US20020065553A1 - Method for manufacturing a medical device having a coated portion by laser ablation - Google Patents

Method for manufacturing a medical device having a coated portion by laser ablation Download PDF

Info

Publication number
US20020065553A1
US20020065553A1 US10/004,954 US495401A US2002065553A1 US 20020065553 A1 US20020065553 A1 US 20020065553A1 US 495401 A US495401 A US 495401A US 2002065553 A1 US2002065553 A1 US 2002065553A1
Authority
US
United States
Prior art keywords
coating
coated
coating material
plate
medical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/004,954
Inventor
Jan Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boston Scientific Scimed Inc
Original Assignee
Scimed Life Systems Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Scimed Life Systems Inc filed Critical Scimed Life Systems Inc
Priority to US10/004,954 priority Critical patent/US20020065553A1/en
Publication of US20020065553A1 publication Critical patent/US20020065553A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • B23K26/0624Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses using ultrashort pulses, i.e. pulses of 1ns or less
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2240/00Manufacturing or designing of prostheses classified in groups A61F2/00 - A61F2/26 or A61F2/82 or A61F9/00 or A61F11/00 or subgroups thereof
    • A61F2240/001Designing or manufacturing processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2400/00Materials characterised by their function or physical properties
    • A61L2400/18Modification of implant surfaces in order to improve biocompatibility, cell growth, fixation of biomolecules, e.g. plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • B23K2103/05Stainless steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/14Titanium or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/30Organic material
    • B23K2103/42Plastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Definitions

  • This invention relates generally to a method for manufacturing a medical device. More particularly, the invention is directed to a method for manufacturing a medical device having a coated portion by laser ablation.
  • Implantable medical devices such as prosthesis or stents, are used to reduce restenosis after balloon angioplasty or other procedures involving catheters.
  • the suitable medical device or stent is cylindrical in shape.
  • the walls of the cylindrical structure can be formed of metal or polymer with openings therein, e.g., a mesh.
  • the stent is implanted into a body lumen, such as a blood vessel, where it stays permanently, to keep the vessel open and to improve blood flow to the heart muscle and relieve symptoms.
  • Stents can also be positioned in other parts of the body, such as the kidneys or the brain. The stent procedure is fairly common, and various types of stents have been developed and actually used.
  • the stent surface should be altered to make it more biocompatible.
  • Stents coated with polymers have been offered to reduce likelihood of restenosis caused by the metal surface of stents.
  • polymer coats for stents which contain drugs which are delivered to an afflicted area of a body lumen. Drugs may be either bonded chemically, physically or absorbed in the polymer matrix.
  • the drugs may be directly coated or immobilized onto the stents, e.g. using a binding molecule between the drug molecule and the stent surface.
  • coated stents have been manufactured by shaping the body of the stents first by photo-etching, laser ablation, electron beam ablation, or any other means, and then coating the stents with polymer compositions or drug compositions by dip-coating, spray-coating or any other means.
  • photo-etching laser ablation
  • electron beam ablation electron beam ablation
  • coating the stents with polymer compositions or drug compositions by dip-coating, spray-coating or any other means.
  • applying an even coating on a metal stent is very difficult. Therefore, methods for easily manufacturing a stent with uniform coating(s) are necessary.
  • the polymer coating when applied by methods in the art, tends to create bridges at small gaps or corners between stent struts.
  • a coating process takes place after a shaping process, it is almost impossible to selectively coat the stent.
  • An embodiment of the present invention is a method for manufacturing a medical device having a coated portion which comprises obtaining a structure having an inner surface and an outer surface. At least a portion of the inner or outer surface is coated with a first coating material. Then, the coated structure is ablated with a laser to form at least one opening therein to form the coated portion.
  • the method for manufacturing a medical device having a coated portion comprises obtaining a plate having a first surface and a second surface. At least a portion of the first surface or second surface is coated with a first coating material. The coated plate is then ablated with a laser to form at least one opening in the coated plate. Afterward, the coated and ablated plate is formed by folding or shaping into the medical device.
  • FIGS. 1A through 1D show the steps of an embodiment of the present invention.
  • FIG. 1A depicts a cross-sectional view of a tubular structure.
  • FIG. 1B depicts a cross-sectional view of the tubular structure after a coating is applied on its inner surface.
  • FIG. 1C depicts a cross-sectional view of the tubular structure after another coating is applied on its outer surface.
  • FIG. 1D depicts a cross-sectional view of a coated tube-like portion of a medical device formed by ablating the tubular structure with a laser.
  • FIG. 2A through 2E show steps of another embodiment of the present invention.
  • FIG. 2A depicts a cross-sectional view of a plate.
  • FIG. 2B depicts a cross-sectional view of the plate after a coating is applied on its first surface.
  • FIG. 2C depicts a cross-sectional view of the plate after another coating is applied on its second surface.
  • FIG. 2D depicts a cross-sectional view of the coated plate after laser ablation.
  • FIG. 2E depicts a cross-sectional view of a coated tube-like portion of a medical device made by forming the ablated plate into a desired shape.
  • a structure or a plate is coated first, and then, ablated by a laser to form openings.
  • Such ablation may be conducted with a ultrashort-pulse laser.
  • the ultrashort-pulse laser is clearly distinguished from conventional continuous wave and long-pulse lasers (nanosecond (10 ⁇ 9 sec) laser) which have significantly longer pulses.
  • a material is ablated by a conventional laser
  • the material is removed by thermal ablation wherein the material is locally heated to near melting point or boiling point.
  • ablation using conventional lasers has various problems.
  • the ablation is furthermore accompanied by a heat transfer and a strong thermal shock to surrounding material which might cause serious damage, such as cracking.
  • the material once removed tends to redeposit or re-solidify on the surrounding surface.
  • a material ablated by a conventional laser must be cleaned to remove the redeposited material surrounding the cut surface.
  • a material having an immobilized molecule on its surface is ablated by a conventional laser, because a clearing step is required, the immobilized molecule may be washed away at the cleaning step.
  • process parameters for a conventional laser ablation such as boiling point and absorption of the laser light, varies according to materials to be ablated, a layered material consisting of layers made of different materials cannot be ablated by a conventional laser.
  • ablation using an ultrashort-pulse laser is free from such problems.
  • the ultrashort-pulse deposits its energy so quickly that it does not interact at all with the plume of vaporized material, which would distort and bend the incoming beam and produce a rough-edged cut.
  • the plasma plume leaves the surface very rapidly, ensuring that it is well beyond the cut edges before the arrival of the next laser pulse. Since the pulse is very short, atoms in a material to be ablated are stationary in space with respect to the pulse duration. As a result, the ultrashort-pulse laser does not react differently between dielectric materials and electric materials.
  • any material including glasses, polymers, ceramics, silicon, and metals, can be ablated with very high precision without damage in surrounding area by ultrashort-pulse lasers due to the absence of heat shock waves.
  • the surface ablated with a ultrashort-pulse laser has an excellent quality which does not need further polishing as required for a surface ablated with a conventional laser because redeposition is less or absent.
  • the lasers suitable for use in the method of the present invention are preferably ultrashort-pulse lasers consisting of pulses shorter than about 10 ⁇ 11 second, preferably shorter than about 10 ⁇ 12 second, and most preferably shorter than about 10 ⁇ 13 second which are referred to as femtosecond lasers.
  • the intensity (fluence) of the laser radiation that is required to ablate a material is dependent on the material to be ablated. Specifically each material has its own laser-induced optical breakdown (LIOB) threshold which characterizes the fluence required to ablate the material at a particular pulse width. Also the fluence of the ultrashort-pulse laser suitable for the present invention can be chosen according to the thickness of the tube wall, the thickness of the coating and each material. Furthermore, the number of pulses needed to ablate completely through a material can be calculated for a given energy or fluence.
  • LIOB laser-induced optical breakdown
  • a hole without any redeposition can be drilled into a 0.7 mm thick stainless steel plate coated with a 0.3 mm-thick poly(ethylene terephthalate) coating on its one surface, using a laser with a pulse duration of 220 femtosecond and a fluence of 0.6 J/cm 2 at a wavelength of 780 nm with a repetition rate of 1 kHz commercial femtosecond Ti:sapphire laser and amplifier system (SPECTRA-PHYSICS, SPITFIRE).
  • SPECTRA-PHYSICS commercial femtosecond Ti:sapphire laser and amplifier system
  • a hole without any redeposition can be drilled into a 0.7 mm-thick piece of tantalum with a 0.3 mm-thick poly(ethylene oxide)/poly(butylene terephthalate) copolymer coating using a laser with a pulse duration of 120 femtosecond and a fluence of 0.5 J/cm 2 with the same system used above.
  • the laser ablation of the present invention can be conducted using any additional techniques for improved accuracy and efficiency of such ultrashort-pulse laser ablation, e.g. diffractive optical elements (DOEs) and/or polarization trepanning.
  • DOEs diffractive optical elements
  • polarization trepanning See C. Momma et al., Beam delivery of femtosecond laser radiation by diffractive optical elements , Appl. Phys. A 67, 517-520 (1998); S. Nolte et al., Polarization effects in ultrashort - pulse laser drilling, Appl. Phys. A 68, 563-567 (1999), both are incorporated herein by reference.
  • the ultrashort-pulse lasers are known to artisans. For example, they are thoroughly disclosed by M. D. Perry et al. in Ultrashort - Pulse Laser Machining, Section K-ICALEO 1998, pp. 1-20, which is incorporated herein by reference.
  • FIGS. 1 A- 1 D An embodiment of the present invention is illustrated in FIGS. 1 A- 1 D in which a tubular structure made of a suitable medical device material is coated with a coating material or composition.
  • FIG. 1A depicts a cross-sectional view of a tubular structure 10 made of a suitable medical device material.
  • the inner surface of the tubular structure 10 is coated with first coating material or composition 12 (FIG. 1B).
  • the outer surface of the tubular structure 10 is also coated with second coating material or composition 14 (FIG. 1C) which can be the same as the first coating material or composition.
  • the tubular structure 10 having an inner coating 12 and outer coating 14 is ablated by an ultrashort-pulse laser to form openings that made up a geometric pattern in the tubular structure (FIG. 1D). In this manner, a coated tube-like portion of a medical device 16 is formed.
  • only one of the surfaces e.g. inner or outer, may be coated.
  • FIG. 2A depicts a cross-sectional view of a plate 20 made of a suitable medical device material.
  • a first surface of the plate 20 is coated with first coating material or composition 22 (FIG. 2B).
  • the second surface of the plate 20 is also coated with second coating material or composition 24 , which can be the same as the first coating material or composition (FIG. 2C).
  • the plate 20 having first coating 22 and second coating 24 is ablated by an ultrashort-pulse laser to form openings that make up a geometric pattern (FIG. 2D).
  • the plate is then folded into a desired shape to form a coated tube-like portion of a medical device 26 .
  • structure used in relation to a medical device means any structure which is at least a part of a medical device, such as a tubular structure.
  • coated portion used in relation to a medical device means any portion of a medical device which has (a) coating(s) on its surface(s).
  • An example of such coated portion is a coated tube-like portion.
  • Medical devices that can be fabricated by the method of the present invention includes those that include a tube-like or cylindrical-like portion.
  • the tube-like portion of the medical device need not to be completely cylindrical.
  • the cross-section of the tube-like portion can be any shape, such as rectangle, a triangle, etc., not just a circle.
  • Such devices include, without limitation, stents and grafts.
  • a bifurcated stent is also included among the medical devices which can be fabricated by the method of the present invention.
  • the medical device is a stent.
  • Stents suitable for the present invention include vascular stents such as self-expanding stents and balloon expandable stents. Examples of self-expanding stents are illustrated in U.S. Pat. Nos. 4,655,771 and 4,954,126 issued to Wallsten and 5,061,275 issued to Wallsten et al. Examples of appropriate balloon-expandable stents are shown in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco and U.S. Pat. No. 4,886,062 issued to Wiktor.
  • the medical device is not limited for the present invention, and any material including ceramics, polymers and metals can be used for manufacturing the device by the method of the present invention.
  • the device is made of a biocompatible material.
  • polymers include poly(ethylene terephthalate), polyacetal, poly(lactic acid), poly(ethylene oxide)/poly(butylene terephthalate) copolymer, and polycarbonate.
  • metals include titanium, stainless steel, platinum, tantalum or gold/platinum alloy.
  • the term “coating” encompasses all ways of coating, such as using plasma, dipping, spraying, etching, covering, plating, co-extruding and all modern chemical ways of attaching bio-molecules to surfaces as well as conventional coating.
  • the surface is coated with a material by a method known to the artisans, such as dipping into a polymer, spraying a coating composition onto the surface, or attaching biomolecules to surfaces.
  • the surface of the structure or plate is optionally subjected to a pre-treatment, such as roughing, oxidizing or adding a primer, and then coated. Adding a primer is preferable as such pre-treatment.
  • the structure or plate can be covered with a film.
  • the structure or plate can be made by co-extrusion of the medical device material and the coating material. More than one coating method can be used to make a medical device. Thickness of coatings can range from almost a single layer of molecules to about 0.1 mm. Suitable thickness as of the coating are known in the art and can be selected by artisans.
  • Medical devices coating materials suitable for the present invention include any coating material for the stent which are known to the skilled artisan.
  • Suitable coating materials include, without limitation, metals, such as tantalum, stainless steel, nitinol, titanium, and alloys, polymeric materials, such as poly-L-lactic acid, polycarbonate, polyethylene terephtalate, silicones, polyurethanes, thermoplastic elastomers, ethylene vinyl acetate copolymers, polyolefin elastomers, hydrogels and EPDM rubbers.
  • Such coatings include biologically active molecules, such as heparine or insuline molecules, directly attached to oxide molecules on the surface of the structure as explained below.
  • the coating can be a drug-releasing coating which immediately or gradually releases a biologically active material.
  • Coating polymer useful for drug coating includes hydrogel polymers which are often used to contain the biologically active material and are disclosed in U.S. Pat. No. 5,304,121, U.S. Pat. No. 5,464,650, PCT publication WO95/03083 and U.S. Pat. No. 5,120,322, which are incorporated by reference. However, a non-hydrogel can be also used. Although polymeric molecules can be combined with biologically active molecules, biologically active materials can be directly immobilized on the surface. As disclosed in U.S. Pat. No.
  • polysaccharides can be immobilized to metallic surfaces by applying an organosilane coating with amine functionality and then applying a polysaccharide using carbodiimide as a coupling gent.
  • U.S. Pat. No. 5,336,518 to Narayanan et al also discloses that a polysaccharide can be immobilized on a surface by applying a coat of heptafluorobutylmethacrylate (HFBMA) by radiofrequency (RF) plasma deposition, creating functional groups on the surface by RF plasma with water vapor, and then applying the polysaccharide using carbodiimide.
  • HABMA heptafluorobutylmethacrylate
  • RF radiofrequency
  • biologically active material encompasses therapeutic agents, such as drugs, and also genetic materials and biological materials.
  • the genetic materials mean DNA or RNA, including, without limitation, of DNA/RNA encoding a useful protein stated below, intended to be inserted into a human body including viral vectors and non-viral vectors.
  • Viral vectors include adenoviruses, gutted adenoviruses, adeno-associated virus, retroviruses, alpha virus (Semliki Forest, Sindbis, etc.), lentiviruses, herpes simplex virus, ex vivo modified cells (e.g., stem cells, fibroblasts, myoblasts, satellite cells, pericytes, cardiomyocytes, sketetal myocytes, macrophage), replication competent viruses (e.g., ONYX-015), and hybrid vectors.
  • adenoviruses include adenoviruses, gutted adenoviruses, adeno-associated virus, retroviruses, alpha virus (Semliki Forest, Sindbis, etc.), lentiviruses, herpes simplex virus, ex vivo modified cells (e.g., stem cells, fibroblasts, myoblasts, satellite cells, pericytes, cardiomyocytes, sketetal myocytes
  • Non-viral vectors include artificial chromosomes and mini-chromosomes, plasmid DNA vectors (e.g., pCOR), cationic polymers (e.g., polyethyleneimine, polyethyleneimine (PEI)) graft copolymers (e.g., polyether-PEI and polyethylene oxide-PEI), neutral polymers PVP, SP1017 (SUPRATEK), lipids or lipoplexes, nanoparticles and microparticles with and without targeting sequences such as the protein transduction domain (PTD).
  • the biological materials include cells, yeasts, bacteria, proteins, peptides, cytokines and hormones.
  • peptides and proteins examples include growth factors (FGF, FGF-1, FGF-2, VEGF, Endotherial Mitogenic Growth Factors, and epidermal growth factors, transforming growth factor ⁇ and ⁇ platelet derived endothelial growth factor, platelet derived growth factor, tumor necrosis factor ⁇ , hepatocyte growth factor and insulin like growth factor), transcription factors, proteinkinases, CD inhibitors, thymidine kinase, and bone morphogenic proteins (BMP's), such as BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8.
  • growth factors FGF, FGF-1, FGF-2, VEGF, Endotherial Mitogenic Growth Factors, and epidermal growth factors
  • transforming growth factor ⁇ and ⁇ platelet derived endothelial growth factor platelet derived growth factor
  • tumor necrosis factor ⁇ tumor necrosis factor ⁇
  • BMP's are BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-7.
  • Cells can be of human origin (autologous or allogeneic) or from an animal source (xenogeneic), genetically engineered, if desired, to deliver proteins of interest at the transplant site.
  • the delivery media can be formulated as needed to maintain cell function and viability.
  • Cells include whole bone marrow, bone marrow derived mono-nuclear cells, progenitor cells (e.g., endothelial progentitor cells) stem cells (e.g., mesenchymal, hematopoietic, neuronal), pluripotent stem cells, fibroblasts, macrophage, and satellite cells.
  • progenitor cells e.g., endothelial progentitor cells
  • stem cells e.g., mesenchymal, hematopoietic, neuronal
  • pluripotent stem cells fibroblasts, macrophage, and satellite cells.
  • Bioly active material also includes non-genetic therapeutic agents, such as:
  • anti-thrombogenic agents such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone);
  • anti-proliferative agents such as enoxaprin, angiopeptin, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid, amlodipine and doxazosin;
  • anti-inflammatory agents such as glucocorticoids, betamethasone, dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine;
  • antineoplastic/antiproliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, methotrexate, azathioprine, adriamycin and mutamycin; endostatin, angiostatin and thymidine kinase inhibitors, taxol and its analogs or derivatives;
  • anesthetic agents such as lidocaine, bupivacaine, and ropivacaine;
  • anti-coagulants such as D-Phe-Pro-Arg chloromethyl keton, an RGD peptide-containing compound, heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin anticodies, anti-platelet receptor antibodies, aspirin (aspirin is also classified as an analgesic, antipyretic and anti-inflammatory drug), dipyridamole, protamine, hirudin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides;
  • vascular cell growth promotors such as growth factors, Vascular Endothelial Growth Factors (FEGF, all types including VEGF-2), growth factor receptors, transcriptional activators, and translational promotors;
  • FEGF Vascular Endothelial Growth Factors
  • vascular cell growth inhibitors such as antiproliferative agents, growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin;
  • anti-oxidants such as probucol
  • antibiotic agents such as penicillin, cefoxitin, oxacillin, tobranycin
  • angiogenic substances such as acidic and basic fibrobrast growth factors, estrogen including estradiol (E2), estriol (E3) and 17-Beta Estradiol; and
  • drugs for heart failure such as digoxin, beta-blockers, angiotensin-converting enzyme (ACE) inhibitors including captopril and enalopril.
  • ACE angiotensin-converting enzyme
  • both surfaces of the tube-like portion can be coated with a same material at the same time.
  • one surface of the structure or plate need not be coated, while the other surface has a coating.
  • a medical device having such portion is preferable for a drug-delivery medical device for delivering a biologically active material to a blood vessel surface while minimizing the amount of biologically active material which is delivered into the blood stream.
  • Such a medical device is also preferable when the coating is easily damaged during implantation of the medical device, e.g., because of the unfolding shear-action of the delivery balloon.
  • inner and outer surfaces of the portion of the medical device can be coated with different materials.
  • a stent can have a polymer coating having an anti-thrombogenic agent on the inner surface which directly contacts blood flow and a polymer coating having an anti-inflammatory agent on the outer surface which directly contacts blood vessel wall.
  • the inner surface and the outer surface can be coated by the different methods. Also, there can be more than one coating on a surface. Furthermore, an entire surface of the medical device is not necessarily coated.
  • the coated structure or plate is ablated by a laser to form openings.
  • the openings along with the remaining parts of the structure or plate make up the geometric pattern structure of the medical device.
  • the structure or plate can be moved while the laser is held stationary to ablate the structure or plate into pattern, or alternatively, the laser can be programmed to move along a predetermined pattern by a method known to artisans.
  • a combination of both, i.e. moving both the laser and the structure or plate, is also possible.
  • even a coated stent having a complex stent pattern can be made with high precision.
  • a medical devices having multiple coating layers and a complicated geometry pattern can also be easily manufactured by the method of the present invention without flaws such as polymer-bridges at gaps or corners.
  • the layer thickness can be easily controlled by the method of the present invention.
  • the plate is formed into a portion of the medical device in the way known to artisans.
  • the coated portion is a tube-like portion, it is formed by forming the flat plate into a tube-like shape and attaching the opposing edges of the plate together such as by fusing the two opposing sides.
  • a method of fusing appropriate to a stent material can be chosen. Methods of fusing include fusing by heat or using adhesive.
  • a plurality of medical devices can be manufactured by coating one large structure and, as ablatin it as explained above, cutting the structure into individual coated portions. For example, if the coated portion is a tube-like portion, a long tubular structure is coated first, and then ablated, and then cut into individual tube-like portions of medical devices. Likewise, a large plate can be coated first, cut into a smaller plate, and then formed into an individual coated structure and ablated. Alternatively, a large coated plate can be shaped into a large coated structure, and then it is cut into individual coated structures as ablated. In this way, a plurality of medical devices be made by using one coating step. Also, all of the medical devices will have uniform coating thicknesses.
  • the thickness of the coating can be easily measured before the ablation step. For example, it is very useful to know an amount of a biologically active material contained in a medical material. This amount can be calculated in the present invention by measuring the thickness of the coating after the coating is placed on the medical device. For example, based on the concentration of biologically active material in the coating composition, the thickness of the coating, the amount of biologically active material placed on the device can be determined.

Abstract

The present invention is directed to a method for manufacturing a medical device having a coated portion which comprises obtaining a structure having an inner surface and an outer surface; coating at least a portion of the inner or outer surface with a first coating material; and ablating the coated tubular structure with a laser to form at least one opening therein to form the coated portion. A plate can be used instead of the structure, and the plate is folded to form the structure after the ablation. A plurality of medical devices, made of any materials and having uniform coating(s), can be easily manufactured by the method of the present invention.

Description

    FIELD OF THE INVENTION
  • This invention relates generally to a method for manufacturing a medical device. More particularly, the invention is directed to a method for manufacturing a medical device having a coated portion by laser ablation. [0001]
  • BACKGROUND OF THE INVENTION
  • Implantable medical devices, such as prosthesis or stents, are used to reduce restenosis after balloon angioplasty or other procedures involving catheters. Usually, the suitable medical device or stent is cylindrical in shape. The walls of the cylindrical structure can be formed of metal or polymer with openings therein, e.g., a mesh. The stent is implanted into a body lumen, such as a blood vessel, where it stays permanently, to keep the vessel open and to improve blood flow to the heart muscle and relieve symptoms. Stents can also be positioned in other parts of the body, such as the kidneys or the brain. The stent procedure is fairly common, and various types of stents have been developed and actually used. However, since the bare metal surface of the stents may trigger restenosis, the stent surface should be altered to make it more biocompatible. Stents coated with polymers have been offered to reduce likelihood of restenosis caused by the metal surface of stents. Further, there are various types of polymer coats for stents which contain drugs which are delivered to an afflicted area of a body lumen. Drugs may be either bonded chemically, physically or absorbed in the polymer matrix. Also, for the purpose of obtaining drug delivery stents, the drugs may be directly coated or immobilized onto the stents, e.g. using a binding molecule between the drug molecule and the stent surface. [0002]
  • Previously, such coated stents have been manufactured by shaping the body of the stents first by photo-etching, laser ablation, electron beam ablation, or any other means, and then coating the stents with polymer compositions or drug compositions by dip-coating, spray-coating or any other means. However, due to the complex geometry of the stent, applying an even coating on a metal stent is very difficult. Therefore, methods for easily manufacturing a stent with uniform coating(s) are necessary. [0003]
  • In addition, the polymer coating, when applied by methods in the art, tends to create bridges at small gaps or corners between stent struts. Also, in the conventional methods, wherein a coating process takes place after a shaping process, it is almost impossible to selectively coat the stent. For example, it is impossible to coat one side of a stent without coating the other side or to apply different coatings to the outside and inside of a stent. Therefore, there is a need for methods of making a stent, especially coated stent, wherein the coating(s) does not form bridges at gaps or corners, and wherein selective coating of the stent can be readily achieved. [0004]
  • SUMMARY OF THE INVENTION
  • These and other objectives are accomplished by the present invention. To achieve the aforementioned objectives, a method has been invented for manufacturing a medical device having a coated portion by laser ablation. [0005]
  • An embodiment of the present invention is a method for manufacturing a medical device having a coated portion which comprises obtaining a structure having an inner surface and an outer surface. At least a portion of the inner or outer surface is coated with a first coating material. Then, the coated structure is ablated with a laser to form at least one opening therein to form the coated portion. [0006]
  • In another embodiment of the present invention, the method for manufacturing a medical device having a coated portion comprises obtaining a plate having a first surface and a second surface. At least a portion of the first surface or second surface is coated with a first coating material. The coated plate is then ablated with a laser to form at least one opening in the coated plate. Afterward, the coated and ablated plate is formed by folding or shaping into the medical device.[0007]
  • DESCRIPTION OF THE FIGURES
  • FIGS. 1A through 1D show the steps of an embodiment of the present invention. [0008]
  • FIG. 1A depicts a cross-sectional view of a tubular structure. [0009]
  • FIG. 1B depicts a cross-sectional view of the tubular structure after a coating is applied on its inner surface. [0010]
  • FIG. 1C depicts a cross-sectional view of the tubular structure after another coating is applied on its outer surface. [0011]
  • FIG. 1D depicts a cross-sectional view of a coated tube-like portion of a medical device formed by ablating the tubular structure with a laser. [0012]
  • FIG. 2A through 2E show steps of another embodiment of the present invention. [0013]
  • FIG. 2A depicts a cross-sectional view of a plate. [0014]
  • FIG. 2B depicts a cross-sectional view of the plate after a coating is applied on its first surface. [0015]
  • FIG. 2C depicts a cross-sectional view of the plate after another coating is applied on its second surface. [0016]
  • FIG. 2D depicts a cross-sectional view of the coated plate after laser ablation. [0017]
  • FIG. 2E depicts a cross-sectional view of a coated tube-like portion of a medical device made by forming the ablated plate into a desired shape.[0018]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • In a method of the present invention, a structure or a plate is coated first, and then, ablated by a laser to form openings. Such ablation may be conducted with a ultrashort-pulse laser. “Ultrashort-pulse lasers” refer to lasers (light amplification by stimulated emission of radiation) consisting of pulses with durations shorter than about 10 pico (=10[0019] −11) second. The ultrashort-pulse laser is clearly distinguished from conventional continuous wave and long-pulse lasers (nanosecond (10−9 sec) laser) which have significantly longer pulses.
  • When a material is ablated by a conventional laser, the material is removed by thermal ablation wherein the material is locally heated to near melting point or boiling point. Thus, ablation using conventional lasers has various problems. For example, the ablation is furthermore accompanied by a heat transfer and a strong thermal shock to surrounding material which might cause serious damage, such as cracking. Also, the material once removed tends to redeposit or re-solidify on the surrounding surface. Thus, a material ablated by a conventional laser must be cleaned to remove the redeposited material surrounding the cut surface. Hence, if a material having an immobilized molecule on its surface is ablated by a conventional laser, because a clearing step is required, the immobilized molecule may be washed away at the cleaning step. Also, since process parameters for a conventional laser ablation, such as boiling point and absorption of the laser light, varies according to materials to be ablated, a layered material consisting of layers made of different materials cannot be ablated by a conventional laser. [0020]
  • On the other hand, ablation using an ultrashort-pulse laser is free from such problems. The ultrashort-pulse deposits its energy so quickly that it does not interact at all with the plume of vaporized material, which would distort and bend the incoming beam and produce a rough-edged cut. The plasma plume leaves the surface very rapidly, ensuring that it is well beyond the cut edges before the arrival of the next laser pulse. Since the pulse is very short, atoms in a material to be ablated are stationary in space with respect to the pulse duration. As a result, the ultrashort-pulse laser does not react differently between dielectric materials and electric materials. Thus, any material, including glasses, polymers, ceramics, silicon, and metals, can be ablated with very high precision without damage in surrounding area by ultrashort-pulse lasers due to the absence of heat shock waves. In addition, the surface ablated with a ultrashort-pulse laser has an excellent quality which does not need further polishing as required for a surface ablated with a conventional laser because redeposition is less or absent. [0021]
  • The lasers suitable for use in the method of the present invention are preferably ultrashort-pulse lasers consisting of pulses shorter than about 10[0022] −11 second, preferably shorter than about 10−12 second, and most preferably shorter than about 10−13 second which are referred to as femtosecond lasers. The ultrashort-pulse laser used for the
  • The intensity (fluence) of the laser radiation that is required to ablate a material is dependent on the material to be ablated. Specifically each material has its own laser-induced optical breakdown (LIOB) threshold which characterizes the fluence required to ablate the material at a particular pulse width. Also the fluence of the ultrashort-pulse laser suitable for the present invention can be chosen according to the thickness of the tube wall, the thickness of the coating and each material. Furthermore, the number of pulses needed to ablate completely through a material can be calculated for a given energy or fluence. [0023]
  • For example, a hole without any redeposition can be drilled into a 0.7 mm thick stainless steel plate coated with a 0.3 mm-thick poly(ethylene terephthalate) coating on its one surface, using a laser with a pulse duration of 220 femtosecond and a fluence of 0.6 J/cm[0024] 2 at a wavelength of 780 nm with a repetition rate of 1 kHz commercial femtosecond Ti:sapphire laser and amplifier system (SPECTRA-PHYSICS, SPITFIRE). As another example, a hole without any redeposition can be drilled into a 0.7 mm-thick piece of tantalum with a 0.3 mm-thick poly(ethylene oxide)/poly(butylene terephthalate) copolymer coating using a laser with a pulse duration of 120 femtosecond and a fluence of 0.5 J/cm2 with the same system used above.
  • The laser ablation of the present invention can be conducted using any additional techniques for improved accuracy and efficiency of such ultrashort-pulse laser ablation, e.g. diffractive optical elements (DOEs) and/or polarization trepanning. See C. Momma et al., [0025] Beam delivery of femtosecond laser radiation by diffractive optical elements, Appl. Phys. A 67, 517-520 (1998); S. Nolte et al., Polarization effects in ultrashort-pulse laser drilling, Appl. Phys. A 68, 563-567 (1999), both are incorporated herein by reference.
  • The ultrashort-pulse lasers are known to artisans. For example, they are thoroughly disclosed by M. D. Perry et al. in [0026] Ultrashort-Pulse Laser Machining, Section K-ICALEO 1998, pp. 1-20, which is incorporated herein by reference.
  • An embodiment of the present invention is illustrated in FIGS. [0027] 1A-1D in which a tubular structure made of a suitable medical device material is coated with a coating material or composition. FIG. 1A depicts a cross-sectional view of a tubular structure 10 made of a suitable medical device material. The inner surface of the tubular structure 10 is coated with first coating material or composition 12 (FIG. 1B). Then, the outer surface of the tubular structure 10 is also coated with second coating material or composition 14 (FIG. 1C) which can be the same as the first coating material or composition. The tubular structure 10 having an inner coating 12 and outer coating 14 is ablated by an ultrashort-pulse laser to form openings that made up a geometric pattern in the tubular structure (FIG. 1D). In this manner, a coated tube-like portion of a medical device 16 is formed. Alternatively, only one of the surfaces, e.g. inner or outer, may be coated.
  • Another embodiment is illustrated in FIGS. [0028] 2A-2E. FIG. 2A depicts a cross-sectional view of a plate 20 made of a suitable medical device material. A first surface of the plate 20 is coated with first coating material or composition 22 (FIG. 2B). Then, the second surface of the plate 20 is also coated with second coating material or composition 24, which can be the same as the first coating material or composition (FIG. 2C). The plate 20 having first coating 22 and second coating 24 is ablated by an ultrashort-pulse laser to form openings that make up a geometric pattern (FIG. 2D). The plate is then folded into a desired shape to form a coated tube-like portion of a medical device 26.
  • The term “structure” used in relation to a medical device means any structure which is at least a part of a medical device, such as a tubular structure. Likewise, the term “coated portion” used in relation to a medical device means any portion of a medical device which has (a) coating(s) on its surface(s). An example of such coated portion is a coated tube-like portion. Medical devices that can be fabricated by the method of the present invention includes those that include a tube-like or cylindrical-like portion. The tube-like portion of the medical device need not to be completely cylindrical. For instance, the cross-section of the tube-like portion can be any shape, such as rectangle, a triangle, etc., not just a circle. Such devices include, without limitation, stents and grafts. A bifurcated stent is also included among the medical devices which can be fabricated by the method of the present invention. [0029]
  • Preferably, the medical device is a stent. Stents suitable for the present invention include vascular stents such as self-expanding stents and balloon expandable stents. Examples of self-expanding stents are illustrated in U.S. Pat. Nos. 4,655,771 and 4,954,126 issued to Wallsten and 5,061,275 issued to Wallsten et al. Examples of appropriate balloon-expandable stents are shown in U.S. Pat. No. 4,733,665 issued to Palmaz, U.S. Pat. No. 4,800,882 issued to Gianturco and U.S. Pat. No. 4,886,062 issued to Wiktor. [0030]
  • Appropriate materials for making the medical device are not limited for the present invention, and any material including ceramics, polymers and metals can be used for manufacturing the device by the method of the present invention. Preferably, the device is made of a biocompatible material. Examples for such polymers include poly(ethylene terephthalate), polyacetal, poly(lactic acid), poly(ethylene oxide)/poly(butylene terephthalate) copolymer, and polycarbonate. Examples for such metals include titanium, stainless steel, platinum, tantalum or gold/platinum alloy. [0031]
  • In the present invention, the term “coating” encompasses all ways of coating, such as using plasma, dipping, spraying, etching, covering, plating, co-extruding and all modern chemical ways of attaching bio-molecules to surfaces as well as conventional coating. The surface is coated with a material by a method known to the artisans, such as dipping into a polymer, spraying a coating composition onto the surface, or attaching biomolecules to surfaces. The surface of the structure or plate is optionally subjected to a pre-treatment, such as roughing, oxidizing or adding a primer, and then coated. Adding a primer is preferable as such pre-treatment. In another embodiment, the structure or plate can be covered with a film. Further, in another embodiment, the structure or plate can be made by co-extrusion of the medical device material and the coating material. More than one coating method can be used to make a medical device. Thickness of coatings can range from almost a single layer of molecules to about 0.1 mm. Suitable thickness as of the coating are known in the art and can be selected by artisans. [0032]
  • Medical devices coating materials suitable for the present invention include any coating material for the stent which are known to the skilled artisan. Suitable coating materials include, without limitation, metals, such as tantalum, stainless steel, nitinol, titanium, and alloys, polymeric materials, such as poly-L-lactic acid, polycarbonate, polyethylene terephtalate, silicones, polyurethanes, thermoplastic elastomers, ethylene vinyl acetate copolymers, polyolefin elastomers, hydrogels and EPDM rubbers. Such coatings include biologically active molecules, such as heparine or insuline molecules, directly attached to oxide molecules on the surface of the structure as explained below. [0033]
  • Also, the coating can be a drug-releasing coating which immediately or gradually releases a biologically active material. Coating polymer useful for drug coating includes hydrogel polymers which are often used to contain the biologically active material and are disclosed in U.S. Pat. No. 5,304,121, U.S. Pat. No. 5,464,650, PCT publication WO95/03083 and U.S. Pat. No. 5,120,322, which are incorporated by reference. However, a non-hydrogel can be also used. Although polymeric molecules can be combined with biologically active molecules, biologically active materials can be directly immobilized on the surface. As disclosed in U.S. Pat. No. 5,356,433 to Rowland et al., polysaccharides can be immobilized to metallic surfaces by applying an organosilane coating with amine functionality and then applying a polysaccharide using carbodiimide as a coupling gent. U.S. Pat. No. 5,336,518 to Narayanan et al also discloses that a polysaccharide can be immobilized on a surface by applying a coat of heptafluorobutylmethacrylate (HFBMA) by radiofrequency (RF) plasma deposition, creating functional groups on the surface by RF plasma with water vapor, and then applying the polysaccharide using carbodiimide. Moreover, examples of medical devices, in particular, stents coated with polymer/biologically active material coatings are described in U.S. Pat. No. 5,879,697 which is incorporated herein by reference. [0034]
  • The term “biologically active material” encompasses therapeutic agents, such as drugs, and also genetic materials and biological materials. The genetic materials mean DNA or RNA, including, without limitation, of DNA/RNA encoding a useful protein stated below, intended to be inserted into a human body including viral vectors and non-viral vectors. Viral vectors include adenoviruses, gutted adenoviruses, adeno-associated virus, retroviruses, alpha virus (Semliki Forest, Sindbis, etc.), lentiviruses, herpes simplex virus, ex vivo modified cells (e.g., stem cells, fibroblasts, myoblasts, satellite cells, pericytes, cardiomyocytes, sketetal myocytes, macrophage), replication competent viruses (e.g., ONYX-015), and hybrid vectors. Non-viral vectors include artificial chromosomes and mini-chromosomes, plasmid DNA vectors (e.g., pCOR), cationic polymers (e.g., polyethyleneimine, polyethyleneimine (PEI)) graft copolymers (e.g., polyether-PEI and polyethylene oxide-PEI), neutral polymers PVP, SP1017 (SUPRATEK), lipids or lipoplexes, nanoparticles and microparticles with and without targeting sequences such as the protein transduction domain (PTD). The biological materials include cells, yeasts, bacteria, proteins, peptides, cytokines and hormones. Examples for peptides and proteins include growth factors (FGF, FGF-1, FGF-2, VEGF, Endotherial Mitogenic Growth Factors, and epidermal growth factors, transforming growth factor α and β platelet derived endothelial growth factor, platelet derived growth factor, tumor necrosis factor α, hepatocyte growth factor and insulin like growth factor), transcription factors, proteinkinases, CD inhibitors, thymidine kinase, and bone morphogenic proteins (BMP's), such as BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8. BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15, and BMP-16. Currently preferred BMP's are BMP-2, BMP-3, BMP-4, BMP-5, BMP-6, BMP-7. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Cells can be of human origin (autologous or allogeneic) or from an animal source (xenogeneic), genetically engineered, if desired, to deliver proteins of interest at the transplant site. The delivery media can be formulated as needed to maintain cell function and viability. Cells include whole bone marrow, bone marrow derived mono-nuclear cells, progenitor cells (e.g., endothelial progentitor cells) stem cells (e.g., mesenchymal, hematopoietic, neuronal), pluripotent stem cells, fibroblasts, macrophage, and satellite cells. [0035]
  • Biologically active material also includes non-genetic therapeutic agents, such as: [0036]
  • anti-thrombogenic agents such as heparin, heparin derivatives, urokinase, and PPack (dextrophenylalanine proline arginine chloromethylketone); [0037]
  • anti-proliferative agents such as enoxaprin, angiopeptin, or monoclonal antibodies capable of blocking smooth muscle cell proliferation, hirudin, and acetylsalicylic acid, amlodipine and doxazosin; [0038]
  • anti-inflammatory agents such as glucocorticoids, betamethasone, dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine, and mesalamine; [0039]
  • antineoplastic/antiproliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, methotrexate, azathioprine, adriamycin and mutamycin; endostatin, angiostatin and thymidine kinase inhibitors, taxol and its analogs or derivatives; [0040]
  • anesthetic agents such as lidocaine, bupivacaine, and ropivacaine; [0041]
  • anti-coagulants such as D-Phe-Pro-Arg chloromethyl keton, an RGD peptide-containing compound, heparin, antithrombin compounds, platelet receptor antagonists, anti-thrombin anticodies, anti-platelet receptor antibodies, aspirin (aspirin is also classified as an analgesic, antipyretic and anti-inflammatory drug), dipyridamole, protamine, hirudin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides; [0042]
  • vascular cell growth promotors such as growth factors, Vascular Endothelial Growth Factors (FEGF, all types including VEGF-2), growth factor receptors, transcriptional activators, and translational promotors; [0043]
  • vascular cell growth inhibitors such as antiproliferative agents, growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; [0044]
  • cholesterol-lowering agents; vasodilating agents; and agents which interfere with endogenous vasoactive mechanisms; [0045]
  • anti-oxidants, such as probucol; [0046]
  • antibiotic agents, such as penicillin, cefoxitin, oxacillin, tobranycin [0047]
  • angiogenic substances, such as acidic and basic fibrobrast growth factors, estrogen including estradiol (E2), estriol (E3) and 17-Beta Estradiol; and [0048]
  • drugs for heart failure, such as digoxin, beta-blockers, angiotensin-converting enzyme (ACE) inhibitors including captopril and enalopril. [0049]
  • In the devices made by the method of the invention, both surfaces of the tube-like portion can be coated with a same material at the same time. [0050]
  • Also, one surface of the structure or plate need not be coated, while the other surface has a coating. A medical device having such portion is preferable for a drug-delivery medical device for delivering a biologically active material to a blood vessel surface while minimizing the amount of biologically active material which is delivered into the blood stream. Such a medical device is also preferable when the coating is easily damaged during implantation of the medical device, e.g., because of the unfolding shear-action of the delivery balloon. [0051]
  • Further in another embodiment, inner and outer surfaces of the portion of the medical device can be coated with different materials. For example, a stent can have a polymer coating having an anti-thrombogenic agent on the inner surface which directly contacts blood flow and a polymer coating having an anti-inflammatory agent on the outer surface which directly contacts blood vessel wall. The inner surface and the outer surface can be coated by the different methods. Also, there can be more than one coating on a surface. Furthermore, an entire surface of the medical device is not necessarily coated. [0052]
  • In the present invention, the coated structure or plate is ablated by a laser to form openings. The openings along with the remaining parts of the structure or plate make up the geometric pattern structure of the medical device. The structure or plate can be moved while the laser is held stationary to ablate the structure or plate into pattern, or alternatively, the laser can be programmed to move along a predetermined pattern by a method known to artisans. A combination of both, i.e. moving both the laser and the structure or plate, is also possible. In the present invention, even a coated stent having a complex stent pattern can be made with high precision. A medical devices having multiple coating layers and a complicated geometry pattern can also be easily manufactured by the method of the present invention without flaws such as polymer-bridges at gaps or corners. Also, the layer thickness can be easily controlled by the method of the present invention. [0053]
  • In the case where a plate is coated and ablated, the plate is formed into a portion of the medical device in the way known to artisans. In case the coated portion is a tube-like portion, it is formed by forming the flat plate into a tube-like shape and attaching the opposing edges of the plate together such as by fusing the two opposing sides. A method of fusing appropriate to a stent material can be chosen. Methods of fusing include fusing by heat or using adhesive. [0054]
  • After the ablation of the present invention, there is no need to polish the ablated medical device to avoid rough cut surface because of the high quality of the cut surface. [0055]
  • Furthermore, a plurality of medical devices can be manufactured by coating one large structure and, as ablatin it as explained above, cutting the structure into individual coated portions. For example, if the coated portion is a tube-like portion, a long tubular structure is coated first, and then ablated, and then cut into individual tube-like portions of medical devices. Likewise, a large plate can be coated first, cut into a smaller plate, and then formed into an individual coated structure and ablated. Alternatively, a large coated plate can be shaped into a large coated structure, and then it is cut into individual coated structures as ablated. In this way, a plurality of medical devices be made by using one coating step. Also, all of the medical devices will have uniform coating thicknesses. [0056]
  • If necessary, the thickness of the coating can be easily measured before the ablation step. For example, it is very useful to know an amount of a biologically active material contained in a medical material. This amount can be calculated in the present invention by measuring the thickness of the coating after the coating is placed on the medical device. For example, based on the concentration of biologically active material in the coating composition, the thickness of the coating, the amount of biologically active material placed on the device can be determined. [0057]
  • The description contained herein is for purposes of illustration and not for purposes of limitation. Changes and modifications may be made to the embodiments of the description and still be within the scope of the invention. Furthermore, obvious changes, modifications or variations will occur to those skilled in the art. Also, all references cited above are incorporated herein, in their entirety, for all purposes related to this disclosure. [0058]

