US1579162A - Process for producing ozone - Google Patents

Process for producing ozone Download PDF

Info

Publication number
US1579162A
US1579162A US616620A US61662023A US1579162A US 1579162 A US1579162 A US 1579162A US 616620 A US616620 A US 616620A US 61662023 A US61662023 A US 61662023A US 1579162 A US1579162 A US 1579162A
Authority
US
United States
Prior art keywords
ozone
electrodes
ozonizer
per
producing ozone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US616620A
Inventor
Starke Alfred
Wartenberg Hans Von
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Firm Of Ozonhochfrequenz G M B
Firm Of Ozonhochfrequenz G M B H
Original Assignee
Firm Of Ozonhochfrequenz G M B
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Firm Of Ozonhochfrequenz G M B filed Critical Firm Of Ozonhochfrequenz G M B
Priority to US616620A priority Critical patent/US1579162A/en
Application granted granted Critical
Publication of US1579162A publication Critical patent/US1579162A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/10Preparation of ozone
    • C01B13/11Preparation of ozone by electric discharge
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/10Dischargers used for production of ozone
    • C01B2201/14Concentric/tubular dischargers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2201/00Preparation of ozone by electrical discharge
    • C01B2201/70Cooling of the discharger; Means for making cooling unnecessary
    • C01B2201/74Cooling of the discharger; Means for making cooling unnecessary by liquid
    • C01B2201/76Water

Definitions

  • ALFRED STARKE OF SCOTTDALE, PENNSYLVANIA, AND HANS VON WARTENBERG, OF
  • DANZIG-LANGFUHR FREE STATE OF DANZIG; ASSIGNORS TO THE FIRM OF OZON- HOCHFREQUENZ, G. M. B, H., OF BERLIN-WILMERSDORF, GERMANY.
  • A0 denote the maximum yield in ozone (calculated in grammes per kilowatthour) which is attainable for a concentration 0 of ozone and the concentration of the ozone be defined as being the ratio between the quantity of ozone and the quantity of the air subjected to ozonization in the apparatus. It has been found that when use is made of frequencies higher than 50 per second, the maximum yield A0 above referred to is reduced by a value 6 which can only be found empirically, this value being dependent upon the frequency. As this reduction is also dependent upon the concentration, the yield for a particular concentration a is expressed by the formula The formula has been tested up to 500 frequencies per second and the discovery has been utilized in practice, sometimes frequencies up to 700 having been reached. In the absence of experimental data capable of being used to explain the real mechanism of ozonization, it is not possible to say beforehand what the effect would be if the fre quency was considerably increased.
  • a powerful edge action (creeping sparks, silent discharges) and consequently heating and destruction of the glass, takes place at the ends of the electrodes. This drawback may be avoided without impairing the work ing of the apparatus by thickening the dielectric at the edges of the solid dielectric, and by increasing the thickness of the layer put of the ozonizer.
  • the ozonizer comprises three concentric chambers separated from one another and provided with the Corresponding inlets and outlets.
  • the inner electrode which consists in a known manner of a tube of glass or like material capable of acting as a dielectric and of a wire coil or wire netting carried by the said tube.
  • This form of construction of electrodes being well known, it is not considered necessary to illustrate the actual construction.
  • Water is caused to flow through the electrode 5 which forthis purpose is provided with an inlet 7 and an outlet 11 is the outer electrode which similarly consists of a glass or like tube and of a wire coil or wire netting provided thereon.
  • Phe outer and the inner electrode thus enclose a cylindrical space 6 which is provided with an inlet 8 and an outlet 10.
  • the glass tubes of the two electrodes are preferably fused together at the lower and upper ends.
  • 1 is a cylinder preferably of glass which surrounds the upper electrode and is closed up by packings 13 and 14 which make a tight joint with the electrode tubes.
  • 2 is a water inlet and 3 a water outlet provided for the annular chamber 12 which is formed between the outer el'ectrode 11 and the cylinder 1.
  • the ozonizer according to the present in vention is limited to its use with high frequency currents between,10,000 and 100,000 periods per second and in combination with means for ensuring that the ends of both electrodes shall be subjected to a cooling action that is sufficiently strong for high fre- What we claim isz Q 1.
  • a process for producing ozone in an ozonizer having electrodes which consists in passing the medium tobe ozonized through the ozonizer betweenthe electrodes and sub- 'jecting it therein to'the action of electric energydn the form of alternating currents, supplying the. alternating currents to the said electrodes in the form of un'damped oscillations, the periodicities of which lie in the range from 1,000 to 100,000 periods per second as set forth.
  • An ozonizer for the electric production of ozone by means of high frequency alternating currents comprising a tubular elcctrode, another tubular electrode surrounding the same in combination with a dielectric between the said electrodes the dielectric being thicker at the ends of the electrodes as compared with its portion between the ends thereof and the said electrodes being capable of exertingat the said ends where the thickor dielectric is provided, a strong cooling action as regards high frequency currents.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Description

March 30 1926.
Filed Feb. 2. 1925 Walter Inlet ()zonised Air Outlet u J n W. M 4 n M 1% 1% w I5 w m d Q m m m a 1 1 W 60 We fl 1 E E n 1 u r r r 1 n 0 y & e 6 6 k I r p w n M M M B D. Tm M 0 0 P M #M a F W 7 ,p (x t 1411 A M 00 t u l a m m 0 T1 r H MM W W Patented Mar. 30, 1926.
UNITED STATES PATENT 'OFFICE.
ALFRED STARKE, OF SCOTTDALE, PENNSYLVANIA, AND HANS VON WARTENBERG, OF
DANZIG-LANGFUHR, FREE STATE OF DANZIG; ASSIGNORS TO THE FIRM OF OZON- HOCHFREQUENZ, G. M. B, H., OF BERLIN-WILMERSDORF, GERMANY.
PROCESS FOR PRODUCING OZONE.
Application filed February 2, 1923. Serial No. 616,620.
To all whom it may 00-710mm:
Be it known that we, ALFRED STARKE and HANS voN IVARTENBERG, citizens of the Free State of Danzig, and residents, respectively, of Scottdale, in the county of Vestmoreland and State of Pennsylvania, and of Langfuhr, near Danzig, in the Free State of Danzig, have invented certain new and useful Improvements in and Relating to a Process for Producing Ozone; and we do hereby declare the following to be a full, clear, and exact description of the invention, of which the following is a specification.
It has already been proposed to employ for the operation of ozone tubes instead of alternating currents of the usual frequency of 50 per second, alternating currents of higher frequency (see Warburg & Leithauser, Ann. Phys. (4) '01. 28, pp. 15, and 36, 1909'), and it has been found that the use of high frequencies has the advantage that the current load and the efficiency are greater, although it has the drawback that it reduces the maximum yield.
Let A0 denote the maximum yield in ozone (calculated in grammes per kilowatthour) which is attainable for a concentration 0 of ozone and the concentration of the ozone be defined as being the ratio between the quantity of ozone and the quantity of the air subjected to ozonization in the apparatus. It has been found that when use is made of frequencies higher than 50 per second, the maximum yield A0 above referred to is reduced by a value 6 which can only be found empirically, this value being dependent upon the frequency. As this reduction is also dependent upon the concentration, the yield for a particular concentration a is expressed by the formula The formula has been tested up to 500 frequencies per second and the discovery has been utilized in practice, sometimes frequencies up to 700 having been reached. In the absence of experimental data capable of being used to explain the real mechanism of ozonization, it is not possible to say beforehand what the effect would be if the fre quency was considerably increased.
From the empiric data hitherto obtained, it may be expected that the ozone yield per and whether it will only increase up to a maximum and then decrease again.
It has already been proposed to use high frequency currents for producing ozone, the process consisting in employing a condenser connected in parallel with the ozonizer, a sparking gap being interposed between the condenser and the ozonizer, and the circuit being tuned to the desired frequency.
As is well known, such a process produces only damped high frequency oscillations, the frequency being approximately 1 million *per second. The efficiency of this method of producing high frequency currents is naturally very low.
lVe have found by experiments carried out with undamped oscillations that a tube consuming 1 watt at 50 periods, could be loaded with '30 watts at 4000 periods, and with 100 watts at 8000 periods, without increasing the initial voltage and without the ozone yield dropping below the initial .amount of about 200 grammes of ozone per kw. hr. obtained from oxygen. That is to say, the ozonization could be carried out with a frequency 160 times higher than that of the usual frequency of 50 to obtain the same out put in an apparatus which is one hundred times smaller. A similar result was also-obtained with larger tubes; in that case the temperature of the air or oxygen treated was suitably reduced by intensive cooling. In practice it is preferable to use higher frequencies than those above referred to, viz, betlween 10,000 and 100,000 periods per secon These experiments have shown that tubes constructed in the usual manner, irrespective of whether one or both electrodes is or are made of glass, have the drawback that they are perforated in the case of a high load; in actual practice, frequently even in thecase of a. moderate load.
