EP2017022A1 - Component of a casting system which can be permeated by molten metal - Google Patents

Component of a casting system which can be permeated by molten metal Download PDF

Info

Publication number
EP2017022A1
EP2017022A1 EP08011982A EP08011982A EP2017022A1 EP 2017022 A1 EP2017022 A1 EP 2017022A1 EP 08011982 A EP08011982 A EP 08011982A EP 08011982 A EP08011982 A EP 08011982A EP 2017022 A1 EP2017022 A1 EP 2017022A1
Authority
EP
European Patent Office
Prior art keywords
component
molten metal
casting
mass
component according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08011982A
Other languages
German (de)
French (fr)
Inventor
Klaus Dr. Hagenburger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HAGENBURGER FEUERFESTE PRODUKTE GMBH
Original Assignee
HAGENBURGER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39682543&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2017022(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by HAGENBURGER filed Critical HAGENBURGER
Publication of EP2017022A1 publication Critical patent/EP2017022A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • B22D35/04Equipment for conveying molten metal into beds or moulds into moulds, e.g. base plates, runners

Definitions

  • the invention relates to a component of a casting system through which a molten metal can flow.
  • a casting system typically includes a gate, a so-called “run” and so-called “gates”, collectively referred to as a runner system.
  • This G stealkanalsystem is at least partially integrated into a mold having one or more cavities in which the casting is created.
  • a molten metal is supplied via the G stealkanalsystem in / the cavities. Subsequently, the melt solidifies.
  • the components of the G mankanalsystems are made of refractory ceramic products. These components are designed to withstand the high casting temperatures and remain dimensionally stable to prevent non-metallic components from entering these components in the molten metal and thus in the casting. Accordingly, the components have large wall thicknesses (> 10 mm) and highly refractory materials.
  • the casting mold which generally consists of quartz or zircon sand, is dismantled (destroyed) in order to expose the casting.
  • the mold material should be used again as possible. This disturbing the ceramic components of G mantkanalsystems that are usually mechanically destroyed during removal of the casting, but in the form of fragments in the sand (mold material) remain and must then be separated in a further process step.
  • the invention has for its object to optimize a generic component for metal casting. Among other things, it is about reducing the recycling costs after completion of the casting process, to minimize the risk of infiltration of non-metallic inclusions into the casting and to simplify the assembly of the pouring channel system within the casting mold.
  • the invention is based on the following idea: Usual casting times for metallic castings amount to a few minutes, for example 1.5 to 2.5 minutes. This is the time period during which a molten metal is introduced into the casting mold via the sprue system. Only during this time there is a risk that components of the G mankanalsystems be entrained with the melt stream and get into the casting to be produced. After completion of the casting process, the G stealkanalsystem remains at least partially filled with molten metal, which then solidifies. However, this production phase no longer has a decisive influence on the quality of the casting.
  • the idea is to design the component in such a way that it has the necessary stability during the casting process in order to reliably guide the melt into the casting mold (the molding box), but on the other hand during disassembly of the molding box as little as possible components of the component remain in the mold material.
  • the invention is based on the consideration of forming the component from a material which is at least partially destroyed in contact with the molten metal, that is to say after being subjected to temperature by the molten metal.
  • the destruction can be a chemical destruction, for example by breaking chemical bonds.
  • This destruction should take place in particular after completion of the casting process, ie at the time at which the cavity for forming the casting and the G mankanalsystem are filled with metal and then, but can also already begin during the casting process, provided that the mechanical stability of the component by the way is ensured to distribute the molten metal in the mold.
  • the invention then relates to a component of a casting system, wherein the component is flowed through by a molten metal and has a wall thickness ⁇ 9 mm and consists of a material which is at least partially destroyed in contact with the molten metal.
  • the component From the idea of at least partial destruction also follows the idea to form the component as thin as possible, that is, with a wall thickness significantly below the known ceramic components. As a result, an inventive component massearm. In addition, the component should at least partially decompose under thermal load. As a result, only minimal amounts of solids enter the surrounding mold material and may remain in the mold material cycle.
  • the at least partial dissolution (destruction) of the component must be done in a manner that prevents non-metallic solids from entering the casting stream.
  • One possibility is the use of a material of at least one temporary binder and at least one reinforcing agent.
  • the reinforcing agent is quasi a kind of basic strength, while the temporary binder under the influence of the temperature of the molten metal at least partially and / or successively burns out. Since the surrounding mold material (such as quartz sand, zircon sand) within the mold box has a certain gas permeability, volatiles of the binder originating from the component can easily be led away from the mold box.
  • Suitable temporary binders are: phenolic resins, furan resins, polysaccharides, polymers based on polyvinyl acetate, polyvinyl alcohol, polyvinyl acrylate, phosphate binders such as aluminum phosphate, water glass, cellulose derivatives, lignosulfonates.
  • phosphate binders such as aluminum phosphate, water glass, cellulose derivatives, lignosulfonates.
  • a tubular member within the casting system keeps its basic shape smoothly during casting of the molten metal (assumed: 2 minutes), so that the Melt can be filled trouble-free.
  • the abrasion is zero.
  • the decomposition of the furan resin can begin, but only to an extent which does not endanger the stability of the pouring tube.
  • the reinforcing agent has a significant importance within the selected material.
  • the reinforcing agent also ensures an at least temporary stability of the component during the successive decomposition of the further component.
  • Reinforcing agents from the group oxide fibers and carbon fibers are particularly suitable.
  • the invention includes reinforcing agents which also decompose at least partially under temperature load.
  • Oxidic fibers include, for example, stone fibers, glass fibers, ceramic fibers. Non-oxidic fibers are conceivable, but expensive.
  • the fibers can be "continuous fibers". Such fibers are used in particular when producing tubular components.
  • the endless fiber can be wound, for example, on a mandrel. It is brought into contact either before or during the winding with the binder, which ensures the connection of adjacent fiber sections and formation of the desired tubular body. After curing of the binder, the component is ready. Due to the aforementioned winding technique, it has an extremely smooth inner surface. This benefits the desired application. Another advantage is that even large components, especially long pipes can be made so that undesirable junctions of adjacent pipe sections are avoided. This also minimizes the risk that unwanted components get into the pouring stream.
  • Fibers can be used, with fiber lengths between 20 ⁇ m and several cm.
  • Tubular components can also be produced in the so-called spin process.
  • the binder is fed via a lance of a rotating die together with the reinforcing agent, for example mineral fibers. After curing of the binder, the tubular body can be removed from the die. Also in this way can be produced large pipe lengths.
  • the mixture of temporary resistant matrix material and reinforcement can alternatively be processed by fiber resin spraying, compression molding, transfer molding or injection molding as well as lamination to the desired component.
  • a component according to the invention only has to be sufficiently dimensionally stable during the actual casting phase (during which molten metal is introduced into the casting mold) to pass the melt, often only for a few minutes ( ⁇ 5, often ⁇ 3, even ⁇ 2 min). This makes it possible to significantly reduce the wall thickness compared to known ceramic components. Wall thicknesses ⁇ 5 mm, ⁇ 4 mm, ⁇ 3 mm, ⁇ 2 mm to ⁇ 1 mm are possible and desired.
  • fiber materials may have a fiber diameter ⁇ 20 microns, in particular ⁇ 12 microns have.
  • Carbon fibers usually have a diameter ⁇ 8 ⁇ m.
  • the diameter of mineral fibers is usually between 2 microns and 7 microns. This results in the possibility of forming the wall thickness of components of approximately the same order of magnitude, since the binder does not substantially change the wall thickness.
  • Wall thicknesses of ⁇ 50 ⁇ m, even ⁇ 20 ⁇ m or ⁇ 10 ⁇ m are possible, but also ⁇ 100 ⁇ m, ⁇ 250 ⁇ m or ⁇ 500 ⁇ m.
  • the length of the components can range from a few centimeters to several meters, the most circular flow channel have a diameter of 2 to 30 cm.
  • a component according to the invention can consist exclusively of said temporary matrix material in combination with the described reinforcing agent, but it can also have further constituents.
  • These other constituents may be, for example, ceramic materials which are also resistant to high temperatures (refractory), for example clay, carbon, alumina, zirconium. However, their share is therefore kept as low as possible in order not to endanger the goal of avoiding metallic inclusions in the pouring stream.
  • the proportion of the temporary binder therefore regularly ⁇ 30% by mass, often ⁇ 40% by mass, but also ⁇ 50% by mass as needed, while the mass fraction of the reinforcing agent is adjusted either to 100% by mass or so that a maximum of 30% by mass, according to embodiments ⁇ 20% by mass or ⁇ 10% by mass, if appropriate also ⁇ 5% by mass of foreign components are taken into account.
  • An inventive component is easily transportable due to the small wall thickness. It can be cut easily and thus adapted to the respective casting systems. It can have lengths of several meters as a tube. Other component forms are possible.
  • a component according to the invention - in comparison with the prior art - is a non-fired component. It therefore has a significantly reduced stability. It only has to have stability during the actual casting process, which allows a proper feeding of the pouring stream into the casting mold.
  • the component is designed such that it dissolves (destroys) as much as possible at least partially, after the end of the casting process, so that a reprocessing of the surrounding mold material in comparison with the aforementioned prior art is significantly facilitated.
  • only coking residues of the resin and / or fiber residues that may remain in the mold material for the next molding process remain in the mold material.
  • the reinforcing agents for a component according to the invention are not limited to fiber materials. Rather, also platelet-shaped or granular reinforcing materials are suitable, provided that they meet the other criteria mentioned above. These include, for example: carbon particles, expanded perlite, expanded vermiculite, expanded glass, pumice, preferably in small particle sizes, in order to keep the wall thickness of the component low. The compound of the particles between each other again takes place primarily via a temporary binder of the type mentioned.
  • the reinforcing materials can easily remain in the mold material, especially since they are small-grained (usually ⁇ 5mm, often ⁇ 2mm, even ⁇ 1mm) and temperature resistant.

Abstract

A non-fired component of a casting system, through which molten metal passes, has a wall thickness of less than 9 mm and is formed from a material (A) which is at least partially destroyed at the temperature of the molten metal.

Description

Die Erfindung betrifft ein von einer Metallschmelze durchströmbares Bauteil eines Gießsystems. Ein solches Gießsystem umfasst üblicherweise einen Einguss, einen so genannten "Lauf" und so genannte "Anschnitte", die zusammen als Gießkanalsystem bezeichnet werden. Dieses Gießkanalsystem ist zumindest teilweise in eine Gießform integriert, die einen oder mehrere Hohlräume aufweist, in denen das Gussstück erstellt wird. Dazu wird eine Metallschmelze über das Gießkanalsystem in den/die Hohlräume zugeführt. Anschließend erstarrt die Schmelze.The invention relates to a component of a casting system through which a molten metal can flow. Such a casting system typically includes a gate, a so-called "run" and so-called "gates", collectively referred to as a runner system. This Gießkanalsystem is at least partially integrated into a mold having one or more cavities in which the casting is created. For this purpose, a molten metal is supplied via the Gießkanalsystem in / the cavities. Subsequently, the melt solidifies.

Die Bauteile des Gießkanalsystems bestehen aus feuerfesten keramischen Produkten. Diese Bauteile sind so ausgelegt, dass sie den hohen Gießtemperaturen widerstehen und formstabil bleiben, um zu verhindern, dass nicht metallische Komponenten aus diesen Bauteilen in die Metallschmelze und damit in das Gussstück gelangen. Entsprechend weisen die Bauteile große Wandstärken (> 10 mm) und hoch feuerfeste Werkstoffe auf.The components of the Gießkanalsystems are made of refractory ceramic products. These components are designed to withstand the high casting temperatures and remain dimensionally stable to prevent non-metallic components from entering these components in the molten metal and thus in the casting. Accordingly, the components have large wall thicknesses (> 10 mm) and highly refractory materials.

Nach dem Erstarren und Aushärten der Schmelze wird die meist aus Quarz- oder Zirkonsand bestehende Gießform demontiert (zerstört), um das Gussteil freizulegen. Das Formenmaterial soll möglichst wieder verwendet werden. Dabei stören die keramischen Komponenten des Gießkanalsystems, die beim Entformen des Gussstücks zwar meist mechanisch zerstört werden, aber in Form von Bruchstücken im Sand (Formenmaterial) verbleiben und anschließend in einem weiteren Verfahrensschritt abgetrennt werden müssen.After the solidification and hardening of the melt, the casting mold, which generally consists of quartz or zircon sand, is dismantled (destroyed) in order to expose the casting. The mold material should be used again as possible. This disturbing the ceramic components of Gießkanalsystems that are usually mechanically destroyed during removal of the casting, but in the form of fragments in the sand (mold material) remain and must then be separated in a further process step.

Ein weiterer Nachteil bekannter Bauteile der genannten Art besteht darin, dass beispielsweise zur Erstellung längerer Gießkanäle mehrere Bauteile hintereinander angeordnet und miteinander verbunden werden müssen. Dabei entstehen Unstetigkeitsstellen im Bereich der Gießkanalwand. Dies erhöht die Gefahr, dass keramische Abschnitte oder Formenmaterial in die durchströmende Metallschmelze gelangen.Another disadvantage of known components of the type mentioned is that, for example, to create longer casting channels several components must be arranged one behind the other and connected to each other. This creates discontinuities in the region of the pouring channel wall. This increases the risk that ceramic sections or mold material get into the flowing molten metal.

Der Erfindung liegt die Aufgabe zugrunde, ein gattungsgemäßes Bauteil für den Metallguss zu optimieren. Dabei geht es unter anderem darum, den Recyclingaufwand nach Abschluss des Gießvorgangs zu reduzieren, die Gefahr der Infiltration nicht metallischer Einschlüsse in das Gussstück zu minimieren und die Konfektionierung des Gießkanalsystems innerhalb der Gießform zu vereinfachen.The invention has for its object to optimize a generic component for metal casting. Among other things, it is about reducing the recycling costs after completion of the casting process, to minimize the risk of infiltration of non-metallic inclusions into the casting and to simplify the assembly of the pouring channel system within the casting mold.

Der Erfindung liegt folgender Gedanke zugrunde: Übliche Gießzeiten für metallische Gussstücke betragen wenige Minuten, beispielsweise 1,5 bis 2,5 Minuten. Dies ist der Zeitraum, während dem eine Metallschmelze über das Gießkanalsystem in die Gießform eingeleitet wird. Nur während dieser Zeit besteht die Gefahr, dass Bestandteile des Gießkanalsystems mit dem Schmelzestrom mitgerissen werden und in das herzustellende Gussstück gelangen. Nach Abschluss des Gießvorgangs bleibt das Gießkanalsystem zwar zumindest partiell mit Metallschmelze gefüllt, die dann erstarrt. Diese Herstellungsphase hat jedoch keinen entscheidenden Einfluss mehr auf die Qualität des Gussstücks.The invention is based on the following idea: Usual casting times for metallic castings amount to a few minutes, for example 1.5 to 2.5 minutes. This is the time period during which a molten metal is introduced into the casting mold via the sprue system. Only during this time there is a risk that components of the Gießkanalsystems be entrained with the melt stream and get into the casting to be produced. After completion of the casting process, the Gießkanalsystem remains at least partially filled with molten metal, which then solidifies. However, this production phase no longer has a decisive influence on the quality of the casting.

Im Stand der Technik wurde darauf geachtet, die Bauteile des Gießkanalsystems so stabil zu machen, dass Abplatzungen oder dergleichen zuverlässig vermieden werden. Erfindungsgemäß steht der Gedanke im Vordergrund, das Bauteil so auszubilden, dass es einerseits während des Gießvorgangs die nötige Stabilität aufweist, um die Schmelze zuverlässig in die Gießform (den Formkasten) zu leiten, andererseits aber bei der anschließenden Demontage des Formkastens möglichst wenig Bestandteile des Bauteils im Formenmaterial verbleiben.In the prior art, care was taken to make the components of the Gießkanalsystems so stable that chipping or the like can be reliably avoided. According to the invention, the idea is to design the component in such a way that it has the necessary stability during the casting process in order to reliably guide the melt into the casting mold (the molding box), but on the other hand during disassembly of the molding box as little as possible components of the component remain in the mold material.

Dies vorausgeschickt liegt der Erfindung die Überlegung zugrunde, das Bauteil aus einem Werkstoff auszubilden, der in Kontakt mit der Metallschmelze, das heißt nach Temperaturbeaufschlagung durch die Metallschmelze, zumindest teilweise zerstört wird. Die Zerstörung kann eine chemische Zerstörung, beispielsweise durch Aufbrechen von chemischen Bindungen sein.With this in mind, the invention is based on the consideration of forming the component from a material which is at least partially destroyed in contact with the molten metal, that is to say after being subjected to temperature by the molten metal. The destruction can be a chemical destruction, for example by breaking chemical bonds.

Diese Zerstörung soll insbesondere nach Abschluss des Gießvorgangs erfolgen, also zu dem Zeitpunkt, zu dem der Hohlraum zur Ausbildung des Gussstücks und das Gießkanalsystem mit Metall gefüllt sind und danach, kann aber auch bereits während des Gießvorgangs beginnen, sofern die mechanische Stabilität des Bauteils im Übrigen sichergestellt ist, um die Metallschmelze in der Gießform zu verteilen.This destruction should take place in particular after completion of the casting process, ie at the time at which the cavity for forming the casting and the Gießkanalsystem are filled with metal and then, but can also already begin during the casting process, provided that the mechanical stability of the component by the way is ensured to distribute the molten metal in the mold.

In ihrer allgemeinsten Ausführungsform betrifft die Erfindung danach ein Bauteil eines Gießsystems, wobei das Bauteil von einer Metallschmelze durchströmbar ist und eine Wandstärke < 9 mm aufweist sowie aus einem Werkstoff besteht, der in Kontakt mit der Metallschmelze zumindest teilweise zerstört wird.In its most general embodiment, the invention then relates to a component of a casting system, wherein the component is flowed through by a molten metal and has a wall thickness <9 mm and consists of a material which is at least partially destroyed in contact with the molten metal.

Aus dem Gedanken der zumindest teilweisen Zerstörung folgt auch der Gedanke, das Bauteil möglichst dünnwandig auszubilden, das heißt mit einer Wandstärke deutlich unterhalb der bekannter keramischer Bauteile. Dadurch ist ein erfindungsgemäßes Bauteil massearm. Zusätzlich soll sich das Bauteil unter thermischer Last zumindest teilweise zersetzen. Im Ergebnis gelangen nur minimale Feststoffmengen in das umgebende Formenmaterial und können im Kreislauf des Formenmaterials verbleiben.From the idea of at least partial destruction also follows the idea to form the component as thin as possible, that is, with a wall thickness significantly below the known ceramic components. As a result, an inventive component massearm. In addition, the component should at least partially decompose under thermal load. As a result, only minimal amounts of solids enter the surrounding mold material and may remain in the mold material cycle.

Die zumindest teilweise Auflösung (Zerstörung) des Bauteils muss selbstverständlich auf einer Art und Weise erfolgen, bei der verhindert wird, dass nicht metallische Feststoffe in den Gießstrom gelangen. Eine Möglichkeit dazu bietet die Verwendung eines Werkstoffes aus mindestens einem temporären Bindemittel und mindestens einem Armierungsmittel. Dabei gibt das Armierungsmittel quasi eine Art Grundfestigkeit, während das temporäre Bindemittel unter Einfluss der Temperatur der Metallschmelze zumindest teilweise und/oder sukzessive ausbrennt. Da das umgebende Formenmaterial (wie Quarzsand, Zirkonsand) innerhalb des Formkastens eine gewisse Gasdurchlässigkeit aufweist, können flüchtige Bestandteile des aus dem Bauteil stammenden Bindemittels ohne weiteres aus dem Formkasten weggeleitet werden.Of course, the at least partial dissolution (destruction) of the component must be done in a manner that prevents non-metallic solids from entering the casting stream. One possibility is the use of a material of at least one temporary binder and at least one reinforcing agent. In this case, the reinforcing agent is quasi a kind of basic strength, while the temporary binder under the influence of the temperature of the molten metal at least partially and / or successively burns out. Since the surrounding mold material (such as quartz sand, zircon sand) within the mold box has a certain gas permeability, volatiles of the binder originating from the component can easily be led away from the mold box.

Geeignete temporäre Bindemittel sind: Phenolharze, Furanharze, Polysaccharide, Polymere auf Basis Polyvinylacetat, Polyvinylalkohol, Polyvinylacrylat, Phosphatbinder wie Aluminiumphosphat, Wasserglas, Cellulosederivate, Ligninsulfonate. Die Auswahl einzelner dieser Bindemittel und/oder Kombinationen daraus erfolgt je nach Anwendungsfall. Während die genannten Polymere auf Basis von Polyvinylacetat relativ schnell verdampfen, ist die Standzeit von Bauteilen auf Basis von Phenolharzen und insbesondere Furanharzen deutlich höher. Unter Verwendung eines Werkstoffes aus beispielsweise 20 bis 80 Masse-% Furanharz und 20 bis 80 Masse-% eines (faserförmigen) Armierungsmittels behält ein rohrförmiges Bauteil innerhalb des Gießsystems während des Eingießens der Metallschmelze (angenommen: 2 Minuten) problemlos seine Grundform, so dass die Schmelze störungsfrei eingefüllt werden kann. Der Abrieb ist Null. Schon bald (gegebenenfalls wenige Sekunden) nach dem Kontakt zwischen der Metallschmelze kann jedoch die Zersetzung des Furanharzes beginnen, allerdings nur in einem Ausmaß, welches die Stabilität des Gießrohres nicht gefährdet. Erst nach Abschluss des Gießvorgangs (hier: >2 min) zersetzt sich das Furanharz weiter, bis es sich beispielsweise nach einigen Stunden mehr oder weniger vollständig aufgelöst hat (ohne nennenswerte Feststoff-Rückstände). Dies hat für die weiteren Verfahrensschritte den Vorteil, dass keine nennenswerten Fremdbestandteile im Formensand verbleiben (allenfalls Verbrennungsrückstände des Harzes und das Armierungsmittel). Dies ermöglicht es, das Formenmaterial wieder zu verwenden. Aufwändige Reinigungsprozesse, wie im Stand der Technik, entfallen.Suitable temporary binders are: phenolic resins, furan resins, polysaccharides, polymers based on polyvinyl acetate, polyvinyl alcohol, polyvinyl acrylate, phosphate binders such as aluminum phosphate, water glass, cellulose derivatives, lignosulfonates. The selection of individual of these binders and / or combinations thereof takes place depending on the application. While the polymers mentioned based on polyvinyl acetate evaporate relatively quickly, the service life of components based on phenolic resins and in particular furan resins is significantly higher. Using a material of, for example, 20 to 80% by mass of furan resin and 20 to 80% by mass of a (fibrous) reinforcing agent, a tubular member within the casting system keeps its basic shape smoothly during casting of the molten metal (assumed: 2 minutes), so that the Melt can be filled trouble-free. The abrasion is zero. However, soon after (possibly a few seconds) after the contact between the molten metal, the decomposition of the furan resin can begin, but only to an extent which does not endanger the stability of the pouring tube. Only after completion of the casting process (here:> 2 min), the furan resin decomposes further, for example, after a few hours more or less completely dissolved (without significant residual solids). This has the advantage for the further process steps that no appreciable foreign components remain in the molding sand (possibly combustion residues of the resin and the reinforcing agent). This makes it possible to reuse the mold material. Elaborate cleaning processes, as in the prior art omitted.

Durch die Verwendung eines temporären, zerstörbaren Bindemittels kommt dem Armierungsmittel eine wesentliche Bedeutung innerhalb des ausgewählten Werkstoffs zu. Das Armierungsmittel sorgt auch während der sukzessiven Zersetzung der weiteren Komponente für eine zumindest temporäre Stabilität des Bauteils. Armierungsmittel aus der Gruppe oxidische Fasern und Kohlenstofffasern sind besonders geeignet. Die Erfindung schließt Armierungsmittel ein, die sich unter Temperaturlast ebenfalls zumindest teilweise zersetzen.By using a temporary, destructible binder, the reinforcing agent has a significant importance within the selected material. The reinforcing agent also ensures an at least temporary stability of the component during the successive decomposition of the further component. Reinforcing agents from the group oxide fibers and carbon fibers are particularly suitable. The invention includes reinforcing agents which also decompose at least partially under temperature load.

Oxidische Fasern umfassen beispielsweise Steinfasern, Glasfasern, keramische Fasern. Auch nicht oxidische Fasern sind denkbar, jedoch teuer.Oxidic fibers include, for example, stone fibers, glass fibers, ceramic fibers. Non-oxidic fibers are conceivable, but expensive.

Die Fasern können "Endlosfasern" sein. Solche Fasern werden insbesondere dann verwendet, wenn rohrförmige Bauteile hergestellt werden. Die Endlosfaser kann dazu beispielsweise auf einen Dorn aufgewickelt werden. Sie wird entweder vorher oder während des Aufwickelns mit dem Bindemittel in Kontakt gebracht, welches die Verbindung benachbarter Faserabschnitte und Ausbildung des gewünschten Rohrkörpers sicherstellt. Nach Aushärten des Bindemittels ist das Bauteil fertig. Aufgrund der genannten Wickeltechnik weist es eine extrem glatte innere Oberfläche auf. Dies kommt dem gewünschten Anwendungsfall zugute. Ein weiterer Vorteil liegt darin, dass auch große Bauteile, insbesondere lange Rohre hergestellt werden können, so dass unerwünschte Anschlussstellen benachbarter Rohrabschnitte vermieden werden. Auch dies minimiert die Gefahr, dass unerwünschte Bestandteile in den Gießstrom gelangen.The fibers can be "continuous fibers". Such fibers are used in particular when producing tubular components. The endless fiber can be wound, for example, on a mandrel. It is brought into contact either before or during the winding with the binder, which ensures the connection of adjacent fiber sections and formation of the desired tubular body. After curing of the binder, the component is ready. Due to the aforementioned winding technique, it has an extremely smooth inner surface. This benefits the desired application. Another advantage is that even large components, especially long pipes can be made so that undesirable junctions of adjacent pipe sections are avoided. This also minimizes the risk that unwanted components get into the pouring stream.

Ebenso können "endliche" Fasern verwendete werden, mit Faserlängen zwischen 20 µm und mehreren cm.Likewise, "finite" fibers can be used, with fiber lengths between 20 μm and several cm.

Rohrförmige Bauteile können auch im so genannten Schleuderverfahren hergestellt werden. Dazu wird das Bindemittel über eine Lanze einer rotierenden Matrize gemeinsam mit dem Armierungsmittel, beispielsweise Mineralfasern, zugeführt. Nach Aushärten des Bindemittels kann der Rohrkörper aus der Matrize entnommen werden. Auch auf diese Weise lassen sich große Rohrlängen herstellen.Tubular components can also be produced in the so-called spin process. For this purpose, the binder is fed via a lance of a rotating die together with the reinforcing agent, for example mineral fibers. After curing of the binder, the tubular body can be removed from the die. Also in this way can be produced large pipe lengths.

Für kompliziertere Bauteile, wie Krümmer, Kupplungsteile oder dergleichen sind andere Herstellungsverfahren möglich.For more complicated components, such as manifolds, coupling parts or the like, other manufacturing methods are possible.

Die Mischung aus temporärem beständigem Matrixmaterial und Armierung lässt sich alternativ durch Faserharzspritzen, Formpressen, Spritzpressen oder Spritzgießen sowie Laminieren zu dem gewünschten Bauteil verarbeiten.The mixture of temporary resistant matrix material and reinforcement can alternatively be processed by fiber resin spraying, compression molding, transfer molding or injection molding as well as lamination to the desired component.

Ein erfindungsgemäßes Bauteil muss lediglich während der eigentlichen Gießphase (während der Metallschmelze in die Gießform eingefüllt wird) ausreichend formbeständig sein, um die Schmelze hindurchzuleiten, oft also nur für wenige Minuten (<5, oft <3, auch <2min). Dies ermöglicht es, die Wandstärke gegenüber bekannten keramischen Bauteilen deutlich zu reduzieren. Wandstärken < 5 mm, < 4 mm, < 3 mm, < 2 mm bis < 1mm sind möglich und gewünscht.A component according to the invention only has to be sufficiently dimensionally stable during the actual casting phase (during which molten metal is introduced into the casting mold) to pass the melt, often only for a few minutes (<5, often <3, even <2 min). This makes it possible to significantly reduce the wall thickness compared to known ceramic components. Wall thicknesses <5 mm, <4 mm, <3 mm, <2 mm to <1 mm are possible and desired.

Die Verwendung dünner Armierungsmaterialien ermöglicht es, Wandstärken deutlich unter 1 mm zu realisieren. Beispielsweise Fasermaterialien können einen Faserdurchmesser < 20 µm, insbesondere < 12 µm aufweisen. Kohlenstofffasern weisen üblicherweise Durchmesser < 8µm auf. Der Durchmesser von Mineralfasern (Steinfasern, Glasfasern) liegt üblicherweise zwischen 2 µm und 7 µm. Daraus ergibt sich die Möglichkeit, die Wanddicke von Bauteilen in etwa gleicher Größenordnung auszubilden, da das Bindemittel die Wandstärke nicht wesentlich verändert. Wandstärken von < 50 µm, ja sogar < 20 µm oder < 10 µm sind so möglich, aber auch < 100 µm, < 250 µm oder < 500 µm. Die Länge der Bauteile kann von wenigen cm bis zu mehreren Metern reichen, der meist runde Strömungskanal einen Durchmesser von 2 bis 30 cm aufweisen.The use of thin reinforcing materials makes it possible to realize wall thicknesses well below 1 mm. For example, fiber materials may have a fiber diameter <20 microns, in particular <12 microns have. Carbon fibers usually have a diameter <8μm. The diameter of mineral fibers (stone fibers, glass fibers) is usually between 2 microns and 7 microns. This results in the possibility of forming the wall thickness of components of approximately the same order of magnitude, since the binder does not substantially change the wall thickness. Wall thicknesses of <50 μm, even <20 μm or <10 μm are possible, but also <100 μm, <250 μm or <500 μm. The length of the components can range from a few centimeters to several meters, the most circular flow channel have a diameter of 2 to 30 cm.

Ein erfindungsgemäßes Bauteil kann ausschließlich aus dem genannten temporären Matrixmaterial in Kombination mit dem beschriebenen Armierungsmittel bestehen, es kann aber auch weitere Bestandteile aufweisen. Diese weiteren Bestandteile können beispielsweise keramische, auch hochtemperaturbeständige (feuerfeste) Materialien sein, beispielsweise Ton, Kohlenstoff, Tonerde, Zirkon. Ihr Anteil wird jedoch deshalb möglichst gering gehalten, um das Ziel, nicht metallischer Einschlüsse im Gießstrom zu vermeiden, nicht zu gefährden.A component according to the invention can consist exclusively of said temporary matrix material in combination with the described reinforcing agent, but it can also have further constituents. These other constituents may be, for example, ceramic materials which are also resistant to high temperatures (refractory), for example clay, carbon, alumina, zirconium. However, their share is therefore kept as low as possible in order not to endanger the goal of avoiding metallic inclusions in the pouring stream.

Nach einer Ausführungsform betrifft der Anteil des temporären Bindemittels deshalb regelmäßig ≥ 30 Masse-%, oft ≥ 40 Masse-%, je nach Bedarf aber auch ≥ 50 Masse-%, während der Masseanteil des Armierungsmittels entweder auf 100 Masse-% insgesamt angepasst wird oder so, dass maximal 30 Masse-%, nach Ausführungsformen ≤ 20 Masse-% beziehungsweise ≤ 10 Masse-%, gegebenenfalls auch ≤ 5 Masse-% Fremdkomponenten berücksichtigt werden.According to one embodiment, the proportion of the temporary binder therefore regularly ≥ 30% by mass, often ≥ 40% by mass, but also ≥ 50% by mass as needed, while the mass fraction of the reinforcing agent is adjusted either to 100% by mass or so that a maximum of 30% by mass, according to embodiments ≤ 20% by mass or ≤ 10% by mass, if appropriate also ≤ 5% by mass of foreign components are taken into account.

Ein erfindungsgemäßes Bauteil ist auf Grund der geringen Wandstärke leicht transportierbar. Es kann leicht geschnitten und damit an die jeweiligen Gießsysteme angepasst werden. Es kann als Rohr Längen von mehreren Metern aufweisen. Auch andere Bauteil-Formen sind möglich.An inventive component is easily transportable due to the small wall thickness. It can be cut easily and thus adapted to the respective casting systems. It can have lengths of several meters as a tube. Other component forms are possible.

Weitere Merkmale der Erfindung ergeben sich aus den Merkmalen der Unteransprüche sowie den sonstigen Anmeldungsunterlagen.Other features of the invention will become apparent from the features of the claims and the other application documents.

Aus den vorstehenden Erläuterungen ergibt sich, dass es sich bei einem erfindungsgemäßen Bauteil - in Vergleich mit dem Stand der Technik - um ein nicht gebranntes Bauteil handelt. Es besitzt deshalb eine deutlich verringerte Standfestigkeit. Es muss lediglich während des eigentlichen Gießvorgangs eine Stabilität aufweisen, die eine ordnungsgemäße Zuführung des Gießstrahls in die Gießform ermöglicht. Im Übrigen ist das Bauteil so gestaltet, dass es sich zumindest teilweise, nach Ende des Gießvorgangs möglichst weitgehend auflöst (zerstört), so dass eine Wiederaufbereitung des umgebenden Formenmaterials in Vergleich mit dem eingangs genannten Stand der Technik deutlich erleichtert wird. Im Idealfall verbleiben im Formenmaterial lediglich Verkokungsreste des Harzes und/oder Faserreste, die im Formenmaterial für den nächsten Formgebungsprozess verbleiben können.It follows from the above explanations that a component according to the invention - in comparison with the prior art - is a non-fired component. It therefore has a significantly reduced stability. It only has to have stability during the actual casting process, which allows a proper feeding of the pouring stream into the casting mold. Incidentally, the component is designed such that it dissolves (destroys) as much as possible at least partially, after the end of the casting process, so that a reprocessing of the surrounding mold material in comparison with the aforementioned prior art is significantly facilitated. Ideally, only coking residues of the resin and / or fiber residues that may remain in the mold material for the next molding process remain in the mold material.

Die Armierungsmittel für ein erfindungsgemäßes Bauteil sind nicht auf Faserwerkstoffe beschränkt. Vielmehr sind auch plättchenförmige oder körnige Armierungsmaterialien geeignet, sofern sie die übrigen, oben genannten Kriterien erfüllen. Hierzu gehören beispielsweise: Kohlenstoff-Teilchen, geblähter Perlit, geblähter Vermiculit, Blähglas, Bims, jeweils möglichst in geringen Teilchengrößen, um die Wandstärke des Bauteils gering halten zu können. Die Verbindung der Teilchen untereinander erfolgt wiederum in erster Linie über ein temporäres Bindemittel der genannten Art.The reinforcing agents for a component according to the invention are not limited to fiber materials. Rather, also platelet-shaped or granular reinforcing materials are suitable, provided that they meet the other criteria mentioned above. These include, for example: carbon particles, expanded perlite, expanded vermiculite, expanded glass, pumice, preferably in small particle sizes, in order to keep the wall thickness of the component low. The compound of the particles between each other again takes place primarily via a temporary binder of the type mentioned.

Auch hier gilt, dass nach Abbrand (Zersetzung) der nur temporär beständigen Werkstoffkomponente die Armierungsstoffe ohne weiteres im Formenmaterial verbleiben können, zumal sie kleinkörnig (meist <5mm, oft <2mm, auch <1mm) und temperaturbeständig sind.Again, after burning (decomposition) of the only temporarily resistant material component, the reinforcing materials can easily remain in the mold material, especially since they are small-grained (usually <5mm, often <2mm, even <1mm) and temperature resistant.

Claims (7)

Von einer Metallschmelze durchströmbares Bauteil eines Gießsystems, das eine Wandstärke < 9mm aufweist und aus einem Werkstoff besteht, der in Kontakt mit der Metallschmelze zumindest teilweise zerstört wird.By a molten metal flow-through component of a casting system, which has a wall thickness <9mm and consists of a material which is at least partially destroyed in contact with the molten metal. Bauteil nach Anspruch 1, dessen Werkstoff zumindest ein temporäres Bindemittel und mindestens ein Armierungsmittel umfasst.Component according to claim 1, whose material comprises at least one temporary binder and at least one reinforcing agent. Bauteil nach Anspruch 1, dessen Werkstoff ≥ 20 Masse-% mindestens eines temporären Bindemittels und ≥ 30 Masse-% mindestens eines Armierungsmittels umfasst.Component according to claim 1, whose material comprises ≥ 20% by mass of at least one temporary binder and ≥ 30% by mass of at least one reinforcing agent. Bauteil nach Anspruch 1, dessen Werkstoff maximal 20 Masse-%, insbesondere maximal 10 Masse-% sonstige Komponenten umfasst.Component according to claim 1, whose material comprises a maximum of 20% by mass, in particular a maximum of 10% by mass of other components. Bauteil nach Anspruch 2 oder 3, dessen temporäres Bindemittel aus der Gruppe: Phenolharze, Furanharze, Polysaccharide, Polymere auf Basis Polyvinylacetat, Polyvinylalkohol, Polyacrylat stammt.Component according to claim 2 or 3, whose temporary binder is selected from the group: phenol resins, furan resins, polysaccharides, polymers based on polyvinyl acetate, polyvinyl alcohol, polyacrylate. Bauteil nach Anspruch 2 oder 3, dessen Armierungsmittel aus der Gruppe oxidische Fasern, Kohlenstofffasern stammt.Component according to Claim 2 or 3, the reinforcing agent of which originates from the group of oxidic fibers, carbon fibers. Bauteil nach Anspruch 2 oder 3, dessen Armierungsmittel gewickelte Langfasern umfasst.Component according to claim 2 or 3, whose reinforcing means comprises wound long fibers.
EP08011982A 2007-07-20 2008-07-03 Component of a casting system which can be permeated by molten metal Withdrawn EP2017022A1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710034426 DE102007034426B3 (en) 2007-07-20 2007-07-20 Component of a casting system through which a molten metal can flow

Publications (1)

Publication Number Publication Date
EP2017022A1 true EP2017022A1 (en) 2009-01-21

Family

ID=39682543

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08011982A Withdrawn EP2017022A1 (en) 2007-07-20 2008-07-03 Component of a casting system which can be permeated by molten metal

Country Status (2)

Country Link
EP (1) EP2017022A1 (en)
DE (1) DE102007034426B3 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009052279A1 (en) * 2009-11-09 2011-06-01 Lwb Refractories Gmbh Carbon-containing refractory material for use in the casting of steel in the sub-casting process and moldings produced therefrom

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844337A (en) * 1972-12-18 1974-10-29 Packaging Corp America Pouring sprue
DE3008251B1 (en) * 1980-02-29 1981-06-11 Mannesmann AG, 4000 Düsseldorf Refractory material for molten steel
US4598757A (en) * 1984-07-26 1986-07-08 Outboard Marine Corporation Bonded sand sprue cup
GB2171625A (en) * 1985-02-04 1986-09-03 Morganite Crucible Ltd Duct for molten metal
WO1989010222A1 (en) * 1988-04-18 1989-11-02 Müanyagipari Kutató Intézet Plastic mouldings for filtering hot liquids, in particular molten metals, and process for producing them
US5205340A (en) * 1989-06-27 1993-04-27 Brown Foundry System, Inc. Insulated paper sleeve for casting metal articles in sand molds
EP1488871A1 (en) * 2002-03-13 2004-12-22 Kao Corporation Part prepared through sheet-making process for use in producing castings and method for preparation tyhereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10204305B4 (en) * 2002-02-01 2004-04-29 Heraeus Electro-Nite International N.V. Refractory spout for a metallurgical vessel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3844337A (en) * 1972-12-18 1974-10-29 Packaging Corp America Pouring sprue
DE3008251B1 (en) * 1980-02-29 1981-06-11 Mannesmann AG, 4000 Düsseldorf Refractory material for molten steel
US4598757A (en) * 1984-07-26 1986-07-08 Outboard Marine Corporation Bonded sand sprue cup
GB2171625A (en) * 1985-02-04 1986-09-03 Morganite Crucible Ltd Duct for molten metal
WO1989010222A1 (en) * 1988-04-18 1989-11-02 Müanyagipari Kutató Intézet Plastic mouldings for filtering hot liquids, in particular molten metals, and process for producing them
US5205340A (en) * 1989-06-27 1993-04-27 Brown Foundry System, Inc. Insulated paper sleeve for casting metal articles in sand molds
EP1488871A1 (en) * 2002-03-13 2004-12-22 Kao Corporation Part prepared through sheet-making process for use in producing castings and method for preparation tyhereof

Also Published As

Publication number Publication date
DE102007034426B3 (en) 2008-12-04

Similar Documents

Publication Publication Date Title
EP3800169B1 (en) Method for the production of moulds from reaction-bonded silicon carbide and / or boron carbide infiltrated with silicon
DE2256671B1 (en) PROCESS FOR WEAR RESISTANT LINING OF EXTRUDER HOUSING BORES AND WEAR PROTECTIVE LINING MANUFACTURED BY THIS PROCESS
DE2165537A1 (en) METHOD FOR INCREASING THE DURABILITY AND ECONOMICS OF SPOUT OPENINGS ON VESSELS FOR RECEIVING LIQUID METAL
WO2009103539A1 (en) Riser with inserted breaker core
WO2009106061A2 (en) Pressure slip casting apparatus and method for casting a molded article
EP2086707A1 (en) Method for producing a body consisting of metal-ceramic-composite materials
DE2951977A1 (en) CUP FOR RISING CASTING
DE10332904B3 (en) Molding core used in the production of components of internal combustion engines comprises a metallic reinforcing element partially or completely separated from the surrounding core by a gap or by a pyrolyzable organic material
DE102007034426B3 (en) Component of a casting system through which a molten metal can flow
EP2140956B1 (en) Pouring device for metal melts
DE102009052279A1 (en) Carbon-containing refractory material for use in the casting of steel in the sub-casting process and moldings produced therefrom
DE2548854A1 (en) Refractory brick with a passage opening for liquid metal and the process for its production
EP2876347A1 (en) Insulation element for the heat and/or sound insulation of pipes, in particular flue ducts
EP1425121A1 (en) Method for producing castings, molding sand and its use for carrying out said method
WO2015091217A1 (en) Method for producing a piston for a combustion engine
DE2834637C2 (en) Process and adhesive for the production of connections of ceramic pipes and fittings in foundries and steel works and smelting works as well as fittings manufactured according to the process
DE102009024182B3 (en) Forming and removing mold or core during casting, e.g. of filigree structures, by forming mold or core containing hollow particles, to be collapsed under pressure after casting
EP0249647B1 (en) Fireproof tap hole
EP0366598B1 (en) Breaker core for feeder
DE102007060502A1 (en) Method for producing a cylinder crankcase
EP1797976A2 (en) Conical bubble brick
DE102019116989A1 (en) Device for transporting a melt and method for manufacturing the device
WO2012172062A1 (en) Casting tool and method for producing a casting tool
EP3986636B1 (en) Runner for transporting a molten material and method for producing said runner
DE102018106725A1 (en) Process for producing a casting mold for filling melt and casting mold

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17Q First examination report despatched

Effective date: 20090506

R17C First examination report despatched (corrected)

Effective date: 20090702

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HAGENBURGER FEUERFESTE PRODUKTE GMBH

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120815