US20010055604A1 - Gel formulations containing insecticide - Google Patents

Gel formulations containing insecticide Download PDF

Info

Publication number
US20010055604A1
US20010055604A1 US09/462,958 US46295800A US2001055604A1 US 20010055604 A1 US20010055604 A1 US 20010055604A1 US 46295800 A US46295800 A US 46295800A US 2001055604 A1 US2001055604 A1 US 2001055604A1
Authority
US
United States
Prior art keywords
gel
insecticidal
active compound
vaporization
rapeseed oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/462,958
Other versions
US6447795B2 (en
Inventor
Dietmar Kalder
Rolf Jung
Burkhard Mielke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SC Johnson and Son Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to BAYER AKTIENGESELLSCHAFT reassignment BAYER AKTIENGESELLSCHAFT ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JUNG, ROLF, MIELKE, BURKHARD, KALDER, DIETMAR
Publication of US20010055604A1 publication Critical patent/US20010055604A1/en
Application granted granted Critical
Publication of US6447795B2 publication Critical patent/US6447795B2/en
Assigned to S.C. JOHNSON & SON, INC. reassignment S.C. JOHNSON & SON, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAYER AKTIENGESELLSCHAFT
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/18Vapour or smoke emitting compositions with delayed or sustained release
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N53/00Biocides, pest repellants or attractants, or plant growth regulators containing cyclopropane carboxylic acids or derivatives thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S424/00Drug, bio-affecting and body treating compositions
    • Y10S424/10Insect repellent

Definitions

  • the present invention relates to novel insecticidal gel formulations for the controlled and sustained release of insecticidal active compounds by means of a heat source.
  • These novel gel formulations are characterized in that they comprise at least one type of insecticide and at least one vaporization-controlling substance (vaporization modifier), in combination with a solid suitable as a gel former.
  • the present invention is based on known gel formulations as described in EP 0 693 254, where insecticidally active compounds with novel, alternative solvents in combination with perfumes, colorants and auxiliaries are to display an optimum effect without decomposition for a relatively long period of time.
  • This novel active compound formulation is to be used in deep-drawn or cast containers made of polymer or metal, these containers being open or closed by means of suitable fabrics, films made of polymer, for example polypropylene film, or metal, which are permeable to the volatile components, as described in EP 0 693 254.
  • These deep-drawn containers can be used in an electrical heating device for killing insects, for example mosquitoes.
  • a considerable disadvantage of these tablet vaporizers is the unfavourable ratio between energy input and active compound to be vaporized, since the proportion of active compound relative to the auxiliaries is to be considered as low. Furthermore, the high working temperature of these tablet vaporizers means that only few active compounds are suitable for this purpose in the first place, and that, moreover, these active compounds are released over the predetermined period of action in a non-uniform manner, for system reasons. The period of action of these vaporizer tablets is limited to a maximum of 12 hours. Finally, the unfavourable ratio of active compound/active compound carrier requires a substantial, constantly available stock of vaporizer tablets, which means that large amounts of material are necessary as carriers and packaging material.
  • vapour-producing systems Apart from the fact that these vapour-producing systems also operate at temperatures of between 120 and 190° C., they require a specific distribution system (wick) and considerable amounts of solvents. When the product is used, the superproportional amount of solvent relative to the active compound results in a high concentration of solvents or adjuvants in the room, which, in turn, leads to dirtying of walls and objects in the vicinity of these devices, which has frequently been observed by customers and given cause for complaint.
  • EP 0 693 254 mentions gel formulations which have the disadvantage that they persist for a long time indoors and that they additionally consist of very expensive components.
  • novel insecticide-comprising gel formulations according to the invention include mixtures which comprise at least one type of a pyrethroid insecticide, a vaporization-controlling substance and an inorganic solid suitable as a gel former.
  • Suitable active compounds which can be used are the active compounds mentioned in EP 0 693 254.
  • compositions with the active compound transfluthrin (Bayothrin®, 2,3,5,6-tetrafluorobenzyl (+)-1R-trans-2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylate) having a reduced active compound content and in combination with novel vaporization-controlling substances, also referred to as vaporization modifiers, which have a strongly reduced risk potential during processing and which are furthermore rapidly degradable indoors.
  • active compound transfluthrin Boyothrin®, 2,3,5,6-tetrafluorobenzyl (+)-1R-trans-2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylate
  • Preferred novel vaporization modifiers are medicinal white oils CAS No. 804247-5 (BP Enerpar M002®) and high-pressure hydrogenated mineral oils CAS No. 804247-5 (Enerpar M1930®).
  • the formulations generally comprise between 1.0 and 95% by weight of insecticidally active compound, preferably between 5.0 and 80%, in particular from 20 to 50% by weight.
  • the formulations furthermore generally comprise between 10 and 90% by weight of vaporization modifiers, preferably between 40 and 80%, and generally between 1 and 12% of gel former, preferably between 6 and 10%.
  • the ratio of active compound/vaporization modifier in the insecticide-comprising gel formulations according to the invention is between 9 and 0.1; preferably between 2.0 and 0.2.
  • the formulations must have an optimum storage stability over a long period of time.
  • the gel formulations according to the invention are prepared by first stirring at room temperature in a suitable mixing apparatus (planetary paddle mixer) the active compound with the vaporization modifier and stabilizer and, if appropriate, additional solvents, to give a clear solution. Then, the gel former is added under reduced pressure, and the mixture is stirred vigorously until a homogeneous gel is formed. Before the gel former is mixed in to give the final gel product, perfume oils and colorants can optionally be added to the existing clear solution with stirring until the mixture is completely homogeneous.
  • a suitable mixing apparatus planetary paddle mixer
  • the film container with the coloured gel is inserted into a heating device whose front is transparent or fitted with an inspection opening.
  • the content of the film container which is not visible through a colour marking on the container itself or on the heating device, dries out.
  • a further variant for visual identification of the end point using added colorants may also take the form of a change in colour when the active compounds and, if appropriate, the solvent have vaporized.
  • Formulations having Novel Vaporization Modifiers Example Insecticide content Gel former Stabilizer Vaporization modifier 1.1. 25% Transfluthrin ® 6% Aerosil 200 ® 1% BHT 64% Enerpar M002 ® 1.2. 25% Transfluthrin ® 8% Aerosil COK 84 ® 1% BHT 64% Guerbitol 16 ®
  • insecticide-comprising gel formulations can be prepared as follows:
  • 6 kg of Aerosil 200 are introduced into the clear solution under reduced pressure until a gel has formed.
  • 8 kg of Aerosil COK 84® are introduced into the clear solution under reduced pressure until a gel has formed.
  • the gel formulations are, depending on the duration of use, filled into deep-drawn or cast containers generally in amounts of 0.2-0.5 g, preferably in amounts of 0.2-0.3 g, and sealed with polypropylene film.
  • Preferred container materials are aluminium, polyester, polyethylene, metals.
  • the dimensions of the container are chosen such that the area of the bottom of the container has the same size as the heating area of the heating device and transfers temperatures of from 70 to 112° C.
  • 1.6 g of the insecticide-comprising gel formulations are uniformly distributed on the surface of deep-drawn aluminium container having the dimensions (4 ⁇ 2.5 ⁇ 0.4 cm) and sealed with the PP film Walothen C5OSE® or Trespaphan 6ND50®.
  • a heating device having a temperature of 100-112° C., the container is heated for 8 hours each day, and the release rates of the formulation are determined.
  • Example 1.1 Example 1.2 Cycle Weight loss per hour in mg 1 4.6 4.6 2 4.8 4.5 3 4.1 4.4 4 4.1 4.3 5 3.2 4.8 8 3.2 4.4 10 3.2 4.3 12 3.2 4.1 14 2.7 4.0 16 2.5 3.8 18 2.4 3.5 20 2.2 3.5 22 2.0 3.9 24 2.0 3.8 26 2.0 3.4 28 2.1 3.3 30 1.4 2.9 32 1.2 2.6 34 1.3 2.5 36 1.2 2.7 38 1.0 2.3 40 1.1 2.2 42 0.9 2.2 44 0.8 1.6 46 0.8 1.3 48 0.8 1.2 50 0.6 1.0

Abstract

The present invention relates to novel insecticidal gel formulations for the controlled and sustained release of insecticidally active compounds by means of a heat source.

Description

  • The present invention relates to novel insecticidal gel formulations for the controlled and sustained release of insecticidal active compounds by means of a heat source. These novel gel formulations are characterized in that they comprise at least one type of insecticide and at least one vaporization-controlling substance (vaporization modifier), in combination with a solid suitable as a gel former. [0001]
  • The present invention is based on known gel formulations as described in EP 0 693 254, where insecticidally active compounds with novel, alternative solvents in combination with perfumes, colorants and auxiliaries are to display an optimum effect without decomposition for a relatively long period of time. [0002]
  • This novel active compound formulation is to be used in deep-drawn or cast containers made of polymer or metal, these containers being open or closed by means of suitable fabrics, films made of polymer, for example polypropylene film, or metal, which are permeable to the volatile components, as described in EP 0 693 254. These deep-drawn containers can be used in an electrical heating device for killing insects, for example mosquitoes. [0003]
  • In the case where mosquitoes are killed using an electrical heating device, a so-called tablet vaporizer, it is generally known that specifically selected substances, such as cellulose board and cotton board, asbestos, ceramics and/or porous synthetic resins are impregnated with pyrethroid insecticides to obtain insecticide tablets, the insecticides being volatilized by the action of the mosquito killing heating device, which generates a temperature of 120-190° C. [0004]
  • A considerable disadvantage of these tablet vaporizers is the unfavourable ratio between energy input and active compound to be vaporized, since the proportion of active compound relative to the auxiliaries is to be considered as low. Furthermore, the high working temperature of these tablet vaporizers means that only few active compounds are suitable for this purpose in the first place, and that, moreover, these active compounds are released over the predetermined period of action in a non-uniform manner, for system reasons. The period of action of these vaporizer tablets is limited to a maximum of 12 hours. Finally, the unfavourable ratio of active compound/active compound carrier requires a substantial, constantly available stock of vaporizer tablets, which means that large amounts of material are necessary as carriers and packaging material. [0005]
  • The devices which are already widely used for domestic purposes, in which a solution of an insecticidally active compound is vaporized by means of a heated wick (GB 2 153 227), where the active compound is dissolved in a kerosene mixture of saturated aliphatic hydrocarbons which is vaporized electrically by means of the wick, also have considerable disadvantages. [0006]
  • Apart from the fact that these vapour-producing systems also operate at temperatures of between 120 and 190° C., they require a specific distribution system (wick) and considerable amounts of solvents. When the product is used, the superproportional amount of solvent relative to the active compound results in a high concentration of solvents or adjuvants in the room, which, in turn, leads to dirtying of walls and objects in the vicinity of these devices, which has frequently been observed by customers and given cause for complaint. [0007]
  • Other disadvantages of these formulations are the high volume of the solvent containers and the risk of the solvent leaking, which means that there are substantial problems during transport and hazards in use. [0008]
  • Furthermore, EP 0 693 254 mentions gel formulations which have the disadvantage that they persist for a long time indoors and that they additionally consist of very expensive components. [0009]
  • The novel insecticide-comprising gel formulations according to the invention include mixtures which comprise at least one type of a pyrethroid insecticide, a vaporization-controlling substance and an inorganic solid suitable as a gel former. [0010]
  • Suitable active compounds which can be used are the active compounds mentioned in EP 0 693 254. [0011]
  • Particularly suitable here are formulations with the active compound transfluthrin (Bayothrin®, 2,3,5,6-tetrafluorobenzyl (+)-1R-trans-2,2-dimethyl-3-(2,2-dichlorovinyl)cyclopropanecarboxylate) having a reduced active compound content and in combination with novel vaporization-controlling substances, also referred to as vaporization modifiers, which have a strongly reduced risk potential during processing and which are furthermore rapidly degradable indoors. [0012]
  • Preferred novel vaporization modifiers are medicinal white oils CAS No. 804247-5 (BP Enerpar M002®) and high-pressure hydrogenated mineral oils CAS No. 804247-5 (Enerpar M1930®). [0013]
  • Particular preference is given to naturally regrowing raw materials such as rapeseed oil, rapeseed oil methyl ester and colourless to slightly yellowish Guerbet alcohol of liquid/solid consistency having a very weak intrinsic odour, CAS No.: 67 187-86-0 (Guerbitol 32/36®), colourless to slightly yellowish Guerbet aalcohol of liquid consistency having very weak intrinsic odour=2-hexyldecan-1-ol, CAS No.: 36311-34-9 (Guerbitol 16®). [0014]
  • Particular preference is given to colourless to slightly yellowish Guerbet alcohol of liquid consistency=2-hexyldecan-1-ol, CAS No.: 36311-34-9 (Guerbitol 16®). [0015]
  • The formulations generally comprise between 1.0 and 95% by weight of insecticidally active compound, preferably between 5.0 and 80%, in particular from 20 to 50% by weight. [0016]
  • The formulations furthermore generally comprise between 10 and 90% by weight of vaporization modifiers, preferably between 40 and 80%, and generally between 1 and 12% of gel former, preferably between 6 and 10%. [0017]
  • The ratio of active compound/vaporization modifier in the insecticide-comprising gel formulations according to the invention is between 9 and 0.1; preferably between 2.0 and 0.2. [0018]
  • It is furthermore possible to add organic or inorganic auxiliaries, stabilizers, perfumes and colorants, as described in EP 0 693 254, inter alia, to these mixtures. [0019]
  • The formulations must have an optimum storage stability over a long period of time. [0020]
  • The gel formulations according to the invention are prepared by first stirring at room temperature in a suitable mixing apparatus (planetary paddle mixer) the active compound with the vaporization modifier and stabilizer and, if appropriate, additional solvents, to give a clear solution. Then, the gel former is added under reduced pressure, and the mixture is stirred vigorously until a homogeneous gel is formed. Before the gel former is mixed in to give the final gel product, perfume oils and colorants can optionally be added to the existing clear solution with stirring until the mixture is completely homogeneous. [0021]
  • For use, the film container with the coloured gel is inserted into a heating device whose front is transparent or fitted with an inspection opening. [0022]
  • During the use of the heating device, the content of the film container, which is not visible through a colour marking on the container itself or on the heating device, dries out. [0023]
  • Only the empty film container is still visible through the transparent front of the heating device or through the inspection opening. [0024]
  • A further variant for visual identification of the end point using added colorants may also take the form of a change in colour when the active compounds and, if appropriate, the solvent have vaporized. [0025]
  • The present invention is to be illustrated by the present examples: [0026]
  • EXAMPLE 1
  • Formulations having Novel Vaporization Modifiers [0027]
    Example Insecticide content Gel former Stabilizer Vaporization modifier
    1.1. 25% Transfluthrin ® 6% Aerosil 200 ® 1% BHT 64% Enerpar M002 ®
    1.2. 25% Transfluthrin ® 8% Aerosil COK 84 ® 1% BHT 64% Guerbitol 16 ®
  • EXAMPLE 2
  • The insecticide-comprising gel formulations can be prepared as follows: [0028]
  • 2.1 [0029]
  • For a 100 kg batch, 25 kg of liquid Transfluthrin® (temperature about 40° C.) are initially charged in a stirring apparatus, 64 kg of Enerpar M002® and 1 kg of BHT are added and the mixture is stirred to give a clear solution. Additionally, it is possible to stir into the formulation preferably the perfume oils aurantiol, citronella oil, C10-C16 aldehyde, birch tar oil, benzyl salicylate, lavender oil or rose oil in combination with, or without, the colorants Hostasol yellow®, Resolin-brilliant red BLS®, 1,4-diaminoanthraquinone, Alizarin VK6/225, Fatty Red HRR®, Fatty Red G®, Solvaperm Green G or Sudan Blue 670®. With rapid stirring, 6 kg of Aerosil 200 are introduced into the clear solution under reduced pressure until a gel has formed. [0030]
  • 2.2 [0031]
  • For a 100 kg batch, 25 kg of liquid Transfluthrin® (temperature) about 40° C. are initially charged in a stirring apparatus, 64 kg of Guerbitol 16® and 1 kg of BHT are added and the mixture is stirred to give a clear solution. Additionally, it is possible to stir into the formulation preferably the perfume oils aurantiol, citronella oil, C10-C16 aldehyde, birch tar oil, benzyl salicylate, lavender oil or rose oil in combination with, or without, the colorants Hostasol yellow®, Resolin-brilliant red BLS®, 1,4-diaminoanthraquinone, Alizarin VK6/225, Fatty Red HRR®, Fatty Red G®, Solvaperm Green G or Sudan Blue 670®. With rapid stirring, 8 kg of Aerosil COK 84® are introduced into the clear solution under reduced pressure until a gel has formed. [0032]
  • For use, the gel formulations are, depending on the duration of use, filled into deep-drawn or cast containers generally in amounts of 0.2-0.5 g, preferably in amounts of 0.2-0.3 g, and sealed with polypropylene film. Preferred container materials are aluminium, polyester, polyethylene, metals. The dimensions of the container are chosen such that the area of the bottom of the container has the same size as the heating area of the heating device and transfers temperatures of from 70 to 112° C. [0033]
  • The controlled and sustained release of insecticidally active compounds is effected by using Examples 2.1 and 2.2 as follows: [0034]
  • 1.6 g of the insecticide-comprising gel formulations are uniformly distributed on the surface of deep-drawn aluminium container having the dimensions (4×2.5×0.4 cm) and sealed with the PP film Walothen C5OSE® or Trespaphan 6ND50®. In a heating device having a temperature of 100-112° C., the container is heated for 8 hours each day, and the release rates of the formulation are determined. [0035]
  • The results of the vaporization tests are shown in Example 3. [0036]
  • EXAMPLE 3
  • Release Rates of the Formulations from Example 1.1 and 1.2 in [mg/h] [0037]
    Heater temperatures: 105-107° C.
    Voltage: 230 V
    Room temperature: 20-22° C.
    Duration of the cycle: 8 h
    Cycle pause: 4 h
    Weighed-out formulation: 1.6 g
  • [0038]
    Example 1.1 Example 1.2
    Cycle Weight loss per hour in mg
     1 4.6 4.6
     2 4.8 4.5
     3 4.1 4.4
     4 4.1 4.3
     5 3.2 4.8
     8 3.2 4.4
    10 3.2 4.3
    12 3.2 4.1
    14 2.7 4.0
    16 2.5 3.8
    18 2.4 3.5
    20 2.2 3.5
    22 2.0 3.9
    24 2.0 3.8
    26 2.0 3.4
    28 2.1 3.3
    30 1.4 2.9
    32 1.2 2.6
    34 1.3 2.5
    36 1.2 2.7
    38 1.0 2.3
    40 1.1 2.2
    42 0.9 2.2
    44 0.8 1.6
    46 0.8 1.3
    48 0.8 1.2
    50 0.6 1.0
  • EXAMPLE 4
  • Biological Effect on Mosquitoes of the Variety Aedes Aegypti, Sensitive [0039]
    Room size: 36 m3
    Kind of room: 1 window, open
    temperature: 20-28° C.
    rel. humidity in the room: 17-34%
    heater temperature: 105-110° C.
    content of active compound: 25% of transfluthrin
    weighed-out formulation: 1.6 g
  • [0040]
    Duration of
    operation/ Formulation 1.1 Formulation 1.2
    Examination Mosquitoes KD effect after KD effect after
    after days released min or h % dead after min or h % dead after
    (hours) after hours 50% 100% 9 h 24 h 50% 100% 9 h 24 h
    1 day 0 1 h 03′ 1 h 15′ 100 100 1 h 14′ 2 h 02′ 100 100
    1 19′ 1 h 05′ 100 100 39′ 59′ 100 100
    2 10′ 17′ 100 100 11′ 16′ 100 100
    3 4′ 7′ 100 100 32′ 45′ 100 100
    4 4′ 7′ 100 100 9′ 17′ 100 100
    5 4′ 6′ 100 100 7′ 21′ 100 100
    6 3′ 5′ 100 100 12′ 22′ 100 100
    7 4′ 5′ 100 100 15′ 24′ 100 100
    8 hours 8 4′ 5′ 100 100 7′ 18 100 100
    2 days 0 53′ 1 h 21′ 100 1 h 02′ 1 h 34′ 100
    1 29′ 1 h 02′ 100 1 h 04′ 2 h 20′ 100
    2 21′ 35′ 100 1 h 03′ 1 h 30′ 100
    3 13′ 23′ 100 44′ 1 h 35′ 100
    4 14′ 24′ 100 37 1 h 12′ 100
    5 7′ 13′ 100 35′ 1 h 14′ 100
    6 9′ 20′ 100 23′ 40′ 100
    7 7′ 13′ 100 26′ 45′ 100
    16 hours 8 5′ 8′ 100 9′ 14′ 100
    7 days 0 41′ 52′ 100 100 1 h 10′ 1 h 34′ 100 100
    1 24′ 42′ 100 100 39′ 1 h 24′ 100 100
    2 8′ 14′ 100 100 34′ 1 h 03′ 100 100
    3 8′ 16′ 100 100 15′ 54′ 100 100
    4 7′ 15′ 100 100 18′ 30′ 100 100
    5 8′ 17′ 100 100 24′ 41′ 100 100
    6 8′ 16′ 100 100 19′ 31′ 100 100
    7 7′ 14′ 100 100 16′ 44′ 100 100
    56 hours 8 6′ 11′ 100 100 7′ 12′ 100 100
    13 days 0 30′ 43′ 100 100 29′ 48′ 100 100
    1 6′ 11′ 100 100 8′ 13′ 100 100
    2 4′ 8′ 100 100 6′ 10′ 100 100
    3 3′ 4′ 100 100 4′ 9′ 100 100
    4 2′ 5′ 100 100 4′ 8′ 100 100
    5 3′ 6′ 100 100 7′ 22′ 100 100
    6 2′ 6′ 100 100 6′ 12′ 100 100
    7 2′ 7′ 100 100 5′ 8′ 100 100
    104 hours 8 2′ 6′ 100 100 5′ 8′ 100 100
    20 days 0 42′ 57′ 100 100 38′ 55′ 100 100
    1 5′ 11′ 100 100 3′ 7′ 100 100
    2 5′ 11′ 100 100 2′ 6′ 100 100
    3 4′ 8′ 100 100 2′ 4′ 100 100
    4 5′ 7′ 100 100 2′ 4′ 100 100
    5 6′ 9′ 100 100 2′ 6′ 100 100
    6 5′ 8′ 100 100 2′ 5′ 100 100
    7 4′ 8′ 100 100 2′ 7′ 100 100
    160 hours 8 5′ 7′ 100 100 2′ 6′ 100 100
    27 days 0 1 h 28′ 1 h 53′ 100 100 42′ 52′ 100 100
    1 1 h 13′ 2 h 05′ 100 100 35′ 49′ 100 100
    2 1 h 01′ 1 h 35′ 100 100 10′ 50′ 100 100
    3 40′ 1 h 13′ 100 100 7′ 14′ 100 100
    4 23′ 43′ 100 100 7′ 12′ 100 100
    5 33′ 53′ 100 100 8′ 15′ 100 100
    6 8′ 18′ 100 100 4′ 8′ 100 100
    7 20′ 58′ 100 100 3′ 5′ 100 100
    216 hours 8 7′ 11′ 100 100 3′ 5′ 100 100
    35 days 0 1 h 25′ 2 h 20′ 100 100 1 h 00′ 1 h 13′ 100 100
    1 43′ 1 h 15′ 100 100 11′ 43′ 100 100
    2 28′ 1 h 03′ 100 100 5′ 10′ 100 100
    3 43′ 1 h 03′ 100 100 3′ 7′ 100 100
    4 13′ 1 h 18′ 100 100 3′ 7′ 100 100
    5 15′ 58′ 100 100 2′ 7′ 100 100
    6 20′ 1 h 05′ 100 100 3′ 18′ 100 100
    7 8′ 28′ 100 100 2′ 9′ 100 100
    280 hours 8 10′ 48′ 100 100 2′ 7′ 100 100
    42 days 0 2 h 23′ 3 h 05′ 100 100 53′ 1 h 28′ 100 100
    1 2 h 43′ 3 h 15′ 100 100 1 h 05′ 1 h 45′ 100 100
    2 1 h 43′ 2 h 48′ 100 100 53′ 1 h 35′ 100 100
    3 1 h 53′ 3 h 50′ 100 100 1 h 00′ 1 h 55′ 100 100
    4 1 h 20′ 2 h 28′ 100 100 48′ 1 h 25′ 100 100
    5 45′ >4 h 98 100 33′ 48′ 100 100
    6 38′ 1 h 28′ 100 100 12′ 55′ 100 100
    7 48′ >2 h 90 100 14′ 48′ 100 100
    336 hours 8 >1 h >1 h 45 100 6′ 10′ 100 100
    48 days 0 1 h 42′ 2 h 40′ 100 1 h 40′ 2 h 20′ 100
    1 2 h 45′ 3 h 50′ 100 1 h 30′ 2 h 15′ 100
    2 1 h 43′ 2 h 55′ 100 1 h 00′ 2 h 18′ 100
    3 1 h 45′ 2 h 48′ 100 1 h 03′ 2 h 05′ 100
    4 1 h 23′ 2 h 13′ 100 53′ 1 h 48′ 100
    5 1 h 48′ >4 h 95 40′ 1 h 45′ 100
    6 1 h 20′ >3 h 88 35′ 1 h 00′ 100
    7 39′ >2 h 90 9′ 48′ 100
    384 hours 8 >1 h >1 h 60 8′ >1 h 90
  • Based on the present results, the biological activity of the formulations mentioned here in sufficient. [0041]

Claims (5)

1. Insecticidal gel formulation having controlled and sustained release of insecticidal active compounds by means of a heat source, characterized in that they comprise at least one insecticidal active compound from the group of the pyrethroids, a vaporization-controlling substance from the group of the medicinal white oils, high-pressure hydrogenated mineral oils, rapeseed oil or rapeseed oil derivatives or Guerbet alcohol and customary gel formers and formulation auxiliaries.
2. Insecticidal gel formulations according to
claim 1
, characterized in that they comprise the insecticidal active compound transfluthrin.
3. Insecticidal active compounds according to
claim 1
, characterized in that they comprise at least one vaporization modifier from the group of the naturally regrowing raw materials, such as rapeseed oil, rapeseed oil methyl ester or colourless to slightly yellowish Guerbet alcohol (CAS No.: 67 187-86-0) or 2-hexyldecan-1-ol (CAS No.: 36 311-34-9).
4. Insecticidal gel formulations according to
claim 1
, characterized in that they comprise from 10 to 90% by weight of vaporization modifiers and from 1 to 12% of gel formers and also from 5 to 80% by weight of insecticidal active compound.
5. Process for preparing insecticidal gel formulations according to
claim 1
, characterized in that the insecticidal active compound and the vaporization modifier and, if appropriate, stabilizer and other solvents and auxiliaries are stirred to give a clear solution, gel formers and, if appropriate, colorants, perfume oils and/or other auxiliaries are subsequently added under reduced pressure and stirred intensively until a homogeneous gel is formed, and this homogeneous gel formulation is filled into suitable containers.
US09/462,958 1997-07-21 1998-07-08 Gel formulations containing insecticide Expired - Fee Related US6447795B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19731156 1997-07-21
DE19731156.3 1997-07-21
DE19731156A DE19731156A1 (en) 1997-07-21 1997-07-21 Improved gel formulations containing insecticide
PCT/EP1998/004253 WO1999004629A1 (en) 1997-07-21 1998-07-08 Improved gel formulations containing insecticide

Publications (2)

Publication Number Publication Date
US20010055604A1 true US20010055604A1 (en) 2001-12-27
US6447795B2 US6447795B2 (en) 2002-09-10

Family

ID=7836332

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/462,958 Expired - Fee Related US6447795B2 (en) 1997-07-21 1998-07-08 Gel formulations containing insecticide

Country Status (11)

Country Link
US (1) US6447795B2 (en)
EP (1) EP0999743B1 (en)
JP (1) JP2001515840A (en)
CN (1) CN1265005A (en)
AT (1) ATE225603T1 (en)
AU (1) AU739899B2 (en)
BR (1) BR9810725B1 (en)
DE (2) DE19731156A1 (en)
ES (1) ES2185201T3 (en)
ID (1) ID24646A (en)
WO (1) WO1999004629A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215878B2 (en) 2000-01-13 2007-05-08 S.C. Johnson & Son, Inc. Chip that comprises an active agent and an integrated heating element
US20100160396A1 (en) * 2007-05-25 2010-06-24 Bayer Scropscience Ag Insecticidal Compositions of 2-Cyanobenzene Sulfonamide Compounds and Isomeric Forms Thereof Having Improved Effect
US8231887B2 (en) 2008-04-11 2012-07-31 Basf Corporation Pesticidal compositions
US9549546B2 (en) 2011-12-09 2017-01-24 Shin-Etsu Chemical Co., Ltd. Sustained release preparation comprising insect pest-targeting gel composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2002230389A1 (en) * 2000-06-14 2002-04-29 Vermeer Manufacturing Company Utility mapping and data distribution system and method
US20030040504A1 (en) * 2001-05-09 2003-02-27 Gans Eugene H. Ectoparasiticidal compositions and methods of their use
US6722578B2 (en) * 2002-03-11 2004-04-20 S.C. Johnson & Son, Inc. Apparatus for dispensing volatile materials
US7813224B2 (en) * 2006-04-06 2010-10-12 Underground Imaging Technologies, Inc. Seismic source/receiver probe for shallow seismic surveying
US9646415B2 (en) * 2006-05-16 2017-05-09 Underground Imaging Technologies, Inc. System and method for visualizing multiple-sensor subsurface imaging data
US8089390B2 (en) * 2006-05-16 2012-01-03 Underground Imaging Technologies, Inc. Sensor cart positioning system and method
DE102008006883A1 (en) * 2008-01-31 2009-08-13 Evonik Degussa Gmbh Silica dispersion
CN108056119A (en) * 2018-01-19 2018-05-22 山东省寄生虫病防治研究所 A kind of mosquito-fly pesticide

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121927A (en) * 1977-03-29 1978-10-24 Sumitomo Chem Co Ltd Insecticidal composition for electiric mosquito-repellent device
JPS54135227A (en) * 1978-04-13 1979-10-20 Kureha Chem Ind Co Ltd Insecticidal or fungicidal fumigant
IN152745B (en) * 1980-03-21 1984-03-24 Airwick Ag
GR82163B (en) 1984-01-31 1984-12-13 Earth Chemical Co
EG18025A (en) 1986-07-18 1993-06-30 Sumitomo Chemical Co A method for killing insects by heating fumigation
DE69407949T2 (en) * 1993-10-01 1998-05-14 Scherer Corp R P COMPOSITIONS FOR DISTRIBUTING FRAGRANCES
DE4424786A1 (en) 1994-07-14 1996-01-18 Bayer Ag Insecticide-containing gel formulations for evaporator systems

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7215878B2 (en) 2000-01-13 2007-05-08 S.C. Johnson & Son, Inc. Chip that comprises an active agent and an integrated heating element
US20100160396A1 (en) * 2007-05-25 2010-06-24 Bayer Scropscience Ag Insecticidal Compositions of 2-Cyanobenzene Sulfonamide Compounds and Isomeric Forms Thereof Having Improved Effect
US8604068B2 (en) * 2007-05-25 2013-12-10 Bayer Cropscience Ag Insecticidal compositions of 2-cyanobenzene sulfonamide compounds and isomeric forms thereof having improved effect
US8231887B2 (en) 2008-04-11 2012-07-31 Basf Corporation Pesticidal compositions
US8591927B2 (en) 2008-04-11 2013-11-26 Basf Corporation Pesticidal compositions
US9005644B2 (en) 2008-04-11 2015-04-14 Basf Corporation Pesticidal compositions
US9549546B2 (en) 2011-12-09 2017-01-24 Shin-Etsu Chemical Co., Ltd. Sustained release preparation comprising insect pest-targeting gel composition
US10244750B2 (en) 2011-12-09 2019-04-02 Shin-Etsu Chemical Co., Ltd. Insect pest-targeting gel composition and sustained release preparation comprising that

Also Published As

Publication number Publication date
AU8859298A (en) 1999-02-16
BR9810725A (en) 2000-08-08
WO1999004629A1 (en) 1999-02-04
ES2185201T3 (en) 2003-04-16
ID24646A (en) 2000-07-27
DE19731156A1 (en) 1999-01-28
US6447795B2 (en) 2002-09-10
EP0999743B1 (en) 2002-10-09
DE59805910D1 (en) 2002-11-14
EP0999743A1 (en) 2000-05-17
ATE225603T1 (en) 2002-10-15
JP2001515840A (en) 2001-09-25
BR9810725B1 (en) 2010-09-21
CN1265005A (en) 2000-08-30
AU739899B2 (en) 2001-10-25

Similar Documents

Publication Publication Date Title
KR100389576B1 (en) Pesticide-Containing Gel Formulations for Vapor Generation Systems
US6447795B2 (en) Gel formulations containing insecticide
RU2585849C2 (en) Paper saturated with insecticidal substances
CN101669504B (en) Pesticide mother solution, preparation method and application thereof
RU2128436C1 (en) Insecticide composition for heating fumigation and a method of struggle against harmful insects
JPS59104303A (en) Electrothermally fumigating mat of high chemical content
US3991213A (en) Pesticidal composition
JPS60139605A (en) Fumigation composition
US5468497A (en) Fuming, hot-vaporizing insecticide for killing flies, and method for killing flies with the same
KR940010904A (en) Insecticide composition
JP2775488B2 (en) How to control indoor dust mites
MXPA00000704A (en) Improved gel formulations containing insecticide
JPS5949201B2 (en) Two-part pest control material
JP2614471B2 (en) Time indicator
JP2646597B2 (en) Sanitary pest control agent that is safe and rich in storage stability
US7423062B2 (en) Insecticidal composition
JPH10194904A (en) Insecticidal mat for long time and thermal vaporization insecticidal method using the same
EP0774905A1 (en) Emanator mats
RU2146870C1 (en) Anti-moth means
JPS63152305A (en) Insecticidal mat for vaporization by heating
JP4441017B2 (en) Portable flying pest control device
JP3704647B2 (en) Roasting and heating transpiration insecticide for slaughter, and slaughter method using the same
JPH0967215A (en) Insecticidal and pest controlling agent
JP2003250417A (en) Thermal evaporation method and thermal evaporation container used therefor
JPH07206604A (en) Aerosol composition for pest control

Legal Events

Date Code Title Description
AS Assignment

Owner name: BAYER AKTIENGESELLSCHAFT, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KALDER, DIETMAR;JUNG, ROLF;MIELKE, BURKHARD;REEL/FRAME:010613/0915;SIGNING DATES FROM 19991207 TO 19991208

AS Assignment

Owner name: S.C. JOHNSON & SON, INC., WISCONSIN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BAYER AKTIENGESELLSCHAFT;REEL/FRAME:013746/0891

Effective date: 20021218

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20140910