Claims (29)

We claim:
1. A method for manufacturing a coated medical device having a coated portion which comprises the steps of:
(a) obtaining a structure having an inner surface and an outer surface;
(b) coating at least a portion of the inner or outer surface with a first coating material; and
(c) ablating the coated structure with an ultrashort-pulse laser to form at least one opening therein to form the coated portion of the medical device.
2. The method of claim 1, wherein the structure is a tubular structure.
3. The method of claim 1, wherein the medical device is a stent.
4. The method of claim 1, wherein step (b) comprises only coating the inner surface of the structure with the first coating material.
5. The method of claim 1, wherein step (b) comprises only coating the outer surface of the structure with the first coating material.
6. The method of claim 1, wherein step (b) comprises:
(i) coating the inner surface of the structure with the first coating material and
(ii) coating the outer surface of the structure with a second coating material.
7. The method of claim 7, wherein the first coating material and the second coating material are the same.
8. The method of claim 1, wherein the first coating material is a coating composition and the surface is coated by dipping the surface into the coating composition.
9. The method of claim 1, wherein the first coating material is a coating composition and the surface is coated by spray-coating the coating composition onto the surface.
10. The method of claim 1, wherein the first coating material comprises a polymer and a biologically active material.
11. The method of claim 1, wherein the first coating material comprises a biologically active material, and the coating step (b) is conducted by immobilizing the first coating material onto at least of a portion of the surface.
13. The method of claim 1, wherein the coated structure is ablated to form a plurality of openings therein that define a plurality of struts.
13. The method of claim 1, which further comprises cutting the coated structure into sections to form more than one coated portion.
14. The method of claim 13, wherein the cutting step is conducted between coating step and the ablating step.
15. A method for manufacturing a coated medical device having a coated portion which comprises the steps of:
(a) obtaining a plate having a first surface and a second surface;
(b) coating at least a portion of the first surface or second surface which a first coating material;
(c) ablating the coated plate with an ulrashort-pulse laser to form at least one opening therein; and
(d) forming the coated portion with the ablated plate.
16. The method of claim 15, wherein the coated portion is a tube-like portion.
17. The method of claim 15, wherein the medical device is a stent.
18. The method of claim 15, wherein step (b) comprises only coating the first surface of the plate with the first coating material.
19. The method of claim 15, wherein step (b) comprises only coating the second surface of the plate with the first coating material.
20. The method of claim 15, wherein step (b) comprises:
(i) coating the first surface of the plate with the first coating material and
(ii) coating the second surface of the plate with a second coating material.
21. The method of claim 15, wherein the first coating material and the second coating material are the same.
22. The method of claim 15, wherein the first coating material is a coating composition and the surface is coated by dipping the surface into the coating composition.
23. The method of claim 15, wherein the first coating material is a coating composition and the surface is coated by spray-coating the coating composition onto the surface.
24. The method of claim 15, wherein the first coating material comprises a biologically active material, and coating is conducted by immobilizing the first coating material onto at least of a portion of the surface.
25. The method of claim 15, wherein the first coating material comprises a polymer and a biologically active material.
26. The method of claim 15, wherein the coated plate is ablated to form a plurality of openings therein that define a plurality of struts.
27. The method of claim 15, which further comprises cutting the coated plate into sections to form more than one coated tube-like portion.
28. The method of claim 27, wherein the cutting step is conducted between the coating step and the ablating step.
29. The method of claim 27, wherein the coated plate is cut as it is ablated.
US10/004,954 2000-11-28 2001-12-03 Method for manufacturing a medical device having a coated portion by laser ablation Abandoned US20020065553A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/004,954 US20020065553A1 (en) 2000-11-28 2001-12-03 Method for manufacturing a medical device having a coated portion by laser ablation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/724,503 US6517888B1 (en) 2000-11-28 2000-11-28 Method for manufacturing a medical device having a coated portion by laser ablation
US10/004,954 US20020065553A1 (en) 2000-11-28 2001-12-03 Method for manufacturing a medical device having a coated portion by laser ablation

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/724,503 Division US6517888B1 (en) 2000-11-28 2000-11-28 Method for manufacturing a medical device having a coated portion by laser ablation

Publications (1)

Publication Number Publication Date
US20020065553A1 true US20020065553A1 (en) 2002-05-30

Family

ID=24910671

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/724,503 Expired - Fee Related US6517888B1 (en) 2000-11-28 2000-11-28 Method for manufacturing a medical device having a coated portion by laser ablation
US10/004,954 Abandoned US20020065553A1 (en) 2000-11-28 2001-12-03 Method for manufacturing a medical device having a coated portion by laser ablation

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/724,503 Expired - Fee Related US6517888B1 (en) 2000-11-28 2000-11-28 Method for manufacturing a medical device having a coated portion by laser ablation

Country Status (7)

Country Link
US (2) US6517888B1 (en)
EP (2) EP1616535A1 (en)
JP (1) JP2004520872A (en)
AU (2) AU3649102A (en)
CA (1) CA2430126A1 (en)
DE (1) DE60114044T2 (en)
WO (1) WO2002043619A2 (en)

Cited By (151)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241315A1 (en) * 2000-05-16 2004-12-02 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
US20050085898A1 (en) * 2003-10-21 2005-04-21 Cook Incorporated. Natural tissue stent
US20050163817A1 (en) * 2002-04-29 2005-07-28 Masters David B. Biomatrix structural containment and fixation systems and methods of use thereof
US20050163913A1 (en) * 2004-01-28 2005-07-28 Spencer Steven M. Multi-step method of manufacturing a medical device
US20050196440A1 (en) * 2003-12-08 2005-09-08 Masters David B. Mucoadhesive drug delivery devices and methods of making and using thereof
US20050266039A1 (en) * 2004-05-27 2005-12-01 Jan Weber Coated medical device and method for making the same
EP1626751A2 (en) * 2003-05-06 2006-02-22 SciMed Life Systems, Inc. Processes for producing polymer coatings
US20060167540A1 (en) * 2003-06-17 2006-07-27 Masters David B Encapsulated or coated stent systems
US20060177573A1 (en) * 2001-05-16 2006-08-10 Regents Of The University Of Minnesota Coating medical devices
WO2007006043A2 (en) * 2005-07-05 2007-01-11 Boston Scientific Scimed, Inc. Medical devices with machined layers for controlled communication with underlying regions
WO2007089883A2 (en) * 2006-01-31 2007-08-09 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US20070199824A1 (en) * 2006-01-31 2007-08-30 Hoerr Robert A Electrospray coating of objects
US20080097393A1 (en) * 2006-08-24 2008-04-24 Boston Scientific Scimed, Inc. Medical device coating configuration and method for improved lubricity and durability
US20080131479A1 (en) * 2006-08-02 2008-06-05 Jan Weber Endoprosthesis with three-dimensional disintegration control
US20080141936A1 (en) * 1997-06-12 2008-06-19 Regents Of The University Of Minnesota Electrospraying apparatus and method for coating particles
US20080210302A1 (en) * 2006-12-08 2008-09-04 Anand Gupta Methods and apparatus for forming photovoltaic cells using electrospray
US20080281409A1 (en) * 2006-11-03 2008-11-13 Anthony Malone Stents with drug eluting coatings
FR2925375A1 (en) * 2007-12-21 2009-06-26 Bosch Gmbh Robert INJECTOR FOR EJECTING A FLUID IN PARTICULAR IN AN INJECTION FACILITY OR AN EXHAUST GAS SYSTEM AND METHOD OF MAKING SUCH AN INJECTOR
US20090264975A1 (en) * 2008-04-22 2009-10-22 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US20090319026A1 (en) * 2008-06-20 2009-12-24 Boston Scientific Scimed, Inc. Composite Stent with Reservoirs for Drug Delivery and Methods of Manufacturing
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US7662326B2 (en) 2004-09-10 2010-02-16 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US20100049310A1 (en) * 2006-02-15 2010-02-25 Acandis Gmbh & Co. Kg Method for coating a stent
US7699890B2 (en) 1997-04-15 2010-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis and a method of making the same
US20100100171A1 (en) * 2005-06-20 2010-04-22 Advanced Cardiovascular Systems, Inc. Method Of Manufacturing An Implantable Polymeric Medical Device
US7708548B2 (en) 2005-04-12 2010-05-04 Advanced Cardiovascular Systems, Inc. Molds for fabricating stents with profiles for gripping a balloon catheter
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US20100143487A1 (en) * 2007-12-26 2010-06-10 Gel-Del Technologies, Inc. Biocompatible protein-based particles and methods thereof
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US20100196478A1 (en) * 1998-09-25 2010-08-05 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US20110066223A1 (en) * 2009-09-14 2011-03-17 Hossainy Syed F A Bioabsorbable Stent With Time Dependent Structure And Properties
US20110066225A1 (en) * 2009-09-17 2011-03-17 Mikael Trollsas Bioabsorbable Stent With Time Dependent Structure And Properties And Regio-Selective Degradation
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US20110153005A1 (en) * 2009-12-21 2011-06-23 Claus Harder Medical implant, coating method and implantation method
US7967998B2 (en) 2003-06-25 2011-06-28 Advanced Cardiocasvular Systems, Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8153591B2 (en) 2003-08-26 2012-04-10 Gel-Del Technologies, Inc. Protein biomaterials and biocoacervates and methods of making and using thereof
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US8197879B2 (en) 2003-09-30 2012-06-12 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8470014B2 (en) 2004-08-25 2013-06-25 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
WO2013178297A1 (en) 2012-05-30 2013-12-05 Admedes Schuessler Gmbh Method for producing a body implant, assembly consisting of a guide wire and a body implant, and a medical instrument
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US20140147686A1 (en) * 2004-03-16 2014-05-29 Abbott Cardiovascular Systems Inc. Biologically absorbable coating for implantable devices based on copolymers having ester bonds and methods of fabricating the same
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8752268B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US8771343B2 (en) * 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US8840660B2 (en) * 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US9108217B2 (en) 2006-01-31 2015-08-18 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US20150238335A1 (en) * 2014-02-26 2015-08-27 Suntech Co., Ltd. Polymeric stent and methods of manufacturing the same
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US20150360253A1 (en) * 2014-06-13 2015-12-17 Boe Technology Group Co., Ltd. Thin film patterning method and thin film patterning apparatus
EP2742916A3 (en) * 2012-12-17 2016-01-13 Acandis GmbH & Co. KG Medical implant, treatment system with such an implant and method for producing an implant
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US9254212B2 (en) 2012-04-06 2016-02-09 Abbott Cardiovascular Systems Inc. Segmented scaffolds and delivery thereof for peripheral applications
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US9295570B2 (en) 2001-09-19 2016-03-29 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
US9532888B2 (en) 2006-01-04 2017-01-03 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
EP3220995A4 (en) * 2014-11-20 2017-12-13 Edwards Lifesciences Corporation Inflatable device with etched modifications
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US10004619B2 (en) 2012-09-20 2018-06-26 Dotter Intellectual Pte, Ltd. Polymeric stent and methods of manufacturing the same
US10016534B2 (en) 2008-11-17 2018-07-10 Gel-Del Technologies, Inc. Protein biomaterial and biocoacervate vessel graft systems and methods of making and using thereof
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US10034963B2 (en) 2009-08-28 2018-07-31 Sernova Corporation Methods and devices for cellular transplantation
US10307274B2 (en) 2011-07-29 2019-06-04 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US10406009B2 (en) 2010-09-15 2019-09-10 Abbott Cardiovascular Systems Inc. Bioabsorbable superficial femoral stent patterns with designed to break links
US10610387B2 (en) 2015-06-12 2020-04-07 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold

Families Citing this family (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129215A1 (en) * 1998-09-24 2003-07-10 T-Ram, Inc. Medical devices containing rapamycin analogs
US6890546B2 (en) 1998-09-24 2005-05-10 Abbott Laboratories Medical devices containing rapamycin analogs
US7278195B2 (en) * 1999-12-16 2007-10-09 Israel Aircraft Industries Ltd. Method for producing a coated medical support device
US20040073294A1 (en) 2002-09-20 2004-04-15 Conor Medsystems, Inc. Method and apparatus for loading a beneficial agent into an expandable medical device
US6660034B1 (en) * 2001-04-30 2003-12-09 Advanced Cardiovascular Systems, Inc. Stent for increasing blood flow to ischemic tissues and a method of using the same
SE519566C2 (en) * 2001-07-04 2003-03-11 Nobel Biocare Ab Method of Treating Implants by Coating with Calcium Phosphate and Bone Growth Stimulants
WO2003008006A1 (en) * 2001-07-19 2003-01-30 Dempsey, Donald, J. Bioactive surface for titanium implants
US6764709B2 (en) * 2001-11-08 2004-07-20 Scimed Life Systems, Inc. Method for making and measuring a coating on the surface of a medical device using an ultraviolet laser
US7691461B1 (en) 2002-04-01 2010-04-06 Advanced Cardiovascular Systems, Inc. Hybrid stent and method of making
US6865810B2 (en) * 2002-06-27 2005-03-15 Scimed Life Systems, Inc. Methods of making medical devices
US7758636B2 (en) 2002-09-20 2010-07-20 Innovational Holdings Llc Expandable medical device with openings for delivery of multiple beneficial agents
ATE374652T1 (en) 2002-10-22 2007-10-15 Medtronic Vascular Inc STENT WITH INTERMITTENT COATING
US20060271168A1 (en) * 2002-10-30 2006-11-30 Klaus Kleine Degradable medical device
US7758881B2 (en) * 2004-06-30 2010-07-20 Advanced Cardiovascular Systems, Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
US8435550B2 (en) * 2002-12-16 2013-05-07 Abbot Cardiovascular Systems Inc. Anti-proliferative and anti-inflammatory agent combination for treatment of vascular disorders with an implantable medical device
ATE526038T1 (en) 2003-03-28 2011-10-15 Innovational Holdings Llc IMPLANTABLE MEDICAL DEVICE WITH CONTINUOUS MEDIUM CONCENTRATION DISTANCE
US20050070996A1 (en) * 2003-04-08 2005-03-31 Dinh Thomas Q. Drug-eluting stent for controlled drug delivery
US7163555B2 (en) 2003-04-08 2007-01-16 Medtronic Vascular, Inc. Drug-eluting stent for controlled drug delivery
US7086931B2 (en) * 2003-04-18 2006-08-08 Tdk Corporation Magnetic head bar holding unit, lapping device, and method of lapping medium-opposing surface of thin-film magnetic head
DE10320262A1 (en) * 2003-05-07 2004-12-02 Meko Laserstrahl-Materialbearbeitungen E.K. Process for producing a medical implant and an implant produced in this way
US20040230290A1 (en) * 2003-05-15 2004-11-18 Jan Weber Medical devices and methods of making the same
CN100479778C (en) * 2003-08-04 2009-04-22 皇家飞利浦电子股份有限公司 A device for shortening hairs by means of laser induced optical breakdown effects
US7785653B2 (en) 2003-09-22 2010-08-31 Innovational Holdings Llc Method and apparatus for loading a beneficial agent into an expandable medical device
CA2546094A1 (en) * 2004-01-23 2005-08-04 Sumitomo Electric Industries, Ltd. Stretched polytetrafluoroethylene porous article having fine pores formed therein and method for production thereof, and method of ablation machining
US8816244B2 (en) * 2004-04-13 2014-08-26 Boston Scientific Scimed, Inc. Inverted stent cutting process
GB0410749D0 (en) * 2004-05-14 2004-06-16 Dow Corning Ireland Ltd Coating apparatus
US20050260355A1 (en) * 2004-05-20 2005-11-24 Jan Weber Medical devices and methods of making the same
US20060020330A1 (en) * 2004-07-26 2006-01-26 Bin Huang Method of fabricating an implantable medical device with biaxially oriented polymers
US20060041102A1 (en) * 2004-08-23 2006-02-23 Advanced Cardiovascular Systems, Inc. Implantable devices comprising biologically absorbable polymers having constant rate of degradation and methods for fabricating the same
FI20041515A (en) * 2004-11-25 2006-05-26 Lasermark Ab Oy Procedure for the preparation of medical stents
US20060122694A1 (en) * 2004-12-03 2006-06-08 Stinson Jonathan S Medical devices and methods of making the same
US20060125144A1 (en) * 2004-12-14 2006-06-15 Jan Weber Stent and stent manufacturing methods
US7632307B2 (en) * 2004-12-16 2009-12-15 Advanced Cardiovascular Systems, Inc. Abluminal, multilayer coating constructs for drug-delivery stents
US20060224226A1 (en) * 2005-03-31 2006-10-05 Bin Huang In-vivo radial orientation of a polymeric implantable medical device
US9119901B2 (en) * 2005-04-28 2015-09-01 Warsaw Orthopedic, Inc. Surface treatments for promoting selective tissue attachment to medical impants
US8414907B2 (en) * 2005-04-28 2013-04-09 Warsaw Orthopedic, Inc. Coatings on medical implants to guide soft tissue healing
US8071155B2 (en) * 2005-05-05 2011-12-06 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US7291166B2 (en) * 2005-05-18 2007-11-06 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US7691082B2 (en) * 2005-07-01 2010-04-06 Boston Scientific Scimed, Inc. Medical devices
US7297758B2 (en) * 2005-08-02 2007-11-20 Advanced Cardiovascular Systems, Inc. Method for extending shelf-life of constructs of semi-crystallizable polymers
US7778684B2 (en) * 2005-08-08 2010-08-17 Boston Scientific Scimed, Inc. MRI resonator system with stent implant
US20070038290A1 (en) * 2005-08-15 2007-02-15 Bin Huang Fiber reinforced composite stents
US7476245B2 (en) * 2005-08-16 2009-01-13 Advanced Cardiovascular Systems, Inc. Polymeric stent patterns
US20070045252A1 (en) * 2005-08-23 2007-03-01 Klaus Kleine Laser induced plasma machining with a process gas
US20070045255A1 (en) * 2005-08-23 2007-03-01 Klaus Kleine Laser induced plasma machining with an optimized process gas
US20070112421A1 (en) * 2005-11-14 2007-05-17 O'brien Barry Medical device with a grooved surface
US20070151961A1 (en) * 2006-01-03 2007-07-05 Klaus Kleine Fabrication of an implantable medical device with a modified laser beam
US20070179219A1 (en) * 2006-01-31 2007-08-02 Bin Huang Method of fabricating an implantable medical device using gel extrusion and charge induced orientation
US20070191931A1 (en) * 2006-02-16 2007-08-16 Jan Weber Bioerodible endoprostheses and methods of making the same
US9526814B2 (en) * 2006-02-16 2016-12-27 Boston Scientific Scimed, Inc. Medical balloons and methods of making the same
US20070239256A1 (en) * 2006-03-22 2007-10-11 Jan Weber Medical devices having electrical circuits with multilayer regions
US20070254012A1 (en) * 2006-04-28 2007-11-01 Ludwig Florian N Controlled degradation and drug release in stents
US20070282434A1 (en) * 2006-05-30 2007-12-06 Yunbing Wang Copolymer-bioceramic composite implantable medical devices
US20080058916A1 (en) * 2006-05-31 2008-03-06 Bin Huang Method of fabricating polymeric self-expandable stent
US20070282433A1 (en) * 2006-06-01 2007-12-06 Limon Timothy A Stent with retention protrusions formed during crimping
US20070281073A1 (en) * 2006-06-01 2007-12-06 Gale David C Enhanced adhesion of drug delivery coatings on stents
US20080124372A1 (en) * 2006-06-06 2008-05-29 Hossainy Syed F A Morphology profiles for control of agent release rates from polymer matrices
US20070286941A1 (en) * 2006-06-13 2007-12-13 Bin Huang Surface treatment of a polymeric stent
US20070290412A1 (en) * 2006-06-19 2007-12-20 John Capek Fabricating a stent with selected properties in the radial and axial directions
US20070299511A1 (en) * 2006-06-27 2007-12-27 Gale David C Thin stent coating
US20080009938A1 (en) * 2006-07-07 2008-01-10 Bin Huang Stent with a radiopaque marker and method for making the same
US20080014244A1 (en) * 2006-07-13 2008-01-17 Gale David C Implantable medical devices and coatings therefor comprising physically crosslinked block copolymers
US7559137B2 (en) * 2006-07-17 2009-07-14 Potomac Photonics, Inc. Method for providing electrically conductive paths in polymer tubing
US20080091262A1 (en) * 2006-10-17 2008-04-17 Gale David C Drug delivery after biodegradation of the stent scaffolding
US20080069858A1 (en) 2006-09-20 2008-03-20 Boston Scientific Scimed, Inc. Medical devices having biodegradable polymeric regions with overlying hard, thin layers
US7963942B2 (en) * 2006-09-20 2011-06-21 Boston Scientific Scimed, Inc. Medical balloons with modified surfaces
JP2009297719A (en) * 2006-10-02 2009-12-24 Hikari Physics Kenkyusho:Kk Laser working apparatus and method for capillary
US20080097588A1 (en) 2006-10-18 2008-04-24 Conor Medsystems, Inc. Systems and Methods for Producing a Medical Device
US8114466B2 (en) * 2007-01-03 2012-02-14 Boston Scientific Scimed, Inc. Methods of applying coating to the inside surface of a stent
US8187255B2 (en) * 2007-02-02 2012-05-29 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US20080243228A1 (en) * 2007-03-28 2008-10-02 Yunbing Wang Implantable medical devices fabricated from block copolymers
US20080306582A1 (en) * 2007-06-05 2008-12-11 Yunbing Wang Implantable medical devices with elastomeric copolymer coatings
US9034007B2 (en) 2007-09-21 2015-05-19 Insera Therapeutics, Inc. Distal embolic protection devices with a variable thickness microguidewire and methods for their use
US8974809B2 (en) * 2007-09-24 2015-03-10 Boston Scientific Scimed, Inc. Medical devices having a filter insert for controlled diffusion
US20090081272A1 (en) * 2007-09-24 2009-03-26 John Clarke Medical devices having a metal particulate composition for controlled diffusion
US20090118813A1 (en) * 2007-11-02 2009-05-07 Torsten Scheuermann Nano-patterned implant surfaces
WO2009076592A2 (en) * 2007-12-12 2009-06-18 Boston Scientific Scimed, Inc. Medical devices having porous component for controlled diffusion
EP2149414A1 (en) 2008-07-30 2010-02-03 Nederlandse Centrale Organisatie Voor Toegepast Natuurwetenschappelijk Onderzoek TNO Method of manufacturing a porous magnesium, or magnesium alloy, biomedical implant or medical appliance.
US8076529B2 (en) * 2008-09-26 2011-12-13 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix for intraluminal drug delivery
US8049061B2 (en) 2008-09-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery
US8226603B2 (en) * 2008-09-25 2012-07-24 Abbott Cardiovascular Systems Inc. Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery
WO2010091106A1 (en) * 2009-02-03 2010-08-12 Abbott Cardiovascular Systems Inc. Improved laser cutting system
US8461478B2 (en) * 2009-02-03 2013-06-11 Abbott Cardiovascular Systems, Inc. Multiple beam laser system for forming stents
EP2393625A1 (en) * 2009-02-03 2011-12-14 Abbott Cardiovascular Systems Inc. Improved laser cutting process for forming stents
US20100285085A1 (en) * 2009-05-07 2010-11-11 Abbott Cardiovascular Systems Inc. Balloon coating with drug transfer control via coating thickness
CA2761579C (en) * 2009-05-29 2014-08-19 Medovent Gmbh A medical product comprising a chitosan-coated wall and a method for manufacturing a medical product
WO2011040652A1 (en) * 2009-09-29 2011-04-07 주식회사 엠아이텍 Implant tube and method for coating same
WO2011119536A1 (en) 2010-03-22 2011-09-29 Abbott Cardiovascular Systems Inc. Stent delivery system having a fibrous matrix covering with improved stent retention
WO2011126708A1 (en) 2010-04-06 2011-10-13 Boston Scientific Scimed, Inc. Endoprosthesis
US8556511B2 (en) 2010-09-08 2013-10-15 Abbott Cardiovascular Systems, Inc. Fluid bearing to support stent tubing during laser cutting
US8728563B2 (en) * 2011-05-03 2014-05-20 Palmaz Scientific, Inc. Endoluminal implantable surfaces, stents, and grafts and method of making same
US8679150B1 (en) 2013-03-15 2014-03-25 Insera Therapeutics, Inc. Shape-set textile structure based mechanical thrombectomy methods
EP3620203A1 (en) 2013-03-15 2020-03-11 Insera Therapeutics, Inc. Vascular treatment devices
US8690907B1 (en) 2013-03-15 2014-04-08 Insera Therapeutics, Inc. Vascular treatment methods
US8715314B1 (en) 2013-03-15 2014-05-06 Insera Therapeutics, Inc. Vascular treatment measurement methods
CN108697423A (en) 2016-02-16 2018-10-23 伊瑟拉医疗公司 The part flow arrangement of suction unit and anchoring
WO2020014411A1 (en) * 2018-07-11 2020-01-16 Pranav Soman Hybrid additive-subtractive laser fabrication platform for shaping hydrogels

