EP0909072A2 - Methods and apparatus for a computer network firewall with stateful packet filtering - Google Patents

Methods and apparatus for a computer network firewall with stateful packet filtering Download PDF

Info

Publication number
EP0909072A2
EP0909072A2 EP98306984A EP98306984A EP0909072A2 EP 0909072 A2 EP0909072 A2 EP 0909072A2 EP 98306984 A EP98306984 A EP 98306984A EP 98306984 A EP98306984 A EP 98306984A EP 0909072 A2 EP0909072 A2 EP 0909072A2
Authority
EP
European Patent Office
Prior art keywords
firewall
packet
rule
session
cache
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP98306984A
Other languages
German (de)
French (fr)
Other versions
EP0909072A3 (en
Inventor
Michael John Coss
Ronald L. Sharp
David L. Majette
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nokia of America Corp
Original Assignee
Lucent Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucent Technologies Inc filed Critical Lucent Technologies Inc
Publication of EP0909072A2 publication Critical patent/EP0909072A2/en
Publication of EP0909072A3 publication Critical patent/EP0909072A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0227Filtering policies
    • H04L63/0236Filtering by address, protocol, port number or service, e.g. IP-address or URL
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0227Filtering policies
    • H04L63/0254Stateful filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/02Network architectures or network communication protocols for network security for separating internal from external traffic, e.g. firewalls
    • H04L63/0227Filtering policies
    • H04L63/0263Rule management

Definitions

  • This invention relates to the prevention of unauthorized access in computer networks and, more particularly, to firewall protection within computer networks.
  • information is conventionally transmitted in the form of packets.
  • Information present at one site may be accessed by or transmitted to another site at the command of the former or the latter.
  • packet filtering effected at a network processor component known as a firewall
  • packets are inspected and filtered, i.e., passed on or dropped depending on whether they conform to a set of predefined access rules.
  • these rule sets are represented in tabular form.
  • firewall administrator allows broad access which is consented to from one side of the firewall to the other, but blocks transmissions in the opposite direction which are not part of an active network session.
  • "inside" company employees may have unrestricted access through the firewall to an "outside” network such as the Internet, but access from the Internet is blocked unless it has been specifically authorized.
  • firewalls can be interposed between network domains, and can also be used within a domain to protect sub-domains. In each case, different security policies may be involved.
  • Proxy processes have been developed to run concurrently on the firewall processor on behalf of the user. Proxy processes have also been developed for other special-purpose applications, e.g., to perform services such as authentication, mail handling, and virus scanning.
  • a computer network firewall is able to support (a) multiple security policies, (b) multiple users, or (c) multiple security policies as well as multiple users, by applying any one of several distinct sets of access rules for a given packet.
  • the particular rule set that is applied for any packet can be determined based on information such as the incoming and outgoing network interfaces as well as the network source and destination addresses.
  • a computer network firewall can be configured to utilize "stateful" packet filtering which improves performance by storing the results of rule processing applied to one or more packets.
  • Stateful packet filtering may be implemented by caching rule processing results for one or more packets, and then utilizing the cached results to bypass rule processing for subsequent similar packets.
  • the results of applying a rule set to a particular packet of a network session may be cached, such that when a subsequent packet from the same network session arrives in the firewall, the cached results from the previous packet are used for the subsequent packet. This avoids the need to apply the rule set to each incoming packet.
  • a computer network firewall authorizes or prevents certain network sessions using a dependency mask which can be set based on session data items such as source host address, destination host address, and type of service.
  • the dependency mask can be used to query a cache of active sessions being processed by the firewall, to thereby identify the number of sessions that satisfy the query.
  • the query may be associated with an access rule, such that the selection of that particular rule is dependent on the number of successful matches to the query.
  • a computer network firewall may make use of dynamic rules which are added to a set of access rules for processing packets.
  • the dynamic rules allow a given rule set to be modified based on events happening in the network without requiring that the entire rule set be reloaded.
  • Exemplary dynamic rules include a "one-time" rule which is only used for a single session, a time-limited rule which is used only for a specified time period, and a threshold rule which is used only when certain conditions are satisfied.
  • Other types of dynamic rules include rules which define a host group, such that the host group can be modified to add or drop different hosts without altering other aspects of the access rule set.
  • a computer network firewall can be instructed to redirect a network session to a separate server for processing, so as to unburden the firewall of application proxies.
  • the separate server processes the redirected network session, and then passes the session back through the firewall to the intended original destination.
  • the computer network firewalls of the present invention facilitate firewall processing in a wide variety of important applications.
  • the invention may be implemented in a dial-up access gateway.
  • Another exemplary embodiment of the invention may be implemented in a distributed manner with a first portion of the firewall resident in the network and a second portion of the firewall resident in a set-top box, computer or other user terminal in a home or business.
  • the latter embodiment can allow the firewall techniques of the invention to provide, for example, parental control of Internet and video access in the home.
  • Fig. 1 is a schematic of several user sites or domains connected to the Internet via a local area network providing firewall protection to the user sites.
  • Fig. 2 is a schematic of a user site connected to the Internet and including internal firewalls.
  • Fig. 3 is a schematic which illustrates a rule table.
  • Fig. 4 is a schematic which illustrates a cache.
  • Figs. 5A and 5B in combination are an over-all flow chart of firewall processing for multiple domains.
  • Fig. 6 is a schematic which illustrates a domain table.
  • Fig. 7 is a flow chart of an aspect of firewall processing for multiple domains.
  • Fig. 8 is a schematic which illustrates a dependency mask.
  • Fig. 9 is a flow chart of dependency mask processing.
  • Fig. 10A is a flow chart of proxy reflection processing at the firewall.
  • Fig. 10B is a flow chart of proxy reflection processing at a remote proxy.
  • the preferred techniques can be implemented at a firewall for controlling the flow of data between, for example, separate local area networks (LANs) or subnets of a LAN.
  • LANs local area networks
  • Exemplary embodiments of the invention are described herein in terms of processes. Efficient prototypes of such processes have been implemented as computer system software, using the "C" programming language for implementation on general-purpose PC hardware. Efficiency can be enhanced further, as is known, by special-purpose firmware or hardware computer system implementations.
  • a single firewall can support multiple users, each with a separate security policy. Also, as different security policies can apply for communications between sub-sites, such a capability can be used within a site. Respective configurations are illustrated by Figs. 1 and 2.
  • Fig. 1 shows four user sites 101-104, e.g., of corporations A through D, with firewall protection in their connections to the Internet 105.
  • a firewall facility here in the form of a LAN 110, including firewall processors 111, 113 and 114, an administrator processor 115, a router 116 and a web server 117.
  • Each of firewall processors 113 and 114 is dedicated to a single site, namely respective sites 103 and 104.
  • Firewall processor 111 is configured to serve the two sites 101 and 102.
  • Firewall processor 111 implements separate firewall policies for each of the two sites vis-a-vis the Intemet 105, as well as for communications between the two sites.
  • a process for preferred operation of the firewall processor 111 is described below with reference to Figs. 5A and 5B, including properly selecting among different firewall policies.
  • Fig. 2 shows a user site 201 connected to the Internet 105 via a firewall processor 211.
  • An administrator processor 215 and a router 216 are connected to the firewall processor 211.
  • the router 216 is connected to additional firewall processors 212 and 213 which are internal to the user site 201.
  • the firewall processor 212 protects a single subsite 223, such as Human Resources (HR).
  • the firewall processor 213 is configured for protecting two sub-sites, such as Payroll (P) and Disbursements (D), vis-a-vis the remainder of the site 201 as well as with respect to communications between sub-sites 221 and 222. This can be achieved by employing the process illustrated by Figs. 5A and 5B in the firewall processor 213.
  • the security policies can be represented by sets of access rules which are represented in tabular form and which are loaded into the firewall by a firewall administrator. As illustrated in Fig. 3, such a table can provide for categories including rule number, designations of source and destination hosts, a designation of a special service which can be called for in a packet, and a specification of an action to be taken on a packet. Special services can include proxy services, network address translation, and encryption, for example.
  • the categories "Source Host,” “Destination Host” and “Service” impose conditions which must be satisfied by data included in a packet for the specified action to be taken on that packet. Other conditions can be included, and such conditions need not relate to data included in the packet. For example, application of a rule can be made conditional on the time of day or day of the week.
  • rule processing for a packet, the rules are applied sequentially until a rule is found which is satisfied by the packet (or until the rule table is exhausted, in which case the packet is dropped).
  • each condition included in the rule must be met.
  • a packet from source host A to destination host D and representing mail will be dropped under Rule 20.
  • the first five category names correspond to the categories shown in Fig. 3.
  • Rule numbers do not have to be unique but should generally represent a single service, such as FTP Source Host Source host group identifier or IP address Destination Host Destination host group identifier or IP address Service Service group or protocol/destination port/source port Action
  • Rule action e.g., "pass,” “drop”; or “proxy” Notify on Drop
  • ICMP Internet Control Message Protocol
  • Alarm Code Alarm code value to tie rule to particular alarms
  • Source Host Map Type Type of mapping to be performed e.g., "pool” or “direct” Destination Host Map Group IP address or host group containing map-to host IP addresses
  • Destination Host Map Type Type of mapping to be performled e.g., "pool” or "direct” Service Map Group Service group containing map-to destination port numbers or the destination port. Protocol and source port in a referenced service group are ignored.
  • Service Map Type Type of mapping to be performed e.g., "pool” or “direct” Max Use Total Count Maximun number of times this rule may be used. The rule is removed after the limit is reached. Max Use Concurrent Count Maximun of sessions authorized by this rule which may be active at a given time. The rule is inactive until the count falls below the designated value. Copy to Address Address of application to which a copy of packet is sent. Used for session captures. Tunnel Destination Set up a tunnel and send it to this destination address and protocol. A new IP header will be added to the packet. Tunnel Requirements Indicates when tunneling is required. If “null” then no check is required. If “in” then incoming session must have been tunneled.
  • IPSEC IP Security Requirements Indicates when IP Security (IPSEC) processing is required. If “null” then no check is required. If, “in” then incoming session must have been protected using IPSEC. If “out” then initiate action to add IPSEC protection. If “both” then do both. Sequence Number Randomize Option to randomize TCP sequence numbers. Default is “no.” Syn Storm Protection Provide protection from “syn storm” attacks. Default is “no.” Authorize Return Channel If "yes,” initial packet will create forward and reverse channels in cache with same action. Default is “yes.”
  • a computer network firewall in accordance with the invention can be configured to utilize "stateful" packet filtering which improves performance by storing in a cache the results of rule processing as applied to one or more packets.
  • Stateful packet filtering may be implemented by caching rule processing results for received packets, and then utilizing the cached results to bypass rule processing for subsequent similar packets.
  • the results of applying a rule set to a packet of a given network session may be cached, such that when a subsequent packet from the same network session arrives in the firewall, the cached results from the previous packet are used for the subsequent packet. This avoids the need to apply the rule set to each incoming packet, and thereby provides substantial performance advantages over conventional firewalls.
  • a decision module or engine determines which security policy to use for a new network session.
  • Each new session must be approved by the security policies of the source domain and the destination domain(s). For connections going to the Internet, it is likely that only a single domain check is performed.
  • the DSE makes the domain selection based on the incoming or outgoing network interface, as well as on the source or destination network address of each packet. Inclusion, in packets, of source or destination addresses allows for multiple users to be supported by a single network interface.
  • the incoming or outgoing network interface may be in the form of a network interface card (NIC), e.g., an Intel EtherExpress Pro 100B card available from Intel Corporation.
  • NIC network interface card
  • Figs. 5A and 5B illustrate over-all flow for packet processing by a firewall which supports multiple domains. Such processing includes determining the domains which the packet is to cross, examining the applicable rules to ascertain whether the packet may pass, and determining whether any special processing is required.
  • each domain is associated with one or more network interfaces. Interfaces that support more than one domain are separated using an IP address range to distinguish the packets. The following steps are included:
  • a domain table For convenient linking of each network interface to a domain, a domain table is used. In cases where an interface is shared by multiple domains, an address range is included. This is illustrated by Fig. 6 which shows non-overlapping address ranges.
  • Fig. 7 illustrates domain table processing as performed in steps 503 and 506 described above, including the following steps:
  • a dependency mask in accordance with the invention can define a query directed to the session cache.
  • a match is determined by matching all fields defined in the mask with the corresponding fields in the cache. Empty fields within the mask are not used for comparison.
  • Fig. 8 shows rules with a dependency mask ("hit count") in a format similar to that of Fig. 3. Special symbols are included for certain host designations, namely (i) a "dot” symbol (.) calling for inclusion of packet data of the corresponding category, and (ii) a caret symbol ( ⁇ ) calling for inclusion of packet data from a certain different category instead. "Hit count” indicates the number of matches which must be found in the cache for the specified action to be taken. For example, in the dependency mask named "realaudio,” a count of 1 is used for passing UDP packets provided one requisite TCP session is active. In the dependency mask "telnet,” a count of 10 is used to drop packets to prevent overloading of resources.
  • Fig. 9 illustrates dependency mask processing including the following steps:
  • Rule processing including the above-described dependency mask processing, is performed only on the first packet of a network session. All other packets bypass the rule search functions because their action has been saved in the session cache after processing of the first packet.
  • Dynamic rules are rules which are included with the access rules as a need arises, for processing along with the access rules, e.g., by a rule processing engine. Dynamic rules can include unique, current information such as, for example, specific source and destination port numbers. They can be loaded at any time by trusted parties, e.g., a trusted application, remote proxy or firewall administrator, to authorize specific network sessions. A dynamic rule can be set for single-session use, or its use can be limited as to time. Once a dynamic rule has served its function, it can be removed from the rule set. The dynamic rules allow a given rule set to be modified based on events happening in the network without requiring that the entire rule set be reloaded.
  • Exemplary dynamic rules include a "one-time" rule which is only used for a single session, a time-limited rule which is used only for a specified time period, and a threshold rule which is used only when certain conditions are satisfied.
  • Another type of dynamic rule includes rules which define a host group, such that the host group can be modified to add or drop different hosts without altering other aspects of the access rule set.
  • Other dynamic rules may be used to facilitate rule setup in certain specific types of processing applications. For example, an FTP proxy application could use a dynamic rule to authorize establishment of an FTP data channel in response to a data request. The dynamic rule in this example would typically not be loaded until a data request is made over the FTP control session, and could be limited to one use and made active for only a limited time period. The rule set therefore need not include a separate data channel rule for use with all requests. As a result, the rule specification and rule processing are simplified, and security is improved.
  • Proxy reflection in accordance with the present invention involves redirecting a network session to another, "remote" proxy server for processing, and then later passing it back via the firewall to the intended destination.
  • a decision is made to determine whether service by a proxy server is required. If so, the firewall replaces the destination address in the packet with the host address of the proxy application and, if necessary, it can also change the service port.
  • the proxy application receives the session, it will request from the firewall the original destination address of the session for determining whether the connection to the destination is authorized. If the proxy then makes the connection to that destination as itself, using its own IP address, the service provided by the firewall will be called “single reflection" or "one-way reflection.”
  • dynamic rules can be used as described below for an illustrative embodiment, with reference to Figs. 10A and 10B.
  • Fig. 10A illustrates proxy reflection processing including the following steps at the firewall:
  • Fig. 10B illustrates processing at the remote proxy, subsequent to step 1005, including the following steps:
  • the invention can be implemented in a wide variety of applications.
  • the invention may be used to provide improved firewall performance in a dial-up access gateway.
  • Another exemplary embodiment of the invention may be implemented in a distributed manner with a first portion of the firewall resident in the network and a second portion of the firewall resident in a set-top box, computer or other user terminal in a home or business.
  • the latter embodiment can allow the firewall techniques of the invention to provide, for example, parental control of Internet and video access in the home.

Abstract

The invention provides improved computer network firewalls which include one or more features for increased processing efficiency. A firewall in accordance with the invention can support multiple security policies, multiple users or both, by applying any one of several distinct sets of access rules. The firewall can also be configured to utilize "stateful" packet filtering which involves caching rule processing results for one or more packets, and then utilizing the cached results to bypass rule processing for subsequent similar packets. To facilitate passage to a user, by a firewall, of a separate later transmission which is properly in response to an original transmission, a dependency mask can be set based on session data items such as source host address, destination host address, and type of service. The mask can be used to query a cache of active sessions being processed by the firewall, such that a rule can be selected based on the number of sessions that satisfy the query. Dynamic rules may be used in addition to pre-loaded access rules in order to simplify rule processing. To unburden the firewall of application proxies, the firewall can be enabled to redirect a network session to a separate server for processing.

Description

    Field of the Invention
  • This invention relates to the prevention of unauthorized access in computer networks and, more particularly, to firewall protection within computer networks.
  • Background of the Invention
  • In computer networks, information is conventionally transmitted in the form of packets. Information present at one site may be accessed by or transmitted to another site at the command of the former or the latter. Thus, e.g., if information is proprietary, there is a need for safeguards against unauthorized access. To this end, techniques known as packet filtering, effected at a network processor component known as a firewall, have been developed and commercialized. At the firewall, packets are inspected and filtered, i.e., passed on or dropped depending on whether they conform to a set of predefined access rules. Conventionally, these rule sets are represented in tabular form.
  • Typically, a firewall administrator allows broad access which is consented to from one side of the firewall to the other, but blocks transmissions in the opposite direction which are not part of an active network session. For example, "inside" company employees may have unrestricted access through the firewall to an "outside" network such as the Internet, but access from the Internet is blocked unless it has been specifically authorized. In addition to such a firewall at a corporate boundary to the Internet, firewalls can be interposed between network domains, and can also be used within a domain to protect sub-domains. In each case, different security policies may be involved.
  • In certain complex network protocols, separate, additional network sessions are required from the outside back to the user. One such complex protocol is employed by a service known by the trade name "RealAudio." Without special measures, the request for the separate session will be blocked by the firewall.
  • For such complex protocols, separate "proxy" processes have been developed to run concurrently on the firewall processor on behalf of the user. Proxy processes have also been developed for other special-purpose applications, e.g., to perform services such as authentication, mail handling, and virus scanning.
  • In the interest of maximizing the number of sessions which can run concurrently, since the capacity of a firewall processor to support concurrent processes is limited, it is desirable to minimize the need for proxy processes on the firewall. Such minimization is desirable further in the interest of over-all transmission rate, as passage of incoming data through separate processes tends to slow transmission down.
  • Summary of the Invention
  • The present invention provides techniques for implementing computer network firewalls so as to improve processing efficiency, improve security, increase access rule flexibility, and enhance the ability of a firewall to deal with complex protocols. In accordance with a first aspect of the invention, a computer network firewall is able to support (a) multiple security policies, (b) multiple users, or (c) multiple security policies as well as multiple users, by applying any one of several distinct sets of access rules for a given packet. The particular rule set that is applied for any packet can be determined based on information such as the incoming and outgoing network interfaces as well as the network source and destination addresses.
  • In accordance with a second aspect of the invention, a computer network firewall can be configured to utilize "stateful" packet filtering which improves performance by storing the results of rule processing applied to one or more packets. Stateful packet filtering may be implemented by caching rule processing results for one or more packets, and then utilizing the cached results to bypass rule processing for subsequent similar packets. For example, the results of applying a rule set to a particular packet of a network session may be cached, such that when a subsequent packet from the same network session arrives in the firewall, the cached results from the previous packet are used for the subsequent packet. This avoids the need to apply the rule set to each incoming packet.
  • In accordance with a third aspect of the invention, a computer network firewall authorizes or prevents certain network sessions using a dependency mask which can be set based on session data items such as source host address, destination host address, and type of service. The dependency mask can be used to query a cache of active sessions being processed by the firewall, to thereby identify the number of sessions that satisfy the query. The query may be associated with an access rule, such that the selection of that particular rule is dependent on the number of successful matches to the query.
  • In accordance with a fourth aspect of the invention, a computer network firewall may make use of dynamic rules which are added to a set of access rules for processing packets. The dynamic rules allow a given rule set to be modified based on events happening in the network without requiring that the entire rule set be reloaded. Exemplary dynamic rules include a "one-time" rule which is only used for a single session, a time-limited rule which is used only for a specified time period, and a threshold rule which is used only when certain conditions are satisfied. Other types of dynamic rules include rules which define a host group, such that the host group can be modified to add or drop different hosts without altering other aspects of the access rule set.
  • In accordance with a fifth aspect of the invention, a computer network firewall can be instructed to redirect a network session to a separate server for processing, so as to unburden the firewall of application proxies. The separate server processes the redirected network session, and then passes the session back through the firewall to the intended original destination.
  • The computer network firewalls of the present invention facilitate firewall processing in a wide variety of important applications. For example, the invention may be implemented in a dial-up access gateway. Another exemplary embodiment of the invention may be implemented in a distributed manner with a first portion of the firewall resident in the network and a second portion of the firewall resident in a set-top box, computer or other user terminal in a home or business. The latter embodiment can allow the firewall techniques of the invention to provide, for example, parental control of Internet and video access in the home. These and other features and advantages of the present invention will become more apparent from the accompanying drawings and the following detailed description.
  • Brief Description of the Drawings
  • Fig. 1 is a schematic of several user sites or domains connected to the Internet via a local area network providing firewall protection to the user sites.
  • Fig. 2 is a schematic of a user site connected to the Internet and including internal firewalls.
  • Fig. 3 is a schematic which illustrates a rule table.
  • Fig. 4 is a schematic which illustrates a cache.
  • Figs. 5A and 5B in combination are an over-all flow chart of firewall processing for multiple domains.
  • Fig. 6 is a schematic which illustrates a domain table.
  • Fig. 7 is a flow chart of an aspect of firewall processing for multiple domains.
  • Fig. 8 is a schematic which illustrates a dependency mask.
  • Fig. 9 is a flow chart of dependency mask processing.
  • Fig. 10A is a flow chart of proxy reflection processing at the firewall.
  • Fig. 10B is a flow chart of proxy reflection processing at a remote proxy.
  • Detailed Description
  • The preferred techniques can be implemented at a firewall for controlling the flow of data between, for example, separate local area networks (LANs) or subnets of a LAN. Exemplary embodiments of the invention are described herein in terms of processes. Efficient prototypes of such processes have been implemented as computer system software, using the "C" programming language for implementation on general-purpose PC hardware. Efficiency can be enhanced further, as is known, by special-purpose firmware or hardware computer system implementations.
  • 1. Support for Multiple Security Domains
  • With a capability for supporting multiple security domains, a single firewall can support multiple users, each with a separate security policy. Also, as different security policies can apply for communications between sub-sites, such a capability can be used within a site. Respective configurations are illustrated by Figs. 1 and 2.
  • Fig. 1 shows four user sites 101-104, e.g., of corporations A through D, with firewall protection in their connections to the Internet 105. Such protection is provided by a firewall facility, here in the form of a LAN 110, including firewall processors 111, 113 and 114, an administrator processor 115, a router 116 and a web server 117. Each of firewall processors 113 and 114 is dedicated to a single site, namely respective sites 103 and 104. Firewall processor 111 is configured to serve the two sites 101 and 102. Firewall processor 111 implements separate firewall policies for each of the two sites vis-a-vis the Intemet 105, as well as for communications between the two sites. A process for preferred operation of the firewall processor 111 is described below with reference to Figs. 5A and 5B, including properly selecting among different firewall policies.
  • Fig. 2 shows a user site 201 connected to the Internet 105 via a firewall processor 211. An administrator processor 215 and a router 216 are connected to the firewall processor 211. The router 216 is connected to additional firewall processors 212 and 213 which are internal to the user site 201. The firewall processor 212 protects a single subsite 223, such as Human Resources (HR). The firewall processor 213 is configured for protecting two sub-sites, such as Payroll (P) and Disbursements (D), vis-a-vis the remainder of the site 201 as well as with respect to communications between sub-sites 221 and 222. This can be achieved by employing the process illustrated by Figs. 5A and 5B in the firewall processor 213.
  • The security policies can be represented by sets of access rules which are represented in tabular form and which are loaded into the firewall by a firewall administrator. As illustrated in Fig. 3, such a table can provide for categories including rule number, designations of source and destination hosts, a designation of a special service which can be called for in a packet, and a specification of an action to be taken on a packet. Special services can include proxy services, network address translation, and encryption, for example. In Fig. 3, the categories "Source Host," "Destination Host" and "Service" impose conditions which must be satisfied by data included in a packet for the specified action to be taken on that packet. Other conditions can be included, and such conditions need not relate to data included in the packet. For example, application of a rule can be made conditional on the time of day or day of the week.
  • When a category provided for in the rule table is irrelevant in a certain rule, the corresponding table entry can be marked as a "wild card." This can apply to any one or any combination of the categories. In Fig. 3 and elsewhere, an asterisk (*) is used for wild card entries. "FTP" stands for "file transfer protocol."
  • In rule processing for a packet, the rules are applied sequentially until a rule is found which is satisfied by the packet (or until the rule table is exhausted, in which case the packet is dropped). For a packet to satisfy a rule, each condition included in the rule must be met. For example, with reference to Fig. 3, a packet from source host A to destination host D and representing mail will be dropped under Rule 20. The following is a more detailed list of exemplary rule set categories in accordance with the invention. The first five category names correspond to the categories shown in Fig. 3.
    Category Name Descrption
    Rule Number Number of rule within domain. Rule numbers do not have to be unique but should generally represent a single service, such as FTP
    Source Host Source host group identifier or IP address
    Destination Host Destination host group identifier or IP address
    Service Service group or protocol/destination port/source port
    Action Rule action e.g., "pass," "drop"; or "proxy"
    Notify on Drop If "yet," an Internet Control Message Protocol (ICMP) message is sent out if action is "drop"
    Cache Timeout Number od seconds of inactivity before session entry is removed from cache
    Reset Session If "yes," for TCP sessions, send TCP reset to both ends of connection upon cache timeout
    Rule Timeout Number of seconds of inactivity before rule is removed from rule list
    Start Period Start active period for rule
    End Period End active period for rule
    Kill Session at End of Period If "yes" then any sessions authorized by this rule will be killed at the end of the time period
    Dependency Mask Dependency mask name
    In Interface Interface name to match on reception
    Out Interface Interface name to which packet is sent
    Audit Session Audit record generation. If "yes" then audit record is generated at the beginning and again at the end of the session.
    Alarm Code Alarm code value to tie rule to particular alarms
    Source Host Map Group IP address or host group containing map-to host IP addresses
    Source Host Map Type Type of mapping to be performed, e.g., "pool" or "direct"
    Destination Host Map Group IP address or host group containing map-to host IP addresses
    Destination Host Map Type Type of mapping to be performled, e.g., "pool" or "direct"
    Service Map Group Service group containing map-to destination port numbers or the destination port. Protocol and source port in a referenced service group are ignored.
    Service Map Type Type of mapping to be performed, e.g., "pool" or "direct"
    Max Use Total Count Maximun number of times this rule may be used. The rule is removed after the limit is reached.
    Max Use Concurrent Count Maximun of sessions authorized by this rule which may be active at a given time. The rule is inactive until the count falls below the designated value.
    Copy to Address Address of application to which a copy of packet is sent. Used for session captures.
    Tunnel Destination Set up a tunnel and send it to this destination address and protocol. A new IP header will be added to the packet.
    Tunnel Requirements Indicates when tunneling is required. If "null" then no check is required. If "in" then incoming session must have been tunneled. If, "out" then initiate action to tunnel packet. If "both" then do both.
    IPSEC Requirements Indicates when IP Security (IPSEC) processing is required. If "null" then no check is required. If, "in" then incoming session must have been protected using IPSEC. If "out" then initiate action to add IPSEC protection. If "both" then do both.
    Sequence Number Randomize Option to randomize TCP sequence numbers. Default is "no."
    Syn Storm Protection Provide protection from "syn storm" attacks. Default is "no."
    Authorize Return Channel If "yes," initial packet will create forward and reverse channels in cache with same action. Default is "yes."
  • 2. Stateful Packet Filtering
  • A computer network firewall in accordance with the invention can be configured to utilize "stateful" packet filtering which improves performance by storing in a cache the results of rule processing as applied to one or more packets. Stateful packet filtering may be implemented by caching rule processing results for received packets, and then utilizing the cached results to bypass rule processing for subsequent similar packets. For example, the results of applying a rule set to a packet of a given network session may be cached, such that when a subsequent packet from the same network session arrives in the firewall, the cached results from the previous packet are used for the subsequent packet. This avoids the need to apply the rule set to each incoming packet, and thereby provides substantial performance advantages over conventional firewalls.
  • As the number of cache entries can grow to many times the number of rules, efficient use of a cache may require indexing (using a hash table, for example). As illustrated by Fig. 4, the cache can include a "session key," hardware address information, interface information, the number of the applicable rule, an alarm code, statistical information, and an applicable action. The session key includes at least one header item which was appended to the data to be transmitted in the packet, and in an exemplary embodiment includes (i) the Internet protocol (IP) source address, (ii) the IP destination address, (iii) the next-level protocol, e.g., transmission control protocol (TCP) or universal datagram protocol (UDP), (iv) the source port associated with the protocol, and (v) the destination port associated with the protocol. In Fig. 4, for the session key, items (i) and (ii) are shown individually. Items (iii) to (v) are represented by "telnet" or "mail" for short.
  • In the firewall, a decision module or engine, here called a "domain support engine" (DSE) determines which security policy to use for a new network session. Each new session must be approved by the security policies of the source domain and the destination domain(s). For connections going to the Internet, it is likely that only a single domain check is performed. The DSE makes the domain selection based on the incoming or outgoing network interface, as well as on the source or destination network address of each packet. Inclusion, in packets, of source or destination addresses allows for multiple users to be supported by a single network interface. The incoming or outgoing network interface may be in the form of a network interface card (NIC), e.g., an Intel EtherExpress Pro 100B card available from Intel Corporation.
  • Figs. 5A and 5B illustrate over-all flow for packet processing by a firewall which supports multiple domains. Such processing includes determining the domains which the packet is to cross, examining the applicable rules to ascertain whether the packet may pass, and determining whether any special processing is required. In the firewall, each domain is associated with one or more network interfaces. Interfaces that support more than one domain are separated using an IP address range to distinguish the packets. The following steps are included:
  • 501: an IP packet is received by the firewall at an interface;
  • 502: the session key is obtained from the IP header of the packet;
  • 503: on the basis of which interface received the packet and the source IP address of the received packet, the source domain is determined as described separately below with reference to Figs. 6 and 7; if no domain is found, the process skips to step 505;
  • 504: using the session key from step 502, the cache of the source domain is searched for a match; if a match is found in the cache and if the action is not "drop," the process continues with step 505; if a match is found in the cache and the action is "drop," the packet is dropped and the process returns to step 501; if no match is found in the cache, the rule set for the source domain is searched for a match; if a match is found in the rules and if the action is not "drop," the process continues with step 505; if a match is found in the rules and the action is "drop," a corresponding entry is included in the cache, the packet is dropped, and the process returns to step 501; if no match is found in the rules, the packet is dropped and the process returns to step 501;
  • 505: the destination interface is determined using the local area network (LAN) address of the packet, and, if the source domain rule specifies a destination interface, using that destination interface and a routing table;
  • 506: using the destination interface and the destination address of the packet, the destination domain is determined; if the destination domain is not found, or if the destination domain matches the domain just checked, the process skips to step 508;
  • 507: cache look-up and, if required, rule set look-up for the destination domain are carried out in a manner analogous to that employed for the source domain in step 504;
  • 508: if a rule that applies to the packet calls for an address change, e.g., to a proxy or for insertion of one packet into another ("tunnel option"), the process returns to step 505 for processing based on the changed destination;
  • 509: if the packet was not processed with respect to any domain, the packet can be dropped, as a firewall owner has no interest in supporting communications between interfaces which are not subject to any access rules;
  • 510: with all actions having resulted in "pass," the packet is sent out the appropriate network interface.
  • For convenient linking of each network interface to a domain, a domain table is used. In cases where an interface is shared by multiple domains, an address range is included. This is illustrated by Fig. 6 which shows non-overlapping address ranges.
  • Fig. 7 illustrates domain table processing as performed in steps 503 and 506 described above, including the following steps:
  • 701: the domain table is searched for a match of the interface name;
  • 702: if matching table entry is found, and if the IP address range is present in the matching table entry, the packet address is checked as to whether it is within the range; if so, the specified domain is selected; otherwise, the search continues with the next table entry;
  • 703: if the end of the table is reached without a match having been found, no action is taken.
  • 3. Dependency Mask
  • For protocols of the type which require a separate, additional network session from the outside back to the user, such as, for example, the protocol employed by RealAudio, a rule can include a condition or mask that allows a connection back to a user, but only if there is a proper forward connection concurrently active, i.e., a connection in which the source and destination addresses are interchanged. As a result, there is no need for a separate or proxy application on the firewall.
  • A dependency mask in accordance with the invention can define a query directed to the session cache. A match is determined by matching all fields defined in the mask with the corresponding fields in the cache. Empty fields within the mask are not used for comparison.
  • A dependency mask may be defined in a rule for the first packet of a network session, using (a) information in the packet, (b) the source interface for that packet and (c) one or several dependency conditions that must be met for the packet to pass. When such a first packet has been processed by the firewall, a corresponding entry is made in the cache.
  • Fig. 8 shows rules with a dependency mask ("hit count") in a format similar to that of Fig. 3. Special symbols are included for certain host designations, namely (i) a "dot" symbol (.) calling for inclusion of packet data of the corresponding category, and (ii) a caret symbol (^) calling for inclusion of packet data from a certain different category instead. "Hit count" indicates the number of matches which must be found in the cache for the specified action to be taken. For example, in the dependency mask named "realaudio," a count of 1 is used for passing UDP packets provided one requisite TCP session is active. In the dependency mask "telnet," a count of 10 is used to drop packets to prevent overloading of resources.
  • Fig. 9 illustrates dependency mask processing including the following steps:
  • 901: the packet is obtained and the session key is extracted;
  • 902: the process steps through the rule set entries; if no match is found with a given rule, the process advances to the next rule in the set; if no match is found by the time the rule set is exhausted, the packet is dropped; if a match is found and the dependency mask field is null, the process skips to step 905;
  • 903: the packet and interface information may be included in the formation of a cache search structure, e.g., a query; if a user authentication flag is set in the dependency mask, the corresponding flag is set in the cache search structure; this defines the query portion of a rule;
  • 904: the cache is searched for a match with the cache search structure and a count of matches is accumulated; this is processing the query portion of the rule;
  • 905: if the accumulated count is equal to or greater than the hit count, the rule is selected and the action associated with the rule is performed; such action may include pass, drop or proxy; also, a corresponding entry is made in the cache; if no match is found in the cache, or if fewer than "hit count" entries were found in the cache, the process returns to step 902 to find another rule; this is processing of the action portion of the rule as a function of the result of the query.
  • Rule processing, including the above-described dependency mask processing, is performed only on the first packet of a network session. All other packets bypass the rule search functions because their action has been saved in the session cache after processing of the first packet.
  • 4. Dynamic Rules
  • Dynamic rules are rules which are included with the access rules as a need arises, for processing along with the access rules, e.g., by a rule processing engine. Dynamic rules can include unique, current information such as, for example, specific source and destination port numbers. They can be loaded at any time by trusted parties, e.g., a trusted application, remote proxy or firewall administrator, to authorize specific network sessions. A dynamic rule can be set for single-session use, or its use can be limited as to time. Once a dynamic rule has served its function, it can be removed from the rule set. The dynamic rules allow a given rule set to be modified based on events happening in the network without requiring that the entire rule set be reloaded.
  • Exemplary dynamic rules include a "one-time" rule which is only used for a single session, a time-limited rule which is used only for a specified time period, and a threshold rule which is used only when certain conditions are satisfied. Another type of dynamic rule includes rules which define a host group, such that the host group can be modified to add or drop different hosts without altering other aspects of the access rule set. Other dynamic rules may be used to facilitate rule setup in certain specific types of processing applications. For example, an FTP proxy application could use a dynamic rule to authorize establishment of an FTP data channel in response to a data request. The dynamic rule in this example would typically not be loaded until a data request is made over the FTP control session, and could be limited to one use and made active for only a limited time period. The rule set therefore need not include a separate data channel rule for use with all requests. As a result, the rule specification and rule processing are simplified, and security is improved.
  • 5. Proxy Reflection
  • Proxy reflection in accordance with the present invention involves redirecting a network session to another, "remote" proxy server for processing, and then later passing it back via the firewall to the intended destination. When a new session enters the firewall, a decision is made to determine whether service by a proxy server is required. If so, the firewall replaces the destination address in the packet with the host address of the proxy application and, if necessary, it can also change the service port. When the proxy application receives the session, it will request from the firewall the original destination address of the session for determining whether the connection to the destination is authorized. If the proxy then makes the connection to that destination as itself, using its own IP address, the service provided by the firewall will be called "single reflection" or "one-way reflection."
  • For some users and proxy applications, the connection should appear at the destination to be coming from the original source rather than the remote system. This applies, e.g., to services which check the source IP address to ensure that it matches the user who signed up for the requested service. This capability is provided by "dual reflection" (or "two-way reflection"), with the source address of the outgoing connection changed back from the remote proxy to the original user's source address. This change is effected at the firewall, as each packet is received from the proxy and sent to the destination.
  • To provide dual reflection capability, the proxy application requests from the firewall the details of the original, incoming network session. The firewall returns a port number to use on the outgoing connection. This port number is unique and will allow the firewall to identify the proper outgoing connection so that it can map the source address to the proper user source address. As a result, the proxy application is invisible to both parties.
  • In implementing proxy reflection, dynamic rules can be used as described below for an illustrative embodiment, with reference to Figs. 10A and 10B.
  • Fig. 10A illustrates proxy reflection processing including the following steps at the firewall:
  • 1001: packet is received by the firewall;
  • 1002: action associated with the packet is determined by looking in the appropriate session cache or, if not found in the cache, in the appropriate rule set; if the action is "pass" or "proxy," packet processing continues; if the action is "drop," the packet is dropped;
  • 1003: if the action indicates a proxy application supported locally on the firewall, the packet is sent up the protocol stack to an awaiting proxy application;
  • 1004: if the action indicates a remote proxy, the packet's destination address is replaced with the address of the remote proxy; if configured, the destination port can be changed as well; the original packet header data is recorded in the session cache along with any changed values;
  • 1005: the packet is routed to the remote proxy server.
  • Fig. 10B illustrates processing at the remote proxy, subsequent to step 1005, including the following steps:
  • 1006: the packet is received in the remote proxy server application;
  • 1007: the remote proxy contacts the firewall for the original session key for the packet;
  • 1008: the remote proxy application uses the original session key to perform its function, such as dropping the connection based on its own security model, performing the requested service, or contacting the original destination address on behalf of the user; if the remote proxy is using single reflection, the process skips to step 1011;
  • 1009: the remote proxy application contacts the firewall over the encrypted channel to request dual reflection capability;
  • 1010: the firewall determines a new destination port number that will guarantee uniqueness of the connection from the server; the firewall passes this new port number and the original session key back to the proxy application;
  • 1011: the remote proxy application requests permission from the firewall for a connection from itself to the original destination;
  • 1012: the firewall loads a dynamic rule to perform this action;
  • 1013: the remote proxy sends the packet to the firewall; based on the dynamic rule loaded in step 1012, the firewall forwards the packet to the original destination; in the case of dual reflection, the proxy uses the destination port which was determined by the firewall in step 1010, and, as the packet passes through the firewall, the IP header values are changed back to the original values.
  • All future packets associated with the same session are processed alike, except that steps 1007 and 1009-1012 can be skipped. This is because the same dynamic rules apply for the life of the session.
  • The invention can be implemented in a wide variety of applications. For example, the invention may be used to provide improved firewall performance in a dial-up access gateway. Another exemplary embodiment of the invention may be implemented in a distributed manner with a first portion of the firewall resident in the network and a second portion of the firewall resident in a set-top box, computer or other user terminal in a home or business. The latter embodiment can allow the firewall techniques of the invention to provide, for example, parental control of Internet and video access in the home. These and the other above-described embodiments of the invention are intended to be illustrative only. Numerous alternative embodiments within the scope of the following claims will be apparent to those skilled in the art.

Claims (10)

  1. A method for packet validation in a computer network firewall, comprising the steps of:
    storing in a cache a result of applying at least a portion of a rule set to a given packet of a network session; and
    utilizing the stored results to process at least one subsequent packet having a characteristic similar to that of the given packet.
  2. The method of claim 1 wherein the utilizing step includes utilizing the stored results to bypass rule processing for the subsequent packet.
  3. The method of claim 1 wherein the subsequent packet is from the same network session as the given packet.
  4. The method of claim 1 wherein the utilizing step includes using a session key associated with the subsequent packet to retrieve the stored result from the cache.
  5. An apparatus for use in validating a packet in a firewall of a computer network, comprising:
    a memory for storing a cache containing a result of applying at least a portion of a rule set to a given packet of a network session; and
    a processor coupled to the memory, wherein the processor is operative to utilize the stored results to process at least one subsequent packet having a characteristic similar to that of the given packet.
  6. The apparatus of claim 5 wherein the processor is further operative to utilize the stored results to bypass rule processing for the subsequent packet.
  7. The apparatus of claim 5 wherein the subsequent packet is from the same network session as the given packet.
  8. The apparatus of claim 5 wherein the processor is further operative to use a session key associated with the subsequent packet to retrieve the stored result from the cache.
  9. A computer system for packet validation in a computer network, comprising means for carrying out each step in a method as claimed in any of claims 1 to 4.
  10. A computer system for packet validation in a computer network, comprising a processor which is instructed to carry out a method as claimed in any of claims 1 to 4.
EP98306984A 1997-09-12 1998-09-01 Methods and apparatus for a computer network firewall with stateful packet filtering Withdrawn EP0909072A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US928794 1997-09-12
US08/928,794 US6141749A (en) 1997-09-12 1997-09-12 Methods and apparatus for a computer network firewall with stateful packet filtering

Publications (2)

Publication Number Publication Date
EP0909072A2 true EP0909072A2 (en) 1999-04-14
EP0909072A3 EP0909072A3 (en) 2003-07-23

Family

ID=25456770

Family Applications (1)

Application Number Title Priority Date Filing Date
EP98306984A Withdrawn EP0909072A3 (en) 1997-09-12 1998-09-01 Methods and apparatus for a computer network firewall with stateful packet filtering

Country Status (3)

Country Link
US (1) US6141749A (en)
EP (1) EP0909072A3 (en)
JP (2) JP3464610B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001026284A1 (en) * 1999-09-24 2001-04-12 Elisa Communications Oyj Method for controlling traffic in a data network
WO2002037755A2 (en) * 2000-11-02 2002-05-10 Asta Networks, Inc. Detecting and preventing undesirable network traffic from being sourced out of a network domain
EP1274212A1 (en) * 2001-07-04 2003-01-08 Allied Telesis K. K. Method and device avoiding unauthorized access
EP1300997A2 (en) * 2001-10-06 2003-04-09 Terrace Technologies, Inc. System and method for preventing unsolicited e-mail
WO2003101069A1 (en) * 2002-05-28 2003-12-04 Grupo S21Sec Gestión, S.A. Firewalls for securing networks and http applications
EP1463257A1 (en) * 2003-03-27 2004-09-29 Motorola Inc. Communication between a private network and a roaming mobile terminal
EP1225746A3 (en) * 2001-01-18 2005-03-09 Stonesoft Corporation Screening of data packets in a gateway
US6950947B1 (en) 2000-06-20 2005-09-27 Networks Associates Technology, Inc. System for sharing network state to enhance network throughput
EP1659752A1 (en) * 2004-11-23 2006-05-24 Toshiba Corporation System and method for snmp packet filtering for printing devices
US7127739B2 (en) 2001-02-12 2006-10-24 Stonesoft Oy Handling information about packet data connections in a security gateway element
US7603456B2 (en) 2003-09-30 2009-10-13 Kabushiki Kaisha Toshiba System and method for securing remote administrative access to a processing device
EP2693717A1 (en) * 2012-07-29 2014-02-05 Verint Systems Limited System and method of high volume rule engine related applications
US8689295B2 (en) 2001-05-16 2014-04-01 International Business Machines Corporation Firewalls for providing security in HTTP networks and applications
US9141786B2 (en) 1996-11-08 2015-09-22 Finjan, Inc. Malicious mobile code runtime monitoring system and methods
US9219755B2 (en) 1996-11-08 2015-12-22 Finjan, Inc. Malicious mobile code runtime monitoring system and methods
US10284478B2 (en) 2014-03-04 2019-05-07 Nec Corporation Packet processing device, packet processing method and program
US10552603B2 (en) 2000-05-17 2020-02-04 Finjan, Inc. Malicious mobile code runtime monitoring system and methods
CN112351014A (en) * 2020-10-28 2021-02-09 武汉思普崚技术有限公司 Firewall security policy compliance baseline management method and device between security domains

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6791947B2 (en) 1996-12-16 2004-09-14 Juniper Networks In-line packet processing
JPH11338798A (en) * 1998-05-27 1999-12-10 Ntt Communication Ware Kk Network system and computer readable recording medium recording program
US6546423B1 (en) * 1998-10-22 2003-04-08 At&T Corp. System and method for network load balancing
US6574666B1 (en) * 1998-10-22 2003-06-03 At&T Corp. System and method for dynamic retrieval loading and deletion of packet rules in a network firewall
US6701432B1 (en) * 1999-04-01 2004-03-02 Netscreen Technologies, Inc. Firewall including local bus
US6628654B1 (en) * 1999-07-01 2003-09-30 Cisco Technology, Inc. Dispatching packets from a forwarding agent using tag switching
JP4316737B2 (en) * 1999-08-23 2009-08-19 マスプロ電工株式会社 Cable modem system
EP1143659A4 (en) * 1999-11-01 2007-08-29 Sony Corp Information transmission system and method, transmitter and receiver, data processing device and data processing method, and recorded medium
US6629163B1 (en) 1999-12-29 2003-09-30 Implicit Networks, Inc. Method and system for demultiplexing a first sequence of packet components to identify specific components wherein subsequent components are processed without re-identifying components
US7188176B1 (en) * 2000-01-20 2007-03-06 Priceline.Com Incorporated Apparatus, system, and method for maintaining a persistent data state on a communications network
US20020078198A1 (en) * 2000-02-25 2002-06-20 Buchbinder John E. Personal server technology with firewall detection and penetration
US20070214262A1 (en) * 2000-02-25 2007-09-13 Anywheremobile, Inc. Personal server technology with firewall detection and penetration
US6914905B1 (en) 2000-06-16 2005-07-05 Extreme Networks, Inc. Method and system for VLAN aggregation
JP2002063084A (en) 2000-08-21 2002-02-28 Toshiba Corp Packet-transferring device, packet-transferring method, and storage medium stored with program therefor
US6661799B1 (en) 2000-09-13 2003-12-09 Alcatel Usa Sourcing, L.P. Method and apparatus for facilitating peer-to-peer application communication
US6907395B1 (en) 2000-10-24 2005-06-14 Microsoft Corporation System and method for designing a logical model of a distributed computer system and deploying physical resources according to the logical model
US7093288B1 (en) * 2000-10-24 2006-08-15 Microsoft Corporation Using packet filters and network virtualization to restrict network communications
US6915338B1 (en) * 2000-10-24 2005-07-05 Microsoft Corporation System and method providing automatic policy enforcement in a multi-computer service application
US6886038B1 (en) 2000-10-24 2005-04-26 Microsoft Corporation System and method for restricting data transfers and managing software components of distributed computers
US7113900B1 (en) 2000-10-24 2006-09-26 Microsoft Corporation System and method for logical modeling of distributed computer systems
US7606898B1 (en) * 2000-10-24 2009-10-20 Microsoft Corporation System and method for distributed management of shared computers
JP2002197051A (en) * 2000-12-11 2002-07-12 Internatl Business Mach Corp <Ibm> Selection method for communication adapter for determining communication destination, setting method for communication adapter, computer system, portable information device, and storage medium
US6912592B2 (en) * 2001-01-05 2005-06-28 Extreme Networks, Inc. Method and system of aggregate multiple VLANs in a metropolitan area network
US7360075B2 (en) * 2001-02-12 2008-04-15 Aventail Corporation, A Wholly Owned Subsidiary Of Sonicwall, Inc. Method and apparatus for providing secure streaming data transmission facilities using unreliable protocols
US7383329B2 (en) 2001-02-13 2008-06-03 Aventail, Llc Distributed cache for state transfer operations
US7353380B2 (en) * 2001-02-12 2008-04-01 Aventail, Llc, A Subsidiary Of Sonicwall, Inc. Method and apparatus for providing secure streaming data transmission facilities using unreliable protocols
US7093280B2 (en) * 2001-03-30 2006-08-15 Juniper Networks, Inc. Internet security system
US7095716B1 (en) 2001-03-30 2006-08-22 Juniper Networks, Inc. Internet security device and method
WO2002087176A2 (en) 2001-04-18 2002-10-31 Skypilot Network, Inc. Network channel access protocol - interference and load adaptive
US20020157020A1 (en) * 2001-04-20 2002-10-24 Coby Royer Firewall for protecting electronic commerce databases from malicious hackers
JP2003008662A (en) * 2001-06-22 2003-01-10 Furukawa Electric Co Ltd:The Method and device for controling access to network, and system for controling access to network using its device
US7243374B2 (en) 2001-08-08 2007-07-10 Microsoft Corporation Rapid application security threat analysis
US7302700B2 (en) 2001-09-28 2007-11-27 Juniper Networks, Inc. Method and apparatus for implementing a layer 3/layer 7 firewall in an L2 device
US7370353B2 (en) * 2001-11-05 2008-05-06 Cisco Technology, Inc. System and method for managing dynamic network sessions
US7953087B1 (en) * 2001-12-28 2011-05-31 The Directv Group, Inc. Content filtering using static source routes
US9392002B2 (en) * 2002-01-31 2016-07-12 Nokia Technologies Oy System and method of providing virus protection at a gateway
US7650634B2 (en) 2002-02-08 2010-01-19 Juniper Networks, Inc. Intelligent integrated network security device
US8370936B2 (en) 2002-02-08 2013-02-05 Juniper Networks, Inc. Multi-method gateway-based network security systems and methods
US7734752B2 (en) 2002-02-08 2010-06-08 Juniper Networks, Inc. Intelligent integrated network security device for high-availability applications
US6983323B2 (en) * 2002-08-12 2006-01-03 Tippingpoint Technologies, Inc. Multi-level packet screening with dynamically selected filtering criteria
FR2848046B1 (en) * 2002-12-02 2005-02-18 Arkoon Network Security ACCESS METHOD AND DEVICE FOR SECURING ACCESS TO INFORMATION SYSTEMS
US7072807B2 (en) 2003-03-06 2006-07-04 Microsoft Corporation Architecture for distributed computing system and automated design, deployment, and management of distributed applications
US7394809B2 (en) * 2003-03-31 2008-07-01 Intel Corporation Method and apparatus for packet classification using a forest of hash tables data structure
US7325002B2 (en) 2003-04-04 2008-01-29 Juniper Networks, Inc. Detection of network security breaches based on analysis of network record logs
US7792963B2 (en) * 2003-09-04 2010-09-07 Time Warner Cable, Inc. Method to block unauthorized network traffic in a cable data network
US7876757B2 (en) * 2003-11-06 2011-01-25 International Business Machines Corporation Router-assisted fast processing of packet termination in host
JP2005310243A (en) * 2004-04-20 2005-11-04 Seiko Epson Corp Memory controller, semiconductor integrated circuit apparatus, semiconductor apparatus, microcomputer, and electronic equipment
US8108679B2 (en) 2004-05-20 2012-01-31 Qinetiq Limited Firewall system
US7669240B2 (en) * 2004-07-22 2010-02-23 International Business Machines Corporation Apparatus, method and program to detect and control deleterious code (virus) in computer network
US20070266431A1 (en) * 2004-11-04 2007-11-15 Nec Corporation Firewall Inspecting System and Firewall Information Extraction System
US20060185008A1 (en) * 2005-02-11 2006-08-17 Nokia Corporation Method, apparatus and computer program product enabling negotiation of firewall features by endpoints
US20060190998A1 (en) 2005-02-17 2006-08-24 At&T Corp Determining firewall rules for reverse firewalls
US7746862B1 (en) 2005-08-02 2010-06-29 Juniper Networks, Inc. Packet processing in a multiple processor system
US7941309B2 (en) 2005-11-02 2011-05-10 Microsoft Corporation Modeling IT operations/policies
US8347373B2 (en) 2007-05-08 2013-01-01 Fortinet, Inc. Content filtering of remote file-system access protocols
US8170020B2 (en) * 2005-12-08 2012-05-01 Microsoft Corporation Leveraging active firewalls for network intrusion detection and retardation of attack
JP4823728B2 (en) * 2006-03-20 2011-11-24 富士通株式会社 Frame relay device and frame inspection device
US7603333B2 (en) * 2006-06-14 2009-10-13 Microsoft Corporation Delayed policy evaluation
US7886351B2 (en) * 2006-06-19 2011-02-08 Microsoft Corporation Network aware firewall
US8332925B2 (en) 2006-08-08 2012-12-11 A10 Networks, Inc. System and method for distributed multi-processing security gateway
US8079077B2 (en) 2006-08-08 2011-12-13 A10 Networks, Inc. System and method for distributed multi-processing security gateway
US7953895B1 (en) * 2007-03-07 2011-05-31 Juniper Networks, Inc. Application identification
JP2010034860A (en) * 2008-07-29 2010-02-12 Fujitsu Ltd Ip network communicating method which has security function, and communicating system
CN101697545B (en) * 2009-10-29 2012-08-08 成都市华为赛门铁克科技有限公司 Security incident correlation method and device as well as network server
CN101958842B (en) * 2010-10-28 2013-07-24 神州数码网络(北京)有限公司 Flow control method based on user
US10140049B2 (en) 2012-02-24 2018-11-27 Missing Link Electronics, Inc. Partitioning systems operating in multiple domains
US9118618B2 (en) 2012-03-29 2015-08-25 A10 Networks, Inc. Hardware-based packet editor
US9596286B2 (en) 2012-05-25 2017-03-14 A10 Networks, Inc. Method to process HTTP header with hardware assistance
US10021174B2 (en) 2012-09-25 2018-07-10 A10 Networks, Inc. Distributing service sessions
US9705800B2 (en) 2012-09-25 2017-07-11 A10 Networks, Inc. Load distribution in data networks
US10027761B2 (en) 2013-05-03 2018-07-17 A10 Networks, Inc. Facilitating a secure 3 party network session by a network device
US10020979B1 (en) 2014-03-25 2018-07-10 A10 Networks, Inc. Allocating resources in multi-core computing environments
US9806943B2 (en) 2014-04-24 2017-10-31 A10 Networks, Inc. Enabling planned upgrade/downgrade of network devices without impacting network sessions
US9729512B2 (en) 2014-06-04 2017-08-08 Nicira, Inc. Use of stateless marking to speed up stateful firewall rule processing
US9825913B2 (en) * 2014-06-04 2017-11-21 Nicira, Inc. Use of stateless marking to speed up stateful firewall rule processing
US11012416B2 (en) * 2018-01-15 2021-05-18 Akamai Technologies, Inc. Symbolic execution for web application firewall performance
US11875172B2 (en) 2020-09-28 2024-01-16 VMware LLC Bare metal computer for booting copies of VM images on multiple computing devices using a smart NIC
US11928062B2 (en) 2022-06-21 2024-03-12 VMware LLC Accelerating data message classification with smart NICs
US11899594B2 (en) 2022-06-21 2024-02-13 VMware LLC Maintenance of data message classification cache on smart NIC

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856974A2 (en) * 1997-01-15 1998-08-05 AT&T Corp. Session cache and rule caching method for a dynamic filter

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5349642A (en) * 1992-11-03 1994-09-20 Novell, Inc. Method and apparatus for authentication of client server communication
WO1997000471A2 (en) * 1993-12-15 1997-01-03 Check Point Software Technologies Ltd. A system for securing the flow of and selectively modifying packets in a computer network
US5699513A (en) * 1995-03-31 1997-12-16 Motorola, Inc. Method for secure network access via message intercept
US5802320A (en) * 1995-05-18 1998-09-01 Sun Microsystems, Inc. System for packet filtering of data packets at a computer network interface
US5751971A (en) * 1995-07-12 1998-05-12 Cabletron Systems, Inc. Internet protocol (IP) work group routing
JPH0981519A (en) * 1995-09-08 1997-03-28 Kiyadeitsukusu:Kk Authentication method on network
US5826014A (en) * 1996-02-06 1998-10-20 Network Engineering Software Firewall system for protecting network elements connected to a public network
US5842040A (en) * 1996-06-18 1998-11-24 Storage Technology Corporation Policy caching method and apparatus for use in a communication device based on contents of one data unit in a subset of related data units
US5828833A (en) * 1996-08-15 1998-10-27 Electronic Data Systems Corporation Method and system for allowing remote procedure calls through a network firewall
US5848233A (en) * 1996-12-09 1998-12-08 Sun Microsystems, Inc. Method and apparatus for dynamic packet filter assignment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0856974A2 (en) * 1997-01-15 1998-08-05 AT&T Corp. Session cache and rule caching method for a dynamic filter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PIERSON R ET AL: "Network security architecture for intelligent networks" INTELLIGENT NETWORK WORKSHOP, 1997. IN '97., IEEE MAY 4-7, 1997, NEW YORK, NY, USA,IEEE, US, 4 May 1997 (1997-05-04), page 37pp XP010226791 ISBN: 0-7803-4129-5 *

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9141786B2 (en) 1996-11-08 2015-09-22 Finjan, Inc. Malicious mobile code runtime monitoring system and methods
US9444844B2 (en) 1996-11-08 2016-09-13 Finjan, Inc. Malicious mobile code runtime monitoring system and methods
US9219755B2 (en) 1996-11-08 2015-12-22 Finjan, Inc. Malicious mobile code runtime monitoring system and methods
US9189621B2 (en) 1996-11-08 2015-11-17 Finjan, Inc. Malicious mobile code runtime monitoring system and methods
WO2001026284A1 (en) * 1999-09-24 2001-04-12 Elisa Communications Oyj Method for controlling traffic in a data network
US10552603B2 (en) 2000-05-17 2020-02-04 Finjan, Inc. Malicious mobile code runtime monitoring system and methods
US6950947B1 (en) 2000-06-20 2005-09-27 Networks Associates Technology, Inc. System for sharing network state to enhance network throughput
WO2002037755A3 (en) * 2000-11-02 2004-01-08 Asta Networks Inc Detecting and preventing undesirable network traffic from being sourced out of a network domain
WO2002037755A2 (en) * 2000-11-02 2002-05-10 Asta Networks, Inc. Detecting and preventing undesirable network traffic from being sourced out of a network domain
US7970886B1 (en) 2000-11-02 2011-06-28 Arbor Networks, Inc. Detecting and preventing undesirable network traffic from being sourced out of a network domain
EP1225746A3 (en) * 2001-01-18 2005-03-09 Stonesoft Corporation Screening of data packets in a gateway
US6996573B2 (en) 2001-01-18 2006-02-07 Stonesoft Oy Screening of data packets in a gateway
US7127739B2 (en) 2001-02-12 2006-10-24 Stonesoft Oy Handling information about packet data connections in a security gateway element
US8689295B2 (en) 2001-05-16 2014-04-01 International Business Machines Corporation Firewalls for providing security in HTTP networks and applications
EP1274212A1 (en) * 2001-07-04 2003-01-08 Allied Telesis K. K. Method and device avoiding unauthorized access
EP1300997A3 (en) * 2001-10-06 2004-01-02 Terrace Technologies, Inc. System and method for preventing unsolicited e-mail
EP1300997A2 (en) * 2001-10-06 2003-04-09 Terrace Technologies, Inc. System and method for preventing unsolicited e-mail
WO2003101069A1 (en) * 2002-05-28 2003-12-04 Grupo S21Sec Gestión, S.A. Firewalls for securing networks and http applications
US7516486B2 (en) 2003-03-27 2009-04-07 Motorola, Inc. Communication between a private network and a roaming mobile terminal
WO2004086718A1 (en) * 2003-03-27 2004-10-07 Motorola Inc Communication between a private network and a roaming mobile terminal
EP1463257A1 (en) * 2003-03-27 2004-09-29 Motorola Inc. Communication between a private network and a roaming mobile terminal
US7603456B2 (en) 2003-09-30 2009-10-13 Kabushiki Kaisha Toshiba System and method for securing remote administrative access to a processing device
EP1659752A1 (en) * 2004-11-23 2006-05-24 Toshiba Corporation System and method for snmp packet filtering for printing devices
EP2693717A1 (en) * 2012-07-29 2014-02-05 Verint Systems Limited System and method of high volume rule engine related applications
US9491069B2 (en) 2012-07-29 2016-11-08 Verint Systems Ltd. System and method of high volume rule engine
US10284478B2 (en) 2014-03-04 2019-05-07 Nec Corporation Packet processing device, packet processing method and program
CN112351014A (en) * 2020-10-28 2021-02-09 武汉思普崚技术有限公司 Firewall security policy compliance baseline management method and device between security domains

Also Published As

Publication number Publication date
JPH11163940A (en) 1999-06-18
JP2003198637A (en) 2003-07-11
EP0909072A3 (en) 2003-07-23
US6141749A (en) 2000-10-31
JP3464610B2 (en) 2003-11-10

Similar Documents

Publication Publication Date Title
US6141749A (en) Methods and apparatus for a computer network firewall with stateful packet filtering
US6170012B1 (en) Methods and apparatus for a computer network firewall with cache query processing
US7143438B1 (en) Methods and apparatus for a computer network firewall with multiple domain support
US6098172A (en) Methods and apparatus for a computer network firewall with proxy reflection
US6154775A (en) Methods and apparatus for a computer network firewall with dynamic rule processing with the ability to dynamically alter the operations of rules
US9100364B2 (en) Intelligent integrated network security device
US7370353B2 (en) System and method for managing dynamic network sessions
AU687575B2 (en) Security system for interconnected computer networks
US7570663B2 (en) System and method for processing packets according to concurrently reconfigurable rules
US7107609B2 (en) Stateful packet forwarding in a firewall cluster
US20040128538A1 (en) Method and apparatus for resource locator identifier rewrite
EP1269709B1 (en) Proxy network address translation
US8689319B2 (en) Network security system
US20080101222A1 (en) Lightweight, Time/Space Efficient Packet Filtering
JP4542053B2 (en) Packet relay apparatus, packet relay method, and packet relay program
KR20070000606A (en) Method for setting the fire wall
McGann IPv6 packet filtering
Fan et al. Tradeoffs of DDoS solutions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

AKX Designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040331