42 and a lower bearing device 44.
  • By connecting [0017] reciprocating device 40 to the U-shaped frame-like structure it is possible to move the drive motor 12, twin shaft grinder 14 and the parallel pair of support members 24 along an arcuate path in reciprocating motion through arcuate-like opening 30, while twin shaft grinder 14 is held in fixed and rigid spaced relationship to a screen 26 as the combination of the elements moves back and forth along the concave surface of the screen 26 so as to sweep and remove any solids contained on the screen. The lower bearing device 44 is connected to the lower support plate 22 and is further connected to and supported by a lower frame member 46. The lower frame member 46 is connected to a bottom base support member 48 upon which system 10 resides.
  • Referring now to FIG. 2, there is shown a top view of the system shown in FIG. 1, taken along lines [0018] 2-2, wherein the same reference numbers used in FIG. 1 are used in FIG. 2. As shown, the reciprocating device 40 has a crank arm 50 connected thereto at one end and is connected at the other end in linking or swivel manner so that twin shaft grinder 14 is moved back and forth through opening 30 along a path indicated by the curved arrows 52 and 54, in close proximity to the surface of concave filtering screen 26. The grinder 14 is not shown in FIG. 2 since it is hidden from view by drive motor 12. Hydraulic cylinder 32 is actuated by a typical hydraulic system arrangement known in the prior art and in the interest of brevity is not shown here. If drive motor 12 is a hydraulic motor, it will also be actuated by a similar prior art hydraulic system and is also not shown.
  • Continuing with the detailed description of the present invention, reference is now made to FIG. 3. There is shown in FIG. 3, a second [0019] exemplary system 56 or embodiment of the invention that is similar to the system shown in FIG. 1. The primary difference between the two systems resides in the fact that the embodiment shown in FIG. 3 has a single drive means 58 for driving the twin shaft grinder 14 and for moving it in reciprocal motion, i.e., in back and forth motion in close proximity to the filtering screen 26. FIG. 3 illustrates a side view of the apparatus 56 of the invention, where the lower portion has been omitted in the interest of brevity since it is constructed in essentially the same as the lower portion of the apparatus shown in FIG. 1.
  • As can be seen in FIG. 3, a [0020] shaft 59 of drive means 58 can be linked to a coupling device 60 by means of chain, belt or gear arrangements. Coupling device 60 is connected to a speed control device 62, which is in turn connected to a crank-like linking device 64. Crank-like linking device 64 is connected to a first end of a reciprocal motion control arm 66 via a linking swivel connection 68 while the other end of control arm 66 is connected to means 72 for driving twin shaft grinder 14 and providing a bearing 78 for supporting the upper end of the twin shaft grinder 14. A support member 74 covers means 72 and also is a support for a bearing device 80 for coupling shaft 82 of drive 58.
  • Referring now to FIG. 4, there is shown a top view of the apparatus depicted in FIG. 3 taken along lines [0021] 4-4 thereof, where some of the various components discussed in connection with FIG. 3 are shown. FIG. 4 shows a view of screen cleaning apparatus 56 partly in cross-section, illustrating that means 72 for driving twin shaft grinder 14 back and forth along the concave surface of screen 26 is accomplished by crank-like linking device 64 and reciprocal motion control arm 66. As shown, crank-like linking device 64 is connected to the first end of the reciprocal motion control arm 66 at a swivel connection 68 and a second end of control arm is connected to a second swivel joint connection 70 that is part of means 72. Means 72 is partially covered by a cover plate 74, such that only a coupling shaft 82 of single drive means 58 is seen. Coupling shaft 82 is the axis about which means 72 pivots as it moves the grinder back and forth in reciprocating motion adjacent to the concave surface of screen 26. The parallel support members 24 can also be seen as part of the U-shaped frame structure which supports the grinder in fixed rigid relationship to screen 26. It should be noted that support members 24 are considered important to the integrity of the apparatus where the members are connected to upper and lower support plates 18 and 22, respectively, to thereby form a component of the U-shaped frame structure noted above. A broken-line circle with the arrow heads designated by the reference number 96 illustrates the direction of rotation of crank-like linking device 64 which moves means 72 back and forth along paths indicated by curved arrows 52 and 54.
  • FIG. 5 is a fragmented cross-sectional view of the screen cleaning and comminuting system of the present invention which clearly depicts the [0022] twin shaft grinder 14, including a pair of parallel rotatable shafts 86 and a pair of intermeshing grinder teeth 88 disposed on the twin shafts 86. As shown, each of the shafts 86 rotates in opposite sense to one another as indicated by the curved arrows 92 and 94. Also shown in FIG. 5 are a plurality of solid material particles designated by reference number 90. As can readily been seen, the drawing illustrates the solid particles 90 being pushed in opposite directions on either side of grinder 14, whereby the concave surface of screen 26 is swept clean as the grinder passes close enough to make contact with the solid particles 90, but not so close to the screen that the grinder teeth touch the surface of the screen. It is noted that removal of the solids from the surface of the screen is the result of the grinder teeth 88 intercepting the solids so as to remove them from the screen as illustrated, while the back and forth motion of the grinder generates significant fluid motion near the surface of the screen in either direction, and this fluid motion or flow is an additional aid in the removal of solids from the surface of the screen. It is further understood that the solid matter which is removed from the screen surface is returned to a position upstream of flow where it is ultimately comminuted by grinder 14.
  • The principle modes of operation of the screen cleaning and [0023] comminuting systems 10 and 56 in accordance with the present invention are essentially the same as have been described. The primary difference between these two embodiments of the invention resides in the mechanism by which the twin shafts of the grinder 14 are caused to rotate and the mechanism by which the grinder unit 14 is moved in reciprocating motion in close proximity to the concave surface of screen 26 as it cleans solids therefrom. In accordance with the teachings of the present invention, the apparatus shown in FIG. 1 is driven by two drive motors, while the apparatus shown in FIG. 3 is driven by a single drive means operatively connected to associated coupling means to provide both rotational motion for the twin shaft grinder and reciprocating motion to move the grinder unit 14 along the concave surface of the filtering screen 26.
  • The operation of said [0024] twin shaft grinder 14 as a comminuting device is described briefly. As shown in FIG. 5, the grinder unit 14 includes two drive shafts 86 whose lengths extend to essentially the full depth of the liquid substance flow in channel and they rotate in opposite sense to one another. Each shaft has a shredding member disposed thereon containing shredding teeth 88 which extend to the full length thereof for shredding and grinding solid matter contained in the liquid flow of the channel such as a sewage channel. It should be noted that the twin shaft grinder unit of the present invention has two novel functions, that is to operate as a grinder for sizing solids while simultaneously operating as a sweeper to remove solid material from the surface of filtering screen 26 without making physical contact therewith.
  • In accordance with the preferred embodiment of the invention, rotatable turn-table with central support is provided for ease of screening and securing through conventional means. Arc screen and U-shaped frame of the invention have smooth shape to prevent from hangup and promote complete processing and smooth flow. Further, support means behind screen of the invention is provided for support of grinder structures, and unique design of the invention eliminates gaps formed in prior art which can cause incomplete processing by allowing solid to pass therethrough. [0025]
  • In accordance with the present invention, the simple and unique construction provides a system which allows the liquid sewage being processed to flow therethrough with minimum hindrance. In addition, the filtering screen, screen sweeping device and grinder may operate in a variety of configuration and are more compatible for maximum through-put performance than prior art devices and systems. The directional clearing properties of the reciprocating grinding member insure that solids which impact the screen can be aggressively removed from the screen surface and redirected by the grinder back into flow path of the sewage system during each cycle, thereby to keep the filtering screen clear of solids and enhance the performance and efficiency of the system. While the use of a single means to drive the various moving parts of any apparatus may be advantageous, the use of the novel screening and sweeping action in accordance with the present invention is most important when assessing whether one or more drives are utilized. [0026]
  • It should be understood that the above described embodiments are only illustrative of the principles applicable to the invention. Various other arrangements and modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims. [0027]

Claims (15)

What is claimed is:
1. An apparatus for screening and recirculating solid material contained in a fluid flow, said apparatus comprising:
(a) a stationary sizing screen member having a semi-cylindrical-like screening surface with a plurality of openings for sizing material particles and being disposable in the path of the fluid flow containing material particles and extending to the full width and depth thereof, wherein larger solid material particles intercepted are cleared and removed from the screening surface and are recirculated into the path of the flow for subsequent sizing;
(b) a combined unit of a comminuting grinder having twin rotary shafts and a sweeper, the unit being associated with and disposed directly in front of the screen in fixed space relationship for removing and sweeping the intercepted solid material particles from the screening surface, wherein the combined unit completes a multiple sweeping cycle of motion parallel along the screening surface; and
(c) drive means connected to the sweeper unit for providing rotary motion to the shafts of the comminuting grinder and arcuate sweeping action to the combined unit along the screening surface.
2. The apparatus in accordance with claim 1, wherein said plurality of openings are a plurality of parallel slots.
3. The apparatus in accordance with claim 1, wherein said twin rotary shafts rotate in opposing sense to one another.
4. The apparatus in accordance with claim 2, wherein the screening surface with a plurality of parallel slots is disposed in either horizontal or vertical direction.
5. The apparatus in accordance with claim 1, wherein said screening surface has a mesh configuration.
6. A comminuting apparatus being movably disposed in a liquid channel for screening large solid matter suspended in the channel, said apparatus comprising:
(a) a sizing screen extending to the full width and depth of the channel disposed in fixed parallel spaced position to a combined unit of a twin shaft shredder and a sweeper, the sizing screen having a semi-cylindrical-like screening surface with a plurality of horizontal parallel slots and disposed in the path of the liquid and extending to the full width and depth thereof for intercepting large size of solid matter suspended therein on the semi-cylindrical like surface, wherein intercepted solid matter is cleared and removed from said surface by the combined unit and said removed solid matter is recirculated into the path of said liquid;
(b) a combined unit of a twin shaft shedder and a sweeper, twin shaft shredder including two drive shafts whose lengths extend to the full depth of the liquid rotating in opposite sense to one another, each shaft having a shredding member disposed thereon extending to the full length thereof for shredding and grinding said solid matter as the liquid flows into the twin shaft shredder and the twin shaft shredder being disposed and connected in parallel position to said sizing screen; and
(c) drive means operately connected to the combined unit of the twin shaft shredder and the sweeper for providing rotary motion to the shafts of the twin shaft shredder and sweeping action to the combined unit along the screening surface.
7. The apparatus in accordance with claim 6, wherein said screening surface with a plurality of parallel slots is disposed in either horizontal or vertical directions.
8. A method of cleaning and comminuting sewage solids, said method comprising the steps of:
(a) intercepting large solids carried by sewage stream on a sizing and filtering screen;
(b) removing said solids from said screen by means of a combined comminuting and sweeping unit;
(c) comminuting the solids by said combined unit; and
(d) the comminuted solids through said screen along with the oncoming stream.
9. The method in accordance with claim 8, wherein said screen has a concave semi-cylindrical-like intercepting screening surface.
10. An apparatus for treating sewage, said apparatus comprising of:
(a) a filtering and sizing screen placed across a channel of sewage;
(b) a combined unit of a solid remover and a comminuting grinder disposed adjacent to an upstream surface of the screen, said unit being adapted for removing solid matter from the screen and recirculating same into sewage flow upstream for subsequent comminution and said unit comprising twin rotary shaft grinder members having the twin rotary shafts disposed in a plane parallel to the plane of said screen;
(c) means connected for reciprocating said unit along said screen to periodically sweep whole upstream surface of the screen; and
(d) drive means for providing rotary motion to the shafts of said twin shaft grinder and reciprocating motion to said combined unit parallel along said surface of said screen.
11. The apparatus in accordance with claim 10, wherein said screen has a concave semi-cylindrical-like screening surface.
12. The apparatus in accordance with claim 10, wherein said twin rotary shafts rotate in oppose sense to one another.
13. The apparatus in accordance with claim 1, wherein said drive means comprises a direct drive motor for driving said comminuting grinder and a separate hydraulic cylinder unit connected to a crank-like device which is in turn connected to a frame where said grinder is fixedly supported for reciprocating action along the concave contour of the screen.
14. The apparatus in accordance with claim 13, wherein said direct drive motor is either a hydraulic or an electrical motor.
15. The apparatus in accordance with claim 1, wherein said drive means comprises a single electric drive motor that is first mechanically linked to said comminuting grinder for driving said grinder and a second mechanically linked device connected to a frame where said grinder is fixedly supported for reciprocating motion along the concave contour of the screen.
US09/968,696 2000-02-07 2001-10-01 Screen cleaning and comminuting system Abandoned US20020066811A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/968,696 US20020066811A1 (en) 2000-02-07 2001-10-01 Screen cleaning and comminuting system
US10/266,890 US6830207B2 (en) 2000-02-07 2002-10-08 Screen cleaning and comminuting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/498,855 US6311905B1 (en) 2000-02-07 2000-02-07 Screen cleaning and comminuting system
US09/968,696 US20020066811A1 (en) 2000-02-07 2001-10-01 Screen cleaning and comminuting system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/498,855 Continuation US6311905B1 (en) 2000-02-07 2000-02-07 Screen cleaning and comminuting system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/266,890 Continuation-In-Part US6830207B2 (en) 2000-02-07 2002-10-08 Screen cleaning and comminuting system

Publications (1)

Publication Number Publication Date
US20020066811A1 true US20020066811A1 (en) 2002-06-06

Family

ID=23982783

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/498,855 Expired - Fee Related US6311905B1 (en) 2000-02-07 2000-02-07 Screen cleaning and comminuting system
US09/968,696 Abandoned US20020066811A1 (en) 2000-02-07 2001-10-01 Screen cleaning and comminuting system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/498,855 Expired - Fee Related US6311905B1 (en) 2000-02-07 2000-02-07 Screen cleaning and comminuting system

