EP1074718A2 - Method for testing plausibility of engine and probe parameters using a wide range lambda sensor - Google Patents

Method for testing plausibility of engine and probe parameters using a wide range lambda sensor Download PDF

Info

Publication number
EP1074718A2
EP1074718A2 EP00115537A EP00115537A EP1074718A2 EP 1074718 A2 EP1074718 A2 EP 1074718A2 EP 00115537 A EP00115537 A EP 00115537A EP 00115537 A EP00115537 A EP 00115537A EP 1074718 A2 EP1074718 A2 EP 1074718A2
Authority
EP
European Patent Office
Prior art keywords
internal combustion
combustion engine
lambda probe
control value
lambda
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP00115537A
Other languages
German (de)
French (fr)
Other versions
EP1074718B1 (en
EP1074718A3 (en
Inventor
Christian Hess
Thorsten Rebohl
Hans-Georg Nitzke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1074718A2 publication Critical patent/EP1074718A2/en
Publication of EP1074718A3 publication Critical patent/EP1074718A3/en
Application granted granted Critical
Publication of EP1074718B1 publication Critical patent/EP1074718B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • F02D41/1495Detection of abnormalities in the air/fuel ratio feedback system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus

Definitions

  • the invention relates to a method for monitoring the function of an exhaust gas duct an internal combustion engine arranged lambda probe with the in the preamble of Claim 1 mentioned features.
  • Exhaust channel at least one lambda probe, in particular a broadband lambda probe, to arrange.
  • an oxygen concentration in an exhaust gas can be detected and a conclusion on the ratio of an oxygen fraction to a fuel fraction take place in the air-fuel mixture supplied to the combustion process.
  • Broadband lambda probes enable measurement of lambda in a range of about 0.7 to ⁇ .
  • the lambda probe Measurement signal for controlling the air-fuel mixture according to the given Requirements for the internal combustion engine used (lambda control).
  • the measurement signal is read into an engine control unit and serves as the basis for Measures that, for example, regulate an injection system or intake air include.
  • Lambda probes of this type are usually also used to monitor in addition the exhaust duct arranged catalysts. Redox reactions take place on the catalysts instead, which leads to a conversion of pollutants contained in the exhaust gas into less environmentally relevant Lead reaction products.
  • the operating mode of the internal combustion engine is based on the Measurement signal of the lambda probe regulated.
  • the measurement signal provided is faulty due to a defect in the lambda probe, this can on the one hand result in the setting of a lead to low-consumption operating mode, and on the other hand one can possibly Reduction of pollutant emissions by means of the catalysts no longer in the necessary dimensions are granted.
  • the invention has for its object to provide a method that a Functional monitoring of the lambda probe allowed and thus possible rectification Defects in the lambda probe enabled.
  • a predeterminable number of Control values first of all to a correlation calculation, in particular a cross-correlation subject.
  • the correlation calculation then delivers a correlated control value.
  • a maintenance signal is generated in a preferred manner (on-board diagnosis). Based on the Maintenance signals can then provide appropriate information to a vehicle driver the maintenance personnel must carry out a necessary maintenance measure be proposed.
  • the diagnosis period is such choose that he immediately a load change or a change in speed of the Internal combustion engine connects, since there are particularly significant measurement signals. It is therefore not necessary to use special functions for monitoring the lambda probe Let signal patterns run and thus the normal operation of the Interrupt internal combustion engine.
  • Parameters such as one, flow into the model for the internal combustion engine Intake air mass, a fuel mass and the speed.
  • Intake air mass a fuel mass and the speed.
  • FIG. 10 An arrangement 10 of an internal combustion engine 12 is shown in FIG a catalytic converter 16 arranged in an exhaust gas duct 14 and two lambda probes 18, 20 includes.
  • a temperature sensor 22 is additionally arranged downstream of the catalytic converter 16, with which an exhaust gas temperature can be detected.
  • the catalyst 16 serves one Conversion of pollutants contained in the exhaust gas of the internal combustion engine 12.
  • a ratio of an oxygen fraction to a fuel fraction in one to be burned Air-fuel mixture provides a lambda value.
  • the lambda probe 18 can be an oxygen concentration immediately behind the internal combustion engine 12 detect, the oxygen concentration clearly assigned to a lambda value can be.
  • a conversion rate of the catalytic converter 16 can be determined using a monitor the signal provided by the lambda probe 20 in a known manner.
  • the Lambda value is continuously recorded according to the exemplary embodiment, that is, the Lambda probes 18, 20 are so-called broadband lambda probes.
  • a range of measurements for Broadband lambda probes range from approximately 0.7 to ⁇ . How it works such probes is known, so that in the context of the present description should not be discussed in more detail.
  • the measurement signals detected by the sensors 18, 20, 22 are fed into an engine control unit 24 read, evaluated and to control an operating mode of the Internal combustion engine 12 used.
  • the internal combustion engine 12 is a means assigned, for example, an injection system 26 or an exhaust gas recirculation include.
  • the exhaust gas recirculation can reduce the volume flow intake air by means of a throttle valve 28 and by simultaneous supply low-oxygen exhaust gas take place via an exhaust gas reflux valve 30. In this way it is Oxygen content of a via an intake pipe 32 of the internal combustion engine 12 provided intake air mass can be specified.
  • Exhaust gas turbochargers of supercharged engines have at least one lambda probe behind them Turbine in the exhaust gas.
  • FIG. 2 shows a block diagram for function monitoring of the lambda probes 18, 20.
  • a step S1 in addition to that by the lambda probes 18, 20 Provided measurement signal determines a target signal.
  • a model for the internal combustion engine is used for this 12.
  • the model includes parameters such as the intake air mass, a injected fuel mass or a speed of the internal combustion engine 12. It is also conceivable to use other sizes, for example in the engine control unit 24 are provided to be used to optimize the model.
  • the operating mode of the internal combustion engine 12 must be used for function monitoring can not be controlled according to a signal pattern, but any Operating points can be used for monitoring. It has proven to be advantageous a diagnosis period immediately after a load change or a change in the Let the speed of the internal combustion engine 12 begin.
  • a ratio of the measurement signal to the target signal provides a control value (step S2).
  • the control value KW or the correlated control value KW k is then compared in a step S3 with a predefinable limit value GW.
  • the limit value GW can also be determined using the model for the internal combustion engine 12. If the control value KW or the correlated control value KW k is below the limit value GW, a new measuring cycle of the function monitoring can follow, starting with step S1. However, if the control value KW or the correlated control value KW k exceeds the limit value GW, a maintenance signal is generated in a step S4. The maintenance signal then serves, for example in an on-board diagnosis, to inform a vehicle driver. Furthermore, the maintenance signal can be used to provide the maintenance personnel with appropriate instructions.

Abstract

The method involves detecting a measurement signal for the lambda probe (18, 20), determining a demand signal for the lambda probe using a model of the engine (12) and deriving a monitoring value from the ratio of measurement signal to demand signal for comparison with a defined threshold value

Description

Die Erfindung betrifft ein Verfahren zur Funktionsüberwachung einer in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten Lambda-Sonde mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.The invention relates to a method for monitoring the function of an exhaust gas duct an internal combustion engine arranged lambda probe with the in the preamble of Claim 1 mentioned features.

Zur Regelung eines Betriebsmodus der Verbrennungskraftmaschine ist es bekannt, in dem Abgaskanal wenigstens eine Lambda-Sonde, insbesondere eine Breitband-Lambda-Sonde, anzuordnen. Mit Hilfe der Lambda-Sonde kann eine Sauerstoffkonzentration in einem Abgas erfaßt werden und ein Rückschluß auf das Verhältnis eines Sauerstoffanteils zu einem Kraftstoffanteil in dem dem Verbrennungsprozeß zugeführten Luft-Kraftstoff-Gemisch erfolgen. Breitband-Lambda-Sonden ermöglichen eine Messung von Lambda in einem Bereich von zirka 0,7 bis ∞.To control an operating mode of the internal combustion engine, it is known in which Exhaust channel at least one lambda probe, in particular a broadband lambda probe, to arrange. With the help of the lambda probe, an oxygen concentration in an exhaust gas can be detected and a conclusion on the ratio of an oxygen fraction to a fuel fraction take place in the air-fuel mixture supplied to the combustion process. Broadband lambda probes enable measurement of lambda in a range of about 0.7 to ∞.

In modernen Verbrennungskraftmaschinen wird das durch die Lambda-Sonde bereitgestellte Meßsignal zur Regelung des Luft-Kraftstoff-Gemisches entsprechend den gegebenen Anforderungen an die Verbrennungskraftmaschine genutzt (Lambda-Regelung). Dazu wird üblicherweise das Meßsignal in ein Motorsteuergerät eingelesen und dient dort als Basis für Maßnahmen, die beispielsweise eine Regelung eines Einspritzsystems oder einer Ansaugluft umfassen.In modern internal combustion engines, this is provided by the lambda probe Measurement signal for controlling the air-fuel mixture according to the given Requirements for the internal combustion engine used (lambda control). This will Usually the measurement signal is read into an engine control unit and serves as the basis for Measures that, for example, regulate an injection system or intake air include.

Üblicherweise dienen derartige Lambda-Sonden auch zur Überwachung von zusätzlich in dem Abgaskanal angeordneten Katalysatoren. An den Katalysatoren finden Redoxreaktionen statt, die zu einer Konvertierung von im Abgas enthaltenen Schadstoffen in weniger umweltrelevante Reaktionsprodukte führen. Lambda probes of this type are usually also used to monitor in addition the exhaust duct arranged catalysts. Redox reactions take place on the catalysts instead, which leads to a conversion of pollutants contained in the exhaust gas into less environmentally relevant Lead reaction products.

Wie bereits erläutert, wird der Betriebsmodus der Verbrennungskraftmaschine anhand des Meßsignals der Lambda-Sonde geregelt. Ist jedoch das bereitgestellte Meßsignal fehlerhaft aufgrund eines Defektes der Lambda-Sonde, so kann dies zum einen zur Einstellung eines verbrauchsungünstigen Betriebsmodus führen, und zum anderen kann gegebenenfalls eine Reduktion einer Schadstoffemission mittels der Katalysatoren nicht mehr in dem erforderlichen Maße gewährt werden.As already explained, the operating mode of the internal combustion engine is based on the Measurement signal of the lambda probe regulated. However, the measurement signal provided is faulty due to a defect in the lambda probe, this can on the one hand result in the setting of a lead to low-consumption operating mode, and on the other hand one can possibly Reduction of pollutant emissions by means of the catalysts no longer in the necessary dimensions are granted.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Verfügung zu stellen, das eine Funktionsüberwachung der Lambda-Sonde erlaubt und damit eine Behebung möglicher Defekte der Lambda-Sonde ermöglicht.The invention has for its object to provide a method that a Functional monitoring of the lambda probe allowed and thus possible rectification Defects in the lambda probe enabled.

Erfindungsgemäß wird diese Aufgabe durch das Verfahren zur Funktionsüberwachung der in dem Abgaskanal der Verbrennungskraftmaschine angeordneten Lambda-Sonde mit den im Anspruch 1 genannten Merkmalen gelöst. Dadurch, daß

  • (a) innerhalb eines vorgebbaren Diagnosezeitraums ein Meßsignal der Lambda-Sonde erfaßt wird,
  • (b) anhand eines Modells für die Verbrennungskraftmaschine ein Sollsignal der Lambda-Sonde ermittelt wird und
  • (c) ein Verhältnis des Meßsignals zum Sollsignal einen Kontrollwert liefert und der Kontrollwert mit einem vorgebbaren Grenzwert verglichen wird,
  • ist es in einfacher Weise möglich, Defekte der Lambda-Sonde zu erkennen.According to the invention, this object is achieved by the method for monitoring the function of the lambda probe arranged in the exhaust gas duct of the internal combustion engine with the features mentioned in claim 1. As a result of that
  • (a) a measurement signal of the lambda probe is detected within a predeterminable diagnosis period,
  • (b) a target signal of the lambda probe is determined on the basis of a model for the internal combustion engine and
  • (c) a ratio of the measurement signal to the target signal delivers a control value and the control value is compared with a predefinable limit value,
  • it is easily possible to detect defects in the lambda probe.

    Zur Kompensation statistischer Ausreißer ist vorgesehen, eine vorgebbare Anzahl der Kontrollwerte zunächst einer Korrelationsrechnung, insbesondere einer Kreuzkorrelation, zu unterwerfen. Die Korrelationsrechnung liefert dann einen korrelierten Kontrollwert. Beim Überschreiten des Kontrollwertes oder des korrelierten Kontrollwertes über den Grenzwert wird in bevorzugter Weise ein Wartungssignal erzeugt (On-board-Diagnose). Anhand des Wartungssignales kann dann eine entsprechende Information eines Fahrzeugführers erfolgen beziehungsweise dem Wartungspersonal eine notwendige Wartungsmaßnahme vorgeschlagen werden. To compensate for statistical outliers, a predeterminable number of Control values first of all to a correlation calculation, in particular a cross-correlation subject. The correlation calculation then delivers a correlated control value. At the Exceeding the control value or the correlated control value above the limit value a maintenance signal is generated in a preferred manner (on-board diagnosis). Based on the Maintenance signals can then provide appropriate information to a vehicle driver the maintenance personnel must carry out a necessary maintenance measure be proposed.

    In vorteilhafter Ausgestaltung der Erfindung ist vorgesehen, den Diagnosezeitraum derart zu wählen, daß er sich unmittelbar einem Lastwechsel oder einer Änderung einer Drehzahl der Verbrennungskraftmaschine anschließt, da hier besonders signifikante Meßsignale vorliegen. Es ist demnach nicht notwendig, zur Funktionsüberwachung der Lambda-Sonde spezielle Signalmuster ablaufen zu lassen und damit den Regelbetrieb der Verbrennungskraftmaschine zu unterbrechen.In an advantageous embodiment of the invention, it is provided that the diagnosis period is such choose that he immediately a load change or a change in speed of the Internal combustion engine connects, since there are particularly significant measurement signals. It is therefore not necessary to use special functions for monitoring the lambda probe Let signal patterns run and thus the normal operation of the Interrupt internal combustion engine.

    In das Modell für die Verbrennungskraftmaschine fließen Parameter ein, wie eine Ansaugluftmasse, eine Kraftstoffmasse und die Drehzahl. Selbstverständlich können auch andere Betriebsgrößen, die üblicherweise in einem Motorsteuergerät bereitgestellt werden, zur genaueren Anpassung des Modells verwendet werden.Parameters, such as one, flow into the model for the internal combustion engine Intake air mass, a fuel mass and the speed. Of course you can too other operating variables that are usually provided in an engine control unit, can be used to adjust the model more precisely.

    Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred refinements of the invention result from the others in the Characteristics mentioned subclaims.

    Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

    Figur 1
    eine Anordnung von Lambda-Sonden in einem Abgaskanal einer Verbrennungskraftmaschine und
    Figur 2
    ein Blockschaltbild zur Funktionsüberwachung der Lambda-Sonden.
    The invention is explained in more detail in an exemplary embodiment with reference to the accompanying drawings. Show it:
    Figure 1
    an arrangement of lambda probes in an exhaust duct of an internal combustion engine and
    Figure 2
    a block diagram for monitoring the function of the lambda probes.

    In der Figur 1 ist eine Anordnung 10 einer Verbrennungskraftmaschine 12 dargestellt, die einen in einem Abgaskanal 14 angeordneten Katalysator 16 und zwei Lambda-Sonden 18, 20 umfaßt. Stromab des Katalysators 16 ist zusätzlich ein Temperatursensor 22 angeordnet, mit dem eine Abgastemperatur erfaßt werden kann. Der Katalysator 16 dient einer Konvertierung von im Abgas der Verbrennungskraftmaschine 12 enthaltenen Schadstoffen.An arrangement 10 of an internal combustion engine 12 is shown in FIG a catalytic converter 16 arranged in an exhaust gas duct 14 and two lambda probes 18, 20 includes. A temperature sensor 22 is additionally arranged downstream of the catalytic converter 16, with which an exhaust gas temperature can be detected. The catalyst 16 serves one Conversion of pollutants contained in the exhaust gas of the internal combustion engine 12.

    Ein Verhältnis eines Sauerstoffanteils zu einem Kraftstoffanteil in einem zu verbrennenden Luft-Kraftstoff-Gemisch liefert einen Lambdawert. Insbesondere mit Hilfe der Lambda-Sonde 18 läßt sich eine Sauerstoffkonzentration unmittelbar hinter der Verbrennungskraftmaschine 12 erfassen, wobei die Sauerstoffkonzentration eindeutig einem Lambdawert zugeordnet werden kann. Ferner läßt sich eine Konvertierungsrate des Katalysators 16 anhand eines durch die Lambda-Sonde 20 bereitgestellten Signals in bekannter Weise überwachen. Der Lambdawert wird gemäß dem Ausführungsbeispiel kontinuierlich erfaßt, das heißt, die Lambda-Sonden 18, 20 sind sogenannte Breitband-Lambda-Sonden. Ein Meßwertbereich für Breitband-Lambda-Sonden erstreckt sich von Lambda zirka 0,7 bis ∞. Die Funktionsweise derartiger Sonden ist bekannt, so daß im Rahmen der vorliegenden Beschreibung hierauf nicht näher eingegangen werden soll.A ratio of an oxygen fraction to a fuel fraction in one to be burned Air-fuel mixture provides a lambda value. Especially with the help of the lambda probe 18 can be an oxygen concentration immediately behind the internal combustion engine 12 detect, the oxygen concentration clearly assigned to a lambda value can be. Furthermore, a conversion rate of the catalytic converter 16 can be determined using a monitor the signal provided by the lambda probe 20 in a known manner. The Lambda value is continuously recorded according to the exemplary embodiment, that is, the Lambda probes 18, 20 are so-called broadband lambda probes. A range of measurements for Broadband lambda probes range from approximately 0.7 to ∞. How it works such probes is known, so that in the context of the present description should not be discussed in more detail.

    Die mittels der Sensoren 18, 20, 22 erfaßten Meßsignale werden in ein Motorsteuergerät 24 eingelesen, ausgewertet und zur Regelung eines Betriebsmodus der Verbrennungskraftmaschine 12 genutzt. Dazu sind der Verbrennungskraftmaschine 12 Mittel zugeordnet, die beispielsweise ein Einspritzsystem 26 oder eine Abgasrückführung umfassen. Durch die Abgasrückführung kann eine Reduzierung eines Volumenstromes angesaugter Luft mittels einer Drosselklappe 28 und durch gleichzeitige Zuführung sauerstoffarmen Abgases über ein Abgasrückflußventil 30 erfolgen. Auf diese Weise ist der Sauerstoffanteil einer über ein Saugrohr 32 der Verbrennungskraftmaschine 12 bereitgestellten Ansaugluftmasse vorgebbar. Im Falle hier nicht dargestellter durch Abgasturbolader aufgeladener Motoren sitzt zumindest eine Lambda-Sonde hinter der Turbine im Abgas.The measurement signals detected by the sensors 18, 20, 22 are fed into an engine control unit 24 read, evaluated and to control an operating mode of the Internal combustion engine 12 used. For this purpose, the internal combustion engine 12 is a means assigned, for example, an injection system 26 or an exhaust gas recirculation include. The exhaust gas recirculation can reduce the volume flow intake air by means of a throttle valve 28 and by simultaneous supply low-oxygen exhaust gas take place via an exhaust gas reflux valve 30. In this way it is Oxygen content of a via an intake pipe 32 of the internal combustion engine 12 provided intake air mass can be specified. In the case not shown here by Exhaust gas turbochargers of supercharged engines have at least one lambda probe behind them Turbine in the exhaust gas.

    Die Figur 2 zeigt ein Blockschaltbild zur Funktionsüberwachung der Lambda-Sonden 18, 20. Zunächst wird in einem Schritt S1 neben dem durch die Lambda-Sonden 18, 20 zur Verfügung gestellten Meßsignal ein Sollsignal ermittelt. Dazu dient ein Modell für die Verbrennungskraftmaschine 12. Das Modell umfaßt Parameter, wie die Ansaugluftmasse, eine eingespritzte Kraftstoffmasse oder auch eine Drehzahl der Verbrennungskraftmaschine 12. Ebenso ist denkbar, auch andere Größen, die beispielsweise in dem Motorsteuergerät 24 bereitgestellt werden, zur Optimierung des Modells heranzuziehen.FIG. 2 shows a block diagram for function monitoring of the lambda probes 18, 20. First, in a step S1, in addition to that by the lambda probes 18, 20 Provided measurement signal determines a target signal. A model for the internal combustion engine is used for this 12. The model includes parameters such as the intake air mass, a injected fuel mass or a speed of the internal combustion engine 12. It is also conceivable to use other sizes, for example in the engine control unit 24 are provided to be used to optimize the model.

    Der Betriebsmodus der Verbrennungskraftmaschine 12 muß zur Funktionsüberwachung nicht entsprechend einem Signalmuster gesteuert werden, sondern es können beliebige Betriebspunkte für die Überwachung genutzt werden. Als vorteilhaft hat es sich erwiesen, einen Diagnosezeitraum unmittelbar nach einem Lastwechsel oder einer Änderung der Drehzahl der Verbrennungskraftmaschine 12 beginnen zu lassen. The operating mode of the internal combustion engine 12 must be used for function monitoring can not be controlled according to a signal pattern, but any Operating points can be used for monitoring. It has proven to be advantageous a diagnosis period immediately after a load change or a change in the Let the speed of the internal combustion engine 12 begin.

    Ein Verhältnis des Meßsignals zum Sollsignal liefert einen Kontrollwert (Schritt S2). Zur Kompensation statistischer Ausreißer ist es dabei vorteilhaft, zunächst eine vorgebbare Anzahl der Kontrollwerte KW in eine Korrelationsrechnung einzubeziehen, die einen korrelierten Kontrollwert KWk liefert.A ratio of the measurement signal to the target signal provides a control value (step S2). In order to compensate for statistical outliers, it is advantageous to first include a predeterminable number of control values KW in a correlation calculation, which delivers a correlated control value KW k .

    Der Kontrollwert KW oder der korrelierte Kontrollwert KWk wird anschließend in einem Schritt S3 mit einem vorgebbaren Grenzwert GW verglichen. Auch der Grenzwert GW kann anhand des Modells für die Verbrennungskraftmaschine 12 festgelegt werden. Liegt der Kontrollwert KW beziehungsweise der korrelierte Kontrollwert KWk unterhalb des Grenzwertes GW, kann sich ein erneuter Meßzyklus der Funktionsüberwachung beginnend mit dem Schritt S1 anschließen. Überschreitet jedoch der Kontrollwert KW beziehungsweise der korrelierte Kontrollwert KWk den Grenzwert GW, so wird in einem Schritt S4 ein Wartungssignal erzeugt. Das Wartungssignal dient dann, beispielsweise in einer On-board-Diagnose, zur Information eines Fahrzeugführers. Weiterhin kann das Wartungssignal dazu genutzt werden, dem Wartungspersonal entsprechende Instruktionen zur Verfügung zu stellen.The control value KW or the correlated control value KW k is then compared in a step S3 with a predefinable limit value GW. The limit value GW can also be determined using the model for the internal combustion engine 12. If the control value KW or the correlated control value KW k is below the limit value GW, a new measuring cycle of the function monitoring can follow, starting with step S1. However, if the control value KW or the correlated control value KW k exceeds the limit value GW, a maintenance signal is generated in a step S4. The maintenance signal then serves, for example in an on-board diagnosis, to inform a vehicle driver. Furthermore, the maintenance signal can be used to provide the maintenance personnel with appropriate instructions.

    Claims (6)

    Verfahren zur Funktionsüberwachung wenigstens einer in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten Lambda-Sonde, insbesondere einer Breitband-Lambda-Sonde, dadurch gekennzeichnet, daß (a) innerhalb eines vorgebbaren Diagnosezeitraums ein Meßsignal der Lambda-Sonde (18, 20) erfaßt wird, (b) anhand eines Modells für die Verbrennungskraftmaschine (12) ein Sollsignal der Lambda-Sonde (18, 20) ermittelt wird und (c) ein Verhältnis des Meßsignals zum Sollsignal einen Kontrollwert (KW) liefert und der Kontrollwert (KW) mit einem vorgebbaren Grenzwert (GW) verglichen wird. Method for monitoring the function of at least one lambda probe arranged in an exhaust gas duct of an internal combustion engine, in particular a broadband lambda probe, characterized in that (a) a measurement signal of the lambda probe (18, 20) is detected within a predeterminable diagnosis period, (b) a target signal of the lambda probe (18, 20) is determined on the basis of a model for the internal combustion engine (12) and (c) a ratio of the measurement signal to the target signal provides a control value (KW) and the control value (KW) is compared with a predefinable limit value (GW). Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß eine vorgebbare Anzahl der Kontrollwerte (KW) zunächst einer Korrelationsrechnung, insbesondere einer Kreuzkorrelation, unterworfen werden und einen korrelierten Kontrollwert (KWk) liefern.Method according to Claim 1, characterized in that a predeterminable number of the control values (KW) are first subjected to a correlation calculation, in particular a cross-correlation, and deliver a correlated control value (KW k ). Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, daß beim Überschreiten des Kontrollwertes (KW) oder des korrelierten Kontrollwertes (KWk) über den Grenzwert (GW) ein Wartungssignal erzeugt wird.Method according to claims 1 or 2, characterized in that a maintenance signal is generated when the control value (KW) or the correlated control value (KW k ) is exceeded above the limit value (GW). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Diagnosezeitraum unmittelbar nach einem Lastwechsel oder einer Änderung der Drehzahl der Verbrennungskraftmaschine (12) beginnt. Method according to one of the preceding claims, characterized in that the diagnostic period begins immediately after a load change or a change in the speed of the internal combustion engine (12). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Modell für die Verbrennungskraftmaschine (12) Parameter, wie eine Ansaugluftmasse, eine eingespritzte Kraftstoffmasse und die Drehzahl, umfaßt.Method according to one of the preceding claims, characterized in that the model for the internal combustion engine (12) comprises parameters such as an intake air mass, an injected fuel mass and the speed. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der Grenzwert (GW) über das Modell für die Verbrennungskraftmaschine (12) festgelegt wird.Method according to one of the preceding claims, characterized in that the limit value (GW) is determined via the model for the internal combustion engine (12).
    EP00115537A 1999-08-03 2000-07-19 Method for testing plausibility of engine and probe parameters using a wide range lambda sensor Expired - Lifetime EP1074718B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    DE19936355A DE19936355A1 (en) 1999-08-03 1999-08-03 Procedure for the plausibility check of engine sizes and sensor sizes using a continuous lambda probe
    DE19936355 1999-08-03

    Publications (3)

    Publication Number Publication Date
    EP1074718A2 true EP1074718A2 (en) 2001-02-07
    EP1074718A3 EP1074718A3 (en) 2001-09-26
    EP1074718B1 EP1074718B1 (en) 2004-11-10

    Family

    ID=7916920

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP00115537A Expired - Lifetime EP1074718B1 (en) 1999-08-03 2000-07-19 Method for testing plausibility of engine and probe parameters using a wide range lambda sensor

    Country Status (3)

    Country Link
    EP (1) EP1074718B1 (en)
    AT (1) ATE282144T1 (en)
    DE (2) DE19936355A1 (en)

    Cited By (8)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004033325B4 (en) * 2003-07-10 2006-05-24 Honda Motor Co., Ltd. Diagnostic device for an exhaust gas sensor
    EP1746276A2 (en) 2005-07-22 2007-01-24 Robert Bosch Gmbh Monitoring of exhaust emission limits
    WO2009011191A1 (en) * 2007-07-19 2009-01-22 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for internal combustion engine and air/fuel ratio control apparatus for internal combustion engine
    WO2011018317A1 (en) 2009-08-10 2011-02-17 Robert Bosch Gmbh Method and device for dynamically diagnosing an exhaust gas probe
    WO2013087262A1 (en) * 2011-12-12 2013-06-20 Robert Bosch Gmbh Method and device for the dynamic monitoring of gas sensors
    WO2013110385A1 (en) * 2012-01-25 2013-08-01 Robert Bosch Gmbh Method and control unit for determining a dead time of an exhaust gas sensor of an internal combustion engine
    CN103967567A (en) * 2013-02-04 2014-08-06 罗伯特·博世有限公司 Method For Operating Oxygen Sensor Arrangement In Exhaust Gas System Of Internal Combustion Engine
    WO2022084067A1 (en) * 2020-10-23 2022-04-28 Vitesco Technologies GmbH Calculator for diagnosing fouling of a vehicle probe

    Families Citing this family (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10029633A1 (en) * 2000-04-07 2001-10-11 Volkswagen Ag Multi-flow exhaust system of a multi-cylinder engine and method for controlling an air-fuel ratio
    DE10111586A1 (en) 2001-03-10 2002-09-12 Volkswagen Ag Process for operating internal combustion engines
    DE10128969C1 (en) * 2001-06-15 2002-12-12 Audi Ag Method for diagnosing guide probe fitted downstream from catalytic converter in system for controlling engine, involves detecting oxygen content in exhaust system for an internal combustion engine.
    DE10250219A1 (en) * 2002-10-23 2004-05-06 Volkswagen Ag Regulator and method for regulating a NOx sensor arranged in an exhaust gas duct of an internal combustion engine
    DE10307342B4 (en) * 2003-02-21 2005-08-11 Volkswagen Ag Device and method for model-based on-board diagnostics
    DE102005016075B4 (en) * 2005-04-08 2007-04-12 Audi Ag Method for diagnosing a lambda probe assigned to the exhaust gas catalytic converter of an internal combustion engine
    JP4816773B2 (en) * 2009-07-16 2011-11-16 株式会社デンソー Exhaust component concentration sensor response detection device

    Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5550762A (en) * 1993-12-20 1996-08-27 Doll; John A. Diagnostic system for electronic automotive system
    US5676119A (en) * 1995-09-25 1997-10-14 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines
    US5781878A (en) * 1995-06-05 1998-07-14 Nippondenso Co., Ltd. Apparatus and method for diagnosing degradation or malfunction of oxygen sensor

    Family Cites Families (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE19612212B4 (en) * 1995-03-31 2005-12-08 Denso Corp., Kariya Diagnostic device for an air / fuel ratio sensor
    DE19606652B4 (en) * 1996-02-23 2004-02-12 Robert Bosch Gmbh Method of setting the air-fuel ratio for an internal combustion engine with a downstream catalytic converter
    DE19844994C2 (en) * 1998-09-30 2002-01-17 Siemens Ag Method for diagnosing a continuous lambda probe

    Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5550762A (en) * 1993-12-20 1996-08-27 Doll; John A. Diagnostic system for electronic automotive system
    US5781878A (en) * 1995-06-05 1998-07-14 Nippondenso Co., Ltd. Apparatus and method for diagnosing degradation or malfunction of oxygen sensor
    US5676119A (en) * 1995-09-25 1997-10-14 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system for internal combustion engines

    Cited By (20)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102004033325B4 (en) * 2003-07-10 2006-05-24 Honda Motor Co., Ltd. Diagnostic device for an exhaust gas sensor
    EP1746276A2 (en) 2005-07-22 2007-01-24 Robert Bosch Gmbh Monitoring of exhaust emission limits
    EP1746276A3 (en) * 2005-07-22 2013-05-22 Robert Bosch Gmbh Monitoring of exhaust emission limits
    WO2009011191A1 (en) * 2007-07-19 2009-01-22 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for internal combustion engine and air/fuel ratio control apparatus for internal combustion engine
    CN101755115A (en) * 2007-07-19 2010-06-23 丰田自动车株式会社 Abnormality detection device for internal combustion engine and air/fuel ratio control apparatus for internal combustion engine
    US8050852B2 (en) 2007-07-19 2011-11-01 Toyota Jidosha Kabushiki Kaisha Abnormality detection device for internal combustion engine and air/fuel ratio control apparatus for internal combustion engine
    CN101755115B (en) * 2007-07-19 2013-04-10 丰田自动车株式会社 Abnormality detection device for internal combustion engine and air/fuel ratio control apparatus for internal combustion engine
    US8646324B2 (en) 2009-08-10 2014-02-11 Robert Bosch Gmbh Method and device for dynamically diagnosing an exhaust gas probe
    WO2011018317A1 (en) 2009-08-10 2011-02-17 Robert Bosch Gmbh Method and device for dynamically diagnosing an exhaust gas probe
    CN102472186A (en) * 2009-08-10 2012-05-23 罗伯特·博世有限公司 Method and device for dynamically diagnosing an exhaust gas probe
    US20120222474A1 (en) * 2009-08-10 2012-09-06 Robert Bosch Gmbh Method and device for dynamically diagnosing an exhaust gas probe
    CN102472186B (en) * 2009-08-10 2015-06-17 罗伯特·博世有限公司 Method and device for dynamically diagnosing an exhaust gas probe
    WO2013087262A1 (en) * 2011-12-12 2013-06-20 Robert Bosch Gmbh Method and device for the dynamic monitoring of gas sensors
    US10060894B2 (en) 2011-12-12 2018-08-28 Robert Bosch Gmbh Method and device for dynamic monitoring of gas sensors
    WO2013110385A1 (en) * 2012-01-25 2013-08-01 Robert Bosch Gmbh Method and control unit for determining a dead time of an exhaust gas sensor of an internal combustion engine
    US9518893B2 (en) 2012-01-25 2016-12-13 Robert Bosch Gmbh Method and control unit for determining a dead time of an exhaust gas sensor of an internal combustion engine
    CN103967567A (en) * 2013-02-04 2014-08-06 罗伯特·博世有限公司 Method For Operating Oxygen Sensor Arrangement In Exhaust Gas System Of Internal Combustion Engine
    CN103967567B (en) * 2013-02-04 2018-03-30 罗伯特·博世有限公司 A kind of method for running air inflow detector assembly in engine exhaust gas system
    WO2022084067A1 (en) * 2020-10-23 2022-04-28 Vitesco Technologies GmbH Calculator for diagnosing fouling of a vehicle probe
    FR3115597A1 (en) * 2020-10-23 2022-04-29 Vitesco Technologies Calculator for vehicle probe fouling diagnostics

    Also Published As

    Publication number Publication date
    EP1074718B1 (en) 2004-11-10
    EP1074718A3 (en) 2001-09-26
    ATE282144T1 (en) 2004-11-15
    DE19936355A1 (en) 2001-02-08
    DE50008573D1 (en) 2004-12-16

    Similar Documents

    Publication Publication Date Title
    DE102008042549B4 (en) Method and device for diagnosing an exhaust gas probe
    EP0492165B1 (en) Procedure and device for testing catalytic converters
    EP1074718B1 (en) Method for testing plausibility of engine and probe parameters using a wide range lambda sensor
    DE10319983B3 (en) Device for regulating the lambda value in an I.C. engine with a catalyst arranged in the exhaust gas pipe, comprises a nitrogen oxides sensor arranged after a partial volume of the catalyst or downstream of the catalyst
    DE10111586A1 (en) Process for operating internal combustion engines
    EP3527810A1 (en) Method for operating a combustion engine
    DE102004038731A1 (en) Method and device for operating an internal combustion engine
    EP2401485B1 (en) Method for operating an exhaust gas system
    EP0530655B1 (en) Method and apparatus for controlling an internal combustion engine and testing its catalytic converter
    DE10309422B4 (en) Method and device for calibrating a NOx sensor
    DE102008042925B3 (en) Cetane number determination involves injecting fuel for combustion in cylinder of internal combustion engine by using engine management system
    DE102008008985B4 (en) Method for OSC-based diagnosis of a catalyst
    DE102006026739A1 (en) Internal combustion engine e.g. diesel internal combustion engine, operating method, involves detecting intact or defective nitrogen oxide sensor or ammonia sensor or intact or defective controller
    DE10234340B4 (en) Method for determining the loading state of a particle filter of an internal combustion engine
    EP1136670B1 (en) Monitoring device and method of a 3-way catalyst in the exhaust pipe of an internal combustion engine
    DE102006011894B4 (en) Method for correcting a signal provided by a lambda sensor
    WO2001006223A1 (en) Method for detecting the state of a catalytic converter system
    DE102006002257B4 (en) Method and device for operating an exhaust gas catalytic converter of an internal combustion engine
    DE10014881A1 (en) Calibration of lambda sensors in exhaust system including NOx sensor downstream of three-way catalyst, first adjusts mixture to approach predetermined NOx signal
    DE102005046956B3 (en) Method for detecting misfiring in combustion chamber of engine cylinder involves using operating parameter of engine and determining fault cause in injection system dependent on cylinder-specific uneven running value
    DE102018104258B4 (en) Fuel determination technology
    EP1434049B1 (en) Method of and device for monitoring the NOx signal of an NOx sensor
    DE10300939A1 (en) Method and device for monitoring the NOx signal of a NOx sensor
    DE10261618B4 (en) Runningirregularity evaluation process
    DE102005020139A1 (en) Combustion misfire detection for internal combustion engine, involves detecting misfire based on given condition that depends on error signal, where signal depends on measuring signal of probe arranged upstream of converter

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    PUAL Search report despatched

    Free format text: ORIGINAL CODE: 0009013

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    AX Request for extension of the european patent

    Free format text: AL;LT;LV;MK;RO;SI

    RIC1 Information provided on ipc code assigned before grant

    Free format text: 7F 02D 41/14 A, 7F 02D 41/22 B, 7F 01N 11/00 B

    17P Request for examination filed

    Effective date: 20020326

    AKX Designation fees paid

    Free format text: AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    17Q First examination report despatched

    Effective date: 20030115

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041110

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041110

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20041110

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20041110

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20041110

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50008573

    Country of ref document: DE

    Date of ref document: 20041216

    Kind code of ref document: P

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050210

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050210

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050210

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050221

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20050316

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050719

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050719

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20050719

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050731

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050811

    EN Fr: translation not filed
    EN Fr: translation not filed
    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    BERE Be: lapsed

    Owner name: *VOLKSWAGEN A.G.

    Effective date: 20050731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20050410

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20090612

    Year of fee payment: 10

    Ref country code: DE

    Payment date: 20090731

    Year of fee payment: 10

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20100719

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20110201

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50008573

    Country of ref document: DE

    Effective date: 20110201

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20100719