EP0799299A1 - Silicone compositions - Google Patents

Silicone compositions

Info

Publication number
EP0799299A1
EP0799299A1 EP95944358A EP95944358A EP0799299A1 EP 0799299 A1 EP0799299 A1 EP 0799299A1 EP 95944358 A EP95944358 A EP 95944358A EP 95944358 A EP95944358 A EP 95944358A EP 0799299 A1 EP0799299 A1 EP 0799299A1
Authority
EP
European Patent Office
Prior art keywords
oil
acetate
alkyl
composition according
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP95944358A
Other languages
German (de)
French (fr)
Other versions
EP0799299A4 (en
Inventor
Iain Allan Hughes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Publication of EP0799299A1 publication Critical patent/EP0799299A1/en
Publication of EP0799299A4 publication Critical patent/EP0799299A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • C11D3/3738Alkoxylated silicones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/22Peroxides; Oxygen; Ozone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/40Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing nitrogen
    • A61K8/42Amides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/86Polyethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/84Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
    • A61K8/89Polysiloxanes
    • A61K8/891Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone
    • A61K8/894Polysiloxanes saturated, e.g. dimethicone, phenyl trimethicone, C24-C28 methicone or stearyl dimethicone modified by a polyoxyalkylene group, e.g. cetyl dimethicone copolyol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q11/00Preparations for care of the teeth, of the oral cavity or of dentures; Dentifrices, e.g. toothpastes; Mouth rinses
    • A61Q11/02Preparations for deodorising, bleaching or disinfecting dentures
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/39Organic or inorganic per-compounds
    • C11D3/3942Inorganic per-compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/22Gas releasing
    • A61K2800/222Effervescent

Definitions

  • the present invention relates to silicone-containing compositions and to use thereof in various household products such as personal care products, laundry and household cleaners, bleaching compositions and the like.
  • silicone-containing lipophilic compositions based on flavorants, perfumes, coolants or antimicrobial agents as lipophile and which display improved residuality, impact and/or efficacy on surfaces treated therewith, for example teeth, dentures, skin, hair, laundry, dishware, working surfaces and the like.
  • silicone-containing bleach compositions which additionally contain bleach-sensitive ingredients such as perfumes, flavorants and the like and which display improved stability.
  • Lipophilic compositions such as flavor, perfume, coolant and disinfectant compositions are widely used either directly or in a variety of household products inclusive of cosmetics, oral and denture compositions, bleach, dishwashing, hard surface cleaning and laundry detergent products, etc.
  • a common problem encountered with lipophilic compositions is that of improving surface substantivity or residuality of the lipophilic component. It would be desirable in many if not most household applications to enhance the surface residuality of the lipophile in order, for example, to provide increased flavor or perfume impact or increased antimicrobial efficacy.
  • Modern dental hygiene and denture preparations typically contain antiplaque and/or antitartar agents, as well as antimicrobial agents and flavorants.
  • Antimicrobial action could affect plaque formation by either reducing the number of bacteria in the mouth/dentures or by killing those bacteria trapped in the film to prevent further growth and metabolism.
  • Flavorants may alleviate the problem of bad breath via a deodorizing action.
  • Some antimicrobial agents, e.g. menthol may, also serve as breath deodorizers.
  • the efficacy of antimicrobial agents depends largely on their intraoral/denture retention, particularly their retention on the surface of the teeth or dentures where plaque is formed.
  • a typical disadvantage of known dental preparations is that only a relatively short time during which the teeth are being cleaned or the mouth is being rinsed is available for antimicrobial agents in the preparations to take effect.
  • the problem is compounded by the fact that dentifrice preparations are used infrequently; most are used once or, perhaps, twice daily. Consequently, the long time period between brushings for a majority of the population provides optimum plaque forming conditions.
  • Laundry detergents for example, would benefit by increasing perfume substantivity on fabrics so as to provide increased perfume impact on clothing after laundering or during use. Increased antimicrobial substantivity would also be beneficial from the viewpoint of reducing malodors associated with sweat or other soils. Enhanced perfume substantivity would also be valuable in fine fragrance and perfumed cosmetics. Enhanced coolant substantivity, on the other hand, would be beneficial in cough/cold products.
  • lipophilic compounds such as perfumes, flavorants and the like in bleach-containing compositions can also raise a number of problems, especially loss of perfume or fiavorant character or intensity as a result of interaction with the bleach.
  • the efficacy of the bleaching agent can also be adversely effected. It would thus be desirable to improve the stability and effectiveness of bleach compositions containing bleach-sensitive ingredients.
  • silicones in dentifrice compositions, allegedly to coat the teeth and prevent cavities and staining.
  • GB-A- 689,679 discloses a mouthwash containing an organopolysiloxane for preventing adhesion of, or for removing tars, stains, tartar and food particles from the teeth.
  • the mouthwash may include antiseptic compounds, such as thymol, and flavoring and perfuming agents.
  • US-A-2, 806,814 discloses dental preparations including, in combination, a higher aliphatic acyl amide of an amino carboxylic acid compound as an active and a silicone compound.
  • silicone compounds have been proposed for prevention of adhesion or to facilitate the removal of tars, stains, tartar and the like from teeth.
  • the silicone compound is said to act as a synergist in improving the antibacterial and acid inhibiting activity of the active ingredient.
  • Dimethyl polysiloxanes are said to be particularly effective. Flavoring oils and/or menthol may be included.
  • US-A-3624120 discloses quaternary ammonium salts of cyclic siloxane polymers for use as cationic surfactants, bactericides and as anticariogenic agents.
  • the present invention provides a flavor, perfume, coolant, antimicrobial or other lipophilic composition having improved surface-substantivity, impact and/or efficacy.
  • the invention further provides a bleach composition comprising an inorganic persalt bleaching agent, and a lipophilic compound such as a fiavorant and/or perfume and which has improved stability.
  • a flavor, perfume, coolant, antimicrobial or other lipophilic composition comprising a dimethicone copolyol selected from alkyl- and alkoxy- dimethicone copolyols having the formula (I):
  • X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms
  • Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms
  • n is from about 0 to about 200
  • m is from about 1 to about 40
  • q is from about 1 to about 100
  • the molecular weight of the residue (C2H4 ⁇ -) x (C3H6 ⁇ -) y X is from about 50 to about 2000, preferably from about 250 to about 1000 and x and y are such that the weight ratio of oxyethylene: oxypropylene is from about 100:0 to about 0:100, preferably from about 100:0 to about 20:80.
  • the invention also relates to the use of a dimethicone copolyol with a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof to provide improved surface residuality, wherein the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I).
  • a bleach composition comprising an inorganic persalt bleaching agent, a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof, and a dimethicone copolyol selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I):
  • X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms
  • Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms
  • n is from about 0 to about 200
  • m is from about 1 to about 40
  • q is from about 1 to about 100
  • the molecular weight of the residue (C2H4 ⁇ -) x (C3H6 ⁇ -) y X is from about 50 to about 2000
  • x and y are such that the weight ratio of oxyethylene:oxypropylene is from about 100:0 to about 0:100.
  • the invention also relates to the use of a dimethicone copolyol with an inorganic persalt bleaching agent and a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof to provide improved lipophile stability, wherein the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I).
  • compositions of the invention thus comprise a dimethicone copolyol. antiplaque agent and a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof.
  • Other compositions of the invention take the form of bleach and/or detergent compositions which comprise the dimethicone copolyol antiplaque agent and lipophile.
  • the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I):
  • X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms
  • Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms
  • n is from about 0 to about 200
  • m is from about 1 to about 40
  • q is from about 1 to about 100
  • the molecular weight of the residue (C2H4 ⁇ -) x (C3H6 ⁇ -) y X is from about 50 to about 2000, preferably from about 250 to about 1000 and x and y are such that the weight ratio of oxyethylene:oxypropylene is from about 100:0 to about 0:100, preferably from about 100:0 to about 20:80.
  • the dimethicone copolyol is selected from C12 to C20 alkyl dimethicone copolyols and mixtures thereof. Highly preferred is cetyl dimethicone copolyol marketed under the Trade Name Abil EM90.
  • the dimethicone copolyol is generally present in a level of from about 0.01 % to about 25% , preferably from about 0.1 % to about 5%, more preferably from about 0.5% to about 1.5% by weight.
  • compositions of the invention preferably also include a lipophilic compound.
  • lipophilic compounds suitable for use herein are oil-like materials which are soluble or solubilisable in the dimethicone copolyol, preferably at a level of at least about 1 % , more preferably at least about 5% by weight at 25°C.
  • Preferred lipophilic compounds are selected from flavorants, perfumes, physiological cooling agents and antimicrobial compounds.
  • the dimethicone copolyol acts to enhance the substantivity of the lipophilic compound to a surface treated therewith, thereby providing enhanced and/or sustained flavor, perfume or coolant impact and/or antimicrobial efficacy.
  • Lipophilic flavorants suitable for use herein comprise one or more flavor components selected from wintergreen oil, oregano oil, bay leaf oil, peppermint oil, spearmint oil, clove oil, sage oil, sassafras oil, lemon oil, orange oil, anise oil, benzaldehyde, bitter almond oil, camphor, cedar leaf oil, marjoram oil, citronella oil, lavendar oil, mustard oil, pine oil, pine needle oil, rosemary oil, thyme oil, cinnamon leaf oil, and mixtures thereof.
  • Lipophilic perfumes suitable for use herein comprise one or more known perfume components inclusive of natural products such as essential oils, absolutes, resins, etc., and synthetic perfume components such as hydrocarbons, alcohols, aldehydes, ketones, ethers, acids, esters, acetals, ketals, nitriles etc., including saturated and unsaturated compounds, aliphatic, carboxylic and heterocyclic compounds.
  • perfume materials suitable for use herein include geranyl acetate, linalyl acetate, citronellyl acetate, dihydromyrcenyl acetate, terpinyl acetate, tricyclodecenyl acetate, tricyclodecenyl propionate, 2-phenylethyl acetate, benzyl acetate, benzyl salicylate, benzyl benzoate, sty rally 1 acetate, amyl salicylate, methyl dihydrojasmonate, phenoxyethyl isobutyrate, neryl acetate, trichloromethyl-phenylcarbinyl acetate, p-tertiary butyl-cyclohexyl acetate, isononyl acetate, cedryl acetate, vetiveryl acetate, benzyl alcohol, 2-phenylethanol, linalool, tetrahydrolinalool, citr
  • Lipophilic antimicrobial compounds suitable for use herein include thymol, menthol, triclosan, 4-hexylresorcinol, phenol, eucalyptol, benzoic acid, benzoyl peroxide, butyl paraben, methyl paraben, propyl paraben, salicylamides, and mixtures thereof.
  • Physiological cooling agent suitable for use herein include carboxamides, menthane esters and menthane ethers, and mixtures thereof.
  • Suitable menthane ethers for use herein are selected from those with the formula:
  • R5 is an optionally hydroxy substituted aliphatic radical containing up to 25 carbon atoms, preferably up to 5 carbon atoms, and where X is hydrogen or hydroxy, such as those commercially available under the trade name Takasago, from Takasago International Corporation.
  • a particularly preferred cooling agent for use in the compositions of the present invention is Takasago 10 [3-1-menthoxy propan-l,2-diol (MPD)].
  • MPD is a monoglycerin derivative of 1- menthol and has excellent cooling activity.
  • the carboxamides found most useful are those described in US-A- 4,136,163, January 23, 1979 to Wason et al., and US-A-4,230, 688, October 28, 1980 to Rawsell et al.
  • the level of lipophilic compound in the compositions of the invention is generally in the range from about 0.01 % to about 10%, preferably from about 0.05% to about 5%, more preferably from about 0.1 % to about 3 % by weight.
  • compositions of the invention optionally include one or more surfactants, these being especially preferred in lipophilic compositions of the invention for the purpose of solubilization of the lipophile and for providing improved efficacy.
  • surfactants include non-soap anionic, nonionic, cationic, zwitterionic and amphoteric organic synthetic detergents. Many of these suitable agents are disclosed by Gieske et al. in US-A-4,051,234, September 27, 1977.
  • surfactants suitable for use herein include C ⁇ -Cig alkyl sulfates and alkyl ether sulfates ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per mole; anionic sulfonates inclusive of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, Cg- C22 primary or secondary alkane sulfonates, C(j-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, and mixtures thereof; anionic carboxylates inclusive of primary and secondary C to C18 alkyl carboxylate, ethoxy carboxylate and polyethoxy polycarboxylate surfactants having an average degree of ethoxylation of from about 0 to about 10; C5-C17 s
  • alkylpolysaccharides as disclosed in US-A-4,565,647; amine oxides such as dimethyl cocamine oxide, dimethyl lauryl amine oxide and cocoalkyldimethyl amine oxide (Aromox); polysorbates such as Tween 40 and Tween 80 (Hercules); sorbitan stearates, sorbitan monooleate, etc; cationic surfactants such as cetyl pyridinium chloride, cetyl trimethyl ammonium bromide, di- isobutyl phenoxy ethoxy ethyl-dimethyl benzyl ammonium chloride and coconut alkyl trimethyl ammonium nitrate.
  • amine oxides such as dimethyl cocamine oxide, dimethyl lauryl amine oxide and cocoalkyldimethyl amine oxide (Aromox)
  • polysorbates such as Tween 40 and Tween 80 (Hercules); sorbitan stearates, sorbit
  • nonionic surfactant highly preferred herein from the view point of lipophile solubilization are the nonionic surfactants.
  • One class of nonionic surfactant suitable for use herein are those having the general formula:
  • R ⁇ is an alk(en)yl or alk(en)yl phenyl group having 8 to 22, preferably 10 to 20 carbon atoms ion the alk(en)yl moiety and m and n represent weight-averages in the range 0-80 and 2-80 respectively.
  • Shorter chain length alkyl groups are generally to be avoided for efficacy reasons and because unreacted fatty alcohol in such surfactants is a source of malodour and occasionally of skin irritation. It will be understood that surfactants of this type are usually mixtures of varying degrees of ethoxylation / propoxylation, accordingly m and n represent the respective weight-averages of the number of propoxylate and ethoxy late groups.
  • Nonionic surfactants of the above general type include mixed alkoxylates in which m and n are both in the range from about 2 to about 80, with m preferably being in the range from about 2 to about 20, more preferably from about 3 to about 10 and with n preferably being in the range from about 2 to about 60, more preferably from about 5 to about 50.
  • One such material is PPG-5- ceteth-20 (available from Croda Inc as Procetyl AWS), where m and n have the values 5 and 20 respectively.
  • Other suitable nonionic surfactants include polyethoxylated surfactants, e.g.
  • ethoxylated alkylphenol ethers particularly octyl- and nonylphenol ethers containing 8-16 EO; ethoxylated aliphatic C8-C20 alcohols, which may be linear or branched and contain 8-16, preferably 9-15 EO; and ethoxylated hydrogenated castor oils.
  • the ratio of surfactant to the perfume, coolant or other oily material will be in the range of from about 50: 1 to about 1:10, preferably from about 20:1 to about 1:2, more preferably from about 10:1 to about 1 :1.
  • Bleaching compositions of the invention additionally include one or more bleaching agents optionally together with organic peroxyacid precursors, effervescence generators, chelating agents, etc
  • the bleaching agent takes the form of an inorganic persalt and can be selected from any of the well-known bleaching agents known for use in household bleaches, detergents, denture cleansers and the like such as the alkali metal and ammonium persulfates, perborates inclusive of mono-and tetrahydrates, percarbonates (optionally coated as described in GB-A-1 ,466,799) and perphosphates and the alkali metal and alkaline earth metal peroxides.
  • suitable bleaching agents include potassium, ammonium, sodium and lithium persulfates and perborate mono- and tetrahydrates, sodium pyrophosphate peroxyhydrate and magnesium, calcium, strontium and zinc peroxides.
  • the alkali metal persulfates, perborates, percarbonates and mixtures thereof are prefered for use herein, highly preferred being the alkali metal perborates and percarbonates.
  • the amount of bleaching agent in the bleaching compositions of the invention is generally from about 5 to about 70% preferably from about 10% to about 50%.
  • the bleaching compositions can also incorporate an effervescence generator which in preferred embodiments takes the form of a solid base material which in the presence of water releases carbon dioxide or oxygen with effervescence.
  • the effervescence generator can be selected from generators which are effective under acid, neutral or alkaline pH conditions, but preferably it consists of a combination of a generator which is effective or most effective under acid or neutral pH conditions and a generator which is effective or most effective under alkaline pH conditions.
  • Effervescence generators which are effective under acid or neutral pH conditions include a combination of at least one alkali metal carbonate or bicarbonate, such as sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, potassium carbonate, potassium bicarbonate, or mixtures thereof, in admixture with at least one non-toxic, physiologically-acceptable organic acid, such as tartaric, fumaric, citric, malic, maleic, gluconic, succinic, salicylic, adipic or sulphamic acid, sodium fumarate, sodium or potassium acid phosphates, betaine hydrochloride or mixtures thereof. Of these, malic acid is preferred.
  • Effervescence generators which are effective under alkaline pH conditions include persalts such as alkali and alkaline earth metal peroxoborates as well as perborates, persulphates, percarbonates, perphosphates and mixtures thereof as previously described, for example, a mixture of an alkali metal perborate (anhydrous, mono- or tetrahydrate) with a monopersulphate such as Caroat R marketed by E I du Point de Nemours Co. and which is a 2:1: 1 mixture of monopersulphate, potassium sulphate and potassium bisulphate and which has an active oxygen content of about 4.5%.
  • persalts such as alkali and alkaline earth metal peroxoborates as well as perborates, persulphates, percarbonates, perphosphates and mixtures thereof as previously described, for example, a mixture of an alkali metal perborate (anhydrous, mono- or tetrahydrate) with a monopersulphate such as Caroat R marketed by E I
  • the solid base material incorporates a (bi)carbonate/acid effervescent couple optionally in combination with a perborate/persulphate oxygen effervescence generator.
  • the combination of generators is valuable for achieving optimum dissolution characteristics and pH conditions for achieving optimum cleaning and antimicrobial activity.
  • the (bi)carbonate components generally comprise from about 5% to about 65%, preferably from about 25% to 55% of the total composition; the acid components generally comprise from about 5% to about 50%, preferably from about 10% to about 30% of the total composition.
  • the bleaching compositions of the invention can be supplemented by other known components of such formulations.
  • An especially preferred additional component is an organic peroxyacid precursor, which in general terms can be defined as a compound having a titre of at least 1.5ml of 0.1 N sodium thiosulfate in the following peracid formation test.
  • a test solution is prepared by dissolving the following materials in 1000 mis distilled water:
  • the mixture obtained by addition of the activator is vigorously stirred and maintained at 60°C. After 5 minutes from addition, a 100 ml portion of the solution is withdrawn and immediately pipetted onto a mixture of 250 g cracked ice and 15 ml glacial acetic acid. Potassium iodide (0.4 g) is then added and the liberated iodine is immediately titrated with 0.1 N sodium thiosulphate with starch as indicator until the first disappearance of the blue colour. The amount of sodium thiosulphate solution used in ml is the titre of the bleach activator.
  • the organic peracid precursors are typically compounds containing one or more acyl groups, which are susceptible to perhydrolysis.
  • the preferred activators are those of the N-acyl or O-acyl compound type containing a acyl radical R-CO wherein R is a hydrocarbon or substituted hydrocarbon group having preferably from about 1 to about 20 carbon atoms.
  • suitable peracid precursors include:
  • N,N - diacetylaniline and N-acetylphthalimide a) N,N - diacetylaniline and N-acetylphthalimide; b) N-acylhydantoins, such as
  • Examples of compounds of this type include phenyl acetate, sodium acetoxy benzene sulphonate, tr ichloroe thy 1 acetate, sorbitol hexaacetate, fructose pentaacetate, p-nitrobenzaldehyde diacetate, isopropeneyl acetate, acetyl aceto hydroxamic acid, and acetyl salicylic acid.
  • esters of a phenol or substituted phenol with an alpha-chlorinated lower aliphatic carboxylic acid such as chloroacetylphenol and chloroacetylsalicylic acid, as disclosed in US-A-3,130,165.
  • Preferred compounds of this type are those wherein: a) Ac is R3-CO and R3 is a linear or branched alkyl group containing from 6 to 20, preferably 6 to 12, more preferably 7 to 9 carbon atoms and wherein the longest linear alkyl chain extending from and including the carbonyl carbon contains from 5 to 18, preferably 5 to 10 carbon atoms, R3 optionally being substituted (preferably alpha to the carbonyl moiety) by Cl, Br, OCH3 or OC2H5.
  • Examples of this class of material include sodium 3,5,5- trimethylhexanoyloxybenzene sulfonate, sodium 3,5,5- trimethylhexanoyloxybenzoate, sodium 2-ethylhexanoyl oxybenzenesulfonate, sodium nonanoyl oxybenzene sulfonate and sodium octanoyl oxybenezenesulfonate, the acyloxy group in each instance preferably being p- substituted;
  • R3 is a linear or branched alkyl or alkylaryl group containing from 6 to 20, preferably from 6 to 15 carbon atoms in the alkyl moiety, R5 being optionally substituted by Cl, Br, OCH3, or OC2H5, AO is oxyethylene or oxypropylene, m is from 0 to 100, X is O, NR4 or CO-NR4, and A is CO, CO-CO, R6-CO, CO-R ⁇ -CO, or CO-NR4-R6-CO wherein R4 is C ⁇ - C4 alkyl and R is alkylene, alkenylene, arylene or alkarylene containing from 1 to 8 carbon atoms in the alkylene or alkenylene moiety.
  • m is preferably from 0 to 10
  • R3 is preferably C6-C12, more preferably C ⁇ -Cio alkyl when m is zero and C9-C15 when m is non-zero.
  • the leaving group L is as defined above. 5
  • Optionally substituted anhydrides of benzoic or phthalic acid for example, benzoic anhydride, m-chlorobenzoic anhydride and phthalic anhydride.
  • N-acylated precursor compounds of the lactam class as disclosed generally in GB-A-855735 especially caprolactams and valerolactams such as benzoyl valerolactam, benzoyl caprolactam and their substituted benzoyl analogs such as the chloro, amino, alkyl, aryl and alkoxy derivatives.
  • the level of peroxyacid bleach precursor by weight of the total composition is preferably from about 0.1 % to about 10% , more preferably from about 0.5% to about 5% and is generally added in the form of a bleach precursor agglomerate.
  • the bleach precursor agglomerates preferred for use herein generally comprise a binder or agglomerating agent in a level of from about 5% to about 40%, more especially from about 10% to about 30% by weight thereof.
  • Suitable agglomerating agents include polyvinylpyrrolidone, poly (oxyethylene) of molecular weight 20,000 to 500,000, polyethyleneglycols of molecular weight of from about 1000 to about 50,000, Carbowax having a molecular weight of from 4000 to 20,000, nonionic surfactants, fatty acids, sodium carboxymethyl cellulose, gelatin, fatty alcohols, phosphates and polyphosphates, clays, aluminosilicates and polymeric polycarboxylates.
  • polyethyleneglycols are highly preferred, especially those having molecular weight of from about 1,000 to about 30,000, preferably 2000 to about 10,000.
  • bleach precursor agglomerates which comprise from about 10% to about 75%, preferably from about 20% to about 60% by weight thereof of peroxyacid bleach precursor, from about 5 % to about 60% preferably from about 5% to about 50%, more preferably from about 10% to about 40% of a (bi) carbonate/acid effervescent couple, from about 0% to about 20% of a peroxoboroate, and from about 5% to about 40%, preferably from about 10% to about 30% of an agglomerating agent.
  • the final bleach precursor granules desirably have an average particle size of from about 500 to about 1500, preferably from about 500 to about 1,000 um, this being valuable from the viewpoint of optimum dissolution performance and aesthetics.
  • the level of bleach precursor agglomerates is preferably from about 1 % to about 20%, more preferably from about 5% to about 15% by weight of composition.
  • compositions of the invention can be in paste, tablet, granular or powder form.
  • Compositions in tablet form can be single or multiple layered tablets.
  • Bleaching compositions of the invention can be supplemented by other usual components of such formulations, especially surfactants as generally described above, chelating agents, enzymes, dyes tuffs, sweeteners, tablet binders and fillers, foam depressants such as dimethylpolysiloxanes, foam stabilizers such as the fatty acid sugar esters, preservatives, lubricants such as talc, magnesium stearate, finely divided amorphous pyrogenic silicas, etc.
  • surfactants as generally described above, chelating agents, enzymes, dyes tuffs, sweeteners, tablet binders and fillers, foam depressants such as dimethylpolysiloxanes, foam stabilizers such as the fatty acid sugar esters, preservatives, lubricants such as talc, magnesium stearate, finely divided amorphous pyrogenic silicas, etc.
  • Tablet binders and fillers suitable for use herein include polyvinylpyrrolidone, poly (oxyethylene) of molecular weight 20,000 to 500,000, polyethyleneglycols of molecular weight of from about 1000 to about 50,000, Carbowax having a molecular weight of from 4000 to 20,000, nonionic surfactants, fatty acids, sodium carboxymethyl cellulose, gelatin, fatty alcohols, clays, polymeric polycarboxylates, sodium carbonate, calcium carbonate, calcium hydroxide, magnesium oxide, magnesium hydroxide carbonate, sodium sulfate, proteins, cellulose ethers, cellulose esters, polyvinyl alcohol, alginic acid esters, vegetable fatty materials of a pseudocolloidal character.
  • polyethyleneglycols are highly preferred, especially those having molecular weight of from about 1 ,000 to about 30,000, preferably from about 12,000 to about 30,000.
  • Chelating agents beneficially aid cleaning and bleach stability by keeping metal ions, such as calcium, magnesium, and heavy metal cations in solution.
  • suitable chelating agents include sodium tripolyphosphate, sodium acid pyrophosphate, tetrasodium pyrophosphate, ammopolycarboxylates such as nitrilotriacetic acid and ethylenediamine tetracetic acid and salts thereof, ethylenediamine- N,N'-disuccinic acid (EDDS) and salts thereof, and polyphosphonates and aminopolyphosphonates such as hydroxyethanediphosphonic acid, ethylenediamine tetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid and salts thereof.
  • EDDS ethylenediamine- N,N'-disuccinic acid
  • the chelating agent selected is not critical except that it must be compatible with the other ingredients of the denture cleanser when in the dry state and in aqueous solution.
  • the chelating agent comprises between 0.1 and 60 percent by weight of the composition and preferably between 0.5 and 30 percent.
  • Phosphonic acid chelating agents preferably comprise from about 0.1 to about 1 percent, preferably from about 0.1 % to about 0.5% by weight of composition.
  • Enzymes suitable for use herein are exemplified by proteases, alkalases, amylases, fungal and bacterial Upases, dextranases, mutanases, glucanases, esterases, cellulases, pectinases, lactases and peroxidases, etc. Suitable enzymes are discussed in US-A-3 ,519,570 and US-A-3,533,139.
  • the following are representative denture cleansing tablets according to the invention.
  • the percentages are by weight of the total tablet.
  • the tablets are made by compressing a mixture of the granulated components in a punch and dye tabletting press at a pressure of about 105 kPa.
  • the overall tablet weight is 3 g; diameter 25 mm.
  • the denture cleansing tablets of Examples I to V display improved antiplaque, cleansing and anti-bacterial activity together with excellent cohesion and other physical and in-use performance characteristics.
  • perfume, flavour, coolant and antimicrobial compositions are representative perfume, flavour, coolant and antimicrobial compositions according to the invention.
  • the percentages are by weight of total composition.
  • Perfume is a complex mixture of ingredients used primarily for olfactory purposes.
  • the perfume, flavor, coolant and/or antimicrobial compositions of Examples VI to IX display improved surface-substantivity, impact and/or efficacy.

Abstract

A bleach composition comprising an inorganic persalt bleaching agent, a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof, and a dimethicone copolyol selected from alkyl- and alkoxy-dimethicone copolyols having formula (I) wherein: X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C2H4O-)x(C3H6O-)yX is from about 50 to about 2000, and x and y are such that the weight ratio of oxyethylene: oxypropylene is from about 100:0 to about 0:100. The composition provides improved lipophile and bleach stability.

Description

SILICONE COMPOSITIONS
TECHNICAL FIELD
The present invention relates to silicone-containing compositions and to use thereof in various household products such as personal care products, laundry and household cleaners, bleaching compositions and the like. In particular, it relates to silicone-containing lipophilic compositions based on flavorants, perfumes, coolants or antimicrobial agents as lipophile and which display improved residuality, impact and/or efficacy on surfaces treated therewith, for example teeth, dentures, skin, hair, laundry, dishware, working surfaces and the like. In addition, it relates to silicone-containing bleach compositions which additionally contain bleach-sensitive ingredients such as perfumes, flavorants and the like and which display improved stability.
BACKGROUND
Lipophilic compositions such as flavor, perfume, coolant and disinfectant compositions are widely used either directly or in a variety of household products inclusive of cosmetics, oral and denture compositions, bleach, dishwashing, hard surface cleaning and laundry detergent products, etc. A common problem encountered with lipophilic compositions is that of improving surface substantivity or residuality of the lipophilic component. It would be desirable in many if not most household applications to enhance the surface residuality of the lipophile in order, for example, to provide increased flavor or perfume impact or increased antimicrobial efficacy.
Modern dental hygiene and denture preparations, for example, typically contain antiplaque and/or antitartar agents, as well as antimicrobial agents and flavorants. Antimicrobial action could affect plaque formation by either reducing the number of bacteria in the mouth/dentures or by killing those bacteria trapped in the film to prevent further growth and metabolism. Flavorants may alleviate the problem of bad breath via a deodorizing action. Some antimicrobial agents, e.g. menthol may, also serve as breath deodorizers. However, the efficacy of antimicrobial agents depends largely on their intraoral/denture retention, particularly their retention on the surface of the teeth or dentures where plaque is formed.
A typical disadvantage of known dental preparations is that only a relatively short time during which the teeth are being cleaned or the mouth is being rinsed is available for antimicrobial agents in the preparations to take effect. The problem is compounded by the fact that dentifrice preparations are used infrequently; most are used once or, perhaps, twice daily. Consequently, the long time period between brushings for a majority of the population provides optimum plaque forming conditions.
In many other personal and household applications, it would be desirable to provide enhanced surface substantivity. Laundry detergents, for example, would benefit by increasing perfume substantivity on fabrics so as to provide increased perfume impact on clothing after laundering or during use. Increased antimicrobial substantivity would also be beneficial from the viewpoint of reducing malodors associated with sweat or other soils. Enhanced perfume substantivity would also be valuable in fine fragrance and perfumed cosmetics. Enhanced coolant substantivity, on the other hand, would be beneficial in cough/cold products.
There has been a need, therefore, for developing lipophilic compositions which have improved surface residuality, impact and/or antimicrobial efficacy.
The use of lipophilic compounds such as perfumes, flavorants and the like in bleach-containing compositions can also raise a number of problems, especially loss of perfume or fiavorant character or intensity as a result of interaction with the bleach. The efficacy of the bleaching agent can also be adversely effected. It would thus be desirable to improve the stability and effectiveness of bleach compositions containing bleach-sensitive ingredients. It is known to include silicones in dentifrice compositions, allegedly to coat the teeth and prevent cavities and staining. For instance, GB-A- 689,679 discloses a mouthwash containing an organopolysiloxane for preventing adhesion of, or for removing tars, stains, tartar and food particles from the teeth. The mouthwash may include antiseptic compounds, such as thymol, and flavoring and perfuming agents.
US-A-2, 806,814 discloses dental preparations including, in combination, a higher aliphatic acyl amide of an amino carboxylic acid compound as an active and a silicone compound. The patent notes that silicone compounds have been proposed for prevention of adhesion or to facilitate the removal of tars, stains, tartar and the like from teeth. The silicone compound is said to act as a synergist in improving the antibacterial and acid inhibiting activity of the active ingredient. Dimethyl polysiloxanes are said to be particularly effective. Flavoring oils and/or menthol may be included.
US-A-3624120 discloses quaternary ammonium salts of cyclic siloxane polymers for use as cationic surfactants, bactericides and as anticariogenic agents.
Accordingly, the present invention provides a flavor, perfume, coolant, antimicrobial or other lipophilic composition having improved surface-substantivity, impact and/or efficacy.
The invention further provides a bleach composition comprising an inorganic persalt bleaching agent, and a lipophilic compound such as a fiavorant and/or perfume and which has improved stability.
SUMMARY OF THE INVENTION
According to a first aspect of the invention, there is provided a flavor, perfume, coolant, antimicrobial or other lipophilic composition comprising a dimethicone copolyol selected from alkyl- and alkoxy- dimethicone copolyols having the formula (I):
wherein X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C2H4θ-)x(C3H6θ-)yX is from about 50 to about 2000, preferably from about 250 to about 1000 and x and y are such that the weight ratio of oxyethylene: oxypropylene is from about 100:0 to about 0:100, preferably from about 100:0 to about 20:80.
The invention also relates to the use of a dimethicone copolyol with a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof to provide improved surface residuality, wherein the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I).
According to a further aspect of the invention, there is provided a bleach composition comprising an inorganic persalt bleaching agent, a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof, and a dimethicone copolyol selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I):
wherein X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C2H4θ-)x(C3H6θ-)yX is from about 50 to about 2000, and x and y are such that the weight ratio of oxyethylene:oxypropylene is from about 100:0 to about 0:100.
The invention also relates to the use of a dimethicone copolyol with an inorganic persalt bleaching agent and a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof to provide improved lipophile stability, wherein the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I).
All percentages and ratios herein are by weight of total composition, unless otherwise indicated.
The compositions of the invention thus comprise a dimethicone copolyol. antiplaque agent and a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof. Other compositions of the invention take the form of bleach and/or detergent compositions which comprise the dimethicone copolyol antiplaque agent and lipophile. In general terms, the dimethicone copolyol is selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I):
wherein X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C2H4θ-)x(C3H6θ-)yX is from about 50 to about 2000, preferably from about 250 to about 1000 and x and y are such that the weight ratio of oxyethylene:oxypropylene is from about 100:0 to about 0:100, preferably from about 100:0 to about 20:80.
In prefered embodiments, the dimethicone copolyol is selected from C12 to C20 alkyl dimethicone copolyols and mixtures thereof. Highly preferred is cetyl dimethicone copolyol marketed under the Trade Name Abil EM90. The dimethicone copolyol is generally present in a level of from about 0.01 % to about 25% , preferably from about 0.1 % to about 5%, more preferably from about 0.5% to about 1.5% by weight.
The compositions of the invention preferably also include a lipophilic compound. In general terms, lipophilic compounds suitable for use herein are oil-like materials which are soluble or solubilisable in the dimethicone copolyol, preferably at a level of at least about 1 % , more preferably at least about 5% by weight at 25°C. Preferred lipophilic compounds are selected from flavorants, perfumes, physiological cooling agents and antimicrobial compounds. The dimethicone copolyol acts to enhance the substantivity of the lipophilic compound to a surface treated therewith, thereby providing enhanced and/or sustained flavor, perfume or coolant impact and/or antimicrobial efficacy.
Lipophilic flavorants suitable for use herein comprise one or more flavor components selected from wintergreen oil, oregano oil, bay leaf oil, peppermint oil, spearmint oil, clove oil, sage oil, sassafras oil, lemon oil, orange oil, anise oil, benzaldehyde, bitter almond oil, camphor, cedar leaf oil, marjoram oil, citronella oil, lavendar oil, mustard oil, pine oil, pine needle oil, rosemary oil, thyme oil, cinnamon leaf oil, and mixtures thereof.
Lipophilic perfumes suitable for use herein comprise one or more known perfume components inclusive of natural products such as essential oils, absolutes, resins, etc., and synthetic perfume components such as hydrocarbons, alcohols, aldehydes, ketones, ethers, acids, esters, acetals, ketals, nitriles etc., including saturated and unsaturated compounds, aliphatic, carboxylic and heterocyclic compounds.. Examples of perfume materials suitable for use herein include geranyl acetate, linalyl acetate, citronellyl acetate, dihydromyrcenyl acetate, terpinyl acetate, tricyclodecenyl acetate, tricyclodecenyl propionate, 2-phenylethyl acetate, benzyl acetate, benzyl salicylate, benzyl benzoate, sty rally 1 acetate, amyl salicylate, methyl dihydrojasmonate, phenoxyethyl isobutyrate, neryl acetate, trichloromethyl-phenylcarbinyl acetate, p-tertiary butyl-cyclohexyl acetate, isononyl acetate, cedryl acetate, vetiveryl acetate, benzyl alcohol, 2-phenylethanol, linalool, tetrahydrolinalool, citronellol, dimethylbenzylcarbinol, dihydromyrcenol, tetrahydromyrcenol, terpineol, eugenol, geraniol, vetiverol, 3-isocamphyl-cyclohexanol, 2- methyl-3-(ρ-tertiary butylphenyl)-propanol, 2-methyl-3-(p- isopropylpheny -propanol, 3-(p-tertiary butylphenyl)-propanol, nerol, alpha-n-amylcinnamic aldehyde, alpha-hexyl-cinnamic aldehyde, 4-(4- hydroxy-4-methylpentyl)-3-cyclohexenecarbaldehyde, 4-(4-methyl-3- penteny l)-3-cyclohexenecarbaldehyde , 4-acetoxy-3-penty 1- tetrahydropyran, 2-n-heptyl-cyclopentanone, 3-methyl-2-pentyl- cyclopentanone, n-decanal, n-dodecanal, hydroxycitronellal, phenylacetaldehyde dimethyl acetal, phenylacetaldehyde diethyl acetal, geranonitrile, citronellonitrile, cedryl methyl ether, isolongifolanone, aubepine nitrile, aubepine, heliotropine, coumarin, vanillin, diphenyl oxide, ionones, methyl ionones, isomethyl ionones, irones, cis-3- hexenol and esters thereof, indane musks, tetralin musks, isochroman musks, macrocyclic ketones, macrolactone musks, ethylene brassylate, aromatic nitromusks and mixtures thereof.
Lipophilic antimicrobial compounds suitable for use herein include thymol, menthol, triclosan, 4-hexylresorcinol, phenol, eucalyptol, benzoic acid, benzoyl peroxide, butyl paraben, methyl paraben, propyl paraben, salicylamides, and mixtures thereof.
Physiological cooling agent suitable for use herein include carboxamides, menthane esters and menthane ethers, and mixtures thereof.
Suitable menthane ethers for use herein are selected from those with the formula:
where R5 is an optionally hydroxy substituted aliphatic radical containing up to 25 carbon atoms, preferably up to 5 carbon atoms, and where X is hydrogen or hydroxy, such as those commercially available under the trade name Takasago, from Takasago International Corporation. A particularly preferred cooling agent for use in the compositions of the present invention is Takasago 10 [3-1-menthoxy propan-l,2-diol (MPD)]. MPD is a monoglycerin derivative of 1- menthol and has excellent cooling activity. The carboxamides found most useful are those described in US-A- 4,136,163, January 23, 1979 to Wason et al., and US-A-4,230, 688, October 28, 1980 to Rawsell et al.
The level of lipophilic compound in the compositions of the invention is generally in the range from about 0.01 % to about 10%, preferably from about 0.05% to about 5%, more preferably from about 0.1 % to about 3 % by weight.
The compositions of the invention optionally include one or more surfactants, these being especially preferred in lipophilic compositions of the invention for the purpose of solubilization of the lipophile and for providing improved efficacy. Suitable surfactants include non-soap anionic, nonionic, cationic, zwitterionic and amphoteric organic synthetic detergents. Many of these suitable agents are disclosed by Gieske et al. in US-A-4,051,234, September 27, 1977.
Examples of surfactants suitable for use herein include C^-Cig alkyl sulfates and alkyl ether sulfates ethoxylated with from about 0.5 to about 20 moles of ethylene oxide per mole; anionic sulfonates inclusive of C5-C20 linear alkylbenzene sulfonates, alkyl ester sulfonates, Cg- C22 primary or secondary alkane sulfonates, C(j-C24 olefin sulfonates, sulfonated polycarboxylic acids, alkyl glycerol sulfonates, fatty acyl glycerol sulfonates, and mixtures thereof; anionic carboxylates inclusive of primary and secondary C to C18 alkyl carboxylate, ethoxy carboxylate and polyethoxy polycarboxylate surfactants having an average degree of ethoxylation of from about 0 to about 10; C5-C17 sarcosinates such as sodium cocoyl sarcosinate, sodium lauroyl sarcosinate (Hamposyl-95 ex W. R. Grace); condensation products of ethylene or propylene oxide with fatty acids, fatty alcohols, fatty amides, polyhydric alcohols (e.g. sorbitan monostearate, sorbitan oleate), alkyl phenols (e.g. Tergitol) and polypropyleneoxide or polyoxybutylene (e.g. Pluronics); alkylpolysaccharides as disclosed in US-A-4,565,647; amine oxides such as dimethyl cocamine oxide, dimethyl lauryl amine oxide and cocoalkyldimethyl amine oxide (Aromox); polysorbates such as Tween 40 and Tween 80 (Hercules); sorbitan stearates, sorbitan monooleate, etc; cationic surfactants such as cetyl pyridinium chloride, cetyl trimethyl ammonium bromide, di- isobutyl phenoxy ethoxy ethyl-dimethyl benzyl ammonium chloride and coconut alkyl trimethyl ammonium nitrate.
Highly preferred herein from the view point of lipophile solubilization are the nonionic surfactants. One class of nonionic surfactant suitable for use herein are those having the general formula:
in which R\ is an alk(en)yl or alk(en)yl phenyl group having 8 to 22, preferably 10 to 20 carbon atoms ion the alk(en)yl moiety and m and n represent weight-averages in the range 0-80 and 2-80 respectively. Shorter chain length alkyl groups are generally to be avoided for efficacy reasons and because unreacted fatty alcohol in such surfactants is a source of malodour and occasionally of skin irritation. It will be understood that surfactants of this type are usually mixtures of varying degrees of ethoxylation / propoxylation, accordingly m and n represent the respective weight-averages of the number of propoxylate and ethoxy late groups. Nonionic surfactants of the above general type include mixed alkoxylates in which m and n are both in the range from about 2 to about 80, with m preferably being in the range from about 2 to about 20, more preferably from about 3 to about 10 and with n preferably being in the range from about 2 to about 60, more preferably from about 5 to about 50. One such material is PPG-5- ceteth-20 (available from Croda Inc as Procetyl AWS), where m and n have the values 5 and 20 respectively. Other suitable nonionic surfactants include polyethoxylated surfactants, e.g. ethoxylated alkylphenol ethers, particularly octyl- and nonylphenol ethers containing 8-16 EO; ethoxylated aliphatic C8-C20 alcohols, which may be linear or branched and contain 8-16, preferably 9-15 EO; and ethoxylated hydrogenated castor oils. In general, the ratio of surfactant to the perfume, coolant or other oily material will be in the range of from about 50: 1 to about 1:10, preferably from about 20:1 to about 1:2, more preferably from about 10:1 to about 1 :1.
Bleaching compositions of the invention additionally include one or more bleaching agents optionally together with organic peroxyacid precursors, effervescence generators, chelating agents, etc
The bleaching agent takes the form of an inorganic persalt and can be selected from any of the well-known bleaching agents known for use in household bleaches, detergents, denture cleansers and the like such as the alkali metal and ammonium persulfates, perborates inclusive of mono-and tetrahydrates, percarbonates (optionally coated as described in GB-A-1 ,466,799) and perphosphates and the alkali metal and alkaline earth metal peroxides. Examples of suitable bleaching agents include potassium, ammonium, sodium and lithium persulfates and perborate mono- and tetrahydrates, sodium pyrophosphate peroxyhydrate and magnesium, calcium, strontium and zinc peroxides. Of these, however, the alkali metal persulfates, perborates, percarbonates and mixtures thereof are prefered for use herein, highly preferred being the alkali metal perborates and percarbonates.
The amount of bleaching agent in the bleaching compositions of the invention is generally from about 5 to about 70% preferably from about 10% to about 50%.
The bleaching compositions can also incorporate an effervescence generator which in preferred embodiments takes the form of a solid base material which in the presence of water releases carbon dioxide or oxygen with effervescence. The effervescence generator can be selected from generators which are effective under acid, neutral or alkaline pH conditions, but preferably it consists of a combination of a generator which is effective or most effective under acid or neutral pH conditions and a generator which is effective or most effective under alkaline pH conditions. Effervescence generators which are effective under acid or neutral pH conditions include a combination of at least one alkali metal carbonate or bicarbonate, such as sodium bicarbonate, sodium carbonate, sodium sesquicarbonate, potassium carbonate, potassium bicarbonate, or mixtures thereof, in admixture with at least one non-toxic, physiologically-acceptable organic acid, such as tartaric, fumaric, citric, malic, maleic, gluconic, succinic, salicylic, adipic or sulphamic acid, sodium fumarate, sodium or potassium acid phosphates, betaine hydrochloride or mixtures thereof. Of these, malic acid is preferred. Effervescence generators which are effective under alkaline pH conditions include persalts such as alkali and alkaline earth metal peroxoborates as well as perborates, persulphates, percarbonates, perphosphates and mixtures thereof as previously described, for example, a mixture of an alkali metal perborate (anhydrous, mono- or tetrahydrate) with a monopersulphate such as Caroat R marketed by E I du Point de Nemours Co. and which is a 2:1: 1 mixture of monopersulphate, potassium sulphate and potassium bisulphate and which has an active oxygen content of about 4.5%.
In preferred bleaching compositions suitable for use as denture cleansers, the solid base material incorporates a (bi)carbonate/acid effervescent couple optionally in combination with a perborate/persulphate oxygen effervescence generator. The combination of generators is valuable for achieving optimum dissolution characteristics and pH conditions for achieving optimum cleaning and antimicrobial activity. The (bi)carbonate components generally comprise from about 5% to about 65%, preferably from about 25% to 55% of the total composition; the acid components generally comprise from about 5% to about 50%, preferably from about 10% to about 30% of the total composition.
The bleaching compositions of the invention can be supplemented by other known components of such formulations. An especially preferred additional component is an organic peroxyacid precursor, which in general terms can be defined as a compound having a titre of at least 1.5ml of 0.1 N sodium thiosulfate in the following peracid formation test. A test solution is prepared by dissolving the following materials in 1000 mis distilled water:
sodium pyrophosphate
(Na4P2θ7.10H2O) 2.5g sodium perborate
(NaBO2.H2O2.3H2O) having
10.4% available oxygen 0.615g sodium dodecylbenzene sulphonate 0.5g
To this solution at 60 °C an amount of activator is added such that for each atom of available oxygen present one molecular equivalent of activator is introduced.
The mixture obtained by addition of the activator is vigorously stirred and maintained at 60°C. After 5 minutes from addition, a 100 ml portion of the solution is withdrawn and immediately pipetted onto a mixture of 250 g cracked ice and 15 ml glacial acetic acid. Potassium iodide (0.4 g) is then added and the liberated iodine is immediately titrated with 0.1 N sodium thiosulphate with starch as indicator until the first disappearance of the blue colour. The amount of sodium thiosulphate solution used in ml is the titre of the bleach activator.
The organic peracid precursors are typically compounds containing one or more acyl groups, which are susceptible to perhydrolysis. The preferred activators are those of the N-acyl or O-acyl compound type containing a acyl radical R-CO wherein R is a hydrocarbon or substituted hydrocarbon group having preferably from about 1 to about 20 carbon atoms. Examples of suitable peracid precursors include:
1) Acyl organoamides of the formula RCONR1R2, where RCO is carboxylic acyl radical, Rj is an acyl radical and R2 is an organic radical, as disclosed in US-A-3, 117,148. Examples of compounds falling under this group include:
a) N,N - diacetylaniline and N-acetylphthalimide; b) N-acylhydantoins, such as
N ,N * -diacetyl-5 ,5-dimethylhydantoin; c) Polyacylated alkylene diamines, such as
N,N,N'N' -tetraacetylethylenediamine (TAED) and the corresponding hexamethylenediamine (TAHD) derivatives, as disclosed in GB-A-907,356, GB-A-907,357 and GB-A- 907,358; d) Acylated glycolurils, such as tetraacetylglycoluril, as disclosed in GB-A- 1 ,246,338, GB- A- 1,246,339 and GB-A- 1 ,247,429.
2) Acylated sulphonamides, such as N-methyl-N-benzoyl-menthane sulphonamide and N-phenyl-N-acetyl menthane sulphonamide, as disclosed in GB-A-3, 183,266.
3) Carboxylic esters as disclosed in GB-A-836,988, GB-A-963,135 and GB-A- 1 , 147 ,871. Examples of compounds of this type include phenyl acetate, sodium acetoxy benzene sulphonate, tr ichloroe thy 1 acetate, sorbitol hexaacetate, fructose pentaacetate, p-nitrobenzaldehyde diacetate, isopropeneyl acetate, acetyl aceto hydroxamic acid, and acetyl salicylic acid. Other examples are esters of a phenol or substituted phenol with an alpha-chlorinated lower aliphatic carboxylic acid, such as chloroacetylphenol and chloroacetylsalicylic acid, as disclosed in US-A-3,130,165.
4) Carboxylic esters having the genial formal Ac L wherein Ac is the acyl moiety of an organic carboxylic acid comprising an optionally substituted, linear or branched C6-C20 altyl or alkenyl moiety or a C6-C20 alkyl-substituted aryl moiety and L is a leaving group, the conjugate acid of which has a pKa in the range from 4 to 13, for example oxybenzenesulfonate or oxybenzoate. Preferred compounds of this type are those wherein: a) Ac is R3-CO and R3 is a linear or branched alkyl group containing from 6 to 20, preferably 6 to 12, more preferably 7 to 9 carbon atoms and wherein the longest linear alkyl chain extending from and including the carbonyl carbon contains from 5 to 18, preferably 5 to 10 carbon atoms, R3 optionally being substituted (preferably alpha to the carbonyl moiety) by Cl, Br, OCH3 or OC2H5. Examples of this class of material include sodium 3,5,5- trimethylhexanoyloxybenzene sulfonate, sodium 3,5,5- trimethylhexanoyloxybenzoate, sodium 2-ethylhexanoyl oxybenzenesulfonate, sodium nonanoyl oxybenzene sulfonate and sodium octanoyl oxybenezenesulfonate, the acyloxy group in each instance preferably being p- substituted;
Ac has the formula R3(AO)mXA wherein R3 is a linear or branched alkyl or alkylaryl group containing from 6 to 20, preferably from 6 to 15 carbon atoms in the alkyl moiety, R5 being optionally substituted by Cl, Br, OCH3, or OC2H5, AO is oxyethylene or oxypropylene, m is from 0 to 100, X is O, NR4 or CO-NR4, and A is CO, CO-CO, R6-CO, CO-R^-CO, or CO-NR4-R6-CO wherein R4 is C\- C4 alkyl and R is alkylene, alkenylene, arylene or alkarylene containing from 1 to 8 carbon atoms in the alkylene or alkenylene moiety. Bleach activator compounds of this type include carbonic acid derivatives of the formula R3(AO)mOCOL, succinic acid derivatives of the formula R3θCO(CH2)2COL, glycollic acid derivatives of the formula R3OCH2COL, hydroxypropionic acid derivatives of the formula R3OCH2CH2COL, oxalic acid derivatives of the formula R3OCOCOL, maleic and fumaric acid derivatives of the formula R3θCOCH=CHCOL, acyl aminocaproic acid derivatives of the formula R3CONRι(CH2)6COL, acyl glycine derivatives of the formula R3CONR1CH2COL, and amino-6-oxocaproic acid derivatives of the formula R3N(Rι)CO(CH2)4COL. In the above, m is preferably from 0 to 10, and R3 is preferably C6-C12, more preferably Cβ-Cio alkyl when m is zero and C9-C15 when m is non-zero. The leaving group L is as defined above. 5) Acyl-cyanurates, such as triacetyl- or tribenzoylcyanurates, as disclosed in US patent specification No. 3,332,882.
6) Optionally substituted anhydrides of benzoic or phthalic acid, for example, benzoic anhydride, m-chlorobenzoic anhydride and phthalic anhydride.
7) N-acylated precursor compounds of the lactam class as disclosed generally in GB-A-855735, especially caprolactams and valerolactams such as benzoyl valerolactam, benzoyl caprolactam and their substituted benzoyl analogs such as the chloro, amino, alkyl, aryl and alkoxy derivatives.
Of all the above, preferred are organic peracid precursors of types 1(c), 4(a) and 7.
Where present, the level of peroxyacid bleach precursor by weight of the total composition is preferably from about 0.1 % to about 10% , more preferably from about 0.5% to about 5% and is generally added in the form of a bleach precursor agglomerate.
The bleach precursor agglomerates preferred for use herein generally comprise a binder or agglomerating agent in a level of from about 5% to about 40%, more especially from about 10% to about 30% by weight thereof. Suitable agglomerating agents include polyvinylpyrrolidone, poly (oxyethylene) of molecular weight 20,000 to 500,000, polyethyleneglycols of molecular weight of from about 1000 to about 50,000, Carbowax having a molecular weight of from 4000 to 20,000, nonionic surfactants, fatty acids, sodium carboxymethyl cellulose, gelatin, fatty alcohols, phosphates and polyphosphates, clays, aluminosilicates and polymeric polycarboxylates. Of the above, polyethyleneglycols are highly preferred, especially those having molecular weight of from about 1,000 to about 30,000, preferably 2000 to about 10,000.
Preferred from the viewpoint of optimum dissolution and pH characteristics are bleach precursor agglomerates which comprise from about 10% to about 75%, preferably from about 20% to about 60% by weight thereof of peroxyacid bleach precursor, from about 5 % to about 60% preferably from about 5% to about 50%, more preferably from about 10% to about 40% of a (bi) carbonate/acid effervescent couple, from about 0% to about 20% of a peroxoboroate, and from about 5% to about 40%, preferably from about 10% to about 30% of an agglomerating agent. The final bleach precursor granules desirably have an average particle size of from about 500 to about 1500, preferably from about 500 to about 1,000 um, this being valuable from the viewpoint of optimum dissolution performance and aesthetics. The level of bleach precursor agglomerates, moreover, is preferably from about 1 % to about 20%, more preferably from about 5% to about 15% by weight of composition.
The bleaching compositions of the invention can be in paste, tablet, granular or powder form. Compositions in tablet form can be single or multiple layered tablets.
Bleaching compositions of the invention can be supplemented by other usual components of such formulations, especially surfactants as generally described above, chelating agents, enzymes, dyes tuffs, sweeteners, tablet binders and fillers, foam depressants such as dimethylpolysiloxanes, foam stabilizers such as the fatty acid sugar esters, preservatives, lubricants such as talc, magnesium stearate, finely divided amorphous pyrogenic silicas, etc.
Tablet binders and fillers suitable for use herein include polyvinylpyrrolidone, poly (oxyethylene) of molecular weight 20,000 to 500,000, polyethyleneglycols of molecular weight of from about 1000 to about 50,000, Carbowax having a molecular weight of from 4000 to 20,000, nonionic surfactants, fatty acids, sodium carboxymethyl cellulose, gelatin, fatty alcohols, clays, polymeric polycarboxylates, sodium carbonate, calcium carbonate, calcium hydroxide, magnesium oxide, magnesium hydroxide carbonate, sodium sulfate, proteins, cellulose ethers, cellulose esters, polyvinyl alcohol, alginic acid esters, vegetable fatty materials of a pseudocolloidal character. Of the above, polyethyleneglycols are highly preferred, especially those having molecular weight of from about 1 ,000 to about 30,000, preferably from about 12,000 to about 30,000.
Chelating agents beneficially aid cleaning and bleach stability by keeping metal ions, such as calcium, magnesium, and heavy metal cations in solution. Examples of suitable chelating agents include sodium tripolyphosphate, sodium acid pyrophosphate, tetrasodium pyrophosphate, ammopolycarboxylates such as nitrilotriacetic acid and ethylenediamine tetracetic acid and salts thereof, ethylenediamine- N,N'-disuccinic acid (EDDS) and salts thereof, and polyphosphonates and aminopolyphosphonates such as hydroxyethanediphosphonic acid, ethylenediamine tetramethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid and salts thereof. The chelating agent selected is not critical except that it must be compatible with the other ingredients of the denture cleanser when in the dry state and in aqueous solution. Advantageously, the chelating agent comprises between 0.1 and 60 percent by weight of the composition and preferably between 0.5 and 30 percent. Phosphonic acid chelating agents, however, preferably comprise from about 0.1 to about 1 percent, preferably from about 0.1 % to about 0.5% by weight of composition.
Enzymes suitable for use herein are exemplified by proteases, alkalases, amylases, fungal and bacterial Upases, dextranases, mutanases, glucanases, esterases, cellulases, pectinases, lactases and peroxidases, etc. Suitable enzymes are discussed in US-A-3 ,519,570 and US-A-3,533,139.
The following Examples further describe and demonstrate the preferred embodiments within the scope of the present invention. EXAMPLES I TO V
The following are representative denture cleansing tablets according to the invention. The percentages are by weight of the total tablet. The tablets are made by compressing a mixture of the granulated components in a punch and dye tabletting press at a pressure of about 105 kPa.
I II III IY V
Malic Acid 12 10 15 - 14
Citric Acid - 10 - 15 -
Sodium Carbonate 10 8 10 6 10
Sulphamic Acid 5 - - 3 3
PEG 20,000 - 3 7 8 5
PVP 40,000 6 3 - - -
Sodium Bicarbonate 23 24 25 23 24
Sodium Perborate Monohydrate 15 12 16 30 15
Potassium Monopersulphate 15 18 13 - 14
Pyrogenic Silica - 3 1 1 -
Talc 2 - - - -
EDTA - - 1 - 3
EDTMPl 1 - - 1 -
Flavor^ 2 1 2 1 2
Abil EM904 1 1.5 0.5 2 1
Bleach Precursor Agglomerate 9 8 10 12 10
Bleach Precursor Agglomerate I II III IY V
TAED2 2 - 4 5 2.5
TMHOS3 2 3 - - -
Sulphamic Acid 2 2 2 2 3.5
Sodium Bicarbonate 0.5 0.2 0.2 0.5 2
PEG 6000 2.5 2 2.4 2.5 1.5
Dye - 0.8 1.4 2 0.5
1. Ethylenediaminetetramethyli enephosphonic : acid
2. Tetraacetylethylene diamine
3. Sodium 3,5,5-trimethylhexanoyloxybenzene sulfonate
4. Cetyl dimethicone copolyol 5 Peppermint-based flavor
In Examples I to V above, the overall tablet weight is 3 g; diameter 25 mm.
The denture cleansing tablets of Examples I to V display improved antiplaque, cleansing and anti-bacterial activity together with excellent cohesion and other physical and in-use performance characteristics.
EXAMPLES VI TO DC
The following are representative perfume, flavour, coolant and antimicrobial compositions according to the invention. The percentages are by weight of total composition.
PPG-5-ceteth-20 3.0 3.0 4.5 3.0
PEG-40 hydrogenated castor - 1.8 4.5 3.0 oil
Trideceth-12 2.0 - - -
Trideceth-9 - 2.0 - 3.0
Flavor^ 2.0 3.0
Perfume^ - 3.0 - -
Trimethyl butanamide 0.3 0.5 - -
Triclosan - - 1.0 0.5
Abil EM90* 1.0 1.5 5.0 1.0
Water < to 100% — >
6. Perfume is a complex mixture of ingredients used primarily for olfactory purposes.
The perfume, flavor, coolant and/or antimicrobial compositions of Examples VI to IX display improved surface-substantivity, impact and/or efficacy.

Claims

A bleach composition comprising an inorganic persalt bleaching agent, a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof, and a dimethicone copolyol selected from alkyl- and alkoxy-dimethicone copolyols having the formula (I):
wherein X is selected from hydrogen, alkyl, alkoxy and acyl groups having from about 1 to about 16 carbon atoms, Y is selected from alkyl and alkoxy groups having from about 8 to about 22 carbon atoms, n is from about 0 to about 200, m is from about 1 to about 40, q is from about 1 to about 100, the molecular weight of the residue (C2H4θ-)x(C3H6θ-)yX is from about 50 to about 2000, and x and y are such that the weight ratio of oxyethylene: oxypropylene is from about 100:0 to about 0:100.
A composition according to Claim 1 wherein the dimethicone copolyol is selected from C12 to C20 alkyl dimethicone copolyols and mixtures thereof.
A composition according to Claim 1 or 2 wherein the dimethicone copolyol is cetyl dimethicone copolyol. 22
4. A composition according to any of Claims 1 to 3 comprising from about 0.01 % to about 25%, preferably from about 0.1 % to about 5% by weight of the dimethicone copolyol.
5. A composition according to any of Claims 1 to 4 wherein the inorganic persalt bleaching agent comprises one or more bleaching agents selected from alkali metal persulfates, alkali metal perborates and mixtures thereof.
6. A composition according to any of Claims 1 to 5 wherein the fiavorant comprises one or more flavor components selected from wintergreen oil, oregano oil, bay leaf oil, peppermint oil, spearmint oil, clove oil, sage oil, sassafras oil, lemon oil, orange oil, anise oil, benzaldehyde, bitter almond oil, camphor, cedar leaf oil, marjoram oil, citronella oil, lavendar oil, mustard oil, pine oil, pine needle oil, rosemary oil, thyme oil, cinnamon leaf oil, and mixtures thereof.
7. A composition according to any of Claims 1 to 6 wherein the perfume comprises one or more perfume components selected from geranyl acetate, linalyl acetate, citronellyl acetate, dihydromyrcenyl acetate, terpinyl acetate, tricyclodecenyl acetate, tricyclodecenyl propionate, 2-phenylethyl acetate, benzyl acetate, benzyl salicylate, benzyl benzoate, sty rally 1 acetate, amyl salicylate, methyl dihydrojasmonate, phenoxyethyl isobutyrate, neryl acetate, trichloromethyl-phenylcarbinyl acetate, p-tertiary butyl-cyclohexyl acetate, isononyl acetate, cedryl acetate, vetiveryl acetate, benzyl alcohol, 2- phenylethanol, linalool, tetrahydrolinalool, citronellol, dimethylbenzylcarbinol, dihydromyrcenol, tetrahydromyrcenol, terpineol, eugenol, geraniol, vetiverol, 3-isocamphyl- cyclohexanol, 2-methyl-3-(p-tertiary butylphenyl)-propanol, 2- methy l-3-(p-isopropy lpheny l)-propanol , 3-(p-tertiary butylphenyl)-propanol, nerol, alpha-n-amylcinnamic aldehyde, alpha-hexyl-cinnamic aldehyde, 4-(4-hydroxy-4-methylpentyl)-3- cyclohexenecarbaldehyde , 4-(4-methy 1-3-penteny l)-3- cyclohexenecarbaldehyde, 4-acetoxy-3-pentyl-tetrahydropyran, 2-n-heptyl-cyclopentanone, 3-methyI-2-pentyl-cyclopentanone, n- decanal, n-dodecanal, hydroxy citronellal, phenylacetaldehyde dimethyl acetal, phenylacetaldehyde diethyl acetal, geranonitrile, citronellonitrile, cedryl methyl ether, isolongifolanone, aubepine nitrile, aubepine, heliotropine, coumarin, vanillin, diphenyl oxide, ionones, methyl ionones, isomethyl ionones, irones, cis-3- hexenol and esters thereof, indane musks, tetralin musks, isochroman musks, macrocyclic ketones, macrolactone musks, ethylene brassy late, aromatic nitromusks and mixtures thereof.
8. A composition according to any of Claims 1 to 7 additionally comprising an effervescence generator.
9. A composition according to any of Claims 1 to 8 additionally comprising an organic peroxyacid bleach precursor.
10. A composition according to Claim 9 wherein the organic peroxyacid bleach precursor is selected from acylated poly alky Idiamines, especially tetraacety .ethylenediamine, and carboxylic esters having the general formula AcL wherein Ac is the acyl moiety or an organic carboxylic acid comprising an optionally substituted, linear or branched C6-C20 alkyl or alkenyl moiety or a C6_C20 alkyl-substituted aryl moiety and L is a leaving group, the conjugate acid of which has a pKa in the range from 4 to 13.
11. Use of a dimethicone copolyol with an inorganic persalt bleaching agent and a lipophile selected from flavorants, perfumes, physiological coolants, antimicrobial agents and mixtures thereof to provide improved lipophile stability, wherein the dimethicone copolyol is selected from alkyl- and alkoxy- dimethicone copolyols having the formula (I):
EP95944358A 1994-12-22 1995-12-13 Silicone compositions Withdrawn EP0799299A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB9425926 1994-12-22
GBGB9425926.4A GB9425926D0 (en) 1994-12-22 1994-12-22 Silicone compositions
PCT/US1995/016672 WO1996019561A1 (en) 1994-12-22 1995-12-13 Silicone compositions

Publications (2)

Publication Number Publication Date
EP0799299A1 true EP0799299A1 (en) 1997-10-08
EP0799299A4 EP0799299A4 (en) 1999-08-18

Family

ID=10766380

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95944358A Withdrawn EP0799299A4 (en) 1994-12-22 1995-12-13 Silicone compositions

Country Status (15)

Country Link
EP (1) EP0799299A4 (en)
JP (1) JPH10511129A (en)
KR (1) KR100239202B1 (en)
CN (1) CN1170430A (en)
AU (1) AU710906B2 (en)
BR (1) BR9510308A (en)
CA (1) CA2206401A1 (en)
CZ (1) CZ190597A3 (en)
GB (1) GB9425926D0 (en)
HU (1) HUT77711A (en)
NZ (1) NZ301091A (en)
PL (1) PL320864A1 (en)
SK (1) SK83197A3 (en)
TR (1) TR199501647A2 (en)
WO (1) WO1996019561A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294154B1 (en) 1994-12-22 2001-09-25 Procter And Gamble Company Oral compositions containing dimethicone copolyols
BR9704788A (en) * 1997-09-23 1999-09-08 Unilever Nv Process for increasing the dissolution of detergent tablets for dishwashers, combination of detergent composition with packaging system, and, packaging
DE60114361T2 (en) * 2001-03-26 2006-07-20 The Procter & Gamble Company, Cincinnati Process for cleaning hard surfaces with a bleach-containing liquid detergent
GB2413493A (en) * 2004-04-29 2005-11-02 Glaxo Group Ltd Oral hygiene composition
JP5339672B2 (en) * 2006-07-03 2013-11-13 小林製薬株式会社 Bleach cleaning composition

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290555A (en) * 1989-09-14 1994-03-01 Revlon Consumer Products Corporation Cosmetic compositions with structural color
EP0612517A1 (en) * 1993-02-23 1994-08-31 L'oreal Water in oil emulsion for cosmetic or pharmaceutic use
US5378787A (en) * 1994-03-21 1995-01-03 Siltech Corporation Fiber reactive amino dimethicone copolyols
EP0717978A2 (en) * 1994-12-06 1996-06-26 Helene Curtis Inc. Rinse-off water-in-oil-in-water compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4906459A (en) * 1987-10-23 1990-03-06 The Procter & Gamble Company Hair care compositions
US4983383A (en) * 1988-11-21 1991-01-08 The Procter & Gamble Company Hair care compositions
US5169623A (en) * 1990-04-17 1992-12-08 Isp Investments Inc. Conditioning hair care compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5290555A (en) * 1989-09-14 1994-03-01 Revlon Consumer Products Corporation Cosmetic compositions with structural color
EP0612517A1 (en) * 1993-02-23 1994-08-31 L'oreal Water in oil emulsion for cosmetic or pharmaceutic use
US5378787A (en) * 1994-03-21 1995-01-03 Siltech Corporation Fiber reactive amino dimethicone copolyols
EP0717978A2 (en) * 1994-12-06 1996-06-26 Helene Curtis Inc. Rinse-off water-in-oil-in-water compositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9619561A1 *

Also Published As

Publication number Publication date
NZ301091A (en) 1999-02-25
CA2206401A1 (en) 1996-06-27
MX9704664A (en) 1997-09-30
CZ190597A3 (en) 1997-11-12
TR199501647A2 (en) 1996-07-21
PL320864A1 (en) 1997-11-10
WO1996019561A1 (en) 1996-06-27
SK83197A3 (en) 1998-02-04
HUT77711A (en) 1998-07-28
CN1170430A (en) 1998-01-14
KR100239202B1 (en) 2000-01-15
BR9510308A (en) 1997-11-11
JPH10511129A (en) 1998-10-27
EP0799299A4 (en) 1999-08-18
AU710906B2 (en) 1999-09-30
AU4642896A (en) 1996-07-10
GB9425926D0 (en) 1995-02-22

Similar Documents

Publication Publication Date Title
US6024891A (en) Silicone compositions
US6153567A (en) Silicone compositions
AU688193B2 (en) Silicone compositions
US6123950A (en) Silicone compositions
US5856282A (en) Silicone compositions
CA2208371C (en) Silicone compositions
AU711063B2 (en) Silicone compositions
AU4687196A (en) Detergent composition comprising a dimethicone copolyol
AU710906B2 (en) Silicone compositions
CA2208367A1 (en) Cleansing compositions
AU726938B2 (en) Silicone compounds
MXPA97004734A (en) Compositions with sili

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

A4 Supplementary search report drawn up and despatched

Effective date: 19990706

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT SE

RIC1 Information provided on ipc code assigned before grant

Free format text: 6C 11D 3/39 A, 6C 11D 7/38 B, 6C 01B 15/04 B, 6A 61K 7/06 B, 6A 61K 7/16 B, 6A 61K 7/30 B, 6A 61K 7/48 B

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20020702