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4655771A (en) * 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5061275A (en) * 1986-04-21 1991-10-29 Medinvent S.A. Self-expanding prosthesis
US5120322A (en) * 1990-06-13 1992-06-09 Lathrotec, Inc. Method and apparatus for treatment of fibrotic lesions
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5336518A (en) * 1992-12-11 1994-08-09 Cordis Corporation Treatment of metallic surfaces using radiofrequency plasma deposition and chemical attachment of bioactive agents
US5356433A (en) * 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US5780807A (en) * 1994-11-28 1998-07-14 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US6096070A (en) * 1995-06-07 2000-08-01 Med Institute Inc. Coated implantable medical device
US6171327B1 (en) * 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6170327B1 (en) * 1995-12-15 2001-01-09 Siemens Aktiengesellschaft Air mass meter
US6379379B1 (en) * 1998-05-05 2002-04-30 Scimed Life Systems, Inc. Stent with smooth ends
US6391052B2 (en) * 1994-04-29 2002-05-21 Scimed Life Systems, Inc. Stent with collagen
US6471721B1 (en) * 1999-12-30 2002-10-29 Advanced Cardiovascular Systems, Inc. Vascular stent having increased radiopacity and method for making same

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5674192A (en) 1990-12-28 1997-10-07 Boston Scientific Corporation Drug delivery
CA2079417C (en) * 1991-10-28 2003-01-07 Lilip Lau Expandable stents and method of making same
US5629077A (en) 1994-06-27 1997-05-13 Advanced Cardiovascular Systems, Inc. Biodegradable mesh and film stent
EP0842729A1 (en) 1996-10-21 1998-05-20 Arterial Vascular Engineering, Inc. Method and apparatus for laser processing of intravascular devices
DE19739912C1 (en) * 1997-09-11 1998-12-10 Schott Glas New alkali-free aluminoborosilicate glass
DE19745294A1 (en) 1997-10-14 1999-04-15 Biotronik Mess & Therapieg Process for the production of fine-structured medical technology implants
US6264687B1 (en) 1998-04-20 2001-07-24 Cordis Corporation Multi-laminate stent having superelastic articulated sections
US6153252A (en) * 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
US6620192B1 (en) 1999-03-16 2003-09-16 Advanced Cardiovascular Systems, Inc. Multilayer stent

Patent Citations (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4954126B1 (en) * 1982-04-30 1996-05-28 Ams Med Invent S A Prosthesis comprising an expansible or contractile tubular body
US4954126A (en) * 1982-04-30 1990-09-04 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4655771A (en) * 1982-04-30 1987-04-07 Shepherd Patents S.A. Prosthesis comprising an expansible or contractile tubular body
US4655771B1 (en) * 1982-04-30 1996-09-10 Medinvent Ams Sa Prosthesis comprising an expansible or contractile tubular body
US4733665A (en) * 1985-11-07 1988-03-29 Expandable Grafts Partnership Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
US4733665B1 (en) * 1985-11-07 1994-01-11 Expandable Grafts Partnership Expandable intraluminal graft,and method and apparatus for implanting an expandable intraluminal graft
US4733665C2 (en) * 1985-11-07 2002-01-29 Expandable Grafts Partnership Expandable intraluminal graft and method and apparatus for implanting an expandable intraluminal graft
US5061275A (en) * 1986-04-21 1991-10-29 Medinvent S.A. Self-expanding prosthesis
US4800882A (en) * 1987-03-13 1989-01-31 Cook Incorporated Endovascular stent and delivery system
US4886062A (en) * 1987-10-19 1989-12-12 Medtronic, Inc. Intravascular radially expandable stent and method of implant
US5120322A (en) * 1990-06-13 1992-06-09 Lathrotec, Inc. Method and apparatus for treatment of fibrotic lesions
US5304121A (en) * 1990-12-28 1994-04-19 Boston Scientific Corporation Drug delivery system making use of a hydrogel polymer coating
US5356433A (en) * 1991-08-13 1994-10-18 Cordis Corporation Biocompatible metal surfaces
US5336518A (en) * 1992-12-11 1994-08-09 Cordis Corporation Treatment of metallic surfaces using radiofrequency plasma deposition and chemical attachment of bioactive agents
US5464650A (en) * 1993-04-26 1995-11-07 Medtronic, Inc. Intravascular stent and method
US6391052B2 (en) * 1994-04-29 2002-05-21 Scimed Life Systems, Inc. Stent with collagen
US5780807A (en) * 1994-11-28 1998-07-14 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
US6096070A (en) * 1995-06-07 2000-08-01 Med Institute Inc. Coated implantable medical device
US6170327B1 (en) * 1995-12-15 2001-01-09 Siemens Aktiengesellschaft Air mass meter
US5879697A (en) * 1997-04-30 1999-03-09 Schneider Usa Inc Drug-releasing coatings for medical devices
US6379379B1 (en) * 1998-05-05 2002-04-30 Scimed Life Systems, Inc. Stent with smooth ends
US6171327B1 (en) * 1999-02-24 2001-01-09 Scimed Life Systems, Inc. Intravascular filter and method
US6471721B1 (en) * 1999-12-30 2002-10-29 Advanced Cardiovascular Systems, Inc. Vascular stent having increased radiopacity and method for making same