A powerful edge action (creeping sparks, silent discharges) and consequently heating and destruction of the glass, takes place at the ends of the electrodes. This drawback may be avoided without impairing the work ing of the apparatus by thickening the dielectric at the edges of the solid dielectric, and by increasing the thickness of the layer put of the ozonizer.
of gas, this thickening being efl'ected within. the cooling zone, and
The accompanying drawing illustrates one form of apparatus for carrying the present invention into effect.
The ozonizer comprises three concentric chambers separated from one another and provided with the Corresponding inlets and outlets.
5 is the inner electrode which consists in a known manner of a tube of glass or like material capable of acting as a dielectric and of a wire coil or wire netting carried by the said tube. This form of construction of electrodes being well known, it is not considered necessary to illustrate the actual construction. Water is caused to flow through the electrode 5 which forthis purpose is provided with an inlet 7 and an outlet 11 is the outer electrode which similarly consists of a glass or like tube and of a wire coil or wire netting provided thereon. Phe outer and the inner electrode thus enclose a cylindrical space 6 which is provided with an inlet 8 and an outlet 10. The glass tubes of the two electrodes are preferably fused together at the lower and upper ends.
1 is a cylinder preferably of glass which surrounds the upper electrode and is closed up by packings 13 and 14 which make a tight joint with the electrode tubes. 2 is a water inlet and 3 a water outlet provided for the annular chamber 12 which is formed between the outer el'ectrode 11 and the cylinder 1.
During the operation of the ozonizer, water which is in electrical connection with the one pole of the source of electricity is admitted through the pipe 2 whilst water, which is in electrical connection with the other pole of the source of electricity is admitted through the pipe 7 to the annular chamber 12 and the hollow space of the elec- .quency currents.
1 trodes outwardly and inwardly respectively,
in order to increase the electric resistance at these points,and'we wish it to be understood that the ozonizer according to the present in vention is limited to its use with high frequency currents between,10,000 and 100,000 periods per second and in combination with means for ensuring that the ends of both electrodes shall be subjected to a cooling action that is sufficiently strong for high fre- What we claim isz Q 1. In a process for producing ozone in an ozonizer having electrodes, which consists in passing the medium tobe ozonized through the ozonizer betweenthe electrodes and sub- 'jecting it therein to'the action of electric energydn the form of alternating currents, supplying the. alternating currents to the said electrodes in the form of un'damped oscillations, the periodicities of which lie in the range from 1,000 to 100,000 periods per second as set forth.
2. An ozonizer for the electric production of ozone by means of high frequency alternating currents comprising a tubular elcctrode, another tubular electrode surrounding the same in combination with a dielectric between the said electrodes the dielectric being thicker at the ends of the electrodes as compared with its portion between the ends thereof and the said electrodes being capable of exertingat the said ends where the thickor dielectric is provided, a strong cooling action as regards high frequency currents. In testimony whereof we have signed our names to this specification.
ALFRED STARKE. I HANS VON VVARTENBERG.
US616620A 1923-02-02 1923-02-02 Process for producing ozone Expired - Lifetime US1579162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US616620A US1579162A (en) 1923-02-02 1923-02-02 Process for producing ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US616620A US1579162A (en) 1923-02-02 1923-02-02 Process for producing ozone

Publications (1)

Publication Number Publication Date
US1579162A true US1579162A (en) 1926-03-30

Family

ID=24470271

Family Applications (1)

Application Number Title Priority Date Filing Date
US616620A Expired - Lifetime US1579162A (en) 1923-02-02 1923-02-02 Process for producing ozone

Country Status (1)

Country Link
US (1) US1579162A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643224A (en) * 1948-01-17 1953-06-23 Niccoli Piero Ozonizers
US2822327A (en) * 1955-03-31 1958-02-04 Gen Electric Method of generating ozone
US3205162A (en) * 1961-08-08 1965-09-07 Celanese Corp Electric discharge process and apparatus
US3739440A (en) * 1971-06-02 1973-06-19 N Lund Ozone generator and method of making same
FR2177026A1 (en) * 1972-03-23 1973-11-02 Electricity Council
US3833492A (en) * 1971-09-22 1974-09-03 Pollution Control Ind Inc Method of producing ozone
FR2338896A1 (en) * 1976-01-20 1977-08-19 Hutter Apparatebau Ag Ozone generator having double wall glass tube - with electrically conducting surfaces to create arc across gap
US4654199A (en) * 1984-06-27 1987-03-31 Bbc Brown, Boveri & Company, Limited High-power ozonizer
US4693870A (en) * 1984-06-27 1987-09-15 Bbc Brown, Boveri & Company Limited Tubular ozonizer with cooled inner electrode
US4988484A (en) * 1988-01-29 1991-01-29 Karlson Eskil L High efficiency ozone generator for sterilizing, bleaching and the like
US5348709A (en) * 1990-12-01 1994-09-20 Triogen Limited Apparatus for generating ozone
US5847494A (en) * 1993-10-07 1998-12-08 Aea Technology Plc Corona discharge reactor
US5855856A (en) * 1996-03-19 1999-01-05 Ozone Sterilization Products, Inc. Ozone generator and method for ozone generation
US5868999A (en) * 1996-03-19 1999-02-09 Ozone Sterilization Products, Inc. Ozone sterilizer and method for ozone sterilization
IT202000011785A1 (en) 2020-05-20 2021-11-20 Ozonolab S R L APPARATUS FOR GENERATING OZONE

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2643224A (en) * 1948-01-17 1953-06-23 Niccoli Piero Ozonizers
US2822327A (en) * 1955-03-31 1958-02-04 Gen Electric Method of generating ozone
US3205162A (en) * 1961-08-08 1965-09-07 Celanese Corp Electric discharge process and apparatus
US3739440A (en) * 1971-06-02 1973-06-19 N Lund Ozone generator and method of making same
US3833492A (en) * 1971-09-22 1974-09-03 Pollution Control Ind Inc Method of producing ozone
FR2177026A1 (en) * 1972-03-23 1973-11-02 Electricity Council
US3899685A (en) * 1972-03-23 1975-08-12 Electricity Council Ozonisers
FR2338896A1 (en) * 1976-01-20 1977-08-19 Hutter Apparatebau Ag Ozone generator having double wall glass tube - with electrically conducting surfaces to create arc across gap
US4654199A (en) * 1984-06-27 1987-03-31 Bbc Brown, Boveri & Company, Limited High-power ozonizer
US4693870A (en) * 1984-06-27 1987-09-15 Bbc Brown, Boveri & Company Limited Tubular ozonizer with cooled inner electrode
US4988484A (en) * 1988-01-29 1991-01-29 Karlson Eskil L High efficiency ozone generator for sterilizing, bleaching and the like
US5348709A (en) * 1990-12-01 1994-09-20 Triogen Limited Apparatus for generating ozone
US5847494A (en) * 1993-10-07 1998-12-08 Aea Technology Plc Corona discharge reactor
US5855856A (en) * 1996-03-19 1999-01-05 Ozone Sterilization Products, Inc. Ozone generator and method for ozone generation
US5868999A (en) * 1996-03-19 1999-02-09 Ozone Sterilization Products, Inc. Ozone sterilizer and method for ozone sterilization
IT202000011785A1 (en) 2020-05-20 2021-11-20 Ozonolab S R L APPARATUS FOR GENERATING OZONE

Similar Documents

Publication Publication Date Title
US1579162A (en) Process for producing ozone
US3214364A (en) Ozone generator
US4079260A (en) Ozone generator
JP2009114003A (en) Ozone production device
US3586905A (en) Plasma arc heating apparatus
CN105338723B (en) A kind of DBD plasma discharge apparatus of high voltagehigh frequency source driving
US2615841A (en) Ozone generation
US2008246A (en) Method and apparatus for electrical precipitation
JP2569739B2 (en) Oxygen atom generation method and apparatus
US982587A (en) Apparatus for producing and utilizing electrical effluvia.
US1498393A (en) Apparatus and process for producing combinations of gases
US2199866A (en) Gaseous electric discharge lamp devices
Peyrous et al. Technological parameters that influence the production of ozone in A. DC Corona discharfe
US1895489A (en) Method and an apparatus for electrically effecting synthetic reactions
GB606906A (en) Improvements in or relating to ozonisers
US2167976A (en) Electric arc apparatus for producing chemical reactions
US2022650A (en) Hydrogen peroxide process
US2191012A (en) Electrothermal pyrolysis of carbon-bearing liquids
SU133560A1 (en) Ozonator with flow-through cooling of both electrodes
US1975063A (en) Apparatus for acting on chemical compounds
US1307930A (en) Process and apparatus for electrically accelerating chemical reactions
US1713356A (en) Production of pulsating current
SU1754648A1 (en) Method and device for producing ozone
Akbari et al. Efficient ozone generator using full-bridge inverter and its performance evaluations
SU1520002A1 (en) Device for producing ozone