EP1570292A1 - Procede de calibration d'une source hyperfrequence - Google Patents

Procede de calibration d'une source hyperfrequence

Info

Publication number
EP1570292A1
EP1570292A1 EP03808240A EP03808240A EP1570292A1 EP 1570292 A1 EP1570292 A1 EP 1570292A1 EP 03808240 A EP03808240 A EP 03808240A EP 03808240 A EP03808240 A EP 03808240A EP 1570292 A1 EP1570292 A1 EP 1570292A1
Authority
EP
European Patent Office
Prior art keywords
source
signal
phase
channel
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03808240A
Other languages
German (de)
English (en)
Inventor
Didier Thales Intellectual Property QUIEVY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1570292A1 publication Critical patent/EP1570292A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4017Means for monitoring or calibrating of parts of a radar system of HF systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna

Definitions

  • the present invention relates to a method for calibrating a microwave source. It applies in particular to the phase calibration of the elementary sources of a network antenna.
  • a network antenna comprises an array of elementary sources controllable in phase, each source being connected to a radiating element.
  • phase differences bring limitations to the scanning performance. They can result in particular in a decrease in the gain of the antenna, a deformation of the main lobe, an increase in the level of the secondary lobes and a deviation of the radioelectric axis.
  • a calibration circuit is closed, the calibration circuit comprising an injection channel connected to a measurement channel via the source to be calibrated;
  • test signal is injected through the source to be calibrated, the test signal being injected on the injection channel, - the phase ⁇ m of the signal having passed through the source to be calibrated is measured, the phase of the signal being measured on the measurement channel.
  • An object of the invention is to improve the calibration by correcting the microwave disturbances originating from the imperfect electromagnetic isolation of the calibration circuit.
  • the amplitude Am of the signal having passed through the source is measured, the amplitude of the signal being measured on the measurement channel;
  • the calibration circuit is opened at the level of the element to be calibrated; the test signal is injected onto the injection channel; the phase ⁇ t and the amplitude A f of the signal present on the measurement channel are measured; a corrected phase value ⁇ c is determined, this corrected phase being the phase of a complex number U c , calculated from two complex numbers U m and Uf, where:
  • the calibration according to the invention has the advantage of being usable in network antennas, even when one of the sources (broken down) refuses to deactivate.
  • the invention makes it possible, from the same measurements, to test and locate a faulty source.
  • FIG. 1 an example of radar equipped with a calibration circuit
  • Figure 2 a source to be calibrated in the radar of the example shown in Figure 1
  • FIG. 3 an example of a microwave selector usable in the calibration circuit shown in FIG. 1
  • Figures 4 and 5 a microwave switch with two positions, each figure showing the switch in a different position
  • Figure 6 a geometric representation of complex numbers involved in the implementation of the invention
  • - Figure 7 an example of a network antenna, the radar being equipped with a calibration circuit
  • FIG. 8 an example of a network antenna configured with two stages of passive distributors, the radar being equipped with a calibration circuit.
  • FIG. 1 an example of a radar equipped with a calibration circuit is represented.
  • the radar can operate in transmit or receive mode.
  • a T1 signal generator delivers microwave pulses.
  • the microwave pulses propagate on an emission channel V2, V4. They are then routed via a circulator R1 to a transmission and reception channel V5.
  • the transmission and reception channel V5 comprises a controllable source M and a radiating element W.
  • the microwave pulses are transmitted in the form of waves by the radiating element W.
  • the radiating element W When the radar is operating in reception mode, the radiating element W receives microwave waves.
  • the radiating element W converts the waves into a microwave signal which propagates on the transmission and reception channel V5.
  • the signal is then routed through the circulator R1 on a reception channel V6.
  • the reception channel includes an amplifier A2.
  • a T2 synchronous demodulation receiver allows the received microwave signal to be transposed into a video signal.
  • the video signal is digitized by an analog digital converter (C.A.N.) T6.
  • the amplitude and the phase of the digitized signal are recorded in a memory T5.
  • the source can be of modular type. It can be active or passive.
  • the source represented is an active source.
  • the active elements of the source include a power amplifier A3, intended to amplify the microwave signal in transmission mode, and a low noise amplifier A4, intended to amplify the microwave signal in reception mode.
  • the amplifiers A3 and A4 are each on their own channel, these two channels being grouped together by a circulator R2 on the side of the radiating element, and a selector R3 with two positions and three inputs-outputs on the other side.
  • Controllable A3 and A4 amplifiers When an amplifier receives the on command, its power turns off. When it receives the on command, the amplifier is supplied with power. When the A3 and / or A4 amplifier is stopped, the microwave channel of the corresponding amplifier is opened. We can thus deactivate the source, in transmission mode and / or in reception mode, by cutting the power supply to amplifier A3 and / or A4.
  • the source M further comprises a controllable phase shifter E2 which makes it possible to modify the phase of the microwave signals in transmission or reception mode.
  • the source M can also include a controllable attenuator E1.
  • the controllable attenuator makes it possible to modify the amplitude of the microwave signals in transmission or reception mode.
  • the attenuator E1 and the phase shifter E2 can be of the programmable bit type. Reference is made to FIG. 1.
  • the radar also comprises an integrated calibration circuit. This circuit includes a microwave selector K provided with four input-outputs P1 to P4.
  • the selector K is controlled to route the microwave signal according to the desired path between its inputs-outputs.
  • the selector K is placed on the transmission channel V2, V4 between the amplifier A1 and the circulator R1.
  • the output of amplifier A1 is connected to input-output P4.
  • the input of circulator R1 is connected to input-output P2.
  • the calibration circuit also includes two microwave channels V1 and V3.
  • the microwave channel V1 connects the input-output P1 of the selector K to a first microwave coupler C1.
  • the coupler C1 is placed between the radiating element W and the source M.
  • the microwave channel V3 connects the input-output P3 to a second microwave coupler C2.
  • the microwave coupler C2 is placed between the amplifier A2 and the receiver T2.
  • the channel V1, respectively V2 is terminated by a load adapted to the level of the coupler C1, respectively C2.
  • the load for example 50 Ohm, avoids spurious reflections on the calibration circuit.
  • the selector K comprises for example three switches K1, K2, K3. Each switch is a two-position switch, having four inputs-outputs connected two by two, a command (denoted 0 or 1) making it possible to change the configuration of the switch.
  • a first input-output of switch K2 forms the input-output P1 of selector K.
  • a second input-output of switch K2 forms the input-output P3 of selector K.
  • a third input-output of switch K2 is connected to a first input-output of switch K3.
  • a second input output of switch K3 is connected to a first input-output of switch K1.
  • a third input-output of the switch K3 is connected to the fourth input-output of the switch
  • the fourth input-output of switch K3 is connected to a load.
  • a second input-output of the switch K1 forms the input-output P4 of the selector K.
  • a third input-output of the switch K1 forms the input-output P2 of the selector K.
  • the fourth input-output of the switch K1 is connected to a charge.
  • FIG. 4 in which the switch K1 is represented in a first position, controlled by 0. In this position, the first input-output is connected to the second; the third input-output is connected to the fourth.
  • FIG. 5 in which the switch K1 is represented in the second position (also shown in FIG. 3), controlled by 1.
  • the first input-output is connected to the fourth; the second input-output is connected to the third.
  • the first input-output is connected to the fourth; the second input-output is connected to the third.
  • the radar includes a calculation unit
  • the calibration circuit is used to calibrate the transmission or reception mode. We now describe a calibration of the transmission mode.
  • the calibration according to the invention can be carried out from at least two measurements, the order of which is indifferent.
  • the selector K is configured so as to connect the input-output P4 with the input-output P2 on the one hand, and on the other hand the input -output P1 with input-output P3.
  • Switch K1 receives command 1
  • switch K2 receives command 0
  • switch K3 receives command 0 or 1.
  • Amplifier A3 (see Figure 2) receives the on command.
  • Amplifier A4 receives the stop command.
  • the generator T1 emits a test signal at a determined frequency. This test signal propagates, as when the radar is in transmission mode, through the transmission channel V4, V2, the circulator R1, the transmission-reception channel V5, the source M.
  • the coupler C1 allows sampling a fraction of this signal on channel V1.
  • the fraction of signal taken then propagates on channel V3 to the receiver T2 (via the coupler C2).
  • the receiver measures the phase ⁇ m and the amplitude A TM of this signal. This first measurement is stored in memory T5.
  • the selector K is configured in the same way as for the test measurement.
  • the calibration circuit is open at the source M.
  • the amplifier A3 receives the stop command.
  • the generator emits the same test signal as during the test measurement.
  • no signal should be received by the receiver.
  • a signal from leaks and or interference between the various microwave elements propagates to the receiver.
  • the receiver T2 measures the phase ⁇ t and the amplitude A f of this interfering signal (or "leakage").
  • the complex number U c can be represented in the complex plane (see Figure 6) as a difference of two vectors (U m and U f ).
  • the phase ⁇ c and the amplitude Ac of U c can be determined from the following relationships:
  • a c ⁇ jA m 2 + A ⁇ - 2 - A m - A f - cos ( ⁇ m + ⁇ c )
  • ⁇ P c ATAN2 (A m . Cos ( ⁇ p m ) - ⁇ / - cos ⁇ ); A m - sm ( ⁇ m ) - A f - sin ⁇ ))
  • ATAN2 (x, y) is a function which returns an angle which is the arctangent of the coordinates x and y, this angle being between -180 ° and 180 e , excluding -180 °.
  • the invention makes it possible to correct the errors caused by the interference during phase calibration, without however having to modify the calibration circuit.
  • a third measurement is carried out, hereinafter called the reference measurement, it being understood that the order in which the measurements are carried out is indifferent.
  • the reference measurement is carried out by coupling the output of the generator T1 to the receiver T2.
  • the selector K is configured so as to connect the input-output P4 with the input-output P3.
  • the switch K1 receives the command 0, the switch K2 receives the command 1, the switch K3 receives the command 0.
  • the transmission channel V4 (with the amplifier A1) is connected directly to the receiver T2.
  • the generator T1 emits the same test signal as for the two other measures (test and interference).
  • the receiver T2 measures the phase ⁇ r , and possibly the amplitude Ar of this signal, called the reference signal. This additional measurement is stored in memory T5.
  • the reference measurement can be performed during each calibration. It makes it possible to overcome long-term fluctuations (for example for 30 minutes) between two successive calibrations of the source M, these fluctuations being able to come from fluctuations of the test signal delivered by the generator T1.
  • the reference measurement can be represented by a complex number U r :
  • This calibration includes the same measurements as those carried out for the calibration of the transmission mode, the selector K being configured differently.
  • the selector K is configured so as to connect the input-output P4 with the input-output P1.
  • Switch K1 receives the command 0, the switch K2 receives the command 1, the switch K3 receives the command 1.
  • the amplifier A4 (see FIG. 2) receives the command on.
  • the generator T ⁇ emits a test signal at a determined frequency. This test signal propagates through a portion of the transmission channel V4, the channel V1 and then through the coupler C1. The signal then propagates, as when the radar is in reception mode, through the source M, the transmission-reception channel V5, the circulator R1, the amplifier A2 to the receiver T2.
  • the receiver measures the phase ⁇ m and the amplitude A m of this signal.
  • the test measurement is stored in memory T5.
  • the selector K is configured in the same way as for the test measurement.
  • the calibration circuit is open at the source M.
  • the amplifier A4 receives the stop command.
  • the receiver T2 measures the phase ⁇ f and the amplitude A f of the signal interfere.
  • the calibration circuit is closed, the calibration circuit comprising an injection channel connected to a measurement channel via the source M to be calibrated.
  • the injection channel is formed by the emission channel V4, V2, V5; and the measurement channel is formed by the channel V1, V3 coupling the source M to the receiver T2.
  • the injection channel is formed by the channel V4, V1 bringing the signal to the source M; and the measurement channel is formed by the reception channel V5, V6.
  • a test signal is injected through the source to be calibrated M, the test signal being injected on the injection channel, the phase ⁇ m of the signal having passed through the source to be calibrated is measured, the phase of the signal being measured on the measurement channel, the amplitude A m of the signal having passed through the source to be calibrated is measured, the amplitude of the signal being measured on the measurement channel.
  • the calibration circuit is opened at the source to be calibrated. In this example, the circuit is opened during a calibration of the transmission mode, respectively reception mode, by cutting the supply of the amplifier A3, respectively A4 (with a stop command).
  • the test signal is injected on the injection channel, the phase ⁇ t and the amplitude A f of the signal present on the measurement channel are measured.
  • a corrected phase value ⁇ c is determined, this corrected phase being the phase of the complex number U c .
  • FIG. 7 is shown an example of a network antenna equipped with a calibration circuit.
  • the calibration circuit shown in FIG. 1 is modified by adding a network of sources M and radiating elements W.
  • An index p varying from 1 to P, is used to differentiate the elements (sources, radiating elements) of the network.
  • Two passive microwave distributors D1, D2 are added respectively on channels V1 and V5. These distributors make it possible to separate a microwave channel into P sub-channels, the signal power being divided by P on each of these sub-channels.
  • Distributor D2 separates channel V5 into P sub-channels V5 (p) of transmission and reception.
  • Each transmission and reception sub-channel V5 (p) comprises a radiating element W (p) and a source M (p).
  • V5 sub-channels (p) meet at the distributor D2 to form the V5 channel, connected to the circulator R1.
  • Distributor D1 separates channel V1 into P sub-channels V1 (p).
  • a coupler C1 (p) terminates each sub-channel V1 (p). Consequently, the input-output P1 of the selector K is connected to P couplers C1 (p).
  • the calibrations are carried out for each element of the network. Consequently, for a given frequency, P calibrations of the reception mode and P calibrations of the reception mode are carried out.
  • the calibration of the reception or transmission mode of the source M (p) comprises the same steps as described above, the only difference being that the other sources M (k) with k different from p are deactivated.
  • the power supply to amplifier A3 (k) and A4 (k) is cut off. Consequently, the interference measurement (phase ⁇ t and amplitude Af) is the same for all the indices p. The same measure can therefore be used when p varies.
  • the interference correction operation then results in:
  • the interference has a significant level relative to the signal.
  • the distributors D1, D2 cause significant losses, if only because the power is divided by P. It is therefore necessary to transmit a strong signal.
  • the various elements such as passive distributors
  • the transmitted signal strong can be found by electromagnetic coupling on the reception channel.
  • the invention makes it possible to overcome these interferences.
  • Some sources of a network antenna may fail. In particular, it may happen that one of the sources M (k) does not respond to the deactivation commands. In other words, the power supply to the amplifier A3 (k) or A4 (k) does not turn off despite a command in this direction.
  • the amplitude is measured
  • the invention makes it possible to locate the position of the defective sources (deactivation failure or amplification failure) even if several sources of the network are faulty simultaneously.
  • the same interference measurement can, as described above, be used for several calibrations.
  • fluctuations in the receiver or generator can cause degradation of the calibration performance.
  • a corrective term ⁇ is added to the interference measurement, this corrective term being a complex coefficient correcting the time fluctuations between the interference measurement and the test measurement.
  • the previous relationship becomes:
  • can be determined by performing the relationship between two reference measurements, a first reference measurement being concomitant with the test measurement, the other reference measurement being concomitant with the interference measurement. Measurements are said to be concomitant if they are sufficiently close in time so that the temporal fluctuations are negligible. This corrects the fluctuations in the interference measurement.
  • a reference measurement can be carried out followed by a calibration measurement at an instant to.
  • U r Oo we note these measurements U r Oo) and U f (to).
  • a test measurement and a reference measurement are then carried out for each value of p, these measurements being carried out at an instant t p .
  • the phase and / or the amplitude of the number U c (p) defined by the following relation is then determined:
  • phase and / or amplitude of U c (p) that is to say the amplitude and the corrected phase of the interference, are determined by the following relationships:
  • ⁇ c ⁇ p ATAN2 (Re (C / c (p)); Im (c / C (p)))
  • a reference measurement can be carried out every five test measurements, the total number of test measurements possibly being of the order of 1000.
  • the long-term temporal fluctuations are also corrected as described above:
  • This correction eliminates fluctuations between the calibration of two sources, if there is a long time between these two calibrations. This is particularly the case for array antennas comprising a large number of elements, for which the calibration of all the elements lasts long enough for the fluctuations to be perceptible.
  • FIG. 8 is shown an example of a network antenna configured with two stages of passive distributors, the radar being equipped with a calibration circuit.
  • This radar comprises elements common with the radars represented in FIGS. 1 and 7.
  • the radar transmission channel starting from the T ⁇ signal generator:
  • the transmission channel V4 on which the amplifier A1 is placed the transmission channel V4 being connected to the input-output P4 of the selector K;
  • the emission channel V2 on which a first passive distributor D5 is placed the emission channel V2 being connected to the input-output P2 of the selector K, the passive distributor dividing the emission channel V2 into Q sub- channels denoted V2 (q);
  • each sub-channel V5 (q) being connected to a sub-channel V2 (q) by a circulator R2 ( q);
  • each passive distributor being placed on a sub-channel V5 (q) which it divides into P other sub-channels V5 (p, q);
  • the radar reception channel includes:
  • Channel V3 of the calibration circuit is unchanged. It is coupled via coupler C2 to channel V6 between amplifier A2 and receiver T2.
  • the channel V1 of the calibration circuit is divided into Q sub-channels by a first passive distributor D3, each sub-channel being in turn divided into P other sub-channels by a passive distributor D1 (q), these PxQ sub-channels being coupled by couplers C1 (p, q).
  • Each coupler C1 (p, q) is placed between the radiating element W (p, q) and the source M (p, q).
  • the switch K1 receives the command 0, the switch K2 receives the command 1, the switch K3 receives the command 1, l amplifier A1 receives the on command, amplifiers A5 (k) receive the stop command, amplifier A2 receives the on command, amplifier A4 (p, q) receives the on command and the other amplifiers A4 (k, l ) receive the stop command, the amplifiers A3 (k, l) receive the stop command.
  • the amplifiers A4 (k, l) all receive the stop command.
  • the other commands remain the same as for the test measurement. Consequently, the same commands are applied whatever the source M (p, q) considered.
  • the switch K1 receives the command 1
  • the switch K2 receives the command 0
  • the switch K3 receives the command 0 or 1
  • amplifier A1 receives the run command
  • amplifier A5 (q) receives the start command and the other amplifiers A5 (k) receive the stop command
  • amplifier A2 receives the stop command
  • amplifiers A3 (p, q) receive the start command and the other amplifiers A3 (k, l) receive the stop command
  • the amplifiers A4 (k, l) receive the stop command.
  • the amplifiers A3 (k, l) all receive the stop command.
  • the other commands remain the same as for the test measurement. Consequently, different commands are applied when the index q changes. It is therefore necessary to carry out at least Q interference measurements for the calibration of the emission of the sources M (p, q).
  • the switch K1 receives the command 0
  • the switch K2 receives the command 1
  • switch K3 receives command 1
  • amplifier A1 receives on command
  • amplifiers A5 (k) receive stop command
  • amplifier A3 receives stop command
  • amplifiers A3 (k, l) and A4 (k, l) of the sources M (k, l) receive the stop command.
  • the passive distributors are replaced by microwave selectors.
  • test signal can then be routed to this source by controlling the selectors, instead of ordering the shutdown of the other sources.
  • the microwave signal can then be routed to a load, instead of ordering all sources to stop.
  • the architecture of the radar and / or the calibration circuit may be different.
  • the calibration circuit can be external to the radar.
  • the number of distributors / selectors may be different. Calibration can be performed at several frequencies and temperatures.

Abstract

La présente invention concerne un procédé de calibration de phase d'une source hyperfréquence, dans lequel : on ferme un circuit de calibration, le circuit de calibration comprenant une voie d'injection reliée à une voie de mesure par l'intermédiaire de la source à calibrer; on injecte un signal de test à travers la source à calibrer, le signal de test étant injecté sur la voie d'injection, on mesure la phase phim du signal ayant traversé la source à calibrer, la phase du signal étant mesurée sur la voie de mesure, caractérisé en ce que : on mesure l'amplitude Am du signal ayant traversé la source à calibrer, l'amplitude du signal étant mesurée sur la voie de mesure ; on ouvre le circuit de calibration au niveau de la source à calibrer; on injecte le signal de test sur la voie d'injection ; on mesure la phase phif et l'amplitude Af du signal présent sur la voie de mesure ; on détermine une valeur de phase phic, corrigée, cette phase corrigée étant la phase d'un nombre complexe Uc, calculé à partir de deux nombres complexes Um et Uf, où Um = Am . exp(i .phim) Uf =Af .exp(i .phif).

Description

Procédé de calibration d'une source hyperfréquence
La présente invention concerne un procédé de calibration d'une source hyperfréquence. Elle s'applique notamment à la calibration de phase des sources élémentaires d'une antenne à réseau.
Une antenne à réseau comprend un réseau de sources élémentaires commandables en phase, chaque source étant reliée à un élément rayonnant. En commandant les phases des sources élémentaires de manière appropriée, il est possible de créer une onde plane dans une direction souhaitée. On peut ainsi effectuer un balayage électronique, c'est à dire modifier la direction du lobe principal en commandant la phase des différentes sources.
Cependant, des sources élémentaires peuvent se dérégler, produisant une phase différente de la phase commandée. Ces différences de phase apportent des limitations aux performances du balayage. Elles peuvent résulter notamment en une baisse du gain de l'antenne, une déformation du lobe principal, une augmentation du niveau des lobes secondaires et une déviation d'axe radioélectrique.
Il est connu d'effectuer des calibrations périodiques de la phase de chaque source élémentaire. Pour effectuer une calibration d'une source élémentaire : - on ferme un circuit de calibration, le circuit de calibration comprenant une voie d'injection reliée à une voie de mesure par l'intermédiaire de la source à calibrer ;
- on injecte un signal de test à travers la source à calibrer, le signal de test étant injecté sur la voie d'injection, - on mesure la phase φm du signal ayant traversé la source à calibrer, la phase du signal étant mesurée sur la voie de mesure.
Cependant, il existe des perturbations hyperfréquences faussant les mesures de phase de chaque source élémentaire. Un but de l'invention est d'améliorer la calibration en corrigeant les perturbations hyperfréquences provenant de l'isolation électromagnétique imparfaite du circuit de calibration.
A cet effet :
- on mesure l'amplitude Am du signal ayant traversé la source, l'amplitude du signal étant mesurée sur la voie de mesure ;
- on ouvre le circuit de calibration au niveau de l'élément à calibrer ; on injecte le signal de test sur la voie d'injection ; on mesure la phase φt et l'amplitude Af du signal présent sur la voie de mesure ; on détermine une valeur de phase φc corrigée, cette phase corrigée étant la phase d'un nombre complexe Uc, calculé à partir de deux nombres complexes Um et Uf, où :
Um = Am -exp{i -φm)
Uf = Af • exp(ι -p/)
La calibration selon l'invention présente l'avantage d'être utilisable dans des antennes à réseau, même lorsque l'une des sources (en panne) refuse de se désactiver. L'invention permet à partir des même mesures de tester et de localiser une source en panne.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description détaillée suivante présentée à titre d'illustration non limitative et faite en référence aux figures annexées, lesquelles représentent : la figure 1 , un exemple de radar équipé d'un circuit de calibration ; la figure 2, une source à calibrer dans le radar de l'exemple représenté sur la figure 1 ; la figure 3, un exemple de sélecteur hyperfréquence utilisable dans le circuit de calibration représenté sur la figure 1 ; les figures 4 et 5, un commutateur hyperfréquence à deux positions, chaque figure représentant le commutateur une position différente ; la figure 6, une représentation géométrique de nombres complexes intervenant dans la mise en œuvre de l'invention ; - la figure 7, un exemple d'antenne à réseau, le radar étant équipé d'un circuit de calibration ; la figure 8, un exemple d'antenne à réseau configurée avec deux étages de distributeurs passifs, le radar étant équipé d'un circuit de calibration. On se réfère maintenant à la figure 1 sur laquelle est représenté un exemple de radar équipé d'un circuit de calibration.
Le radar peut fonctionner en mode émission ou en mode réception. Lorsque le radar fonctionne en mode émission, un générateur T1 de signaux délivre des impulsions hyperfréquences. Les impulsions hyperfréquences se propagent sur une voie d'émission V2, V4. Elles sont ensuite acheminées par l'intermédiaire d'un circulateur R1 vers une voie d'émission et de réception V5. La voie d'émission et de réception V5 comprend une source commandable M et un élément rayonnant W. Les impulsions hyperfréquences sont émises sous forme d'ondes par l'élément rayonnant W.
Lorsque le radar fonctionne en mode réception, l'élément rayonnant W reçoit des ondes hyperfréquences. L'élément rayonnant W convertit les ondes en un signal hyperfréquence qui se propage sur la voie d'émission et de réception V5. Le signal est ensuite acheminé par l'intermédiaire du circulateur R1 sur une voie de réception V6. La voie de réception comprend un amplificateur A2. Un récepteur à démodulation synchrone T2 permet de transposer le signal hyperfréquence reçu en un signal vidéo. Le signal vidéo est numérisé par un convertisseur analogique numérique (C.A.N.) T6. L'amplitude et la phase du signal numérisé sont enregistrés dans une mémoire T5.
On se réfère à la figure 2 sur laquelle est représenté un exemple de source M. La source peut être de type modulaire. Elle peut être active ou passive. La source représentée est une source active. Les éléments actifs de la source comprennent un amplificateur de puissance A3, destiné à amplifier le signal hyperfréquence en mode émission, et un amplificateur faible bruit A4, destiné à amplifier le signal hyperfréquence en mode réception. Les amplificateurs A3 et A4 sont chacun sur une voie propre, ces deux voies étant regroupées par un circulateur R2 du côté de l'élément rayonnant, et un sélecteur R3 à deux positions et trois entrées-sorties de l'autre côté.
Les amplificateurs A3 et A4 commandables. Lorsqu'un amplificateur reçoit la commande marche, son alimentation se coupe. Lorsqu'il reçoit la commande marche, l'amplificateur est alimenté. Lorsque l'on commande l'arrêt de l'amplificateur A3 et/ou A4, on ouvre la voie hyperfréquence de l'amplificateur correspondant. On peut ainsi désactiver la source, en mode émission et/ou en mode réception, en coupant l'alimentation de l'amplificateur A3 et/ou A4.
La source M comprend en outre un déphaseur E2 commandable qui permet de modifier la phase des signaux hyperfréquences en mode émission ou réception. La source M peut aussi comprendre un atténuateur E1 commandable. L'atténuateur commandable permet de modifier l'amplitude des signaux hyperfréquences en mode émission ou réception. L'atténuateur E1 et le déphaseur E2 peuvent être du type à bits programmables. On se réfère à la figure 1. Le radar comprend en outre un circuit de calibration intégré. Ce circuit comprend un sélecteur hyperfréquence K muni de quatre entrées-sorties P1 à P4. Le sélecteur K est commandé pour aiguiller le signal hyperfréquence selon le chemin souhaité entre ses entrées- sorties. Le sélecteur K est placé sur la voie d'émission V2, V4 entre l'amplificateur A1 et le circulateur R1. La sortie de l'amplificateur A1 est reliée à Pentrée-sortie P4. L'entrée du circulateur R1 est reliée à Pentrée-sortie P2. Le circuit de calibration comprend en outre deux voies hyperfréquences V1 et V3. La voie hyperfréquence V1 relie l'entrée-sortie P1 du sélecteur K à un premier coupleur hyperfréquence C1. Le coupleur C1 est placé entre l'élément rayonnant W et la source M. La voie hyperfréquence V3 relie l'entrée-sortie P3 à un second coupleur hyperfréquence C2. Le coupleur hyperfréquence C2 est placé entre l'amplificateur A2 et le récepteur T2. La voie V1 , respectivement V2, est terminée par une charge adaptée au niveau du coupleur C1 , respectivement C2. La charge, par exemple de 50 Ohm, permet d'éviter les réflexions parasites sur le circuit de calibration.
On se réfère maintenant à la figure 3 sur laquelle est représenté un exemple de réalisation du sélecteur K. Le sélecteur K comprend par exemple trois commutateurs K1 , K2, K3. Chaque commutateur est un commutateur à deux positions, possédant quatre entrées-sorties reliées deux à deux, une commande (notée 0 ou 1) permettant de changer la configuration du commutateur. Une première entrée-sortie du commutateur K2 forme l'entrée-sortie P1 du sélecteur K. Une seconde entrée-sortie du commutateur K2 forme l'entrée-sortie P3 du sélecteur K. Une troisième entrée-sortie du commutateur K2 est reliée à une première entrée-sortie du commutateur K3. Une seconde entrée sortie du commutateur K3 est reliée à une première entrée-sortie du commutateur K1. Une troisième entrée-sortie du commutateur K3 est reliée à la quatrième entrée-sortie du commutateur
K2. La quatrième entrée-sortie du commutateur K3 est reliée à une charge.
Une seconde entrée-sortie du commutateur K1 forme l'entrée-sortie P4 du sélecteur K. Une troisième entrée-sortie du commutateur K1 forme l'entrée- sortie P2 du sélecteur K. La quatrième entrée-sortie du commutateur K1 est reliée à une charge.
On se réfère maintenant à la figure 4 sur laquelle est représenté le commutateur K1 dans une première position, commandée par 0. Dans cette position, la première entrée-sortie est reliée à la seconde ; la troisième entrée-sortie est reliée à la quatrième.
On se réfère maintenant à la figure 5 sur laquelle est représenté le commutateur K1 dans la seconde position (représentée aussi sur la figure 3), commandée par 1. Dans cette seconde position, la première entrée-sortie est reliée à la quatrième ; la seconde entrée-sortie est reliée à la troisième.
Lorsque le commutateur K2 est dans une première position
(représentée sur la figure 3), commandée par 0, la première entrée-sortie est reliée avec la seconde ; la troisième entrée-sortie est reliée à la quatrième.
Dans la seconde position (non représentée), commandée par 1, la première entrée-sortie est reliée à la quatrième ; la seconde entrée-sortie est reliée à la troisième.
Lorsque le commutateur K3 est dans une première position
(représentée sur la figure 3), commandée par 0, la première entrée-sortie est reliée à la seconde ; la troisième entrée-sortie est reliée à la quatrième. Dans la seconde position (non représentée), commandée par 1, la première entrée-sortie est reliée à la quatrième ; la seconde entrée-sortie est reliée à la troisième.
On se réfère à la figure 1. Le radar comprend une unité de calcul
T4 reliée fonctionnellement à la mémoire T5 d'une part, et à une unité de commande et de contrôle T3 d'autre part. L'unité de commande et de contrôle permet de commander les sources (déphaseur, atténuateur, amplificateurs, sélecteur), le sélecteur (commutateurs K1, K2, K3), et les amplificateurs A1 et A2. Le circuit de calibration permet de calibrer le mode émission ou réception. On décrit maintenant une calibration du mode émission. La calibration selon l'invention peut être effectuée à partir de deux mesures au moins, dont l'ordre est indifférent. Lors d'une première mesure, appelée ci-après mesure de test, le sélecteur K est configuré de manière à relier l'entrée-sortie P4 avec l'entrée- sortie P2 d'une part, et d'autre part l'entrée-sortie P1 avec l'entrée-sortie P3. Le commutateur K1 reçoit la commande 1, le commutateur K2 reçoit la commande 0, le commutateur K3 reçoit la commande 0 ou 1. L'amplificateur A3 (voir figure 2) reçoit la commande marche. L'amplificateur A4 reçoit la commande arrêt. Le générateur T1 émet un signal de test à une fréquence déterminée. Ce signal de test se propage, comme lorsque le radar est en mode émission, à travers la voie d'émission V4, V2, le circulateur R1 , la voie d'émission-réception V5, la source M. Le coupleur C1 permet de prélever une fraction de ce signal sur la voie V1. La fraction de signal prélevé se propage ensuite sur la voie V3 jusqu'au récepteur T2 (via le coupleur C2). Le récepteur mesure la phase φm et l'amplitude A™ de ce signal. Cette première mesure est mémorisée dans la mémoire T5.
Lors d'une seconde mesure, appelée ci-après mesure d'interférence, le sélecteur K est configuré de la même manière que pour la mesure de test. Cependant, le circuit de calibration est ouvert au niveau de la source M. A cet effet, l'amplificateur A3 reçoit la commande arrêt. Le générateur émet le même signal de test que lors de la mesure de test. Le circuit de calibration étant ouvert, aucun signal ne devrait être reçu par le récepteur. Cependant, un signal provenant des fuites et ou des interférences entre les différents éléments hyperfréquences se propage jusqu'au récepteur. Le récepteur T2 mesure la phase φt et l'amplitude Af de ce signal interfèrent (ou de "fuite").
On se réfère maintenant à la figure 6, une représentation géométrique de nombres complexes intervenant dans la mise en œuvre de l'invention. On utilise les notations complexes suivantes :
Um = Am - exp(i - φm)
Uf = Af •exp(i -φ/) Selon un mode de mise en œuvre de l'invention, on détermine un nombre complexe Uc, représentant la valeur que devrait avoir le nombre complexe Um en l'absence d'inteférences : ue =um-u,
Le nombre complexe Uc peut se représenter dans le plan complexe (voir figure 6) comme une différence de deux vecteurs (Um et Uf). La phase φc et l'amplitude Ac de Uc peuvent être déterminées à partir des relations suivantes :
Ac = τjAm 2 + A} - 2 - Am - Af - cos(φm + φc )
<Pc = ATAN2(Am. cos(<pm)- ^/ - cos^) ; Am - sm(φm )- Af - sin^))
où ATAN2(x,y) est une fonction qui renvoie un angle qui est l'arctangente des coordonnées x et y, cet angle étant compris entre -180° et 180e, en excluant -180°.
L'invention permet de corriger les erreurs causées par les interférences lors des calibration de phase, sans pour autant nécessiter de modifier le circuit de calibration.
Selon un mode de mise en œuvre avantageux, on effectue une troisième mesure, appelée ci-après mesure de référence, étant entendu que l'ordre dans lequel sont effectuées les mesures est indifférent. La mesure de référence est effectuée en couplant la sortie du générateur T1 vers le récepteur T2. Le sélecteur K est configuré de manière à relier l'entrée-sortie P4 avec l'entrée-sortie P3. Le commutateur K1 reçoit la commande 0, le commutateur K2 reçoit la commande 1, le commutateur K3 reçoit la commande 0. De cette manière la voie d'émission V4 (avec l'amplificateur A1) est reliée directement au récepteur T2. Dans cette configuration du sélecteur, le générateur T1 émet le même signal de test que pour les deux autres mesures (de test et d'interférence). Le récepteur T2 mesure la phase φr, et éventuellement l'amplitude Ar de ce signal, appelé signal de référence. Cette mesure additionnelle est mémorisée dans la mémoire T5.
La mesure de référence peut être effectuée lors de chaque calibration. Elle permet de s'affranchir des fluctuations à long terme (par exemple pendant 30 minutes) entre deux calibrations successives de la source M, ces fluctuations pouvant provenir des fluctuations du signal de test délivré par le générateur T1.
En utilisant les mêmes notations complexes, la mesure de référence peut se représenter par un nombre complexe Ur :
Ur = Ar - çxp(i - φr )
On peut déterminer une phase φ et une amplitude A corrigées des fluctuations du générateur et du récepteur, ainsi que des interférences dans le circuit de calibration :
U U
avec
U = A - exp(i • φ)
A la différence des deux mesures précédentes (de test et d'interférence), il n'est pas nécessaire de mesurer l'amplitude Ar lorsqu'on cherche uniquement à calibrer la phase de la source :
On décrit maintenant une calibration du mode réception. Cette calibration comprend les mêmes mesures que celles réalisées pour la calibration du mode émission, le sélecteur K étant configuré différemment.
Lors la mesure de test, le sélecteur K est configuré de manière à relier l'entrée-sortie P4 avec l'entrée-sortie P1. Le commutateur K1 reçoit la commande 0, le commutateur K2 reçoit la commande 1 , le commutateur K3 reçoit la commande 1. L'amplificateur A4 (voir figure 2) reçoit la commande marche. Le générateur Tï émet un signal de test à une fréquence déterminée. Ce signal de test se propage à travers une portion de la voie d'émission V4, la voie V1 puis à travers le coupleur C1. Le signal se propage ensuite, comme lorsque le radar est en mode réception, à travers la source M, la voie d'émission-réception V5, le circulateur R1, l'amplificateur A2 jusqu'au récepteur T2. Le récepteur mesure la phase φm et l'amplitude Am de ce signal. La mesure de test est mémorisée dans la mémoire T5. Lors de mesure d'interférence, le sélecteur K est configuré de la même manière que pour la mesure de test. Cependant, le circuit de calibration est ouvert au niveau de la source M. A cet effet, l'amplificateur A4 reçoit la commande arrêt. De la même façon que pour la calibration du mode émission, le récepteur T2 mesure la phase ψf et l'amplitude Af du signal interfèrent.
On effectue ensuite les mêmes traitements avec les mesures de test et d'interférence. Il est possible aussi de réaliser une mesure de référence (voir ci-dessus), cette mesure étant la même que l'on calibre le mode émission ou réception.
Que ce soit pour calibrer le mode émission ou réception, on ferme le circuit de calibration, le circuit de calibration comprenant une voie d'injection reliée à une voie de mesure par l'intermédiaire de la source M à calibrer. Pour calibrer le mode émission, la voie d'injection est formée par la voie d'émission V4, V2, V5 ; et la voie de mesure est formée par la voie V1 , V3 couplant la source M au récepteur T2. Pour calibrer le mode réception, la voie d'injection est formée par la voie V4, V1 amenant le signal à la source M ; et la voie de mesure est formée par la voie de réception V5, V6.
Afin d'effectuer la première mesure, on injecte un signal de test à travers la source à calibrer M, le signal de test étant injecté sur la voie d'injection, on mesure la phase ψm du signal ayant traversé la source à calibrer, la phase du signal étant mesurée sur la voie de mesure, on mesure l'amplitude Am du signal ayant traversé la source à calibrer, l'amplitude du signal étant mesurée sur la voie de mesure. Afin d'effectuer la seconde mesure, on ouvre le circuit de calibration au niveau de la source à calibrer. Dans cet exemple, le circuit est ouvert lors d'une calibration du mode émission, respectivement réception, en coupant l'alimentation de l'amplificateur A3, respectivement A4 (avec une commande arrêt). On injecte le signal de test sur la voie d'injection, on mesure la phase φt et l'amplitude Af du signal présent sur la voie de mesure.
Avec ces deux mesures, dont l'ordre est indifférent, on détermine une valeur de phase φc corrigée, cette phase corrigée étant la phase du nombre complexe Uc.
On se réfère maintenant à la ligure 7 sur laquelle est représenté un exemple d'antenne à réseau équipée d'un circuit de calibration. Le circuit de calibration représenté sur la figure 1 est modifié en ajoutant un réseau de sources M et d'éléments rayonnants W. On utilise un indice p, variant de 1 à P, pour différencier les éléments (sources, éléments rayonnants) du réseau. Deux distributeurs hyperfréquences passifs D1, D2 sont ajoutés respectivement sur les voies V1 et V5. Ces distributeurs permettent de séparer une voie hyperfréquence en P sous-voies, la puissance du signal étant divisée par P sur chacune de ces sous-voies. Le distributeur D2 sépare la voie V5 en P sous-voies V5(p) d'émission et de réception. Chaque sous-voie d'émission et de réception V5(p) comprend un élément rayonnant W(p) et une source M(p). Toutes les sous-voies V5(p) se rejoignent au niveau du distributeur D2 pour former la voie V5, reliée au circulateur R1. Le distributeur D1 sépare la voie V1 en P sous-voies V1(p). Un coupleur C1(p) termine chaque sous-voie V1(p). Par conséquent, l'entrée- sortie P1 du sélecteur K est reliée à P coupleurs C1(p).
Les calibrations sont effectuées pour chaque élément du réseau. Par conséquent, pour une fréquence donnée, on effectue P calibrations du mode réception et P calibrations du mode réception.
Pour un indice p donné, la calibration du mode réception ou émission de la source M(p) comprend les mêmes étapes que décrites ci- dessus, la seule différence étant que les autres sources M(k) avec k différent de p sont désactivées. Afin de désactiver une source M(k), on coupe l'alimentation de l'amplificateur A3(k) et A4(k). Par conséquent la mesure d'interférence (phase φt et amplitude Af) est la même pour tous les indices p. La même mesure peut donc être utilisée lorsque p varie. En notations complexes, l'opération de correction d'interférence se traduit alors par :
Uc{p) = Um(p)-U f
Dans une antenne à réseau telle que celle représentée sur la figure 7, les interférences ont un niveau relatif non négligeable par rapport au signal. En effet, les distributeurs D1, D2 entraînent des pertes importantes, ne serait-ce que parce que la puissance est divisée par P. Il est donc nécessaire d'émettre un signal puissant. De plus, les différents éléments (tels que les distributeurs passifs) sont rapprochés pour des raisons d'encombrement, ce qui induit des couplages parasites. Par conséquent, le signal émis (puissant) peut se retrouver par couplage électromagnétique sur la voie de réception. L'invention permet de s'affranchir de ces interférences.
Certaines sources d'une antenne à réseau peuvent tomber en panne. Il peut arriver notamment que l'une des sources M(k) ne réponde pas aux commandes de désactivation. En d'autres tenmes, l'alimentation de l'amplificateur A3(k) ou A4(k) ne se coupe pas malgré une commande dans ce sens.
Dans les procédés de calibration classique, il n'est alors plus possible d'effectuer de calibration. En effet, la désactivation de la source M(k) étant impossible, on obtient la somme des signaux de la source M(k) et M(p) lorsqu'on effectue la calibration de la source M(p). Le procédé selon l'invention permet de résoudre ce problème. En effet, le signal provenant de la source M(k) se trouve à la fois dans le terme Um et dans le terme Uf. Il s'élimine donc par différence entre ces deux termes. Selon un mode de réalisation avantageux, on mesure l'amplitude
Ac, et on compare cette amplitude à un seuil déterminé afin de détecter les pannes. Lorsque l'amplitude Ac est inférieure au seuil, la panne est détectée. On détecte de cette manière les pannes de désactivation que les pannes d'amplification (panne se traduisant par une baisse anormale de la puissance de la source). L'invention permet de localiser la position des sources défectueuses (panne de désactivation ou panne d'amplification) même si plusieurs sources du réseau sont en panne simultanément.
Lorsqu'on effectue une calibration d'antenne à réseau, il est souhaitable de réduire au maximum le temps de calibration pour éviter de mobiliser le radar trop longtemps. A cet effet, une même mesure d'interférence peut, comme décrit ci-dessus, être utilisée pour plusieurs calibrations. Cependant, des fluctuations du récepteur ou du générateur peuvent entraîner une dégradation des performances de la calibration.
Selon un mode de réalisation avantageux, on ajoute un terme correctif α à la mesure d'interférence, ce terme correctif étant un coefficient complexe corrigeant les fluctuations temporelles entre la mesure d'interférence et la mesure de test. La relation précédente devient :
Uc{p) = Um p)-a -Uf
On peut déterminer le terme α en effectuant le rapport entre deux mesures de référence, une première mesure de référence étant concomitante avec la mesure de test, l'autre mesure de référence étant concomitante avec la mesure d'interférence. Des mesures sont dites concomitantes si elles sont suffisamment rapprochées dans le temps pour que les fluctuations temporelles soient négligeables. On corrige ainsi les fluctuations de la mesure d'interférence.
Par exemple, pour une fréquence donnée, on peut effectuer une mesure de référence suivie d'une mesure de calibration à un instant to. On note ces mesures UrOo) et Uf(to). On effectue ensuite une mesure de test et une mesure de référence pour chaque valeur de p, ces mesures étant effectuées à un instant tp. On détermine alors la phase et/ou l'amplitude du nombre Uc(p) défini par la relation suivante :
Uc(p)= Um(p)-a{tp)-Uf{t0)
avec «w- uA )
On détermine la phase et/ou l'amplitude de Uc(p), c'est à dire l'amplitude et la phase corrigée des interférences, par les relations suivantes :
φc{p) = ATAN2(Re(C/c(p)) ; Im(c/C(p)))
avec
Re(f/c(p)) = (p)-cos(^(p))--4'/ (t .cos(<p, / (t )
Im(uM = Am( >)- Sm{φm(p))-A< f {tp).sin{φ< f {tp))
Bien entendu, il est possible d'effectuer plusieurs mesures de test pour une mesure de référence. Par exemple on peut effectuer une mesure de référence toutes les cinq mesures de test, le nombre total de mesures de test pouvant être de l'ordre de 1000.
Avantageusement, on corrige aussi les fluctuations temporelles long terme comme décrit ci-avant :
Cette correction permet de s'affranchir des fluctuations entre la calibration de deux sources, si un laps de temps important sépare ces deux calibrations. C'est le cas notamment des antennes à réseau comprenant un grand nombre d'éléments, pour lesquelles la calibration de tous les éléments dure suffisamment longtemps pour que les fluctuations soient perceptibles.
On se réfère maintenant à la figure 8 sur laquelle est représenté un exemple d'antenne à réseau configurée avec deux étages de distributeurs passifs, le radar étant équipé d'un circuit de calibration. Ce radar comprend des éléments communs avec les radars représentés sur les figures 1 et 7.
La voie d'émission du radar comprend en partant du générateur de signaux Tï :
- la voie d'émission V4 sur laquelle est placé l'amplificateur A1, la voie d'émission V4 étant reliée à l'entrée-sortie P4 du sélecteur K ; - la voie d'émission V2 sur laquelle est placé un premier distributeur passif D5, la voie d'émission V2 étant reliée à l'entrée-sortie P2 du sélecteur K, le distributeur passif divisant la voie d'émission V2 en Q sous-voies notées V2(q) ;
- des amplificateurs A5(q), un amplificateur A5(q) étant placé sur chaque sous-voie V2(q) ;
- des sous-voies d'émission et de réception V5(q), ces sous-voies étant au nombre de Q, chaque sous-voie V5(q) étant reliée à une sous-voie V2(q) par un circulateur R2(q) ;
- des distributeurs passifs D2(q), chaque distributeur passif étant placé sur une sous-voie V5(q) qu'il divise en P autre sous-voies V5(p,q) ;
- des sources M(p,q) et des éléments rayonnants W(p,q) placés sur chaque sous-voie V5(p,q).
Par rapport à l'architecture précédente, les amplificateurs A5 ont été ajoutés. Ils permettent de compenser les pertes en sortie du distributeur passif D5, ce qui améliore les performances du radar. La voie de réception du radar comprend :
- les éléments rayonnants W(p,q) et les sources M(p,q) ;
- les distributeurs passifs D2(q) ;
- les circulateurs R2(q) ; - des sous-voies V6(q) de réception, chaque sous voie étant reliée à un circulateur R2(q) ;
- un distributeur D4, regroupant les Q sous-voies V6(q) pour former la voie de réception V6 ; - l'amplificateur A2, placé sur la voie V6 ;
- le récepteur T2 à démodulation synchrone.
La voie V3 du circuit de calibration est inchangée. Elle est couplée par l'intermédiaire du coupleur C2 à la voie V6 entre l'amplificateur A2 et le récepteur T2. La voie V1 du circuit de calibration est divisée en Q sous-voies par un premier distributeur passif D3, chaque sous-voie étant à son tour divisée en P autre sous-voies par un distributeur passif D1(q), ces PxQ sous-voies étant couplées par des coupleurs C1(p,q). Chaque coupleur C1(p,q) est placé entre l'élément rayonnant W(p,q) et la source M(p,q).
On décrit maintenant un exemple des commandes appliquées lors des différentes mesures intervenant dans une calibration d'une source M(p,q).
Pour effectuer la mesure de test lors d'une calibration du mode de réception de la source M(p,q), le commutateur K1 reçoit la commande 0, le commutateur K2 reçoit la commande 1, le commutateur K3 reçoit la commande 1, l'amplificateur A1 reçoit la commande marche, les amplificateurs A5(k) reçoivent la commande arrêt, l'amplificateur A2 reçoit la commande marche, l'amplificateur A4(p,q) reçoit la commande marche et les autres amplificateurs A4(k,l) reçoivent la commande arrêt, les amplificateurs A3(k,l) reçoivent la commande arrêt.
Pour effectuer la mesure d'interférence lors d'une calibration du mode de réception de la source M(p,q), les amplificateurs A4(k,l) reçoivent tous la commande arrêt. Les autres commandes restent les mêmes que pour la mesure de test. Par conséquent, on applique les mêmes commandes quelque soit la source M(p,q) considérée.
Pour effectuer la mesure de test lors d'une calibration du mode d'émission de la source M(p,q), le commutateur K1 reçoit la commande 1, le commutateur K2 reçoit la commande 0, le commutateur K3 reçoit la commande 0 ou 1, l'amplificateur A1 reçoit la commande marche, l'amplificateur A5(q) reçoit la commande marche et les autres amplificateurs A5(k) reçoivent la commande arrêt, l'amplificateur A2 reçoit la commande arrêt, l'amplificateurs A3(p,q) reçoit la commande marche et les autres amplificateurs A3(k,l) reçoivent la commande arrêt, les amplificateurs A4(k,l) reçoivent la commande arrêt.
Pour effectuer la mesure d'interférence lors d'une calibration du mode émission de la source M(p,q), les amplificateurs A3(k,l) reçoivent tous la commande arrêt. Les autres commandes restent les mêmes que pour la mesure de test. Par conséquent, on applique des commandes différentes lorsque l'indice q change. Il est donc nécessaire d'effectuer au minimum Q mesures d'interférence pour la calibration de l'émission des sources M(p,q).
Pour effectuer la mesure de référence, que ce soit lors d'une calibration de l'émission ou de la réception, quelle que soit la source M(p,q) considérée, le commutateur K1 reçoit la commande 0, le commutateur K2 reçoit la commande 1, le commutateur K3 reçoit la commande 0, l'amplificateur A1 reçoit la commande marche, les amplificateurs A5(k) reçoivent la commande arrêt, l'amplificateur A3 reçoit la commande arrêt, les amplificateurs A3(k,l) et A4(k,l) des sources M(k,l) reçoivent la commande arrêt.
Selon un autre mode de réalisation, on remplace les distributeurs passifs par des sélecteurs hyperfréquences.
Pour sélectionner une source à calibrer (lorsqu'on ferme le circuit de calibration), on peut alors aiguiller le signal de test vers cette source en commandant les sélecteurs, au lieu de commander l'arrêt des autres sources.
Pour ouvrir le circuit de calibration (mesure d'interférence), on peut alors aiguiller le signal hyperfréquence vers une charge, au lieu de commander l'arrêt de toutes les sources.
Bien entendu l'invention ne se limite pas à ces exemples de mise en œuvre. L'architecture du radar et/ou du circuit de calibration peut être différente. Le circuit de calibration peut être externe au radar. Le nombre de distributeurs/sélecteurs peut être différent. La calibration peut être effectuée à plusieurs fréquences et températures.

Claims

REVENDICATIONS
1. Procédé de calibration de phase d'une source hyperfréquence, dans lequel :
- on ferme un circuit de calibration, le circuit de calibration comprenant une voie d'injection reliée à une voie de mesure par l'intermédiaire de la source à calibrer ;
- on injecte un signal de test à travers la source à calibrer, le signal de test étant injecté sur la voie d'injection,
- on mesure la phase φm du signal ayant traversé la source à calibrer, la phase du signal étant mesurée sur la voie de mesure, caractérisé en ce que :
- on mesure l'amplitude A™ du signal ayant traversé la source à calibrer, l'amplitude du signal étant mesurée sur la voie de mesure ;
- on ouvre le circuit de calibration au niveau de la source à calibrer ;
- on injecte le signal de test sur la voie d'injection ; - on mesure la phase φf et l'amplitude Af du signal présent sur la voie de mesure ;
- on détermine une valeur de phase φc corrigée, cette phase corrigée étant la phase d'un nombre complexe Uc, calculé à partir de deux nombres complexes Um et Uf, où :
U„ = Am -exp(i - φm)
Uf = Af - exp(i >φf)
2. Procédé selon la revendication 1 , dans lequel le nombre complexe Uc est donné par la relation suivante :
U = U -a U,
où α est un coefficient complexe corrigeant les fluctuations temporelles de φf et Af entre les mesures de φm et Am d'une part, et de φr et Af d'autre part, ce coefficient valant 1 en l'absence de correction.
3. Procédé selon l'une quelconque des revendications précédentes, dans lequel on détermine une valeur d'amplitude corrigée Ac, cette amplitude corrigée étant l'amplitude du nombre complexe Uc.
4. Procédé selon l'une quelconque des revendications précédentes, dans lequel le coefficient complexe α est donné par la relation suivante :
a _ uλ )
où Ur représente une mesure de la phase et de l'amplitude d'un signal de référence, la mesure Ur(tι) étant concomitante avec la mesure de Um, la mesure Ur(to) étant concomitante avec la mesure de Uf.
EP03808240A 2002-12-10 2003-12-04 Procede de calibration d'une source hyperfrequence Withdrawn EP1570292A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0215839A FR2848302B1 (fr) 2002-12-10 2002-12-10 Procede de calibration d'une source hyperfrequence
FR0215839 2002-12-10
PCT/EP2003/050945 WO2004053517A1 (fr) 2002-12-10 2003-12-04 Procede de calibration d’une source hyperfrequence

Publications (1)

Publication Number Publication Date
EP1570292A1 true EP1570292A1 (fr) 2005-09-07

Family

ID=32320221

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03808240A Withdrawn EP1570292A1 (fr) 2002-12-10 2003-12-04 Procede de calibration d'une source hyperfrequence

Country Status (4)

Country Link
US (1) US7292182B2 (fr)
EP (1) EP1570292A1 (fr)
FR (1) FR2848302B1 (fr)
WO (1) WO2004053517A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476300A (zh) * 2017-03-31 2019-11-19 三菱电机株式会社 阵列天线装置、天线测定装置以及相控阵天线的相位调整方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2897162B1 (fr) * 2006-02-09 2008-11-21 Schneider Electric Ind Sas Methode de detection hyperfrequence et detecteur utilisant cette methode
JP4664948B2 (ja) * 2007-07-30 2011-04-06 株式会社東芝 送受信モジュール
SG193870A1 (en) * 2010-04-08 2013-10-30 Elbit Systems Ew And Sigint Elisra Ltd Electronic counter measure system
US8908753B2 (en) * 2012-05-17 2014-12-09 Andrew Llc Calibration sub-system for telecommunication systems
GB2508903B (en) * 2012-12-14 2017-09-27 Bae Systems Plc Rotating antenna array and rotary joint calibration system
ES2759013T3 (es) 2012-12-14 2020-05-07 Bae Systems Plc Calibración del sistema de antena
CA2831325A1 (fr) 2012-12-18 2014-06-18 Panasonic Avionics Corporation Calibrage de systeme d'antenne
US10164334B2 (en) 2013-04-15 2018-12-25 Nokia Solutions And Networks Oy Antenna system calibration
FR3110040B1 (fr) * 2020-05-05 2022-05-20 Thales Sa Système radar monostatique à ondes continues modulées en fréquence amélioré et procédé de calibration associé
EP4320460A1 (fr) * 2021-04-05 2024-02-14 Rafael Advanced Defense Systems Ltd. Dispositifs à antenne réseau à commande de phase et procédé associé d'étalonnage

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187354A1 (fr) * 1999-03-30 2002-03-13 Sanyo Electric Co., Ltd. Dispositif radio et procede d'etalonnage de la directivite d'antenne

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967279A (en) * 1970-12-07 1976-06-29 The Magnavox Company Self-phasing array with a time-shared processor
US4488155A (en) * 1982-07-30 1984-12-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for self-calibration and phasing of array antenna
SE456536B (sv) * 1985-03-08 1988-10-10 Ericsson Telefon Ab L M Testanordning i ett radarsystem med en elektriskt syyrd antenn
GB2179458B (en) * 1985-08-23 1988-11-09 Ferranti Plc Microwave noise measuring apparatus
US5412414A (en) * 1988-04-08 1995-05-02 Martin Marietta Corporation Self monitoring/calibrating phased array radar and an interchangeable, adjustable transmit/receive sub-assembly
US4924232A (en) * 1988-10-31 1990-05-08 Hughes Aircraft Company Method and system for reducing phase error in a phased array radar beam steering controller
US4926186A (en) * 1989-03-20 1990-05-15 Allied-Signal Inc. FFT-based aperture monitor for scanning phased arrays
US5027125A (en) * 1989-08-16 1991-06-25 Hughes Aircraft Company Semi-active phased array antenna
FR2663750B1 (fr) * 1990-06-22 1992-09-11 Alcatel Espace Dispositif de mesure de l'effet multipactor par bruit de phase.
US5337014A (en) * 1991-06-21 1994-08-09 Harris Corporation Phase noise measurements utilizing a frequency down conversion/multiplier, direct spectrum measurement technique
US5164734A (en) * 1991-10-07 1992-11-17 Duane G. Fredericks Radar target with delayed reply means
US6157343A (en) * 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
US5688050A (en) * 1995-04-03 1997-11-18 Mmtc, Inc. Temperature-measuring microwave radiometer apparatus
EP0762541A3 (fr) * 1995-08-29 2000-01-12 DaimlerChrysler AG Dispositif pour calibrer et éprouver des modules émetteurs/récepteurs dans un réseau d'antennes actives à commande électroniqe de phase
SE509434C2 (sv) * 1997-05-16 1999-01-25 Ericsson Telefon Ab L M Anordning och förfarande vid antennkalibrering
US6147501A (en) * 1997-08-26 2000-11-14 Hewlett-Packard Company Automatic calibration of a network analyzer
US5969667A (en) * 1997-10-16 1999-10-19 Automotive Systems Laboratory, Inc. Radar system
JP3063848B2 (ja) * 1998-10-07 2000-07-12 日本電気株式会社 放送機能付dmeシステム
US6421624B1 (en) * 1999-02-05 2002-07-16 Advantest Corp. Multi-port device analysis apparatus and method and calibration method thereof
US6104492A (en) * 1999-02-22 2000-08-15 Lucent Technologies Inc Optical signal monitor for multiwave optical signals
DE19922411A1 (de) * 1999-04-07 2000-10-12 Volkswagen Ag Radarverfahren zur Messung von Abständen und Relativgeschwindigkeiten zwischen einem Fahrzeug und einem oder mehreren Hindernissen
DE60045852D1 (de) * 1999-12-15 2011-05-26 Nippon Telegraph & Telephone Adaptive Gruppenantenne-Sende-Empfangsvorrichtung
US6870501B2 (en) * 2001-06-26 2005-03-22 Raytheon Company Digital radio frequency tag
KR100444822B1 (ko) * 2001-08-07 2004-08-18 한국전자통신연구원 적응 배열 안테나 시스템의 오차 보정 장치 및 그 방법
US6885333B2 (en) * 2002-01-23 2005-04-26 Itt Manufacturing Enterprises, Inc. Cross-eye technique implementation
US6707417B2 (en) * 2002-06-11 2004-03-16 Raytheon Company Accurate range calibration architecture
US7239266B2 (en) * 2004-08-26 2007-07-03 Honeywell International Inc. Radar altimeter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1187354A1 (fr) * 1999-03-30 2002-03-13 Sanyo Electric Co., Ltd. Dispositif radio et procede d'etalonnage de la directivite d'antenne

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2004053517A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110476300A (zh) * 2017-03-31 2019-11-19 三菱电机株式会社 阵列天线装置、天线测定装置以及相控阵天线的相位调整方法
CN110476300B (zh) * 2017-03-31 2021-03-23 三菱电机株式会社 相控阵列天线装置及测定装置、相位调整控制装置及方法

Also Published As

Publication number Publication date
US20060033655A1 (en) 2006-02-16
FR2848302B1 (fr) 2005-05-27
FR2848302A1 (fr) 2004-06-11
US7292182B2 (en) 2007-11-06
WO2004053517A1 (fr) 2004-06-24

Similar Documents

Publication Publication Date Title
EP2800271B1 (fr) Procédé de calibrage d&#39;un amplificateur multiport, amplificateur multiport permettant la mise en ouvre d&#39;un tel procédé et satellite comprenant un tel amplificateur
EP1570292A1 (fr) Procede de calibration d&#39;une source hyperfrequence
EP3715265B1 (fr) Système et procédé d&#39;estimation d&#39;une erreur de pointage d&#39;une antenne satellite
FR2923950A1 (fr) Coupleur bidirectionnel integre.
EP1403962B1 (fr) Procédé et dispositif de tarage-égalisation d&#39;un système de réception.
FR2523375A1 (fr) Dispositif de compensation des distorsions des reflecteurs pour antennes de reception et/ou transmission d&#39;ondes a faisceaux multiples
CA2243857A1 (fr) Procede de calibrage de chaines de reception et/ou d&#39;emission pilotant un reseau d&#39;antennes actives, et station mobile correspondante
FR2799310A1 (fr) Procede de calibrage d&#39;une antenne collective
EP3384311B1 (fr) Procédé de calibrage d&#39;une antenne à balayage électronique sectorisée, et dispositif de mesure correspondante
EP3874628B1 (fr) Équipement et procédé d&#39;auto-etalonnage d&#39;un reseau d&#39;antennes
FR2882478A1 (fr) Dispositif de reception de signaux numeriques avec compensation de fading
EP2363917B1 (fr) Formateur de voies analogique reconfigurable pour antenne réseau
EP2887090B1 (fr) Calibration d&#39;un émetteur ou recepteur de radar polarimétrique
EP2337220A1 (fr) Evaluation d&#39;une impédance de charge en sortie d&#39;un coupleur directif
EP0886148B1 (fr) Procédés et systèmes de localisation radiosatellitaire en temps réel, notamment de type GPS
FR2947388A1 (fr) Procede d&#39;aide au pointage d&#39;une antenne, antenne a pointage assiste mettant en oeuvre ce procede et terminal nomade comportant une telle antenne
EP0055636B1 (fr) Récepteur d&#39;écartométrie pour radar secondaire
EP1818684A1 (fr) Méthode de détection hyperfréquence et détecteur utilisant cette méthode
EP3877773B1 (fr) Systeme d&#39;analyse de defauts par reflectometrie a dynamique optimisee
EP0664574B1 (fr) Dispositif de compensation des erreurs de pointage pour une antenne à balayage électronique
WO2013053706A1 (fr) Procede simplifie de mise a jour du calibrage d&#39;un dispositif hyperfrequence suite a une operation de maintenance
EP4344063A1 (fr) Procede de determination du dephasage entre un premier signal d&#39;horloge reçu par un premier composant electronique et un deuxieme signal d&#39;horloge reçu par un deuxieme composant electronique
EP1286416A1 (fr) Fermeture et déphasage d&#39;une antenne
FR3110040A1 (fr) Système radar monostatique à ondes continues modulées en fréquence amélioré et procédé de calibration associé
FR2965632A1 (fr) Telemetre hyperfrequence a commutation de retards

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050607

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080414

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100421