Cited By (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8172897B2 (en) 1997-04-15 2012-05-08 Advanced Cardiovascular Systems, Inc. Polymer and metal composite implantable medical devices
US10028851B2 (en) 1997-04-15 2018-07-24 Advanced Cardiovascular Systems, Inc. Coatings for controlling erosion of a substrate of an implantable medical device
US7699890B2 (en) 1997-04-15 2010-04-20 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis and a method of making the same
US8007529B2 (en) 1997-04-15 2011-08-30 Advanced Cardiovascular Systems, Inc. Medicated porous metal prosthesis
US7972661B2 (en) 1997-06-12 2011-07-05 Regents Of The University Of Minnesota Electrospraying method with conductivity control
US20080141936A1 (en) * 1997-06-12 2008-06-19 Regents Of The University Of Minnesota Electrospraying apparatus and method for coating particles
US8066763B2 (en) 1998-04-11 2011-11-29 Boston Scientific Scimed, Inc. Drug-releasing stent with ceramic-containing layer
US8871267B2 (en) 1998-09-25 2014-10-28 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
US20100196478A1 (en) * 1998-09-25 2010-08-05 Gel-Del Technologies, Inc. Protein matrix materials, devices and methods of making and using thereof
US20040241315A1 (en) * 2000-05-16 2004-12-02 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
US9050611B2 (en) 2000-05-16 2015-06-09 Regents Of The University Of Minnesota High mass throughput particle generation using multiple nozzle spraying
US20060177573A1 (en) * 2001-05-16 2006-08-10 Regents Of The University Of Minnesota Coating medical devices
US8028646B2 (en) 2001-05-16 2011-10-04 Regents Of The University Of Minnesota Coating medical devices
US8303643B2 (en) 2001-06-27 2012-11-06 Remon Medical Technologies Ltd. Method and device for electrochemical formation of therapeutic species in vivo
US7989018B2 (en) 2001-09-17 2011-08-02 Advanced Cardiovascular Systems, Inc. Fluid treatment of a polymeric coating on an implantable medical device
US10166131B2 (en) 2001-09-19 2019-01-01 Abbott Laboratories Vascular Enterprises Limited Process for loading a stent onto a stent delivery system
US9295570B2 (en) 2001-09-19 2016-03-29 Abbott Laboratories Vascular Enterprises Limited Cold-molding process for loading a stent onto a stent delivery system
US20050163817A1 (en) * 2002-04-29 2005-07-28 Masters David B. Biomatrix structural containment and fixation systems and methods of use thereof
US8623393B2 (en) 2002-04-29 2014-01-07 Gel-Del Technologies, Inc. Biomatrix structural containment and fixation systems and methods of use thereof
EP1626751A2 (en) * 2003-05-06 2006-02-22 SciMed Life Systems, Inc. Processes for producing polymer coatings
US8465537B2 (en) * 2003-06-17 2013-06-18 Gel-Del Technologies, Inc. Encapsulated or coated stent systems
US20110118818A1 (en) * 2003-06-17 2011-05-19 Gel-Del Technologies ,Inc. a corporation Encapsulated or coated stent systems
US20060167540A1 (en) * 2003-06-17 2006-07-27 Masters David B Encapsulated or coated stent systems
US7967998B2 (en) 2003-06-25 2011-06-28 Advanced Cardiocasvular Systems, Inc. Method of polishing implantable medical devices to lower thrombogenecity and increase mechanical stability
US9107937B2 (en) 2003-08-26 2015-08-18 Gel-Del Technologies, Inc. Wound treatments with crosslinked protein amorphous biomaterials
US9999705B2 (en) 2003-08-26 2018-06-19 Gel-Del Technologies, Inc. Protein biomaterials and biocoacervates and methods of making and using thereof
US8153591B2 (en) 2003-08-26 2012-04-10 Gel-Del Technologies, Inc. Protein biomaterials and biocoacervates and methods of making and using thereof
US8197879B2 (en) 2003-09-30 2012-06-12 Advanced Cardiovascular Systems, Inc. Method for selectively coating surfaces of a stent
US7056337B2 (en) 2003-10-21 2006-06-06 Cook Incorporated Natural tissue stent
US20050085898A1 (en) * 2003-10-21 2005-04-21 Cook Incorporated. Natural tissue stent
US8529939B2 (en) 2003-12-08 2013-09-10 Gel-Del Technologies, Inc. Mucoadhesive drug delivery devices and methods of making and using thereof
US20050196440A1 (en) * 2003-12-08 2005-09-08 Masters David B. Mucoadhesive drug delivery devices and methods of making and using thereof
US7407684B2 (en) * 2004-01-28 2008-08-05 Boston Scientific Scimed, Inc. Multi-step method of manufacturing a medical device
US20050163913A1 (en) * 2004-01-28 2005-07-28 Spencer Steven M. Multi-step method of manufacturing a medical device
US20140147687A1 (en) * 2004-03-16 2014-05-29 Abbott Cardiovascular Systems Inc. Biologically absorbable coating for implantable devices based on copolymers having ester bonds and methods of fabricating the same
US20140147686A1 (en) * 2004-03-16 2014-05-29 Abbott Cardiovascular Systems Inc. Biologically absorbable coating for implantable devices based on copolymers having ester bonds and methods of fabricating the same
US20050266039A1 (en) * 2004-05-27 2005-12-01 Jan Weber Coated medical device and method for making the same
US8568469B1 (en) 2004-06-28 2013-10-29 Advanced Cardiovascular Systems, Inc. Stent locking element and a method of securing a stent on a delivery system
US8241554B1 (en) 2004-06-29 2012-08-14 Advanced Cardiovascular Systems, Inc. Method of forming a stent pattern on a tube
US9283099B2 (en) 2004-08-25 2016-03-15 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US8470014B2 (en) 2004-08-25 2013-06-25 Advanced Cardiovascular Systems, Inc. Stent-catheter assembly with a releasable connection for stent retention
US7662326B2 (en) 2004-09-10 2010-02-16 Advanced Cardiovascular Systems, Inc. Compositions containing fast-leaching plasticizers for improved performance of medical devices
US8778256B1 (en) 2004-09-30 2014-07-15 Advanced Cardiovascular Systems, Inc. Deformation of a polymer tube in the fabrication of a medical article
US8173062B1 (en) 2004-09-30 2012-05-08 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube in fabricating a medical article
US8043553B1 (en) 2004-09-30 2011-10-25 Advanced Cardiovascular Systems, Inc. Controlled deformation of a polymer tube with a restraining surface in fabricating a medical article
US7875233B2 (en) 2004-09-30 2011-01-25 Advanced Cardiovascular Systems, Inc. Method of fabricating a biaxially oriented implantable medical device
US7708548B2 (en) 2005-04-12 2010-05-04 Advanced Cardiovascular Systems, Inc. Molds for fabricating stents with profiles for gripping a balloon catheter
US20100100171A1 (en) * 2005-06-20 2010-04-22 Advanced Cardiovascular Systems, Inc. Method Of Manufacturing An Implantable Polymeric Medical Device
US8728149B2 (en) 2005-06-20 2014-05-20 Advanced Cardiovascular Systems, Inc. Assembly for making a polymeric medical device
US8066762B2 (en) * 2005-06-20 2011-11-29 Advanced Cardiovascular Systems, Inc. Assembly for manufacturing an implantable polymeric medical device
WO2007006043A3 (en) * 2005-07-05 2007-02-22 Boston Scient Scimed Inc Medical devices with machined layers for controlled communication with underlying regions
WO2007006043A2 (en) * 2005-07-05 2007-01-11 Boston Scientific Scimed, Inc. Medical devices with machined layers for controlled communication with underlying regions
US7658880B2 (en) 2005-07-29 2010-02-09 Advanced Cardiovascular Systems, Inc. Polymeric stent polishing method and apparatus
US9248034B2 (en) 2005-08-23 2016-02-02 Advanced Cardiovascular Systems, Inc. Controlled disintegrating implantable medical devices
US7867547B2 (en) 2005-12-19 2011-01-11 Advanced Cardiovascular Systems, Inc. Selectively coating luminal surfaces of stents
US10070975B2 (en) 2006-01-04 2018-09-11 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US9532888B2 (en) 2006-01-04 2017-01-03 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US8840660B2 (en) * 2006-01-05 2014-09-23 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US7951185B1 (en) 2006-01-06 2011-05-31 Advanced Cardiovascular Systems, Inc. Delivery of a stent at an elevated temperature
WO2007089883A2 (en) * 2006-01-31 2007-08-09 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US20070199824A1 (en) * 2006-01-31 2007-08-30 Hoerr Robert A Electrospray coating of objects
US10252289B2 (en) 2006-01-31 2019-04-09 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US9642694B2 (en) 2006-01-31 2017-05-09 Regents Of The University Of Minnesota Device with electrospray coating to deliver active ingredients
WO2007089881A3 (en) * 2006-01-31 2008-07-17 Univ Minnesota Electrospray coating of objects
US9248217B2 (en) 2006-01-31 2016-02-02 Nanocopocia, LLC Nanoparticle coating of surfaces
US20070278103A1 (en) * 2006-01-31 2007-12-06 Nanocopoeia, Inc. Nanoparticle coating of surfaces
WO2007089883A3 (en) * 2006-01-31 2007-11-15 Nanocopoeia Inc Nanoparticle coating of surfaces
EP2529761A1 (en) * 2006-01-31 2012-12-05 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US7951428B2 (en) 2006-01-31 2011-05-31 Regents Of The University Of Minnesota Electrospray coating of objects
US20110229627A1 (en) * 2006-01-31 2011-09-22 Nanocopoeia, Inc. Electrospray coating of objects
US9108217B2 (en) 2006-01-31 2015-08-18 Nanocopoeia, Inc. Nanoparticle coating of surfaces
US8089029B2 (en) 2006-02-01 2012-01-03 Boston Scientific Scimed, Inc. Bioabsorbable metal medical device and method of manufacture
US20100049310A1 (en) * 2006-02-15 2010-02-25 Acandis Gmbh & Co. Kg Method for coating a stent
US8574615B2 (en) 2006-03-24 2013-11-05 Boston Scientific Scimed, Inc. Medical devices having nanoporous coatings for controlled therapeutic agent delivery
US8187620B2 (en) 2006-03-27 2012-05-29 Boston Scientific Scimed, Inc. Medical devices comprising a porous metal oxide or metal material and a polymer coating for delivering therapeutic agents
US7964210B2 (en) 2006-03-31 2011-06-21 Abbott Cardiovascular Systems Inc. Degradable polymeric implantable medical devices with a continuous phase and discrete phase
US8048150B2 (en) 2006-04-12 2011-11-01 Boston Scientific Scimed, Inc. Endoprosthesis having a fiber meshwork disposed thereon
US8747878B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device by controlling crystalline structure
US8747879B2 (en) 2006-04-28 2014-06-10 Advanced Cardiovascular Systems, Inc. Method of fabricating an implantable medical device to reduce chance of late inflammatory response
US8596215B2 (en) 2006-05-04 2013-12-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8003156B2 (en) 2006-05-04 2011-08-23 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8465789B2 (en) 2006-05-04 2013-06-18 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8637110B2 (en) 2006-05-04 2014-01-28 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US8741379B2 (en) 2006-05-04 2014-06-03 Advanced Cardiovascular Systems, Inc. Rotatable support elements for stents
US7761968B2 (en) 2006-05-25 2010-07-27 Advanced Cardiovascular Systems, Inc. Method of crimping a polymeric stent
US9358325B2 (en) 2006-05-26 2016-06-07 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US8752267B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US7951194B2 (en) 2006-05-26 2011-05-31 Abbott Cardiovascular Sysetms Inc. Bioabsorbable stent with radiopaque coating
US9038260B2 (en) 2006-05-26 2015-05-26 Abbott Cardiovascular Systems Inc. Stent with radiopaque markers
US9694116B2 (en) 2006-05-26 2017-07-04 Abbott Cardiovascular Systems Inc. Stents with radiopaque markers
US8752268B2 (en) 2006-05-26 2014-06-17 Abbott Cardiovascular Systems Inc. Method of making stents with radiopaque markers
US7959940B2 (en) 2006-05-30 2011-06-14 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical devices
US8343530B2 (en) 2006-05-30 2013-01-01 Abbott Cardiovascular Systems Inc. Polymer-and polymer blend-bioceramic composite implantable medical devices
US7971333B2 (en) 2006-05-30 2011-07-05 Advanced Cardiovascular Systems, Inc. Manufacturing process for polymetric stents
US8486135B2 (en) 2006-06-01 2013-07-16 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from branched polymers
US8034287B2 (en) 2006-06-01 2011-10-11 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8808342B2 (en) 2006-06-14 2014-08-19 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8603530B2 (en) 2006-06-14 2013-12-10 Abbott Cardiovascular Systems Inc. Nanoshell therapy
US8048448B2 (en) 2006-06-15 2011-11-01 Abbott Cardiovascular Systems Inc. Nanoshells for drug delivery
US7731890B2 (en) 2006-06-15 2010-06-08 Advanced Cardiovascular Systems, Inc. Methods of fabricating stents with enhanced fracture toughness
US8535372B1 (en) 2006-06-16 2013-09-17 Abbott Cardiovascular Systems Inc. Bioabsorbable stent with prohealing layer
US10342688B2 (en) 2006-06-19 2019-07-09 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US9259341B2 (en) 2006-06-19 2016-02-16 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US9579225B2 (en) 2006-06-19 2017-02-28 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US8333000B2 (en) 2006-06-19 2012-12-18 Advanced Cardiovascular Systems, Inc. Methods for improving stent retention on a balloon catheter
US8925177B2 (en) 2006-06-19 2015-01-06 Abbott Cardiovascular Systems Inc. Methods for improving stent retention on a balloon catheter
US8017237B2 (en) 2006-06-23 2011-09-13 Abbott Cardiovascular Systems, Inc. Nanoshells on polymers
US8293367B2 (en) 2006-06-23 2012-10-23 Advanced Cardiovascular Systems, Inc. Nanoshells on polymers
US8592036B2 (en) 2006-06-23 2013-11-26 Abbott Cardiovascular Systems Inc. Nanoshells on polymers
US9072820B2 (en) 2006-06-26 2015-07-07 Advanced Cardiovascular Systems, Inc. Polymer composite stent with polymer particles
US8128688B2 (en) 2006-06-27 2012-03-06 Abbott Cardiovascular Systems Inc. Carbon coating on an implantable device
US8815275B2 (en) 2006-06-28 2014-08-26 Boston Scientific Scimed, Inc. Coatings for medical devices comprising a therapeutic agent and a metallic material
US7794776B1 (en) 2006-06-29 2010-09-14 Abbott Cardiovascular Systems Inc. Modification of polymer stents with radiation
US8771343B2 (en) * 2006-06-29 2014-07-08 Boston Scientific Scimed, Inc. Medical devices with selective titanium oxide coatings
US7740791B2 (en) 2006-06-30 2010-06-22 Advanced Cardiovascular Systems, Inc. Method of fabricating a stent with features by blow molding
US7823263B2 (en) 2006-07-11 2010-11-02 Abbott Cardiovascular Systems Inc. Method of removing stent islands from a stent
US7998404B2 (en) 2006-07-13 2011-08-16 Advanced Cardiovascular Systems, Inc. Reduced temperature sterilization of stents
US7757543B2 (en) 2006-07-13 2010-07-20 Advanced Cardiovascular Systems, Inc. Radio frequency identification monitoring of stents
US10145811B2 (en) 2006-07-13 2018-12-04 Abbott Cardiovascular Systems Inc. Radio frequency identification monitoring of stents
US7794495B2 (en) 2006-07-17 2010-09-14 Advanced Cardiovascular Systems, Inc. Controlled degradation of stents
US7886419B2 (en) 2006-07-18 2011-02-15 Advanced Cardiovascular Systems, Inc. Stent crimping apparatus and method
US8016879B2 (en) 2006-08-01 2011-09-13 Abbott Cardiovascular Systems Inc. Drug delivery after biodegradation of the stent scaffolding
US20080131479A1 (en) * 2006-08-02 2008-06-05 Jan Weber Endoprosthesis with three-dimensional disintegration control
US8052743B2 (en) 2006-08-02 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis with three-dimensional disintegration control
US9173733B1 (en) 2006-08-21 2015-11-03 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US9833342B2 (en) 2006-08-21 2017-12-05 Abbott Cardiovascular Systems Inc. Tracheobronchial implantable medical device and methods of use
US20110091639A1 (en) * 2006-08-24 2011-04-21 Boston Scientific Scimed, Inc. Medical Device Coating Configuration and Method for Improved Lubricity and Durability
US7857008B2 (en) * 2006-08-24 2010-12-28 Boston Scientific Scimed, Inc. Medical device coating configuration and method for improved lubricity and durability
US8911814B2 (en) 2006-08-24 2014-12-16 Boston Scientific Scimed, Inc. Medical device coating configuration and method for improved lubricity and durability
US20080097393A1 (en) * 2006-08-24 2008-04-24 Boston Scientific Scimed, Inc. Medical device coating configuration and method for improved lubricity and durability
US7923022B2 (en) 2006-09-13 2011-04-12 Advanced Cardiovascular Systems, Inc. Degradable polymeric implantable medical devices with continuous phase and discrete phase
US8353949B2 (en) 2006-09-14 2013-01-15 Boston Scientific Scimed, Inc. Medical devices with drug-eluting coating
US8808726B2 (en) 2006-09-15 2014-08-19 Boston Scientific Scimed. Inc. Bioerodible endoprostheses and methods of making the same
US8057534B2 (en) 2006-09-15 2011-11-15 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8052744B2 (en) 2006-09-15 2011-11-08 Boston Scientific Scimed, Inc. Medical devices and methods of making the same
US7955382B2 (en) 2006-09-15 2011-06-07 Boston Scientific Scimed, Inc. Endoprosthesis with adjustable surface features
US8128689B2 (en) 2006-09-15 2012-03-06 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis with biostable inorganic layers
US8002821B2 (en) 2006-09-18 2011-08-23 Boston Scientific Scimed, Inc. Bioerodible metallic ENDOPROSTHESES
US7842737B2 (en) 2006-09-29 2010-11-30 Abbott Cardiovascular Systems Inc. Polymer blend-bioceramic composite implantable medical devices
US20080281409A1 (en) * 2006-11-03 2008-11-13 Anthony Malone Stents with drug eluting coatings
US7981150B2 (en) 2006-11-09 2011-07-19 Boston Scientific Scimed, Inc. Endoprosthesis with coatings
US9040816B2 (en) 2006-12-08 2015-05-26 Nanocopoeia, Inc. Methods and apparatus for forming photovoltaic cells using electrospray
US20080210302A1 (en) * 2006-12-08 2008-09-04 Anand Gupta Methods and apparatus for forming photovoltaic cells using electrospray
US8099849B2 (en) 2006-12-13 2012-01-24 Abbott Cardiovascular Systems Inc. Optimizing fracture toughness of polymeric stent
US8715339B2 (en) 2006-12-28 2014-05-06 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8080055B2 (en) 2006-12-28 2011-12-20 Boston Scientific Scimed, Inc. Bioerodible endoprostheses and methods of making the same
US8070797B2 (en) 2007-03-01 2011-12-06 Boston Scientific Scimed, Inc. Medical device with a porous surface for delivery of a therapeutic agent
US8431149B2 (en) 2007-03-01 2013-04-30 Boston Scientific Scimed, Inc. Coated medical devices for abluminal drug delivery
US8067054B2 (en) 2007-04-05 2011-11-29 Boston Scientific Scimed, Inc. Stents with ceramic drug reservoir layer and methods of making and using the same
US8262723B2 (en) 2007-04-09 2012-09-11 Abbott Cardiovascular Systems Inc. Implantable medical devices fabricated from polymer blends with star-block copolymers
US7976915B2 (en) 2007-05-23 2011-07-12 Boston Scientific Scimed, Inc. Endoprosthesis with select ceramic morphology
US7829008B2 (en) 2007-05-30 2010-11-09 Abbott Cardiovascular Systems Inc. Fabricating a stent from a blow molded tube
US7959857B2 (en) 2007-06-01 2011-06-14 Abbott Cardiovascular Systems Inc. Radiation sterilization of medical devices
US8293260B2 (en) 2007-06-05 2012-10-23 Abbott Cardiovascular Systems Inc. Elastomeric copolymer coatings containing poly (tetramethyl carbonate) for implantable medical devices
US8202528B2 (en) 2007-06-05 2012-06-19 Abbott Cardiovascular Systems Inc. Implantable medical devices with elastomeric block copolymer coatings
US8425591B1 (en) 2007-06-11 2013-04-23 Abbott Cardiovascular Systems Inc. Methods of forming polymer-bioceramic composite medical devices with bioceramic particles
US8048441B2 (en) 2007-06-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Nanobead releasing medical devices
US7901452B2 (en) 2007-06-27 2011-03-08 Abbott Cardiovascular Systems Inc. Method to fabricate a stent having selected morphology to reduce restenosis
US7955381B1 (en) 2007-06-29 2011-06-07 Advanced Cardiovascular Systems, Inc. Polymer-bioceramic composite implantable medical device with different types of bioceramic particles
US8002823B2 (en) 2007-07-11 2011-08-23 Boston Scientific Scimed, Inc. Endoprosthesis coating
US7942926B2 (en) 2007-07-11 2011-05-17 Boston Scientific Scimed, Inc. Endoprosthesis coating
US9284409B2 (en) 2007-07-19 2016-03-15 Boston Scientific Scimed, Inc. Endoprosthesis having a non-fouling surface
US8815273B2 (en) 2007-07-27 2014-08-26 Boston Scientific Scimed, Inc. Drug eluting medical devices having porous layers
US7931683B2 (en) 2007-07-27 2011-04-26 Boston Scientific Scimed, Inc. Articles having ceramic coated surfaces
US8221822B2 (en) 2007-07-31 2012-07-17 Boston Scientific Scimed, Inc. Medical device coating by laser cladding
US8900292B2 (en) 2007-08-03 2014-12-02 Boston Scientific Scimed, Inc. Coating for medical device having increased surface area
US8052745B2 (en) 2007-09-13 2011-11-08 Boston Scientific Scimed, Inc. Endoprosthesis
US8216632B2 (en) 2007-11-02 2012-07-10 Boston Scientific Scimed, Inc. Endoprosthesis coating
US8029554B2 (en) 2007-11-02 2011-10-04 Boston Scientific Scimed, Inc. Stent with embedded material
US7938855B2 (en) 2007-11-02 2011-05-10 Boston Scientific Scimed, Inc. Deformable underlayer for stent
FR2925375A1 (en) * 2007-12-21 2009-06-26 Bosch Gmbh Robert INJECTOR FOR EJECTING A FLUID IN PARTICULAR IN AN INJECTION FACILITY OR AN EXHAUST GAS SYSTEM AND METHOD OF MAKING SUCH AN INJECTOR
US11890371B2 (en) 2007-12-26 2024-02-06 Petvivo Holdings, Inc. Biocompatible protein-based particles and methods thereof
US20100143487A1 (en) * 2007-12-26 2010-06-10 Gel-Del Technologies, Inc. Biocompatible protein-based particles and methods thereof
US8920491B2 (en) * 2008-04-22 2014-12-30 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US20090264975A1 (en) * 2008-04-22 2009-10-22 Boston Scientific Scimed, Inc. Medical devices having a coating of inorganic material
US8932346B2 (en) 2008-04-24 2015-01-13 Boston Scientific Scimed, Inc. Medical devices having inorganic particle layers
US7998192B2 (en) 2008-05-09 2011-08-16 Boston Scientific Scimed, Inc. Endoprostheses
US8236046B2 (en) 2008-06-10 2012-08-07 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8449603B2 (en) 2008-06-18 2013-05-28 Boston Scientific Scimed, Inc. Endoprosthesis coating
US20090319026A1 (en) * 2008-06-20 2009-12-24 Boston Scientific Scimed, Inc. Composite Stent with Reservoirs for Drug Delivery and Methods of Manufacturing
US7985252B2 (en) 2008-07-30 2011-07-26 Boston Scientific Scimed, Inc. Bioerodible endoprosthesis
US8382824B2 (en) 2008-10-03 2013-02-26 Boston Scientific Scimed, Inc. Medical implant having NANO-crystal grains with barrier layers of metal nitrides or fluorides
US10016534B2 (en) 2008-11-17 2018-07-10 Gel-Del Technologies, Inc. Protein biomaterial and biocoacervate vessel graft systems and methods of making and using thereof
US8231980B2 (en) 2008-12-03 2012-07-31 Boston Scientific Scimed, Inc. Medical implants including iridium oxide
US8267992B2 (en) 2009-03-02 2012-09-18 Boston Scientific Scimed, Inc. Self-buffering medical implants
US8071156B2 (en) 2009-03-04 2011-12-06 Boston Scientific Scimed, Inc. Endoprostheses
US8287937B2 (en) 2009-04-24 2012-10-16 Boston Scientific Scimed, Inc. Endoprosthese
US11730860B2 (en) 2009-08-28 2023-08-22 Sernova Corporation Methods and devices for cellular transplantation
US10207026B2 (en) 2009-08-28 2019-02-19 Sernova Corporation Methods and devices for cellular transplantation
US10034963B2 (en) 2009-08-28 2018-07-31 Sernova Corporation Methods and devices for cellular transplantation
US20110066223A1 (en) * 2009-09-14 2011-03-17 Hossainy Syed F A Bioabsorbable Stent With Time Dependent Structure And Properties
US9289318B2 (en) * 2009-09-17 2016-03-22 Abbott Cardiovascular Systems Inc. Method of treatment with a bioabsorbable stent with time dependent structure and properties and regio-selective degradation
US8425587B2 (en) 2009-09-17 2013-04-23 Abbott Cardiovascular Systems Inc. Method of treatment with a bioabsorbable stent with time dependent structure and properties and regio-selective degradation
US20110066225A1 (en) * 2009-09-17 2011-03-17 Mikael Trollsas Bioabsorbable Stent With Time Dependent Structure And Properties And Regio-Selective Degradation
US20150182360A1 (en) * 2009-09-17 2015-07-02 Abbott Cardiovascular Systems Inc. Method of treatment with a bioabsorbable stent with time dependent structure and properties and regio-selective degradation
US20110153005A1 (en) * 2009-12-21 2011-06-23 Claus Harder Medical implant, coating method and implantation method
US9827119B2 (en) 2010-01-30 2017-11-28 Abbott Cardiovascular Systems Inc. Polymer scaffolds having a low crossing profile
US9867728B2 (en) 2010-01-30 2018-01-16 Abbott Cardiovascular Systems Inc. Method of making a stent
US11324614B2 (en) 2010-01-30 2022-05-10 Abbott Cardiovascular Systems Inc. Balloon expanded polymer stent
US9770351B2 (en) 2010-01-30 2017-09-26 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US9763818B2 (en) 2010-01-30 2017-09-19 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US10123894B2 (en) 2010-01-30 2018-11-13 Abbott Cardiovascular Systems Inc. Method of crimping stent on catheter delivery assembly
US9198785B2 (en) 2010-01-30 2015-12-01 Abbott Cardiovascular Systems Inc. Crush recoverable polymer scaffolds
US8668732B2 (en) 2010-03-23 2014-03-11 Boston Scientific Scimed, Inc. Surface treated bioerodible metal endoprostheses
US10406009B2 (en) 2010-09-15 2019-09-10 Abbott Cardiovascular Systems Inc. Bioabsorbable superficial femoral stent patterns with designed to break links
US10307274B2 (en) 2011-07-29 2019-06-04 Abbott Cardiovascular Systems Inc. Methods for uniform crimping and deployment of a polymer scaffold
US9254212B2 (en) 2012-04-06 2016-02-09 Abbott Cardiovascular Systems Inc. Segmented scaffolds and delivery thereof for peripheral applications
US9895244B2 (en) 2012-04-06 2018-02-20 Abbott Cardiovascular Systems Inc. Segmented scaffolds and delivery thereof for peripheral applications
US10583531B2 (en) 2012-05-30 2020-03-10 Admedes Schuessler Gmbh Method for producing a body implant, assembly consisting of a guide wire and a body implant, and a medical instrument
WO2013178361A1 (en) 2012-05-30 2013-12-05 Admedes Schuessler Gmbh Method for producing a body implant, subassembly made of a guide wire and a body implant, and medical instrument
WO2013178297A1 (en) 2012-05-30 2013-12-05 Admedes Schuessler Gmbh Method for producing a body implant, assembly consisting of a guide wire and a body implant, and a medical instrument
US10434605B2 (en) 2012-05-30 2019-10-08 Admedes Schuessler Gmbh Method for producing a body implant, assembly consisting of a guide wire and a body implant, and a medical instrument
US10004619B2 (en) 2012-09-20 2018-06-26 Dotter Intellectual Pte, Ltd. Polymeric stent and methods of manufacturing the same
US10010436B2 (en) 2012-09-20 2018-07-03 Dotter Intellectual Pte, Ltd. Polymeric stent and methods of manufacturing the same
EP2742916A3 (en) * 2012-12-17 2016-01-13 Acandis GmbH & Co. KG Medical implant, treatment system with such an implant and method for producing an implant
US10426645B2 (en) 2014-02-26 2019-10-01 Dotter Intellectual Pte. Ltd. Polymeric stent and methods of manufacturing the same
US20150238335A1 (en) * 2014-02-26 2015-08-27 Suntech Co., Ltd. Polymeric stent and methods of manufacturing the same
US9510961B2 (en) * 2014-02-26 2016-12-06 Suntech Co., Ltd. Polymeric stent and methods of manufacturing the same
US20150360253A1 (en) * 2014-06-13 2015-12-17 Boe Technology Group Co., Ltd. Thin film patterning method and thin film patterning apparatus
CN110917472A (en) * 2014-11-20 2020-03-27 爱德华兹生命科学公司 Inflatable device with etched finish
EP3220995A4 (en) * 2014-11-20 2017-12-13 Edwards Lifesciences Corporation Inflatable device with etched modifications
US9999527B2 (en) 2015-02-11 2018-06-19 Abbott Cardiovascular Systems Inc. Scaffolds having radiopaque markers
US10610387B2 (en) 2015-06-12 2020-04-07 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold
US11478370B2 (en) 2015-06-12 2022-10-25 Abbott Cardiovascular Systems Inc. Scaffolds having a radiopaque marker and methods for attaching a marker to a scaffold

Also Published As

Publication number Publication date
DE60114044D1 (en) 2005-11-17
EP1341479B1 (en) 2005-10-12
WO2002043619A3 (en) 2003-02-13
JP2004520872A (en) 2004-07-15
AU2002236491B2 (en) 2006-08-17
DE60114044T2 (en) 2006-05-11
AU3649102A (en) 2002-06-11
EP1616535A1 (en) 2006-01-18
US6517888B1 (en) 2003-02-11
CA2430126A1 (en) 2002-06-06
WO2002043619A2 (en) 2002-06-06
EP1341479A2 (en) 2003-09-10

Similar Documents

Publication Publication Date Title
US6517888B1 (en) Method for manufacturing a medical device having a coated portion by laser ablation
AU2002236491A1 (en) Method for manufacturing a medical device having a coated portion by laser ablation
US6764709B2 (en) Method for making and measuring a coating on the surface of a medical device using an ultraviolet laser
US7291165B2 (en) Medical device for delivering biologically active material
US6989071B2 (en) Stent with channel(s) for containing and delivering biologically active material and method for manufacturing the same
US20050196518A1 (en) Method and system for making a coated medical device
US20050266039A1 (en) Coated medical device and method for making the same
US20070239253A1 (en) Oscillation assisted drug elution apparatus and method
US7326245B2 (en) Medical device for delivering biologically active material
AU2003273359B2 (en) Method of applying coatings to a medical device
US20050203606A1 (en) Stent system for preventing restenosis
US20050230039A1 (en) Stent with protective pads or bulges
AU2002237975A1 (en) Stent with channel(s) for containing and delivering a biologically active material and method for manufacturing the same
US20100106242A1 (en) Stent and method for making a stent

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION