EP0801261A2 - Pressure vessel for gases to be stored - Google Patents

Pressure vessel for gases to be stored Download PDF

Info

Publication number
EP0801261A2
EP0801261A2 EP97890038A EP97890038A EP0801261A2 EP 0801261 A2 EP0801261 A2 EP 0801261A2 EP 97890038 A EP97890038 A EP 97890038A EP 97890038 A EP97890038 A EP 97890038A EP 0801261 A2 EP0801261 A2 EP 0801261A2
Authority
EP
European Patent Office
Prior art keywords
gases
sealing skin
sealing
gas
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97890038A
Other languages
German (de)
French (fr)
Other versions
EP0801261A3 (en
Inventor
Hartmut Dipl.-Ing. Heidinger
Adolf Ing. Rohrbacher
Gerhard Dipl.-Ing. Dr. Prof. Ruthammer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OMV AG
Original Assignee
OMV AG
OEMV AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OMV AG, OEMV AG filed Critical OMV AG
Publication of EP0801261A2 publication Critical patent/EP0801261A2/en
Publication of EP0801261A3 publication Critical patent/EP0801261A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/005Underground or underwater containers or vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/03Orientation
    • F17C2201/032Orientation with substantially vertical main axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • F17C2203/0629Two walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0678Concrete
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0123Mounting arrangements characterised by number of vessels
    • F17C2205/013Two or more vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/035Propane butane, e.g. LPG, GPL
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/06Fluid distribution
    • F17C2265/068Distribution pipeline networks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0147Type of cavity by burying vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • F17C2270/0149Type of cavity by digging cavities

Definitions

  • the invention has a pressure vessel for gases to be stored, in particular for hydrocarbons gaseous at room temperature and atmospheric pressure, for.
  • gases to be stored in particular for hydrocarbons gaseous at room temperature and atmospheric pressure, for.
  • Gases especially pressurized gases, have a wide range of uses in industry, commerce and households.
  • gases with a wide variety of chemical compositions, such as carbon dioxide, oxygen and also hydrocarbons.
  • gases are usually under pressure, so that, on the one hand, larger quantities can be stored in a container and, on the other hand, the pressure difference vis-à-vis a consumer enables the same to be conveyed automatically.
  • Gas storage systems depending on their size, have different tasks.
  • So-called underground stores are known, for example, whereby the pore stores are usually exploited gas or oil fields and the cavern stores are obtained through artificially created cavities.
  • Such underground storage facilities for natural gas have the advantage that large quantities, such as the gas consumption of two to three months of an industrial area or residential area, can be stored with relatively little mechanical use.
  • other measures are known to take account of the consumption on site and not to have to lay pipes with larger diameters. If the consumer agrees, air can also be added on site to maintain the pressure in the natural gas. It is also known to vaporize and supply liquid gas, in particular liquid natural gas, on site.
  • Such a liquefied natural gas is generally stored on site in spherical containers, the pressure in which is from 30 bar to 40 bar.
  • Another possibility is to provide so-called above-ground tube storage, with fourteen rows, each with a length of 150 m and a tube diameter of 1.50 m, being built up, for example, for a storage volume of 5,000 m 3 .
  • the operating pressure is 72 bar.
  • Such storage devices therefore require a particularly large amount of space.
  • a natural gas filling station for motor vehicles is known from US Pat. No. 5,207,530-A, a pressure container being formed by pipes which are connected via a screw sleeve and are closed at their lower end by a threaded cap. Such pipes are known from use in the petroleum industry. Such a memory can store only small amounts of gas on the one hand, and furthermore the removal of the amount of gas from the pressure vessel per unit of time is relatively small, since the container cools down during the gas withdrawal and heating of the container due to heat absorption from the environment must be awaited.
  • the present invention is based on a prior art, as given by US-5,207,530-A.
  • the invention has for its object to provide a pressure vessel for gases, in particular gaseous hydrocarbons, which are particularly suitable for covering the peak gas requirements and have only a minimal area requirement even with capacities of 50,000 m 3 . Furthermore, the task is to use conventional methods of manufacturing the pressure vessel as far as possible and which should have particularly high security levels, so that no essential measures are taken against the bursting of the pressure vessel even at high pressures, such as 300 bar or 500 bar. Furthermore, there should also be the possibility of continuously removing large quantities of gas from the gas storage.
  • the pressure vessel according to the invention for gases to be stored in particular for hydrocarbons gaseous at room temperature and atmospheric pressure, for. B. methane, ethane, propane, butane, iso-butane, with a metallic substantially cylindrical sealing skin, the middle and / or directly on a support medium, for. B. concrete, and feed and discharge lines, in particular a common supply and discharge line, for the gases only in the upper end region, the pressure vessel, which is formed by the cylindrical sealing skin, in the ground transversely to the horizontal, in particular substantially vertically , is essentially that the ratio of the diameter and the maximum extent of the cylindrical metallic sealing skin is at least 1: 100, in particular at least 1: 500, and the lower area of the sealing skin is insoluble, preferably closed with concrete.
  • both a sealing skin which can itself possibly already take high pressures and a medium supporting the same is provided, allows high pressures to be mastered with great certainty. Due to the large ratio of diameter to maximum extent of the sealing skin, large amounts of gas can be stored even with a relatively small diameter of the sealing skin, the space requirement being particularly small due to the arrangement of the same across the horizontal in the ground, particularly in the case of a vertical arrangement. The provision of the supply and discharge lines in the upper end area means that the need for additional pipelines is particularly low.
  • Such a container can be produced using conventional technology, as is known for drilling natural gas fields and oil fields so that well-known and safe technologies can be used.
  • a particularly simple constructive solution is provided when the gas supply and discharge lines are formed from the cavity formed by the sealing skin by a common line which is connected to the cavity in a gas-conducting and gas-tight manner.
  • Such a constructive design takes into account that if there is an excess of gas, no gas has to be taken from the gas store, but is instead introduced into the same gas, whereas if there is an excess of gas, no storage of the gas in the store is carried out, but is taken from the same gas.
  • the lower area of the sealing skin is undetachable, in particular closed with concrete, the conventional drilling process can be carried out on the one hand, whereby the lower area of the container, i.e. the sealing skin, can be closed particularly easily, with tightness being ensured in a particularly simple manner.
  • a pressure vessel is created which is suitable for a particularly deep extension, so that the vessel can be lowered into areas of the earth which are already at a higher temperature, so that the temperature drop, which is caused by gas extraction, is achieved by rapid Heat supply can be compensated, so that large amounts of gas can be removed from the pressure vessel in a short time, since geothermal energy is used.
  • the pressure vessel can be constructed with known delivery tubes for natural gas or petroleum, the Petroleum technology known procedure can be used.
  • At least one sealing skin is in a cylindrical space, in particular in another cylindrical sealing skin, and the support medium is arranged in the space between the sealing skins, a particularly secure multi-layer container is obtained.
  • the outer tube can also be manufactured using particularly reliable technology that has been used for a long time.
  • the sealing skin can essentially be inserted directly into the drilled borehole, so that additional work steps can be avoided, whereby, depending on the compressive strength of the soil, a high pressure absorption capacity can also exist.
  • a liquid is used as the support medium, z. B. a high back pressure can be exerted on the sealing skin by pressure load of the liquid.
  • liquid used as a support medium is under a lower pressure than the gases to be stored, on the one hand it is avoided that liquid can enter the cavity formed by the sealing skin due to leaks and, furthermore, a leak is caused by escaping gases and thus rising gas bubbles in the liquid displayed.
  • a reversibly acting adsorbent for the gases to be stored is arranged in the cavity formed by the sealing skin, in addition to increasing the amount of storage by pressure, a further increase in the amount of gas can be achieved at a predetermined volume.
  • the sealing skin is closed with concrete at the lower end, which ends in front of the sealing skin, which is arranged in the further sealing skin, the sealing skins being gas-tightly sealed from one another via a sealing element, in particular a ring made of rubber-elastic material, then the sealing is secure Given gas container.
  • a sealing element in particular a ring made of rubber-elastic material
  • the natural gas comes from the gas transmission line 1 with an operating pressure of 65 bar to 70 bar via the valve 2 and the pressure reduction 3, in which the pressure, depending on whether the gas to district control stations or forwarded to consumers, reduced to 25 bar to 40 bar or to 20 mbar.
  • the gas reaches the consumer 4, for example a gas turbine of a local electricity generator, from the pressure reducing station.
  • a second gas line branch which branches off from the remote gas line, has a valve 5, a compressor 6, for example a screw compressor, from which the gas reaches the pressure vessel 9 via the valves 7, 8. From this, the gas is fed again via the valve 8 and the valve 10 to a pressure reduction 11 and the consumer 4.
  • the natural gas from the long-distance gas line 1 reaches the consumer 4 via the valves 2 and the pressure reduction 3.
  • the natural gas passes through the valve 5, the compressor 6, in which the natural gas from 65 bar to 70 bar pressure to 250 bar is charged, via the valves 7 and 8 in the pressure accumulator 9.
  • the pressure vessel shown in FIG. 2 has a sealing skin 12 with an inner diameter of 20 ", which is made up of individual pipes with a spigot end and socket end and a length according to API Range 2 of between 8.5 m and 10.5 m.
  • a gas-tight connection of the pipes can be achieved by assembling the pipes.
  • the total length of the vertically arranged sealing skin is 1,500 m.
  • the sealing skin is in a cylindrical bore 13 which has an outer diameter of 30 ".
  • the cavity between the sealing skin 12 and the cylindrical bore 13 is filled with concrete 14.
  • a further outer concrete jacket 15 is provided to a depth of 500 m.
  • the bore 13 A conventional deep drilling method can usually be carried out, whereby the sealing skin 12 is lowered and through which the liquid concrete 14 is introduced into the space between the sealing skin and the cylindrical bore.
  • the sealing skin 12 has an inner diameter of 16 "and is surrounded by another metallic tube of the sealing skin 16 with an inner diameter of 20".
  • the cavity between the sealing skin 12 and another metallic tube of the sealing skin 16 is filled with a liquid medium 17, u. between water filled with corrosion inhibitor.
  • the intermediate space is also gas-tight and gas can be withdrawn via the valve 18, so that the same can be determined, for example, when natural gas escapes through the sealing skin.
  • a further possibility also exists to provide sight glasses 20 at the upper annular end 19, light being able to be supplied via the same and the rise of gas bubbles can be observed.
  • the total length of the sealing skin is 2,250 m, whereas the liquid support medium 17 only extends to a depth of 1,400 m, and concrete 21 can be arranged as a support medium from 1,400 m to 2,250 m.
  • An outer concrete jacket 15 is again provided in the upper region to a depth of 500 m.
  • the additional sealing skin 16 is additionally surrounded by a concrete 14, which also serves as a support medium.
  • the concrete 33 which is arranged inside and outside of the outer sealing skin 16, closes it down and ends in front of the inner sealing skin 12, so that a space is formed between them which is subjected to gas.
  • a seal of the inner sealing skin 12 against the outer sealing skin 16 is formed by the rubber-elastic ring 32 with sealing lips, so that the bottom of the pressure vessel is provided by the concrete 33.
  • Such a gas storage device has a geometric volume of approx. 330 m 3 , it being possible for example to store 82,500 m 3 of gas at a pressure of 250 bar.
  • the further metallic tube 16 serves as Receiving container for a liquid medium 17, three sealing skins 12 being arranged separately from this support medium 17.
  • Such an arrangement can be used, for example, for gas storage under particularly high pressure or also under temperatures that differ significantly from the normal temperature.
  • the supporting liquid can be subjected to a particularly high back pressure, which is only slightly lower than the pressure in the sealing skin, so that leaks due to escaping gas can still be detected.
  • FIG. 5 shows the lower region of a sealing skin 12, with concrete 14 being introduced via the check valve 22. This concrete is also located directly above the check valve, with an upward closure also being provided via a stopper 23 with sealing lips 24 acting as a labyrinth seal.
  • each pipe has a socket and spigot end so that they can be screwed together via the conical thread 29.
  • Conical sealing surfaces 30 and 31 are provided for sealing the pipe connection, the sealing surface 31 of the pointed pipe end being pressed against the sealing surface 31 of the socket pipe end via the sealing surface 30 when the pipes are screwed together.
  • the pipes are usually made of steel, but can also be made of other metals, depending on the need for a correction.
  • the pressure vessels are not only suitable for natural gas, but are also suitable for other gases. not only suitable for covering the peak demand. For example, oxygen, carbon dioxide, nitrogen or the like can be stored therein, especially if a particularly small area is available for such pressure vessels in industrial plants.
  • Activated carbon, diatomaceous earth, metals, solutions or the like are suitable as adsorbents.

Abstract

The container has a very long, small diameter metallic, cylindrical sealing skin (12,16) with its axis vertical. It is located indirectly or directly on a support medium (14) e.g. concrete. It especially has a common input and output conduit for the gases exclusively arranged in the upper end area. The container is buried in the earth or in concrete with only its top end showing above the ground. The ratio between the diameter and the maximum length of the cylindrical metallic sealing skin is particularly at least 1:500. The lower area of the metal sealing skin is permanently closed, preferably with concrete.

Description

Die Erfindung hat einen Druckbehälter für zu speichernde Gase, insbesondere für bei Raumtemperatur und Atmosphärendruck gasförmigen Kohlenwasserstoffen, z. B. Methan, Ethan, Propan, Butan iso-Butan, mit einer metallischen Dichthaut zum Gegenstand.The invention has a pressure vessel for gases to be stored, in particular for hydrocarbons gaseous at room temperature and atmospheric pressure, for. B. methane, ethane, propane, butane iso-butane, with a metallic sealing skin to the object.

Gase, insbesondere unter Druck stehende Gase, haben einen vielfältigen Einsatz in Industrie, Gewerbe und Haushalt. Es kommen hiebei Gase unterschiedlichster chemischer Zusammensetzung, wie beispielsweise Karbondioxid, Sauerstoff und auch Kohlenwasserstoffe, zu unterschiedlichen Einsätzen. Diese Gase stehen in der Regel unter Druck, so daß einerseits größere Mengen in einem Behälter gespeichert werden können und andererseits durch die Druckdifferenz gegenüber einem Verbraucher eine selbsttätige Förderung derselben einsetzt.Gases, especially pressurized gases, have a wide range of uses in industry, commerce and households. There are various uses for gases with a wide variety of chemical compositions, such as carbon dioxide, oxygen and also hydrocarbons. These gases are usually under pressure, so that, on the one hand, larger quantities can be stored in a container and, on the other hand, the pressure difference vis-à-vis a consumer enables the same to be conveyed automatically.

Bei den Energieträgern liegt ein stetiger Wandel vom festen Energieträger, wie Holz und Kohle, zum flüssigen Energieträger, wie flüssige Erdölprodukte und zu gasförmigen Energieträgern vor. Bei den gasförmigen Energieträgern sind jene, die bei Ihrer Verbrennung nur einen geringen Anteil an CO2 besitzen, bevorzugt. Obwohl Technologien entwickelt wurden, durch Hoch-temperatureinwirkung aus Wasser Wasserstoff zu gewinnen, ist der künftige Einsatz dieser Technologien zur Zeit nicht absehbar. Ein breiter Einsatz ist jedoch durch das sogenannte Erdgas gegeben, welches einen hohen Anteil, beispielsweise bis über 95 % Methan aufweist. Zur Verteilung des Erdgases werden am Festland Rohrleitungen ober- aber auch unterirdisch verlegt, wohingegen der Transport über die Meere in Tankern in verflüssigter Form durchgeführt wird. In den Rohrleitungen von den Bohrlöchern zu den Sammelstellen herrscht in der Regel ein Betriebsdruck von 70 bar bis 100 bar, um das Gas in Sammelstellen zu leiten. Von dort gelangt das Erdgas in Ferngasleitungen, wobei der Transport unter einem Druck von ca. 70 bar zu Übernahmestationen erfolgt, von wo es unter stetiger Abminderung des Druckes bis zu 20 mbar an die Abnehmer, sei es in Industrie, Haushalt und Gewerbe gelangt. Der höhere Druck in den Gasfernleitungen hat nicht nur den Zweck, die Gasströmung zu ermöglichen, sondern erlaubt gleichzeitig die Kapazität von Rohrleitungen mit gleicher geometrischer Abmessung zu erhöhen.There is a constant change in energy sources from solid energy sources such as wood and coal to liquid energy sources such as liquid petroleum products and gaseous energy sources. In the case of gaseous energy sources, preference is given to those which have only a small proportion of CO 2 when burned. Although technologies have been developed to produce hydrogen from water through exposure to high temperatures, the future use of these technologies is currently not foreseeable. However, the so-called natural gas, which has a high proportion, for example up to 95% methane, is widely used. In order to distribute the natural gas, pipelines are laid above or below ground on the mainland, whereas the transport across the ocean is carried out in liquefied form in tankers. In the pipelines from the boreholes to the collection points, there is usually an operating pressure of 70 bar to 100 bar to guide the gas to the collection points. From there The natural gas arrives in long-distance gas pipelines, whereby the transport takes place under a pressure of approx. 70 bar to transfer stations, from where it is continuously reduced in pressure to up to 20 mbar to the customers, be it in industry, household and commerce. The higher pressure in the gas pipelines not only has the purpose of enabling the gas flow, but at the same time allows the capacity of pipes with the same geometric dimensions to be increased.

Gasspeicher, je nach Ihrer Größe, haben unterschiedliche Aufgaben. So sind beispielsweise sogenannte Untergrundspeicher bekannt, wobei die Porenspeicher in der Regel ausgebeutete Gas- oder Ölfelder sind und die Kavernenspeicher durch künstlich angelegte Hohlräume erhalten werden. Derartige unterirdische Speicher für Erdgas haben den Vorteil, daß mit relativ geringem maschinellen Einsatz große Mengen, wie beispielsweise den Gasverbrauch von zwei bis drei Monaten eines Industriegebietes oder Wohngebietes gelagert werden können. Neben diesen langfristigen Speichern sind, um den Verbrauch vor Ort Rechnung zu tragen, und nicht Rohrleitungen mit größeren Durchmessern verlegen zu müssen, auch andere Maßnahmen bekannt. So der Verbraucher zustimmt, kann auch vor Ort, um den Druck im Erdgas beizubehalten, Luft zugemischt werden. Weiters ist bekannt, Flüssiggas, insbesondere Flüssigerdgas, vor Ort zu verdampfen und zuzuleiten. Ein derartiges Flüssigerdgas wird in der Regel vor Ort in Kugelbehältern gelagert, wobei in denselben ein Druck von 30 bar bis 40 bar herrscht. Eine weitere Möglichkeit besteht darin, sogenannte oberirdische Röhrenspeicher vorzusehen, wobei beispielsweise für ein Speichervolumen von 5.000 m3 vierzehn Reihen mit einer Länge von je 150 m und einem Rohrdurchmesser von 1,50 m aufgebaut wird. Der Betriebsdruck beträgt hiebei 72 bar. Derartige Speicher weisen somit einen besonders hohen Flächenbedarf auf.Gas storage systems, depending on their size, have different tasks. So-called underground stores are known, for example, whereby the pore stores are usually exploited gas or oil fields and the cavern stores are obtained through artificially created cavities. Such underground storage facilities for natural gas have the advantage that large quantities, such as the gas consumption of two to three months of an industrial area or residential area, can be stored with relatively little mechanical use. In addition to these long-term stores, other measures are known to take account of the consumption on site and not to have to lay pipes with larger diameters. If the consumer agrees, air can also be added on site to maintain the pressure in the natural gas. It is also known to vaporize and supply liquid gas, in particular liquid natural gas, on site. Such a liquefied natural gas is generally stored on site in spherical containers, the pressure in which is from 30 bar to 40 bar. Another possibility is to provide so-called above-ground tube storage, with fourteen rows, each with a length of 150 m and a tube diameter of 1.50 m, being built up, for example, for a storage volume of 5,000 m 3 . The operating pressure is 72 bar. Such storage devices therefore require a particularly large amount of space.

Aus der Energietechnik ist es bekannt, mehrschalige gasdichte Behälter aufzubauen, wobei durch eine innere metallische Schichte, welche vielfach auch als Dichthaut bezeichnet wird, die von Gas beaufschlagt ist, die Abdichtung gegenüber der Atmosphäre durchgeführt ist, wohingegen zum Schutz dieser Schichte sowohl gegen mechanische Beanspruchung als auch gegen zu hohen Innendruck eine äußere Schichte aus einem Stützmedium, in der Regel Beton, vorgesehen ist. Derartige Betonbehälter mit Dichthaut sind entweder teilkugelförmig oder zylinderförmig mit einem teilkugelförmigen Abschluß aufgebaut. Die Zylinderhöhe entspricht hiebei in etwa dem Durchmesser des Zylinders.It is known from energy technology to build multi-layered gas-tight containers, whereby an inner metallic layer, which is often referred to as a sealing skin, which is acted upon by gas, is used to seal off from the atmosphere, while protecting this layer both against mechanical stress as well as against excessive internal pressure, an outer layer of a support medium, usually concrete, is provided. Such concrete containers with sealing skin are either partially spherical or cylindrical with a partially spherical end. The cylinder height corresponds approximately to the diameter of the cylinder.

Aus der US-5,207,530-A wird eine Erdgastankstelle für Kraftfahrzeuge bekannt, wobei durch Rohre, die über eine Schraubmuffe verbunden und an ihrem unteren Ende über eine Gewindekappe verschlossen sind, ein Druckbehälter gebildet ist. Derartige Rohre sind aus dem Einsatz in der Erdölindustrie bekannt. Ein derartiger Speicher kann einerseits nur geringe Gasmengen speichern, und weiters ist die Entnahme der Gasmenge aus dem Druckbehälter pro Zeiteinheit relativ gering, da sich der Behälter während der Gasentnahme abkühlt und eine Erwärmung des Behälters durch Wärmeaufnahme aus der Umgebung abgewartet werden muß. Die vorliegende Erfindung geht von einem Stand der Technik aus, wie er durch die US-5,207,530-A gegeben ist.A natural gas filling station for motor vehicles is known from US Pat. No. 5,207,530-A, a pressure container being formed by pipes which are connected via a screw sleeve and are closed at their lower end by a threaded cap. Such pipes are known from use in the petroleum industry. Such a memory can store only small amounts of gas on the one hand, and furthermore the removal of the amount of gas from the pressure vessel per unit of time is relatively small, since the container cools down during the gas withdrawal and heating of the container due to heat absorption from the environment must be awaited. The present invention is based on a prior art, as given by US-5,207,530-A.

Der Erfindung ist zur Aufgabe gesetzt, einen Druckbehälter für Gase, insbesondere gasförmige Kohlenwasserstoffe, zu schaffen, die vor allem zur Spitzenabdeckung des Gasbedarfes geeignet sind und selbst bei Kapazitäten von 50.000 m3 nur einen geringsten Flächenbedarf aufweisen. Weiters ist zur Aufgabe gestellt, möglichst auf herkömmliche Verfahrensweisen bei der Herstellung des Druckbehälters zurückzugreifen und welcher besonders hohe Sicherheiten aufweisen soll, so daß keine wesentlichen Maßnahmen gegen das Bersten des Druckbehälters selbst bei hohen Drücken, wie 300 bar oder 500 bar erforderlich sind. Weiters soll die Möglichkeit bestehen, auch große Gasmengen kontinuierlich dem Gasspeicher entnehmen zu können.The invention has for its object to provide a pressure vessel for gases, in particular gaseous hydrocarbons, which are particularly suitable for covering the peak gas requirements and have only a minimal area requirement even with capacities of 50,000 m 3 . Furthermore, the task is to use conventional methods of manufacturing the pressure vessel as far as possible and which should have particularly high security levels, so that no essential measures are taken against the bursting of the pressure vessel even at high pressures, such as 300 bar or 500 bar. Furthermore, there should also be the possibility of continuously removing large quantities of gas from the gas storage.

Der erfindungsgemäße Druckbehälter für zu speichernde Gase, insbesondere für bei Raumtemperatur und Atmosphärendruck gasförmigen Kohlenwasserstoffen, z. B. Methan, Ethan, Propan, Butan, iso-Butan, mit einer metallischen im wesentlichen zylindrischen Dichthaut, die mittel- und/oder unmittelbar an einem Stützmedium, z. B. Beton, anliegt und Zu- und Ableitungen, insbesondere eine gemeinsame Zu- und Ableitung, für die Gase ausschließlich im oberen Endbereich aufweist, wobei der Druckbehälter, welcher durch die zylindrische Dichthaut gebildet wird, im Erdreich quer zur Horizontalen, insbesondere im wesentlichen vertikal, angeordnet ist, besteht im wesentlichen darin, daß daß das Verhältnis vom Durchmesser und maximaler Erstreckung der zylindrischen metallischen Dichthaut zumindest 1:100, insbesondere zumindest 1:500, beträgt, und der untere Bereich der Dichthaut unlösbar, vorzugsweise mit Beton, verschlossen ist. Dadurch, daß sowohl eine Dichthaut, die gegebenenfalls selbst bereits hohe Drücke aufnehmen kann und ein dieselbe stützendes Medium vorgesehen ist, können hohe Drücke mit großer Sicherheit beherrscht werden. Durch das große Verhältnis von Durchmesser zur maximalen Erstreckung der Dichthaut können auch bei einem relativ geringen Durchmesser der Dichthaut große Gasmengen gespeichert werden, wobei der Platzbedarf durch die Anordnung desselben quer zur Horizontalen im Erdreich, insbesondere bei vertikaler Anordnung besonders gering ist. Durch das Vorsehen der Zu- und Ableitungen im oberen Endbereich wird der Bedarf an zusätzlichen Rohrleitungen besonders gering. Ein derartiger Behälter kann mit konventioneller Technik, wie sie zum Erbohren von Erdgasfeldern und Erdölfeldern bekannt ist, erstellt werden, so daß auf hinläufig bekannte und sichere Technologien zurückgegriffen werden kann. Eine besonders einfache konstruktive Lösung ist dann gegeben, wenn die Gaszu- und -ableitung aus dem durch die Dichthaut gebildeten Hohlraum durch eine gemeinsame Leitung, die mit dem Hohlraum gasleitend und gasdicht verbunden ist, gebildet ist. Eine derartige konstruktive Ausbildung berücksichtigt, daß bei einem Gasüberschuß aus dem Gasspeicher kein Gas entnommen werden muß, sondern in denselben Gas eingeleitet wird, wohingegen bei einem Gasunterschuß keine Speicherung des Gases im Speicher durchgeführt wird, sondern aus demselben Gas entnommen wird. Ist der untere Bereich der Dichthaut unlösbar, insbesondere mit Beton verschlossen, so kann einerseits der konventionelle Bohrvorgang durchgeführt werden, wobei ein Verschluß des unteren Bereiches des Behälters, also der Dichthaut, besonders leicht durchgeführt werden kann, wobei die Dichtheit besonders einfach gewährleistet ist. Durch diese konstruktive Ausbildung ist ein Druckbehälter geschaffen, welcher für besonders tiefe Erstreckung geeignet ist, so daß der Behälter in Bereiche der Erde abgesenkt werden kann, die bereits eine höhere Temperatur aufweisen, so daß die Temperaturabsenkung, welche durch eine Gasentnahme bedingt ist, durch rasche Wärmezufuhr kompensiert werden kann, womit große Gasmengen in kurzer Zeit dem Druckbehälter entnommen werden können, da die Geothermie genutzt wird.The pressure vessel according to the invention for gases to be stored, in particular for hydrocarbons gaseous at room temperature and atmospheric pressure, for. B. methane, ethane, propane, butane, iso-butane, with a metallic substantially cylindrical sealing skin, the middle and / or directly on a support medium, for. B. concrete, and feed and discharge lines, in particular a common supply and discharge line, for the gases only in the upper end region, the pressure vessel, which is formed by the cylindrical sealing skin, in the ground transversely to the horizontal, in particular substantially vertically , is essentially that the ratio of the diameter and the maximum extent of the cylindrical metallic sealing skin is at least 1: 100, in particular at least 1: 500, and the lower area of the sealing skin is insoluble, preferably closed with concrete. The fact that both a sealing skin, which can itself possibly already take high pressures and a medium supporting the same is provided, allows high pressures to be mastered with great certainty. Due to the large ratio of diameter to maximum extent of the sealing skin, large amounts of gas can be stored even with a relatively small diameter of the sealing skin, the space requirement being particularly small due to the arrangement of the same across the horizontal in the ground, particularly in the case of a vertical arrangement. The provision of the supply and discharge lines in the upper end area means that the need for additional pipelines is particularly low. Such a container can be produced using conventional technology, as is known for drilling natural gas fields and oil fields so that well-known and safe technologies can be used. A particularly simple constructive solution is provided when the gas supply and discharge lines are formed from the cavity formed by the sealing skin by a common line which is connected to the cavity in a gas-conducting and gas-tight manner. Such a constructive design takes into account that if there is an excess of gas, no gas has to be taken from the gas store, but is instead introduced into the same gas, whereas if there is an excess of gas, no storage of the gas in the store is carried out, but is taken from the same gas. If the lower area of the sealing skin is undetachable, in particular closed with concrete, the conventional drilling process can be carried out on the one hand, whereby the lower area of the container, i.e. the sealing skin, can be closed particularly easily, with tightness being ensured in a particularly simple manner. Through this design, a pressure vessel is created which is suitable for a particularly deep extension, so that the vessel can be lowered into areas of the earth which are already at a higher temperature, so that the temperature drop, which is caused by gas extraction, is achieved by rapid Heat supply can be compensated, so that large amounts of gas can be removed from the pressure vessel in a short time, since geothermal energy is used.

Ist die Dichthaut mit einer Vielzahl hintereinander angeordneten und unmittelbar miteinander lösbar und gasdicht verbundenen, insbesondere mit konischen Gewinden verschraubten, Rohren aufgebaut, so kann der Druckbehälter mit an sich bekannten Förderrohren für Erdgas oder Erdöl aufgebaut sein, wobei bei der Abtäufung des Behälters die in der Erdöltechnik bekannte Verfahrensweise zum Einsatz gelangen kann.If the sealing skin is constructed with a large number of tubes arranged one behind the other and directly detachable and gas-tight, in particular screwed with conical threads, the pressure vessel can be constructed with known delivery tubes for natural gas or petroleum, the Petroleum technology known procedure can be used.

Ist zumindest eine Dichthaut in einem zylindrischen Raum, insbesondere in einer weiteren zylindrischen Dichthaut, und ist im Zwischenraum der Dichthäute das Stützmedium angeordnet, so ist ein besonders sicherer mehrschichtiger Behälter erhalten.If at least one sealing skin is in a cylindrical space, in particular in another cylindrical sealing skin, and the support medium is arranged in the space between the sealing skins, a particularly secure multi-layer container is obtained.

Ist die weitere Dichthaut mit Teilrohrstücken gebildet, welche miteinander, insbesondere gasdicht, verbunden, vorzugsweise unmittelbar verschraubt, sind, so kann auch das äußere Rohr mit besonders verläßlicher und seit langer Zeit zum Einsatz gelangender Technik gefertigt werden.If the additional sealing skin is formed with partial tube pieces which are connected to one another, in particular gas-tight, preferably screwed directly, the outer tube can also be manufactured using particularly reliable technology that has been used for a long time.

Ist als Stützmedium zumindest teilweise Erdreich eingesetzt, so kann im wesentlichen in das gefertigte Bohrloch direkt die Dichthaut eingesetzt werden, so daß zusätzlich Arbeitsschritte vermieden werden, wobei, je nach Druckfestigkeit des Erdreiches, ebenfalls ein hohes Druckaufnahmevermögen bestehen kann.If soil is at least partially used as the support medium, the sealing skin can essentially be inserted directly into the drilled borehole, so that additional work steps can be avoided, whereby, depending on the compressive strength of the soil, a high pressure absorption capacity can also exist.

Wird als Stützmedium zumindest teilweise Beton eingesetzt, so ist eine besonders einfache Verfahrensweise gewährleistet, da Beton vom Inneren des Rohres nach außen hochgedrückt werden kann und gleichzeitig eine hohe Druckfestigkeit, also Druckaufnahmevermögen, gewährleistet ist.If concrete is at least partially used as the support medium, a particularly simple procedure is ensured, since concrete can be pushed upwards from the inside of the pipe and at the same time a high pressure resistance, that is to say pressure absorption capacity, is ensured.

Ist als Stützmedium zumindest teilweise eine Flüssigkeit eingesetzt, so kann z. B. durch Druckbelastung der Flüssigkeit ein hoher Gegendruck auf die Dichthaut ausgeübt werden.If at least partially a liquid is used as the support medium, z. B. a high back pressure can be exerted on the sealing skin by pressure load of the liquid.

Steht die als Stützmedium eingesetzte Flüssigkeit unter einem geringeren Druck als die zu speichernden Gase, so wird einerseits vermieden, daß Flüssigkeit durch undichte Stellen in den durch die Dichthaut gebildeten Hohlraum eintreten kann und weiters wird eine Undichtigkeitsstelle durch austretende Gase und damit aufsteigende Gasblasen in der Flüssigkeit angezeigt.If the liquid used as a support medium is under a lower pressure than the gases to be stored, on the one hand it is avoided that liquid can enter the cavity formed by the sealing skin due to leaks and, furthermore, a leak is caused by escaping gases and thus rising gas bubbles in the liquid displayed.

Ist in dem durch die Dichthaut gebildeten Hohlraum ein reversibel wirkendes Adsorptionsmittel für die zu speichernden Gase angeordnet, so kann zusätzlich zur Erhöhung der Speichermenge durch Druck noch bei einem vorgegebenen Volumen eine weitere Steigerung der Gasmenge erreicht werden.If a reversibly acting adsorbent for the gases to be stored is arranged in the cavity formed by the sealing skin, in addition to increasing the amount of storage by pressure, a further increase in the amount of gas can be achieved at a predetermined volume.

Ist die weitere Dichthaut mit Beton am unteren Ende verschlossen, welcher vor der Dichthaut endigt, welche in der weiteren Dichthaut angeordnet ist, wobei die Dichthäute gegeneinander über ein Dichtelement, insbesondere einen Ring aus gummielastischem Material, gasdicht abgedichtet sind, so ist eine sichere Abdichtung des Gasbehälters gegeben. Bei Störungen, wie beispielsweise Undichtigkeitsstellen des eigentlichen Druckbehälters, also der inneren Dichthaut, kann dieselbe ohne einen zusätzlichen Bohrvorgang gezogen werden.If the further sealing skin is closed with concrete at the lower end, which ends in front of the sealing skin, which is arranged in the further sealing skin, the sealing skins being gas-tightly sealed from one another via a sealing element, in particular a ring made of rubber-elastic material, then the sealing is secure Given gas container. In the event of malfunctions, such as leaks in the actual pressure vessel, that is to say the inner sealing skin, the latter can be pulled out without an additional drilling operation.

Im folgenden wird die Erfindung anhand der Zeichnungen näher erläutert.The invention is explained in more detail below with reference to the drawings.

Es zeigen:

  • Fig. 1 die schematische Anordnung des Druckbehälters,
  • Fig. 2 und 3 Vertikalschnitte durch Druckbehälter mit zylindrischer Dichthaut,
  • Fig. 4 einen horizontalen Schnitt durch einen Druckbehälter mit drei inneren zylindrischen Dichthäuten,
  • Fig. 5 den unteren Abschluß einer Dichthaut und
  • Fig. 6 Rohre mit gasdichten Verbindungsenden.
Show it:
  • 1 shows the schematic arrangement of the pressure vessel,
  • 2 and 3 vertical sections through pressure vessel with a cylindrical sealing skin,
  • 4 shows a horizontal section through a pressure vessel with three inner cylindrical sealing skins,
  • Fig. 5 shows the lower end of a sealing skin and
  • Fig. 6 pipes with gas-tight connection ends.

Bei der in Fig. 1 dargestellten schematischen Anordnung gelangt das Erdgas aus der Ferngasleitung 1 mit einem Betriebsdruck von 65 bar bis 70 bar über das Ventil 2 und über die Druckreduzierung 3, in welcher der Druck, je nach dem, ob das Gas zu Bezirksregelstationen oder zu Verbrauchern weitergeleitet wird, auf 25 bar bis 40 bar oder auf 20 mbar reduziert. Von der Druckreduzierstation gelangt das Gas zum Verbraucher 4, beispielsweise eine Gasturbine eines lokalen Elektrizitätserzeugers. Ein zweiter Gasleitungsstrang, welcher von der Ferngasleitung abzweigt, weist ein Ventil 5, einen Kompressor 6, beispielsweise einen Schraubenkompressor auf, von dem das Gas über die Ventile 7, 8 in den Druckbehälter 9 gelangt. Aus diesem wird das Gas erneut über das Ventil 8 und das Ventil 10 einer Druckreduzierung 11 und dem Verbraucher 4 zugeführt.In the schematic arrangement shown in Fig. 1, the natural gas comes from the gas transmission line 1 with an operating pressure of 65 bar to 70 bar via the valve 2 and the pressure reduction 3, in which the pressure, depending on whether the gas to district control stations or forwarded to consumers, reduced to 25 bar to 40 bar or to 20 mbar. The gas reaches the consumer 4, for example a gas turbine of a local electricity generator, from the pressure reducing station. A second gas line branch, which branches off from the remote gas line, has a valve 5, a compressor 6, for example a screw compressor, from which the gas reaches the pressure vessel 9 via the valves 7, 8. From this, the gas is fed again via the valve 8 and the valve 10 to a pressure reduction 11 and the consumer 4.

Während der Zeit eines Durchschnittsverbrauches gelangt das Erdgas aus der Ferngasleitung 1 über die Ventile 2 und die Druckreduzierung 3 zum Verbraucher 4. Gleichzeitig gelangt das Erdgas über das Ventil 5, den Kompressor 6, in welchem das Erdgas von 65 bar bis 70 bar Druck auf 250 bar aufgeladen wird, über die Ventile 7 und 8 in den Druckspeicher 9.During the time of average consumption, the natural gas from the long-distance gas line 1 reaches the consumer 4 via the valves 2 and the pressure reduction 3. At the same time, the natural gas passes through the valve 5, the compressor 6, in which the natural gas from 65 bar to 70 bar pressure to 250 bar is charged, via the valves 7 and 8 in the pressure accumulator 9.

Bei Spitzenbedarf wird nun dem Verbraucher 4 Erdgas über die Ferngasleitung 1, das Ventil 2, die Druckreduzierung 3 zugeführt. Gleichzeitig wird bei geschlossenem Ventil 7 Erdgas aus dem Druckbehälter 9 über die Ventile 8, 10 der Druckreduzierung 11, in welcher der Druck von 250 bar auf den Arbeitsdruck des Verbrauchers reduziert wird, dem Verbraucher 4 zugeführt. Auf Grund des tiefreichenden Druckbehälters, z. B. 500 m oder auch 2.000 m, weist das umgebende Substrat eine erhöhte Temperatur auf, so daß das Wärmedefizit durch das entnommene Gas schnell ausgeglichen werden kann, wodurch große Gasmengen pro Zeiteinheit entnommen werden können. Es gelangt somit neben dem Erdgas, das aus der Ferngasleitung 1 kommt, zusätzliches Erdgas aus dem Druckbehälter 9 zum Verbraucher 4. Es kann auf diese Art und Weise ein Druckabfall beim Verbraucher verhindert werden ohne, daß die Ferngasleitung eine höhere Kapazität aufweisen muß.In the event of peak demand, natural gas is now supplied to the consumer 4 via the long-distance gas line 1, the valve 2, and the pressure reduction 3. At the same time, when the valve 7 is closed, natural gas from the pressure vessel 9 is fed to the consumer 4 via the valves 8, 10 of the pressure reduction 11, in which the pressure is reduced from 250 bar to the working pressure of the consumer. Due to the deep pressure vessel, e.g. B. 500 m or 2,000 m, the surrounding substrate has an elevated temperature so that the heat deficit can be quickly compensated for by the gas removed, whereby large amounts of gas can be removed per unit of time. It thus passes alongside the natural gas that comes from the Long-distance gas line 1 comes, additional natural gas from the pressure vessel 9 to the consumer 4. In this way, a pressure drop at the consumer can be prevented without the long-distance gas line having to have a higher capacity.

Der in Fig. 2 dargestellte Druckbehälter weist eine Dichthaut 12 mit 20" Innendurchmesser auf, die aus einzelnen Rohren mit einem Spitzende und Muffenende und einer Länge nach API Range 2 zwischen 8,5 m und 10,5 m aufgebaut ist.The pressure vessel shown in FIG. 2 has a sealing skin 12 with an inner diameter of 20 ", which is made up of individual pipes with a spigot end and socket end and a length according to API Range 2 of between 8.5 m and 10.5 m.

Wie der Fig. 6 zu entnehmen, kann durch Zusammenbau der Rohre eine gasdichte Verbindung derselben erreicht werden. Die Gesamtlänge der vertikal angeordneten Dichthaut beträgt 1.500 m. Die Dichthaut ist in einer zylindrischen Bohrung 13, die einen Außendurchmesser von 30" aufweist. Der Hohlraum zwischen Dichthaut 12 und zylindrischer Bohrung 13 ist mit Beton 14 ausgefüllt. Bis zu einer Tiefe von 500 m ist ein weiterer äußerer Betonmantel 15 vorgesehen. Die Bohrung 13 kann nach konventioneller Art des Tiefbohrens in der Regel ein schlagdrehendes Tiefbohren verfertigt werden, wobei die Dichthaut 12 abgesenkt wird und durch dieselbe der flüssige Beton 14 in den Zwischenraum zwischen Dichthaut und zylindrischer Bohrung eingeführt wird. Mit einer Dichthaut mit 20" Innendurchmesser und 1.500 m Länge liegt ein geometrisches Volumen von ca. 300 m3 vor. Werden nun zwei derartige Druckbehälter nebeneinander vorgesehen, wobei jede Dichthaut von einem eigenen Beton 14 als Stützmedium umgeben ist, so liegt ein doppelter Druckbehälter mit einer Kapazität von ca. 150.000 m3 bei 250 bar Speicher vor. Steht das Erdgas im Druckbehälter unter einem Druck von 250 bar, so können pro Behälter, dessen geometrisches Volumen 300 m3 beträgt, 75.000 m3 gespeichert werden.As can be seen in FIG. 6, a gas-tight connection of the pipes can be achieved by assembling the pipes. The total length of the vertically arranged sealing skin is 1,500 m. The sealing skin is in a cylindrical bore 13 which has an outer diameter of 30 ". The cavity between the sealing skin 12 and the cylindrical bore 13 is filled with concrete 14. A further outer concrete jacket 15 is provided to a depth of 500 m. The bore 13 A conventional deep drilling method can usually be carried out, whereby the sealing skin 12 is lowered and through which the liquid concrete 14 is introduced into the space between the sealing skin and the cylindrical bore. With a sealing skin with an inner diameter of 20 "and a length of 1,500 m there is a geometric volume of approx. 300 m 3 . If two such pressure vessels are now provided side by side, each sealing skin being surrounded by its own concrete 14 as a support medium, then there is a double pressure vessel with a capacity of approximately 150,000 m 3 at 250 bar storage. If the natural gas in the pressure vessel is under a pressure of 250 bar, 75,000 m 3 can be stored per vessel whose geometric volume is 300 m 3 .

Bei der Ausbildung gemäß Fig. 3 weist die Dichthaut 12 einen Innendurchmesser von 16" auf und ist von einem weiteren metallischen Rohr der Dichthaut 16 mit einem Innendurchmesser von 20" umgeben. Der Hohlraum zwischen Dichthaut 12 und weiterem metallischen Rohr der Dichthaut 16 ist mit einem flüssigen Medium 17, u. zw. Wasser mit Korrosionsinhibitor, gefüllt. Der Zwischenraum ist ebenfalls gasdicht ausgebildet und es kann über das Ventil 18 Gas entnommen werden, so daß beispielsweise bei Entweichen von Erdgas durch die Dichthaut dasselbe ermittelt werden kann. Eine weitere Möglichkeit besteht auch, am oberen ringförmigen Ende 19 Schaugläser 20 vorzusehen, wobei über dieselben einerseits Licht zugeführt werden kann und andererseits das Aufsteigen von Gasblasen beobachtbar ist. Die Gesamtlänge der Dichthaut beträgt 2.250 m, wohingegen sich das flüssige Stützmedium 17 lediglich bis zu einer Tiefe von 1.400 m erstreckt, und es kann von 1.400 m bis 2.250 m Beton 21 als Stützmedium angeordnet sein. Im oberen Bereich bis zu einer Tiefe von 500 m ist wieder ein äußerer Betonmantel 15 vorgesehen. Die weitere Dichthaut 16 ist zusätzlich von einem Beton 14, der ebenfalls als Stützmedium dient, umgeben. Der Beton 33, welcher innerhalb und außerhalb der äußeren Dichthaut 16 angeordnet ist, verschließt dieselbe nach unten und endigt vor der inneren Dichthaut 12, so daß zwischen denselben ein Raum gebildet wird, der gasbeaufschlagt ist. Eine Abdichtung der inneren Dichthaut 12 gegen die äußere Dichthaut 16 wird durch den gummielastischen Ring 32 mit Dichtlippen gebildet, so daß durch den Beton 33 ein unterer Abschluß des Druckbehälters gegeben ist. Eine derartiger Gasspeicher weist ein geometrisches Volumen von ca. 330 m3 auf, wobei beispielsweise bei einem Druck von 250 bar 82.500 m3 Gas gespeichert werden können.3, the sealing skin 12 has an inner diameter of 16 "and is surrounded by another metallic tube of the sealing skin 16 with an inner diameter of 20". The cavity between the sealing skin 12 and another metallic tube of the sealing skin 16 is filled with a liquid medium 17, u. between water filled with corrosion inhibitor. The intermediate space is also gas-tight and gas can be withdrawn via the valve 18, so that the same can be determined, for example, when natural gas escapes through the sealing skin. A further possibility also exists to provide sight glasses 20 at the upper annular end 19, light being able to be supplied via the same and the rise of gas bubbles can be observed. The total length of the sealing skin is 2,250 m, whereas the liquid support medium 17 only extends to a depth of 1,400 m, and concrete 21 can be arranged as a support medium from 1,400 m to 2,250 m. An outer concrete jacket 15 is again provided in the upper region to a depth of 500 m. The additional sealing skin 16 is additionally surrounded by a concrete 14, which also serves as a support medium. The concrete 33, which is arranged inside and outside of the outer sealing skin 16, closes it down and ends in front of the inner sealing skin 12, so that a space is formed between them which is subjected to gas. A seal of the inner sealing skin 12 against the outer sealing skin 16 is formed by the rubber-elastic ring 32 with sealing lips, so that the bottom of the pressure vessel is provided by the concrete 33. Such a gas storage device has a geometric volume of approx. 330 m 3 , it being possible for example to store 82,500 m 3 of gas at a pressure of 250 bar.

In Fig. 4 ist eine weitere Ausführungsform, u. zw. im horizontalen Schnitt, dargestellt. Das weitere metallische Rohr 16 dient als Aufnahmebehälter für ein flüssiges Medium 17, wobei getrennt von diesem Stützmedium 17 drei Dichthäute 12 angeordnet sind. Eine derartige Anordnung kann beispielsweise für die Gasspeicherung unter besonders hohem Druck oder auch unter Temperaturen, die sich wesentlich von der Normaltemperatur unterscheiden, eingesetzt werden. Hiebei kann einerseits die Stützflüssigkeit einen besonders hohen Gegendruck unterworfen werden, welcher nur geringfügig geringer ist als der Druck in der Dichthaut, so daß noch Undichtigkeitsstellen durch entweichendes Gas erkannt werden können. Gleichzeitig besteht die Möglichkeit, das Stützmedium zu kühlen, so daß eine Kühlung der Behälter möglich ist, so daß beispielsweise eine Lagerung von flüssigen Gasen auf einfache Weise durchgeführt werden kann.4 is another embodiment, u. between in the horizontal section. The further metallic tube 16 serves as Receiving container for a liquid medium 17, three sealing skins 12 being arranged separately from this support medium 17. Such an arrangement can be used, for example, for gas storage under particularly high pressure or also under temperatures that differ significantly from the normal temperature. On the one hand, the supporting liquid can be subjected to a particularly high back pressure, which is only slightly lower than the pressure in the sealing skin, so that leaks due to escaping gas can still be detected. At the same time, there is the possibility of cooling the support medium so that the containers can be cooled so that, for example, storage of liquid gases can be carried out in a simple manner.

In Fig. 5 ist der untere Bereich einer Dichthaut 12 dargestellt, wobei über das Rückschlagventil 22 Beton 14 eingebracht wurde. Dieser Beton befindet sich auch unmittelbar oberhalb des Rückschlagventiles, wobei ein Abschluß nach oben weiters über einen Stopfen 23 mit als Labyrinthdichtung wirkenden Dichtlippen 24 vorgesehen ist.5 shows the lower region of a sealing skin 12, with concrete 14 being introduced via the check valve 22. This concrete is also located directly above the check valve, with an upward closure also being provided via a stopper 23 with sealing lips 24 acting as a labyrinth seal.

Bei dem in Fig. 6 dargestellten zwei Rohrenden ist das Muffenende 25 sowie das Spitzende 26 von zwei Rohren 27, 28 dargestellt. Jedes Rohr weist ein Muffen- und Spitzende auf, so daß dieselben über das konische Gewinde 29 miteinander verschraubt werden können. Zur Abdichtung der Rohrverbindung sind konische Dichtflächen 30 und 31 vorgesehen, wobei mit Zusammenschrauben der Rohre die Dichtfläche 31 des Spitzrohrendes gegen die Dichtfläche 31 des Muffenrohrendes über die Dichtfläche 30 gepreßt wird.In the two pipe ends shown in FIG. 6, the sleeve end 25 and the tip end 26 of two pipes 27, 28 are shown. Each pipe has a socket and spigot end so that they can be screwed together via the conical thread 29. Conical sealing surfaces 30 and 31 are provided for sealing the pipe connection, the sealing surface 31 of the pointed pipe end being pressed against the sealing surface 31 of the socket pipe end via the sealing surface 30 when the pipes are screwed together.

Die Rohre sind in der Regel aus Stahl, können jedoch auch aus anderen Metallen, je nach Korrisionsanforderung, aufgebaut sein.The pipes are usually made of steel, but can also be made of other metals, depending on the need for a correction.

Die Druckbehälter eignen sich nicht nur für Erdgas, sondern sind auch für andere Gase, u. zw. nicht nur für die Abdeckung des Spitzenbedarfes, geeignet. So kann beispielsweise Sauerstoff, Kohlendioxid, Stickstoff od. dgl. darin gelagert werden, insbesondere wenn bei den industriellen Anlagen eine besonders geringe Flächen für derartige Druckbehälter zur Verfügung steht.The pressure vessels are not only suitable for natural gas, but are also suitable for other gases. not only suitable for covering the peak demand. For example, oxygen, carbon dioxide, nitrogen or the like can be stored therein, especially if a particularly small area is available for such pressure vessels in industrial plants.

Als Adsorptionsmittel sind Aktivkohle, Kieselgur, Metalle, Lösungen od. dgl. geeignet.Activated carbon, diatomaceous earth, metals, solutions or the like are suitable as adsorbents.

Claims (9)

Druckbehälter für zu speichernde Gase, insbesondere für bei Raumtemperatur und Atmosphärendruck gasförmigen Kohlenwasserstoffen, z. B. Methan, Ethan, Propan, Butan, iso-Butan, mit einer metallischen im wesentlichen zylindrischen Dichthaut (12, 16), die mittel- und/oder unmittelbar an einem Stützmedium (14), z. B. Beton, anliegt und Zu- und Ableitungen, insbesondere eine gemeinsame Zu- und Ableitung, für die Gase ausschließlich im oberen Endbereich aufweist, wobei der Druckbehälter, welcher durch die zylindrische Dichthaut (12, 16) gebildet wird, im Erdreich quer zur Horizontalen, insbesondere im wesentlichen vertikal, angeordnet ist, dadurch gekennzeichnet, daß das Verhältnis vom Durchmesser und maximaler Erstreckung der zylindrischen metallischen Dichthaut (12, 16) zumindest 1:100, insbesondere zumindest 1:500, beträgt, und der untere Bereich der Dichthaut (12, 16) unlösbar, vorzugsweise mit Beton, verschlossen ist.Pressure vessel for gases to be stored, especially for gaseous hydrocarbons at room temperature and atmospheric pressure, e.g. B. methane, ethane, propane, butane, iso-butane, with a metallic substantially cylindrical sealing skin (12, 16), the middle and / or directly on a support medium (14), for. B. concrete, and feed and discharge lines, in particular a common supply and discharge line, for the gases only in the upper end region, the pressure vessel, which is formed by the cylindrical sealing skin (12, 16), in the ground transversely to the horizontal , in particular essentially vertically, characterized in that the ratio of the diameter and maximum extent of the cylindrical metallic sealing skin (12, 16) is at least 1: 100, in particular at least 1: 500, and the lower region of the sealing skin (12 , 16) is insoluble, preferably closed with concrete. Druckbehälter für zu speichernde Gase nach Anspruch 1, dadurch gekennzeichnet, daß die Dichthaut (12, 16) mit einer Vielzahl hintereinander angeordneten und unmittelbar miteinander lösbar und gasdicht verbundenen, insbesondere über konische Gewinde verschraubten, Rohren (27, 28) aufgebaut ist.Pressure container for gases to be stored according to claim 1, characterized in that the sealing skin (12, 16) is constructed with a plurality of pipes (27, 28) arranged one behind the other and directly detachably and gas-tightly connected, in particular screwed via conical threads. Druckbehälter für zu speichernde Gase nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß zumindest eine Dichthaut (12) in einem zylindrischen Raum, insbesondere in einer weiteren zylindrischen Dichthaut (16), angeordnet ist, und im Zwischenraum der Dichthäute das Stützmedium (17) angeordnet ist.Pressure vessel for gases to be stored according to Claim 1 or 2, characterized in that at least one sealing skin (12) is arranged in a cylindrical space, in particular in a further cylindrical sealing skin (16), and the support medium (17) is arranged in the space between the sealing skins is. Druckbehälter für zu speichernde Gase nach Anspruch 3, dadurch gekennzeichnet, daß die weitere metallische Dichthaut (16) mit Teilrohrstücken gebildet ist, welche miteinander, insbesondere gasdicht, verbunden, vorzugsweise unmittelbar verschraubt, sind.Pressure container for gases to be stored according to claim 3, characterized in that the further metallic sealing skin (16) is formed with pipe sections which are connected to one another, in particular gas-tight, preferably screwed directly. Druckbehälter für zu speichernde Gase nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Stützmedium (17) zumindest teilweise Erdreich eingesetzt ist.Pressure vessel for gases to be stored according to one of claims 1 to 4, characterized in that at least part of the soil is used as the support medium (17). Druckbehälter für zu speichernde Gase nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß als Stützmedium zumindest teilweise eine Flüssigkeit (17) eingesetzt ist.Pressure vessel for gases to be stored according to one of claims 1 to 5, characterized in that a liquid (17) is at least partially used as the support medium. Druckbehälter für zu speichernde Gase nach Anspruch 6, dadurch gekennzeichnet, daß die als Stützmedium eingesetzte Flüssigkeit unter einem geringeren Druck steht als die zu speichernden Gase.Pressure vessel for gases to be stored according to claim 6, characterized in that the liquid used as a support medium is under a lower pressure than the gases to be stored. Druckbehälter für zu speichernde Gase nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß in dem durch die Dichthaut (12) gebildeten Hohlraum reversibel wirkende Adsorptionsmittel angeordnet sind.Pressure vessel for gases to be stored according to one of claims 1 to 7, characterized in that reversibly acting adsorbents are arranged in the cavity formed by the sealing skin (12). Druckbehälter für zu speichernde Gase nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die weitere Dichthaut (16) mit Beton am unteren Ende verschlossen ist, welcher vor der Dichthaut (12) endigt, welche in der weiteren Dichthaut (16) angeordnet ist, wobei die Dichthäute (12, 16) gegeneinander über ein Dichtelement (32), insbesondere einen Ring aus gummielastischem Material, gasdicht abgedichtet sind.Pressure container for gases to be stored according to one of claims 1 to 8, characterized in that the further sealing skin (16) is closed with concrete at the lower end which ends in front of the sealing skin (12) which is arranged in the further sealing skin (16) , wherein the sealing skins (12, 16) are sealed gas-tight against one another via a sealing element (32), in particular a ring made of rubber-elastic material.
EP97890038A 1996-03-18 1997-03-04 Pressure vessel for gases to be stored Withdrawn EP0801261A3 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0050396A AT404247B (en) 1996-03-18 1996-03-18 PRESSURE TANK FOR GASES TO BE STORED
AT503/96 1996-03-18

Publications (2)

Publication Number Publication Date
EP0801261A2 true EP0801261A2 (en) 1997-10-15
EP0801261A3 EP0801261A3 (en) 1998-10-07

Family

ID=3492337

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97890038A Withdrawn EP0801261A3 (en) 1996-03-18 1997-03-04 Pressure vessel for gases to be stored

Country Status (5)

Country Link
EP (1) EP0801261A3 (en)
AT (1) AT404247B (en)
CZ (1) CZ79497A3 (en)
HU (1) HU219730B (en)
SK (1) SK34497A3 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019178679A1 (en) * 2018-03-19 2019-09-26 Cleantech Geomechanics Inc. System and method for compressed air energy storage
WO2022025994A1 (en) * 2020-07-30 2022-02-03 Energia de Septiembre LLC Underground hydrogen storage vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1289684A (en) * 1968-11-12 1972-09-20
EP0439980A1 (en) * 1990-02-01 1991-08-07 Application Des Gaz Liquid gas container, possibly incorporated in a utility device
US5207530A (en) * 1992-07-29 1993-05-04 Halliburton Company Underground compressed natural gas storage and service system
US5333465A (en) * 1992-04-30 1994-08-02 Mcbride Terry R Underground storage system for natural gas
US5411098A (en) * 1993-11-09 1995-05-02 Atlantic Richfield Company Method of stimulating gas-producing wells

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1289684A (en) * 1968-11-12 1972-09-20
EP0439980A1 (en) * 1990-02-01 1991-08-07 Application Des Gaz Liquid gas container, possibly incorporated in a utility device
US5333465A (en) * 1992-04-30 1994-08-02 Mcbride Terry R Underground storage system for natural gas
US5207530A (en) * 1992-07-29 1993-05-04 Halliburton Company Underground compressed natural gas storage and service system
US5411098A (en) * 1993-11-09 1995-05-02 Atlantic Richfield Company Method of stimulating gas-producing wells

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019178679A1 (en) * 2018-03-19 2019-09-26 Cleantech Geomechanics Inc. System and method for compressed air energy storage
US11414273B2 (en) 2018-03-19 2022-08-16 Cleantech Geomechanics Inc. System and method for compressed air energy storage
WO2022025994A1 (en) * 2020-07-30 2022-02-03 Energia de Septiembre LLC Underground hydrogen storage vessel
US11512812B2 (en) 2020-07-30 2022-11-29 Energia de Septiembre LLC Underground hydrogen storage vessel

Also Published As

Publication number Publication date
HUP9700601A3 (en) 1998-12-28
HU9700601D0 (en) 1997-05-28
HUP9700601A2 (en) 1998-10-28
AT404247B (en) 1998-09-25
EP0801261A3 (en) 1998-10-07
ATA50396A (en) 1998-02-15
CZ79497A3 (en) 1997-10-15
SK34497A3 (en) 1997-11-05
HU219730B (en) 2001-07-30

Similar Documents

Publication Publication Date Title
DE2740975A1 (en) DEVICE AND PROCESS FOR FREEZING A VOLUME OF LIQUID IN A SECTION OF A LARGE-DIMENSIONED TRANSMISSION LINE FOR FLUIDS
DE102011107835A1 (en) Pumped-storage power plant installed in e.g. landscape, has lower reservoirs that are arranged in salt dome
EP2362935A2 (en) Method and device for using thermal energy, particularly for generating electric power
DE19946557A1 (en) Methane transport ship or tanker with sealed isothermal tank circulates cooling fluid in gas mass assisted by upstream heat exchanger and gauge-monitored compressor.
AT404247B (en) PRESSURE TANK FOR GASES TO BE STORED
WO2008000103A1 (en) Road-transportable installation for liquefying and temporarily storing natural gas and refueling vehicles therewith
DE10040679A1 (en) Device and method for pressure-controlled supply from a liquid gas tank
DE3410132A1 (en) Method of subsequently sealing off landfills, mainly horizontally, and devices for carrying out the method
DE19730459C2 (en) Devices and methods for the isothermal refueling of natural gas vehicles with compressed natural gas CNG
DE4319941C2 (en) Method and device for brining salt caverns
DE2002552A1 (en) Method and device for the intermediate storage of a normally gaseous substance, in particular natural gas
EP0377405B1 (en) Artificial subterranean cavern for the storage of natural gas in the gaseous state at an elevated pressure and a low temperature, and method for its production
DE102016009008A1 (en) Method and apparatus for freezing ground adjacent to a shaft by means of a liquefied gas
DE102007026149B4 (en) Buffer storage for storing heat energy
DE2032101B2 (en) Process for the production of tight underground storage tanks for the storage of gases or liquids
DE1295927B (en) Underground pipeline for heat transport, especially district heating line
WO2013064162A1 (en) Method and system for generating electric power and optionally heat from geothermal energy or terrestrial heat
WO1991003690A1 (en) Process for making general use of the earth's heat and obtaining minerals in the zone of weakness (at depths of 13-30 km)
DE102010026524A1 (en) Method for sealing leakage during extraction of crude oil, natural gas or water, involves freezing surrounding area of leakage by introducing cryogen and sealing leakage by freezing or in mechanical manner
DE2629369A1 (en) Checking integrity of pressure storage vessels and lines - using external monitored pressurised jacket with temp. compensation for gas
DE2146135A1 (en) Plant for underground storage of gas
DE10243960A1 (en) Pressure container for storing combustion gas in vehicle contains intermediate container which is filled with deep-cooled liquid gases through filler pipe and which is connected through openings to pressure chamber
DE102013107677A1 (en) Compressed gas storage for underground compressed gas storage
DE1903431A1 (en) Safety container for liquid gases
DE610518C (en) Device for storing gas with a low boiling point

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE DE FR IT NL

AX Request for extension of the european patent

Free format text: SI PAYMENT 970310

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OMV AKTIENGESELLSCHAFT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE DE FR IT NL

17P Request for examination filed

Effective date: 19981211

17Q First examination report despatched

Effective date: 20030424

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031001