EP1532716B1 - Kalibriereinrichtung für ein antennen-array und verfahren zu dessen kalibrierung - Google Patents

Kalibriereinrichtung für ein antennen-array und verfahren zu dessen kalibrierung Download PDF

Info

Publication number
EP1532716B1
EP1532716B1 EP03730156A EP03730156A EP1532716B1 EP 1532716 B1 EP1532716 B1 EP 1532716B1 EP 03730156 A EP03730156 A EP 03730156A EP 03730156 A EP03730156 A EP 03730156A EP 1532716 B1 EP1532716 B1 EP 1532716B1
Authority
EP
European Patent Office
Prior art keywords
antenna array
antenna
probes
coupling devices
columns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03730156A
Other languages
English (en)
French (fr)
Other versions
EP1532716A1 (de
Inventor
Maximilian GÖTTL
Roland Gabriel
Jörg LANGENBERG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kathrein SE
Original Assignee
Kathrein Werke KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kathrein Werke KG filed Critical Kathrein Werke KG
Publication of EP1532716A1 publication Critical patent/EP1532716A1/de
Application granted granted Critical
Publication of EP1532716B1 publication Critical patent/EP1532716B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • the invention relates to an antenna array according to claim 1 and an associated method for its calibration according to claim 13.
  • the antenna array is intended in particular for mobile radio technology, in particular for base stations in mobile radio transmission.
  • An antenna array usually comprises a plurality of primary radiators, but at least two juxtaposed and superimposed emitters, so that there is a two-dimensional array arrangement.
  • These antenna arrays which are also known by the term “smart antennas”, are also used, for example, in the military sector for tracking targets (radar). These applications are also often referred to as “phased array” antennas. Recently, however, these antennas are also being used in mobile communications, in particular in the frequency ranges 800 MHz to 1000 MHz and 1700 MHz to 2200 MHz.
  • Such antenna arrays can be used to determine the direction of the incoming signal. At the same time, however, by appropriate tuning of the phase position of the fed into the individual columns transmission signals and the emission direction can be changed, i. There is a selective beam shaping.
  • This alignment of the emission direction of the antenna can be effected both by electronic beam scanning, ie, that the phase positions of the individual signals are adjusted by a suitable signal processing.
  • a suitable signal processing ie, that the phase positions of the individual signals are adjusted by a suitable signal processing.
  • passive beam forming networks are also suitably dimensioned passive beam forming networks.
  • the use of active or controllable by control signals phase shifters in these feed networks to change the emission direction is known.
  • Such a beam-forming network may for example consist of a so-called Butler matrix having, for example, four inputs and four outputs. Depending on the input connected, the network generates a different but fixed phase relationship between the emitters in the individual dipole rows.
  • Such an antenna structure with a Butler matrix is for example from US 6,351,243 known.
  • phase position of the individual, fed into the individual primary radiator signals depends on the length of the connecting cable. Since this can often be relatively long - especially at exposed locations - a calibration of the phase angle of the antenna including the connection cable is required. Also included in the calibration are of course active electronic components in the individual feeders, such as transmit or receive amplifiers.
  • an active phase adjusting device for an antenna is shown in which the antenna array upstream of a coupling device is provided.
  • Subordinate to the coupling device are N parallel transmission paths, each comprising a phase and an amplitude adjusting means, on the output side of which a respective path associated radiating element is driven.
  • the individual paths are measured one after the other, for which purpose a respective probe provided on the output side is assigned to a respective radiating element.
  • the transmission signal supplied to the radiating element via the relevant path is picked up by the probe and likewise fed to an evaluation device.
  • the phase and amplitude setting device By evaluating the input signal diverted on the input signal in comparison with the transmitted signal received via the probe, the phase and amplitude setting device provided there can then be correspondingly controlled via the respective measured path.
  • the calibration device thus requires that the probe is moved in succession to each radiator of the antenna array in order to capture the signals emitted by the radiator in question in order ultimately to carry out the transmission path upstream of the individual radiators.
  • a detailed solution of how to arrange the probes in relation to the beams is not described in this prior publication.
  • the schematic representation when using only one probe at least in arrays with more than two columns no symmetrical coupling with respect to the phase position and the amplitude at least in the near field of the antennas produced.
  • a specific signal is preferably supplied via the individual signal paths to a radiator assigned to the individual signal paths in order to detect a phase angle signal via a probe brought into the near field of the radiator element.
  • a phase control device can be controlled on the input side, via which the signal is supplied to the relevant radiating element.
  • coupling devices can be provided, which are then assigned to each individual radiating element. About the switching device, the coupling devices can be switched on and off sequentially.
  • a method and apparatus for calibrating a group antenna is also out of the DE 198 06 914 C2 known.
  • a directional coupling device is assigned to each antenna element, by means of which a respective signal can be coupled out from the respective signal path.
  • test signals are successively sent to a single antenna radiator and a signal value is coupled out via the directional coupler.
  • Downstream of the directional couplers is a power divider.
  • the signal supplied to a single radiator in the calibration process is thereby decoupled via the relevant directional coupler and guided via the power divider to its central gate. At this central gate, a reflection termination is connected.
  • the transmission signal component is reflected at this reflection section and divided into amplitude and phase-equal partial signals at the branching ports, wherein there are as many branching ports as transmission or reception paths.
  • the individual partial signals derived from the transmission signal are now coupled into the individual reception paths via the directional couplers.
  • the partial signals applied to the outputs of the reception paths and picked up by the radiation form network are evaluated by a control device. As a result, a total transmission factor can be determined for each individual path leading to an antenna radiator, by means of which a weighting and thus ultimately a phase adjustment can be carried out.
  • each antenna column must be assigned a directional coupling device.
  • a coupling device is required here, since as mentioned in each transmission path to one sub-signal hidden and on the other hand coming via the reflection device and the power divider sub-signal in each individual path on the intended directional coupler must be re-coupled to perform the relevant evaluation.
  • a generic calibration device is also from the WO 01/58047 A1 known.
  • the antenna array includes a plurality of radiators fed by feeder cables. Each radiator is associated with a sensor device that could be understood as a digital receiver. Each of these digital receivers generates a complex base band I / Q signal.
  • the output signals of these digital receivers are fed to a digital signal processing unit, where they are added. This gives a resulting signal, which is converted into a DC signal.
  • This DC signal is maximum when all signals picked up by the individual digital receivers have the same phase. On this basis, it is possible to obtain an indirect statement about a same phase position by finding a maximum DC signal.
  • a method for calibrating satellite payloads with hybrid matrices is for example also from EP 0 812 027 A2 known.
  • the preamble discloses a beamforming network having at least one input port mapped to selected output ports, the beamforming network providing an appropriate gain and phase shift between the at least one input port and the output ports.
  • the arrangement comprises a plurality of feed radiating elements, each of these feed radiating elements being connected to a respective one of the outputs of the at least one hybrid matrix.
  • a calibration pickup antenna responsive to the energy radiated by the feed radiating elements to produce a second calibration sweep.
  • the calibration system has a number of inputs corresponding to the number of hybrid matrix circuits, each hybrid matrix circuit being connected via an output to an input of the calibration system.
  • a sample coupler may also be used, which is arranged between the output of the hybrid matrix and an associated feed radiating element.
  • this system requires that at least one output on each hybrid matrix not be connected to a downstream radiator element but to a separate input of a calibration system.
  • the comparison between the injected signal and the measured signal behind the hybrid matrix allows the calibration of the amplifier in the branch in question. This procedure must be repeated for each output of the network to calibrate all amplifiers.
  • the only calibration antenna provided according to this known prior art does not serve a phase calibration, but only the power calibration. For this purpose, only one power component is measured via the calibration antenna, but not one phase. To measure the entire system, a power signal must be emitted via an antenna element and measured by the calibration antenna. This process must be repeated for all antennas.
  • the object of the present invention is in contrast to provide an antenna array with a calibration device and an associated method for calibrating the antenna array, wherein the calibration as well as the calibration should be simple and compared to the prior art, however, should have advantages. It should be possible within the scope of the invention, based on the measurement results to determine a phase relationship with respect to all radiator elements.
  • the calibration device according to the invention should preferably be a calibration device for a dual-polarized antenna array.
  • the inventive antenna array with the associated calibration device and the inventive method for calibrating an antenna array is characterized by numerous simplifications, which are quite surprising.
  • a beam-forming network preferably in the form of a Butler matrix
  • a phase relationship with respect to all radiator elements can ultimately be determined. This is ultimately possible because the manufacturer, the individual emitters, their arrangement and the length of the feeder cables of an input-side connection point to the radiators are measured and tuned so that all the radiator elements, even when using a beam forming network. in the manner of a Butler matrix in a fixed predetermined phase relationship to each other.
  • phase shifts occur due to upstream beam-forming networks or due to different upstream cable lengths, phase shifts caused thereby affect all radiators, so that ultimately even a single fixed probe or possibly only a single coupling device assigned to a radiator will detect a shift in the phase position can. This is true even if a downtilt angle is preset or provided with respect to the plurality of radiators of the antenna array.
  • the tapping of the test signals for the calibration process preferably does not take place via coupling devices, ie in particular not via directional couplers, but via probes, which can be provided in the near field. It proves to be particularly favorable that even with dual-polarized radiators for both polarizations only a single probe is necessary!
  • the probes can be arranged directly on the reflector plate of an antenna array so that the vertical extension height measured with respect to the plane of the reflector plate is lower than the position and arrangement of the radiator elements, for example the dipole structures for the radiator elements.
  • the calibration device according to the invention ie the antenna array according to the invention can also be constructed of patch radiators or combinations of patch radiators with dipole structures.
  • the small number of probes provided for each antenna array column is preferably disposed on the uppermost or lowermost radiator or on the uppermost or lowermost dipole radiator structure.
  • the probes will be arranged in a vertical plane perpendicular to the reflector plane, which extends symmetrically through the dual-polarized radiator structure. But also a page offset is possible in principle.
  • the preferably at least two capacitive or inductive probes or the optionally used coupling devices are interconnected firmly by means of a combination network.
  • This combination network is preferably constructed such that the group delay from the input of the respective column to the output of the combination network is approximately the same for all antenna inputs (at least with respect to one polarization in dual-polarized antennas) and over the entire operating frequency range.
  • the solution according to the invention is suitable for calibrating an antenna array, in which usually the radiators and radiator groups arranged in the individual columns are each driven via a separate input. Therefore, by means of the calibration device according to the invention, a corresponding phase calibration can be carried out in order to obtain a desired beam shaping. In this case, a pivoting of the main beam direction, especially in the azimuth direction (but also, of course, in the elevation direction) can also be realized.
  • the antenna array according to the invention and the calibration device according to the invention can also be used equally if the antenna array is preceded by a beam-forming network, for example in the form of a Butler matrix.
  • phase position of the transmission from the input of the individual columns or the antenna inputs is preferably the same size, in practice the phase position (or the group delay) for the ideal phase position has more or less pronounced tolerance-related deviations.
  • the ideal phase position is given by the fact that the phase is identical for all paths, and also with regard to the beam shaping.
  • the more or less tolerance-related deviations result additively as an offset or frequency dependent by different frequency responses.
  • the deviations are measured over all transmission paths preferably on the path from the input antenna array or beam forming network to the probe output or input to probe outputs and preferably over the entire operating frequency range (for example during the production of the antenna).
  • the transmission paths are preferably measured on the route from the input antenna array or beam forming network to coupling output or coupling outputs.
  • This determined data can then be stored in a data record.
  • These data which are stored in a suitable form, for example in a data record, can then be made available to a transmitting device or to the base station in order then to be taken into account for the electronic generation of the phase position of the individual signals. It proves to be particularly advantageous, for example, to associate this data or the mentioned data record with the corresponding data of a serial number of the antenna.
  • FIG. 1 shows a schematic plan view of an antenna array 1 which, for example, comprises a plurality of dual-polarized radiators or radiator elements 3, which are arranged in front of a reflector 5.
  • the antenna array shows columns 7, which are arranged vertically, wherein in each column in the illustrated embodiment four radiators or radiator groups 3 are arranged one above the other.
  • radiators or radiator groups 3 are positioned.
  • the individual radiators or radiator groups 3 need not necessarily be arranged in the same height in the individual columns.
  • the radiator or radiator groups 3 in each case two adjacent columns 7 by the half vertical distance between two adjacent radiators offset from each other.
  • a respective probe 11, 11a or 11, 11b which can operate inductively or capacitively, is assigned in each case to the furthest leftmost and rightmost column 7, for example to the lowest-positioned dual-polarized emitter 3, respectively.
  • This probe 11 may for example consist of a columnar or pin-shaped probe body which extends perpendicular to the plane of the reflector 5.
  • the probes 11 may, for example, also consist of inductively operating probes in the form of a small induction loop.
  • the respective probe is preferably arranged in a vertical plane in which the either simply polarized radiators or the dual-polarized radiators or radiator elements 3 are arranged.
  • the probes are preferably arranged in the near field of the associated radiator.
  • the probes 11 end below the plane (and thus closer to the reflector 5) in the exemplary embodiment shown, in which the dipole radiators 3 'are located.
  • the dipole radiators 3 'are located In the embodiment shown are capacitive probes.
  • the radiators 3 can consist, for example, of cross-shaped dipole radiators or dipole squares. Particularly suitable dual polarized dipole radiators, such as those from the WO 00/39894 are known.
  • a beam forming network 17 which has, for example, four inputs 19 and four outputs 21.
  • the four outputs of the beamforming network 17 are connected to the four inputs 15 of the antenna array.
  • the number Y of the outputs may differ from the number X of the inputs, ie in particular the number Y of the outputs may be greater than the number of inputs X.
  • a feed cable 23 is connected to one of the inputs 19, about all outputs 21 are fed accordingly.
  • a horizontal emitter orientation with, for example, -45 ° to the left can be effected, as can be seen from the schematic diagram of Figure 3.
  • the feeder cable 23 is connected at the most right terminal 19.4, then a corresponding alignment of the main lobe of the radiation field of the antenna array at an angle of + 45 ° to the right.
  • the antenna array are operated so that, for example, a pivoting by 15 ° to the left or to the right relative to the vertical plane of symmetry of the antenna array can be effected.
  • a beam forming network 17 it is common in such a beam forming network 17 to provide for different angular orientations of the main lobe of the antenna array, a corresponding number of inputs, wherein the number of outputs usually corresponds to the number of columns of the antenna array.
  • Each input is connected to a plurality of outputs, usually each input to all outputs of the beam forming network 17.
  • the calibration device explained in more detail below, however, is above all also suitable for an antenna array according to FIGS. 1 and 2, which does not have an upstream beam-forming network, in particular in the form of a Butler matrix.
  • the column inputs 15 of the antenna array are then fed via a corresponding number of separate feeder cables or other supply terminals.
  • only four exemplary parallel feed lines 23 are provided in Figure 1, which are then connected to the omission of the beam forming network shown in Figure 1 directly to the column inputs 15 of the antenna array.
  • a simplified embodiment is described in which a four-column antenna array only two probes 11c and 11d are used. These probes are arranged so that each probe is associated with a pair of adjacent columns 7, as can be seen in deviation from Figure 4 in the front view of Figure 1.
  • the probe 11c is arranged in the intermediate region between the two left-hand columns and the probe 11d in the intermediate region between the two right-hand columns 7 of the four-column antenna array according to FIG.
  • the two probes 11c and 11d are each connected via a signal line 25 'and 25 "to a combiner 27 (Comb) whose output is connected to a connection S via a line 29.
  • Comb combiner 27
  • a pilot tone will be applied to the input A lead, e.g. given a known signal to measure at the output S of the combination network 27 (Comb), so for example a combiner, the absolute phase. Now you can do this also for the supply line at the inputs B, C and D.
  • phase actuators 37 which are respectively connected upstream of the inputs A to D.
  • a corresponding electrical connection line 23 would then be connected, for example, to the input A, B, C or D, ie an input upstream of the respective phase compensation device 37, to effect a corresponding alignment of the main lobe with different horizontal orientation as desired.
  • the phase actuators 37 can also consist of electrical line sections, which are connected upstream of the individual inputs A to D in a suitable length in order to effect the phase compensation or phase adjustment in the desired sense.
  • probes 11 offer the advantage that the corresponding calibration can be carried out with a corresponding number of probes in the case of both simply polarized and also dual-polarized antenna arrays.
  • FIG. 5 shows a comparable structure in which coupling devices 111 are used instead of probes 11.
  • coupling devices 111 only one calibration for simply polarized antenna arrays can then be carried out.
  • FIG. 6 a calibration device of an antenna array is described which, for example, works in conjunction with a beam-forming network, preferably in a Butler matrix.
  • This beam-forming network may preferably be integrated in the antenna array.
  • the beam-forming network 17 may be, for example, a known Butler matrix 17 'whose four inputs A, B, C and D are each connected to the outputs 21, via which the radiators 3 are fed via lines 35.
  • the decoupled signals are added.
  • the result of the extraction of the signals and the addition can be measured via an additional connection even on the combination network.
  • FIG. 6 shows, for the case of an antenna array with dual-polarized radiators 3, that a combination network can be used for the calibration which does not work with probes 11, but coupling devices 111, for example directional couplers 111.
  • the exemplary embodiment according to FIG. 5 also shows how the calibration network combines for phasing of the supply lines can be.
  • Such a combination is useful if, for example, the respective beam-forming network 17, for example the so-called Butler matrix 17 ', together with the couplers (which are also referred to as coupling devices) and combination networks can be realized on a circuit board, as this largely identical units (each Kopplerkombinationsnetzwerke) can be produced.
  • FIG. 6 shows, in comparison with FIG. 5, the extension to dual-polarized radiators with a beam-forming network, the two outputs of the respective combination network 27 'and 27 ", for example in the form of a combiner (Comb), also having the inputs of a downstream second combination network 28 a combiner (Comb) is combined and applied to the common output S.
  • the combination network 27 'thus serves to determine the phase position on a radiator element with respect to the one polarization, wherein the combination network 27 "for determining the phase position of a respective radiator for the other polarization is used.
  • phase actuators 37 are set at the input of the beam forming network 17, that is to say, for example, the Butler matrix 17 'in such a way that a single coupler can be used at the output of a respective matrix and nevertheless always the same phase regardless of input A to D measures.
  • the phase actuators may consist of basically vorschaltbaren cable sections to change the phase position.
  • a probe 11 may be used whereby the signals emitted by a dual polarized emitter can be received in both polarizations. Thus, only one probe is necessary for both polarizations.
  • the network points M1, M2, M3 and M4 could be measured and generated, depending on whether a connecting line 23 is connected to the input A, B, C or D.
  • the straight lines shown in FIG. 7 can then be determined, as a result of which the exact phase position can be deduced.
  • a corresponding phase adjustment can then be carried out on the input side, preferably even before the beam-forming network.
  • the use of only one probe is only feasible if it is an antenna array with only two columns is or an antenna array with multiple columns, which is preceded by a beam forming network, for example in the form of a Butler matrix. Because only in this case is there a predetermined phase relation to the radiators in the individual columns.
  • corresponding single probe or the corresponding single coupler pair would be arranged, for example, in the second column, then corresponding measurement points M11, M12, M13 and M14 would be able to be determined, whereby the corresponding straight lines could again be laid by the fixed phase relationship through these points. Also by this one would be able to derive the same diagram of Figure 7 in order to make the appropriate phase settings and calibrations can.

Description

  • Die Erfindung betrifft ein Antennen-Array nach Anspruch 1 sowie ein zugehöriges Verfahren zu dessen Kalibrierung nach Anspruch 13.
  • Das Antennen-Array ist insbesondere für die Mobilfunktechnik bestimmt, insbesondere für Basisstationen bei der Mobilfunk-Übertragung.
  • Ein Antennen-Array umfasst üblicherweise mehrerer Primärstrahler, mindestens jedoch zwei neben- und übereinander angeordnete Strahler, so dass sich eine zweidimensionale Array-Anordnung ergibt. Diese auch unter dem Begriff "Smart-Antennen" bekannten Antennen-Arrays werden beispielsweise auch im Militärbereich zur Verfolgung von Zielen (Radar) eingesetzt. In diesen Anwendungen wird auch oftmals von "phased array"-Antennen gesprochen. Verstärkt werden diese Antennen in letzter Zeit jedoch auch im Mobilfunk eingesetzt, insbesondere in den Frequenzbereichen 800 MHz bis 1000 MHz bzw. 1700 MHz bis 2200 MHz.
  • Durch die Entwicklung neuer Primärstrahlersysteme ist nunmehr auch der Aufbau von dualpolarisierten Antennen-Arrays, insbesondere mit einer Polarisationsausrichtung von +45° bzw. -45° gegenüber der Horizontalen bzw. Vertikalen ermöglicht worden.
  • Derartige Antennen-Arrays, gleich, ob sie grundsätzlich dualpolarisierte oder nur einfach polarisierte Strahler umfassen, können zur Bestimmung der Richtung des ankommenden Signals eingesetzt werden. Gleichzeitig kann jedoch durch entsprechende Abstimmung der Phasenlage der in die einzelnen Spalten eingespeisten Sendesignale auch die Abstrahlrichtung verändert werden, d.h. es erfolgt eine selektive Strahlformung.
  • Diese Ausrichtung der Abstrahlrichtung der Antenne kann sowohl durch eine elektronische Strahlschwenkung erfolgen, d.h., dass die Phasenlagen der einzelnen Signale durch eine geeignete Signalverarbeitung eingestellt werden. Ebenso möglich sind auch geeignet dimensionierte passive Strahlformungsnetzwerke. Auch der Einsatz von aktiven oder durch Steuer-Signale ansteuerbaren Phasenschiebern in diesen Speisenetzwerken zur Veränderung der Abstrahlrichtung ist bekannt. Ein derartiges Strahlformungsnetzwerk kann beispielsweise aus einer sogenannten Butler-Matrix bestehen, die beispielsweise vier Eingänge und vier Ausgänge aufweist. Das Netzwerk erzeugt je nach beschaltetem Eingang eine andere, aber feste Phasenbeziehung zwischen den Strahlern in den einzelnen Dipolreihen. Ein derartiger Antennenaufbau mit einer Butler-Matrix ist beispielsweise aus der US 6,351,243 bekannt geworden.
  • Bei allen aufgeführten Anordnungen zur Strahlformung besteht jedoch das Problem, dass die Phasenlage der einzelnen, in die einzelnen Primärstrahler eingespeisten Signale von der Länge der Anschlusskabel abhängt. Da dies oftmals relativ lang sein können - insbesondere bei exponierten Standorten - wird eine Kalibrierung der Phasenlage der Antenne inklusive der Anschlusskabel erforderlich. In die Kalibrierung mit einbezogen werden ebenfalls natürlich auch aktive elektronische Komponenten in den einzelnen Speiseleitungen, wie beispielsweise Sende- oder Empfangsverstärker.
  • Gerade bei derartigen elektronischen Komponenten ist eine Kalibrierung durch Bauteiltoleranzen und Temperaturabhängigkeiten der Gruppenlaufzeit oftmals erforderlich.
  • Ein spezielles Problem besteht beim Einsatz von vorgeschalteten Butler-Matrixen zur Richtungsformung. Hier wird eine Kalibrierung recht kompliziert, da die Phasenlage nach der Butler-Matrix uneinheitlich ist und auch normalerweise mehrere Primärstrahler der Antenne einen Teil des Signals erhalten.
  • Entsprechende Kalibrierverfahren zu einer entsprechend optimierten Einstellung einer gewünschten Phasenlage für die einzelnen Strahlerelemente sind insbesondere bezüglich dualpolarisierter Antennen nicht bekannt.
  • Bekannt sind lediglich Verfahren, in denen einzelne Elemente eines vertikal gestockten Antennen-Arrays mit jeweils an den Dipolen liegenden Sonden bestückt sind. Diese Antennen werden beispielsweise im Flugfunk eingesetzt. Die dabei verwendeten Sonden dienen dem Nachweis, dass jeder Dipol eine entsprechende Leistung erhält. Durch Zusammenschaltung auf einen Ausgang wird somit der Gesamtpegel erfasst und gemessen. Falls ein Dipol unzureichende Leistung erhält, wird somit diese Störung schnell erkannt, da sich dann der Gesamtpegel verändert. Dadurch, dass alle Primärstrahler mittels eines gemeinsamen Speisenetzwerkes zusammengeschaltet sind, spielt die Phasenlage bzw. die Laufzeit zwischen Sondenausgang (Monitorausgang bei Flugfunkantennen) und Eingang der Antenne lediglich eine untergeordnete Rolle.
  • Mit anderen Worten ist mit einer derartigen Anordnung letztlich eine Erfassung der Leistung möglich. Eine differenzierte Auswertung der Phase der einzelnen Primärstrahler ist weder möglich noch bei derartigen Systemen notwendig, da es sich lediglich um eine starre, fest miteinander verschaltete Array-Anordnung handelt, welche keine schwenkbare oder schaltbare Veränderung der Hauptstrahlrichtung aufweist.
  • In der US 5,644,316 ist eine aktive Phasen-Einstelleinrichtung für eine Antenne gezeigt, bei welcher dem Antennen-Array vorgelagert eine Koppeleinrichtung vorgesehen ist. Der Koppeleinrichtung nachgeordnet sind N parallel geschaltete Übertragungspfade, die jeweils eine Phasen- und eine Amplituden-Einstelleinrichtung umfassen, worüber ausgangsseitig ein dem betreffenden Pfad zugehöriges Strahlerelement angesteuert wird. Um eine entsprechende Kalibrierung durchzuführen, werden die einzelnen Pfade nacheinander vermessen, wozu jeweils eine ausgangsseitig vorgesehene Sonde einem betreffenden Strahlerelement zugeordnet wird. Das über den betreffenden Pfad dem Strahlerelement zugeführte Sendesignal wird über die Sonde aufgefangen und ebenfalls einer Auswerteinrichtung zugeführt. Durch Auswertung des eingangsseitig abgezweigten Sendesignales im Vergleich mit dem über die Sonde erhaltenen Sendesignal kann dann über den jeweils vermessenen Pfad die dort vorgesehene Phasen- und Amplituden-Einstelleinrichtung entsprechend angesteuert werden. Die Kalibriereinrichtung erfordert also, dass die Sonde nacheinander zu jedem Strahler des Antenne-Arrays verfahren wird, um die von dem betreffenden Strahler ausgesandten Signale aufzufangen, um darüber letztlich den den einzelnen Strahlern vorgelagerten Übertragungspfad vorzunehmen. Zudem ist eine detaillierte Lösung, wie die Sonden im Verhältnis zu den Strahlen anzuordnen sind, in dieser Vorveröffentlichung nicht beschrieben. Insbesondere ist nach der schematischen Darstellung bei Verwendung nur einer Sonde zumindest bei Arrays mit mehr als zwei Spalten keine symmetrische Kopplung bezüglich der Phasenlage als auch der Amplitude zumindest im Nahfeld der Antennen herstellbar.
  • Aus der US 6,046,697 ist eine insoweit vergleichbare Kalibriereinrichtung bekannt geworden. Auch bei dieser Vorrichtung wird bevorzugt ein spezielles Signal über die einzelnen Signalwege einem den einzelnen Signalwegen zugeordneten Strahler zugeführt, um über eine in das Nahfeld des Strahlerelementes gebrachte Sonde ein Phasenlagen-Signal zu erfassen. Dadurch kann eine Phasensteuerungseinrichtung eingangsseitig angesteuert werden, worüber das Signal dem betreffenden Strahlerelement zugeführt wird. Anstelle einer unterschiedlich positionierbaren Sondeneinrichtung können auch Koppeleinrichtungen vorgesehen sein, die dann jedem einzelnen Strahlerelement zugeordnet sind. Über die Schalteinrichtung können die Koppeleinrichtungen nacheinander zu- und abgeschaltet werden.
  • Schließlich ist ein Verfahren und eine Vorrichtung zur Kalibrierung einer Gruppenantenne ist auch aus der DE 198 06 914 C2 bekannt geworden. Auch bei diesem Ausführungsbeispiel ist jedem Antennenelement eine Richtkoppeleinrichtung zugeordnet, worüber von dem betreffenden Signalpfad jeweils ein Signal ausgekoppelt werden kann. Zur Kalibrierung werden nacheinander jeweils Testsignale zu einem einzelnen Antennestrahler gesendet und über den Richtkoppler ein Signalwert ausgekoppelt. Den Richtkopplern nachgeordnet ist ein Leistungsteiler. Das im Kalibrierverfahren einem einzelnen Strahler zugeführte Signal wird dadurch über den betreffenden Richtkoppler ausgekoppelt und über den Leistungsteiler zu dessen zentralem Tor geführt. An diesem zentralen Tor ist ein Reflexionsabschluss angeschlossen. Der Sendesignalanteil wird an diesem Reflexionsabschnitt reflektiert und in amplituden- und phasengleiche Teilsignale an den Verzweigungstoren aufgeteilt, wobei es so viele Verzweigungstore gibt, wie Sende- oder Empfangspfade. Die aus dem Sendesignal abgeleiteten einzelnen Teilsignale werden nun über die Richtkoppler in die einzelnen Empfangspfade eingekoppelt. Die an den Ausgängen der Empfangspfade anliegenden, vom Strahlungsformnetzwerk aufgenommenen Teilsignale werden von einer Steuerungseinrichtung ausgewertet. Dadurch lässt sich für jeden einzelnen zu einem Antennenstrahler führenden Pfad ein Gesamttransmissionsfaktor bestimmen, worüber eine Gewichtung und damit letztlich eine Phaseneinstellung vorgenommen werden kann.
  • Auch hier ist der Gesamtaufwand beachtlich, da jeder Antennenspalte eine Richtkoppeleinrichtung zugeordnet sein muss. Eine Koppeleinrichtung ist hier erforderlich, da hierüber wie erwähnt in jedem einzelnen Sendepfad zum einen ein Teilsignal ausgeblendet und zum anderen ein über die Reflektionseinrichtung und den Leistungsteiler kommendes Teilsignal in jedem einzelnen Pfad über die vorgesehenen Richtkoppler wieder eingekoppelt werden muss, um die betreffende Auswertung durchzuführen.
  • Eine gattungsbildende Kalibriereinrichtung ist auch aus der WO 01/58047 A1 bekannt geworden. Das Antennen-Array umfasst eine Vielzahl von Strahlern, die über Speisekabel gespeist werden. Jedem Strahler ist eine Sensorvorrichtung zugeordnet, die als Digitalempfänger verstanden werden könnte. Jeder dieser Digitalempfänger erzeugt ein komplexes Basis-Band I/Q-Signal. Die Ausgangssignale dieser Digitalreceiver werden einer digitalen Signalverarbeitungseinheit zugeführt, wo sie addiert werden. Dadurch erhält man ein resultierendes Signal, welches in ein Gleichstromsignal konvertiert wird. Dieses Gleichstromsignal wird dann maximal, wenn alle über die einzelnen digitalen Receiver abgegriffenen Signale gleiche Phase aufweisen. Auf dieser Basis ist es möglich, durch Auffinden eines maximalen Gleichstromsignals eine indirekte Aussage über eine gleiche Phasenlage zu erzielen.
  • Ein Verfahren zur Kalibrierung von Satellitennutzlasten mit Hybrid-Matrizen ist beispielsweise auch aus der EP 0 812 027 A2 bekannt geworden. Die Vorveröffentlichung beschreibt ein Strahlformungsnetzwerk mit zumindest einem Eingangsanschluss, der auf ausgewählte Ausgangsanschlüsse abgebildet wird, wobei das Strahlformungsnetzwerk eine geeignete Verstärkungs- und Phasenverschiebung zwischen dem zumindest einen Eingangsanschluss und den Ausgangsanschlüssen liefert. Dabei ist ferner eine Hybridmatrix mit einer vorgeschriebenen Anzahl von Eingängen und einer entsprechenden Anzahl von Ausgängen vorgesehen. Ferner umfasst die Anordnung eine Vielzahl von Speise-Strahlerelementen, wobei jedes dieser Speise-Strahlerelemente mit einem jeweiligen der Ausgänge der zumindest einen Hybridmatrix verbunden ist. Ferner ist eine Kalibrierungs-Aufnahmeantenne vorgesehen, die auf die von den Speise-Strahlerelementen ausgestrahlten Energie anspricht, um eine zweite Kalibrierungsabtastung zu erzeugen. Das Kalibrierungssystem hat dabei eine Anzahl von Eingängen, die der Anzahl der Hybridmatrix-Schaltung entspricht, wobei jede Hybridmatrix-Schaltung über einen Ausgang mit einem Eingang des Kalibrierungssystems verbunden ist. Bei einer anderen Ausführungsvariante kann anstelle der Kalibrierungs-Aufnahmeantenne auch ein Abtastwertkoppler verwendet werden, der zwischen dem Ausgang der Hybridmatrix und einem zugehörigen Speise-Strahlerelement angeordnet ist. Bei diesem System ist es aber auf jeden Fall erforderlich, dass zumindest ein Ausgang an jeder Hybridmatrix nicht mit einem nachgeordneten Strahlerelement, sondern mit einem separaten Eingang eines Kalibrierungssystems verbunden sein muss. Um gemäß diesem vorbekannten Stand der Technik eine Kalibrierung vorzunehmen, wird ein Signal an einem einzigen Ausgangsport des Netzwerkes (also vor einem Verstärker und einer Hybridmatrix) erzeugt, um dann hinter einer jeweiligen Hybridmatrix an einem Ausgang das ankommende Signal zu messen. Der Vergleich zwischen dem eingespeisten Signal und dem gemessenen Signal hinter der Hybridmatrix erlaubt die Kalibrierung des Verstärkers in dem betreffenden Zweig. Diese Vorgehensweise muss für jeden Ausgang des Netzwerkes wiederholt werden, um hierdurch alle Verstärker zu kalibrieren. Die gemäß diesem vorbekannten Stand der Technik vorgesehene einzige Kalibrier-Antenne dient nicht einer Phasen-Kalibrierung, sondern lediglich der Leistungskalibrierung. Zu diesem Zweck wird auch nur eine Leistungskomponente über die Kalibrier-Antenne gemessen, nicht aber eine Phase. Zum Vermessen der gesamten Anlage muss dabei jeweils ein Leistungssignal über ein Antennenelement ausgestrahlt und durch die Kalibrierantenne gemessen werden. Dieser Vorgang muss für alle Antennen wiederholt werden.
  • Aufgabe der vorliegenden Erfindung ist es demgegenüber ein Antennen-Array mit einer Kalibriereinrichtung sowie ein zugehöriges Verfahren zur Kalibrierung des Antennen-Arrays zu schaffen, wobei die Kalibriereinrichtung wie aber auch das Kalibrierverfahren einfach gestaltet sein und gegenüber dem Stand der Technik gleichwohl Vorteile aufweisen soll. Dabei soll es im Rahmen der Erfindung möglich sein, anhand der Messergebnisse eine Phasenbeziehung bezüglich aller Strahlerelemente zu ermitteln. Bei der erfindungsgemäßen Kalibriereinrichtung soll es sich dabei bevorzugt um eine Kalibriereinrichtung für ein dualpolarisiertes Antennen-Array handeln.
  • Die Aufgabe wird bezüglich des Antennen-Arrays gemäß den im Anspruch 1 angegebenen Merkmalen und bezüglich des Verfahrens zur Kalibrierung bezüglich den im Anspruch 13 angegebenen Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.
  • Das erfindungsgemäße Antennen-Array mit der zugehörigen Kalibriereinrichtung sowie das erfindungsgemäße Verfahren zur Kalibriereinrichtung eines Antennen-Arrays zeichnet sich durch zahlreiche Vereinfachungen aus, die durchaus überraschend sind.
  • Überraschend ist, dass es gemäß der Erfindung nunmehr möglich ist, für jeweils eine Spalte eines Antennen-Arrays mit mehreren übereinander angeordneten Strahlern oder Strahlereinrichtungen weniger Sonden oder Koppeleinrichtungen vorzusehen, als in der betreffenden Spalte des Antennen-Arrays an übereinander angeordneten Strahlern vorgesehen sind. Bei jeweils N-übereinander angeordneten Strahlern oder Koppeleinrichtungen ist es erfindungsgemäß problemlos möglich, lediglich N/2 oder weniger Koppeleinrichtungen und/oder Sonden pro Spalte zu verwenden.
  • Noch überraschender ist jedoch, dass sich erfindungsgemäß gezeigt hat, dass pro Spalte auch bei N-übereinander angeordneten Strahlern nur eine einzige feststehende Sonde notwendig ist, über die beide Polarisationen vermessen werden können ! Im Falle der Verwendung einer Koppeleinrichtung beispielsweise in der Form eines Richtkopplers werden bevorzugt für einen dualpolarisierten Strahler zwei Koppeleinrichtungen, d.h. für jede Polarisation eine Koppeleinrichtung, verwendet.
  • Schließlich ist es erfindungsgemäß sogar möglich, für ein Antennen-Array mit beispielsweise vier Spalten nur zwei feststehende Sonden (oder zwei feststehende Koppeleinrichtungen bei einem einfach polarisierten Antennen-Array oder beispielsweise zwei Paare von feststehenden Koppeleinrichtungen bei einem dualpolarisierten Antenne-Array) vorzusehen, die bevorzugt zur vertikalen Mittelsymmetrieebene symmetrisch angeordnet werden. So kann beispielsweise für die beiden äußersten Spalten je eine Sonde (oder je eine Koppeleinrichtung im Falle eines einfach polarisierten Antennen-Arrays oder je ein Paar von Koppeleinrichtungen bei einem dualpolarisierten Antennen-Array) oder beispielsweise für die beiden mittleren Spalten je eine Sonde (bzw. wieder in entsprechender Weise die Koppeleinrichtung) vorgesehen sein.
  • Schließlich ist es sogar im Falle eines Strahlformungsnetzwerkes vorzugsweise in Form einer Butler-Matrix möglich, lediglich einen, vorzugsweise aber zumindest zwei feststehende Sonden zu verwenden, die jeweils einem Strahlerelement in einer unterschiedlichen Spalte des Antennenarrays zugeordnet sind. Durch die hierüber gewonnenen Messergebnisse kann letztlich eine Phasenbeziehung bezüglich aller Strahlerelemente ermittelt werden. Dies ist letztlich dadurch möglich, da herstellerseitig die einzelnen Strahler, deren Anordnung sowie die Länge der Speisekabel einer eingangsseitigen Anschlussstelle bis zu den Strahlern so vermessen und abgestimmt sind, dass alle Strahlerelemente auch bei Verwendung eines Strahlformungsnetzwerkes z.B. nach Art einer Butler-Matrix in einer fest vorgegebenen Phasenbeziehung zueinander strahlen. Treten Phasenverschiebungen durch vorgeschaltete Strahlformungsnetzwerke oder durch unterschiedliche vorgeschaltete Kabellängen auf, so wirken sich dadurch verursachte Phasenverschiebungen auf alle Strahler aus, so dass letztlich sogar über nur eine einzige feststehende Sonde oder möglicherweise nur durch eine einzige einem Strahler zugeordnete Koppeleinrichtung, eine Verschiebung der Phasenlage detektiert werden kann. Dies gilt selbst dann, wenn bezüglich der Vielzahl der Strahler des Antennen-Arrays ein Downtilt-Winkel voreingestellt oder vorgesehen ist.
  • Der Abgriff der Testsignale für den Kalibriervorgang erfolgt bevorzugt nicht über Koppeleinrichtungen, d.h. insbesondere nicht über Richtkoppler, sondern über Sonden, die im Nahfeld vorgesehen sein können. Dabei erweist sich als besonders günstig, dass auch bei dualpolarisierten Strahlern für beide Polarisationen nur eine einzige Sonde notwendig ist ! Die Sonden können unmittelbar auf dem Reflektorblech eines Antennen-Arrays stehend so angeordnet werden, dass die vertikale Erstreckungshöhe gemessen gegenüber der Ebene des Reflektorbleches niedriger ist als die Lage und Anordnung der Strahlerelemente, beispielsweise der Dipolstrukturen für die Strahlerelemente. Ebenso kann die erfindungsgemäße Kalibriereinrichtung, d.h. das erfindungsgemäße Antennen-Array auch aus Patchstrahlern oder aus Kombinationen aus Patchstrahlern mit Dipolstrukturen aufgebaut sein.
  • In einer bevorzugten Ausführungsform der Erfindung ist beispielsweise die für jede Antennen-Array-Spalte vorgesehene geringe Anzahl von Sonden oder beispielsweise nur für einige Spalten vorgesehene einzige Sonde bevorzugt am obersten oder untersten Strahler bzw. an der obersten oder untersten Dipol-Strahler-Struktur angeordnet. Entsprechendes gilt dann, wenn anstelle der Sonden Koppeleinrichtungen verwendet werden. Bevorzugt werden die Sonden in einer zur Reflektorebene senkrechten Vertikalebene angeordnet sein, die symmetrisch durch die dualpolarisierte Strahler-struktur hindurch verläuft. Aber auch ein Seitenversatz ist grundsätzlich möglich.
  • Die bevorzugt zumindest beiden kapazitiven oder induktiven Sonden oder die gegebenenfalls verwendeten Koppeleinrichtungen werden mittels eines Kombinationsnetzwerkes fest miteinander verschaltet. Dieses Kombinationsnetzwerk ist bevorzugt derart aufgebaut, dass die Gruppenlaufzeit vom Eingang der jeweiligen Spalte bis zum Ausgang des Kombinationsnetzwerkes für alle Antenneneingänge (zumindest bezüglich einer Polarisation bei dualpolarisierten Antennen) und über den gesamten Betriebsfrequenzbereich in etwa gleich groß ist.
  • Schließlich lässt sich eine weitere Verbesserung auch dadurch erzielen, dass das Kombinationsnetzwerk verlustbehaftete Komponenten beinhaltet. Denn diese Komponenten tragen zu einer Verringerung von Resonanzen bei.
  • Die erfindungsgemäße Lösung eignet sich zur Kalibrierung eines Antennen-Arrays, bei welchem üblicherweise die in den einzelnen Spalten angeordneten Strahler und Strahlergruppen jeweils über einen eigenen Eingang angesteuert werden. Von daher kann mittels der erfindungsgemäßen Kalibriereinrichtung eine entsprechende Phasen-Kalibrierung durchgeführt werden, um eine gewünschte Strahlformung zu erhalten. Dabei kann ebenfalls eine Verschwenkung der Hauptstrahlrichtung vor allem in Azimutrichtung (aber auch natürlich in Elevationsrichtung) mit realisiert sein. Das erfindungsgemäße Antennen-Array und die erfindungsgemäße Kalibriereinrichtung lassen sich aber auch gleichermaßen dann verwenden, wenn dem Antennen-Array noch ein Strahlformungsnetzwerk beispielsweise in Form einer Butler-Matrix vorgeschaltet ist.
  • Die Phasenlage der Transmission vom Eingang der einzelnen Spalten bzw. der Antenneneingänge ist zwar bevorzugt gleich groß, wobei jedoch in der Praxis die Phasenlage (oder die Gruppenlaufzeit) zur idealen Phasenlage mehr oder weniger starke toleranzbedingte Abweichungen aufweist. Die ideale Phasenlage ist dadurch gegeben, dass die Phase für alle Pfade identisch ist, und zwar auch bezüglich der Strahlformung. Die mehr oder weniger stark toleranzbedingten Abweichungen ergeben sich additiv als Offset oder auch frequenzabhängig durch unterschiedliche Frequenzgänge. Erfindungsgemäß wird hier vorgeschlagen, die Abweichungen über alle Übertragungspfade vorzugsweise auf der Strecke vom Eingang Antennen-Array oder Strahlformungsnetzwerk bis zum Sondenausgang oder Eingang bis Sondenausgängen und bevorzugt über den gesamten Betriebsfrequenzbereich vermessen (beispielsweise bei der Produktion der Antenne). Im Falle der Verwendung von Koppeleinrichtungen werden die Übertragungspfade bevorzugt auf der Strecke vom Eingang Antennen-Array oder Strahlformungsnetzwerk bis Koppelausgang oder Koppelausgängen vermessen. Diese ermittelten Daten können dann in einem Datensatz gespeichert werden. Diese in geeigneter Form, eben beispielsweise in einem Datensatz gespeicherten Daten können dann einer Sendeeinrichtung bzw. der Basisstation zur Verfügung gestellt werden, um dann zur elektronischen Erzeugung der Phasenlage der einzelnen Signale berücksichtigt zu werden. Als besonders vorteilhaft erweist sich, beispielsweise diese Daten oder den erwähnten Datensatz mit den entsprechenden Daten einer Seriennummer der Antenne zuzuordnen.
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen näher erläutert. Dabei zeigen im einzelnen:
  • Figur 1 :
    eine schematische Draufsicht auf ein Antennen-Array mit einer erfindungsgemäß vorgesehenen Kalibriereinrichtung, die im gezeigten Ausführungsbeispiel Sonden umfasst;
    Figur 2:
    eine schematische auszugsweise Vertikal-Querschnittsdarstellung längs einer Vertikalebene durch eine Spalte des in Figur 1 gezeigten Antennen-Arrays;
    Figur 3 :
    eine Darstellung von vier typischen Horizontaldiagrammen, die durch eine Gruppen-antenne mit Hilfe einer 4/4-Butler-Matrix erzeugt werden (also einer Butler-Matrix mit vier Eingängen und vier Ausgängen);
    Figur 4 :
    ein erstes Ausführungsbeispiel unter detaillierterer Widergabe einer erfindungsgemäßen Kalibriereinrichtung unter Verwendung von Sonden;
    Figur 5 :
    eine zu Figur 4 abgewandelte Kalibriereinrichtung mit einem Kombinationsnetzwerk unter Verwendung von Koppeleinrichtungen anstelle von Sonden;
    Figur 6 :
    ein zu Figur 5 erweitertes Ausführungsbeispiel unter Verwendung von Koppeleinrichtungen für ein dualpolarisiertes Antennen-Array; und
    Figur 7 :
    ein Diagramm zur Herleitung der Phasenbeziehungen der einzelnen in unterschiedlichen Spalten angeordneten Strahlern.
  • In Figur 1 ist in schematischer Draufsicht ein Antennen-Array 1 gezeigt, welches beispielsweise eine Vielzahl von dualpolarisierten Strahlern oder Strahlerelementen 3 umfasst, die vor einem Reflektor 5 angeordnet sind.
  • Im gezeigten Ausführungsbeispiel zeigt das Antennen-Array Spalten 7, die vertikal angeordnet sind, wobei in jeder Spalte im gezeigten Ausführungsbeispiel vier Strahler oder Strahlergruppen 3 übereinander angeordnet sind.
  • Insgesamt sind bei dem Antennen-Array gemäß Figur 1 und 2 vier Spalten 7 vorgesehen, in denen jeweils die vier Strahler oder Strahlergruppen 3 positioniert sind. Die einzelnen Strahler oder Strahlergruppen 3 müssen in den einzelnen Spalten nicht zwingend in gleicher Höhe angeordnet sein. Ebenso können beispielsweise die Strahler oder Strahlergruppen 3 in jeweils zwei benachbarten Spalten 7 um den halben Vertikalabstand zwischen zwei benachbarten Strahlern versetzt zueinander angeordnet sein.
  • Im gezeigten Ausführungsbeispiel sind jeweils für die am weitesten links liegende und am weitesten rechts liegende Spalte 7 beispielsweise jeweils dem zuunterst angeordneten dualpolarisierten Strahler 3 jeweils eine Sonde 11, 11a bzw. 11, 11b zugeordnet, die induktiv oder kapazitiv arbeiten kann. Diese Sonde 11 kann beispielsweise aus einem säulenförmig oder stiftförmig angeordneten Sondenkörper bestehen, der sich senkrecht gegenüber der Ebene des Reflektors 5 erstreckt. Die Sonden 11 können beispielsweise auch aus induktiv arbeitenden Sonden in Form einer kleinen Induktionsschleife bestehen. Bevorzugt ist die jeweilige Sonde in einer Vertikalebene angeordnet, in der die entweder einfach polarisierten Strahler oder die dualpolarisierten Strahler oder Strahlerelemente 3 angeordnet sind. Die Sonden sind bevorzugt im Nahfeld der zugehörigen Strahler angeordnet.
  • Im gezeigten Ausführungsbeispiel gemäß Figur 2 ist auch zu ersehen, dass die Sonden 11 im gezeigten Ausführungsbeispiel unterhalb der Ebene (und damit dem Reflektor 5 näherliegend) enden, in denen die Dipolstrahler 3' liegen. Im gezeigten Ausführungsbeispiel handelt es sich um kapazitive Sonden.
  • Im Falle einer in Figur 1 und 2 angedeuteten dualpolarisierten Antenne können die Strahler 3 beispielsweise aus kreuzförmigen Dipolstrahlern oder aus Dipolquadraten bestehen. Besonders eignen sich dualpolarisierte Dipolstrahler, wie sie beispielsweise aus der WO 00/39894 bekannt sind.
  • Schließlich ist in Figur 1 auch ein Strahlformungsnetzwerk 17 vorgesehen, welches beispielsweise vier Eingänge 19 und vier Ausgänge 21 aufweist. Die vier Ausgänge des Strahlformungsnetzwerkes 17 sind mit den vier Eingängen 15 des Antennen-Arrays verbunden. Die Zahl Y der Ausgänge kann von der Zahl X der Eingänge abweichen, d.h. insbesondere kann die Zahl Y der Ausgänge größer sein als die Zahl der Eingänge X. Bei einem derartigen Strahlformungsnetzwerk 17 wird dann beispielsweise ein Speisekabel 23 an einem der Eingänge 19 angeschlossen, worüber alle Ausgänge 21 entsprechend gespeist werden. So kann beispielsweise, wenn das Speisekabel 23 am ersten Eingang 19.1 des Strahlformungsnetzwerkes 17 angeschlossen wird, eine horizontale Strahlerausrichtung mit beispielsweise -45° nach links bewirkt werden, wie dies aus dem schematischen Diagramm gemäß Figur 3 zu ersehen ist. Wird beispielsweise das Speisekabel 23 am rechtesten Anschluss 19.4 angeschlossen, so wird eine entsprechende Ausrichtung der Hauptkeule des Strahlungsfeldes des Antennen-Arrays in einen Winkel von +45° nach rechts bewirkt. Entsprechend kann, wenn das Speisekabel 23 am Anschluss 19.2 bzw. am Anschluss 19.3 angeschlossen wird, das Antennen-Array so betrieben werden, dass beispielsweise eine Verschwenkung um 15° nach links oder nach rechts gegenüber der vertikalen Symmetrieebene des Antennen-Arrays bewirkt werden kann.
  • Von daher ist es bei einem derartigen Strahlformungsnetzwerk 17 üblich, für unterschiedliche Winkelausrichtungen der Hauptkeule des Antennen-Arrays eine entsprechende Anzahl von Eingängen vorzusehen, wobei die Zahl der Ausgänge in der Regel der Anzahl der Spalten des Antennen-Arrays entspricht. Dabei ist jeder Eingang mit einer Vielzahl von Ausgängen, in der Regel jeder Eingang mit allen Ausgängen des Strahlformungsnetzwerkes 17 verbunden.
  • Die nachfolgend noch im Einzelnen erläuterte Kalibriervorrichtung ist aber vor allem auch für ein Antennen-Array gemäß Figur 1 und 2 geeignet, welches kein vorgeschaltetes Strahlformungsnetzwerk insbesondere in Form einer Butler-Matrix aufweist. In diesem Falle werden dann die Spalteneingänge 15 des Antennen-Arrays über eine entsprechende Anzahl von separaten Speisekabeln oder sonstigen Speiseanschlüssen gespeist. Dazu sind in Figur 1 nur beispielhaft vier parallel verlaufende Speiseleitungen 23 vorgesehen, die dann unter Weglassung des unter Figur 1 gezeigten Strahformungsnetzwerkes direkt mit den Spalteneingängen 15 des Antennen-Arrays verbunden sind.
  • In Figur 4 ist nunmehr schematisch der weitere Aufbau und die Funktionsweise der Kalibriereinrichtung sowie des Antennen-Arrays gezeigt. Dabei sind in Figur 4 schematisch nur vier Strahlerelemente 3 angedeutet, und zwar je ein Strahlerelement pro Spalte 7.
  • Bei dem Ausführungsbeispiel gemäß Figur 4 wird eine vereinfachte Ausführungsform beschrieben, bei dem ein Antennen-Array mit vier Spalten lediglich zwei Sonden 11c und 11d verwendet werden. Diese Sonden sind dabei so angeordnet, dass jede Sonde einem Paar von nebeneinander angeordneten Spalten 7 zugeordnet ist, wie dies in Abweichung von Figur 4 in der frontseitigen Darstellung gemäß Figur 1 zu ersehen ist. Mit anderen Worten ist die Sonde 11c in dem Zwischenbereich zwischen den beiden links liegenden Spalten und die Sonde 11d in dem Zwischenbereich zwischen den beiden rechts liegenden Spalten 7 des vier Spalten umfassenden Antennen-Arrays gemäß Figur 1 angeordnet.
  • Bei dem Ausführungsbeispiel gemäß Figur 4 sind also die beiden Sonden 11c und 11d jeweils über eine Signalleitung 25' und 25" mit einem Combiner 27 (Comb) verbunden, dessen Ausgang über eine Leitung 29 mit einem Anschluss S in Verbindung steht.
  • Zum Phasenabgleich der Zuleitungen 35 zum Antennen-Array 1 wird nun zum Beispiel auf die Zuleitung für den Eingang A ein Pilotton, d.h. ein bekanntes Signal gegeben, um am Ausgang S des Kombinationsnetzwerkes 27 (Comb), also beispielsweise einem Combiner, die absolute Phase zu messen. Nun kann man dies auch für die Zuleitung an den Eingängen B, C und D tun.
  • Falls alle Zuleitungen an den Eingängen A bis D (elektrisch) exakt gleich lang sind (und auch sonst als identisch angesehen werden können), ergibt sich am Ausgang des Kombinationsnetzwerkes S jeweils die gleiche absolute Phase, d.h. es ergibt sich kein Phasenunterschied am Ausgang S bei wechselnder Beschaltung der Eingänge A bis D.
  • Würden Phasenunterschiede festgestellt werden, so können diese beispielsweise durch Phasenstellglieder 37 ausgeglichen und kompensiert werden, die jeweils den Eingängen A bis D vorgeschaltet sind. Eine entsprechende elektrische Anschlussleitung 23 würde dann beispielsweise am Eingang A, B, C oder D angeschlossen werden, also einem dem jeweiligen Phasenausgleichsvorrichtung 37 vorgelagerten Eingang, um je nach Wunsch eine entsprechende Ausrichtung der Hauptkeule mit unterschiedlicher Horizontalausrichtung zu bewirken. Schließlich können die Phasenstellglieder 37 auch aus elektrischen Leitungsabschnitten bestehen, die in geeigneter Länge den einzelnen Eingängen A bis D vorgeschaltet werden, um die Phasenkompensation oder Phaseneinstellung im gewünschten Sinne zu bewirken.
  • Die Verwendung von Sonden 11 bietet den Vorteil, dass die entsprechende Kalibrierung sowohl bei einfach polarisierten wie aber auch bei dualpolarisierten Antennen-Arrays mit einer entsprechenden Anzahl von Sonden durchführbar ist.
  • Figur 5 zeigt demgegenüber einen vergleichbaren Aufbau, bei dem anstelle von Sonden 11 Koppeleinrichtungen 111 verwendet werden. Mit Koppeleinrichtungen 111 kann dann aber nur eine Kalibrierung für einfach polarisierte Antennen-Arrays durchgeführt werden. Um unter Verwendung von Koppeleinrichtungen eine Kalibrierung für dualpolarisierte Antennen durchzuführen, ist dann ein Aufbau unter Verwendung entsprechender Paare von Koppeleinrichtungen notwendig, wie sich dies aus der Figur 6 ergibt, die nachfolgend erläutert wird.
  • Nachfolgend wird auf Figur 6 Bezug genommen, in der eine Kalibriereinrichtung eines Antennenarrays beschrieben wird, welches beispielsweise im Zusammenhang mit einem Strahlformungsnetzwerk vorzugsweise in einer Butler-Matrix arbeitet. Dieses Strahlformungsnetzwerk kann bevorzugt in dem Antennen-Array integriert sein.
  • Bei dem Strahlformungsnetzwerk 17 kann es sich beispielsweise um eine bekannte Butler-Matrix 17' handeln, deren vier Eingänge A, B, C und D jeweils mit den Ausgängen 21 verbunden sind, worüber über Leitungen 35 die Strahler 3 gespeist werden.
  • Beispielsweise an den beiden Ausgängen 21.1 und 21.4 (oder alternativ dazu an den beiden Ausgängen 21.2 und 21.3) werden nunmehr zwei möglichst identische Sonden 11 vorgesehen, die jeweils einen kleinen Teil der jeweiligen Signale empfangen. In dem erwähnten Kombinationsnetzwerk 27, also beispielsweise einem sogenannten Combiner (Comb) werden die ausgekoppelten Signale addiert. Das Ergebnis der Auskopplung der Signale und der Addition kann über einen zusätzlichen Anschluss auch selbst am Kombinationsnetzwerk gemessen werden.
  • In Figur 6 ist für den Fall eines Antennen-Arrays mit dualpolarisierten Strahlern 3 gezeigt, dass zur Kalibrierung ein Kombinationsnetzwerk verwendet werden kann, das nicht mit Sonden 11, sondern Koppeleinrichtungen 111, beispielsweise Richtkopplern 111 arbeitet. Das Ausführungsbeispiel gemäß Figur 5 zeigt dabei ferner, wie das Kalibriernetzwerk zum Phasenabgleich der Zuleitungen kombiniert werden kann. Eine solche Kombination ist dann sinnvoll, wenn z.B. das jeweilige Strahlformungsnetzwerk 17, beispielsweise die sogenannte Butler-Matrix 17', zusammen mit den Kopplern (die nachfolgend auch als Koppeleinrichtungen bezeichnet werden) und Kombinationsnetzwerken auf einer Platine realisiert werden können, da dadurch weitgehend identische Einheiten (jeweils Kopplerkombinationsnetzwerke) hergestellt werden können.
  • Figur 6 zeigt im Vergleich zu Figur 5 die Erweiterung auf dualpolarisierte Strahler mit einem Strahlformungsnetzwerk, wobei die beiden Ausgänge des jeweiligen Kombinationsnetzwerkes 27' und 27", beispielsweise in Form eines Combiners (Comb), mit den Eingängen eines nachgeschalteten zweiten Kombinationsnetzwerkes 28 ebenfalls in Form eines Combiners (Comb)zusammengefasst und an den gemeinsamen Ausgang S gelegt wird. Das Kombinationsnetzwerk 27' dient also zur Bestimmung der Phasenlage an einem Strahlerelement bezüglich der einen Polarisation, wobei das Kombinationsnetzwerk 27" zur Bestimmung der Phasenlage an einem betreffenden Strahler für die andere Polarisation verwendet wird.
  • Nur der Vollständigkeit halber wird auch erwähnt, dass es grundsätzlich möglich wäre, die Phasenstellglieder 37 am Eingang des Strahlformungsnetzwerkes 17, also beispielsweise der Butler-Matrix 17' so einzustellen, dass man mit einem einzigen Koppler am Ausgang jeweils einer Matrix auskommt und trotzdem immer die gleiche Phase unabhängig vom Eingang A bis D misst. Auch hier können die Phasenstellglieder aus grundsätzlich vorschaltbaren Leitungsabschnitten bestehen, um die Phasenlage zu verändern. Ebenso kann natürlich auch anstelle einer Koppeleinrichtung 111 bevorzugt eine Sonde 11 verwendet werden, worüber die von einem dualpolarisierten Strahler ausgesandten Signale in beiden Polarisationen empfangen werden können. Somit ist also für beide Polarisationen jeweils nur eine Sonde notwendig.
  • Wenn für ein Antennen-Array beispielsweise nur eine einzige Sonde verwendet wird, also selbst bei einem dualpolarisierten Antennen-Array nur eine einzige Sonde, oder wenn für ein einfach polarisiertes Antennen-Array nur eine einzige Koppeleinrichtung und für ein dualpolarisiertes Antennen-Array zwei Koppeleinrichtungen (je eine Koppeleinrichtung für jede Polarisation) eingesetzt werden, so lässt sich ein Phasenabgleich ebenfalls realisieren, allerdings mit etwas größerem Aufwand. Denn in dem Ausführungsbeispiel gemäß Figur 4 ließe sich auch für den Fall eines dualpolarisierten Antennen-Arrays unter Verwendung lediglich einer einzigen Sonde (die beispielsweise in dem in Figur 1 in Spalte 1 zuunterst angeordneten dualpolarisierten Strahler 3' angeordnet ist) die in Figur 7 wiedergegebene Beziehung realisieren. Es ließen sich dadurch nämlich die Netzpunkte M1, M2, M3 und M4 ermessen und erzeugen, je nachdem, ob eine Anschlussleitung 23 an dem Eingang A, B, C oder D angeschlossen ist. Durch die feste Phasenzuordnung der in den einzelnen Spalten 11 angeordneten Strahlern lassen sich dann die in Figur 7 wiedergegebenen Geraden ermitteln, wodurch die exakte Phasenlage herleitbar ist. Unter entsprechender Auswertung der Daten aus diesem Diagramm kann dann eine entsprechende Phasenjustierung eingangsseitig, bevorzugt noch vor dem Strahlformungsnetzwerk vorgenommen werden. Die Verwendung lediglich einer Sonde ist aber nur dann realisierbar, wenn es sich um ein Antennen-Array mit lediglich zwei Spalten handelt oder aber um ein Antennen-Array mit mehreren Spalten, welchem ein Strahlformungsnetzwerk beispielsweise in Form einer Butler-Matrix vorgeschaltet ist. Denn nur in diesem Falle besteht eine vorgegebene Phasenbeziehung zu den Strahlern in den einzelnen Spalten.
  • Würde die entsprechend einzige Sonde oder das entsprechende einzige Kopplerpaar beispielsweise in der zweiten Spalte angeordnet sein, so würden entsprechende Messpunkte M11, M12, M13 und M14 ermittelt werden können, wobei ebenfalls wieder durch die feste Phasenbeziehung durch dies Punkte die entsprechenden Geraden gelegt werden könnten. Auch dadurch würde man das gleiche Diagramm gemäß Figur 7 herleiten können, um die entsprechenden Phaseneinstellungen und Kalibrierungen vornehmen zu können.
  • Wird aber bevorzugt wie in Figur 1 angedeutet beispielsweise für die linke und die rechte Spalte je eine Sonde 11, 11a bzw. 11, 11b verwendet (oder ein Paar von Koppeleinrichtungen im Fall von dualpolarisierten Antennen), so würden bei dem Diagramm gemäß Figur 7 jeweils die Messpunkte M1 bis M4 sowie die Messpunkte M31 bis M34 ermittelt werden können, was die gesamte Auswertung erleichtert.

Claims (14)

  1. Antennen-Array mit einer Kalibriereinrichtung, wobei das Antennen-Array mehrere Spalten (7) umfasst, in denen jeweils mehrere Strahler (3, 3') vorgesehen sind, mit folgenden Merkmalen
    - die mehreren Strahler (3, 3') sind jeweils in mehreren Spalten (7) übereinander angeordnet,
    - das Antennen-Array umfasst Koppeleinrichtungen (111) oder Sonden (11),
    - es ist ferner ein Kombinationsnetzwerk (27, 27', 27") vorgesehen, worüber die vorgesehenen Koppeleinrichtungen (111) oder die Sonden (11) verschaltet sind,
    - die mehreren Strahler (3, 3') sind vor einem Reflektor (5) angeordnet, und
    - die Spalteneingängen (15) für die in einer jeweiligen Spalte (7) angeordneten Strahler (3, 3') sind entweder über ein Strahlformungsnetzwerk (17) oder direkt mit Speiseleitungen (23) verbunden,
    gekennzeichnet durch die folgenden weiteren Merkmale:
    - bei insgesamt N für eine Spalte (7) vorgesehenen Strahlern (3, 3'), wobei N eine natürliche Zahl ≥ 4 ist, sind lediglich N/2 oder weniger Koppeleinrichtungen (111) und/oder Sonden (11) vorgesehen,
    - die vorgesehene Anzahl von Koppeleinrichtungen (111) oder Sonden (11) ist nur einem Teil der Strahler (3, 3') zugeordnet,
    - die Koppeleinrichtungen (111) oder die Sonden (11) sind über Signalleitungen mit einem Combiner (27, 27') verbunden, dessen Ausgang über eine Leitung (29) mit einem Anschluss (S) zur Auswertung in Verbindung steht, und
    - die Kalibriereinrichtung umfasst ferner Phasenstellglieder (37), die den Eingängen des Strahlformungsnetzwerkes (17) vorgeschaltet sind.
  2. Antennen-Array nach Anspruch 1, dadurch gekennzeichnet, dass die Sonden (11) oder die Koppeleinrichtung (111) aus dem Nahfeld der Strahler (3, 3') auskoppeln.
  3. Antennen-Array nach Anspruch 2 dadurch gekennzeichnet, dass das Kombinationsnetzwerk so aufgebaut ist, dass die Gruppenlaufzeit vom Eingang (15) der jeweiligen Spalte (7) bis zum Ausgang (S) des Kombinationsnetzwerkes für alle Antenneneingänge bei einem einfach polarisierten Antennen-Array oder zumindest einer Polarisation bei einem dualpolarisierten Antennen-Array, vorzugsweise im gesamten Betriebsfrequenzbereich in etwa gleich groß sind.
  4. Antennen-Array nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Kombinationsnetzwerk verlustbehaftete Komponenten umfasst, welche zur Verringerung von Resonanzen beitragen.
  5. Antennen-Array nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass bei einem dualpolarisierten Antennen-Array die eine oder die mehreren vorgesehenen Sonden (11) jeweils zum Empfang eines Signals für beide Polarisationen geeignet sind.
  6. Kalibriereinrichtung nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass pro Spalte (7) nur für einen Strahler (3, 3') eine Sonde (11) oder eine Koppeleinrichtung (111) oder ein Paar von Koppeleinrichtungen (111) vorgesehen ist bzw. sind.
  7. Antennen-Array nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass nur für einen Teil der Spalten (7) jeweils vorzugsweise nur eine Sonde (11) oder nur eine Koppeleinrichtung (111) oder nur ein Paar von Koppeleinrichtungen (111) vorgesehen ist bzw. sind, die zumindest einem Strahler (3, 3') zugeordnet ist bzw. sind.
  8. Antennen-Array nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die zumindest eine Sonde (11) bzw. die mehreren Sonden (11) bezüglich den ihnen zugeordneten Strahlern (3, 3') auf einer durch die Strahler (3, 3') hindurch verlaufenden vertikalen Symmetrieebene liegen.
  9. Antennen-Array nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass bei einem Antennen-Array mit vier Spalten (7) zumindest zwei Sonden (11), zwei Koppeleinrichtungen (111) oder zwei Paare von Koppeleinrichtungen (111) vorgesehen sind, die jeweils einem Strahler (3, 3') zugeordnet sind, der in den beiden außenliegenden Spalten (7) des Antennen-Arrays angeordnet sind.
  10. Antennen-Array nach einem der Ansprüche 2 bis 8, dadurch gekennzeichnet, dass bei einem Antennen-Array mit vier Spalten (7) vorzugsweise zwei Sonden (11), zwei Koppeleinrichtungen (111) oder zwei Paare von Koppeleinrichtungen (111) vorgesehen sind, die jeweils einem Strahler (3, 3') zugeordnet sind, der in den beiden innenliegenden Spalten (7) des Antennen-Arrays angeordnet sind.
  11. Antennen-Array nach einem der Ansprüche 2 bis 10, dadurch gekennzeichnet, dass die Sonden (11), die pro Spalte (7) einem Strahlerelement (3, 3') zugeordnet sind, auf gleicher Höhenlinie angeordnet sind.
  12. Antennen-Array nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass jeweils für zwei benachbarte Spalten (7) eines Antennen-Arrays eine Sonde (11; 11c, 11d) vorgesehen ist, die vorzugsweise die gleiche Koppeldämpfung aufweist.
  13. Verfahren zur Kalibrierung eines Antennen-Arrays mit folgenden Merkmalen:
    - es wird eine Kalibriereinrichtung für ein Antennen-Array gemäß einem der Ansprüche 1 bis 12 verwendet,
    - von den den Strahlern (3, 3') zugeführten Sendesignalen wird ein Signal über eine Koppeleinrichtung (111) und/oder eine Sonde (11) ausgekoppelt und einem Kombinationsnetzwerk (27, 27', 27") zur Auswertung zugeführt,
    gekennzeichnet durch die folgenden weiteren Merkmale:
    - alle Pfade (Spalten 7) des Antennen-Arrays werden vermessen, worüber Daten bezüglich der Phasenlage und/oder der Gruppenlaufzeiten und/oder Abweichungen der Phasenlage zueinander bezüglich der einzelnen Strahler oder Strahlergruppen (3, 3') ermittelbar sind,
    - die ermittelten Messergebnisse und/oder die ermittelten Abweichungen gegenüber einer idealen Phasenlage werden für alle Übertragungspfade vorzugsweise auf der Strecke vom Eingang des Strahlformungsnetzwerkes bis Sonden- oder Koppelausgang bevorzugt über den gesamten Betriebsfrequenzbereich vermessen, und
    - die ermittelten Daten werden gespeichert und stehen einer Sendeeinrichtung beim Betrieb der Basisstation zur elektronischen Erzeugung der Phasenlage der Einzelsignale zur Verfügung.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass der ermittelte Datensatz der Seriennummer einer Antenne zugeordnet ist.
EP03730156A 2002-08-19 2003-06-05 Kalibriereinrichtung für ein antennen-array und verfahren zu dessen kalibrierung Expired - Lifetime EP1532716B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10237823A DE10237823B4 (de) 2002-08-19 2002-08-19 Antennen-Array mit einer Kalibriereinrichtung sowie Verfahren zum Betrieb eines derartigen Antennen-Arrays
DE10237823 2002-08-19
PCT/EP2003/005930 WO2004023600A1 (de) 2002-08-19 2003-06-05 Kalibriereinrichtung fur ein antennen-array und verfahren zur dessen kalibrierung

Publications (2)

Publication Number Publication Date
EP1532716A1 EP1532716A1 (de) 2005-05-25
EP1532716B1 true EP1532716B1 (de) 2007-10-03

Family

ID=31197075

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03730156A Expired - Lifetime EP1532716B1 (de) 2002-08-19 2003-06-05 Kalibriereinrichtung für ein antennen-array und verfahren zu dessen kalibrierung

Country Status (11)

Country Link
US (1) US7068218B2 (de)
EP (1) EP1532716B1 (de)
CN (1) CN2692853Y (de)
AT (1) ATE375015T1 (de)
AU (1) AU2003240747A1 (de)
BR (1) BR0313600A (de)
CA (1) CA2494620C (de)
DE (2) DE10237823B4 (de)
ES (1) ES2294290T3 (de)
TW (1) TWI249268B (de)
WO (1) WO2004023600A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673399B2 (en) 2017-12-06 2020-06-02 Space Systems/Loral, Llc Multiport amplifier input network with compensation for output network gain and phase frequency response imbalance

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004025321A1 (en) * 2002-09-11 2004-03-25 Lockheed Martin Corporation Cce calibration with an array of calibration probes interleaved with the array antenna
US7492841B2 (en) * 2003-01-30 2009-02-17 Andrew Corporation Relative phase/amplitude detection system
DE102005011128B4 (de) * 2005-03-10 2011-12-29 Imst Gmbh Kalibrierung einer elektronischen steuerbaren Planarantenne und elektronisch steuerbare Antenne mit einer Messsonde im reaktiven Nahfeld
JP4478606B2 (ja) 2005-05-19 2010-06-09 富士通株式会社 リニアアレイアンテナの校正装置及び校正方法
DE102006045645B4 (de) * 2006-09-27 2015-05-07 Rohde & Schwarz Gmbh & Co. Kg Antennenkoppler
US7830307B2 (en) * 2007-04-13 2010-11-09 Andrew Llc Array antenna and a method of determining an antenna beam attribute
DK2183817T3 (da) * 2007-08-31 2017-11-27 Bae Systems Plc Antenne kalibrering
US8004457B2 (en) * 2007-08-31 2011-08-23 Bae Systems Plc Antenna calibration
AU2008291898B2 (en) * 2007-08-31 2013-09-05 Bae Systems Plc Antenna calibration
AU2008291899A1 (en) * 2007-08-31 2009-03-05 Bae Systems Plc Antenna calibration
DE102007060083A1 (de) 2007-12-13 2009-06-18 Kathrein-Werke Kg Mehrspalten-Multiband-Antennen-Array
IL188507A (en) * 2007-12-31 2012-06-28 Elta Systems Ltd Phased array antenna having integral calibration network and method for measuring calibration ratio thereof
US8212716B2 (en) * 2007-12-31 2012-07-03 Elta Systems Ltd. System and method for calibration of phased array antenna having integral calibration network in presence of an interfering body
CN101686068B (zh) * 2008-09-28 2013-01-30 华为技术有限公司 一种功分网络装置
IL199560A (en) 2009-06-25 2017-04-30 Elta Systems Ltd An antenna calibration system and method having an integral calibration network in the presence of a disruptive body
GB2473663B (en) * 2009-09-21 2016-11-23 Aveillant Ltd Radar Receiver
KR101172240B1 (ko) * 2010-05-18 2012-08-07 주식회사 만도 센서 및 얼라이먼트 조절 방법
US8704705B2 (en) 2011-03-16 2014-04-22 Src, Inc. Radar apparatus calibration via individual radar components
DE102012204174B4 (de) * 2012-03-16 2022-03-10 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Verfahren, System und Kalibrierobjekt zur automatischen Kalibrierung einer bildgebenden Antennenanordnung
US8908753B2 (en) * 2012-05-17 2014-12-09 Andrew Llc Calibration sub-system for telecommunication systems
US9300408B2 (en) * 2013-11-04 2016-03-29 Alcatel-Lucent Shanghai Bell Co., Ltd Methods and systems for calibrating LTE antenna systems
US9893715B2 (en) * 2013-12-09 2018-02-13 Shure Acquisition Holdings, Inc. Adaptive self-tunable antenna system and method
CN105790860B (zh) * 2014-12-25 2020-12-29 中兴通讯股份有限公司 天线耦合校准系统
US10720702B2 (en) * 2016-01-08 2020-07-21 National Chung Shan Institute Of Science And Technology Method and device for correcting antenna phase
US10263330B2 (en) * 2016-05-26 2019-04-16 Nokia Solutions And Networks Oy Antenna elements and apparatus suitable for AAS calibration by selective couplerline and TRX RF subgroups
US10361762B2 (en) 2017-12-06 2019-07-23 Space Systems/Loral, Llc Calibration of satellite beamforming channels
US10284308B1 (en) 2017-12-06 2019-05-07 Space Systems/Loral, Llc Satellite system calibration in active operational channels
US10921427B2 (en) * 2018-02-21 2021-02-16 Leolabs, Inc. Drone-based calibration of a phased array radar
US11177567B2 (en) * 2018-02-23 2021-11-16 Analog Devices Global Unlimited Company Antenna array calibration systems and methods
JP7091197B2 (ja) * 2018-09-10 2022-06-27 株式会社東芝 無線通信装置及び無線通信システム
US11349208B2 (en) 2019-01-14 2022-05-31 Analog Devices International Unlimited Company Antenna apparatus with switches for antenna array calibration
US11404779B2 (en) 2019-03-14 2022-08-02 Analog Devices International Unlimited Company On-chip phased array calibration systems and methods
WO2021000203A1 (zh) * 2019-06-30 2021-01-07 瑞声声学科技(深圳)有限公司 天线校准网络单元、天线校准网络及mimo天线
CN112310659B (zh) * 2019-07-29 2023-03-07 成都恪赛科技有限公司 一种重构波束指向天线阵列
US11450952B2 (en) 2020-02-26 2022-09-20 Analog Devices International Unlimited Company Beamformer automatic calibration systems and methods
US10979152B1 (en) * 2020-03-05 2021-04-13 Rockwell Collins, Inc. Conformal ESA calibration
US11444376B2 (en) 2020-06-05 2022-09-13 Analog Devices International Unlimited Com Pany Systems and methods for calibrating arrays of dual-polarization antenna elements
EP4040600A1 (de) * 2021-02-04 2022-08-10 Urugus S.A. Softwaredefiniertes kommunikationssystem und vorrichtung
EP4305707A1 (de) * 2021-03-11 2024-01-17 Telefonaktiebolaget LM Ericsson (publ) Aktives antennensystem mit kopplungspfaden zwischen speisenetzwerken
CN115395249A (zh) * 2022-08-05 2022-11-25 中兴通讯股份有限公司 多频天线及通信设备

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4347280A (en) * 1981-07-08 1982-08-31 Geos Corporation Shock absorbing sheet material
US5813921A (en) * 1991-01-14 1998-09-29 Huang; Ben Sleeve-type grip for golf shafts
US5695418A (en) * 1991-01-14 1997-12-09 Huang; Ben Shock absorbing grip for racquets and the like
FR2672436B1 (fr) 1991-01-31 1993-09-10 Europ Agence Spatiale Dispositif de controle electronique du diagramme de rayonnement d'une antenne a un ou plusieurs faisceaux de direction et/ou de largeur variable.
US5086302A (en) * 1991-04-10 1992-02-04 Allied-Signal Inc. Fault isolation in a Butler matrix fed circular phased array antenna
US5276452A (en) * 1992-06-24 1994-01-04 Raytheon Company Scan compensation for array antenna on a curved surface
FR2696553B1 (fr) 1992-10-01 1994-11-25 Alcatel Espace Méthode de calibration d'antenne en champ proche pour antenne active.
US5502447A (en) * 1993-10-28 1996-03-26 Hazeltine Corporation Beam sharpened pencil beam antenna systems
EP0762541A3 (de) 1995-08-29 2000-01-12 DaimlerChrysler AG Einrichtung zum Kalibrieren und Testen von Sende/Empfangs-Modulen in einer aktiven elektronisch phasengesteuerten Gruppenantenne
JPH09271536A (ja) * 1996-04-03 1997-10-21 Bridgestone Sports Co Ltd 糸巻きゴルフボール
US5644316A (en) * 1996-05-02 1997-07-01 Hughes Electronics Active phased array adjustment using transmit amplitude adjustment range measurements
US5784030A (en) * 1996-06-06 1998-07-21 Hughes Electronics Corporation Calibration method for satellite communications payloads using hybrid matrices
US5784031A (en) 1997-02-28 1998-07-21 Wireless Online, Inc. Versatile anttenna array for multiple pencil beams and efficient beam combinations
SE510995C2 (sv) * 1997-03-24 1999-07-19 Ericsson Telefon Ab L M Aktiv sändnings/mottagnings gruppantenn
SE509342C2 (sv) 1997-05-05 1999-01-18 Ericsson Telefon Ab L M Förfarande för användning av lobportar i ett lobformningsnät samt ett antennarrangemang
US6104935A (en) 1997-05-05 2000-08-15 Nortel Networks Corporation Down link beam forming architecture for heavily overlapped beam configuration
US6046697A (en) * 1997-09-05 2000-04-04 Northern Telecom Limited Phase control of transmission antennas
US5936569A (en) 1997-12-02 1999-08-10 Nokia Telecommunications Oy Method and arrangement for adjusting antenna pattern
DE19806914C2 (de) * 1998-02-19 2002-01-31 Bosch Gmbh Robert Verfahren und Vorrichtung zum Kalibrieren einer Gruppenantenne
US6252542B1 (en) * 1998-03-16 2001-06-26 Thomas V. Sikina Phased array antenna calibration system and method using array clusters
US6133868A (en) 1998-06-05 2000-10-17 Metawave Communications Corporation System and method for fully self-contained calibration of an antenna array
DE19844239C1 (de) 1998-09-26 2000-07-27 Dornier Gmbh Verfahren zur genauen Winkelbestimmung von Zielen mittels eines Mehrfachantennen-Radarsystems
DE19860121A1 (de) * 1998-12-23 2000-07-13 Kathrein Werke Kg Dualpolarisierter Dipolstrahler
US6515616B1 (en) 1999-04-30 2003-02-04 Metawave Communications Corporation System and method for aligning signals having different phases
US6236839B1 (en) * 1999-09-10 2001-05-22 Utstarcom, Inc. Method and apparatus for calibrating a smart antenna array
SE518207C2 (sv) * 1999-09-10 2002-09-10 Ericsson Telefon Ab L M Gles gruppantenn
JP4303373B2 (ja) 1999-09-14 2009-07-29 株式会社日立コミュニケーションテクノロジー 無線基地局装置
FR2800202B1 (fr) * 1999-10-26 2007-08-31 Thomson Csf Dispositif de commande pour la formation de plusieurs faisceaux simultanes de reception radar a antenne a balayage electronique
AU2001232166A1 (en) 2000-01-27 2001-08-07 Celletra Ltd. System and method for providing polarization matching on a cellular communication forward link
SE522564C2 (sv) * 2000-02-01 2004-02-17 Ericsson Telefon Ab L M Gruppantennkalibrering
US6642908B2 (en) * 2000-08-16 2003-11-04 Raytheon Company Switched beam antenna architecture
JP3923897B2 (ja) 2000-12-23 2007-06-06 ノキア コーポレイション 到来方向を推定するための基地局、基地局モジュールおよび方法
US6680698B2 (en) * 2001-05-07 2004-01-20 Rafael-Armament Development Authority Ltd. Planar ray imaging steered beam array (PRISBA) antenna
US6426726B1 (en) * 2001-08-15 2002-07-30 Northrop Grumman Corporation Polarized phased array antenna
WO2003019722A1 (en) * 2001-08-23 2003-03-06 Paratek Microwave, Inc. Nearfield calibration method for phased array containing tunable phase shifters

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10673399B2 (en) 2017-12-06 2020-06-02 Space Systems/Loral, Llc Multiport amplifier input network with compensation for output network gain and phase frequency response imbalance

Also Published As

Publication number Publication date
DE50308322D1 (de) 2007-11-15
DE10237823A1 (de) 2004-03-04
WO2004023600A1 (de) 2004-03-18
US20040032365A1 (en) 2004-02-19
ATE375015T1 (de) 2007-10-15
CA2494620A1 (en) 2004-03-18
TWI249268B (en) 2006-02-11
EP1532716A1 (de) 2005-05-25
AU2003240747A1 (en) 2004-03-29
BR0313600A (pt) 2005-06-21
CA2494620C (en) 2008-12-23
ES2294290T3 (es) 2008-04-01
TW200403887A (en) 2004-03-01
US7068218B2 (en) 2006-06-27
CN2692853Y (zh) 2005-04-13
DE10237823B4 (de) 2004-08-26

Similar Documents

Publication Publication Date Title
EP1532716B1 (de) Kalibriereinrichtung für ein antennen-array und verfahren zu dessen kalibrierung
EP1530816B1 (de) Kalibriervorrichtung für ein umschaltbares antennen-array sowie ein zugehöriges betriebsverfahren
DE102009042509B4 (de) Antennenvorrichtung mit Linse oder als Linse wirkendem passivem Element
DE3911373C2 (de) Phasengesteuertes Radargerät mit Selbstüberwachung/Selbstabgleich und auswechselbare einstellbare Sende/Empfangs-Baueinheit
DE602004002145T2 (de) Radaranordnung mit Schaltermatrix zur adaptiven Strahlformung im Empfangszweig und Umschalten des Sendezweigs
DE60221150T2 (de) Antennensystem
EP1327287B1 (de) Dualpolarisiertes antennenarray
EP2168211B1 (de) Speisenetzwerk für eine gruppenantenne
DE69933145T2 (de) Kalibrierung für eine adaptive Gruppenantenne
EP2965382B1 (de) Antennenanordnung mit veränderlicher richtcharakteristik
DE102017210781A1 (de) Radarantenne für ein Füllstandmessgerät
DE112019006800T5 (de) Antennenvorrichtung und Radarvorrichtung
DE69831323T2 (de) Kombination von butler-strahlungskeulenanschlüssen für hexagonale zellenbedeckung
WO2013189634A1 (de) Antennenanordnung und verfahren
DE102012104090A1 (de) Stapelbare Hornantennenelemente für Antennenanordnungen
DE112019005668T5 (de) Antennenvorrichtung und radarsystem
DE102005011128B4 (de) Kalibrierung einer elektronischen steuerbaren Planarantenne und elektronisch steuerbare Antenne mit einer Messsonde im reaktiven Nahfeld
DE69832964T2 (de) Elektromagnetisch gekoppelte Mikrostreifenleiterantenne
WO2019158251A1 (de) Antennenanordnung für einen radarsensor
DE3545639C1 (en) Transmitter operating at at least two frequencies - uses single VHF antenna array with different polar diagrams
DE102007055534B4 (de) Kompakte Richtantennenanordnung mit Mehrfachnutzung von Strahlerelementen
DE3016951C2 (de) Doppler-Funkpeiler
DE2451708C1 (de) Anordnung zur Stoerung einer Monopuls-Zielverfolgungs-Radareinrichtung durch Wiederausstrahlung in Kreuzpolarisation
DE3902739A1 (de) Radar-gruppenantenne
DE102008027640A1 (de) Gruppenantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20041202

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOETTL, MAXIMILIAN

Inventor name: LANGENBERG, JOERG

Inventor name: GABRIEL, ROLAND

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071003

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50308322

Country of ref document: DE

Date of ref document: 20071115

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2294290

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080103

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080303

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

26N No opposition filed

Effective date: 20080704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

BERE Be: lapsed

Owner name: KATHREIN-WERKE K.G.

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080104

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080605

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080404

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071003

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150623

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160622

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160621

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160605

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER & PARTNER PATENTANWAELTE MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: KATHREIN SE, DE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN-WERKE KG, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170606

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: ERICSSON AB, SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: KATHREIN SE, 83022 ROSENHEIM, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50308322

Country of ref document: DE

Representative=s name: FLACH BAUER STAHL PATENTANWAELTE PARTNERSCHAFT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50308322

Country of ref document: DE

Owner name: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL), SE

Free format text: FORMER OWNER: ERICSSON AB, STOCKHOLM, SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220627

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220629

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50308322

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG