US20010054437A1 - Solar cell module - Google Patents

Solar cell module Download PDF

Info

Publication number
US20010054437A1
US20010054437A1 US08/926,937 US92693797D US2001054437A1 US 20010054437 A1 US20010054437 A1 US 20010054437A1 US 92693797 D US92693797 D US 92693797D US 2001054437 A1 US2001054437 A1 US 2001054437A1
Authority
US
United States
Prior art keywords
substrate
insulating film
photo
generating device
electricity generating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US08/926,937
Other versions
US6323416B1 (en
Inventor
Ayako Komori
Takahiro Mori
Ichiro Kataoka
Satoru Yamada
Hidenori Shiotsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to CANON KABUSHIKI KAISHA reassignment CANON KABUSHIKI KAISHA ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KATAOKA, ICHIRO, KOMORI, AYAKO, MORI, TAKAHIRO, SHIOTSUKA, HIDENORI, YAMADA, SATORU
Publication of US20010054437A1 publication Critical patent/US20010054437A1/en
Granted legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/02Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments
    • B32B17/04Layered products essentially comprising sheet glass, or glass, slag, or like fibres in the form of fibres or filaments bonded with or embedded in a plastic substance
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D1/00Roof covering by making use of tiles, slates, shingles, or other small roofing elements
    • E04D1/29Means for connecting or fastening adjacent roofing elements
    • E04D1/2907Means for connecting or fastening adjacent roofing elements by interfitted sections
    • E04D1/2928Means for connecting or fastening adjacent roofing elements by interfitted sections having slits receiving marginal edge of adjacent section
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/36Connecting; Fastening
    • E04D3/366Connecting; Fastening by closing the space between the slabs or sheets by gutters, bulges, or bridging elements, e.g. strips
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/005Hot-air central heating systems; Exhaust gas central heating systems combined with solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D1/00Roof covering by making use of tiles, slates, shingles, or other small roofing elements
    • E04D1/34Fastenings for attaching roof-covering elements to the supporting elements
    • E04D2001/3444Fastenings for attaching roof-covering elements to the supporting elements characterised by the roof covering or structure with integral or premounted fastening means
    • E04D2001/3447Fastenings for attaching roof-covering elements to the supporting elements characterised by the roof covering or structure with integral or premounted fastening means the fastening means being integral or premounted to the roof covering
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S454/00Ventilation
    • Y10S454/90Ventilator using solar power

Definitions

  • the present invention relates to a solar cell module including a photo-electricity generating device (i.e., a solar cell or a block of solar cells) fixed with a resin onto a substrate and covered with a surface film. More specifically, the present invention relates to a solar cell module having an excellent inflammability and an excellent moisture resistance and also a bent structure suitable for assembly.
  • a photo-electricity generating device i.e., a solar cell or a block of solar cells
  • a type of solar cell module including a photo-electricity generating device fixed onto a substrate with a resin and covered with a surface film has been known.
  • the resin EVA (ethylene-vinyl acetate copolymer) has been widely used.
  • the surface film it has been known to use a film of a fluorine-containing resin, such as tetrafluoroethylene-ethylene copolymer or polyvinyl fluoride, or a transparent fluorine-containing polymer film formed by coating with a fluorine-containing resin paint.
  • Such a solar cell module having a fluorine-containing polymer as a light-incidence side surfacemost coating material has an inferior scratch resistance than a solar cell module comprising a glass substrate as a light-incidence side surface material. Accordingly, it has been known to incorporate an inorganic fibrous sheet such as non-woven glass fiber cloth, within an organic polymeric resin as a filler to form a surface coating material.
  • the inorganic fibrous sheet such as glass fiber
  • the inorganic fibrous sheet such as glass fiber
  • the filler resin impregnating the glass fiber have a low adhesion with each other so that the moisture intrudes along the glass fiber.
  • JP-B Japanese Patent Publication 62-33756 has disclosed a solar cell module wherein a glass fiber sheet material with little end portion is disposed on both sides of a solar cell and the end portion thereof is sealed within a filler resin.
  • JP-B 62-33756 has proposed to use a long-fiber glass fiber material having little end portion selected from limited materials, such as continuous strand mat, glass cloth and rolling cloth. No consideration has been exercised regarding insulation between the solar cell and the substrate on which the solar cell is disposed.
  • JP-A 7-288333 has disclosed a solar cell module wherein a light-transmissive non-woven cloth (glass fiber cloth) in contact with a solar cell is disposed inside of edges of the solar cell module, and an insulating film is disposed between the solar cell and the module substrate.
  • the insulating film is disposed to protrude out of the module substrate, and no consideration has been paid to bending of the module substrate.
  • a principal object of the present invention is to provide a solar cell module capable of effectively suppressing the moisture intrusion into the interior of the solar cell module even in a long period of outdoor use.
  • a solar cell module comprising: a substrate, a photo-electricity generating device, a filler resin sealing the photo-electricity generating device on the substrate, and a surface film covering the filler resin;
  • an insulating film is inserted between the photo-electricity generating device and the substrate so as to be inside the substrate
  • an inorganic fibrous sheet is inserted between the photo-electricity generating device and the surface film so as to be disposed inside the insulating film, and
  • the substrate is bent at a portion thereof free from the insulating film.
  • FIG. 1A illustrates members constituting a solar cell module according to the invention with their relative sizes
  • FIG. 1B is a sectional view of the solar cell module showing the members in a laminated form.
  • FIG. 2 is a sectional illustration of a photo-electricity generating device (solar cell) incorporated in the solar cell module shown in FIGS. 1A and 1B.
  • FIG. 3 is a sectional illustration of solar cell modules according to the invention assembled in series.
  • FIGS. 4A and 4B are views corresponding to FIGS. 1A and 1B, respectively, for illustrating another embodiment of the solar cell module according to the invention.
  • FIGS. 5 A- 5 C illustrate an embodiment of the roofing member according to the invention.
  • FIG. 6 illustrates an embodiment of the ventilation apparatus according to the invention.
  • FIGS. 1A and 1B illustrate an embodiment of the solar cell module according to the present invention.
  • the solar cell module includes a photo-electricity generating device (i.e., a solar cell or a block of solar cells) 101 , an inorganic fibrous (sheet) material 102 , a filler resin 103 , a surface film 104 , an adhesive 105 , an insulating film 106 and a substrate 107 .
  • a photo-electricity generating device i.e., a solar cell or a block of solar cells
  • an inorganic fibrous (sheet) material 102 i.e., a filler resin 103 , a surface film 104 , an adhesive 105 , an insulating film 106 and a substrate 107 .
  • These members are stacked in the order illustrated in FIG. 1A and formed into a solar cell module having a laminate sectional structure as shown in FIG. 1B.
  • the relative areal (or planar) sizes of the respecptive members may be set as follows.
  • the inorganic fibrous sheet 102 is set as follows.
  • the inorganic fibrous sheet 102 is larger than the photo-electricity generating device 101 SO as to cover the photo-electricity generating device 101 .
  • the insulating film 106 has an almost identical size as the adhesive 105 and is larger than the inorganic fibrous sheet 102 .
  • the substrate 107 , the filler resin 103 and the surface film 104 have almost identical sizes and are larger than the insulating film 106 .
  • the filler resin 103 and the surface film 104 may be somewhat larger than the substrate 107 so as to cover edges of the substrate 107 .
  • the inorganic fibrous sheet 102 is disposed inside the edge(s) of the insulating film 106 together with a bent substrate structure as described hereinafter, it becomes possible to provide a solar cell module free from moisture intrusion even after a temperature-humidity cycle test and a long period of outdoor use, thus providing a reliable solar cell module free from a lowering in electrical insulation performance.
  • the inorganic fibrous sheet 102 may preferably be larger in planar size than the photo-electricity generating device 101 .
  • the inorganic fibrous sheet 102 has a function of promoting degassing from the module laminate at the time of preparation thereof by lamination. If it is smaller than the photo-electricity generating device, the cell cannot be sufficiently prevented from an external impact, and the degassing from the module at the time of lamination is liable to be insufficient to leave bubbles within the module.
  • the inorganic fibrous sheet 102 is smaller in planar size than the substrate 107 and not extended up to the edge of the module. If the inorganic fibrous sheet 102 is identical or larger in size than the substrate 107 so as to be exposed to the module edge, external moisture is caused to intrude into the module, along the fiber, thereby promoting the deterioration or peeling of the coating material. Further, as a result of the moisture intrusion, the electrical insulation between the inner portion and the exterior This is because the inorganic fibrous sheet 102 and the filler resin 103 show a rather weak adhesion therebetween so that the boundary therebetween is liable to provide a flow path and the moisture is caused to intrude along the inorganic sheet 102 .
  • the inorganic fibrous sheet 102 even if the inorganic fibrous sheet 102 does not reach the module edge, if the inorganic fibrous sheet 102 continually extends from above the photo-electricity generating device 101 to the substrate 107 , moisture can migrate along the inorganic fibrous sheet 102 to provide an electrical continuation between the substrate 107 and the photo-electricity generating device 101 , thus failing to ensure the electrical insulation in some cases.
  • the inorganic fibrous sheet 102 is smaller than the insulating film 106 rather than having an identical size as the insulating film 106 .
  • the surface film 104 and the filler resin 103 can have caused a remarkable degree of buckling after the bending to result in a peeling or a crack at the bend, thereby causing moisture intrusion therethrough.
  • the inorganic fibrous sheet 102 liable to provide a moisture migration path is formed in a smaller size than the insulating film 106 so that, even when the substrate 107 is bent at a position closer to the photo-electricity generating device 101 and outside the insulating film 106 , it becomes possible to remarkably reduce the possibility that the moisture possibly penetrating through the portion reaches the photo-electricity generating device 101 , thus providing an improved long-term reliability.
  • the solar cell module according to the present invention when used as a roofing sheet member, can include the photo-electricity generating device fully up to the working width of the roofing sheet, so that a smaller number of roofing sheets can generate a sufficient amount of electric power.
  • the adhesion between the inorganic fibrous sheet 102 and the filler resin 103 can be remarkably increased if one or both of them are surface-treated with a silane coupling agent.
  • the effect of the treatment has a certain limit, and the surface-treating effect can be deteriorated to result in a lower adhesion after a long-term outdoor exposure or a temperature-humidity cycle test corresponding thereto.
  • a solution to this problem given by the present invention is to dispose the inorganic fibrous sheet 102 in a smaller size than the insulating film 106 .
  • a portion of the adhesive layer 105 bonding the solar cell 101 and the insulating film 106 can directly contact the filler resin 103 without intermediate the inorganic fibrous sheet 102 .
  • This provides an improved packaging effect for the photo-electricity generating device 101 , and prevents the formation of a moisture migration path connecting the photo-electricity generating device 101 and the substrate 107 , thus ensuring an electrical insulation even after a long-term outdoor use or a temperature-humidity cycle test corresponding thereto. Further, it is also possible to prevent the generated electricity from being leaked to the exterior and provide a solar cell module with an improved safety in actual use.
  • the inorganic fibrous sheet 102 and the insulating film 106 are prevented from being present at the bending portion, the bending becomes easier, and the occurrence of inferior appearance, such as turbidity at the bend, can be suppressed.
  • the inorganic fibrous sheet 102 used in the present invention is required in order to reduce the amount of the filler resin, provide an improved scratch resistance and provide an improved non-flammability. Further, in the case of a large-sized solar cell module of roofing-type or wall installation-type, the inorganic fibrous sheet 102 is very effective for de-aeration within the module at the time of lamination.
  • the inorganic fibrous sheet 102 may suitably comprise various non-woven glass fiber cloth without particular limitation. It is preferred to use an acrylic resin as a binder for binding individual glass fibers. It is further preferred to surface-treat the inorganic fibrous sheet with a silane coupling agent.
  • the inorganic fibrous sheet 102 may preferably have a thickness of 150-450 ⁇ m and comprise glass fiber having a fiber diameter in a range of 5-15 ⁇ m.
  • the filler resin 103 is used to coat the unevennesses of the photo-electricity generating device 101 and protect the cell from severe environmental conditions, such as a temperature change, a humidity and an impact while ensuring the adhesion between the cell 101 and the surface film 104 . Accordingly, the filler resin is required to exhibit weatherability, adhesivenness, filler characteristic, heat-resistance, cold-resistance, and impact resistance.
  • resins satisfying such requirements may include: polyolefin-type resins, such as ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer, and polyvinyl butyral resin, urethane resin, silicone resin, and fluorine-containing resin.
  • EVA ethylene-vinyl acetate copolymer
  • EMA ethylene-methyl acrylate copolymer
  • EMA ethylene-ethyl acrylate copolymer
  • polyvinyl butyral resin polyvinyl butyral resin
  • urethane resin silicone resin
  • fluorine-containing resin fluorine-containing resin
  • the filler resin 103 may provide a thin filler resin portion where the inorganic fibrous sheet 102 is not present at a non-elasticity-generating region when the solar cell 101 is not present.
  • the thickness of the thin-filler resin portion comprising the filler resin 103 but no inorganic fibrous sheet 102 may preferably be smaller than that of a layer including the filler resin 103 and the inorganic fibrous sheet 102 at an electricity-generating region.
  • the module substrate 107 may desirably be bent at the thin-filler resin portion.
  • the filler resin 103 in its straight form has a rather low heat-distortion temperature and can readily cause distortion or creeping at an elevated temperature, so that it is preferred to crosslink the filler resin so as to provide an enhanced heat resistance.
  • EVA may generally be crosslinked in the presence of an organic peroxide. Crosslinking with an organic peroxide may be initiated by extraction of a hydrogen or chlorine atom from a resin by a free radical generated from the organic peroxide to form a C-C bond.
  • the organic peroxide may be activated by thermal decomposition, redox decomposition or ionic decomposition. Thermal decomposition is generally preferred.
  • organic peroxide structures may include: hydroperoxide, dialkyl (allyl) peroxide, diacyl peroxide, peroxyketal, peroxyester, peroxy carbonate and ketone peroxide.
  • the organic peroxide may be used in 0.5-5 wt. parts per 100 wt. parts of the filler or sealing resin 103 .
  • These organic peroxides may be used in mixture with the filler resin to effect crosslinking and heat-pressure bonding under heat and pressure in vacuum.
  • the heating temperature and time may be determined depending on the thermal decomposition temperature characteristic of the organic peroxide used, but the heating and pressure application may be generally completed at a temperature and for a period sufficient to cause at least 90%, more preferably at least 95%, of the decomposition.
  • the crosslinking of the filler resin may generally be determined by measuring a gel content given by the following equation:
  • a filler is extracted for, e.g., 6 hours with a solvent, such as xylene, in an amount of, e.g., 100 ml per g (gram) of the filler at a boiling point of e.g., 135-145° C.
  • a gel content of 100% means the completion of crosslinking.
  • the sample remaining after the extraction may be recovered to evaporate the xylene therefrom, e.g., at 85° C. for 6 hours to selectively recover an insoluble gel matter.
  • a gel content may be calculated by substituting the insoluble matter weight and the original sample weight into the above equation.
  • the filler resin may preferably have a gel/content as measured in the above-described manner of at least 70 wt. %.
  • TAIC triallyl isocyanurate
  • the filler resin as specifically mentioned above generally has excellent weatherability but can further contain an ultraviolet absorber for further improved weatherability or for protection of lower layers.
  • the ultraviolet absorber may comprise a known compound but may preferably a low-volatility ultraviolet absorber in view of the service environment of the solar cell module. Specific examples thereof may include ultraviolet absorbers of the benzophenone-type, benzotriazole-type and cyanoacrylate-type.
  • a light stabilizer together with an ultraviolet absorber may provide a further light-stable filler resin.
  • Representative light-stabilizers may include: hindered amine-type light stabilizers.
  • a hindered amine-type light stabilizer does not absorb ultraviolet rays but exhibits a synergistically stabilizing effect when used in combination with an ultraviolet absorber.
  • Other light stabilizers may also be used but may not be as preferred as the hindered amine-type light stabilizer because many of them are colored.
  • the above-mentioned ultraviolet absorber and light-stabilizer may preferably be used in proportions of 0.1-1.0 wt. % and 0.05-1.0 wt. %, respectively, of the filler resin.
  • the filler resin can further contain an antioxidant in order to improve the heat resistance and the thermal processability.
  • the antioxidant may be of the mono-phenol type, bis-phenol type, polymeric phenol type, sulfur type and phosphoric acid type.
  • Such an anti-oxidant may preferably be added in 0.05-1.0 wt. % of the filler resin
  • the solar cell module is used in a severe environment, it is preferred to enhance the adhesion of the filler resin 103 with the surface film 104 and/or the lower layers including the inorganic fibrous sheet 102 .
  • it is effective to use a silane coupling agent.
  • silane coupling agent may include: vinyltrichlorosilane, vinyltris( ⁇ -methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropyltrimethoxysilane, N- ⁇ (aminoethyl)- ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, and ⁇ -chloropropyltrimethoxysilane.
  • Such a silane coupling agent may preferably be added in an amount of 0.1-3 wt. parts, more preferably 0.25-1 wt. parts, per 100 wt. parts of the filler resin.
  • the filler resin 103 has to be essentially transparent. More specifically, the filler resin 103 may desirably show a transmittance of at least 80%, preferably at least 90%, for a visible wavelength region of 400-800 nm. Further, for allowing easy incidence of light through the atmosphere, the filler resin 103 may preferably have a refractive index at 25° C. of 1.1-2.0, more preferably 1.1-1.6.
  • the filler resin 103 may preferably be provided in a sheet form having a thickness sufficient to provide an amount which is, e.g., 7-23 times that of the inorganic fibrous sheet 102 for an identical planar size.
  • EVA sheets for solar cells prepared by forming EVA containing additives as described above into sheets are already commercially available.
  • the commercially available EVA sheets for solar cells may include “SOLAR EVA” available from Hi-Sheet Kogyo K.K., “EVASAFE WG Series” available from Bridgestone K.K. and “PHOTOCAP” available from Springborn Laboratories, Inc.
  • a commercially available EVA sheet of these suppliers may be inserted between a surface film and an inorganic fibrous sheet covering a photo-electricity generating device and pressed under heating to easily provide a solar cell module.
  • the surface film 104 constitutes a surface-most layer of the solar cell module according to the present invention and accordingly is required to exhibit performances ensuring a long-term reliability for outdoor exposure of the solar cell module, including transparency, weatherability, stain resistance and mechanical strength.
  • the material suitably used in the present invention may comprise white sheet reinforced glass, a fluorine-containing resin film or acrylic resin film.
  • the white sheet reinforced glass has a high transparency, is impact-containing resin film or acrylic refine film.
  • the white sheet reinforced glass has a high transparency, is impact-resistant and is not readily broken, so that it has been widely used as a surfacing material for a solar cell module.
  • a module is required to be light and flexible in many cases.
  • a film surface member is used.
  • a fluorine-containing resin film may preferably be used because of excellent weatherability and stain resistance.
  • Specific examples of the fluorine-containing resin may include polyvinylidene fluoride resin, polyvinyl fluoride resin and tetrafluoro-ethylene-ethylene copolymer.
  • Polyvinylidene fluoride is excellent in weatherability, and tetrafluoro-ethylene-ethylene copolymer is excellent in harmonization of weatherability and mechanical strength and transparency.
  • the surface film should have a certain thickness in order to ensure a mechanical strength and should not be too thick in view of the production cost.
  • the thickness may preferably be 20-200 ⁇ m, more preferably 30-100 ⁇ m.
  • one surface (non-exposed surface) of the surface film may preferably be subjected to corona treatment, plasma treatment, ozone treatment, irradiation with UV rays, irradiation with electron rays, or flame treatment.
  • the plasma discharge treatment is especially suitably used because of a large processing speed and a remarkable improvement in adhesion by using a relatively simple apparatus.
  • the adhesive (layer) 105 used on a light non-receiving side of the module may comprise a material similar to that of the filler resin 103 disposed on the light receiving side. As shown in FIGS. 1A and 1B, the adhesive layer 105 may desirably be disposed in a smaller area than the filler resin 103 , so that the bending portion of the module is caused to have a smaller thickness to facilitate the bending operation and provide an improved non-flammability.
  • the adhesive layer 105 disposed on the light non-receiving side is rather required not to result in a lowering in adhesion of the photo-electricity generating device 101 with the insulating film 106 and the substrate 107 when subjected to light and heat, outdoor use or a temperature-humidity cycle test than the non-coloration characteristic when subjected to light, heat, etc. required on the light receiving side.
  • the coating organic polymer may comprise, e.g., polyolefin-based resins, such as ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), polyethylene and butyral resin, urethane resin, silicone resin, and flexible epoxy resin adhesive
  • EVA ethylene-vinyl acetate copolymer
  • EMA ethylene-methyl acrylate copolymer
  • ESA ethylene-ethyl acrylate copolymer
  • polyethylene and butyral resin polyethylene and butyral resin
  • urethane resin silicone resin
  • silicone resin silicone resin
  • flexible epoxy resin adhesive it is preferred to apply on the polymer coating an adhesive as follows.
  • preferred example of the adhesive used for this purpose may include: polyolefin-based resins such as ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), and butyral resin, urethane resin, and silicone -resin, blended with a tackifier resin, examples of which may include: coumarone-indene resin, phenol-formaldehyde resin, polypentene resin, xylene-formaldehyde resin, polybutene, rosin, rosin-pentaerythritol ester, rosin-glycerin ester, hydrogenated rosin, hydrogenated rosin methyl ester, hydrogenated rosin pentaerythritol ester, hydrogenated rosin triethylene glycol ester, polymerized rosin ester, aliphatic petroleum resin, alicyclic
  • the adhesive layer 105 may be in a thickness of, e.g., 200 ⁇ m or larger.
  • the insulating film 106 is required to ensure electrical insulation between the electroconductive substrate of the photo-electricity generating device 101 and the exterior.
  • the insulating film 106 is disposed so as not to be present at the bending portion of the substrate, thereby suppressing a stress occurring at the bending portion and preventing the occurrence of ugly white turbidity at the bending portion. This is also effective for providing the resultant module with an improved weatherability.
  • the insulating film 106 may preferably comprise a material which ensures a sufficient electrical insulation of the electroconductive substrate, has long-term durability durable against thermal expansion and thermal shrinkage, and is flexible. Suitable examples of the film material may include: nylon, polycarbonate and polyethylene terephthalate.
  • the insulating film 106 may preferably have a thickness sufficient to provide a dielectric withstand voltage of at least 10 kV, e.g., ca. 50 ⁇ m or larger for a polyethylene terephthalate film.
  • a laminate sheet prepared in advance and including an insulating film 106 and adhesive layers 105 as described above laminated on both sides of the insulating film 106 it is possible to use a laminate sheet prepared in advance and including an insulating film 106 and adhesive layers 105 as described above laminated on both sides of the insulating film 106 .
  • the substrate 107 is required to ensure a mechanical strength of the solar cell module and prevent the occurrence of strain or warp of the module caused by a temperature change. More specifically, the substrate 107 may preferably comprise a steel sheet, a plastic sheet or an FRP (fiber-reinforced plastic) sheet. Particularly, a module having a steel sheet substrate 107 has excellent processability, such as bendability, and can be formulated into a product without including a further step of frame attachment as has been exercised heretofore.
  • the module can constitute a solar cell module integrated with a roofing member or a walling member. This is very advantageous for reducing the production cost and simplifying the production step. Further, by using a steel sheet coated with an organic polymer resin as the substrate, it is possible to provide a highly reliable solar cell module excellent in weather resistance and rust resistance.
  • the substrate 107 By forming the substrate 107 in a size larger than any other layers forming the module except for the filler resin layer 103 and the surfacemost transparent film 104 disposed on the light-receiving side, it is possible to provide a solar cell module with a readily bendable peripheral portion. As a result, the resultant solar cell module is provided not only with an excellent initial appearance but also with excellent appearance free from peeling or whitening at the bend even after a long-term outdoor use, thus realizing a highly reliable solar cell module.
  • the substrate 107 may comprise a plastic film.
  • the photo-electricity generating device 101 may comprise, e.g., a crystalline silicon solar cell, a poly-crystalline silicon solar cell, an amorphous silicon solar cell, or a compound semiconductor solar cell comprising, e.g., copper-indium-selenide, and need not be particularly limited.
  • FIG. 2 is a sectional illustration of such a solar cell including a semiconductive photoactive layer (photoconversion member) and a transparent conductor layer.
  • a solar-cell includes an electroconductive substrate 201 , a back-side reflection layer 202 , a semiconductive photoactive layer 203 , a transparent conductor layer 204 , a collector electrode 205 , and an output terminal 206 .
  • the electroconductive substrate 201 constitutes a substrate of the solar cell and also functions as a lower electrode.
  • the substrate 201 may comprise, e.g., silicon, tantalum, molybdenum, tungsten, stainless steel, aluminum, copper, titanium, carbon sheet, lead-plated steel sheet, or a film or ceramic provided with an electroconductive layer.
  • the electroconductive substrate 201 may be provided with a back-side reflection layer 202 which may comprise a metal layer, a metal oxide layer, or a laminate of a metal layer and a metal oxide layer.
  • the metal layer may comprise, e.g., Ti, Cr, Mo, W, Al, Ag or Ni.
  • the metal oxide layer may comprise, e.g., ZnO, TiO 2 or SnO 2 .
  • the metal layer and metal oxide layer may be formed by, e.g., resistance-heating evaporation, electron-beam evaporation, or sputtering.
  • the semiconductive photoconductive layer 203 is a layer for effecting photo-electric conversion.
  • the layer 203 may comprise, e.g., pn-junction polycrystalline silicon, pin-junction amorphous silicon, or a compound semiconductor, such as CuInSe 2 , CuInS, GaAs, CdS/Cu 2 S, CdS/CdTe, CdS/InP, or CdTe/Cu 2 Te.
  • the semiconductive photoactive layer 203 may for example be formed by formation into sheet of fused silicon or heat treatment of amorphous silicon in the case of polycrystalline silicon; by plasma CVD process for amorphous silicon; or by ion plating, ion beam deposition, vacuum evaporation, sputtering or electro-deposition.
  • the transparent conductor layer 204 functions as an upper electrode of the solar cell and may comprise, e.g., In 2 O 3 , SnO 2 , In 2 O 3 -SnO 2 (ITO), ZnO, TiO 2 , Cd 2 SnO 4 or crystalline semiconductor doped with a high concentration of impurities.
  • the transparent conductor layer may be formed by resistance-heating evaporation, sputtering, spraying, CVD process, and impurity diffusion.
  • the transparent conductor layer 204 may be provided with a grid-shaped collector electrode 205 (grid), which may comprise, e.g., Ti, Cr, Mo, W, Al, Ag, Ni, Cu, Sn, or an electroconductive paste, such as silver paste.
  • the collector electrode 205 may be formed by, e.g., sputtering, resistance-heating evaporation or CVD through a mask pattern, formation of a uniform metal film by vapor-deposition followed by etching of unnecessary portions for patterning, direct formation of the grid electrode pattern by photo-CVD, plating through a negative pattern mask for the grid electrode pattern, or printing of an electroconductive paste.
  • the electroconductive paste may ordinarily comprise fine powder of silver, gold, copper, nickel or carbon dispersed within a binder polymer.
  • the binder polymer may comprise, e.g., polyester, epoxy resin, acrylic resin, alkyd resin, polyvinyl acetate, rubber, urethane resin or phenolic resin.
  • an output terminal 206 for taking out the electromotive force may be affixed to the electroconductive substrate 201 and the collector electrode 205 by bonding a metal member 207 , such as a copper tab, by spot welding, soldering or application of electroconductive paste.
  • a solar cell 101 can have a more complicated structure, e.g., one including a plurality (two or three or more) semiconductive photoactive layers in lamination for effective photo-electric conversion.
  • a plurality of solar cells prepared in the above-described manner may be connected in series or in parallel to form a block of solar cells so as to provide a desired voltage or current.
  • the solar cell module according to the present invention typically has a laminate structure as shown in FIGS. 1A and 1B.
  • a stacked structure including a photo-electricity generating device 101 , an inorganic fibrous sheet 102 , a filler resin sheet 103 , a surface film 104 , adhesive layers 105 , an insulating film 106 and a substrate 107 stacked in the order shown in FIG. 1A or in a reverse order, may be subjected to bonding under application of heat and pressure.
  • the order having the surface film 104 on top as indicated in FIG. 1A is preferred because it allows a sufficient coverage of the solar cell 101 with a smaller amount of the filler resin 103 .
  • the heating temperature and time for the pressure bonding may be determined so as to cause a sufficient degree of crosslinking in the filler resin 103 .
  • the heat-pressure bonding may be performed by appropriate selection of a double-vacuum ejection system, a single-vacuum ejection system or a roller lamination system, which per se are known heretofore.
  • the heat-pressure bonding by the single-vacuum evacuation system is particularly preferred because it allows easy preparation of a solar cell module by using an inexpensive apparatus.
  • the module sheet after the above-mentioned lamination step may be subjected to bending of a peripheral marginal portion thereof by a bending machine or a roller forming machine to provide a bent edge structure, e.g., as shown in FIG. 1B, suitable for a roofing member or a wall member.
  • FIGS. 5 A- 5 C show some embodiments of the roofing member according to the invention. More specifically, FIG. 5A shows a roofing member 500 having a ridge-side engagement part 501 and an eave-side engagement part 502 which are engaged with each other in an adjacent pair of the members.
  • FIG. 5A shows a roofing member 500 having a ridge-side engagement part 501 and an eave-side engagement part 502 which are engaged with each other in an adjacent pair of the members.
  • the solar cell module shown in FIG. 1B forms a projecting region where a photo-electricity generating device 101 is disposed so that the device is not readily positioned in the shadow of the bent portion of the module, and the available sunlight time for the module in actual use can be increased to provide an increased electricity generation.
  • FIG. 6 illustrates an application of a solar cell-integrated roofing member to a ventilating apparatus for a house.
  • each arrow represents an air stream
  • external air taken through eaves 601 flows through a space 604 between a roofing 602 and a lower sheathing 603 and is taken into the house from a part 605 close to the ridge.
  • a fan F is disposed to flow the air.
  • the air warmed in the space 604 is taken into the house in a cold season, and discharged through an exhaust port 604 in a hot season to improve the insulation performance of the roof.
  • a heat accumulation means can be disposed under the floor.
  • Amorphous silicon (a-Si) solar cells each having a laminate structure as shown in FIG. 2 were prepared and formed into a solar cell block as illustrated in FIG. 3.
  • the resultant solar cell block 401 was laminated with other members as shown in FIG. 4A to form a solar cell module having a sectional structure as shown in FIG. 4B.
  • a tandem-form a-Si photoelectric conversion semiconductor layer 203 having a laminate structure of 15 nm-thick n-layer/400 nm-thick i-layer/10 nm-thick p-layer/10 nm-thick n-layer/80 nm-thick i-layer/10 nm-thick p-layer by forming the n-type a-Si layer(s) from an SiH 4 -PH 3 -H 2 mixture gas, i-type a-Si layer from an SiH 4 -H 2 mixture gas and the p-type microcrystalline (pC)-Si layer from an SiH 4 -BF 3 -H 2 mixture gas.
  • pC microcrystalline
  • a transparent conductor layer 204 of 70 nm-thick In 2 O 3 film was formed by evaporating In by the resistance heating method in an O 2 atmosphere.
  • a collector grid electrode 205 was formed by screen printing of silver paste.
  • a negative-side terminal 206 b of copper tab was affixed onto the stainless steel substrate with a solder 207 , and a positive-side terminal 206 a in lamination with an insulating tape 208 was affixed onto the collector electrode 205 with a solder 207 , to complete the preparation of a solar cell.
  • the cell block prepared above was formulated in a laminate solar cell module in a manner as will be described below with reference to FIG. 4.
  • a cell block 401 was sandwiched between an inorganic fibrous sheet 402 , a filler resin sheet 403 and a transparent film disposed on a light-receiving side, and a back-side integral laminate film 405 and a substrate 406 disposed on a light non-receiving side to form a stacked structure including the members as shown in FIG. 4A.
  • the stacked structure was placed on a central part of a base plate in a single vacuum chamber-type lamination apparatus.
  • the base plate was rectangular in shape and equipped with a frame-shaped perforated pipe affixed onto a part onto an upper surface along a periphery of the base plate so as to surround an inner space for accommodating the stacked structure.
  • the perforated pipe was provided with perforations opened into the inner space and an exhaust port connected to a vacuum pump.
  • the stacked structure was placed in the inner space on the base plate surrounded by the frame-shaped perforated pipe, so that the transparent film 404 was disposed on top, and then covered with a rectangular silicone rubber sheet having an areal size almost equal to that of the base plate so as to make the inner space accommodating the stacked structure vacuum-tight.
  • the vacuum pump was operated to evacuate the inner space accommodating the stacked structure and such the rubber toward the base plate so as to press the stacked structure onto the base plate.
  • the inner space was reduced in pressure at a rate of 76 Torr/sec. and then evacuated for 30 min. at 5 Torr.
  • the inorganic fibrous sheet 402 disposed on the light-receiving side comprised 400 ⁇ m-thick non-woven glass fiber sheet having a basis-weight of 80 g/m 2 , comprising glass fiber of 10 ⁇ m in diameter and containing 4.0 wt. % of binder acrylic resin.
  • the inorganic fibrous sheet 402 had sizes larger than the cell block by 5 mm for each side.
  • a solar cell module was prepared in the same manner as in Example 1 except that the back-side integrated laminate film was replaced by a laminate of EVA/PET/EVA (of 230 ⁇ m/100 ⁇ m/230 ⁇ m), wherein EVA was a filler resin sheet same as in the filler resin sheet 403 disposed on the light-receiving side in the module of Example 1 and PET was the same as in Example 1, except for their thicknesses.
  • the solar cell module was prepared in the same manner as in Example 1 except for the following modifications.
  • the sizes of the respective member were changed as follows.
  • the inorganic fibrous sheet 402 was larger by 15 mm for each side
  • the back-side integrated laminate film 405 was larger by 45 mm for each side
  • the substrate 406 was larger by 80 mm for each side
  • the filler resin sheet 403 and the transparent film 404 were both larger by 90 mm for each side, respectively compared with the cell block 401 .
  • the solar cell module was prepared in the same manner as in Example 1 except for the following modifications.
  • the solar cell module was prepared in the same manner as in Example 1 except that the sizes of the respective member were changed as follows.
  • the substrate 406 was larger by 80 mm for each side, and the other members were respectively larger by 90 mm for each side, respectively compared with the cell block 401 .
  • the solar cell module was prepared in the same manner as in Example 1 except for that the sizes of the respective member were changed as follows.
  • the solar cell module was prepared in the same manner as in Example 1 except that the sizes of the respective member were changed as follows.
  • the inorganic fibrous sheet 402 was larger by 30 mm for each side, the back-side integrated laminate film 405 was larger by 15 mm for each side, the substrate 406 was larger by 80 mm for each side, and the filler resin sheet 403 and the transparent film 404 were both larger by 90 mm for each side, respectively compared with the cell block 401 .
  • the solar cell module was prepared in the same manner as in Example 1 except that the sizes of the respective member were changed as follows.
  • the inorganic fibrous sheet 402 was larger by 5 mm for each side, the back-side integrated laminate film 405 was larger by 90 mm for each side, the substrate 406 was larger by 80 mm for each side, and the filler resin sheet 403 and the transparent film 404 were both larger by 90 mm for each side, respectively compared with the cell block 401 .
  • C Evacuation failure. Remarkable defect in appearance, such as curvature of the module.
  • C Remarkable defect in appearance, such as whitening and peeling.
  • Each solar cell module was subjected to a temperature-humidity cycle test of 100 cycles each including storage at ⁇ 40° C. for 1 hour and storage at 85° C./85% RH for 20 hours.
  • each solar cell module was evaluated with respect to the appearance and the measurement of leakage currents under the dry hi-pot condition and the wet hi-pot condition in the same manners and according to the same standards as after the high temperature—high humidity test described above.

Abstract

A solar cell module includes a substrate, a photo-electricity generating device (i.e., a solar cell or a block of solar cells), a filler resin sealing the photo-electricity generating device on the substrate, and a surface film covering the filler resin. An insulating film is inserted between the photo-electricity generating device and the substrate so as to be inside the substrate, and an inorganic fibrous sheet is inserted between the photo-electricity generating device and the surface film so as to be disposed inside the insulating film. The substrate is bent at a portion thereof free from the insulating film. The solar cell member thus provided can exhibit a long-term reliability for outdoor use because of effective suppression of intrusion of moisture thereinto.

Description

    FIELD OF THE INVENTION AND RELATED ART
  • The present invention relates to a solar cell module including a photo-electricity generating device (i.e., a solar cell or a block of solar cells) fixed with a resin onto a substrate and covered with a surface film. More specifically, the present invention relates to a solar cell module having an excellent inflammability and an excellent moisture resistance and also a bent structure suitable for assembly. [0001]
  • Hitherto, a type of solar cell module including a photo-electricity generating device fixed onto a substrate with a resin and covered with a surface film has been known. As the resin, EVA (ethylene-vinyl acetate copolymer) has been widely used. As the surface film, it has been known to use a film of a fluorine-containing resin, such as tetrafluoroethylene-ethylene copolymer or polyvinyl fluoride, or a transparent fluorine-containing polymer film formed by coating with a fluorine-containing resin paint. [0002]
  • Such a solar cell module having a fluorine-containing polymer as a light-incidence side surfacemost coating material has an inferior scratch resistance than a solar cell module comprising a glass substrate as a light-incidence side surface material. Accordingly, it has been known to incorporate an inorganic fibrous sheet such as non-woven glass fiber cloth, within an organic polymeric resin as a filler to form a surface coating material. [0003]
  • However, in case where the inorganic fibrous sheet such as glass fiber is exposed to an edge of the solar cell module, external moisture is liable to intrude to lower the electrical insulation or cause a peeling of the laminated module and provide an inferior appearance. This is presumably because the inorganic fibrous sheet comprising, e.g., glass fiber and the filler resin impregnating the glass fiber have a low adhesion with each other so that the moisture intrudes along the glass fiber. [0004]
  • As a countermeasure, it has been proposed to prevent the exposure of the glass fiber material to an edge of the solar cell modulate or to use a glass fiber material having less end portions. For example, Japanese Patent Publication (JP-B) 62-33756 has disclosed a solar cell module wherein a glass fiber sheet material with little end portion is disposed on both sides of a solar cell and the end portion thereof is sealed within a filler resin. [0005]
  • Thus, JP-B 62-33756 has proposed to use a long-fiber glass fiber material having little end portion selected from limited materials, such as continuous strand mat, glass cloth and rolling cloth. No consideration has been exercised regarding insulation between the solar cell and the substrate on which the solar cell is disposed. [0006]
  • Japanese Laid-Open Patent Application (JP-A) 7-288333 has disclosed a solar cell module wherein a light-transmissive non-woven cloth (glass fiber cloth) in contact with a solar cell is disposed inside of edges of the solar cell module, and an insulating film is disposed between the solar cell and the module substrate. However, the insulating film is disposed to protrude out of the module substrate, and no consideration has been paid to bending of the module substrate. [0007]
  • In case where a substrate of a solar cell module including a solar cell sealed with a filler resin on a substrate and a surface film coating the filler resin is bent, a stress is applied to the filler material and the surface film at the bent portion to cause a peeling. In a conventional solar cell module having such a structure, a lowering in electrical insulation is inevitably caused when used outdoors for a long period even if the end portion of the glass fiber is prevented from being exposed at the edge of the module and a silane coupling agent is applied to the glass fiber and the surface film. [0008]
  • SUMMARY OF THE INVENTION
  • A principal object of the present invention is to provide a solar cell module capable of effectively suppressing the moisture intrusion into the interior of the solar cell module even in a long period of outdoor use. [0009]
  • According to the present invention, there is provided a solar cell module, comprising: a substrate, a photo-electricity generating device, a filler resin sealing the photo-electricity generating device on the substrate, and a surface film covering the filler resin; wherein [0010]
  • an insulating film is inserted between the photo-electricity generating device and the substrate so as to be inside the substrate, [0011]
  • an inorganic fibrous sheet is inserted between the photo-electricity generating device and the surface film so as to be disposed inside the insulating film, and [0012]
  • the substrate is bent at a portion thereof free from the insulating film. [0013]
  • These and other objects, features and advantages of the present invention will become more apparent upon a consideration of the following description of the preferred embodiments of the present invention taken in conjunction with the accompanying drawings. [0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1A illustrates members constituting a solar cell module according to the invention with their relative sizes, and FIG. 1B is a sectional view of the solar cell module showing the members in a laminated form. [0015]
  • FIG. 2 is a sectional illustration of a photo-electricity generating device (solar cell) incorporated in the solar cell module shown in FIGS. 1A and 1B. [0016]
  • FIG. 3 is a sectional illustration of solar cell modules according to the invention assembled in series. [0017]
  • FIGS. 4A and 4B are views corresponding to FIGS. 1A and 1B, respectively, for illustrating another embodiment of the solar cell module according to the invention. [0018]
  • FIGS. [0019] 5A-5C illustrate an embodiment of the roofing member according to the invention.
  • FIG. 6 illustrates an embodiment of the ventilation apparatus according to the invention.[0020]
  • DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • FIGS. 1A and 1B illustrate an embodiment of the solar cell module according to the present invention. Referring to these figures, the solar cell module includes a photo-electricity generating device (i.e., a solar cell or a block of solar cells) [0021] 101, an inorganic fibrous (sheet) material 102, a filler resin 103, a surface film 104, an adhesive 105, an insulating film 106 and a substrate 107. These members are stacked in the order illustrated in FIG. 1A and formed into a solar cell module having a laminate sectional structure as shown in FIG. 1B.
  • In a preferred embodiment, the relative areal (or planar) sizes of the respecptive members may be set as follows. The inorganic [0022] fibrous sheet 102 is set as follows. The inorganic fibrous sheet 102 is larger than the photo-electricity generating device 101 SO as to cover the photo-electricity generating device 101. The insulating film 106 has an almost identical size as the adhesive 105 and is larger than the inorganic fibrous sheet 102. The substrate 107, the filler resin 103 and the surface film 104 have almost identical sizes and are larger than the insulating film 106. The filler resin 103 and the surface film 104 may be somewhat larger than the substrate 107 so as to cover edges of the substrate 107.
  • As the inorganic [0023] fibrous sheet 102 is disposed inside the edge(s) of the insulating film 106 together with a bent substrate structure as described hereinafter, it becomes possible to provide a solar cell module free from moisture intrusion even after a temperature-humidity cycle test and a long period of outdoor use, thus providing a reliable solar cell module free from a lowering in electrical insulation performance.
  • Hereinbelow, details of the respective members will be described. [0024]
  • Inorganic [0025] fibrous sheet 102
  • The inorganic [0026] fibrous sheet 102 may preferably be larger in planar size than the photo-electricity generating device 101. The inorganic fibrous sheet 102 has a function of promoting degassing from the module laminate at the time of preparation thereof by lamination. If it is smaller than the photo-electricity generating device, the cell cannot be sufficiently prevented from an external impact, and the degassing from the module at the time of lamination is liable to be insufficient to leave bubbles within the module.
  • It is also preferred that the inorganic [0027] fibrous sheet 102 is smaller in planar size than the substrate 107 and not extended up to the edge of the module. If the inorganic fibrous sheet 102 is identical or larger in size than the substrate 107 so as to be exposed to the module edge, external moisture is caused to intrude into the module, along the fiber, thereby promoting the deterioration or peeling of the coating material. Further, as a result of the moisture intrusion, the electrical insulation between the inner portion and the exterior This is because the inorganic fibrous sheet 102 and the filler resin 103 show a rather weak adhesion therebetween so that the boundary therebetween is liable to provide a flow path and the moisture is caused to intrude along the inorganic sheet 102. Further, even if the inorganic fibrous sheet 102 does not reach the module edge, if the inorganic fibrous sheet 102 continually extends from above the photo-electricity generating device 101 to the substrate 107, moisture can migrate along the inorganic fibrous sheet 102 to provide an electrical continuation between the substrate 107 and the photo-electricity generating device 101, thus failing to ensure the electrical insulation in some cases.
  • Further, it is preferred that the inorganic [0028] fibrous sheet 102 is smaller than the insulating film 106 rather than having an identical size as the insulating film 106. Hitherto, the surface film 104 and the filler resin 103 can have caused a remarkable degree of buckling after the bending to result in a peeling or a crack at the bend, thereby causing moisture intrusion therethrough. According to the present invention, the inorganic fibrous sheet 102 liable to provide a moisture migration path is formed in a smaller size than the insulating film 106 so that, even when the substrate 107 is bent at a position closer to the photo-electricity generating device 101 and outside the insulating film 106, it becomes possible to remarkably reduce the possibility that the moisture possibly penetrating through the portion reaches the photo-electricity generating device 101, thus providing an improved long-term reliability. If it is possible to bend the substrate 109 at a position closer to the photo-electricity generating device 101, the solar cell module according to the present invention, when used as a roofing sheet member, can include the photo-electricity generating device fully up to the working width of the roofing sheet, so that a smaller number of roofing sheets can generate a sufficient amount of electric power.
  • The adhesion between the inorganic [0029] fibrous sheet 102 and the filler resin 103 can be remarkably increased if one or both of them are surface-treated with a silane coupling agent. However, the effect of the treatment has a certain limit, and the surface-treating effect can be deteriorated to result in a lower adhesion after a long-term outdoor exposure or a temperature-humidity cycle test corresponding thereto.
  • A solution to this problem given by the present invention is to dispose the inorganic [0030] fibrous sheet 102 in a smaller size than the insulating film 106. As a result, a portion of the adhesive layer 105 bonding the solar cell 101 and the insulating film 106 can directly contact the filler resin 103 without intermediate the inorganic fibrous sheet 102. This provides an improved packaging effect for the photo-electricity generating device 101, and prevents the formation of a moisture migration path connecting the photo-electricity generating device 101 and the substrate 107, thus ensuring an electrical insulation even after a long-term outdoor use or a temperature-humidity cycle test corresponding thereto. Further, it is also possible to prevent the generated electricity from being leaked to the exterior and provide a solar cell module with an improved safety in actual use.
  • Further, as the inorganic [0031] fibrous sheet 102 and the insulating film 106 are prevented from being present at the bending portion, the bending becomes easier, and the occurrence of inferior appearance, such as turbidity at the bend, can be suppressed.
  • The inorganic [0032] fibrous sheet 102 used in the present invention is required in order to reduce the amount of the filler resin, provide an improved scratch resistance and provide an improved non-flammability. Further, in the case of a large-sized solar cell module of roofing-type or wall installation-type, the inorganic fibrous sheet 102 is very effective for de-aeration within the module at the time of lamination.
  • The inorganic [0033] fibrous sheet 102 may suitably comprise various non-woven glass fiber cloth without particular limitation. It is preferred to use an acrylic resin as a binder for binding individual glass fibers. It is further preferred to surface-treat the inorganic fibrous sheet with a silane coupling agent.
  • The inorganic [0034] fibrous sheet 102 may preferably have a thickness of 150-450 μm and comprise glass fiber having a fiber diameter in a range of 5-15 μm.
  • [0035] Filler resin 103
  • The [0036] filler resin 103 is used to coat the unevennesses of the photo-electricity generating device 101 and protect the cell from severe environmental conditions, such as a temperature change, a humidity and an impact while ensuring the adhesion between the cell 101 and the surface film 104. Accordingly, the filler resin is required to exhibit weatherability, adhesivenness, filler characteristic, heat-resistance, cold-resistance, and impact resistance. Examples of resins satisfying such requirements may include: polyolefin-type resins, such as ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer, and polyvinyl butyral resin, urethane resin, silicone resin, and fluorine-containing resin. Among these, EVA has well-balanced properties for use in solar cells and may be preferably used.
  • The [0037] filler resin 103 may provide a thin filler resin portion where the inorganic fibrous sheet 102 is not present at a non-elasticity-generating region when the solar cell 101 is not present. The thickness of the thin-filler resin portion comprising the filler resin 103 but no inorganic fibrous sheet 102 may preferably be smaller than that of a layer including the filler resin 103 and the inorganic fibrous sheet 102 at an electricity-generating region. The module substrate 107 may desirably be bent at the thin-filler resin portion.
  • The [0038] filler resin 103 in its straight form has a rather low heat-distortion temperature and can readily cause distortion or creeping at an elevated temperature, so that it is preferred to crosslink the filler resin so as to provide an enhanced heat resistance. EVA may generally be crosslinked in the presence of an organic peroxide. Crosslinking with an organic peroxide may be initiated by extraction of a hydrogen or chlorine atom from a resin by a free radical generated from the organic peroxide to form a C-C bond. The organic peroxide may be activated by thermal decomposition, redox decomposition or ionic decomposition. Thermal decomposition is generally preferred. Examples of the organic peroxide structures may include: hydroperoxide, dialkyl (allyl) peroxide, diacyl peroxide, peroxyketal, peroxyester, peroxy carbonate and ketone peroxide. The organic peroxide may be used in 0.5-5 wt. parts per 100 wt. parts of the filler or sealing resin 103.
  • These organic peroxides may be used in mixture with the filler resin to effect crosslinking and heat-pressure bonding under heat and pressure in vacuum. The heating temperature and time may be determined depending on the thermal decomposition temperature characteristic of the organic peroxide used, but the heating and pressure application may be generally completed at a temperature and for a period sufficient to cause at least 90%, more preferably at least 95%, of the decomposition. [0039]
  • The crosslinking of the filler resin may generally be determined by measuring a gel content given by the following equation: [0040]
  • Gel content (wt. %)=[Insoluble resin weight/Original resin weight]×100.
  • More specifically, when a filler is extracted for, e.g., 6 hours with a solvent, such as xylene, in an amount of, e.g., 100 ml per g (gram) of the filler at a boiling point of e.g., 135-145° C. only the non-crosslinked sol portion can be dissolved to leave an insoluble gel content. Accordingly, a gel content of 100% means the completion of crosslinking. The sample remaining after the extraction may be recovered to evaporate the xylene therefrom, e.g., at 85° C. for 6 hours to selectively recover an insoluble gel matter. A gel content may be calculated by substituting the insoluble matter weight and the original sample weight into the above equation. [0041]
  • In order to effectively prevent a distortion of the filler resin at an elevated temperature, the filler resin may preferably have a gel/content as measured in the above-described manner of at least 70 wt. %. [0042]
  • In order to effectively cause the crosslinking reaction, it is also possible to use a crosslinking agent, such as triallyl isocyanurate (TAIC), in an amount of ordinarily 1-5 wt. parts per 100 wt. parts of the filler or sealing resin. [0043]
  • The filler resin as specifically mentioned above generally has excellent weatherability but can further contain an ultraviolet absorber for further improved weatherability or for protection of lower layers. The ultraviolet absorber may comprise a known compound but may preferably a low-volatility ultraviolet absorber in view of the service environment of the solar cell module. Specific examples thereof may include ultraviolet absorbers of the benzophenone-type, benzotriazole-type and cyanoacrylate-type. [0044]
  • The addition of a light stabilizer together with an ultraviolet absorber may provide a further light-stable filler resin. Representative light-stabilizers may include: hindered amine-type light stabilizers. A hindered amine-type light stabilizer does not absorb ultraviolet rays but exhibits a synergistically stabilizing effect when used in combination with an ultraviolet absorber. Other light stabilizers may also be used but may not be as preferred as the hindered amine-type light stabilizer because many of them are colored. [0045]
  • The above-mentioned ultraviolet absorber and light-stabilizer may preferably be used in proportions of 0.1-1.0 wt. % and 0.05-1.0 wt. %, respectively, of the filler resin. [0046]
  • The filler resin can further contain an antioxidant in order to improve the heat resistance and the thermal processability. The antioxidant may be of the mono-phenol type, bis-phenol type, polymeric phenol type, sulfur type and phosphoric acid type. Such an anti-oxidant may preferably be added in 0.05-1.0 wt. % of the filler resin [0047]
  • In case where the solar cell module is used in a severe environment, it is preferred to enhance the adhesion of the [0048] filler resin 103 with the surface film 104 and/or the lower layers including the inorganic fibrous sheet 102. For this purpose, it is effective to use a silane coupling agent. Specific examples of the silane coupling agent may include: vinyltrichlorosilane, vinyltris(β-methoxyethoxy)silane, vinyltriethoxysilane, vinyltrimethoxysilane, γ-methacryloxypropyltrimethoxysilane, β-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, N-β(aminoethyl)-γ-aminopropyltrimethoxysilane, N-β(aminoethyl)-γ-aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, and γ-chloropropyltrimethoxysilane.
  • Such a silane coupling agent may preferably be added in an amount of 0.1-3 wt. parts, more preferably 0.25-1 wt. parts, per 100 wt. parts of the filler resin. [0049]
  • On the other hand, in order to minimize the attenuation of light quantity reaching the photo-[0050] electricity generating device 101, the filler resin 103 has to be essentially transparent. More specifically, the filler resin 103 may desirably show a transmittance of at least 80%, preferably at least 90%, for a visible wavelength region of 400-800 nm. Further, for allowing easy incidence of light through the atmosphere, the filler resin 103 may preferably have a refractive index at 25° C. of 1.1-2.0, more preferably 1.1-1.6.
  • The [0051] filler resin 103 may preferably be provided in a sheet form having a thickness sufficient to provide an amount which is, e.g., 7-23 times that of the inorganic fibrous sheet 102 for an identical planar size.
  • Some EVA sheets for solar cells prepared by forming EVA containing additives as described above into sheets are already commercially available. Examples of the commercially available EVA sheets for solar cells may include “SOLAR EVA” available from Hi-Sheet Kogyo K.K., “EVASAFE WG Series” available from Bridgestone K.K. and “PHOTOCAP” available from Springborn Laboratories, Inc. A commercially available EVA sheet of these suppliers may be inserted between a surface film and an inorganic fibrous sheet covering a photo-electricity generating device and pressed under heating to easily provide a solar cell module. [0052]
  • [0053] Surface film 104
  • The [0054] surface film 104 constitutes a surface-most layer of the solar cell module according to the present invention and accordingly is required to exhibit performances ensuring a long-term reliability for outdoor exposure of the solar cell module, including transparency, weatherability, stain resistance and mechanical strength. The material suitably used in the present invention may comprise white sheet reinforced glass, a fluorine-containing resin film or acrylic resin film. The white sheet reinforced glass has a high transparency, is impact-containing resin film or acrylic refine film. The white sheet reinforced glass has a high transparency, is impact-resistant and is not readily broken, so that it has been widely used as a surfacing material for a solar cell module.
  • Recently, however, a module is required to be light and flexible in many cases. In such cases, a film surface member is used. Among others, a fluorine-containing resin film may preferably be used because of excellent weatherability and stain resistance. Specific examples of the fluorine-containing resin may include polyvinylidene fluoride resin, polyvinyl fluoride resin and tetrafluoro-ethylene-ethylene copolymer. Polyvinylidene fluoride is excellent in weatherability, and tetrafluoro-ethylene-ethylene copolymer is excellent in harmonization of weatherability and mechanical strength and transparency. The surface film should have a certain thickness in order to ensure a mechanical strength and should not be too thick in view of the production cost. The thickness may preferably be 20-200 μm, more preferably 30-100 μm. [0055]
  • In order to improve the adhesion with the [0056] filler resin 103, one surface (non-exposed surface) of the surface film may preferably be subjected to corona treatment, plasma treatment, ozone treatment, irradiation with UV rays, irradiation with electron rays, or flame treatment. Among these, the plasma discharge treatment is especially suitably used because of a large processing speed and a remarkable improvement in adhesion by using a relatively simple apparatus.
  • [0057] Adhesive 105
  • The adhesive (layer) [0058] 105 used on a light non-receiving side of the module may comprise a material similar to that of the filler resin 103 disposed on the light receiving side. As shown in FIGS. 1A and 1B, the adhesive layer 105 may desirably be disposed in a smaller area than the filler resin 103, so that the bending portion of the module is caused to have a smaller thickness to facilitate the bending operation and provide an improved non-flammability.
  • The [0059] adhesive layer 105 disposed on the light non-receiving side is rather required not to result in a lowering in adhesion of the photo-electricity generating device 101 with the insulating film 106 and the substrate 107 when subjected to light and heat, outdoor use or a temperature-humidity cycle test than the non-coloration characteristic when subjected to light, heat, etc. required on the light receiving side.
  • In case where a coated galvanized sheet steel coated with an organic polymer and having excellent weatherability and rust resistance is used as a [0060] substrate 107, it particularly shows a weak adhesion and leaves a problem regarding long-term reliability. The coating organic polymer may comprise, e.g., polyolefin-based resins, such as ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), polyethylene and butyral resin, urethane resin, silicone resin, and flexible epoxy resin adhesive In such a case, it is preferred to apply on the polymer coating an adhesive as follows.
  • Thus, preferred example of the adhesive used for this purpose may include: polyolefin-based resins such as ethylene-vinyl acetate copolymer (EVA), ethylene-methyl acrylate copolymer (EMA), ethylene-ethyl acrylate copolymer (EEA), and butyral resin, urethane resin, and silicone -resin, blended with a tackifier resin, examples of which may include: coumarone-indene resin, phenol-formaldehyde resin, polypentene resin, xylene-formaldehyde resin, polybutene, rosin, rosin-pentaerythritol ester, rosin-glycerin ester, hydrogenated rosin, hydrogenated rosin methyl ester, hydrogenated rosin pentaerythritol ester, hydrogenated rosin triethylene glycol ester, polymerized rosin ester, aliphatic petroleum resin, alicyclic petroleum resin, synthetic polyterpene, pentadiene resin, α-pinene, β-pinene, dipentene resins, and terpene-phenol resin. [0061]
  • The [0062] adhesive layer 105 may be in a thickness of, e.g., 200 μm or larger.
  • Insulating [0063] film 106
  • The insulating [0064] film 106 is required to ensure electrical insulation between the electroconductive substrate of the photo-electricity generating device 101 and the exterior. The insulating film 106 is disposed so as not to be present at the bending portion of the substrate, thereby suppressing a stress occurring at the bending portion and preventing the occurrence of ugly white turbidity at the bending portion. This is also effective for providing the resultant module with an improved weatherability. The insulating film 106 may preferably comprise a material which ensures a sufficient electrical insulation of the electroconductive substrate, has long-term durability durable against thermal expansion and thermal shrinkage, and is flexible. Suitable examples of the film material may include: nylon, polycarbonate and polyethylene terephthalate. The insulating film 106 may preferably have a thickness sufficient to provide a dielectric withstand voltage of at least 10 kV, e.g., ca. 50 μm or larger for a polyethylene terephthalate film. In order to simplify the lamination process, it is possible to use a laminate sheet prepared in advance and including an insulating film 106 and adhesive layers 105 as described above laminated on both sides of the insulating film 106.
  • [0065] Substrate 107
  • The [0066] substrate 107 is required to ensure a mechanical strength of the solar cell module and prevent the occurrence of strain or warp of the module caused by a temperature change. More specifically, the substrate 107 may preferably comprise a steel sheet, a plastic sheet or an FRP (fiber-reinforced plastic) sheet. Particularly, a module having a steel sheet substrate 107 has excellent processability, such as bendability, and can be formulated into a product without including a further step of frame attachment as has been exercised heretofore. The module can constitute a solar cell module integrated with a roofing member or a walling member. This is very advantageous for reducing the production cost and simplifying the production step. Further, by using a steel sheet coated with an organic polymer resin as the substrate, it is possible to provide a highly reliable solar cell module excellent in weather resistance and rust resistance.
  • By forming the [0067] substrate 107 in a size larger than any other layers forming the module except for the filler resin layer 103 and the surfacemost transparent film 104 disposed on the light-receiving side, it is possible to provide a solar cell module with a readily bendable peripheral portion. As a result, the resultant solar cell module is provided not only with an excellent initial appearance but also with excellent appearance free from peeling or whitening at the bend even after a long-term outdoor use, thus realizing a highly reliable solar cell module. In case where a flexible solar cell module is required, the substrate 107 may comprise a plastic film.
  • Photo-[0068] electricity generating device 101
  • The photo-[0069] electricity generating device 101 may comprise, e.g., a crystalline silicon solar cell, a poly-crystalline silicon solar cell, an amorphous silicon solar cell, or a compound semiconductor solar cell comprising, e.g., copper-indium-selenide, and need not be particularly limited. FIG. 2 is a sectional illustration of such a solar cell including a semiconductive photoactive layer (photoconversion member) and a transparent conductor layer. Referring to FIG. 2, a solar-cell includes an electroconductive substrate 201, a back-side reflection layer 202, a semiconductive photoactive layer 203, a transparent conductor layer 204, a collector electrode 205, and an output terminal 206.
  • The [0070] electroconductive substrate 201 constitutes a substrate of the solar cell and also functions as a lower electrode. The substrate 201 may comprise, e.g., silicon, tantalum, molybdenum, tungsten, stainless steel, aluminum, copper, titanium, carbon sheet, lead-plated steel sheet, or a film or ceramic provided with an electroconductive layer. The electroconductive substrate 201 may be provided with a back-side reflection layer 202 which may comprise a metal layer, a metal oxide layer, or a laminate of a metal layer and a metal oxide layer. The metal layer may comprise, e.g., Ti, Cr, Mo, W, Al, Ag or Ni. The metal oxide layer may comprise, e.g., ZnO, TiO2 or SnO2. The metal layer and metal oxide layer may be formed by, e.g., resistance-heating evaporation, electron-beam evaporation, or sputtering.
  • The semiconductive [0071] photoconductive layer 203 is a layer for effecting photo-electric conversion. The layer 203 may comprise, e.g., pn-junction polycrystalline silicon, pin-junction amorphous silicon, or a compound semiconductor, such as CuInSe2, CuInS, GaAs, CdS/Cu2S, CdS/CdTe, CdS/InP, or CdTe/Cu2Te. The semiconductive photoactive layer 203 may for example be formed by formation into sheet of fused silicon or heat treatment of amorphous silicon in the case of polycrystalline silicon; by plasma CVD process for amorphous silicon; or by ion plating, ion beam deposition, vacuum evaporation, sputtering or electro-deposition.
  • The [0072] transparent conductor layer 204 functions as an upper electrode of the solar cell and may comprise, e.g., In2O3, SnO2, In2O3-SnO2 (ITO), ZnO, TiO2, Cd2SnO4 or crystalline semiconductor doped with a high concentration of impurities. The transparent conductor layer may be formed by resistance-heating evaporation, sputtering, spraying, CVD process, and impurity diffusion.
  • For effective current collection, the [0073] transparent conductor layer 204 may be provided with a grid-shaped collector electrode 205 (grid), which may comprise, e.g., Ti, Cr, Mo, W, Al, Ag, Ni, Cu, Sn, or an electroconductive paste, such as silver paste. The collector electrode 205 may be formed by, e.g., sputtering, resistance-heating evaporation or CVD through a mask pattern, formation of a uniform metal film by vapor-deposition followed by etching of unnecessary portions for patterning, direct formation of the grid electrode pattern by photo-CVD, plating through a negative pattern mask for the grid electrode pattern, or printing of an electroconductive paste. The electroconductive paste may ordinarily comprise fine powder of silver, gold, copper, nickel or carbon dispersed within a binder polymer. The binder polymer may comprise, e.g., polyester, epoxy resin, acrylic resin, alkyd resin, polyvinyl acetate, rubber, urethane resin or phenolic resin.
  • Finally, an output terminal [0074] 206 for taking out the electromotive force may be affixed to the electroconductive substrate 201 and the collector electrode 205 by bonding a metal member 207, such as a copper tab, by spot welding, soldering or application of electroconductive paste.
  • Although, a rather simple solar cell structure has been described with reference to FIG. 2, a [0075] solar cell 101 can have a more complicated structure, e.g., one including a plurality (two or three or more) semiconductive photoactive layers in lamination for effective photo-electric conversion.
  • A plurality of solar cells prepared in the above-described manner may be connected in series or in parallel to form a block of solar cells so as to provide a desired voltage or current. Alternatively, it is also possible to integrate solar cells on an insulated substrate to provide a desired voltage or current. [0076]
  • Process for preparation of a solar cell module [0077]
  • Hereinbelow, a process for producing a solar cell module by using a photo-[0078] electricity generating device 101, an inorganic fibrous sheet 12,. a filler resin (layer or sheet) 103, a transparent surface film 104, adhesive layers 105, a insulating film 106 and a substrate 107 as described above.
  • In a conventional solar cell module production process, a sequence has been generally adopted such that a sheet-[0079] form filler resin 103 is disposed on both surfaces of a photo-electricity generating device 101, and the resultant laminate is subjected to heat-pressure bonding.
  • In contrast thereto, the solar cell module according to the present invention typically has a laminate structure as shown in FIGS. 1A and 1B. Thus, a stacked structure including a photo-[0080] electricity generating device 101, an inorganic fibrous sheet 102, a filler resin sheet 103, a surface film 104, adhesive layers 105, an insulating film 106 and a substrate 107 stacked in the order shown in FIG. 1A or in a reverse order, may be subjected to bonding under application of heat and pressure. The order having the surface film 104 on top as indicated in FIG. 1A is preferred because it allows a sufficient coverage of the solar cell 101 with a smaller amount of the filler resin 103.
  • The heating temperature and time for the pressure bonding may be determined so as to cause a sufficient degree of crosslinking in the [0081] filler resin 103.
  • The heat-pressure bonding may be performed by appropriate selection of a double-vacuum ejection system, a single-vacuum ejection system or a roller lamination system, which per se are known heretofore. The heat-pressure bonding by the single-vacuum evacuation system is particularly preferred because it allows easy preparation of a solar cell module by using an inexpensive apparatus. [0082]
  • In case where the [0083] substrate 107 comprises a metal sheet, the module sheet after the above-mentioned lamination step may be subjected to bending of a peripheral marginal portion thereof by a bending machine or a roller forming machine to provide a bent edge structure, e.g., as shown in FIG. 1B, suitable for a roofing member or a wall member. FIGS. 5A-5C show some embodiments of the roofing member according to the invention. More specifically, FIG. 5A shows a roofing member 500 having a ridge-side engagement part 501 and an eave-side engagement part 502 which are engaged with each other in an adjacent pair of the members. FIG. 5B shows a roofing member having engaging parts 505 slidably inserted along fixing guide rails 504 fixed on a roof sheathing 503. FIG. 5C shows roofing members each having bent engagement parts 506 on both sides (i.e., in a similar structure as shown in FIG. 1B), so that engagement parts 506 of an adjacent pair of roofing members are secured to each other by engaging them with a cap 507. Each roofing member is equipped with a photo-electricity generating device 500 on its light-receiving surface.
  • By thinning the [0084] filler resin 103 at the bending portion, it becomes possible to effect a rather complex form of bending and also possible to obviate appearance abnormalities such as peeling and whitening. Further the solar cell module shown in FIG. 1B forms a projecting region where a photo-electricity generating device 101 is disposed so that the device is not readily positioned in the shadow of the bent portion of the module, and the available sunlight time for the module in actual use can be increased to provide an increased electricity generation.
  • Application to a ventilating apparatus [0085]
  • FIG. 6 illustrates an application of a solar cell-integrated roofing member to a ventilating apparatus for a house. In FIG. 6, each arrow represents an air stream, and external air taken through eaves [0086] 601 flows through a space 604 between a roofing 602 and a lower sheathing 603 and is taken into the house from a part 605 close to the ridge. Along the air path, a fan F is disposed to flow the air. The air warmed in the space 604 is taken into the house in a cold season, and discharged through an exhaust port 604 in a hot season to improve the insulation performance of the roof. A heat accumulation means can be disposed under the floor.
  • Electricity generated in the solar cell-integrated [0087] roofing members 602 is introduced into the house through the ridge, converted by an inverter I and consumed by a load L. The inverter I can be linked with a commercial power supply system E.
  • Hereinbelow, the present invention will be described based on Examples. [0088]
  • EXAMPLE 1
  • Amorphous silicon (a-Si) solar cells each having a laminate structure as shown in FIG. 2 were prepared and formed into a solar cell block as illustrated in FIG. 3. The resultant [0089] solar cell block 401 was laminated with other members as shown in FIG. 4A to form a solar cell module having a sectional structure as shown in FIG. 4B.
  • First of all, a solar cell was prepared in the following manner. [0090]
  • (1) On a cleaned [0091] stainless steel substrate 201, a 500 nm-thick Al layer and a 500 nm-thick ZnO layer were sequentially formed by sputtering to provide a back-side reflection layer 202.
  • (2) According to the plasma CVD process, a tandem-form a-Si photoelectric [0092] conversion semiconductor layer 203 having a laminate structure of 15 nm-thick n-layer/400 nm-thick i-layer/10 nm-thick p-layer/10 nm-thick n-layer/80 nm-thick i-layer/10 nm-thick p-layer by forming the n-type a-Si layer(s) from an SiH4-PH3-H2 mixture gas, i-type a-Si layer from an SiH4-H2 mixture gas and the p-type microcrystalline (pC)-Si layer from an SiH4-BF3-H2 mixture gas.
  • (3) A [0093] transparent conductor layer 204 of 70 nm-thick In2O3 film was formed by evaporating In by the resistance heating method in an O2 atmosphere.
  • (4) A [0094] collector grid electrode 205 was formed by screen printing of silver paste.
  • (5) A negative-[0095] side terminal 206 b of copper tab was affixed onto the stainless steel substrate with a solder 207, and a positive-side terminal 206 a in lamination with an insulating tape 208 was affixed onto the collector electrode 205 with a solder 207, to complete the preparation of a solar cell.
  • Then, a plurality of solar cells prepared through the above-mentioned steps (1)-(5) were connected in series to form a cell block having an external size of 300 mm×1200 mm and thickness of 150 μm for the active area and 450 μm for the collector electrode part in a manner as will be described with reference to FIG. 3. [0096]
  • (6) The plurality of solar cells were arranged side by side and, for a pair of mutually adjacent solar cells, a positive-[0097] side terminal 305 a of one cell and a negative-side terminal 305 b of the other cell were connected to each other with a copper tab 306 and a solder 308. In this way, a solar cell block including 5 solar cells connected in series was prepared. In this instance, a copper tab connected to the output terminal of the solar cell disposed at the edge was extended to a back side to be taken out of a hole formed in a back-side coating layer described later.
  • The cell block prepared above was formulated in a laminate solar cell module in a manner as will be described below with reference to FIG. 4. [0098]
  • (7) A [0099] cell block 401 was sandwiched between an inorganic fibrous sheet 402, a filler resin sheet 403 and a transparent film disposed on a light-receiving side, and a back-side integral laminate film 405 and a substrate 406 disposed on a light non-receiving side to form a stacked structure including the members as shown in FIG. 4A.
  • (8) Then, the stacked structure was placed on a central part of a base plate in a single vacuum chamber-type lamination apparatus. The base plate was rectangular in shape and equipped with a frame-shaped perforated pipe affixed onto a part onto an upper surface along a periphery of the base plate so as to surround an inner space for accommodating the stacked structure. The perforated pipe was provided with perforations opened into the inner space and an exhaust port connected to a vacuum pump. The stacked structure was placed in the inner space on the base plate surrounded by the frame-shaped perforated pipe, so that the [0100] transparent film 404 was disposed on top, and then covered with a rectangular silicone rubber sheet having an areal size almost equal to that of the base plate so as to make the inner space accommodating the stacked structure vacuum-tight.
  • (9) Then, the vacuum pump was operated to evacuate the inner space accommodating the stacked structure and such the rubber toward the base plate so as to press the stacked structure onto the base plate. At that time, the inner space was reduced in pressure at a rate of 76 Torr/sec. and then evacuated for 30 min. at 5 Torr. [0101]
  • (10) The base plate carrying the stacked structure covered with the rubber sheet was placed in a hot gas oven having an atmosphere of 150° C. stabilized in advance and was held for 30 min. at 150° C. after the plate temperature reached 150° C., thereby melting and crosslinking the EVA of the [0102] filler resin sheet 403.
  • (11) Thereafter, the base plate was taken out of the oven and cooled to ca. 40° C. by supplying air to the plate by a fan, when the evaluation was terminated. Then, the laminated structure constituting a solar cell module was taken out. [0103]
  • (12) An excess of the coating material extending out of the substrate was cut off along the edge of the substance, and edges along the longitudinal sides were bent. [0104]
  • (13) An output terminal was preliminarily extended to the back surface of the cell block and, after the lamination, taken out of a terminal take-out hole preliminarily formed in the substrate (galverized steel sheet). [0105]
  • A solar cell module in this Example was thus prepared through the above-mentioned steps (1)-(13). [0106]
  • Now, the explanation of the respective members [0107] 402-408 used for coating the cell block 401 to form the solar cell module of this Example will be supplemented.
  • The inorganic [0108] fibrous sheet 402 disposed on the light-receiving side comprised 400 μm-thick non-woven glass fiber sheet having a basis-weight of 80 g/m2, comprising glass fiber of 10 μm in diameter and containing 4.0 wt. % of binder acrylic resin. The inorganic fibrous sheet 402 had sizes larger than the cell block by 5 mm for each side.
  • The [0109] filler resin sheet 403 comprised 100 wt. parts of ethylene-vinyl acetate copolymer (vinyl acetate content of 33 wt. %, melt-flow rate=30) (filler resin), 1.5 wt. parts of 2,5-dimethyl-2,5-bis(t-butylperoxy)hexane (cross-linking agent), 0.3 wt. part of 2-hydroxy-4-n-octyloxybenzophenone (UV-absorber), 0.2 wt. part of tris(mono-nonylphenyl)phosphite (antioxidant), and 0.1 wt. part of (2,2,6,6-tetramethyl-4-piperidyl)sebacate and was in the form of a 460 μm-thick sheet. The filler resin sheet was used in sizes which were larger than the cell block 401 by 90 mm for each side.
  • The surface [0110] transparent film 404 comprised a 50 μm-thick non-stretched ethylene-terefluoroethylene film, and a surface thereof for adhesion with the filler resin sheet 403 was preliminarily subjected to a plasma treatment. The transparent surface film 404 had sizes larger than the cell block by 90 mm for each side.
  • The back-side [0111] integrated laminate film 405 was laminate of an insulating film and adhesive layers. The adhesive layers included a 200 μm-thick ethylene-ethyl acrylate layer (indicated as “EEA”) and a 25 μm-thick polyethylene layer (“PE”), and the insulating film was a 50 μm-thick biaxially stretched polyethylene terephthalate film (“PET”). These layers were stacked in the order of EEA/PE/PET/PE/EEA to provide a totally 500 μm-thick integrated laminate film 407, which was larger than the cell block 401 by 15 mm for each side.
  • The substrate [0112] 408 comprised a 400 μm-thick galvanized sheet steel (sheet steel plated with Al (55%)/Zn (43.4%)/Si (1.6%) alloy) coated with a polyester paint on one surface and a glass fiber-added polyester paint on the other surface. The substrate sheet 408 was provided in sizes which were larger than those of the cell block 401 by 80 mm for each side.
  • EXAMPLE 2
  • A solar cell module was prepared in the same manner as in Example 1 except that the back-side integrated laminate film was replaced by a laminate of EVA/PET/EVA (of 230 μm/100 μm/230 μm), wherein EVA was a filler resin sheet same as in the [0113] filler resin sheet 403 disposed on the light-receiving side in the module of Example 1 and PET was the same as in Example 1, except for their thicknesses.
  • EXAMPLE 3
  • The solar cell module was prepared in the same manner as in Example 1 except for the following modifications. [0114]
  • The sizes of the respective member were changed as follows. The inorganic [0115] fibrous sheet 402 was larger by 15 mm for each side, the back-side integrated laminate film 405 was larger by 45 mm for each side, the substrate 406 was larger by 80 mm for each side, and the filler resin sheet 403 and the transparent film 404 were both larger by 90 mm for each side, respectively compared with the cell block 401.
  • EXAMPLE 4
  • The solar cell module was prepared in the same manner as in Example 1 except for the following modifications. [0116]
  • A cell block in layer outer sizes of 300 mm ×2400 mm was prepared by increasing the number of solar cells connected in series. As the increase in cell block size made difficult the evacuation from the inside of the module, a 100 μm-thick inorganic fibrous sheet (basis weight=20 g/m[0117] 2, binder acrylic resin content=4.0%, glass fiber diameter=10 μm) in a size larger by the cell block by 5 mm for each side was inserted between the cell block and the back-side integrated laminate film.
  • Comparative Example 1
  • The solar cell module was prepared in the same manner as in Example 1 except that the sizes of the respective member were changed as follows. [0118]
  • The [0119] substrate 406 was larger by 80 mm for each side, and the other members were respectively larger by 90 mm for each side, respectively compared with the cell block 401.
  • Comparative Example 2
  • The solar cell module was prepared in the same manner as in Example 1 except for that the sizes of the respective member were changed as follows. [0120]
  • The inorganic [0121] fibrous sheet 402 was larger by 90 mm for each side, the back-side integrated laminate film 405 was larger by 15 mm for each side, the substrate 406 was larger by 80 mm for each side, and the filler resin sheet 403 and the transparent film. 404 were both larger by 90 mm for each side, respectively compared with the cell block 401.
  • Comparative Example 3
  • The solar cell module was prepared in the same manner as in Example 1 except that the sizes of the respective member were changed as follows. [0122]
  • The inorganic [0123] fibrous sheet 402 was larger by 30 mm for each side, the back-side integrated laminate film 405 was larger by 15 mm for each side, the substrate 406 was larger by 80 mm for each side, and the filler resin sheet 403 and the transparent film 404 were both larger by 90 mm for each side, respectively compared with the cell block 401.
  • Comparative Example 4
  • The solar cell module was prepared in the same manner as in Example 1 except that the sizes of the respective member were changed as follows. [0124]
  • The inorganic [0125] fibrous sheet 402 was larger by 5 mm for each side, the back-side integrated laminate film 405 was larger by 90 mm for each side, the substrate 406 was larger by 80 mm for each side, and the filler resin sheet 403 and the transparent film 404 were both larger by 90 mm for each side, respectively compared with the cell block 401.
  • Comparative Example 5
  • A solar cell module was prepared in the same manner as in Example 1 except for using a substrate of FRP (fiber-reinforced plastic) instead of the [0126] substrate 406 of the coated galvanized sheet steel used in Example 1.
  • The solar cell modules prepared in the above-mentioned Examples and Comparative Examples were evaluated with respect to the following items and provided the results shown in Table 1 appearing hereinafter. [0127]
  • (1) Initial appearance [0128]
  • The appearance of each solar cell module immediately after the preparation in sheet form and before bending was evaluated with eyes according to the following standard. [0129]
  • A: No defect at all in appearance. [0130]
  • B: Some defect in appearance but at a practically acceptable level. [0131]
  • C: Evacuation failure. Remarkable defect in appearance, such as curvature of the module. [0132]
  • (2) Appearance after bending [0133]
  • The appearance of each module after the bending along longitudinal sides thereof was evaluated with eyes. The bending was performed in two ways, i.e., upward bending (bending at 90 deg. to the light-receiving side (as shown in FIG. 1B)) and downward bending (bending at 90 deg. to the light non-receiving side). The evaluation was performed according to the following standard. [0134]
  • A: No defect at all in appearance. [0135]
  • B: Some defect in appearance but at a practically acceptable level. [0136]
  • C: Remarkable defect in appearance, such as whitening and peeling. [0137]
  • (3) High temperature-high humidity test [0138]
  • Each solar cell module was stored for 1000 hours in an environment of 85° C./85%RH and, after taking out, the appearance thereof was evaluated with eyes according to the following standard. [0139]
  • A: No defect at all in appearance. [0140]
  • B: Some defect in appearance but at a practically acceptable level. [0141]
  • C: Remarkable defect, such as peeling, discoloration or curvature of the module. [0142]
  • Each module, two hours after the storage in the high temperature—high humidity test, was subjected to measurement to leakage current under a dry hi-pot condition (leakage current between the cell and the substrate under application of 2200 volts in a dry environment) and a wet hi-pot condition (leakage current for a module dipped in an electrolytic solution having a resistivity of 3000 ohm.cm under application of 2200 volts between the solar cell and the solution). The leakage current evaluations results are shown in Table 1 according to the following standard. [0143]
  • A: <1 μA, [0144]
  • B: ≧1 μA and <50 μA, [0145]
  • C: ≦50 μA. [0146]
  • (4) Temperature-humidity cycle test [0147]
  • Each solar cell module was subjected to a temperature-humidity cycle test of 100 cycles each including storage at −40° C. for 1 hour and storage at 85° C./85% RH for 20 hours. [0148]
  • After the cycle test, each solar cell module was evaluated with respect to the appearance and the measurement of leakage currents under the dry hi-pot condition and the wet hi-pot condition in the same manners and according to the same standards as after the high temperature—high humidity test described above. [0149]
  • The results of the respective test are inclusively shown in the following Table 1. [0150]
    TABLE 1
    High temperature/ Temperature-humidity
    high humidity test cycle test
    Appearance Leakage Leakage
    (Ap) current current
    After Dry Wet Dry Wet
    Initial bending Ap. hi-pot hi-pot Ap. hi-pot hi-pot
    Ex. 1 A A A A A A A A
    Ex. 2 A A A A A A A A
    Ex. 3 A A A A A A A A
    Ex. 4 A A A A A A A A
    Comp.
    Ex. 1 A C C A C C A C
    Ex. 2 A C*1 C C C B C C
    Ex. 3 A A A C C A C C
    Ex. 4 B A C C C C C C
    Ex. 5 A A*2 C A A C A A
  • The results of the above-mentioned test shown in Table 1 are supplemented as follows. [0151]
  • (1) All the solar cell modules according to Examples showed leakage currents of below 1 μA respectively after the high temperature—high humidity test and the temperature-humidity cycle test, thus ensuring a sufficient electrical insulation performance. Each module showed good appearance free from defects, such as evacuation failure or peeling, immediately after the preparation and the respective tests. Each module exhibited excellent bendability, thus showing excellent mass-productivity. Each module exhibited excellent non-flammability and was found to be suppliciently applicable as a solar cell module for installation on the roof or wall. [0152]
  • (2) The module of Comparative Example 1 wherein all the cooling members were extended to the edges of the substrate resulted in peeling and whitening after the bending. Further, as the glass fiber sheet was present up to the edge of the module, the module exhibited remarkably inferior electrical insulation in the measurement of leakage current in the wet environment (the wet hi-pot condition) after the high temperature—high humidity test and the temperature-humidity cycle test. Further, as the back-side adhesive layers were also extended up to the edge, the module was liable to burn and was rejected by a combustion test. [0153]
  • (3) The module of Comparative Example 2 wherein the non-woven glass fiber cloth was extended up to the substrate edge resulted in whitening at the bend after the downward bending. Further, the module exhibited remarkably inferior electrical insulation after the high temperature—high humidity test and the temperature—humidity cycle test. [0154]
  • (4) The module of Comparative Example 3 wherein the non-woven glass fiber cloth was disposed in a large size then the back-side integrated insulating film resulted in good appearance free from any defects but exhibited remarkably inferior electrical insulation after the high temperature—high humidity test similarly as in Comparative Example 1. [0155]
  • (5) The module of Comparative Example 4 wherein the back-side integrated laminated film was extended up to the substrate edge, resulted in evacuation failure after the lamination presumably because the surface-side filler resin sheet of EVA and the back-side adhesive layer of the integrated laminate film were bonded in a substantial area without via the glass fiber non-woven cloth therebetween. Further, the module caused a peeling between the substrate and the adhesive layer at the bend after the high temperature - high humidity test and the temperature—humidity cycle test presumably because the stress given by the insulating film (PET) at the bend. [0156]
  • (6) The module of Comparative Example 5 wherein an FRP was used as the substrate, did not allow bending. [0157]
  • Thus, the above results show that the solar cell modules of Examples according to the present invention are believed to exhibit high reliability in a long-term use. [0158]

Claims (20)

What is claimed is:
1. A solar cell module, comprising: a substrate, a photo-electricity generating device, a filler resin sealing the photo-electricity generating device on the substrate, and a surface film covering the filler resin; wherein
an insulating film is inserted between the photo-electricity generating device and the substrate so as to be inside the substrate,
an inorganic fibrous sheet is inserted between the photo-electricity generating device and the surface film so as to be disposed inside the insulating film, and
the substrate is bent at a portion thereof free from the insulating film.
2. A solar cell module according to
claim 1
, wherein the inorganic fibrous sheet is disposed to cover an entire area of the photo-electricity generating device.
3. A solar cell module according to
claim 1
, wherein the filler resin and/or the surface film are disposed in a larger area than the substrate.
4. A solar cell module according to
claim 1
, wherein the inorganic fibrous sheet comprises non-woven glass fiber cloth.
5. A solar cell module according to
claim 1
, wherein the insulating film comprises a member selected from the group consisting of polycarbonate, polyethylene terephthalate, and nylon.
6. A solar cell module according to
claim 1
, wherein an adhesive layer is inserted between the photo-electricity generating device and the insulating film, and/or between the insulating film and the substrate, and the adhesive layer is disposed in an area smaller than that of the filler resins.
7. A solar cell module according to
claim 1
, wherein said insulating film is provided with adhesive layers on both surfaces thereof to form an integrated laminate film before its insertion between the photo-electricity generating device and the substrate.
8. A roofing member, comprising: a substrate, a photo-electricity generating device, a filler resin sealing the photo-electricity generating device on the substrate, and a surface film covering the filler resin; wherein
an insulating film is inserted between the photo-electricity generating device and the substrate so as to be inside the substrate,
an inorganic fibrous sheet is inserted between the photo-electricity generating device and the surface film so as to be disposed inside the insulating film, and
the substrate is bent at a portion thereof free from the insulating film.
9. A roofing member according to
claim 8
, wherein the inorganic fibrous sheet is disposed to cover an entire area of the photo-electricity generating device.
10. A roofing member according to
claim 8
, wherein the filler resin and/or the surface film are disposed in a larger area than the substrate.
11. A roofing member according to
claim 8
, wherein the inorganic fibrous sheet comprises nonwoven glass fiber cloth.
12. A roofing member according to
claim 8
, wherein the insulating film comprises a member selected from the group consisting of polycarbonate, polyethylene terephthalate, and nylon.
13. A roofing member according to
claim 8
, wherein an adhesive layer is inserted between the photo-electricity generating device and the insulating film, and/or between the insulating film and the substrate, and the adhesive layer is disposed in an area smaller than that of the filler resins.
14. A roofing member according to
claim 8
, wherein said insulating film is provided with adhesive layers on both surfaces thereof to form an integrated 10 laminate film before its insertion between the photo-electricity generating device and the substrate.
15. A process for producing a solar cell module, comprising:
stacking a substrate, an insulating film, a solar cell, an inorganic fibrous sheet, a filler resin layer and a surface film in this order to form a stacked body, wherein said insulating film is disposed inside the edge of the substrate, and the inorganic fibrous sheet is disposed inside the edge of the insulating film,
heating and pressing the stacked body to form a module in the form of an integral laminate sheet having an edge, and
bending a portion along the edge free from the insulating film of the laminate sheet.
16. A process according to
claim 15
, wherein an adhesive layer is included in the stacked body so as to be inserted between the photo-electricity generating device and the insulating film, and/or between the insulating film and the substrate, and the adhesive layer is disposed in an area smaller than that of the filler resin layer.
17. A process for producing a roofing member, comprising:
stacking a substrate, an insulating film, a solar cell, an inorganic fibrous sheet, a filler resin layer and a surface film in this order to form a stacked body, wherein said insulating film is disposed inside the edge of the substrate, and the inorganic fibrous sheet is disposed inside the edge of the insulating film,
heating and pressing the stacked body to form a modulate in the form of an integral laminate sheet having an edge, and
bending a portion along the edge free from the insulating film of the laminate sheet.
18. An electricity generating apparatus, comprising a solar cell module and an inverter for converting an output of the solar cell module;
wherein the solar cell module comprises a substrate, a photo-electricity generating device, a filler resin sealing the photo-electricity generating device on the substrate, and a surface film covering the filler resin; wherein
an insulating film is inserted between the photo-electricity generating device and the substrate so as to be inside the substrate,
an inorganic fibrous sheet is inserted between the photo-electricity generating device and the surface film so as to be disposed inside the insulating film, and
the substrate is bent at a portion thereof free from the insulating film.
19. A roofing method, comprising: fixing a plurality of roofing members onto a roof sheathing by fixing means, and connecting a pair of mutually adjacent roofing members;
wherein each roofing member comprises a substrate, a photo-electricity generating device, a filler resin sealing the photo-electricity generating device on the substrate, and a surface film covering the filler resin; wherein
an insulating film is inserted between the photo-electricity generating device and the substrate so as to be inside the substrate,
an inorganic fibrous sheet is inserted between the photo-electricity generating device and the surface film so as to be disposed inside the insulating film, and
the substrate is bent at a portion thereof free from the insulating film.
20. A ventilating apparatus, including a roof shiething, and a plurality of roofing members fixed onto the roof sheathing so as to form a space between the sheathing and the roofing members for introducing external air thereinto, and a path for introducing the air in the space into an inside of a building and/or a path for discharging the air in the space to an outside of the building;
wherein each roofing member comprises a substrate, a photo-electricity generating device, a filler resin sealing the photo-electricity generating device on the substrate, and a surface film covering the filler resin; wherein
an insulating film is inserted between the photo-electricity generating device and the substrate so as to be inside the substrate,
an inorganic fibrous sheet is inserted between the photo-electricity generating device and the surface film so as to be disposed inside the insulating film, and
the substrate is bent at a portion thereof free from the insulating film.
US08/926,937 1996-09-12 1997-09-10 Solar cell module Granted US20010054437A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP242399/1996 1996-09-12
JP24239996A JP3825843B2 (en) 1996-09-12 1996-09-12 Solar cell module

Publications (1)

Publication Number Publication Date
US20010054437A1 true US20010054437A1 (en) 2001-12-27

Family

ID=17088573

Family Applications (2)

Application Number Title Priority Date Filing Date
US08/926,937 Granted US20010054437A1 (en) 1996-09-12 1997-09-10 Solar cell module
US08/926,937 Expired - Fee Related US6323416B1 (en) 1996-09-12 1997-09-10 Solar cell module

Family Applications After (1)

Application Number Title Priority Date Filing Date
US08/926,937 Expired - Fee Related US6323416B1 (en) 1996-09-12 1997-09-10 Solar cell module

Country Status (6)

Country Link
US (2) US20010054437A1 (en)
EP (1) EP0829909B1 (en)
JP (1) JP3825843B2 (en)
KR (1) KR19980024614A (en)
CN (1) CN1095597C (en)
DE (1) DE69731799T2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040029311A1 (en) * 2002-08-09 2004-02-12 Snyder Shawn W. Methods of and device for encapsulation and termination of electronic devices
US20050139253A1 (en) * 2003-12-31 2005-06-30 Korman Charles S. Solar cell assembly for use in an outer space environment or a non-earth environment
US20060207646A1 (en) * 2003-07-07 2006-09-21 Christine Terreau Encapsulation of solar cells
US20090084427A1 (en) * 2006-04-18 2009-04-02 Anderson Nicole R Copper Indium Diselenide-Based Photovoltaic Device And Method Of Preparing the Same
US20090084428A1 (en) * 2006-04-18 2009-04-02 Thomas Duncan Barnard Copper Indium Diselenide-Based Photovoltaic Device And Method Of Preparing The Same
US20090090413A1 (en) * 2006-04-18 2009-04-09 Dimitris Elias Katsoulis Cadmium Telluride-Based Photovoltaic Device And Method Of Preparing The Same
EP2190032A1 (en) 2008-11-25 2010-05-26 Redco S.A. Photovoltaic fibre reinforced cement panel
US20100236541A1 (en) * 2009-03-18 2010-09-23 The Garland Company, Inc. Solar roofing system
US20100258188A1 (en) * 2007-12-21 2010-10-14 Ki Se Lee Thin Film Type Solar Cell and Method for Manufacturing the Same
US20100307559A1 (en) * 2009-06-05 2010-12-09 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US20110174373A1 (en) * 2009-01-29 2011-07-21 Kyocera Corporation Photoelectric Conversion Cell and Photoelectric Conversion Module
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US20130180586A1 (en) * 2010-09-17 2013-07-18 Fujifilm Corporation Solar cell
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US9520518B2 (en) 2012-05-16 2016-12-13 Mitsui Chemicals Tohcello, Inc. Solar cell module
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US9947819B2 (en) 2011-10-17 2018-04-17 Lg Innotek Co., Ltd. Solar cell module and method of fabricating the same
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
WO2020120712A1 (en) * 2018-12-13 2020-06-18 Total Renewables Moisture-resistant laminate of photovoltaic cells and process for producing such a laminate
US10729912B2 (en) * 2015-06-05 2020-08-04 Gwangju Institute Of Science And Technology Insertable photoelectric device using absorption of light penetrating skin and electronic apparatus having same photoelectric device

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3675218B2 (en) * 1998-04-06 2005-07-27 キヤノン株式会社 SOLAR CELL MODULE, ITS CONSTRUCTION METHOD, AND POWER GENERATION DEVICE USING THE SOLAR CELL MODULE
US6274887B1 (en) * 1998-11-02 2001-08-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
US7022556B1 (en) 1998-11-11 2006-04-04 Semiconductor Energy Laboratory Co., Ltd. Exposure device, exposure method and method of manufacturing semiconductor device
ATE431968T1 (en) * 1999-06-08 2009-06-15 Kaneka Corp METHOD FOR ENCAPSULATING A PHOTOVOLTAIC MODULE USING AN ENCAPSULATING MATERIAL
ES2322224T3 (en) 1999-09-01 2009-06-18 Kaneka Corporation SOLAR CELL MODULE OF FINE LAYER AND ITS MANUFACTURING PROCEDURE.
JP3942770B2 (en) * 1999-09-22 2007-07-11 株式会社半導体エネルギー研究所 EL display device and electronic device
US6646287B1 (en) 1999-11-19 2003-11-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device with tapered gate and insulating film
EP1172864A1 (en) * 2000-07-11 2002-01-16 SANYO ELECTRIC Co., Ltd. Solar cell module
JP3594540B2 (en) * 2000-09-11 2004-12-02 三洋電機株式会社 Solar cell module
US7222981B2 (en) * 2001-02-15 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. EL display device and electronic device
JP2003037281A (en) 2001-05-17 2003-02-07 Canon Inc Covering material and photovoltaic element
DE10142383C2 (en) * 2001-08-30 2003-07-31 Ibc Solar Ag Carrier for solar modules and their use as well as roof covering or facade
DE10144148A1 (en) * 2001-09-07 2003-04-03 Hake Thomas Solar energy device comprises a photovolatic solar module arranged on the side of the building facing the sun, a heat exchanger connected to the module via lines, and a control and regulating device
EP1302988A3 (en) * 2001-10-12 2007-01-24 Bayer MaterialScience AG Photovoltaic modules with a thermoplastic adhesive layer and method for fabricating the same
JP3889644B2 (en) * 2002-03-25 2007-03-07 三洋電機株式会社 Solar cell module
JP4681806B2 (en) * 2003-12-19 2011-05-11 キヤノン株式会社 Solar cell module
US7495644B2 (en) * 2003-12-26 2009-02-24 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing display device
US20050217716A1 (en) * 2004-01-29 2005-10-06 Kyocera Corporation Photovoltaic power generation system
JP4667406B2 (en) * 2006-03-30 2011-04-13 三洋電機株式会社 Solar cell module and manufacturing method thereof
US20080053516A1 (en) 2006-08-30 2008-03-06 Richard Allen Hayes Solar cell modules comprising poly(allyl amine) and poly (vinyl amine)-primed polyester films
ATE518255T1 (en) * 2006-08-30 2011-08-15 Keiwa Inc USE OF A BACK PLATE FOR PHOTOVOLTAIC MODULES AND PHOTOVOLTAIC MODULES WITH IT
JP4758311B2 (en) * 2006-09-14 2011-08-24 Okiセミコンダクタ株式会社 Asynchronous data holding circuit
CN103944495A (en) * 2006-11-21 2014-07-23 凡世通建筑产品公司 Energy generating system
US20080128018A1 (en) 2006-12-04 2008-06-05 Richard Allen Hayes Solar cells which include the use of certain poly(vinyl butyral)/film bilayer encapsulant layers with a low blocking tendency and a simplified process to produce thereof
US8197928B2 (en) 2006-12-29 2012-06-12 E. I. Du Pont De Nemours And Company Intrusion resistant safety glazings and solar cell modules
CA2618881C (en) * 2007-01-24 2014-04-08 William Beck (Bill) J. Coated solar panel
WO2008099975A1 (en) * 2007-02-13 2008-08-21 Bong Gi Kim Laminated board generating electricity by sunshine
AU2011211412B2 (en) * 2007-03-23 2012-04-19 Sunpower Corporation Stackable tracking solar collector assembly
AU2008231262B2 (en) * 2007-03-23 2011-05-26 Sunpower Corporation Tracking solar collector assembly
US8080731B2 (en) * 2007-06-15 2011-12-20 The Boeing Company Restrained solar collector and method
US8438796B2 (en) * 2007-11-06 2013-05-14 Certainteed Corporation Photovoltaic roofing elements including tie layer systems, and roofs using them, and methods for making them
CN101960616B (en) * 2008-03-05 2013-12-18 株式会社普利司通 Sealing film for solar cells and solar cell using same
BRPI0907078A2 (en) * 2008-03-26 2015-07-07 Du Pont "laminated article"
IE20090454A1 (en) * 2008-06-11 2009-12-23 Kingspan Res & Dev Ltd An insulating panel
US20090320896A1 (en) * 2008-06-25 2009-12-31 Gerhardinger Peter F Moisture resistant solar panel and method of making same
US8677701B2 (en) * 2008-09-25 2014-03-25 The Boeing Company Attaching solar collectors to a structural framework utilizing a flexible clip
CN102333786B (en) 2008-10-31 2014-12-17 纳幕尔杜邦公司 Solar cells modules comprising low haze encapsulants
US20100154867A1 (en) 2008-12-19 2010-06-24 E. I. Du Pont De Nemours And Company Mechanically reliable solar cell modules
WO2010073932A1 (en) * 2008-12-24 2010-07-01 富士電機システムズ株式会社 Solar cell module
JP5984241B2 (en) * 2008-12-31 2016-09-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Solar cell module including an encapsulant sheet having low haze and high moisture resistance
US8572907B2 (en) * 2009-02-19 2013-11-05 Saint-Gobain Performance Plastics Corporation Attachment system of photovoltaic cell to fluoropolymer structural membrane
KR101054959B1 (en) * 2009-03-31 2011-08-05 엘지이노텍 주식회사 Photovoltaic device and its manufacturing method
EP2460266A4 (en) * 2009-07-31 2013-07-17 Du Pont Cross-linkable encapsulants for photovoltaic cells
KR101028228B1 (en) * 2009-10-28 2011-04-11 엘지이노텍 주식회사 Solar cell apparatus
JP5730323B2 (en) * 2009-11-18 2015-06-10 エルジー イノテック カンパニー リミテッド Solar power plant
CN105890181B (en) * 2009-12-17 2018-05-15 能源设计股份有限公司 Substantially two-dimentional structural detail
US20110155221A1 (en) * 2009-12-31 2011-06-30 Du Pont Apollo Limited Solar panel with improved waterproof design
KR20110085863A (en) * 2010-01-20 2011-07-27 한국전자통신연구원 Solor cell module
US8211264B2 (en) 2010-06-07 2012-07-03 E I Du Pont De Nemours And Company Method for preparing transparent multilayer film structures having a perfluorinated copolymer resin layer
US8211265B2 (en) 2010-06-07 2012-07-03 E. I. Du Pont De Nemours And Company Method for preparing multilayer structures containing a perfluorinated copolymer resin layer
US8603272B2 (en) 2010-07-30 2013-12-10 E I Du Pont De Nemours And Company Multilayer films containing a fluorinated copolymer resin layer and an encapsulant layer
US8409379B2 (en) 2010-07-30 2013-04-02 E I Du Pont De Nemours And Company Multilayer structures containing a fluorinated copolymer resin layer and an ethylene terpolymer layer
US8609980B2 (en) 2010-07-30 2013-12-17 E I Du Pont De Nemours And Company Cross-linkable ionomeric encapsulants for photovoltaic cells
AT511000B1 (en) * 2011-02-03 2014-03-15 Stojec Mario Paul SOLAR MODULE WITH ONE OR MORE SOLAR CELLS
EP2691963B1 (en) * 2011-03-29 2015-02-18 Sun Chemical Corporation High-aspect ratio screen printable thick film paste compositions containing wax thixotropes
KR101063787B1 (en) * 2011-05-25 2011-09-08 (주)솔라원 Photo voltaic module with improved insulating performance
JP2013004835A (en) * 2011-06-20 2013-01-07 Fuji Electric Co Ltd Flexible solar cell module and fire spread prevention sheet of the same
KR101151346B1 (en) 2011-10-27 2012-06-08 주식회사 지메카닉스 Solar cell module having multi-filling layer
KR101306443B1 (en) * 2011-11-29 2013-09-09 엘지이노텍 주식회사 Solar cell module and method of the same
KR101313339B1 (en) * 2011-12-27 2013-09-30 (주)핫플레이어 Manufacturing method for back sheet photovoltaic power generation of pocket type
US20150187977A1 (en) * 2012-06-22 2015-07-02 Panasonic Intellectual Property Management Co., Lt Solar cell module
JP6216505B2 (en) * 2012-12-07 2017-10-18 富士電機株式会社 Solar cell integrated membrane material
EP2934883B1 (en) 2012-12-19 2018-06-27 E. I. du Pont de Nemours and Company Cross-linked polymers and their use in packaging films and injection molded articles
CN104126232A (en) * 2012-12-27 2014-10-29 金敏赫 Pocket type photovoltaic power generation back sheet, method for manufacturing said back sheet, and photovoltaic power generation module including said back sheet
US20140216547A1 (en) * 2013-02-04 2014-08-07 Primestar Solar, Inc. Oversized back panel for photovoltaic devices
US10530018B2 (en) * 2013-12-13 2020-01-07 Infineon Technoogies Ag Panel, a method for fabricating a panel and a method
WO2015168073A1 (en) 2014-04-29 2015-11-05 E. I. Du Pont De Nemours And Company Solar cell modules with improved backsheet
WO2015168068A1 (en) 2014-04-29 2015-11-05 E. I. Du Pont De Nemours And Company Photovoltaic cells with improved multilayer backsheet
CN106232725A (en) 2014-04-29 2016-12-14 纳幕尔杜邦公司 There is the photovoltaic cell of the backboard of improvement
KR101860346B1 (en) * 2016-08-17 2018-05-23 엘지전자 주식회사 Solar panel and car roof
CN108133973A (en) * 2016-11-03 2018-06-08 上迈(上海)新能源科技有限公司 A kind of glass photovoltaic building materials component and preparation method thereof
CN108022989B (en) * 2016-11-03 2020-11-03 上迈(镇江)新能源科技有限公司 Double-sided glass photovoltaic building material component and preparation method thereof
US10490682B2 (en) 2018-03-14 2019-11-26 National Mechanical Group Corp. Frame-less encapsulated photo-voltaic solar panel supporting solar cell modules encapsulated within multiple layers of optically-transparent epoxy-resin materials
DE102019008106B4 (en) * 2019-11-21 2022-06-09 Azur Space Solar Power Gmbh Stacked multi-junction solar cell and manufacturing process
JP2022120616A (en) * 2021-02-05 2022-08-18 株式会社Lixil roll screen device
CN114198798A (en) * 2021-12-16 2022-03-18 天津竞展科技发展有限公司 Electric heating modular floor heating system

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE7604250L (en) * 1975-05-06 1976-11-07 Svenska Flaektfabriken Ab METHOD AND DEVICE FOR THE EXTRACTION OF HEAT ENERGY
US4341607A (en) * 1980-12-08 1982-07-27 E:F Technology, Inc. Solar power system requiring no active control device
US4499658A (en) * 1983-09-06 1985-02-19 Atlantic Richfield Company Solar cell laminates
JPS6233756A (en) 1985-08-07 1987-02-13 Mazda Motor Corp Carburizing and nitriding method
FR2643770B1 (en) * 1989-02-28 1991-06-21 Centre Nat Rech Scient MICROECHOGRAPHIC ULTRASONIC COLLIMATION PROBE THROUGH A DEFORMABLE SURFACE
DE69222549T2 (en) * 1991-02-20 1998-03-05 Canon Kk Solar cell module with protective element
JP2613719B2 (en) * 1992-09-01 1997-05-28 キヤノン株式会社 Method of manufacturing solar cell module
US5480494A (en) 1993-05-18 1996-01-02 Canon Kabushiki Kaisha Solar cell module and installation method thereof
JP3170105B2 (en) * 1993-07-01 2001-05-28 キヤノン株式会社 Solar cell module
JP3267452B2 (en) * 1993-08-31 2002-03-18 キヤノン株式会社 Photoelectric conversion device and solar cell module
DE69429245T2 (en) * 1993-09-30 2002-06-27 Canon Kk SUN CELL MODULE WITH A SURFACE COATING MATERIAL FROM THREE-LAYER STRUCTURE
US5589006A (en) * 1993-11-30 1996-12-31 Canon Kabushiki Kaisha Solar battery module and passive solar system using same
JP3001785B2 (en) 1993-11-30 2000-01-24 キヤノン株式会社 Solar cell module, roofing material, air distribution device, roofing material construction method, and roofing material manufacturing method
JP2643088B2 (en) 1994-04-18 1997-08-20 キヤノン株式会社 Solar cell module
JP3397443B2 (en) * 1994-04-30 2003-04-14 キヤノン株式会社 Solar cell module and method of manufacturing the same
JP3618802B2 (en) * 1994-11-04 2005-02-09 キヤノン株式会社 Solar cell module

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8535396B2 (en) 2002-08-09 2013-09-17 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US9793523B2 (en) 2002-08-09 2017-10-17 Sapurast Research Llc Electrochemical apparatus with barrier layer protected substrate
US6916679B2 (en) * 2002-08-09 2005-07-12 Infinite Power Solutions, Inc. Methods of and device for encapsulation and termination of electronic devices
US9634296B2 (en) 2002-08-09 2017-04-25 Sapurast Research Llc Thin film battery on an integrated circuit or circuit board and method thereof
US20040029311A1 (en) * 2002-08-09 2004-02-12 Snyder Shawn W. Methods of and device for encapsulation and termination of electronic devices
US7993773B2 (en) 2002-08-09 2011-08-09 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8431264B2 (en) 2002-08-09 2013-04-30 Infinite Power Solutions, Inc. Hybrid thin-film battery
US8404376B2 (en) 2002-08-09 2013-03-26 Infinite Power Solutions, Inc. Metal film encapsulation
US8394522B2 (en) 2002-08-09 2013-03-12 Infinite Power Solutions, Inc. Robust metal film encapsulation
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8728285B2 (en) 2003-05-23 2014-05-20 Demaray, Llc Transparent conductive oxides
US8847063B2 (en) 2003-07-07 2014-09-30 Dow Corning Corporation Encapsulation of solar cells
US8847064B2 (en) 2003-07-07 2014-09-30 Dow Corning Corporation Encapsulation of solar cells
US20060207646A1 (en) * 2003-07-07 2006-09-21 Christine Terreau Encapsulation of solar cells
US20050139253A1 (en) * 2003-12-31 2005-06-30 Korman Charles S. Solar cell assembly for use in an outer space environment or a non-earth environment
US8636876B2 (en) 2004-12-08 2014-01-28 R. Ernest Demaray Deposition of LiCoO2
US7959769B2 (en) 2004-12-08 2011-06-14 Infinite Power Solutions, Inc. Deposition of LiCoO2
US20090090413A1 (en) * 2006-04-18 2009-04-09 Dimitris Elias Katsoulis Cadmium Telluride-Based Photovoltaic Device And Method Of Preparing The Same
US20090084428A1 (en) * 2006-04-18 2009-04-02 Thomas Duncan Barnard Copper Indium Diselenide-Based Photovoltaic Device And Method Of Preparing The Same
US20090084427A1 (en) * 2006-04-18 2009-04-02 Anderson Nicole R Copper Indium Diselenide-Based Photovoltaic Device And Method Of Preparing the Same
US8062708B2 (en) 2006-09-29 2011-11-22 Infinite Power Solutions, Inc. Masking of and material constraint for depositing battery layers on flexible substrates
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
US20100258188A1 (en) * 2007-12-21 2010-10-14 Ki Se Lee Thin Film Type Solar Cell and Method for Manufacturing the Same
US9334557B2 (en) 2007-12-21 2016-05-10 Sapurast Research Llc Method for sputter targets for electrolyte films
US8268488B2 (en) 2007-12-21 2012-09-18 Infinite Power Solutions, Inc. Thin film electrolyte for thin film batteries
US9786873B2 (en) 2008-01-11 2017-10-10 Sapurast Research Llc Thin film encapsulation for thin film batteries and other devices
US8518581B2 (en) 2008-01-11 2013-08-27 Inifinite Power Solutions, Inc. Thin film encapsulation for thin film batteries and other devices
US8350519B2 (en) 2008-04-02 2013-01-08 Infinite Power Solutions, Inc Passive over/under voltage control and protection for energy storage devices associated with energy harvesting
US8906523B2 (en) 2008-08-11 2014-12-09 Infinite Power Solutions, Inc. Energy device with integral collector surface for electromagnetic energy harvesting and method thereof
US8260203B2 (en) 2008-09-12 2012-09-04 Infinite Power Solutions, Inc. Energy device with integral conductive surface for data communication via electromagnetic energy and method thereof
US8508193B2 (en) 2008-10-08 2013-08-13 Infinite Power Solutions, Inc. Environmentally-powered wireless sensor module
EP2190032A1 (en) 2008-11-25 2010-05-26 Redco S.A. Photovoltaic fibre reinforced cement panel
US20110174373A1 (en) * 2009-01-29 2011-07-21 Kyocera Corporation Photoelectric Conversion Cell and Photoelectric Conversion Module
US20100236541A1 (en) * 2009-03-18 2010-09-23 The Garland Company, Inc. Solar roofing system
US10962260B2 (en) * 2009-03-18 2021-03-30 Garland Industries, Inc. Solar roofing system
US20100307559A1 (en) * 2009-06-05 2010-12-09 Semiconductor Energy Laboratory Co., Ltd. Photoelectric conversion device and method for manufacturing the same
US9532453B2 (en) 2009-09-01 2016-12-27 Sapurast Research Llc Printed circuit board with integrated thin film battery
US8599572B2 (en) 2009-09-01 2013-12-03 Infinite Power Solutions, Inc. Printed circuit board with integrated thin film battery
US10680277B2 (en) 2010-06-07 2020-06-09 Sapurast Research Llc Rechargeable, high-density electrochemical device
US20130180586A1 (en) * 2010-09-17 2013-07-18 Fujifilm Corporation Solar cell
US9947819B2 (en) 2011-10-17 2018-04-17 Lg Innotek Co., Ltd. Solar cell module and method of fabricating the same
US9520518B2 (en) 2012-05-16 2016-12-13 Mitsui Chemicals Tohcello, Inc. Solar cell module
US10729912B2 (en) * 2015-06-05 2020-08-04 Gwangju Institute Of Science And Technology Insertable photoelectric device using absorption of light penetrating skin and electronic apparatus having same photoelectric device
WO2020120712A1 (en) * 2018-12-13 2020-06-18 Total Renewables Moisture-resistant laminate of photovoltaic cells and process for producing such a laminate
FR3090204A1 (en) * 2018-12-13 2020-06-19 Total Solar Laminate of moisture-resistant photovoltaic cells and method of manufacturing such a laminate

Also Published As

Publication number Publication date
CN1095597C (en) 2002-12-04
JPH1093124A (en) 1998-04-10
DE69731799T2 (en) 2005-12-01
DE69731799D1 (en) 2005-01-05
EP0829909A3 (en) 1998-10-14
KR19980024614A (en) 1998-07-06
EP0829909A2 (en) 1998-03-18
CN1178394A (en) 1998-04-08
EP0829909B1 (en) 2004-12-01
JP3825843B2 (en) 2006-09-27
US6323416B1 (en) 2001-11-27

Similar Documents

Publication Publication Date Title
EP0829909B1 (en) Solar cell module
US5660646A (en) Solar battery module
KR100350594B1 (en) Solar Cell Module
US6331673B1 (en) Solar cell module having a surface side covering material with a specific nonwoven glass fiber member
US6175075B1 (en) Solar cell module excelling in reliability
JP3222361B2 (en) Method of manufacturing solar cell module and solar cell module
KR100325955B1 (en) Solar Cell Module and Reinforcing Member for Solar Cell Module
EP0874404B1 (en) Solar cell module and method for manufacturing the same
JP3740251B2 (en) Manufacturing method of solar cell module
KR100376896B1 (en) Photovoltaic device
JP3288876B2 (en) Solar cell module and method of manufacturing the same
KR19980063242A (en) A solar cell module having a special surface covering material excellent in moisture resistance and transparency
JPH09116182A (en) Solar battery module and manufacture of solar battery module
JPH0964391A (en) Solar cell module
JPH11214734A (en) Solar battery module, its manufacture and execution method and solar battery power generation system
JP3710187B2 (en) Solar cell module
JPH1027920A (en) Solar battery module
JPH1187755A (en) Solar battery module and manufacture thereof
JP3032145B2 (en) Solar cell module
JPH1197727A (en) Solar cell module and its manufacture
JPH10294486A (en) Method for manufacturing solar cell module
JPH11177110A (en) Solar battery module and its manufacture
JPH0955525A (en) Solar battery module
JP2000012887A (en) Solar cell module
JPH11204820A (en) Solar cell module, its manufacture and execution method, solar cell generation system and solar cell module array