US20010031843A1 - Olefin polymerization catalysts, their production and use - Google Patents

Olefin polymerization catalysts, their production and use Download PDF

Info

Publication number
US20010031843A1
US20010031843A1 US09/248,147 US24814799A US2001031843A1 US 20010031843 A1 US20010031843 A1 US 20010031843A1 US 24814799 A US24814799 A US 24814799A US 2001031843 A1 US2001031843 A1 US 2001031843A1
Authority
US
United States
Prior art keywords
group
catalyst system
containing group
phenoxide
heteroatom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US09/248,147
Other versions
US6333389B2 (en
Inventor
Gregory T. Whiteker
Jack A. Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Univation Technologies LLC
Original Assignee
Univation Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univation Technologies LLC filed Critical Univation Technologies LLC
Priority to US09/248,147 priority Critical patent/US6333389B2/en
Assigned to UNIVATION TECHNOLOGIES reassignment UNIVATION TECHNOLOGIES ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SMITH, JACK A., WHITEKER, GREGORY T.
Priority to PCT/US1999/029755 priority patent/WO2000037512A2/en
Priority to AU21846/00A priority patent/AU2184600A/en
Priority to US09/932,910 priority patent/US20020016254A1/en
Publication of US20010031843A1 publication Critical patent/US20010031843A1/en
Application granted granted Critical
Publication of US6333389B2 publication Critical patent/US6333389B2/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65908Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an ionising compound other than alumoxane, e.g. (C6F5)4B-X+
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer

Definitions

  • This invention relates to a new family of olefin polymerization catalysts based upon phenoxide complexes of transition metals.
  • metallocene polyolefin catalysts metalliclocene being cyclopentadienyl based transition metal catalyst compounds
  • This field is more than an academic curiosity as new, non-metallocene catalysts may provide an easier pathway to currently available products and may also provide product and process opportunities which are beyond the capability of metallocene catalysts.
  • certain non-cyclopentadienyl ligands will be more economical due to the relative ease of synthesis of a variety of substituted analogs.
  • Anionic, multidentate heteroatom ligands have received the most attention in non-metallocene polyolefins catalysis.
  • Notable classes of bidentate anionic ligands which form active polymerization catalysts include N—N ⁇ and N—O ⁇ ligand sets. Examples of these types of non-metallocene catalysts include amidopyridines (Kempe, R., “Aminopyridinato Ligands—New Directions and Limitations”, 80 th Canadian Society for Chemistry Meeting, Windsor, Ontario, Canada, Jun. 1-4, 1997. Kempe, R. et al, Inorg. Chem. 1996 vol 35 6742.) Likewise, recent reports by Jordan et al.
  • European Patent Application 0 803 520 discloses polymerization catalysts containing beta-diketiminate ligands.
  • Other recent non-metallocene olefin polymerization catalysts include U.S. Pat. No. 4,057,565 which discloses 2-dialkylaminobenzyl and 2-dialkylaminomethylphenyl derivatives of selected transition metals and WO 96/08498 which discloses group 4 metal complexes containing a bridged non-aromatic, anionic dienyl ligand group.
  • U.S. Pat. No. 5,637,660 discloses bidentate pyridine based transition metal catalysts.
  • EP 241,560 A1 discloses alkoxide ligands in transition metal catalyst systems.
  • EP 0 874 005 A1 discloses phenoxide compounds with an imine substituent for use as a polymerization catalyst.
  • This invention relates to a catalyst system comprising an activator and one or more heteroatom substituted phenoxide group 3 to 10 or lanthanide transition metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that:
  • R 6 and R 7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R 1 and R 2 may be bonded to each other to form a ring.
  • the activator is preferably one or more of aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, or a borane.
  • This invention further relates to a novel olefin polymerization systems comprising an activator and one or more catalysts represented by the of the following formulae:
  • R 1 to R 5 may be independently hydrogen, a heteroatom containing group or a C 1 to C 100 group provided that one of R 2 to R 5 is a group containing a heteroatom (R 5 and/or R 1 also may or may not be bound to the metal M, and further provided that the R 4 and R 5 groups do not form pyridine in the first formula if M is a group 4 metal and the R 4 and R 5 groups do not form pyridine in at least one ring of the second formula if M is a group 4 metal, O is oxygen, M is a group 3 to 10 transition metal or anthanide metal, n is the valence state of M, Q is an anionic ligand or a bond to an R group containing a heteroatom which may be any of R 1 to R 5 , and further provided that if M is a group 4 metal then R 1 may not be an aldehyde or an ester, and further provided that if M is nickel then R 5 may not be an imine. Any two or more R groups
  • R 6 and R 7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R 6 and R 7 may be bonded to each other to form a ring.
  • the activator is preferably an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane or a combination thereof.
  • This invention relates to a novel olefin polymerization system comprising an activator and one or more catalysts represented by the following formulae:
  • R 1 is hydrogen or a C 4 to C 100 group, preferably a tertiary alkyl group, preferably a C 4 to C 20 alkyl group, preferably a C 4 to C 20 tertiary alkyl group, preferably a neutral C 4 to C 100 group and may or may not also be bound to M
  • at least one of R 2 to R 5 is a group containing a heteroatom
  • the rest of R 2 to R 5 are independently hydrogen or a C 1 to C 100 group, preferably a C 4 to C 20 alkyl group (preferably butyl, isobutyl, pentyl hexyl, heptyl, isohexyl, octyl, isooctyl, decyl, nonyl, dodecyl) and any of R 2 to R 5 also may or may not be bound to M provided that in the first formula if M is a group 4 metal then the R 4 and R 5 groups do not form pyridine
  • R 6 and R 7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R 6 and R 7 may be bonded to each other to form a ring;
  • O is oxygen
  • M is a group 3 to group 10 transition metal or lanthanide metal, preferably a group 4 metal, preferably Ti, Zr or Hf
  • n is the valence state of the metal M, preferably 2, 3, 4, or 5
  • Q is an alkyl, halogen, benzyl, amide, carboxylate, carbamate, thiolate, hydride or alkoxide group, or a bond to an R group containing a heteroatom which may be any of R 1 to R 5 .
  • a heteroatom containing group may be any heteroatom or a heteroatom bound to carbon silica or another heteroatom.
  • Preferred heteroatoms include boron, aluminum, silicon, nitrogen, phosphorus, arsenic, tin, lead, antimony, oxygen, selenium, tellurium.
  • Particularly preferred heteroatoms include nitrogen, oxygen, phosphorus, and sulfur. Even more particularly preferred heteroatoms include oxygen and nitrogen.
  • the heteroatom itself may be directly bound to the phenoxide ring or it may be bound to another atom or atoms that are bound to the phenoxide ring.
  • the heteroatom containing group may contain one or more of the same or different heteroatoms.
  • Preferred heteroatom groups include imines, amines, oxides, phosphines, ethers, ketenes, oxoazolines heterocyclics, oxazolines, thioethers, and the like. Particularly preferred heteroatom groups include imines. Any two adjacent R groups may form a ring structure, preferably a 5 or 6 membered ring. Likewise the R groups may form multi-ring structures. In one embodiment any two or more R groups do not form a 5 membered ring.
  • Preferred catalyst systems of this invention include those comprising catalysts represented by the following formulae:
  • R 5 aldimino, ketimino, alkoxy, ⁇ -alkoxymethyl, thioalkoxy, ⁇ -thioalkoxymethyl, amino, ⁇ -aminomethyl, azo, phosphino, ⁇ -phosphinomethyl, keto or cyclic substituents such as pyrrole, furan, thiophene, imidazole, pyrazole, tetrazole, oxazoline, isoazole, thiazole.
  • R o preferably tertiary alkyl or silyl group, such as —CMe 3 , —CMe 2 Et, CEt 3 , —CMe 2 Ph, —CPh 3 , —SiMe 3 , —SiEt 3 , —SiPh 3 .
  • R is hydrogen or an alkyl, aryl, silyl group or —OT where O is oxygen and T is hydrogen or an alkyl, aryl or silyl group.
  • M n is a group 3 to 10 transition metal or a lanthanide metal, preferably a group 4 metal, n is the valence of M and M n is also bound to Q n ⁇ 1 , where Q is as defined above or any of the phenoxide groups in the above formulae.
  • N-benzylidene-2-hydroxybenzylamines can be prepared by condensation of an aldehyde or ketone with the prequisite 2-hydroxybenzylamine. In some instances, such as those involving less-reactive amines or aldehydes, addition of a catalytic amount of formic acid or 3 ⁇ molecular sieves may be required.
  • Phenols with heterocyclic substituents can also be prepared by standard techniques. For example, ortho-cyanophenols can be converted to oxazolines via reaction with ⁇ -aminoalcohols. Certain ligands, such as ortho-benzotriazole-substituted phenols are commercially available.
  • Metallation of these acidic functionalized phenols can be accomplished by reaction with basic reagents such as Zr(CH 2 Ph) 4 , Ti(NMe 2 ) 4 . Reaction of phenolic ligands with Zr(CH 2 Ph) 4 occurs with elimination of toluene, whereas reaction with Ti(NMe 2 ) 4 proceeds via amine elimination. In both cases simple alkoxide complexes are formed, as determined by 1 H NMR spectroscopy. Alternatively, ligands can be deprotonated with reagents such as BuLi, KH or Na metal and then reacted with metal halides, such as ZrCl 4 or TiCl 4 .
  • Preferred transition metal compounds for use in this invention include:
  • one or more of the transition metal compounds named above is combined with an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane, a borate or a mixture thereof.
  • the catalysts described herein are preferably combined with an activator to form an olefin polymerization catalyst system.
  • Preferred activators include alkyl aluminum compounds (such as diethylaluminum chloride), alumoxanes, modified alumoxanes, non-coordinating anions, boranes and the like.
  • alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound.
  • ionizing activators neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound.
  • Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated to or only loosely coordinated to the remaining ion of the ionizing compound.
  • Such compounds and the like are described in European publications EP-A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-A-0 426 637, EP-A-500 944, EP-A-0 277 003 and EP-A-0 277 004, and U.S. Pat. Nos. 5,153,157, 5,198,401, 5,066,741, 5,206,197, 5,241,025, 5,387,568, 5,384,299 and 5,502,124 and U.S. patent application Ser. No.
  • activators include those described in PCT publication WO 98/07515 such as tris (2, 2′, 2′′-nonafluorobiphenyl) fluoroaluminate, which is fully incorporated herein by reference.
  • Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, PCT publications WO 94/07928 and WO 95/14044 and U.S. Pat. Nos. 5,153,157 and 5,453,410 all of which are herein fully incorporated by reference.
  • methods of activation such as using radiation and the like are also contemplated as activators for the purposes of this invention.
  • the transition metal compound and the activator are combined in ratios of about 1000:1 to about 0.5:1.
  • the transition metal compound and the activator are combined in a ratio of about 300:1 to about 1:1, preferably about 10:1 to about 1:1, for boranes the ratio is preferably about 1:1 to about 10:1 and for alkyl aluminum compounds (such as diethylaluminum chloride combined with water) the ratio is preferably about 0.5:1 to about 10:1.
  • the catalysts systems described above can further include other classes of catalysts, such as for example one or more Ziegler-Natta catalysts and/or one or more metallocene catalyst and/or one or more vanadium catalysts and/or one or more chromium catalysts.
  • a Ziegler-Natta catalyst as described in Ziegler-Natta Catalysts and Polymerizations. John Boor, Academic Press, New York, 1979 (with or without a separate activator) is combined with a catalyst system of this invention and used to polymerize one or more olefins.
  • a metallocene catalyst such as a cyclopentadienyl transition metal compound
  • a catalyst system of this invention is combined with a catalyst system of this invention and used to polymerize one or more olefins.
  • Preferred cyclopentadienyl transition metal compounds are those mono-and bis-cyclopentadienyl group 4, 5 and 6 compounds described in U.S. Pat. Nos.
  • the catalysts and catalyst systems described above can be used in any known olefin polymerization process including gas phase, solution, slurry and high pressure.
  • the catalysts and catalyst systems described above are particularly suitable for use a solution, gas or slurry polymerization process or a combination thereof, most preferably a gas or slurry phase polymerization process.
  • this invention is directed toward the solution, slurry or gas phase polymerization reactions involving the polymerization of one or more of monomers having from 2 to 30 carbon atoms, preferably 2-12 carbon atoms, and more preferably 2 to 8 carbon atoms.
  • Preferred monomers include one or more of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, 3,5,5,-trimethyl-hexene-1, hexene-1, octene-1, decene-1, 3-methyl-pentene-1, and cyclic olefins or a combination thereof.
  • Other monomers can include vinyl monomers, diolefins such as dienes, polyenes, norbornene, norbornadiene monomers.
  • a homopolymer of ethylene is produced.
  • a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor.
  • a gas fluidized bed process for producing polymers a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer.
  • the reactor pressure in a gas phase process may vary from about 100 psig (690 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 250 psig (1724 kPa) to about 350 psig (2414 kPa).
  • the reactor temperature in the gas phase process may vary from about 30° C. to about 120° C., preferably from about 60° C. to about 1 15° C., more preferably in the range of from about 70° C. to 110° C., and most preferably in the range of from about 70° C. to about 95° C.
  • the productivity of the catalyst or catalyst system in a gas phase system is influenced by the main monomer partial pressure.
  • the preferred mole percent of the main monomer, ethylene or propylene, preferably ethylene, is from about 25 to 90 mole percent and the monomer partial pressure is in the range of from about 75 psia (517 kPa) to about 300 psia (2069 kPa), which are typical conditions in a gas phase polymerization process.
  • the reactor utilized in the present invention is capable and the process of the invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr).
  • a slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0° C. to about 120° C.
  • a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers along with catalyst are added.
  • the suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor.
  • the liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane.
  • the medium employed should be liquid under the conditions of polymerization and relatively inert.
  • a propane medium When used the process must be operated above the reaction diluent critical temperature and pressure.
  • a hexane or an isobutane medium is employed.
  • a preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution.
  • a particle form polymerization or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution.
  • the preferred temperature in the particle form process is within the range of about 185° C. (85° C.) to about 230° C. (110° C.).
  • Two preferred polymerization methods for the slurry process are those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof.
  • Non-limiting examples of slurry processes include continuous loop or stirred tank processes.
  • other examples of slurry processes are described in U.S. Pat. No. 4,613,484, which is herein fully incorporated by reference.
  • the slurry process is carried out continuously in a loop reactor.
  • the catalyst as a slurry in isobutane or as a dry free flowing powder is injected regularly to the reactor loop, which is itself filled with circulating slurry of growing polymer particles in a diluent of isobutane containing monomer and comonomer.
  • Hydrogen optionally, may be added as a molecular weight control.
  • the reactor is maintained at pressure of about 525 psig to 625 psig (3620 kPa to 4309 kPa) and at a temperature in the range of about 140° F. to about 220° F. (about 60° C. to about 104° C.) depending on the desired polymer density.
  • Reaction heat is removed through the loop wall since much of the reactor is in the form of a double-jacketed pipe.
  • the slurry is allowed to exit the reactor at regular intervals or continuously to a heated low pressure flash vessel, rotary dryer and a nitrogen purge column in sequence for removal of the isobutane diluent and all unreacted monomer and comonomers.
  • the resulting hydrocarbon free powder is then compounded for use in various applications.
  • the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr).
  • the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr).
  • the total reactor pressure is in the range of from 400 psig (2758 kPa) to 800 psig (5516 kPa), preferably 450 psig (3103 kPa) to about 700 psig (4827 kPa), more preferably 500 psig (3448 kPa) to about 650 psig (4482 lda), most preferably from about 525 psig (3620 kPa) to 625 psig (4309 kPa).
  • the concentration of ethylene in the reactor liquid medium is in the range of from about 1 to 10 weight percent, preferably from about 2 to about 7 weight percent, more preferably from about 2.5 to about 6 weight percent, most preferably from about 3 to about 6 weight percent.
  • a preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like.
  • any scavengers such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like.
  • the one or all of the catalysts are tumbled with up to 6 weight % of a metal stearate, (preferably a aluminum stearate, more preferably aluminum distearate) based upon the weight of the catalyst, any support and the stearate, preferably 2 to 3 weight %.
  • a solution of the metal stearate is fed into the reactor.
  • These agents may be dry tumbled with the catalyst or may be fed into the reactor in a solution with or without the catalyst system or its components.
  • the catalyst and/or the activator may be placed on a support.
  • the support can be of any of the solid, porous supports.
  • Typical support materials include talc; inorganic oxides such as silica, magnesium chloride, alumina, silica-alumina; polymeric supports such as polyethylene, polypropylene, polystyrene; and the like.
  • the support is used in finely divided form.
  • Prior to use the support is preferably partially or completely dehydrated. The dehydration may be done physically by calcining or by chemically converting all or part of the active hydroxyls.
  • U.S. Pat. No. 4,808,561 which teaches how to support a metallocene catalyst system. The techniques used therein are generally applicable for this invention.
  • the catalyst system, the catalyst and or the activator may also be introduced into the reactor in solution.
  • a solution of the activated catalyst in an alkane such as pentane, hexane, isopentane or the like is feed into a gas phase reactor.
  • the polyolefin recovered typically has a melt index as measured by ASTM D-1238, Condition E, at 190° C. of 100 g/10 min or less.
  • the polyolefin is ethylene homopolymer.
  • the catalyst system described above is used to make a polyethylene having a density of between 0.89 and 0.960 g/cm 3 (as measured by ASTM 2839), a melt index of 1.0 or less g/10 min or less (as measured by ASTM D-1238, Condition E, at 190° C.).
  • Polyethylene having a melt index of between 0.01 to 10 dg/min is preferably produced.
  • a density of 0.915 to 0.940g/cm 3 would be preferred, in other embodiments densities of 0.930 to 0.960g/cm 3 are preferred.
  • the polyolefins then can be made into films, molded articles, sheets and the like.
  • the films may be formed by any of the conventional technique known in the art including extrusion, co-extrusion, lamination, blowing and casting.
  • the film may be obtained by the flat film or tubular process which may be followed by orientation in an uniaxial direction or in two mutually perpendicular directions in the plane of the film to the same or different extents. Orientation may be to the same extent in both directions or may be to different extents.
  • Particularly preferred methods to form the polymers into films include extrusion or coextrusion on a blown or cast film line.
  • the films produced may further contain additives such as slip, antiblock, antioxidants, pigments, fillers, antifog, UV stabilizers, antistats, polymer processing aids, neutralizers, lubricants, surfactants, pigments, dyes and nucleating agents.
  • Preferred additives include silicon dioxide, synthetic silica, titanium dioxide, polydimethylsiloxane, calcium carbonate, metal stearates, calcium stearate, zinc stearate, talc, BaSO 4 , diatomaceous earth, wax, carbon black, flame retarding additives, low molecular weight resins, hydrocarbon resins, glass beads and the like.
  • the additives may be present in the typically effective amounts well known in the art, such as 0.001 weight % to 10 weight %.
  • This invention further relates to a library of a plurality of heteroatom substituted phenoxide group 3 to 10 transition metal or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that:
  • R 6 and R 7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R 1 and R 2 may be bonded to each other to form a ring.
  • heteroatom substituted phenoxide group 4 to 10 transition metal or lanthanide metal compounds are represented by the formulae above. These libraries may then be used for the simultaneous parallel screening of catalysts, activators and or monomers by combining the library with one or more activators and or olefins.
  • MMAO is modified methylalumoxane (type 3 in hexane) commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A , covered under patent number U.S. Pat. No. 5,041,584)
  • a solution of 2-hydroxy-3,5,di-t-butylbenzylamine (prepared by the procedure described by G. E. Stokker, et al.; J Med. Chem. 1980, 23, 1414; 2.35 g, 10.0 mmol) is prepared in 50 mL methanol. Benzaldehyde (1.06 g, 10.0 mmol) is added, and the resulting solution is stirred for 30 minutes. Product crystallizes upon cooling the solution to ⁇ 40° C.
  • a solution of N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine is prepared in 50 mL toluene.
  • BZ 4 Zr is added (0.5 equiv), and the resulting solution is stirred for 30 minutes.
  • a 1 ⁇ mol aliquot of the solution is withdrawn and added to 300 equiv of MMAO (Type 3A, Akzo).
  • the resulting solution is stirred for 5 minutes and is injected into a 1 L slurry reactor, containing 600 mL hexane, 43 mL hexene and 100 ⁇ mol isoBu 3 AI.
  • the reactor is then pressurized to 85 psi (586 kPa) with ethylene and heated to 75° C. After 30 minutes, the reactor is cooled to ambient temperature and vented. Solid polyethylene is obtained.
  • the reactor was then pressurized to 85 psi (586 kPa) with ethylene and heated to 75° C. After 30 minutes, the reactor was cooled to ambient temperature and vented. Solid polyethylene was obtained (0.98 g) which corresponds to an activity of 9200 g PE/mmol Zr ⁇ 100 psi C 2 H 4 ⁇ hr.
  • the catalysts described herein are expected to produce HDPE under ethylene-hexene copolymerization conditions.

Abstract

This invention relates to a catalyst system comprising an activator and one or more heteroatom substituted phenoxide group 3 to 10 transition metal or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that:
a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide,
b) if the metal is a group 4 metal then the carbon adjacent to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester,
c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C1 carbon in a group represented by the formula:
Figure US20010031843A1-20011018-C00001
 wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R1 and R2 may be bonded to each other to form a ring.
The activator may be an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane, a borate or a mixture thereof.

Description

    STATEMENT OF RELATED APPLICATIONS
  • This application is a continuation in part of U.S. Ser. No. 09/216,594, filed Dec. 18, 1998 and claims priority therefrom.[0001]
  • FIELD OF THE INVENTION
  • This invention relates to a new family of olefin polymerization catalysts based upon phenoxide complexes of transition metals. [0002]
  • BACKGROUND OF THE INVENTION
  • The intense commercialization of metallocene polyolefin catalysts (metallocene being cyclopentadienyl based transition metal catalyst compounds) has led to widespread interest in the design of non-metallocene, homogeneous catalysts. This field is more than an academic curiosity as new, non-metallocene catalysts may provide an easier pathway to currently available products and may also provide product and process opportunities which are beyond the capability of metallocene catalysts. In addition, certain non-cyclopentadienyl ligands will be more economical due to the relative ease of synthesis of a variety of substituted analogs. [0003]
  • Anionic, multidentate heteroatom ligands have received the most attention in non-metallocene polyolefins catalysis. Notable classes of bidentate anionic ligands which form active polymerization catalysts include N—N[0004] and N—O ligand sets. Examples of these types of non-metallocene catalysts include amidopyridines (Kempe, R., “Aminopyridinato Ligands—New Directions and Limitations”, 80th Canadian Society for Chemistry Meeting, Windsor, Ontario, Canada, Jun. 1-4, 1997. Kempe, R. et al, Inorg. Chem. 1996 vol 35 6742.) Likewise, recent reports by Jordan et al. of polyolefin catalysts based on hydroxyquinolines (Bei, X.; Swenson, D. C.; Jordan, R. F., Organometallics 1997, 16, 3282) have been interesting even though the catalytic activities of Jordan's hydroxyquinoline catalysts is low.
  • European Patent Application 0 803 520 discloses polymerization catalysts containing beta-diketiminate ligands. Other recent non-metallocene olefin polymerization catalysts include U.S. Pat. No. 4,057,565 which discloses 2-dialkylaminobenzyl and 2-dialkylaminomethylphenyl derivatives of selected transition metals and WO 96/08498 which discloses group 4 metal complexes containing a bridged non-aromatic, anionic dienyl ligand group. [0005]
  • U.S. Pat. No. 5,637,660 discloses bidentate pyridine based transition metal catalysts. [0006]
  • Further Grubbs et al in Organometallics, Vol 17, 1988 page 3149-3151 disclose that nickel (II) salicylaldiminato complexes combined with B(C[0007] 6F5)3 polymerized ethylene. (49,500 Mw, Mw/Mn 6.8, and 35 branches per 1000 C's).
  • Ethylenebis(salicylideneiminato)zirconium dichloride combined with methyl alumoxane deposited on a support and unsupported versions were used to polymerize ethylene by Repo et al in Macromolecules 1997, 30, 171-175. [0008]
  • Further EP 241,560 A1 discloses alkoxide ligands in transition metal catalyst systems. [0009]
  • EP 0 874 005 A1 discloses phenoxide compounds with an imine substituent for use as a polymerization catalyst. [0010]
  • Thus there is a need in the art for new novel olefin polymerization catalysts. [0011]
  • SUMMARY OF THE INVENTION
  • This invention relates to a catalyst system comprising an activator and one or more heteroatom substituted phenoxide group 3 to 10 or lanthanide transition metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that: [0012]
  • a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide, [0013]
  • b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and [0014]
  • c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C[0015] 1 carbon in a group represented by the formula:
    Figure US20010031843A1-20011018-C00002
  • wherein R[0016]   6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R1 and R2 may be bonded to each other to form a ring.
  • The activator is preferably one or more of aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, or a borane. [0017]
  • This invention further relates to a novel olefin polymerization systems comprising an activator and one or more catalysts represented by the of the following formulae: [0018]
    Figure US20010031843A1-20011018-C00003
  • wherein R[0019] 1 to R5 may be independently hydrogen, a heteroatom containing group or a C1 to C100 group provided that one of R2 to R5 is a group containing a heteroatom (R5 and/or R1 also may or may not be bound to the metal M, and further provided that the R4 and R5 groups do not form pyridine in the first formula if M is a group 4 metal and the R4 and R5 groups do not form pyridine in at least one ring of the second formula if M is a group 4 metal, O is oxygen, M is a group 3 to 10 transition metal or anthanide metal, n is the valence state of M, Q is an anionic ligand or a bond to an R group containing a heteroatom which may be any of R1 to R5, and further provided that if M is a group 4 metal then R1 may not be an aldehyde or an ester, and further provided that if M is nickel then R5 may not be an imine. Any two or more R groups may form a ring structure. Provided however that neither R1 nor R5 may be a group represented by the formula
    Figure US20010031843A1-20011018-C00004
  • wherein R[0020] 6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R6 and R7 may be bonded to each other to form a ring.
  • The activator is preferably an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane or a combination thereof. [0021]
  • DETAILED DESCRIPTION OF THE INVENTION
  • This invention relates to a novel olefin polymerization system comprising an activator and one or more catalysts represented by the following formulae: [0022]
    Figure US20010031843A1-20011018-C00005
  • wherein R[0023] 1 is hydrogen or a C4 to C100 group, preferably a tertiary alkyl group, preferably a C4 to C20 alkyl group, preferably a C4 to C20 tertiary alkyl group, preferably a neutral C4 to C100 group and may or may not also be bound to M, and at least one of R2 to R5 is a group containing a heteroatom, the rest of R2 to R5 are independently hydrogen or a C1 to C100 group, preferably a C4 to C20 alkyl group (preferably butyl, isobutyl, pentyl hexyl, heptyl, isohexyl, octyl, isooctyl, decyl, nonyl, dodecyl) and any of R2 to R5 also may or may not be bound to M provided that in the first formula if M is a group 4 metal then the R4 and R5 groups do not form pyridine and in the second formula if M is a group 4 metal the R4 and R5 groups do not form pyridine in at least one ring, and further provided that if M is a group 4 metal then R5 may not be an aldehyde or an ester, and further provided that if M is nickel then R5 may not be an imine, further provided that neither R1 nor R5 may be a group represented by the formula
    Figure US20010031843A1-20011018-C00006
  • wherein R[0024] 6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R6 and R7 may be bonded to each other to form a ring; O is oxygen, M is a group 3 to group 10 transition metal or lanthanide metal, preferably a group 4 metal, preferably Ti, Zr or Hf, n is the valence state of the metal M, preferably 2, 3, 4, or 5, Q is an alkyl, halogen, benzyl, amide, carboxylate, carbamate, thiolate, hydride or alkoxide group, or a bond to an R group containing a heteroatom which may be any of R1 to R5. A heteroatom containing group may be any heteroatom or a heteroatom bound to carbon silica or another heteroatom. Preferred heteroatoms include boron, aluminum, silicon, nitrogen, phosphorus, arsenic, tin, lead, antimony, oxygen, selenium, tellurium. Particularly preferred heteroatoms include nitrogen, oxygen, phosphorus, and sulfur. Even more particularly preferred heteroatoms include oxygen and nitrogen. The heteroatom itself may be directly bound to the phenoxide ring or it may be bound to another atom or atoms that are bound to the phenoxide ring. The heteroatom containing group may contain one or more of the same or different heteroatoms. Preferred heteroatom groups include imines, amines, oxides, phosphines, ethers, ketenes, oxoazolines heterocyclics, oxazolines, thioethers, and the like. Particularly preferred heteroatom groups include imines. Any two adjacent R groups may form a ring structure, preferably a 5 or 6 membered ring. Likewise the R groups may form multi-ring structures. In one embodiment any two or more R groups do not form a 5 membered ring.
  • Preferred catalyst systems of this invention include those comprising catalysts represented by the following formulae: [0025]
    Figure US20010031843A1-20011018-C00007
  • wherein [0026]
  • R[0027] 5=aldimino, ketimino, alkoxy, α-alkoxymethyl, thioalkoxy, α-thioalkoxymethyl, amino, α-aminomethyl, azo, phosphino, α-phosphinomethyl, keto or cyclic substituents such as pyrrole, furan, thiophene, imidazole, pyrazole, tetrazole, oxazoline, isoazole, thiazole.
  • R[0028] o=preferably tertiary alkyl or silyl group, such as —CMe3, —CMe2Et, CEt3, —CMe2Ph, —CPh3, —SiMe3, —SiEt3, —SiPh3.
  • R=is hydrogen or an alkyl, aryl, silyl group or —OT where O is oxygen and T is hydrogen or an alkyl, aryl or silyl group. [0029]
  • M[0030] n is a group 3 to 10 transition metal or a lanthanide metal, preferably a group 4 metal, n is the valence of M and Mn is also bound to Qn−1, where Q is as defined above or any of the phenoxide groups in the above formulae.
  • The synthesis of desired ligands can be accomplished using techniques described in the literature. For example, N-benzylidene-2-hydroxybenzylamines can be prepared by condensation of an aldehyde or ketone with the prequisite 2-hydroxybenzylamine. In some instances, such as those involving less-reactive amines or aldehydes, addition of a catalytic amount of formic acid or 3 Å molecular sieves may be required. Phenols with heterocyclic substituents can also be prepared by standard techniques. For example, ortho-cyanophenols can be converted to oxazolines via reaction with α-aminoalcohols. Certain ligands, such as ortho-benzotriazole-substituted phenols are commercially available. [0031]
  • Metallation of these acidic functionalized phenols can be accomplished by reaction with basic reagents such as Zr(CH[0032] 2Ph)4, Ti(NMe2)4. Reaction of phenolic ligands with Zr(CH2Ph)4 occurs with elimination of toluene, whereas reaction with Ti(NMe2)4 proceeds via amine elimination. In both cases simple alkoxide complexes are formed, as determined by 1H NMR spectroscopy. Alternatively, ligands can be deprotonated with reagents such as BuLi, KH or Na metal and then reacted with metal halides, such as ZrCl4 or TiCl4.
  • Preferred transition metal compounds for use in this invention include: [0033]
  • bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) zirconium(IV) dibenzyl; [0034]
  • bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) zirconium(IV) dichloride; [0035]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl; [0036]
  • bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) titanium(IV) dibenzyl; [0037]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl; [0038]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dichloride; [0039]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) di(bis(dimethylamide)); [0040]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1′,1′-dimethylbenzyl)phenoxide)zirconium(IV) dibenzyl; [0041]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)titanium(IV) dibenzyl; [0042]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1′,1′-dimethylbenzyl)phenoxide)titanium(IV) dibenzyl; [0043]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1′,1′-dimethylbenzyl)phenoxide)titanium(IV) dichloride; and [0044]
  • bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1′,1′-dimethylbenzyl)phenoxide)hafnium(IV) dibenzyl. [0045]
  • In a preferred embodiment one or more of the transition metal compounds named above is combined with an aluminum alkyl, an alumoxane, a modified alumoxane, a non-coordinating anion, a borane, a borate or a mixture thereof. [0046]
  • The catalysts described herein are preferably combined with an activator to form an olefin polymerization catalyst system. Preferred activators include alkyl aluminum compounds (such as diethylaluminum chloride), alumoxanes, modified alumoxanes, non-coordinating anions, boranes and the like. It is within the scope of this invention to use alumoxane or modified alumoxane as an activator, and/or to also use ionizing activators, neutral or ionic, such as tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron metalloid precursor which ionize the neutral metallocene compound. Boranes appear to perform better than borates, however this may be an experimental artifact and should not be construed as limiting this invention. Other useful compounds include triphenyl boron, triethyl boron, tri-n-butyl ammonium tetraethylborate, triaryl borane and the like. There are a variety of methods for preparing alumoxane and modified alumoxanes, non-limiting examples of which are described in U.S. Pat. Nos. 4,665,208, 4,952,540, 5,091,352, 5,206,199, 5,204,419, 4,874,734, 4,924,018, 4,908,463, 4,968,827, 5,308,815, 5,329,032, 5,248,801, 5,235,081, 5,157,137, 5,103,031, 5,391,793, 5,391,529, 5,693,838, 5,731,253 and 5,731,451 and European publications EP-A-0 561 476, EP-B1-0 279 586 and EP-A-0 594-218, and PCT publication WO 94/10180, all of which are herein fully incorporated by reference. [0047]
  • Ionizing compounds may contain an active proton, or some other cation associated with but not coordinated to or only loosely coordinated to the remaining ion of the ionizing compound. Such compounds and the like are described in European publications EP-A-0 570 982, EP-A-0 520 732, EP-A-0 495 375, EP-A-0 426 637, EP-A-500 944, EP-A-0 277 003 and EP-A-0 277 004, and U.S. Pat. Nos. 5,153,157, 5,198,401, 5,066,741, 5,206,197, 5,241,025, 5,387,568, 5,384,299 and 5,502,124 and U.S. patent application Ser. No. 08/285,380, filed Aug. 3, 1994, all of which are herein fully incorporated by reference. Other activators include those described in PCT publication WO 98/07515 such as tris (2, 2′, 2″-nonafluorobiphenyl) fluoroaluminate, which is fully incorporated herein by reference. Combinations of activators are also contemplated by the invention, for example, alumoxanes and ionizing activators in combinations, see for example, PCT publications WO 94/07928 and WO 95/14044 and U.S. Pat. Nos. 5,153,157 and 5,453,410 all of which are herein fully incorporated by reference. Also, methods of activation such as using radiation and the like are also contemplated as activators for the purposes of this invention. [0048]
  • In general the transition metal compound and the activator are combined in ratios of about 1000:1 to about 0.5:1. In a preferred embodiment the transition metal compound and the activator are combined in a ratio of about 300:1 to about 1:1, preferably about 10:1 to about 1:1, for boranes the ratio is preferably about 1:1 to about 10:1 and for alkyl aluminum compounds (such as diethylaluminum chloride combined with water) the ratio is preferably about 0.5:1 to about 10:1. [0049]
  • In one embodiment the catalysts systems described above can further include other classes of catalysts, such as for example one or more Ziegler-Natta catalysts and/or one or more metallocene catalyst and/or one or more vanadium catalysts and/or one or more chromium catalysts. In a preferred embodiment a Ziegler-Natta catalyst as described in Ziegler-Natta Catalysts and Polymerizations. John Boor, Academic Press, New York, 1979 (with or without a separate activator) is combined with a catalyst system of this invention and used to polymerize one or more olefins. In another embodiment a metallocene catalyst (such as a cyclopentadienyl transition metal compound) with or without a separate activator is combined with a catalyst system of this invention and used to polymerize one or more olefins. Preferred cyclopentadienyl transition metal compounds are those mono-and bis-cyclopentadienyl group 4, 5 and 6 compounds described in U.S. Pat. Nos. 4,530,914, 4,805,561, 4,937,299, 5,124,418, 5,017,714, 5,057,475, 5,064,802, 5,278,264, 5,278,119, 5,304,614, 5,324,800, 5,347,025, 5,350,723, 5,391,790 5,391,789, EP-A-0 591 756, EP-A-0 520 732, EP-A-0 578,838, EP-A-0 638,595, EP-A-0 420 436, WO 91/04257, WO 92/00333, WO 93/08221, WO 93/08199, WO 94/01471, WO 94/07928, WO 94/03506 and WO 95/07140, all of which are fully incorporated by reference herein. [0050]
  • The catalysts and catalyst systems described above can be used in any known olefin polymerization process including gas phase, solution, slurry and high pressure. The catalysts and catalyst systems described above are particularly suitable for use a solution, gas or slurry polymerization process or a combination thereof, most preferably a gas or slurry phase polymerization process. [0051]
  • In one embodiment, this invention is directed toward the solution, slurry or gas phase polymerization reactions involving the polymerization of one or more of monomers having from 2 to 30 carbon atoms, preferably 2-12 carbon atoms, and more preferably 2 to 8 carbon atoms. Preferred monomers include one or more of ethylene, propylene, butene-1, pentene-1, 4-methyl-pentene-1, 3,5,5,-trimethyl-hexene-1, hexene-1, octene-1, decene-1, 3-methyl-pentene-1, and cyclic olefins or a combination thereof. Other monomers can include vinyl monomers, diolefins such as dienes, polyenes, norbornene, norbornadiene monomers. In one embodiment, a homopolymer of ethylene is produced. [0052]
  • Typically in a gas phase polymerization process a continuous cycle is employed where in one part of the cycle of a reactor system, a cycling gas stream, otherwise known as a recycle stream or fluidizing medium, is heated in the reactor by the heat of polymerization. This heat is removed from the recycle composition in another part of the cycle by a cooling system external to the reactor. Generally, in a gas fluidized bed process for producing polymers, a gaseous stream containing one or more monomers is continuously cycled through a fluidized bed in the presence of a catalyst under reactive conditions. The gaseous stream is withdrawn from the fluidized bed and recycled back into the reactor. Simultaneously, polymer product is withdrawn from the reactor and fresh monomer is added to replace the polymerized monomer. (See for example U.S. Pat. Nos. 4,543,399, 4,588,790, 5,028,670, 5,317,036, 5,352,749, 5,405,922, 5,436,304, 5,453,471, 5,462,999, 5,616,661 and 5,668,228 all of which are fully incorporated herein by reference.) [0053]
  • The reactor pressure in a gas phase process may vary from about 100 psig (690 kPa) to about 500 psig (3448 kPa), preferably in the range of from about 200 psig (1379 kPa) to about 400 psig (2759 kPa), more preferably in the range of from about 250 psig (1724 kPa) to about 350 psig (2414 kPa). [0054]
  • The reactor temperature in the gas phase process may vary from about 30° C. to about 120° C., preferably from about 60° C. to about 1 15° C., more preferably in the range of from about 70° C. to 110° C., and most preferably in the range of from about 70° C. to about 95° C. [0055]
  • The productivity of the catalyst or catalyst system in a gas phase system is influenced by the main monomer partial pressure. The preferred mole percent of the main monomer, ethylene or propylene, preferably ethylene, is from about 25 to 90 mole percent and the monomer partial pressure is in the range of from about 75 psia (517 kPa) to about 300 psia (2069 kPa), which are typical conditions in a gas phase polymerization process. [0056]
  • In a preferred embodiment, the reactor utilized in the present invention is capable and the process of the invention is producing greater than 500 lbs of polymer per hour (227 Kg/hr) to about 200,000 lbs/hr (90,900 Kg/hr) or higher of polymer, preferably greater than 1000 lbs/hr (455 Kg/hr), more preferably greater than 10,000 lbs/hr (4540 Kg/hr), even more preferably greater than 25,000 lbs/hr (11,300 Kg/hr), still more preferably greater than 35,000 lbs/hr (15,900 Kg/hr), still even more preferably greater than 50,000 lbs/hr (22,700 Kg/hr) and most preferably greater than 65,000 lbs/hr (29,000 Kg/hr) to greater than 100,000 lbs/hr (45,500 Kg/hr). [0057]
  • Other gas phase processes contemplated by the process of the invention include those described in U.S. Pat. Nos. 5,627,242, 5,665,818 and 5,677,375, and European publications EP-A-0 794 200, EP-A-0 802 202 and EP-B-634 421 all of which are herein fully incorporated by reference. [0058]
  • A slurry polymerization process generally uses pressures in the range of from about 1 to about 50 atmospheres and even greater and temperatures in the range of 0° C. to about 120° C. In a slurry polymerization, a suspension of solid, particulate polymer is formed in a liquid polymerization diluent medium to which ethylene and comonomers along with catalyst are added. The suspension including diluent is intermittently or continuously removed from the reactor where the volatile components are separated from the polymer and recycled, optionally after a distillation, to the reactor. The liquid diluent employed in the polymerization medium is typically an alkane having from 3 to 7 carbon atoms, preferably a branched alkane. The medium employed should be liquid under the conditions of polymerization and relatively inert. When a propane medium is used the process must be operated above the reaction diluent critical temperature and pressure. Preferably, a hexane or an isobutane medium is employed. [0059]
  • In one embodiment, a preferred polymerization technique of the invention is referred to as a particle form polymerization, or a slurry process where the temperature is kept below the temperature at which the polymer goes into solution. Such technique is well known in the art, and described in for instance U.S. Pat. No. 3,248,179 which is fully incorporated herein by reference. The preferred temperature in the particle form process is within the range of about 185° C. (85° C.) to about 230° C. (110° C.). Two preferred polymerization methods for the slurry process are those employing a loop reactor and those utilizing a plurality of stirred reactors in series, parallel, or combinations thereof. Non-limiting examples of slurry processes include continuous loop or stirred tank processes. Also, other examples of slurry processes are described in U.S. Pat. No. 4,613,484, which is herein fully incorporated by reference. [0060]
  • In another embodiment, the slurry process is carried out continuously in a loop reactor. The catalyst as a slurry in isobutane or as a dry free flowing powder is injected regularly to the reactor loop, which is itself filled with circulating slurry of growing polymer particles in a diluent of isobutane containing monomer and comonomer. Hydrogen, optionally, may be added as a molecular weight control. The reactor is maintained at pressure of about 525 psig to 625 psig (3620 kPa to 4309 kPa) and at a temperature in the range of about 140° F. to about 220° F. (about 60° C. to about 104° C.) depending on the desired polymer density. Reaction heat is removed through the loop wall since much of the reactor is in the form of a double-jacketed pipe. The slurry is allowed to exit the reactor at regular intervals or continuously to a heated low pressure flash vessel, rotary dryer and a nitrogen purge column in sequence for removal of the isobutane diluent and all unreacted monomer and comonomers. The resulting hydrocarbon free powder is then compounded for use in various applications. [0061]
  • In another embodiment, the reactor used in the slurry process of the invention is capable of and the process of the invention is producing greater than 2000 lbs of polymer per hour (907 Kg/hr), more preferably greater than 5000 lbs/hr (2268 Kg/hr), and most preferably greater than 10,000 lbs/hr (4540 Kg/hr). In another embodiment the slurry reactor used in the process of the invention is producing greater than 15,000 lbs of polymer per hour (6804 Kg/hr), preferably greater than 25,000 lbs/hr (11,340 Kg/hr) to about 100,000 lbs/hr (45,500 Kg/hr). [0062]
  • In another embodiment in the slurry process of the invention the total reactor pressure is in the range of from 400 psig (2758 kPa) to 800 psig (5516 kPa), preferably 450 psig (3103 kPa) to about 700 psig (4827 kPa), more preferably 500 psig (3448 kPa) to about 650 psig (4482 lda), most preferably from about 525 psig (3620 kPa) to 625 psig (4309 kPa). [0063]
  • In yet another embodiment in the slurry process of the invention the concentration of ethylene in the reactor liquid medium is in the range of from about 1 to 10 weight percent, preferably from about 2 to about 7 weight percent, more preferably from about 2.5 to about 6 weight percent, most preferably from about 3 to about 6 weight percent. [0064]
  • A preferred process of the invention is where the process, preferably a slurry or gas phase process is operated in the absence of or essentially free of any scavengers, such as triethylaluminum, trimethylaluminum, tri-isobutylaluminum and tri-n-hexylaluminum and diethyl aluminum chloride, dibutyl zinc and the like. This preferred process is described in PCT publication WO 96/08520 and U.S. Pat. No. 5,712,352, which are herein fully incorporated by reference. [0065]
  • In another preferred embodiment the one or all of the catalysts are tumbled with up to 6 weight % of a metal stearate, (preferably a aluminum stearate, more preferably aluminum distearate) based upon the weight of the catalyst, any support and the stearate, preferably 2 to 3 weight %. In an alternate embodiment a solution of the metal stearate is fed into the reactor. These agents may be dry tumbled with the catalyst or may be fed into the reactor in a solution with or without the catalyst system or its components. [0066]
  • The catalyst and/or the activator may be placed on a support. Typically the support can be of any of the solid, porous supports. Typical support materials include talc; inorganic oxides such as silica, magnesium chloride, alumina, silica-alumina; polymeric supports such as polyethylene, polypropylene, polystyrene; and the like. Preferably the support is used in finely divided form. Prior to use the support is preferably partially or completely dehydrated. The dehydration may be done physically by calcining or by chemically converting all or part of the active hydroxyls. For more information on how to support catalysts please see U.S. Pat. No. 4,808,561 which teaches how to support a metallocene catalyst system. The techniques used therein are generally applicable for this invention. [0067]
  • The catalyst system, the catalyst and or the activator may also be introduced into the reactor in solution. In one embodiment a solution of the activated catalyst in an alkane such as pentane, hexane, isopentane or the like is feed into a gas phase reactor. [0068]
  • In a preferred embodiment, the polyolefin recovered typically has a melt index as measured by ASTM D-1238, Condition E, at 190° C. of 100 g/10 min or less. In a preferred embodiment the polyolefin is ethylene homopolymer. [0069]
  • In a preferred embodiment the catalyst system described above is used to make a polyethylene having a density of between 0.89 and 0.960 g/cm[0070] 3 (as measured by ASTM 2839), a melt index of 1.0 or less g/10 min or less (as measured by ASTM D-1238, Condition E, at 190° C.). Polyethylene having a melt index of between 0.01 to 10 dg/min is preferably produced. In some embodiments, a density of 0.915 to 0.940g/cm3 would be preferred, in other embodiments densities of 0.930 to 0.960g/cm3 are preferred.
  • The polyolefins then can be made into films, molded articles, sheets and the like. The films may be formed by any of the conventional technique known in the art including extrusion, co-extrusion, lamination, blowing and casting. The film may be obtained by the flat film or tubular process which may be followed by orientation in an uniaxial direction or in two mutually perpendicular directions in the plane of the film to the same or different extents. Orientation may be to the same extent in both directions or may be to different extents. Particularly preferred methods to form the polymers into films include extrusion or coextrusion on a blown or cast film line. [0071]
  • The films produced may further contain additives such as slip, antiblock, antioxidants, pigments, fillers, antifog, UV stabilizers, antistats, polymer processing aids, neutralizers, lubricants, surfactants, pigments, dyes and nucleating agents. Preferred additives include silicon dioxide, synthetic silica, titanium dioxide, polydimethylsiloxane, calcium carbonate, metal stearates, calcium stearate, zinc stearate, talc, BaSO[0072] 4, diatomaceous earth, wax, carbon black, flame retarding additives, low molecular weight resins, hydrocarbon resins, glass beads and the like.
  • The additives may be present in the typically effective amounts well known in the art, such as 0.001 weight % to 10 weight %. [0073]
  • This invention further relates to a library of a plurality of heteroatom substituted phenoxide group 3 to 10 transition metal or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that: [0074]
  • a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide, [0075]
  • b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and [0076]
  • c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C[0077] 1 carbon in a group represented by the formula:
    Figure US20010031843A1-20011018-C00008
  • wherein R[0078]   6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R1 and R2 may be bonded to each other to form a ring.
  • In a preferred embodiment the heteroatom substituted phenoxide group 4 to 10 transition metal or lanthanide metal compounds are represented by the formulae above. These libraries may then be used for the simultaneous parallel screening of catalysts, activators and or monomers by combining the library with one or more activators and or olefins. [0079]
  • EXAMPLES
  • MMAO is modified methylalumoxane (type 3 in hexane) commercially available from Akzo Chemicals, Inc. under the trade name Modified Methylalumoxane type 3A , covered under patent number U.S. Pat. No. 5,041,584) [0080]
  • Example 1
  • [0081]
    Figure US20010031843A1-20011018-C00009
  • Synthesis of N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine. [0082]
  • A solution of 2-hydroxy-3,5,di-t-butylbenzylamine (prepared by the procedure described by G. E. Stokker, et al.; [0083] J Med. Chem. 1980, 23, 1414; 2.35 g, 10.0 mmol) is prepared in 50 mL methanol. Benzaldehyde (1.06 g, 10.0 mmol) is added, and the resulting solution is stirred for 30 minutes. Product crystallizes upon cooling the solution to −40° C.
  • Example 2
  • [0084]
    Figure US20010031843A1-20011018-C00010
  • Ethylene Polymerization using Catalyst 1. [0085]
  • A solution of N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine is prepared in 50 mL toluene. BZ[0086] 4Zr is added (0.5 equiv), and the resulting solution is stirred for 30 minutes. A 1 μmol aliquot of the solution is withdrawn and added to 300 equiv of MMAO (Type 3A, Akzo). The resulting solution is stirred for 5 minutes and is injected into a 1 L slurry reactor, containing 600 mL hexane, 43 mL hexene and 100 μmol isoBu3AI. The reactor is then pressurized to 85 psi (586 kPa) with ethylene and heated to 75° C. After 30 minutes, the reactor is cooled to ambient temperature and vented. Solid polyethylene is obtained.
  • Example 3
  • [0087]
    Figure US20010031843A1-20011018-C00011
  • Ethylene Polymerization using catalyst 2. [0088]
  • A solution of 2-(21H-Benzotriazol-2-yl)-4,6-di-t-pentylphenol (Aldrich) was prepared in 50 mL toluene. Bz[0089] 4Zr was added (0.5 equiv), and the resulting solution was stirred for 30 minutes. The resulting solution wa added to 300 equiv of MMAO (Type 3A, Akzo). The resulting solution was stirred for 5 minutes, a 0.25 μmol (Zr) aliquot of the solution was withdrawn and injected into a 1 L slurry reactor, containing 600 mL hexane, 43 mL hexene and 100 μmol isoBu3Al. The reactor was then pressurized to 85 psi (586 kPa) with ethylene and heated to 75° C. After 30 minutes, the reactor was cooled to ambient temperature and vented. Solid polyethylene was obtained (0.98 g) which corresponds to an activity of 9200 g PE/mmol Zr·100 psi C2H4·hr.
  • The catalysts described herein are expected to produce HDPE under ethylene-hexene copolymerization conditions. [0090]
  • All documents described herein are incorporated by reference herein, including any priority documents and/or testing procedures. As is apparent form the foregoing general description and the specific embodiments, while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly it is not intended that the invention be limited thereby. [0091]

Claims (54)

We claim:
1. A catalyst system comprising an activator and one or more heteroatom substituted phenoxide group 3 to 10 transition or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that:
a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide,
b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and
c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C1 carbon in a group represented by the formula:
Figure US20010031843A1-20011018-C00012
 wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R1 and R2 may be bonded to each other to form a ring.
2. The catalyst system of
claim 1
wherein the activator is an aluminum alkyl, an alumoxane, a modified alumoxane, a borane, a borate or a non-coordinating anion.
3. The catalyst system of
claim 1
wherein the transition metal is a group 4 metal.
4. The catalyst system of
claim 1
wherein the transition metal is zirconium.
5. The catalyst system of
claim 1
wherein the heteroatom substituted phenoxide transition metal compound is selected from the group consisting of:
bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) zirconium(IV) dibenzyl;
bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) zirconium(IV) dichloride;
bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl;
bis(N-benzylidene-2-hydroxy-3,5,di-t-butylbenzylamine) titanium(IV) dibenzyl;
bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dibenzyl;
bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) dichloride;
bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)zirconium(IV) di(bis(dimethylamide));
bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1′,1′-dimethylbenzyl)phenoxide)zirconium(IV) dibenzyl;
bis(2-(2H-benzotriazol-2-yl)-4,6-di-t-amylphenoxide)titanium(IV) dibenzyl;
bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1′,1′-dimethylbenzyl)phenoxide)titanium(IV) dibenzyl;
bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1′,1′-dimethylbenzyl)phenoxide)titanium(IV) dichloride;
bis(2-(2H-benzotriazol-2-yl)-4,6-di-(1′,1′-dimethylbenzyl)phenoxide)hafnium(IV) dibenzyl; and
(N-phenyl-3,5-di-(1′,1′-dimethylbenzyl)salicylimino)zirconium(IV) tribenzyl.
6. The catalyst system of
claim 5
further comprising an activator comprising one or more of an aluminum alkyl, an alumoxane, a modified alumoxane, a borane, a borate or a non-coordinating anion.
7. The catalyst system of
claim 1
wherein either the transition metal compound or the activator or both are placed on a support.
8. The catalyst system of
claim 1
further comprising a Ziegler-Natta catalyst.
9. The catalyst system of
claim 1
further comprising a mono-or bis-cyclopentadienyl group 4, 5 and 6 transition metal compound and an optional second activator.
10. The catalyst system of
claim 1
further comprising a second activator.
11. The catalyst system of
claim 1
wherein the activator is one or more of alumoxane, tris (2,2′,2″-nonafluorobiphenyl) fluoroaluminate, triphenyl boron, triethyl boron, tri-n-butyl ammonium tetraethylborate, triaryl borane, tri (n-butyl) ammonium tetrakis (pentafluorophenyl) boron or a trisperfluorophenyl boron, or diethylaluminum chloride.
12. A catalyst system comprising the reaction product of an activator and one or more heteroatom substituted phenoxide transition metal compounds represented by the following formulae:
Figure US20010031843A1-20011018-C00013
wherein:
R1 to R5 may be independently hydrogen, a heteroatom containing group or a C1 to C100 group provided that at least one of R2 to R5 is a group containing a heteroatom, any of R1 to R5 may or may not be bound to the metal M,
O is oxygen,
M is a group 3 to 10 transition metal or a lanthanide metal, n is the valence state of M,
Q is an anionic ligand or a bond to an R group containing a heteroatom which may be any of R1 to R5, and
further provided that:
a) if M is a group 4 metal then R5 may not be an aldehyde or an ester;
b) the R4 and R5 groups do not form pyridine in the first formula if M is a group 4 metal;
c) the R4 and R5 groups do not form pyridine in at least one ring of the second formula if M is a group 4 metal; and
d) neither R1 nor R5 may be a group represented by the formula:
Figure US20010031843A1-20011018-C00014
 wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R6 and R7 may be bonded to each other to form a ring.
14. The catalyst system of
claim 13
wherein the activator is an aluminum alkyl, an alumoxane, a modified alumoxane, a borane, a borate, a non-coordinating anion or a mixture thereof.
15. The catalyst system of
claim 13
wherein Q is a bond to any of R2 to R5 and the R group that Q is bound to is a heteroatom containing group.
16. The catalyst system of
claim 13
wherein the heteroatom containing group is a triazole or an oxyzole.
17. The catalyst system of
claim 13
wherein the heteroatom in the heteroatom containing group is nitrogen and/or oxygen.
18. The catalyst system of
claim 13
wherein the R1 group is a C4 to C20 alkyl group.
19. The catalyst system of
claim 13
wherein R1 is a tertiary alkyl group.
20. The catalyst system of
claim 13
wherein R5 is bound to the metal.
21. The catalyst system of
claim 13
wherein the R2 group is a butyl, isobutyl, tertiary butyl, pentyl hexyl, heptyl, isohexyl, octyl, isooctyl, decyl, nonyl, or dodecyl group.
22. The catalyst system of
claim 13
wherein two or more R groups have formed a five or six membered ring.
23. The catalyst system of
claim 13
wherein two or more R groups have formed a multi-ring system.
24. The catalyst system of
claim 13
wherein M is zirconium, titanium or hafnium.
25. The catalyst system of
claim 13
wherein n is 4.
26. The catalyst system of
claim 13
wherein n is 3.
27. The catalyst system of
claim 13
wherein Q is a halogen or an alkyl group.
28. The catalyst system of
claim 13
wherein Q is an amide, carboxylate, carbamate, thiolate, hydride or alkoxide group.
29. The catalyst system of
claim 13
further comprising a support.
30. The catalyst system of
claim 13
wherein either the transition metal compound or the activator or the reaction product thereof are placed on a support selected from the group consisting of talc; silica, magnesium chloride, alumina, silica-alumina; polyethylene, polypropylene, polystyrene; or a mixture thereof.
31. The catalyst system of
claim 13
wherein prior to being combined with the transition metal compound and/or the activator and/or the reaction product thereof the support is partially or completely dehydrated.
32. The catalyst system of
claim 13
wherein the transition metal compound and the activator are combined in ratios of about 1000:1 to about 0.5:1.
33. The catalyst system of
claim 13
wherein the transition metal compound and the activator are combined in ratios of about 300:1 to about 1:1.
34. The catalyst system of
claim 13
wherein the activator is a borane and the transition metal compound and the borane are combined in ratios of about 1:1 to about 10:1
35. The catalyst system of
claim 13
wherein the activator is an alkyl aluminum compound and the transition metal compound and the alkyl aluminum compound are combined in ratios of about 0.5:1 to about 10:1
36. The catalyst system of
claim 13
wherein two or more R groups do not form a five membered ring.
37. The catalyst system of
claim 13
wherein M is zirconium.
38. A process for polymerizing olefins comprising combining one or more olefins with a catalyst system comprising the reaction product of one or more activators and one or more heteroatom substituted phenoxide group 4 to 10 transition metal or lanthanide metal compounds wherein the metal is bound to the oxygen of the phenoxide group and provided that:
a) if more than one heteroatom substituted phenoxide is present it is not bridged to the other heteroatom substituted phenoxide,
b) if the metal is a group 4 metal then the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to an aldehyde or an ester, and
c) the carbon ortho to the carbon bound to the oxygen of the phenoxide may not be bound to the C1 carbon in a group represented by the formula:
Figure US20010031843A1-20011018-C00015
 wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R1 and R2 may be bonded to each other to form a ring.
39. The process of
claim 38
wherein the heteroatom substituted phenoxide transition metal compound is represented by the of the following formulae:
Figure US20010031843A1-20011018-C00016
wherein:
R1 to R5 may be independently hydrogen, a heteroatom containing group or a C1 to C100 group provided that at least one of R2 to R5 is a group containing a heteroatom, any of R1 to R5 may or may not be bound to the metal M,
O is oxygen,
M is a group 3 to 10 transition metal or a lanthanide metal,
n is the valence state of M,
Q is an anionic ligand or a bond to an R group containing a heteroatom which may be any of R1 to R5, and
further provided that:
a) if M is a group 4 metal then R5 may not be an aldehyde or an ester; and
b) the R4 and R5 groups do not form pyridine in the first formula if M is a group 4 metal; and
c) neither R1 nor R5 may be a group represented by the formula:
Figure US20010031843A1-20011018-C00017
 wherein R6 and R7 are independently hydrogen, halogen, a hydrocarbon group, a heterocyclic compound residue, an oxygen containing group, a nitrogen containing group, a boron containing group, an sulfur containing group, a phosphorus containing group, a silicon containing group, a germanium containing group, or a tin containing group, and R6 and R7 may be bonded to each other to form a ring.
40. The process of
claim 38
wherein the activator is an aluminum alkyl, an alumoxane, a modified alumoxane, a borane, a borate, a non-coordinating anion or a mixture thereof.
41. The process of
claim 38
wherein Q is a bond to any of R2 to R5 and the R group that Q is bound to is a heteroatom containing group.
42. The process of
claim 38
wherein the heteroatom containing group is an imime, triazole, or oxyzole.
43. The process of
claim 38
wherein the heteroatom in the heteroatom containing group is nitrogen and/or oxygen.
44. The process of
claim 38
wherein the R1 group is a C4 to C20 alkyl group.
45. The process of
claim 38
wherein the R1 group is a butyl, isobutyl, pentyl hexyl, heptyl, isohexyl, octyl, isooctyl, decyl, nonyl, or dodecyl group.
46. The process of
claim 38
wherein two or more R groups have formed a five or six membered ring.
47. The process of
claim 38
wherein two or more R groups have formed a multi ring system.
48. The process of
claim 38
wherein M is zirconium, titanium or hafnium.
49. The process of
claim 38
wherein n is 3 or 4.
50. The process of
claim 38
wherein Q is a halogen or an alkyl group.
51. The process of
claim 38
wherein Q is an amide, carboxylate, carbamate, thiolate, hydride or alkoxide group.
52. The process of
claim 38
wherein the catalyst system and the olefin are reacted in the gas phase.
53. The process of
claim 38
wherein the catalyst system and the olefin are reacted in the slurry phase.
54. The process of
claim 38
wherein the catalyst system and the olefin are reacted in the slurry phase solution phase.
55. The process of
claim 38
wherein the catalyst system and the olefin are reacted under high pressure.
US09/248,147 1998-12-18 1999-02-10 Olefin polymerization catalysts, their production and use Expired - Lifetime US6333389B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/248,147 US6333389B2 (en) 1998-12-18 1999-02-10 Olefin polymerization catalysts, their production and use
PCT/US1999/029755 WO2000037512A2 (en) 1998-12-18 1999-12-14 Olefin polymerization catalysts, their production and use
AU21846/00A AU2184600A (en) 1998-12-18 1999-12-14 Olefin polymerization catalysts, their production and use
US09/932,910 US20020016254A1 (en) 1998-12-18 2001-08-20 Olefin polymerization catalysts, their production and use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US21659498A 1998-12-18 1998-12-18
US09/248,147 US6333389B2 (en) 1998-12-18 1999-02-10 Olefin polymerization catalysts, their production and use

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US21659498A Continuation-In-Part 1998-12-18 1998-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/932,910 Division US20020016254A1 (en) 1998-12-18 2001-08-20 Olefin polymerization catalysts, their production and use

Publications (2)

Publication Number Publication Date
US20010031843A1 true US20010031843A1 (en) 2001-10-18
US6333389B2 US6333389B2 (en) 2001-12-25

Family

ID=26911144

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/248,147 Expired - Lifetime US6333389B2 (en) 1998-12-18 1999-02-10 Olefin polymerization catalysts, their production and use
US09/932,910 Abandoned US20020016254A1 (en) 1998-12-18 2001-08-20 Olefin polymerization catalysts, their production and use

Family Applications After (1)

Application Number Title Priority Date Filing Date
US09/932,910 Abandoned US20020016254A1 (en) 1998-12-18 2001-08-20 Olefin polymerization catalysts, their production and use

Country Status (3)

Country Link
US (2) US6333389B2 (en)
AU (1) AU2184600A (en)
WO (1) WO2000037512A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794514B2 (en) 2002-04-12 2004-09-21 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8071687B2 (en) 2002-10-15 2011-12-06 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW420693B (en) * 1997-04-25 2001-02-01 Mitsui Chemicals Inc Olefin polymerization catalysts, transition metal compounds, and <alpha>-olefin/conjugated diene copolymers
US6596827B2 (en) * 1999-09-10 2003-07-22 Ramot At Tel Aviv University Ltd. Method for catalytic polymerization of alpha-olefin monomers using an ultra-high activity non-metallocene pre-catalyst
US6300439B1 (en) 1999-11-08 2001-10-09 Univation Technologies, Llc Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
US6274684B1 (en) * 1999-10-22 2001-08-14 Univation Technologies, Llc Catalyst composition, method of polymerization, and polymer therefrom
US6281306B1 (en) * 1999-12-16 2001-08-28 Univation Technologies, Llc Method of polymerization
AU2001275496A1 (en) * 2000-07-17 2002-01-30 Univation Technologies, Llc A catalyst system and its use in a polymerization process
US6531555B2 (en) * 2000-12-19 2003-03-11 Univation Technologies, Llp Olefin oligomerization catalysts, their production and use
US6930070B2 (en) * 2002-01-28 2005-08-16 Univation Technologies, Llc Heterocyclic nitrogen-containing activators and catalyst systems for olefin polymerization
US7094848B2 (en) * 2003-05-13 2006-08-22 Exxonmobil Chemical Patents Inc. Olefin polymerization catalyst system
US7741417B2 (en) * 2004-01-07 2010-06-22 Exxonmobil Chemical Patents Inc. Preparation of polymerization catalyst activators utilizing indole-modified silica supports
US7193017B2 (en) * 2004-08-13 2007-03-20 Univation Technologies, Llc High strength biomodal polyethylene compositions
US7705157B2 (en) * 2004-12-16 2010-04-27 Symyx Solutions, Inc. Phenol-heterocyclic ligands, metal complexes, and their uses as catalysts
US6987152B1 (en) 2005-01-11 2006-01-17 Univation Technologies, Llc Feed purification at ambient temperature
US7312279B2 (en) * 2005-02-07 2007-12-25 Univation Technologies, Llc Polyethylene blend compositions
US7947797B2 (en) 2005-09-14 2011-05-24 Univation Technologies, Llc Method for operating a gas-phase reactor at or near maximum production rates while controlling polymer stickiness
US20070109911A1 (en) * 2005-11-16 2007-05-17 Neubauer Anthony C High speed and direct driven rotating equipment for polyolefin manufacturing
TWI432456B (en) * 2006-10-03 2014-04-01 Univation Tech Llc Effervescent nozzle for catalyst injection
EP3467077A1 (en) 2006-10-03 2019-04-10 Univation Technologies, LLC System for olefin polymerization
EP2112175A1 (en) 2008-04-16 2009-10-28 ExxonMobil Chemical Patents Inc. Activator for metallocenes comprising one or more halogen substituted heterocyclic heteroatom containing ligand coordinated to an alumoxane
US8022005B2 (en) * 2007-11-08 2011-09-20 Exxonmobil Chemical Patents Inc. Halogen substituted heterocyclic heteroatom containing ligands-alumoxane activation of metallocenes
TW200936619A (en) 2007-11-15 2009-09-01 Univation Tech Llc Polymerization catalysts, methods of making, methods of using, and polyolefin products made therefrom
TW200936564A (en) * 2007-11-15 2009-09-01 Univation Tech Llc Methods for the removal of impurities from polymerization feed streams
WO2009072833A2 (en) * 2007-12-05 2009-06-11 Lg Chem, Ltd. Non-metallocene catalysts having tetrazol group for olefin polymerization and polymerizing method of olefin using the same
US20090286944A1 (en) * 2008-05-15 2009-11-19 Symyx Technologies, Inc. Select phenol-heterocycle ligands, metal complexes formed therefrom, and their uses as catalysts
WO2010071798A1 (en) 2008-12-18 2010-06-24 Univation Technologies, Llc Method for seed bed treatment for a polymerization reaction
ES2543635T3 (en) 2010-02-18 2015-08-20 Univation Technologies, Llc Methods for operation of a polymerization reactor
US8835582B2 (en) 2010-02-22 2014-09-16 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
BR112012025925B1 (en) 2010-04-13 2020-03-17 Univation Technologies, Llc POLYMERIC MIXTURE AND FILM
BR112013000679A2 (en) 2010-07-16 2016-05-31 Univation Tech Llc systems and methods for measuring particle accumulation on reactor surfaces
WO2012009215A1 (en) 2010-07-16 2012-01-19 Univation Technologies, Llc Systems and methods for measuring static charge on particulates
WO2012015898A1 (en) 2010-07-28 2012-02-02 Univation Technologies, Llc Systems and methods for measuring velocity of a particle/fluid mixture
RU2587080C2 (en) 2010-11-30 2016-06-10 Юнивейшн Текнолоджиз, Ллк Methods for polymerisation of olefins using extracted metal carboxylates
SG190429A1 (en) 2010-11-30 2013-06-28 Univation Tech Llc Catalyst composition having improved flow characteristics and methods of making and using the same
WO2012082674A1 (en) 2010-12-17 2012-06-21 Univation Technologies, Llc Systems and methods for recovering hydrocarbons from a polyolefin purge gas product
EP2707398B1 (en) 2011-05-13 2017-08-09 Univation Technologies, LLC Spray-dried catalyst compositions and polymerization processes employing the same
WO2013028283A1 (en) 2011-08-19 2013-02-28 Univation Technologies, Llc Catalyst systems and methods for using same to produce polyolefin products
CN103930452B (en) 2011-11-08 2016-08-31 尤尼威蒂恩技术有限责任公司 Catalyst system is used to produce polyolefinic method
WO2013070601A2 (en) 2011-11-08 2013-05-16 Univation Technologies, Llc Methods of preparing a catalyst system
US8937139B2 (en) 2012-10-25 2015-01-20 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US8895679B2 (en) * 2012-10-25 2014-11-25 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
US10280283B2 (en) 2012-12-28 2019-05-07 Univation Technologies, Llc Supported catalyst with improved flowability
CN104918947A (en) 2012-12-28 2015-09-16 尤尼威蒂恩技术有限责任公司 Methods for integrating aluminoxane production into catalyst production
BR112015016824B1 (en) 2013-01-14 2020-10-06 Univation Technologies, Llc. METHOD TO PRODUCE A CATALYTIC SYSTEM AND POLYMERIZATION PROCESS
US9034991B2 (en) 2013-01-29 2015-05-19 Chevron Phillips Chemical Company Lp Polymer compositions and methods of making and using same
US8877672B2 (en) 2013-01-29 2014-11-04 Chevron Phillips Chemical Company Lp Catalyst compositions and methods of making and using same
KR102143409B1 (en) 2013-01-30 2020-08-14 유니베이션 테크놀로지즈, 엘엘씨 Processes for making catalyst compositions having improved flow
EP2953985B1 (en) 2013-02-07 2023-06-07 Univation Technologies, LLC Preparation of polyolefin
JP6360549B2 (en) 2013-03-15 2018-07-18 ユニベーション・テクノロジーズ・エルエルシー Tridentate nitrogen-based ligands for olefin polymerization catalysts
ES2644669T3 (en) 2013-03-15 2017-11-29 Univation Technologies, Llc Ligands for catalysts
EP3287473B1 (en) 2013-06-05 2019-10-16 Univation Technologies, LLC Protecting phenol groups
CA2943378C (en) 2014-04-02 2023-09-12 Univation Technologies, Llc Continuity compositions and methods of making and using the same
ES2852023T3 (en) 2015-03-10 2021-09-10 Univation Tech Llc Spray Dried Catalyst Compositions, Methods for Their Preparation and Use in Olefin Polymerization Processes
US9745327B2 (en) 2015-03-24 2017-08-29 Exxonmobil Chemical Patents Inc. Bisphenolate transition metal complexes, production and use thereof
EP3274353B1 (en) 2015-03-24 2021-03-31 ExxonMobil Chemical Patents Inc. Bisphenolate transition metal complexes, production and use thereof
EP4063402A1 (en) 2015-04-17 2022-09-28 Univation Technologies, LLC Methods and systems for olefin polymerization
WO2016172567A1 (en) 2015-04-24 2016-10-27 Univation Technologies, Llc Methods for operating a polymerization reactor
SG11201708626SA (en) 2015-04-27 2017-11-29 Univation Tech Llc Supported catalyst compositions having improved flow properties and preparation thereof
WO2018022279A1 (en) 2016-07-29 2018-02-01 Exxonmobil Chemical Patents Inc. Phenolate transition metal complexes, production and use thereof
US10221260B2 (en) 2016-07-29 2019-03-05 Exxonmobil Chemical Patents Inc. Phenolate transition metal complexes, production and use thereof
US10975183B2 (en) 2016-09-09 2021-04-13 Exxonmobil Chemical Patents Inc. Pilot plant scale semi-condensing operation
WO2018118258A1 (en) 2016-12-20 2018-06-28 Exxonmobil Chemical Patents Inc. Methods for controlling start up conditions in polymerization processes
US10611857B2 (en) 2017-08-02 2020-04-07 Exxonmobil Chemical Patents Inc. Bisphenolate transition metal complexes, production and use thereof
WO2019213227A1 (en) 2018-05-02 2019-11-07 Exxonmobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
EP3788082A1 (en) 2018-05-02 2021-03-10 ExxonMobil Chemical Patents Inc. Methods for scale-up from a pilot plant to a larger production facility
US11649256B2 (en) 2019-10-11 2023-05-16 Exxonmobil Chemical Patents Inc. Catalysts for olefin polymerization
WO2023069407A1 (en) 2021-10-21 2023-04-27 Univation Technologies, Llc Bimodal poly(ethylene-co-1-alkene) copolymer and blow-molded intermediate bulk containers made therefrom

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5030606A (en) * 1985-10-15 1991-07-09 E. I. Du Pont De Nemours And Company Nickel-catalyzed copolymerization of ethylene
US6214954B1 (en) 1994-12-13 2001-04-10 Asahi Kasei Kogyo Kabushiki Kaisha Olefin polymerization catalyst
US5637660A (en) * 1995-04-17 1997-06-10 Lyondell Petrochemical Company Polymerization of α-olefins with transition metal catalysts based on bidentate ligands containing pyridine or quinoline moiety
TW420693B (en) 1997-04-25 2001-02-01 Mitsui Chemicals Inc Olefin polymerization catalysts, transition metal compounds, and <alpha>-olefin/conjugated diene copolymers
JP3964053B2 (en) * 1997-07-10 2007-08-22 三井化学株式会社 Olefin polymerization catalyst comprising transition metal compound and polymerization method
JP3973765B2 (en) 1997-07-18 2007-09-12 三井化学株式会社 Olefin polymerization catalyst comprising transition metal compound and polymerization method
JP4114221B2 (en) * 1997-09-04 2008-07-09 三井化学株式会社 Olefin polymerization catalyst and olefin polymerization method
KR100342541B1 (en) 1998-04-16 2002-06-28 나까니시 히로유끼 Olefin polymerization catalyst and polymerization process
US6686490B1 (en) * 2000-11-06 2004-02-03 Ramot University Authority For Applied Research & Industrial Development Ltd. Active non-metallocene pre-catalyst and method for tactic catalytic polymerization of alpha-olefin monomers

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6794514B2 (en) 2002-04-12 2004-09-21 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US20040214714A1 (en) * 2002-04-12 2004-10-28 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US20040214717A1 (en) * 2002-04-12 2004-10-28 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US6933355B2 (en) 2002-04-12 2005-08-23 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US6965004B2 (en) 2002-04-12 2005-11-15 Symyx Technologies, Inc. Ethylene-styrene copolymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US20060025547A1 (en) * 2002-04-12 2006-02-02 Symyx Technologies, Inc. Styrene polymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US7074870B2 (en) 2002-04-12 2006-07-11 Symyx Technologies, Inc. Styrene polymers and phenol-triazole type complexes, catalysts, and processes for polymerizing
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8071687B2 (en) 2002-10-15 2011-12-06 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US8088867B2 (en) 2002-10-15 2012-01-03 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US8957159B2 (en) 2002-10-15 2015-02-17 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom

Also Published As

Publication number Publication date
US6333389B2 (en) 2001-12-25
WO2000037512A3 (en) 2000-10-19
WO2000037512A2 (en) 2000-06-29
AU2184600A (en) 2000-07-12
US20020016254A1 (en) 2002-02-07

Similar Documents

Publication Publication Date Title
US6333389B2 (en) Olefin polymerization catalysts, their production and use
EP1185563B1 (en) Method of polymerization
US6320002B1 (en) Olefin polymerization catalyst
US6583083B2 (en) Olefin polymerization catalyst system
US6489263B2 (en) Olefin polymerization catalyst
US6300439B1 (en) Group 15 containing transition metal catalyst compounds, catalyst systems and their use in a polymerization process
CA2416197A1 (en) A catalyst system and its use in a polymerization process
EP1339726B1 (en) Catalyst composition and method of polymerization
AU2002231225A1 (en) Catalyst composition and method of polymerization
US6878662B2 (en) Polymerization catalyst system, polymerization process and polymer therefrom
Gibson Murray et al.
AU2002227431A1 (en) Polymerization catalyst system, polymerization process and polymer therefrom

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNIVATION TECHNOLOGIES, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:WHITEKER, GREGORY T.;SMITH, JACK A.;REEL/FRAME:009825/0241;SIGNING DATES FROM 19990308 TO 19990309

STCF Information on status: patent grant

Free format text: PATENTED CASE

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12