Country Status (1)

Country Link
US (2) US6311905B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100318116A1 (en) * 2008-01-28 2010-12-16 Peter Forsell drainage device comprising a filter cleaning device
CN106076806A (en) * 2016-07-27 2016-11-09 佛山科学技术学院 A kind of screening plant

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830207B2 (en) * 2000-02-07 2004-12-14 Franklin Miller, Inc. Screen cleaning and comminuting system
US7770830B1 (en) * 2007-04-26 2010-08-10 Bertwin Langenecker Method and apparatus for desalination of seawater
US8727248B2 (en) 2010-08-11 2014-05-20 William Galanty Comminutor with screening conditioner
CN112108237B (en) * 2020-09-09 2021-12-21 湖南连心科技有限公司 Powder coating particle control sieving equipment
CN112371490A (en) * 2020-09-25 2021-02-19 安徽新虹纺织有限公司 Screening device for textile raw material particles
CN112916162A (en) * 2020-12-29 2021-06-08 山东国元新材料有限公司 Liquid cement grinding aid processing apparatus
CN115300957A (en) * 2022-07-27 2022-11-08 海英荷普曼船舶设备(常熟)有限公司 Seawater filtering device for ship air conditioner
CN116332310A (en) * 2023-05-08 2023-06-27 江苏明轩环保科技有限公司 High-efficiency sewage treatment device and sewage treatment process thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2672985A (en) 1950-08-14 1954-03-23 Louise N Millspaugh Transfer and comminuting device for screens
US5320286A (en) 1987-11-27 1994-06-14 Disposable Waste Systems, Inc. Rotary screen diverter & solid waste handling system using same
US4919346A (en) 1987-11-27 1990-04-24 Disposable Waste Systems, Inc. Rotary screen diverter and solid waste handling system using same
GB2235392A (en) 1989-08-25 1991-03-06 Mono Pumps Ltd Screening device
CH685554A5 (en) 1992-09-25 1995-08-15 Romag Roehren & Masch Sewage system with built-in screening rake.
US5505388A (en) 1994-09-29 1996-04-09 Disposable Waste Company, Inc. Integrated diverter and waste comminutor
US5833152A (en) 1997-06-30 1998-11-10 Galanty; William B. Integrated comminuting screening and shredding system for liquid waste channels

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100318116A1 (en) * 2008-01-28 2010-12-16 Peter Forsell drainage device comprising a filter cleaning device
US9789290B2 (en) * 2008-01-28 2017-10-17 Peter Forsell Drainage device comprising a filter cleaning device
US20210308434A1 (en) * 2008-01-28 2021-10-07 Peter Forsell Drainage device comprising a filter cleaning device
US11660562B2 (en) * 2008-01-28 2023-05-30 Peter Forsell Drainage device comprising a filter cleaning device
CN106076806A (en) * 2016-07-27 2016-11-09 佛山科学技术学院 A kind of screening plant

Also Published As

Publication number Publication date
US6311905B1 (en) 2001-11-06

Similar Documents

Publication Publication Date Title
US20020066811A1 (en) Screen cleaning and comminuting system
EP0260398B1 (en) An apparatus for comminuting solid waste and side rails for same
CN1812870A (en) Shaver, shaving head and method of cleaning a hair chamber of a shaver
EP2398967B1 (en) Multifunctional device for clearing snow
US5833152A (en) Integrated comminuting screening and shredding system for liquid waste channels
JP2517827B2 (en) Material shredding device
US6830207B2 (en) Screen cleaning and comminuting system
US4186888A (en) Comminutor for sewage flowing in liquids
US20030089806A1 (en) Twin-shaft comminutor having dissimilar sized cutters
US5904843A (en) Apparatus for removing solids from a stream of water
CN116550599B (en) Sieving device for removing impurities in magnesium oxide production and application method thereof
JP3088344B2 (en) Water channel installation type screen and water channel installation type crushing device provided with the same
GB2104402A (en) Apparatus for removing solid material from sewage
JP2004298806A (en) Garbage treatment apparatus
CN113682434A (en) Lifting type ocean space information acquisition platform
CN110528641A (en) Sundries processor
CN110485522A (en) Sundries shredder
JP3566912B2 (en) Crushing equipment
KR200143334Y1 (en) Apparatus for removing the foreign material in the feed mill
NL8201635A (en) GRINDING MACHINE FOR PLASTIC.
CN218222734U (en) Garbage disposal device
JP2004298805A (en) Garbage treatment apparatus
CN218651619U (en) Cleaning head with crushing function
KR200251000Y1 (en) Crusher
CN217856630U (en) Mineral crushing equipment with dust collector

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION