EP0773747A1 - Orthese vertebrale implantee dynamique - Google Patents

Orthese vertebrale implantee dynamique

Info

Publication number
EP0773747A1
EP0773747A1 EP94922924A EP94922924A EP0773747A1 EP 0773747 A1 EP0773747 A1 EP 0773747A1 EP 94922924 A EP94922924 A EP 94922924A EP 94922924 A EP94922924 A EP 94922924A EP 0773747 A1 EP0773747 A1 EP 0773747A1
Authority
EP
European Patent Office
Prior art keywords
rod
vertebrae
anchoring elements
vertebra
relative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94922924A
Other languages
German (de)
English (en)
Inventor
Jean-Raymond Martin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9310291A external-priority patent/FR2709245B1/fr
Application filed by Individual filed Critical Individual
Publication of EP0773747A1 publication Critical patent/EP0773747A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7019Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other
    • A61B17/702Longitudinal elements having flexible parts, or parts connected together, such that after implantation the elements can move relative to each other having a core or insert, and a sleeve, whereby a screw or hook can move along the core or in the sleeve
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7044Screws or hooks combined with longitudinal elements which do not contact vertebrae also having plates, staples or washers bearing on the vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7062Devices acting on, attached to, or simulating the effect of, vertebral processes, vertebral facets or ribs ; Tools for such devices
    • A61B17/7067Devices bearing against one or more spinous processes and also attached to another part of the spine; Tools therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7074Tools specially adapted for spinal fixation operations other than for bone removal or filler handling
    • A61B17/7076Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation
    • A61B17/7077Tools specially adapted for spinal fixation operations other than for bone removal or filler handling for driving, positioning or assembling spinal clamps or bone anchors specially adapted for spinal fixation for moving bone anchors attached to vertebrae, thereby displacing the vertebrae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7002Longitudinal elements, e.g. rods
    • A61B17/7004Longitudinal elements, e.g. rods with a cross-section which varies along its length
    • A61B17/7008Longitudinal elements, e.g. rods with a cross-section which varies along its length with parts of, or attached to, the longitudinal elements, bearing against an outside of the screw or hook heads, e.g. nuts on threaded rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • A61B17/70Spinal positioners or stabilisers ; Bone stabilisers comprising fluid filler in an implant
    • A61B17/7001Screws or hooks combined with longitudinal elements which do not contact vertebrae
    • A61B17/7046Screws or hooks combined with longitudinal elements which do not contact vertebrae the screws or hooks being mobile in use relative to the longitudinal element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/02Surgical instruments, devices or methods, e.g. tourniquets for holding wounds open; Tractors
    • A61B17/025Joint distractors
    • A61B2017/0256Joint distractors for the spine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/06Measuring instruments not otherwise provided for
    • A61B2090/064Measuring instruments not otherwise provided for for measuring force, pressure or mechanical tension

Definitions

  • the present invention relates to a dynamic implanted vertebral orthosis making it possible to perform and maintain a correction of the relative position of the vertebrae and / or static and dynamic forces exerted on the vertebrae for the treatment of a deformation of the spine, congenital or acquired, in particular idiopathic or other, such as kyphoscoliosis, or post-traumatic, tumor, infectious, degenerative, or other instability of the spine.
  • the known osteosynthesis devices still pose numerous problems with regard to the positioning and the reliability of the anchoring elements which support high stresses taking into account the subsequent rigidity, and during the fixing of the rods, plates or frames, to the anchoring elements which must be carried out simultaneously with the reduction of deformation.
  • Various semi-rigid osteosynthesis devices have thus been proposed to solve these drawbacks by preserving a certain elasticity favoring the fusion of the subsequent bone graft and facilitating the positioning of the anchoring elements or reducing the stresses transmitted to the anchoring elements.
  • FR-A-2 689 750 proposes such an osteosynthesis device in which the rods have flexibility with a high elastic limit. The elasticity thus preserved in the arthrodesis area promotes the fusion of the bone graft.
  • US-A-4 836 196 describes a spacing device disposed between anchoring elements and a stiffening structure making it possible to reduce the stresses transmitted between the vertebral body and the structure.
  • US-A-4,573,454 describes a device with an extensible structure composed of a frame in two telescopic parts one inside the other, with a view to promoting subsequent growth despite the stiffening of the column.
  • this problem is only partially solved when the column portions fixed respectively to each of the parts of the structure are themselves stiffened without possible growth.
  • the curvature of the stems essentially determined according to the lateral deviation to be corrected does not necessarily correspond to an appropriate correction of the kyphosis or lordosis.
  • these devices are considered to be among the most sophisticated and rigid. As a result, the installation is extremely delicate and the bone structure is sometimes too fragile to withstand the mechanical stresses generated. Whether these devices are rigid or semi-rigid, they are in all cases associated with a graft and therefore result in the suppression of any movement: this results in a concentration of forces at the ends of the instrumented area with development at these levels of disco-ligament degeneration or arthritis overload.
  • Cotrel-Dubousset devices two other types of osteosynthesis devices are used to treat deformities of the spine. These are, on the one hand, Roy-Camille's plates and pedicle screw devices and their improvements, and, on the other hand, Luque devices with sub-lamar wires and their improvements.
  • the Roy-Camille devices are reserved for small amplitude corrections concerning a limited number of vertebrae, and do not allow efficient derotation. Luque devices can cause serious neurological complications given the passage wires passing under the vertebral lamina near the spinal cord.
  • None of the known osteosynthesis devices allows correction of a deformation while at least partly preserving the natural physiological mobility of the vertebrae and the subsequent possibilities of growth.
  • various elastic intervertebral devices are also known which make it possible to treat degenerative, lumbar instabilities.
  • These devices generally consist of intervertebral ligaments or springs (sometimes accompanied by wedges) interposed between the spinous processes or between intrapedicular screws. These ligaments or springs exert traction forces tending to bring the vertebrae closer together and to reduce their relative mobility.
  • These known devices therefore also considerably limit the natural physiological mobility of the instrumented vertebrae.
  • elastic ligaments quickly lose their mechanical qualities because they are subjected to very high tensile forces.
  • these devices are unable to carry out a correction of deformation, in particular given their excessive flexibility in bending in the frontal plane. Also, after their installation, it is not possible to vary the elasticity of the implanted device.
  • the invention therefore aims to overcome the drawbacks of all known devices by proposing a new implanted vertebral orthosis preserving at least in part the natural physiological mobility of the vertebrae and allowing, without osteosynthesis, grafting or arthrodesis, to perform and maintain a correction of the relative position of the vertebrae and / or reduce the forces exerted on the vertebrae for the treatment of a congenital or acquired deformation of the spine, in particular idiopathic or other, such as kyphoscoliosis, or post-spinal instability traumatic, tumor, infectious, degenerative, or other.
  • the invention aims to propose a new category of implanted dynamic vertebral orthosis which, unlike known osteosynthesis devices, can be subsequently modified or even removed, and preserves the natural physiological mobility of the vertebrae not only when it is implanted, but also after its subsequent removal.
  • the invention also aims to provide an implanted vertebral orthosis which preserves the growth potential of the spine.
  • the invention also aims to propose an implanted vertebral orthosis which can subsequently be removed, in particular at the end of the growth period when the risks of worsening or recurrence of the deformation or instability have disappeared.
  • the invention also aims to propose an implanted vertebral orthosis which can be applied with the least possible risk of damage to the nervous system.
  • the invention also aims to propose an implanted vertebral orthosis transmitting to the anchoring elements fixed on the vertebrae the lowest possible mechanical stresses, and in particular mechanical stresses the value of which is strictly limited to that necessary for maintaining the correction of deformation and / or application of the desired forces on the vertebrae.
  • the invention also aims to propose an implanted vertebral orthosis whose characteristics can be adjusted during installation, and after implantation by transcutaneous or percutaneous adjustments, as required.
  • the invention aims to propose an implanted vertebral orthosis allowing the reduction of the deformation of the spine in a precise manner in three dimensions.
  • the invention aims to propose an implanted vertebral orthosis making it possible to reduce scoliosis while preserving the natural physiological mobility of the vertebrae.
  • the invention relates to an implanted vertebral orthosis preserving at least in part the natural physiological mobility of the vertebrae by allowing, without osteosynthesis, grafting or arthrodesis, to effect and maintain a correction of the relative position of the vertebrae and / or efforts exerted between the vertebrae, for the treatment of a conformation of the spine, congenital or acquired, in particular idiopathic or other, such as a kyphoscoliosis, or of an instability of the post-traumatic, tumor, infectious, degenerative spine , or other, comprising anchoring elements fixed on the vertebrae and holding means associated with the anchoring elements to maintain the vertebrae relative to each other in corrected position in which the shape of the spine and / or the forces exerted on the vertebrae are corrected, characterized in that the holding means comprise or consist of elastic return means exerting forces elastic return, the orientation and value of which are determined to maintain the vertebrae in a corrected position against natural deformation forces or to reduce the forces exerted on the
  • the orthosis comprises at least one retaining rod which is movably associated with the anchoring elements of at least one vertebra by coupling means which prevent any relative movement of sliding in horizontal translation (that is i.e. in the lateral and anteroposterior directions relative to the vertebra) but allow, after placement, a relative movement according to at least one other degree of freedom.
  • 1 vertebral orthosis implanted according to the invention is not an osteosynthesis device carrying out a stiffening of the spinal column.
  • it constitutes a dynamic system generating correction forces for the vertebrae with respect to each other.
  • the mobile links made by means of coupling allowing relative movements according to at least one degree of freedom makes it possible to preserve the natural physiological mobility of the vertebrae with respect to each other.
  • the only sources of rigidity induced by the orthosis according to the invention are those which are necessary to effect and maintain a correction of the relative positions of the vertebrae. It has in fact been determined that these mobility limitations are in fact necessary and sufficient to treat the majority of deformations and instabilities.
  • the orthosis according to the invention is placed without a bone graft.
  • the number, nature, orientation and value of the elastic restoring forces and the degrees of freedom authorized by the means for coupling the retaining rods to the anchoring elements are determined as a function of the degree and the rigidity of the deformation or spinal instability.
  • each retaining rod is associated with the anchoring elements of a vertebra by coupling means preventing any relative movement between the retaining rod and the d : anchoring elements.
  • the means for coupling this retaining rod to all the anchoring elements of the other vertebrae allow, after fitting, a relative movement according to at least one degree of freedom.
  • the retaining rods are preferably rigidly associated with a median vertebra by coupling means preventing any relative movement, and associated in a mobile manner according to the minus a degree of freedom relative to the anchoring elements of the other vertebrae, in particular of the end vertebrae of the deformation to be corrected.
  • the degree of freedom authorized by the means for coupling the retaining rods to the anchoring elements can be a relative longitudinal translation along a vertical axis and / or a relative rotation about an axis perpendicular to a plane. frontal and / or a relative rotation around a vertical axis and / or a relative rotation around an axis perpendicular to a sagittal plane. In particular, rotations around any horizontal axis are allowed.
  • the authorized degrees of freedom in the case of the treatment of lumbar instability, can be a relative longitudinal translation along a vertical axis, a relative rotation around an axis perpendicular to a frontal plane, and relative rotation about a vertical axis.
  • the elastic return means are associated with the anchoring elements of the vertebrae with a shape distinct from their shape at rest, that is to say from their shape before their installation, so as to exert forces when the vertebrae are in the corrected position and to maintain this position
  • the holding means comprise at least one flexible and elastic curved holding rod in flexion associated with anchoring elements of at least two distinct vertebrae and able, after installation, to exert elastic forces to maintain the vertebrae in the corrected position while allowing physiological movements from the corrected position of the vertebrae, and the means for coupling this rod to the anchoring elements of at least one vertebra has a cylindrical bore through which the rod passes and in which it can slide in translation.
  • this bore is formed in a member rotatably mounted relative to the anchoring elements around an axis perpendicular to the frontal plane and / or around an axis perpendicular to the sagittal plane of the corresponding vertebra.
  • This member may be a sphere pierced with the cylindrical bore, and this sphere is enclosed in a spherical housing integral with the anchoring elements allowing it complete freedom of rotation around all the axes located in the horizontal plane.
  • the means for coupling the rod 1 to the anchoring elements of at least one vertebra allow a proper rotation of the rod around its axis relative to the anchoring elements.
  • each rod is placed in a lateral position relative to the spinous processes in the paravertebral gutters.
  • the orthosis according to the invention can comprise a single rod on one side of the spinous processes or two rods, one on each side.
  • Each of the rods is bent at the time of manufacture, so that its shape at rest is curved.
  • the curvature of each of the rods is modified so that it exerts elastic bending stresses on the anchoring elements.
  • the material and dimensions of each rod are determined so that subsequent voluntary elastic flexions of the spine are possible, after placement and from the corrected position of the vertebrae.
  • the holding means comprise at least one spring acting on the anchoring elements of at least one vertebra.
  • a spring may be a spring with contiguous or non-contiguous turns, one end of which is associated with the anchoring elements of one vertebra and the other end of which is associated with the anchoring elements of another vertebra.
  • Such a coil spring can be a compression or tension spring surrounding a retaining rod connecting the anchoring elements of the various instrumented vertebrae. The rod then acts as a guide for the spring.
  • the holding means comprise on the concave side of a deformation to be corrected and / or on the side convex of a deformation to be corrected, a rod and at least one compression spring, and / or respectively, of traction surrounding the rod.
  • the two ends of a spring can be locked in rotation relative to the anchoring elements of two vertebrae so as to impart a torque to these vertebrae.
  • the coils of the spring are wound or unwound relative to their shape at rest after the association and before the fixing of the ends of this spring to the anchoring elements.
  • Such a torsional torque imparted by a spring surrounding a rod makes it possible to exert a rotational torque of the vertebrae with respect to one another - and in particular with respect to the central vertebra.
  • the same spring is then a compression or tension spring and a torsion spring.
  • An orthosis according to the invention further comprises means for adjusting the value of the elastic restoring forces exerted at least by part of the elastic restoring means.
  • adjustment means make it possible to vary, in the corrected position of the vertebrae, the elastic elongation (that is to say the elastic variation in length or in shape) of the elastic return means with respect to their rest form.
  • These adjustment means may comprise at least one electronic micromotor and / or at least one position of the manual adjusting device of a support abutment of the elastic return means by 'relative to anchoring elements of a vertebra.
  • the adjustment means comprise transcutaneous or percutaneous control means after implantation of the orthosis, for example in the form of an electromagnetic control.
  • the adjustment means comprise at least part of the holding means and / or elastic return means which is formed from a metal alloy with shape memory. Therefore, the adjustment can be made by heating this part so as to restore all or part of its shape to use its elasticity as needed.
  • the rods and / or the springs can be made wholly or partly of a metal alloy with shape memory.
  • the invention also relates to an implanted vertebral orthosis comprising in combination all or part of the characteristics mentioned above or below.
  • FIG. 1 is a diagrammatic rear view of a first embodiment of an orthosis according to the invention, more particularly intended for the treatment of scoliosis,
  • FIG. 2 is a schematic profile view of a second embodiment of an orthosis according to the invention, more particularly intended for the treatment of scoliosis,
  • FIG. 3 is a schematic view in vertical section of detail of the means for locking in rotation of a spring end of an orthosis according to the invention
  • FIG. 4 is a schematic sectional view along the line IV-IV of FIG. 3,
  • FIG. 5 is a schematic view in vertical section of detail of a manual adjustment device of the elastic return means of an orthosis according to the invention
  • - Figure 6 is a schematic sectional view along line VI- VI of Figure 5
  • FIG. 7 is a schematic view in vertical section of detail of a micromotor for adjusting the elastic return means of an orthosis according to the invention
  • - Figure 8 is a schematic posterior view of a third embodiment of '' an orthosis according to the invention, more particularly intended for the treatment of degenerative lumbar instability
  • FIG. 9 is a schematic view in section of detail along the line IX-IX of FIG. 8,
  • FIG. 10 is a schematic posterior view of a fourth embodiment of an orthosis according to the invention, more particularly intended for the treatment of degenerative lumbar instability,
  • FIG. 11 is a schematic posterior view illustrating a first step of fitting the orthosis of FIG. 1
  • FIG. 12 is a schematic posterior view illustrating a second step of fitting the orthosis of FIG. 1
  • FIG. 13 is a diagrammatic rear view illustrating a third step of laying the orthosis of FIG. 1,
  • FIG. 14 is a diagrammatic rear view illustrating a fourth step of fitting the orthosis of FIG. 1,
  • FIG. 15 is a schematic sectional view through a horizontal plane of the anchoring elements of a vertebra of an orthosis according to a fifth embodiment of the invention.
  • FIG. 16 is a diagrammatic rear view of a clamp of ancillary equipment for fitting an orthosis according to the invention.
  • FIG. 17 is a schematic view in section along the line XVII-XVII of FIG. 16,
  • FIG. 18 is a theoretical diagram in section in a horizontal plane making it possible to determine the characteristics of a support and elastic return rod of an orthosis according to the invention
  • FIG. 19 is a theoretical diagram in section in a sagittal plane for determining the characteristics of a support rod and elastic return of an orthosis according to the invention.
  • the term “vertical” designates the axial direction of the spine which does not correspond to the absolute vertical direction since the spine has a curvature (kyphosis and lordosis).
  • the term “horizontal” designates any direction contained in the plane perpendicular to the vertical direction
  • the term “sagittal” designates any plane containing the vertical and horizontal anteroposterior directions
  • the term “frontal” designates any plane containing the vertical directions and horizontal lateral.
  • FIG. 1 represents a first embodiment of a vertebral orthosis implanted according to the invention which makes it possible to carry out and maintain a correction of the relative position of five dorsal vertebrae for the treatment of a deformation of scoliotic type.
  • the vertebrae Before the installation of 1 Orthosis, the vertebrae have a lateral deviation such as a curvature with convexity oriented to the right ( Figure 11).
  • the orthosis according to the invention comprises an anchoring element 1 fixed on the extreme upper vertebra, an anchoring element 2 fixed on the lower extreme vertebra, and an anchoring element 3 fixed on the median vertebra located in the center of the original natural curvature of scoliosis.
  • LOrthesis further comprises two holding rods 4a, 4b extending laterally on each side of the spinous processes, namely a left rod 4a placed on the side of the concavity of the deformation to be corrected, and a right rod 4b placed on the side of the convexity of the deformation to be corrected.
  • Each rod 4a, 4b is a curved rod, flexible and elastic in bending made of biocompatible material such as a metal alloy (stainless steel or titanium) and / or of composite material.
  • Each rod 4a, 4b is associated with the anchoring elements 1, 2, 3 of the vertebrae by coupling means 5a, 5b, 6a, 6b, 7a, 7b.
  • Each rod 4a, 4b is originally curved during manufacture and is associated with the anchoring elements by extending in a sagittal plane with its convexity oriented towards the posterior direction. This original bending of the rods 4a, 4b is not modified before their installation.
  • the stems 4a, 4b are made of a material of high tensile strength and having a high modulus of elasticity. Their dimensional and mechanical characteristics are determined so that these rods 4a, 4b are capable, after their installation, of exerting elastic forces intended to maintain the vertebrae in the corrected position represented in FIG. 1, while allowing physiological movements from of this corrected position of the vertebrae.
  • the rods 4a, 4b have, once associated with the anchoring elements 1, 2, 3 and in the corrected position of the vertebrae, a shape distinct from their shape at rest.
  • the curvature at rest of the rods 4a, 4b is greater than that which they present when associated with the anchoring elements 1, 2, 3.
  • the rods 4a, 4b exert, in the corrected position of the vertebrae, elastic stresses in bending.
  • These elastic flexural stresses thus maintain the corrected position. They tend to suppress scoliosis in the frontal plane, to create physiological kyphordordosis in the sagittal plane, and to suppress vertebral rotation in the horizontal plane.
  • the rods 4a, 4b therefore constitute in themselves elastic return means exerting elastic return forces which are determined to maintain the vertebrae in the corrected position against the natural forces of deformation.
  • the dimensional and mechanical characteristics of the rods 4a, 4b are determined in such a way that these rods 4a, 4b have a residual elasticity from the corrected position of the vertebrae. In this way, the rods 4a, 4b do not oppose the natural physiological movements of the vertebrae with respect to each other from the corrected position.
  • These physiological movements are also made possible by the coupling means 5a, 5b, 6a, 6b, 7a, 7b which are designed for this purpose.
  • the means 5a for coupling the left rod 4a to the upper anchoring element 1 of the upper instrumented vertebra comprise a sphere 8 freely rotatably mounted and enclosed in a spherical housing 9 of a cylinder 10 integral with the anchoring element 1 so as to form a ball joint liaison.
  • the sphere 8 is pierced with a cylindrical bore 11 through which the rod 4a passes, and in which this rod 4a can slide in longitudinal axial translation in the vertical direction.
  • the width of the bore 11 corresponds to the width of the rod 4a and the sphere 8 is engaged in the housing 9 without the possibility of relative movements in horizontal translation, and in particular in the lateral and anteroposterior directions of the vertebra.
  • these coupling means 5a prohibit, after the installation of the rod 4a, any relative movement in horizontal translation of the rod 4a relative to the anchoring elements 1 and to the corresponding vertebra.
  • these coupling means 5a allow, after the installation of the rod, a relative movement according to four other degrees of freedom: a slide ent in relative longitudinal translation along a vertical axis of the rod 4a and three degrees of freedom of rotation of the sphere 8 relative to the cylinder 10, namely a relative rotation around an axis perpendicular to a frontal plane, a relative rotation around an axis perpendicular to a sagittal plane, and a relative rotation around a vertical axis .
  • the bore 11 is cylindrical of revolution and the rod 4a is provided with ribs 12 regularly distributed around its axis and extending along the rod 4a projecting from its outer face to come into contact along the face inner 13 of the bore 11.
  • ribs 12 are provided in the example shown.
  • the constituent materials of the sphere 8 and of the cylinder 10 are chosen to allow the rotations of this sphere 8 in the housing 9 as indicated above.
  • the sphere 8 is made of high-quality surface metal alloy or ceramic and the cylinder 10 consists of a block of synthetic material such as polyethylene or the like.
  • the sphere 8 and / or the cylinder 10 can be made of a self-lubricating material or include a coating of this material.
  • the cylinder 10 has upper 14 and lower 15 openings allowing the passage of the rod 4a and whose width dimensions are greater than those of the rod 4a to allow tilting movements of the rod 4a relative to the axis of the cylinder under the effect of the aforementioned rotational movements.
  • the dimensions of the openings 14 and 15 are such that they allow an amplitude of inclination of at least 45 degrees of the rod 4a relative to the vertical axis of the cylinder 10.
  • the sphere 8 is engaged in the housing spherical 9 during the fitting of the rod 4a.
  • a threaded crown 16 is mounted at the upper end of the cylinder 10 which comprises a housing for receiving this crown 16 provided with a corresponding thread.
  • the crown 16 has an axial bore which determines the upper opening 14 of the cylinder 10 opening into the spherical housing 9.
  • the dimensions of the reception housing of the crown 16 are defined to allow the insertion of the sphere 8 from above into the spherical housing 9.
  • the underside of the crown 16 has a concave shape as a portion of a sphere so that it comes as an extension of the spherical internal face of the housing 9 by enclosing the sphere 8 in this housing 9 (FIG. 3) without the block.
  • FIG. 3 As a variant (FIG.
  • the cylinder is formed from a block of synthetic material and the upper opening 14 has a diameter slightly smaller than that of the sphere 8 which can be forcefully engaged in the housing 9 through this opening 14 which then retains the sphere 8 in the housing 9.
  • the rod 4a is introduced inside the cylinder 10. To do this, this cylinder 10 is provided over its entire height d '' a slot 17 communicating with the
  • This slot 17 can be placed on the inside of the cylinder 10 opposite the spinous processes, as shown in FIG. 15, or on the opposite side, or even on the posterior side. Preferably, this slot 17 is nevertheless formed in a portion of the cylinder 10 which undergoes the least stresses in the horizontal radial direction.
  • the sphere 8 is engaged around the rod 4a by introducing this rod 4a through the bore 11, the rod 4a is introduced into the housing 9 through the slot 17 while maintaining the sphere 8 at above the cylinder 10, then the sphere 8 is engaged in the housing 9.
  • the crown 16 is then screwed into the corresponding housing of the cylinder 10. If applicable, this crown 16 will have been previously engaged around the rod 4a above the sphere 8.
  • the diameter of the rods 4a, 4b adaptable to the same anchoring elements can thus vary, the adaptation being carried out using spheres 8 whose bore 11 corresponds the diameter of the rods 4a, 4b. In a variant not shown, the sphere 8 can also be engaged in the housing 9 from below.
  • the crown 16 is then disposed at the lower end of the cylinder 10.
  • the means 6a for coupling the rod 4a relative to the lower anchoring element 2 of the lower extreme vertebra are identical to the means 5a for coupling this rod 4a to the upper anchoring element 1 of the upper extreme vertebra previously described.
  • the means 7a for coupling the rod 4a to the median anchoring element 3 of the median vertebra are rigid association means preventing any relative movement of the rod 4a relative to the anchoring element 3
  • these coupling means 7a consist of a cylinder 18 mounted integral with the anchoring element 3 and provided with a cylindrical bore 19 over its entire height traversed by the rod 4a.
  • This bore 19 is similar to the bore 11 of the coupling means 5a beforehand. described, and therefore has shapes and dimensions corresponding to those of the rod 4a.
  • the bore 19 can be provided in an adaptation cylinder whose internal diameter can vary and which is mounted concentrically in the cylinder 18.
  • the cylinder 18 carries one or more screws 20 for transversely locking the rod 4a.
  • the screw 20 is engaged in a corresponding tapping of the cylinder 18 which opens out into the bore 19.
  • the screw 20 presses on the rod 4a and blocks it in translation relative to the bore 19.
  • the rod 4a can be provided with one or more horizontal peripheral grooves.
  • the cylinder 18 is provided with a slot over its entire height for mounting the rod 4a in the bore 19.
  • the rod 4a is blocked by the coupling means 7a relative to the anchoring element of the median vertebra according to each degree of freedom for which the rod 4a is associated movable relative to the anchoring elements 1, 2 of other vertebrae. It is important indeed that the rod 4a is blocked by coupling means with respect to the anchoring elements of at least one vertebra according to at least one - notably each - degree of freedom for which this rod 4a is associated S- _ movable by coupling means relative to the anchoring elements of at least one other vertebra.
  • the blockages of the rod 4a, according to the different degrees of freedom may not be gathered on the same vertebra.
  • the rod 4a can be blocked according to one or more degrees of freedom with respect to several distinct vertebrae.
  • the rod 4a is blocked according to all the degrees of freedom relative to the anchoring elements 3 of a single vertebra and associated movable according to the different degrees of freedom provided by relative to all the anchoring elements 1, 2 of the other vertebrae.
  • the rod 4a is blocked by coupling means relative to the anchoring elements 3 one of the vertebrae and associated movable by coupling means to all the anchoring elements 1, 2 of the other vertebrae which allow. after installation, a relative movement according to at least one degree of freedom.
  • the rod 4b placed to the right of the spinous processes ( Figure 1) is associated with the anchoring elements 1, 2, 3 by coupling means 5b, 6b, 7b similar to the coupling means 5a, 6a, 7a, previously described for the left stem 4a.
  • the right rod 4b is rigidly fixed to the same vertebra as the left rod 4a, that is to say to the median vertebra.
  • Each rod 4a, 4b thus mounted on the anchoring elements 1, 2, 3 of the vertebrae provides a means for front and sagittal support of the vertebrae with respect to each other. It also achieves, to a certain extent, a means for holding the vertebrae in the vertical direction.
  • these rods 4a, 4b exert elastic restoring forces on the anchoring elements against the natural forces of deformation.
  • the corrected position corresponds in fact to the equilibrium position between the natural forces of deformation of the spine and the elastic restoring forces exerted by the orthosis according to the invention. Taking into account ( the flexibility of the rods 4a, 4b and the degrees of freedom authorized by the various coupling means, natural physiological movements are possible at least to a certain extent with respect to the corrected position.
  • the elastic return means of the orthosis comprise at least one spring 21a, 21b, 22a, 22b, 23a, 23b, 24a, 24b acting on the anchoring elements of at least one vertebra.
  • 1 Orthosis includes for each rod 4a, 4b, a coil spring 21a, 21b interposed between the anchoring elements 1, 3 of the upper vertebra and the median vertebra, a coil spring 22a, 22b interposed between the anchoring elements 2, 3 of the lower vertebra and the median vertebra, a coil spring 23a, 23b interposed between the anchoring element 1 of the upper vertebra and a free end 25a, 25b of the upper rod 4a, 4b, and a coil spring 24a, 24b interspersed between the anchoring element 2 of the lower vertebra and the free end 26a, 26b of the lower rod 4a, 4b.
  • Each coil spring 21a, 21b, 22a, 22b is interposed between the anchoring elements 1, 3 and 3, 2 of two distinct vertebrae and has one end associated with the anchoring element 1 or 3 of a vertebra and the other end associated with the anchoring element 3 or 2 of another vertebra.
  • the springs 21a, 22a, 23a, 24a surround the rod 4a placed on the concave side of the deformation to be corrected and are compression springs.
  • the springs 21b, 22b, 23b, 24b surround the rod 4b placed on the convex side of the deformation to be corrected and are tension springs.
  • the ends of the springs are mounted relative to the anchoring element 1 so to print a torque on the corresponding vertebra.
  • the free end 27 of the spring which is folded to extend radially is introduced into a radial bore 28 of a ring 29.
  • the last turn of the spring is welded to the ring 29.
  • This ring 29 has an external circumferential groove 30.
  • the cylinders 10 have an external flange 31 surrounding the crown 29.
  • This flange 31 carries screws 32 for radial locking engaged in threads of the flange 31 and the ends of which penetrate into the groove 30 of the crown 29 to block it axially with respect to the cylinder 10 then, after twisting the spring, in 21 rotation with respect to the cylinder 10.
  • the crown 29 has blind holes 33 allowing it to rotate around the axis of the spring. When the desired twist is obtained, the screws 32 are finally tightened to block the crown 29 relative to the flange 31 of the cylinder 10.
  • Such a crown 29 blocked by screws 32 can be provided not only at each end of a spring taking support on anchoring elements comprising a cylinder 10 or 18, but also at the end of a spring bearing on a nut 34 fixed at the end 25a, 25b, 26a, 26b of a rod 4a, 4b.
  • the orthosis also comprises means 29, 35, 36 for adjusting the value of the elastic return forces exerted by at least part of the elastic return means, namely the rods 4a, 4b and / or the springs.
  • These means 29, 35, 36 are means making it possible to vary, in the corrected position of the vertebrae, the initial elastic elongation (that is to say the initial elastic variation in compression or traction of length or shape) elastic return relative to their shape at rest.
  • both the rods 4a, 4b and the springs are placed and associated with the anchoring elements 1, 2, 3 with a shape which is distinct from their shape at rest so as to exert elastic forces against it. 'natural forces of deformation, and to maintain the vertebrae in the corrected relative position with respect to each other.
  • said adjustment means may consist of a shim of variable height interposed between one end of the spring which it is desired to be able to adjust, and the corresponding support element, to namely a cylinder 10 or 18 or a rod end nut 34.
  • a shim 35, 36 of variable height may consist of an electronic micromotor 35 (FIG. 7) of one to two centimeters in height having a rotor 38 pierced axially.
  • the rotor 38 is provided with a thread 42 which cooperates with an external thread 43 of an internal cylinder 44 carrying a movable plate 40.
  • the plate 40 is locked in rotation relative to the stator 39 of the micromotor by vertical rails 140 integral with the plate 40 sliding in external vertical slides 141 secured to the stator 39.
  • the plate 40 which bears on the end of the spring slides in axial translation relative to the stator 39 of the micromotor which bears on the cylinder 10 or 18 or on the corresponding nut 34.
  • the stator 39 of the micromotor 35 can be mounted on the cylinder 10 or 18 or the corresponding nut 34 in the same way as the crown 29 previously described for adjusting the torsion of the springs.
  • the stator of the micromotor 35 has a circular peripheral groove in which screws such as 32 for radial locking are tightened.
  • the end of the spring bearing on the plate 40 of the micromotor 35 can be fixed to this plate 40 by means of torsional adjustment as described above, namely a ring 29 on which the end of the spring is mounted, which is itself mounted on a flange 31 of the plate 40 of the micromotor 35 by means of locking screws 32.
  • the micromotor can be supplied with electrical energy by micropiles 41, and its operation can be controlled through the skin by an electromagnetic or other remote control.
  • an adjustment shim may consist of a manual adjustment device 36 (FIGS. 5 and 6) comprising two concentric cylinders 142, 143, one of which 143 is movable in vertical axial translation relative to the other 142 which is fixed, and this under the effect of a control screw 37 which extends radially and which carries, at its internal end, a pinion 144 cooperating with a rack 1 5 secured to the movable cylinder 143 to actuate it in relative axial translation in a one way or the other.
  • the cylinders 142, 143 are locked in rotation relative to each other.
  • the manual adjustment device 36 also comprises an axial central bore 146 for the passage of the rod 4a or 4b through the movable cylinder 143.
  • the manual adjustment device 36 can be fixed to the end of the spring and to the cylinder 10 or 18 or to the nut 34 in the same way as the micromotor 35, in particular by means of means for adjusting the torsion of the spring.
  • the screw 37 By turning the screw 37, for example percutaneously, the movable cylinder 143 is made to slide axially relative to the fixed cylinder 142.
  • all the springs 21a, 22a, 23a, 24a surrounding the left rod 4a are provided with means for adjusting and locking in torsion (crown 29 and screw 32 for locking).
  • the two compression springs 21a, 22a bearing on each side on the cylinder 18 of the means 7a for coupling the rod 4a to the middle anchoring element 3, are provided with adjustment means 35, 36.
  • An electronic micromotor 35 is shown above the cylinder 18 to 21a the upper spring adjuster, and a manual tensioning device 36 with its screw 37 is shown in the cylinder 18 * for adjusting the length of the lower spring 22a.
  • the tension springs 21b, 22b interposed between the anchoring elements around the straight rod 4b are also provided with adjustment and torsional locking means 29, 32.
  • Adjustment micromotors 35 are provided between the cylinders 10 of the means 5b, 6b for coupling the rod 4b to the upper and lower anchoring elements 1, 2, and the corresponding ends of the end springs 23b, 24b.
  • Adjustment of the restoring forces by the springs which can be carried out by means of the crowns 29, micromotors 35 and manual tensioning devices 36 makes it possible to easily adapt the characteristics of the orthosis according to the natural physiological modifications of the patient (increase in length of the column vertebral, body weight, muscle strength ). However, if these physiological changes are too great, the adjustment may prove to be insufficient. In this case, it will still be possible to easily change the rods 4a, 4b and / or the springs.
  • the anchoring elements 1, 2, 3 do not generally have to be modified taking into account that the coupling means 5a, 5b, 6a, 6b, 7a, 7b authorize the intraoperative assembly and disassembly of the rods and springs relative to these anchoring elements.
  • FIG. 2 represents a profile view of an alternative embodiment of the previously described orthosis.
  • the curvature of the rod 4a makes it possible to restore and maintain the kyphosis.
  • the cylinder 18 of the median coupling means 7a is provided with an electronic micromotor 35 for adjustment on each side.
  • the two springs 21a, 22a interposed between the anchoring elements on either side of the central cylinder 18 are provided with a crown 29 of end * for adjusting and locking in torsion. In this way, this torsion of the springs participates in the derotation of the vertebrae. It should be noted that this derotation is also obtained by the elastic curvature of the rod 4a itself and pr the fact that it is placed with its plane of curvature at rest inclined relative to a sagittal plane.
  • FIG. 8 represents an embodiment of an orthosis according to the invention more particularly intended for the treatment of lumbar degenerative instability. Unlike the previously described orthosis which allows you to instrument a length of spine corresponding to five vertebrae, this short lumbar orthosis extends over a more limited number of vertebrae including three vertebrae 25 in the example shown.
  • This short orthosis also includes anchoring elements 1, 2, 3 on three vertebrae, one or two posterior lateral rods 4a, 4b, springs 21a, 22a, 21b, 22b, each of them being interposed between the elements d anchorage 1, 3 or 3, 2 of two distinct vertebrae.
  • the main function of such a lumbar orthosis is not to correct a deformation, but to correct the value of the forces exerted between vertebrae by reducing the forces undergone by the vertebrae due to degenerative instability.
  • the springs 21a, 21b, 22a, 22b are all compression springs acting in the direction of the spacing of the vertebrae with respect to each other in order to discharge the posterior vertebral joints.
  • the rods 4a, 4b are curved in the direction of the lordosis and make it possible to maintain the relative position of the vertebrae, and in particular the spacing of the vertebral bodies, which reduces the forces applied to the anterior disco-ligament apparatus.
  • the springs bear directly on the anchoring elements since there is generally no correction to be made in the direction of rotation around the vertical axis.
  • the orthosis represented in FIG. 8 also differs from the orthoses represented in FIGS. 1 and 2 by the means 45a, 45b, 46a, 46b, 47a, 47b for coupling the rods 4a, 4b to the anchoring elements 1, 2, 3 ( figure 9). Indeed, these coupling means do not have the same degrees of freedom. More precisely, to maintain the spacing between the vertebral bodies more effectively, the degree of freedom in rotation about an axis perpendicular to the sagittal plane is eliminated at the level of all the vertebrae.
  • the means 45a, 45b, 47a, 47b for coupling the rods 4a, 4b to the anchoring elements 1 upper and 3 median allow relative movements of the rods 4a, 4b relative to these elements 1, 3 for anchoring in longitudinal translation along a vertical axis, in relative rotation about an axis perpendicular to a frontal plane, and in proper rotation of the rod around a vertical axis, but prohibit any relative rotation around an axis perpendicular to a sagittal plane.
  • the sphere 8 of the previously described orthosis is replaced by a sphere 48 provided with an annular circumferential projection 52 and the housing 49 for receiving the sphere 48 is provided with an annular groove 53 in which the projection 52 of the sphere is engaged.
  • the projection 52 and the groove 53 extend in a frontal plane so as to allow rotation about an axis perpendicular to the frontal plane by preventing rotations around an axis perpendicular to the sagittal plane.
  • these coupling means could also be produced in the form of a cylinder with a horizontal axis provided with a radial bore for the passage of the rod engaged in a cylindrical housing with a horizontal anteroposterior axis of the cylinder 50.
  • the member 48 rotatably mounted with respect to the cylinder 50 (that is to say the sphere 48 or the cylinder with a horizontal axis) has a bore 51 with a vertical axis for the passage of the rod 4a, 4b.
  • Rotations around an axis perpendicular to the sagittal plane are not possible at the coupling elements but are made possible at the elastic retaining and return elements by the flexibility of the rods and springs, so as to allow the spine the physiological movements of flexion and extension in the sagittal plane.
  • the means 46a, 46b for coupling the rods 4a, 4b to the lower anchoring elements 2 are rigid association means blocking the rod in all directions, that is to say are identical to the coupling means 7a, 7b rods to the median anchoring elements described with reference to Figures 1 and 2.
  • These coupling means 46a, 46b therefore comprise a cylinder 18 provided with a bore 19 and at least one transverse locking screw 20.
  • a nut 34 is fixed to the lower end 26a, 26b of each rod 4a, 4b.
  • the upper free ends 25a, 25b of the rods 4a, 4b are left free without nut or spring.
  • Figure 10 shows an alternative embodiment of the short lumbar orthosis according to the invention.
  • all the coupling means have the same degrees of freedom and are identical to the coupling means 45a, 45b, 47a, 47b of the embodiment shown in FIGS. 8 and 9.
  • the rods 4a, 4b are held in position by relative to the means 45a, 45b, 46a, 46b, 47a, 47b for coupling and facing the corresponding vertebrae by a weld 54a, 54b rigidly associating a turn of the springs 22a, 22b with the outer surface of the rods 4a, 4b.
  • the springs 22a, 22b are also provided at each of their ends with a crown 29 locked by screws 32 relative to the cylinders 50 of the means 46a, 46b, 47a, 47b of corresponding coupling making it possible to block these springs 22a, 22b rotating around the vertical axis.
  • the rod 4a, 4b is therefore kept in rotation about the vertical axis by the springs 22a, 22b, in the desired lordosis position.
  • the embodiments shown in Figures 8 and 10 may also include, if necessary, means for adjusting - in particular micromotors 35 and / or manual tensioning devices 36 - of the elastic restoring force exerted by the springs 21a, 21b , 22a, 22b.
  • the orthosis may include means for adjusting the elastic return forces exerted by the elastic return means produced in the form of at least part of the holding means. and / or elastic return means consisting of a metal alloy with shape memory.
  • the rods 4a, 4b and / or all or part of the springs can be made of metal alloy with shape memory. Consequently, after implantation, it will be possible to modify the elastic restoring forces exerted by proceeding with transcutaneous heating of this part made of shape memory alloy, and this for example by microwave.
  • the anchoring elements 1, 2, 3 comprise (FIG. 15) at least one plate 55 having an anterior convex face 56 bearing in contact with at least one portion of the concave surface of the posterior arch, in particular in contact of the vertebral blade 57 and / or at least on one side of the spinous process 58.
  • the cylinders 10, 18, 50 of the coupling means are carried by a plate 55 facing the transverse end of the blade 57 at neighborhood of the transverse process 59.
  • Each plate 55 is fixed on a vertebra in at least two distinct portions.
  • each plate 55 is fixed to the corresponding vertebra by an intrapedicular screw 61 and / or hooks 71 for clamping on the transverse process 59 and / or a clamping flange 65 on the spinous process 58.
  • the elements of Anchoring may include two plates 55a, 55b, one on each side of the spinous process, even when the orthosis has only one rod, on one side of the spinous process ( Figure 15).
  • a single plate 55 can be provided.
  • the anchoring elements according to the invention respect the disco-ligament and articular structures of the vertebrae, the integrity of which will allow the conservation of the vertebral physiological movements.
  • the anchoring elements according to the invention make it possible to conserve the movements authorized by the dynamic orthosis. In addition, if this orthosis is then removed, for example at the end of the patient's growth, natural physiological movements are possible.
  • the orthosis according to the invention can be produced at least in part from a metal alloy (stainless steel, titanium, etc.) and / or from a composite material.
  • FIG. 16 and 17 show a clamp of ancillary correction material for the installation of a vertebral orthosis implanted according to the invention.
  • This clamp has three action ends 81, 82, 83 intended to cooperate respectively with the anchoring elements 1, 2, 3 of the vertebrae.
  • Each of the action ends 81, 82, 83 of the clamp is formed of a stud intended to be engaged in a bore 78 with a vertical axis formed in the vicinity of the coupling means of the anchoring elements 1, 2, 3.
  • Each nipple 81, 82, 83 which can be oriented towards, the bottom or up (FIG. 16) can act in compression or in detraction as required.
  • each plate 55 of the anchoring elements comprises a bore 78 formed through a horizontal extension of the plate 55 which supports a cylinder 10, 18 or 50 for coupling a rod 4a, 4b.
  • the bore 78 is preferably formed on the front and lateral side of the cylinder 10, 18, 50.
  • the clamp also comprises dynamometric means 93, 94, 95 for measuring the forces imparted on the end pins 81, 82, 83 to maintain their relative positions. Also, the clamp comprises means 112, 117, 127 for measuring the displacements of the end studs 81, 82, 83 during modifications of their relative positions.
  • Each clamp is composed of three articulated branches 90, 91, 92 carrying the pins 81, 82, 83 at their free end. More specifically, the clamp comprises an upper branch 90 carrying the upper end stud 81, a lower branch 91 carrying the lower end stud 82, and a middle branch 92 carrying the middle end stud 83.
  • the two upper and lower branches 90, 91 are articulated to each other about a horizontal axis 99 orthogonal to the direction passing through the two pins 81, 82.
  • the branches 90, 91, 92 are articulated by relative to the others and controlled in their relative movements by three control rods 104, 114, 124 provided with handles 113, 123, 135.
  • a vertical control rod 104 has a thread 105 cooperating with a thread 106 at one end 103 of the lower branch 91 opposite the nipple 82.
  • the end 102 of the upper branch 90 opposite the stud 81 is in the form of a sliding sleeve around a cylinder 109 integral with the vertical control rod 104 but whose position in translation relative to the rod 104 can be adjusted .
  • This sleeve 102 is trapped between two compression springs 107, 108 surrounding the rod 104 and bearing at their opposite ends on dynamometric sensors 93.
  • the sleeve 102 also includes a light 111 allowing the reading of a graduated scale 112 on the rod 104.
  • the end studs 81, 82 When the handle 113 is turned, the end studs 81, 82 are separated or brought closer to one another. If the pins 81, 82 do not support forces in the vertical direction, the upper sleeve 102 remains midway between the two sensors 93, the springs 107, 108 not being activated. If on the contrary a force is necessary to move the pins 81, 82, one of the springs 107, 108 is activated in compression to balance this force and allow the position to be modified. The load cells 93 then deliver an electrical signal proportional to this force.
  • the middle branch 92 is articulated on the assembly thus formed by the upper 90 and lower branches, 91.
  • a sagittal control rod 114 extends along the axis 99 of articulation of the two upper and lower branches 90, 91 *** : in the sagittal direction.
  • This rod 114 is provided, at its end, with a thread 115 engaged in a tapping 116 of one of the branches 90, 91.
  • the rod 114 also carries a graduated scale 117 making it possible to identify its position relative to the branches 90, 91.
  • the middle branch 92 has an oblong slot 118 crossed by the control rod 114.
  • This oblong slot 118 extends in a direction orthogonal to the vertical direction passing through the end studs 81, 82 upper and lower, and at the horizontal axis 99 of articulation of the two upper and lower branches 90, 91.
  • the oblong opening 118 of the middle branch 92 is engaged around the control rod 114 trapped between two springs 119, 120 whose opposite ends press on load cells 94.
  • These load cells 94 provide a measurement of the forces imparted to the stud 83 in the horizontal sagittal direction.
  • the end 129 of the middle branch 92 opposite the end stud 83 is associated with a front control rod 124 which makes it possible to control the movements of this middle branch in the horizontal frontal direction perpendicular to the vertical direction passing through the studs d ends 81, 82 upper and lower and to the axis 99 of articulation of the two branches 90, 91 upper and lower.
  • This front control rod 124 has a threaded end 125 engaged in a thread 126 formed in a bearing 110 comprising a cylinder 121 surrounding the vertical control rod 104.
  • the cylinder 121 carries a graduated scale 127 visible through a light 128 of the branch middle 92.
  • the end 129 of the middle branch 92 opposite the stud 83 slides around the front control rod 124 and is trapped between two springs 130, 131 whose opposite ends bear: on load cells 95.
  • the displacement of the median branch 92 in the frontal direction is authorized by the oblong opening 118.
  • the position of the median stud 83 in the frontal direction is therefore modified relative to the sagittal plane containing the studs 81, 82 upper and lower.
  • the sensors 95 provide a measure of the forces necessary for this displacement.
  • the branches 90, 91, 92 and the control rods 104, 114, 124 can be articulated to a support or to a common frame.
  • 91 used are chosen according to the distance between the corresponding vertebrae.
  • the holding forces are measured by dynamometric sensors 93, 94, 95 integral with the ancillary equipment, that is to say along three orthogonal axes of translation of the end pins 81, 82, 83, namely a vertical axis ( vertical control rod 104), a sagittal axis (sagittal control rod 114), and a front axis (front control rod 124).
  • the various characteristics and dimensions of the holding means and / or of elastic return means are determined, at least approximately, by calculation by an information processing device programmed for this purpose from the values of the holding forces measured by the various load cells.
  • the desired effectiveness of the means of retaining and / or elastic return of the orthosis is checked before the ablation of the clamps by reading the cancellation of the static forces recorded by the dynamometers 93, 94, 95.
  • the means of maintaining and of elastic recall are then and if necessary adjusted or changed in whole or in part.
  • the means for adjusting the elastic return means of the orthosis after removing the ancillary correction material, it is possible to check that the corrected position and / or the desired value of the static forces between the vertebrae are maintained, and then we proceed any necessary adjustments before completing the operation or after the operation and the patient's awakening.
  • Figures 18 and 19 illustrate a diagram for determining the main characteristics and orientation of each rod 4a, 4b of an orthosis according to one invention.
  • the rod 4a, 4b is placed by orienting its plane of curvature at an angle ⁇ ( Figure 18) relative to the sagittal plane of the spine in the corrected position.
  • This angle ⁇ makes it possible to impose the positioning of the median vertebra V2 in the sagittal plane of the upper and lower vertebrae VI and V3.
  • V1V3 is the vertical distance between the two upper and lower vertebrae.
  • ⁇ f The calculations are the same for concavity and convexity.
  • each rod 4a, 4b corresponds to the desired final curvature given by the angle ⁇ modified by the deformation of the rod due to the elastic holding forces which it must exert.
  • the resulting elastic FR force that the rod must exert is:
  • FR - F1 2 + F2 2
  • the length of the rod depends on the distance between the instrumented vertebrae, and its diameter is chosen according to the curvature and the material to obtain the force FR with sufficient residual flexibility to allow physiological movements vertebral.
  • Compression and traction springs are dimensioned in a conventional manner essentially from the value of the vertical holding forces provided by the sensors 93 of the vertical control rod 104.
  • the coil springs working in torsion are tensioned in the opposite direction to the winding of the turns , i.e. by reducing the diameter of the spring.
  • the upper springs 21a, 21b are both wound in the same direction, and in the opposite direction of the lower springs 22a, 22b.
  • the coils of the springs are tensioned to derote the vertebrae in the desired direction.
  • the orthosis according to the invention may be the subject of numerous variants, in particular as a function of the deformation or the instability to be corrected, of the patient, and of the operating conditions encountered.
  • the orthosis may include only retaining and elastic return rods, or only retaining and elastic return springs.
  • the springs can also be leaf springs or other. Envelopes for protecting the springs against fibrotic invasion may be provided.
  • an orthosis according to the invention can be used to instrument any portion of the spine, and is not limited to the corrections of dorsal kypho-scoliosis and lumbar degenerative instabilities illustrated in the examples.
  • the orthosis according to the invention is applicable with minor modifications to a portion of the cervical spine.

Abstract

L'invention concerne une orthèse vertébrale implantée dynamique préservant au moins pour partie la mobilité physiologique naturelle des vertèbres en permettant, sans ostéosynthèse, greffe ni arthrodèse, d'effectuer et de maintenir une correction de la position relative des vertèbres et/ou des efforts exercés sur les vertèbres, comprenant des éléments d'ancrage (1, 2, 3) fixés sur les vertèbres et des moyens (4a, 4b, 21a, 21b, 22a, 22b, 23a, 23b, 24a, 24b) de maintien associés aux éléments d'ancrage (1, 2, 3) pour maintenir les vertèbres les unes par rapport aux autres en position corrigée, caractérisée en ce que les moyens (4a, 4b, 21a, 21b, 22a, 22b, 23a, 23b, 24a, 24b) de maintien comportent ou sont constitués de moyens de rappel élastique exerçant des forces de rappel élastique dont l'orientation et la valeur sont déterminées pour maintenir les vertèbres en position corrigée à l'encontre des forces naturelles de déformation ou pour réduire les efforts exercés sur les vertèbres en conservant leur mobilité.

Description

ORTHESE VERTEBRALE IMPLANTEE DYNAMIQUE
La présente invention concerne une orthèse vertébrale implantée dynamique permettant d'effectuer et de maintenir une correction de la position relative des vertèbres et/ou des efforts statiques et dynamiques exercés sur les vertèbres pour le traitement d'une déformation du rachis, congénitale ou acquise, notamment idiopathique ou autre, telle qu'une cypho-scoliose, ou d'une instabilité du rachis post-traumatique, tumorale, infectieuse, dégénérative, ou autre.
On connaît déjà des dispositifs d'ostéosynthèse rachidienne permettant de traiter les déformations scoliotiques, constitués d'éléments d'ancrage dans les vertèbres tels que des crochets ou des vis intrapédiculaires, et de tiges ou cadres fixés sur les éléments d'ancrage pour imposer une position relative aux différentes vertèbres. Ces dispositifs d'ostéosynthèse rigides ou semi-rigides réalisent une rigidification de la colonne vertébrale dans la position corrigée et sont toujours associés à une greffe osseuse et à une arthrodèse des vertèbres. En conséquence, la pose d'un tel dispositif d'ostéosynthèse a pour effet de supprimer définitivement la mobilité physiologique naturelle des vertèbres. Ainsi, ces dispositifs d 'ostéosynthèse connus, s'ils résolvent en grande partie les problèmes liés à la déformation scoliotique, engendrent nécessairement un handicap pour le patient. Ce handicap est d'autant plus pénalisant qu'il est définitif et imposé à des patients en général jeunes et en période de croissance. Ils constituent un obstacle à la croissance ultérieure du rachis.
Par ailleurs, les dispositifs d'ostéosynthèse connus posent encore de nombreux problèmes en ce qui concerne la mise en place et la fiabilité des éléments d'ancrage qui supportent de fortes contraintes compte tenu de la rigidité ultérieure, et lors de la fixation des tiges, plaques ou cadres, aux éléments d'ancrage qui doit être réalisée simultanément à la réduction de la déformation. Différents dispositifs d 'ostéosynthèse semi-rigides ont ainsi été proposés pour résoudre ces inconvénients en préservant une certaine élasticité favorisant la fusion de la greffe osseuse ultérieure et facilitant la mise en place des éléments d'ancrage ou diminuant les contraintes transmises aux éléments d'ancrage. Par exemple, FR-A-2 689 750 propose un tel dispositif dOstéosynthèse dans lequel lès tiges présentent une flexibilité à haute limite d'élasticité. L'élasticité ainsi préservée dans, la zone de l'arthrodèse favorise la fusion de la greffe osseuse. Néanmoins, les problèmes liés à la rigidification de la colonne persistent après cette fusion. Egalement, US-A-4 836 196 décrit un dispositif d'espacement disposé entre des éléments d'ancrage et une structure de rigidification permettant de diminuer les contraintes transmises entre le corps vertébral et la structure. Egalement, US-A-4 573 454 décrit un dispositif à structure extensible composée d'un cadre en deux parties télescopiques l'une dans l'autre, en vue de favoriser la croissance ultérieure malgré la rigidification de la colonne. Néanmoins, ce problème n'est que partiellement résolu dès lors que les portions de colonne fixées respectivement sur chacune des parties de la structure sont elles-mêmes rigidifiées sans croissance possible.
Egalement, la réduction de la déformation lors de la pose du dispositif d1ostéosynthèse pose encore des problèmes. En effet, la réduction de la déformation doit pouvoir être effectuée au moment même de la pose de l'instrumentation vertébrale, et ce dans les trois dimensions. En particulier, lors d'une scoliose, il convient non seulement de replacer les vertèbres dans un même plan sagittal, mais également de rétablir la cyphose et/ou la lordose tout en effectuant une dérotation des vertèbres. Les dispositifs d'ostéosynthèse de type Cotrel- Dubousset permettent de résoudre partiellement ce problème. Ils sont constitués de deux tiges bilatérales postérieures cintrées pendant l'intervention, immédiatement avant leur fixation dans des éléments d'ancrage en fonction de la déviation latérale, puis tournées pour placer leur courbure dans un plan sagittal afin de rétablir la cyphose ou la lordose au moins partiellement et d'effectuer une dérotation des vertèbres. La correction est limitée par le fait qu'elle est effectuée seulement par la tige de la concavité qui est tournée en premier. La tige placée dans la convexité est mode 1lée sur la correction obtenue et n'a qu'un effet stabilisateur lors de son insertion. Les deux tiges sont ensuite reliées l'une à l'autre par des dispositifs de traction transversale stabilisant l'ensemble en position. Néanmoins, la courbure des tiges essentiellement déterminée en fonction de la déviation latérale à corriger ne correspond pas nécessairement à une correction appropriée de la cyphose ou de la lordose. De plus, ces dispositifs sont considérés comme parmi les plus sophistiqués et les plus rigides. Il en résulte que la pose en est extrêmement délicate et que la structure osseuse est parfois trop fragile pour supporter les contraintes mécaniques engendrées. Que ces dispositifs soient rigides ou semi-rigides, ils sont dans tous les cas associés à une greffe et donc aboutissent à la suppression de tout mouvement : il en résulte une concentration des efforts aux extrémités de la zone instrumentée avec un développement à ces niveaux de dégénérescences disco-ligamentaires ou de surcharges arthrosiques.
Outre les dispositifs de Cotrel-Dubousset, deux autres types de dispositifs d'ostéosynthèse sont utilisés pour traiter les déformations de la colonne vertébrale. Il s'agit d'une part des dispositifs à plaques et vis pédiculaires de Roy-Camille et leurs perfectionnements, et d'autre part, des dispositifs de Luque à fils sous-lamaires et leurs perfectionnements. Les dispositifs de Roy-Camille sont réservés a des corrections de faibles amplitudes concernant un nombre limité de vertèbres, et ne permettent pas une dérotation efficace. Les dispositifs de Luque peuvent engendrer des complications neurologiques graves compte tenu du passage des fils passant sous les lames vertébrales à proximité de la moelle épinière.
Aucun des dispositifs d 'ostéosynthèse connus ne permet la correction d'une déformation en préservant au moins pour partie la mobilité physiologique naturelle des vertèbres et les possibilités ultérieures de croissance.
Par ailleurs, on connaît également différents dispositifs élastiques intervertébraux permettant de traiter les instabilités dégénératives, lombaires. Ces dispositifs sont généralement constitués de ligaments intervertébraux ou de ressorts (accompagnés parfois de cales) interposés entre les apophyses épineuses ou entre des vis intrapédiculaires. Ces ligaments ou ressorts exercent des forces de traction tendant à rapprocher les vertèbres et à réduire leur mobilité relative. Ces dispositifs connus limitent donc également considérablement la mobilité physiologique naturelle des vertèbres instrumentées. Par ailleurs, les ligaments élastiques perdent rapidement leurs qualités mécaniques du fait qu'ils sont soumis à des forces de traction très importantes. De plus, ces dispositifs sont inaptes à réaliser une correction de déformation compte tenu notamment de leur trop grande souplesse en flexion dans le plan frontal. Egalement, après leur pose, il n'est pas possible de faire varier l'élasticité du dispositif implanté.
L'invention vise donc à pallier les inconvénients de l'ensemble des dispositifs connus en proposant une nouvelle orthèse vertébrale implantée préservant au moins pour partie la mobilité physiologique naturelle des vertèbres et permettant, sans ostéosynthèse, greffe, ni arthrodèse, d'effectuer et de maintenir une correction de la position relative des vertèbres et/ou de réduire les efforts exercés sur les vertèbres pour le traitement d'une déformation du rachis congénitale ou acquise, notamment idiopathique ou autre, telle qu'une cypho-scoliose, ou d'une instabilité du rachis post- traumatique, tumorale, infectieuse, dégénérative, ou autre. Ainsi, l'invention vise à proposer une nouvelle catégorie d'orthèse dynamique vertébrale implantée qui, contrairement aux dispositifs d 'ostéosynthèse connus peut être ultérieurement modifiée ou même ôtée, et préserve la mobilité physiologique naturelle des vertèbres non seulement lorsqu'elle est implantée, mais aussi après son ablation ultérieure.
L'invention vise également à proposer une orthèse vertébrale implantée qui préserve le potentiel de croissance de la colonne vertébrale. L'invention vise également à proposer une orthèse vertébrale implantée qui peut ultérieurement être enlevée, notamment à la fin de la période de croissance lorsque les risques d'aggravation ou de récidive de la déformation ou de l'instabilité ont disparu.
L'invention vise également à proposer une orthèse vertébrale implantée qui peut être posée avec le moins de risques possibles d'atteinte du système nerveux. L'invention vise également à proposer une orthèse vertébrale implantée transmettant aux éléments d'ancrage fixés sur les vertèbres des contraintes mécaniques les plus faibles possibles, et en particulier des contraintes mécaniques dont la valeur est strictement limitée à celle nécessaire au maintien de la correction de la déformation et/ou à l'application des efforts désirés sur les vertèbres.
L'invention vise également à proposer une orthèse vertébrale implantée dont les caractéristiques peuvent être ajustées lors de la pose, et après implantation par des réglages transcutanés ou percutanés, selon les besoins.
Plus particulièrement, l'invention vise à proposer une orthèse vertébrale implantée permettant la réduction de la déformation de la colonne vertébrale de façon précise dans les trois dimensions. A ce titre, l'invention vise à proposer une orthèse vertébrale implantée permettant de réduire les scolioses en préservant la mobilité physiologique naturelle des vertèbres.
Pour ce faire, l'invention concerne une orthèse vertébrale implantée préservant au moins pour partie la mobilité physiologique naturelle des vertèbres en permettant, sans ostéosynthèse, greffe ni arthrodèse, d'effectuer et de maintenir une correction de la position relative des vertèbres et/ou des efforts exercés entre les vertèbres, pour le traitement d'une déformation du rachis, congénitale ou acquise, notamment idiopathique ou autre, telle qu'une cypho-scoliose, ou d'une instabilité du rachis post-traumatique, tumorale, infectieuse, dégénérative, ou autre, comprenant des éléments d'ancrage fixés sur les vertèbres et des moyens de maintien associés aux éléments d'ancrage pour maintenir les vertèbres les unes par rapport aux autres en position corrigée dans laquelle la forme de la colonne vertébrale et/ou les efforts exercés sur les vertèbres sont corrigés, caractérisée en ce que les moyens de maintien comportent ou sont constitués de moyens de rappel élastique exerçant des forces de rappel élastique dont l'orientation et la valeur sont déterminées pour maintenir les vertèbres en position corrigée à 1'encontre des forces naturelles de déformation ou pour réduire les efforts exercés sur les vertèbres en conservant leur mobilité. Selon l'invention, l'orthèse comporte au moins une tige de maintien qui est associée mobile aux éléments d'ancrage d'au moins une vertèbre par des moyens de couplage qui interdisent tout mouvement relatif de coulissement en translation horizontale (c'est-à-dire selon les directions latérale et antéropostérieure par rapport à la vertèbre) mais autorisent, après la pose, un mouvement relatif selon au moins un autre degré de liberté.
Ainsi, 1 Orthèse vertébrale implantée selon l'invention n'est pas un dispositif d Ostéosynthèse réalisant une rigidification de la colonne vertébrale. Elle constitue au contraire un système dynamique générant des forces de correction des vertèbres les unes par rapport aux autres. Les liaisons mobiles réalisées par les moyens de couplage autorisant les mouvements relatifs selon au moins un degré de liberté permettent de préserver la mobilité physiologique naturelle des vertèbres les unes par rapport aux autres. Les seules sources de rigidité induites par 1'orthèse selon l'invention sont celles qui sont nécessaires pour effectuer et maintenir une correction des positions relatives des vertèbres. Il a été en effet déterminé que ces limitations de mobilité sont en , fait nécessaires et suffisantes pour traiter la majorité des déformations et des instabilités. Et 1 'orthèse selon l'invention est posée sans greffe osseuse.
Le nombre, la nature, l'orientation et la valeur des forces de rappel élastique et des degrés de liberté autorisés par les moyens de couplage des tiges de maintien aux éléments d'ancrage sont déterminés en fonction du degré et de la rigidité de la déformation ou de l'instabilité vertébrale.
Avantageusement et selon l'invention, chaque tige de maintien est associée aux éléments d'ancrage d'une vertèbre par des moyens de couplage interdisant tout mouvement relatif entre la tige de maintien et les éléments d: ancrage. Et, les moyens de couplage de cette tige de maintien à tous les éléments d'ancrage des autres vertèbres autorisent, après la pose, un mouvement relatif selon au moins un degré de liberté.
Dans le cas d'une correction d'une déviation latérale de la colonne vertébrale (scoliose), les tiges de maintien sont de préférence associées rigidement à une vertèbre médiane par des moyens de couplage interdisant tout mouvement relatif, et associées de façon mobile selon au moins un degré de liberté par rapport aux éléments d'ancrage des autres vertèbres notamment des vertèbres d'extrémité de la déformation à corriger.
Selon l'invention, le degré de liberté autorisé par les moyens de couplage des tiges de maintien aux éléments d'ancrage peut être une translation longitudinale relative selon un axe vertical et/ou une rotation relative autour d'un axe perpendiculaire à un .plan frontal et/ou une rotation relative autour d'un axe vertical et/ou une rotation relative autour d'un axe perpendiculaire à un plan sagittal. En particulier, les rotations autour de tout axe horizontal sont autorisées. Par exemple, selon l'invention, dans le cas du traitement d'une instabilité lombaire, les degrés de liberté autorisés peuvent être une translation longitudinale relative selon un axe vertical, une rotation relative autour d'un axe perpendiculaire à un plan frontal, et une rotation relative autour d'un axe vertical. Dans le cas d'un traitement d'une scoliose, on prévoit en outre une rotation relative autour d'un axe perpendiculaire à un plan sagittal. Ainsi dans ce dernier cas, toute rotation autour d'un axe horizontal est autorisée. Selon l'invention, ces degrés de liberté sont prévus pour tous les moyens de couplage des tiges de maintien aux éléments d'ancrage de toutes les vertèbres instrumentées à l'exception d'une seule.
Selon "l'invention, les moyens de rappel élastique sont associés aux éléments d'ancrage des vertèbres avec une forme distincte de leur forme au repos, c'est-à-dire de leur forme avant leur pose, de façon à exercer des forces lorsque les vertèbres sont en position corrigée et pour maintenir cette position. Selon l'invention, les moyens de maintien comportent au moins une tige de maintien courbe souple et élastique en flexion associée à des éléments d'ancrage d'au moins deux vertèbres distinctes et apte, après sa pose, à exercer des forces élastiques de maintien des vertèbres en position corrigée tout en autorisant des mouvements physiologiques à partir de la position corrigée des vertèbres. Et, les moyens de couplage de cette tige aux éléments d'ancrage d'au moins une vertèbre comportent un alésage cylindrique traversé par la tige et dans lequel elle peut coulisser en translation.
Selon l'invention, cet alésage est ménagé dans un organe monté rotatif par rapport aux éléments d'ancrage autour d'un axe perpendiculaire au plan frontal et/ou autour d'un axe perpendiculaire au plan sagittal de la vertèbre correspondante. Cet organe peut être une sphère percée de l'alésage cylindrique, et cette sphère est enfermée dans un logement sphérique solidaire des éléments d'ancrage lui permettant une totale liberté de rotation autour de tous les axes situés dans le plan horizontal. Par ailleurs, selon l'invention, les moyens de couplage de la tige1 aux éléments d'ancrage d'au moins une vertèbre autorisent une rotation propre de la tige autour de son axe par rapport aux éléments d'ancrage.
Selon l'invention, chaque tige est placée en position latérale par rapport aux apophyses épineuses dans les gouttières paravertébrales.
L'orthèse selon l'invention peut comprendre une seule tige d'un côté des apophyses épineuses ou deux tiges, une de chaque côté. Chacune des tiges est cintrée d'origine à la fabrication, de sorte que sa forme au repos est courbe. Lors de sa pose et dé son association aux éléments d'ancrage, la courbure de chacune des tiges est modifiée de sorte qu'elle exerce des contraintes élastiques de flexion sur les éléments d'ancrage. Le matériau et les dimensions de chaque tige sont déterminés de façon que des flexions élastiques volontaires ultérieures de la colonne vertébrales soient possibles, après la pose et à partir de la position corrigée des vertèbres.
Avantageusement et selon l'invention, les moyens de maintien comportent au moins un ressort agissant sur les éléments d'ancrage d'au moins une vertèbre. Un tel ressort peut être un ressort à spires jointives ou non jointives dont une extrémité est associée aux éléments d'ancrage d'une vertèbre et dont l'autre extrémité est associée aux éléments d'ancrage d'une autre vertèbre. Un tel ressort à spires peut être un ressort de compression ou de traction entourant une tige de maintien reliant les éléments d'ancrage des différentes vertèbres instrumentées. La tige fait alors office de guide pour le ressort. Ainsi, selon l'invention, les moyens de maintien comportent du côté concave d'une déformation à corriger et/ou du côté convexe d'une déformation à corriger, une tige et au moins un ressort de compression, et/ou respectivement, de traction entourant la tige. Selon l'invention, les deux extrémités d'un ressort peuvent être bloquées en rotation par rapport aux éléments d'ancrage de deux vertèbres de façon à imprimer un couple de torsion à ces vertèbres. Pour ce faire, les spires du ressort sont enroulées ou déroulées par rapport à leur forme au repos après l'association et avant la fixation des extrémités de ce ressort aux éléments d'ancrage. Un tel couple de torsion imprimé par un ressort entourant une tige permet d'exercer un couple de rotation des vertèbres les unes par rapport aux autres -et en particulier par rapport à la vertèbre centrale-. Le même ressort est alors un ressort de compression ou de traction et un ressort de torsion.
Une orthèse selon l'invention comporte en outre des moyens de réglage de la valeur des forces de rappel élastique exercées au moins par une partie des moyens de rappel élastique. Selon l'invention, des moyens de réglage permettent de faire varier, en position corrigée des vertèbres, l'allongement élastique (c'est-à-dire la variation élastique de longueur ou de forme) des moyens de rappel élastique par rapport à leur forme au repos. Ces moyens de réglage peuvent être constitués d'au moins un micromoteur électronique et/ou d'au moins un dispositif manuel de réglage de la position d'une butée d'appui des moyens de rappel élastique par' rapport à des éléments d'ancrage d'une vertèbre. Selon l'invention, les moyens de réglage comportent des moyens de commande transcutanée ou percutanée après implantation de 1'orthèse, par exemple sous la forme d'une commande électromagnétique.
Selon l'invention, les moyens de réglage comportent au moins une partie des moyens de maintien et/ou des moyens de rappel élastique qui est formée en un alliage métallique à mémoire de forme. Dès lors, le réglage peut être effectué en réchauffant cette partie de façon à restaurer tout ou partie de sa forme pour utiliser son élasticité selon les besoins. Ainsi, les tiges et/ou les ressorts peuvent être constitués en tout ou partie d'un alliage métallique à mémoire de forme.
L'invention concerne également une orthèse vertébrale implantée comportant en combinaison tout ou partie des caractéristiques mentionnées ci-dessus ou ci- après.
D'autres caractéristiques, buts et avantages de l'invention apparaîtront à la lecture de la description suivante de ses modes de réalisation préférentiels qui se réfère aux dessins annexés, dans lesquels :
- la figure 1 est une vue schématique postérieure d'un premier mode de réalisation d'une orthèse selon l'invention, plus particulièrement destinée au traitement d'une scoliose,
- la figure 2 est une vue schématique de profil d'un deuxième mode de réalisation d'une orthèse selon l'invention, plus particulièrement destinée au traitement d'une scoliose,
- la figure 3 est une vue schématique en coupe verticale de détail des moyens de blocage en rotation d'une extrémité de ressort d'une orthèse selon l'invention,
- la figure 4 est une vue schématique en coupe selon la ligne IV-IV de la figure 3,
-- la figure 5 est une vue schématique en coupe verticale de détail d'un dispositif de réglage manuel des moyens de rappel élastique d'une orthèse selon 1 ' invention, - la figure 6 est une vue schématique en coupe selon la ligne VI-VI de la figure 5,
- la figure 7 est une vue schématique en coupe verticale de détail d'un micromoteur de réglage des moyens de rappel élastique d'une orthèse selon l'invention, - la figure 8 est une vue schématique postérieure d'un troisième mode de réalisation d'une orthèse selon l'invention, plus particulièrement destinée au traitement d'une instabilité lombaire dégénérative, - la figure 9 est une vue schématique en coupe de détail selon la ligne IX-IX de la figure 8,
- la figure 10 est une vue schématique postérieure d'un quatrième mode de réalisation d'une orthèse selon l'invention, plus particulièrement destinée au traitement d'une instabilité lombaire dégénérative,
- la figure 11 est une vue schématique postérieure illustrant une première étape de pose de 1'orthèse de la figure 1, - la figure 12 est une vue schématique postérieure illustrant une deuxième étape de pose de 1Orthèse de la figure 1,
- la figure 13 est une vue schématique postérieure illustrant une troisième étape de pose de 1Orthèse de la figure 1,
- la figure 14 est une vue schématique postérieure illustrant une quatrième étape de pose de 1'orthèse de la figure 1,
- la figure 15 est une vue schématique en coupe par un plan horizontal des éléments d'ancrage d'une vertèbre d'une orthèse selon un cinquième mode de réalisation de l'invention,
- la figure 16 est une vue schématique postérieure d'une pince d'un matériel ancillaire de pose d'une orthèse selon l'invention,
- la figure 17 est une vue schématique en section selon la ligne XVII-XVII de la figure 16,
- la figure 18 est un schéma théorique en section dans un plan horizontal permettant de déterminer les caractéristiques d'une tige de maintien et de rappel élastique d'une orthèse selon l'invention,
- la figure 19 est un schéma théorique en section dans un plan sagittal permettant de déterminer les caractéristiques d'une tige de maintien et de rappel élastique d'une orthèse selon l'invention.
Dans tout le texte, et sauf indication contraire, le terme "vertical" désigne la direction axiale de la colonne vertébrale qui ne correspond pas à la direction verticale absolue puisque la colonne vertébrale présente une courbure (cyphose et lordose). De même, le terme "horizontal" désigne toute direction contenue dans le plan perpendiculaire à la direction verticale, le terme "sagittal" désigne tout plan contenant les directions verticale et horizontale antéropostérieure, et le terme "frontal" désigne tout plan contenant les directions verticale et horizontale latérale. Ces fermes sont donc utilisés en référence à chaque vertèbre. La figure 1 représente un premier mode de réalisation d'une orthèse vertébrale implantée selon l'invention qui permet d'effectuer et de maintenir une correction de la position relative de cinq vertèbres dorsales pour le traitement d'une déformation de type scoliotique. Avant la pose de 1 Orthèse, les vertèbres présentent une déviation latérale telle qu'une courbure à convexité orientée vers la droite (figure 11). L'orthèse selon l'invention comprend un élément d'ancrage 1 fixé sur la vertèbre supérieure extrême, un élément d'ancrage 2 fixé sur la vertèbre extrême inférieure, et un élément d'ancrage 3 fixé sur la vertèbre médiane située au centre de la courbure originelle naturelle de la scoliose.
LOrthèse comporte en outre deux tiges 4a, 4b de maintien s'étendant latéralement de chaque côté des apophyses épineuses, à savoir une tige gauche 4a placée du côté de la concavité de la déformation à corriger, et une tige droite 4b placée du côté de la convexité de la déformation à corriger. Chaque tige 4a, 4b est une tige courbe, souple et élastique en flexion réalisée en matériau biocompatible tel qu'un alliage métallique (acier inoxydable ou titane) et/ou en matériau composite. Chaque tige 4a, 4b est associée aux éléments d'ancrage 1, 2, 3 des vertèbres par des moyens 5a, 5b, 6a, 6b, 7a, 7b de couplage. Chaque tige 4a, 4b est cintrée d'origine à la fabrication et est associée aux éléments d'ancrage en s 'étendant dans un plan sagittal avec sa convexité orientée vers la direction postérieure. Ce cintrage d'origine des tiges 4a, 4b n'est pas modifié avant leur pose. Les tiges 4a, 4b sont réalisées dans un matériau d'une haute résistance à la rupture et ayant un fort module d'élasticité. Leurs caractéristiques dimensionnelles et mécaniques sont déterminées de sorte que ces tiges 4a, 4b sont aptes, après leur pose, à exercer des forces élastiques destinés à maintenir les vertèbres dans la position corrigée représentée à la figure 1 , tout en autorisant des mouvements physiologiques à partir de cette position corrigée des vertèbres. Pour exercer des forces de rappel élastique, les tiges 4a, 4b présentent, une fois associées aux éléments d'ancrage 1, 2, 3 et en position corrigée des vertèbres, une forme distincte de leur forme au repos. En particulier, dans le cas d'une correction d'une scoliose dorsale, la courbure au repos des tiges 4a, 4b est plus importante que celle qu'elles présentent une fois associées aux éléments d'ancrage 1, 2, 3. De la sorte, les tiges 4a, 4b exercent, en position corrigée des vertèbres, des contraintes élastiques en flexion. Ces contraintes élastiques en flexion maintiennent ainsi la position corrigée. Elles tendent à supprimer la scoliose dans le plan frontal, à créer la cypho-lordose physiologique dans le plan sagittal, et à supprimer la rotation vertébrale dans le plan horizontal. Les tiges 4a, 4b constituent donc en elles-mêmes des moyens de rappel élastique exerçant des forces de rappel élastique qui sont déterminées pour maintenir les vertèbres en position corrigée à l'encontre des forces naturelles de déformation. De plus, les caractéristiques dimensionnelles et mécaniques des tiges 4a, 4b sont déterminées de telle façon que ces tiges 4a, 4b présentent une élasticité résiduelle à partir de la position corrigée des vertèbres. De la sorte, les tiges 4a, 4b ne s'opposent pas aux mouvements physiologiques naturels des vertèbres les unes par rapport aux autres à partir de la position corrigée. Ces mouvements physiologiques sont également rendus possibles grâce aux moyens 5a, 5b, 6a, 6b, 7a, 7b de couplage qui sont conçus à cet effet.
Les moyens 5a de couplage de la tige gauche 4a à l'élément d'ancrage 1 supérieur de la vertèbre supérieure instrumentée comportent une sphère 8 montée librement rotative et enfermée dans un logement sphérique 9 d'un cylindre 10 solidaire de l'élément d'ancrage 1 de façon à former une rotule de liaison. La sphère 8 est percée d'un alésage cylindrique 11 traversé par la tige 4a, et dans lequel cette tige 4a peut coulisser en translation axiale longitudinale selon la direction verticale. La largeur de l'alésage 11 correspond à la largeur de la tige 4a et la sphère 8 est engagée dans le logement 9 sans possibilité de mouvements relatifs en translation horizontale, et notamment selon les directions latérale et antéropostérieure de la vertèbre. De la sorte, les moyens 5a de couplage ainsi réalisés, interdisent, après la pose de la tige 4a, tout déplacement relatif en translation horizontale de la tige 4a par rapport aux éléments d'ancrage 1 et à la vertèbre correspondante. Par contre, ces moyens 5a de couplage autorisent, après la pose de la tige, un mouvement relatif selon quatre autres degrés de liberté : un coulisse ent en translation longitudinale relative selon un axe vertical de la tige 4a et trois degrés de liberté de rotation de la sphère 8 par rapport au cylindre 10, à savoir une rotation relative autour d'un axe perpendiculaire à un plan frontal, une rotation relative autour d'un'axe perpendiculaire à un plan sagittal, et une rotation relative autour d'un axe vertical. L'alésage 11 est cylindrique de révolution et la tige 4a est pourvue de nervures 12 régulièrement réparties autour de son axe et s'étendant le long de la tige 4a en saillie par rapport à sa face extérieure pour venir au contact le long de la face intérieure 13 de l'alésage 11. Dans l'exemple représenté, on a prévu trois nervures 12 de section droite transversale triangulaire. De la sorte les frottements de contact sont diminués. Les matériaux constitutifs de la sphère 8 et du cylindre 10 sont choisis pour permettre les rotations de cette sphère 8 dans le logement 9 comme indiqué ci-dessus. Par exemple, la sphère 8 est en alliage métallique de grande qualité de surface ou en céramique et le cylindre 10 est constitué d'un bloc de matière synthétique telle que du polyéthylène ou autre. La sphère 8 et/ou le cylindre 10 peuvent être constitués d'une matière autolubrifiante ou comporter un revêtement en cette matière. Le cylindre 10 comporte des ouvertures supérieure 14 et inférieure 15 permettant le passage de la tige 4a et dont les dimensions en largeur sont plus importantes que celles de la tige 4a pour autoriser les mouvements d'inclinaison de la tige 4a par rapport à l'axe du cylindre sous l'effet des mouvements de rotation sus¬ mentionnés. De préférence, les dimensions des ouvertures 14 et 15 sont telles qu'elles autorisent une amplitude d'inclinaison d'au moins 45 degrés de la tige 4a par rapport à l'axe vertical du cylindre 10. La sphère 8 est engagée dans le logement spherique 9 lors de la pose de la tige 4a. Pour ce faire, une couronne 16 filetée est montée à l'extrémité supérieure du cylindre 10 qui comporte un logement de réception de cette couronne 16 muni d'un taraudage correspondant. La couronne 16 comporte un perçage axial qui détermine l'ouverture supérieure 14 du cylindre 10 débouchant dans le logement spherique 9. Les dimensions du logement de réception de la couronne 16 sont définies pour permettre l'insertion de la sphère 8 par le haut dans le logement spherique 9. La face inférieure de la couronne 16 a une forme concave en portion de sphère de sorte qu'elle vient en prolongement de la face interne spherique du logement 9 en enfermant la sphère 8 dans ce logement 9 (figure 3) sans la bloquer. En variante (figure 1), le cylindre est formé d'un bloc de matière synthétique et l'ouverture 14 supérieure a un diamètre légèrement inférieur à celui de la sphère 8 qui peut être engagée en force dans le logement 9 à travers cette ouverture 14 qui retient ensuite la sphère 8 dans le logement 9. Avant d'introduire la sphère 8 dans le logement 9, la tige 4a est introduite à l'intérieur du cylindre 10. Pour ce faire, ce cylindre 10 est pourvu sur toute sa hauteur d'une fente 17 communiquant avec le
FEUILLE DE REMPLACEMENT{REGLE26) logement 9 et dont la largeur correspond au plus grand diamètre envisagé pour la tige 4a. Cette fente 17 peut être placée sur le côté intérieur du cylindre 10 en regard des apophyses épineuses, comme représenté sur la figure 15, ou du côté opposé, ou même du côté postérieur. De préférence, cette fente 17 est néanmoins ménagée dans une portion du cylindre 10 qui subit le moins de sollicitations dans la direction radiale horizontale. Pour le montage de l'ensemble, on engage la sphère 8 autour de la tige 4a en introduisant cette tige 4a à travers l'alésage 11, on introduit la tige 4a dans le logement 9 à travers la fente 17 en maintenant la sphère 8 au-dessus du cylindre 10, puis on engage la sphère 8 dans le logement 9. Dans le mode de réalisation représenté sur la figure 3, on visse ensuite la couronne 16 dans le logement correspondant du cylindre 10. Le cas échéant, cette couronne 16 aura été préalablement engagée autour de la tige 4a au-dessus de la sphère 8. Le diamètre des tiges 4a, 4b adaptables aux mêmes éléments d'ancrage peut ainsi varier, l'adaptation étant réalisée en utilisant des sphères 8 dont l'alésage 11 correspond au diamètre des tiges 4a, 4b. En variante non représentée, la sphère 8 peut aussi être engagée dans le logement 9 par dessous. La couronne 16 est alors disposée à l'extrémité inférieure du cylindre 10. Les moyens 6a de couplage de la tige 4a par rapport à l'élément d'ancrage inférieur 2 de la vertèbre extrême inférieure sont identiques aux moyens 5a de couplage de cette tige 4a à l'élément d'ancrage supérieur 1 de la vertèbre extrême supérieure préalablement décrits. Par contre, les moyens 7a de couplage de la tige 4a à l'élément d'ancrage médian 3 de la vertèbre médiane sont des moyens d'association rigide interdisant tout mouvement relatif de la tige 4a par rapport à l'élément d'ancrage 3. Pour ce faire, ces moyens 7a de couplage sont constitués d'un cylindre 18 monté solidaire de l'élément d'ancrage 3 et pourvu d'un alésage cylindrique 19 sur toute sa hauteur traversé par la tige 4a. Cet alésage 19 est similaire à l'alésage 11 des moyens 5a de couplage préalablement décrits, et a donc des formes et des dimensions correspondant à celles de la tige 4a. En variante non représentée, l'alésage 19 peut être ménagé dans un cylindre d'adaptation dont le diamètre intérieur peut varier et qui est monté concentrique dans le cylindre 18. De plus, le cylindre 18 porte une ou plusieurs vis 20 de blocage transversal de la tige 4a. La vis 20 est engagée dans un taraudage correspondant du cylindre 18 qui débauche dans l'alésage 19. En serrant la vis 20, celle-ci appuie sur la tige 4a et la bloque en translation par rapport à l'alésage 19. Pour favoriser ce blocage, la tige 4a peut être pourvue d'une ou plusieurs rainures périphériques horizontales. Egalement, le cylindre 18 est pourvu d'une fente sur toute sa hauteur pour le montage de la tige 4a dans l'alésage 19.
Ainsi, la tige 4a est bloquée par les moyens 7a de couplage par rapport à l'élément d'ancrage de la vertèbre médiane selon chaque degré de liberté pour lequel la tige 4a est associée mobile par rapport aux éléments d'ancrage 1, 2 des autres vertèbres. Il est important en effet que la tige 4a soit bloquée par des moyens de couplage par rapport aux éléments d'ancrage d'au moins une vertèbre selon au moins un -notamment chaque- degré de liberté pour lequel cette tige 4a est associée S- _ mobile par des moyens de couplage par rapport aux éléments d'ancrage d'au moins une autre vertèbre. Néanmoins, les blocages de la tige 4a, selon les différents degrés de liberté, peuvent ne pas être rassemblés sur une même vertèbre. Dans certains cas également, la tige 4a pourra être bloquée selon un ou plusieurs degrés de liberté par rapport à plusieurs vertèbres distinctes. Dans la plupart des cas néanmoins, il est avantageux de prévoir que la tige 4a soit bloquée selon tous les degrés de liberté par rapport aux éléments d'ancrage 3 d'une seule et même vertèbre et associée mobile selon les différents degrés de liberté prévus par rapport à tous les éléments d'ancrage 1, 2 des autres vertèbres. Ainsi, la tige 4a est bloquée par des moyens de couplage par rapport aux éléments d'ancrage 3 d'une des vertèbres et associée mobile par des moyens de couplage à tous les éléments d'ancrage 1, 2 des autres vertèbres qui autorisent. après la pose, un mouvement relatif selon au moins un degré de liberté. La tige 4b placée à droite des apophyses épineuses (figure 1) est associée aux éléments d'ancrage 1, 2, 3 par des moyens de couplage 5b, 6b, 7b similaires aux moyens de couplage 5a, 6a, 7a, préalablement décrits pour la tige gauche 4a. En particulier, la tige de droite 4b est fixée rigidement à la même vertèbre que la tige gauche 4a, c'est-à-dire à la vertèbre médiane.
Chaque tige 4a, 4b ainsi montée sur les éléments d'ancrage 1, 2, 3 des vertèbres réalise un moyen de maintien frontal et sagittal des vertèbres les unes par rapport aux autres. Elle réalise également, dans une certaine mesure, un moyen de maintien des vertèbres selon la direction verticale. Une fois posées, ces tiges 4a, 4b exercent des forces de rappel élastique sur les éléments d'ancrage à l'encontre des forces naturelles de déformation. La position corrigée correspond en fait à la position d'équilibre entre les forces naturelles de déformation de la colonne vertébrale et les forces de rappel élastique exercées par l'orthèse selon l'invention. Compte tenu( de la souplesse des tiges 4a, 4b et des degrés de liberté autorisés par les différents moyens de couplage, les mouvements physiologiques naturels sont possibles au moins dans une certaine mesure par rapport à la position corrigée.
Dans la plupart des cas, la seule élasticité en flexion des tiges 4a, 4b sera considérée comme insuffisante pour effectuer et maintenir la correction de déformation compte tenu des forces en jeu, des contraintes d'encombrement et de la souplesse que ces tiges doivent présenter pour autoriser les mouvements. Selon l'invention, les moyens de rappel élastique de 1 'orthèse comportent au moins un ressort 21a, 21b, 22a, 22b, 23a, 23b, 24a, 24b agissant sur les éléments d'ancrage d'au moins une vertèbre. Dans le mode de réalisation de la figure 1, 1 Orthèse comporte pour chaque tige 4a, 4b, un ressort à spires 21a, 21b interposé entre les éléments d'ancrage 1, 3 de la vertèbre supérieure et de la vertèbre médiane, un ressort à spires 22a, 22b interposé entre les éléments d'ancrage 2, 3 de la vertèbre inférieure et de la vertèbre médiane, un ressort à spires 23a, 23b interposé entre l'élément d'ancrage 1 de la vertèbre supérieure et une extrémité libre 25a, 25b supérieure de la tige 4a, 4b, et un ressort à spires 24a, 24b interpesé entre l'élément d'ancrage 2 de la vertèbre inférieure et l'extrémité libre 26a, 26b inférieure de la tige 4a, 4b. Chaque ressort à spires 21a, 21b, 22a, 22b est interposé entre les éléments d'ancrage 1, 3 et 3, 2 de deux vertèbres distinctes et a une extrémité associée à l'élément d'ancrage 1 ou 3 d'une vertèbre et l'autre extrémité associée à l'élément d'ancrage 3 ou 2 d'une autre vertèbre. Les ressorts 21a, 22a, 23a, 24a entourent la tige 4a placée du côté concave de la déformation à corriger et sont des ressorts de compression. Les ressorts 21b, 22b, 23b, 24b entourent la tige 4b placée du côté convexe de la déformation à corriger et sont des ressorts de traction.
Les extrémités des ressorts 21a, 23a agissant sur l'élément d'ancrage 1 et placés autour de la tige gauche 4a, prennent appui sur le cylindre 10. Les extrémités des ressorts sont montées par rapport à l'élément d'ancrage 1 de façon à imprimer un couple de torsion sur la vertèbre correspondante. Pour ce faire, l'extrémité libre 27 du ressort qui est pliée pour s'étendre radialement est introduite dans un perçage radial 28 d'une couronne 29. En variante, la dernière spire du ressort est soudée sur la couronne 29. Cette couronne 29 comporte une gorge circonférentielle externe 30. Les cylindres 10 comportent une collerette 31 externe entourant la couronne 29. Cette collerette 31 porte des vis 32 de blocage radial engagées dans des taraudages de la collerette 31 et dont les extrémités pénètrent dans la gorge 30 de la couronne 29 pour la bloquer axiale ent par rapport au cylindre 10 puis, après torsion du ressert, en 21 rotation par rapport au cylindre 10. La couronne 29 comporte des trous borgnes 33 permettant de la faire tourner autour de l'axe du ressort. Lorsque ia torsion souhaitée est obtenue, on serre définitivement les vis 32 pour bloquer la couronne 29 par rapport à la collerette 31 du cylindre 10. Une telle couronne 29 bloquée par des vis 32 peut être prévue non seulement à chaque extrémité d'un ressort prenant appui sur des éléments d'ancrage comportant un cylindre 10 ou 18, mais également à l'extrémité d'un ressort prenant appui sur un écrou 34 fixé à l'extrémité 25a, 25b, 26a, 26b d'une tige 4a, 4b.
Selon l'invention, l'orthèse comporte également des moyens 29, 35, 36 de réglage de la valeur des forces de rappel élastique exercées par au moins une partie des moyens de rappel élastique, à savoir les tiges 4a, 4b et/ou les ressorts. Ces moyens 29, 35, 36 sont des moyens permettant de faire varier, en position corrigée des vertèbres, l'allongement élastique initial (c'est-à-dire la variation élastique initiale en compression ou traction de longueur eu de forme) des moyens de rappel élastique par rapport à leur forme au repos. En effet, tant les tiges 4a, 4b, que les ressorts, sont posés et associés aux éléments d'ancrage 1 , 2, 3 avec une forme qui est distincte de leur forme au repos de façon à exercer des forces élastiques à 1' encontre 'des forces naturelles de déformation, et à maintenir les vertèbres dans la position relative corrigée les unes par rapport aux autres. Or, les forces de rappel exercées par les moyens de rappel élastique varient avec ledit allongement élastique de ces moyens de rappel élastique par rapport à leur forme au repos. En conséquence, en modifiant cet allongement élastique, on modifie la valeur des forces de rappel élastique exercées. En particulier, on fait varier la longueur des ressorts de compression et de traction en la diminuant ou en l'augmentant. Pour ce faire, lesdits moyens de réglage peuvent être constitués d'une cale de hauteur variable interposée entre une des extrémités du ressort que l'on veut pouvoir régler, et l'élément d'appui correspondant, à savoir un cylindre 10 ou 18 ou un écrou 34 d'extrémité de tige. Une telle cale 35, 36 de hauteur variable peut être constituée d'un micromoteur électronique 35 (figure 7) de un à deux centimètres de hauteur ayant un rotor 38 percé axialement.
Le rotor 38 est pourvu d'un taraudage 42 qui coopère avec un filetage externe 43 d'un cylindre interne 44 portant une platine mobile 40. La platine 40 est bloquée en rotation par rapport au stator 39 du micromoteur par des rails 140 verticaux solidaires de la platine 40 coulissant dans des glissières 141 verticales externes solidaires du stator 39.
Lorsque le micromoteur 35 est activé, la platine 40 qui prend appui sur l'extrémité du ressort coulisse en translation axiale par rapport au stator 39 du micromoteur qui prend appui sur le cylindre 10 ou 18 ou sur l'écrou 34 correspondant. Le stator 39 du micromoteur 35 peut être monté sur le cylindre 10 ou 18 ou 1'écrou 34 correspondant de la même façon que la couronne 29 précédemment décrite pour le réglage en torsion des ressorts. A cet effet, le stator du micromoteur 35 comporte une gorge périphérique circulaire dans laquelle des vis telles que 32 de blocage radial sont serrées. Egalement, l'extrémité du ressort prenant appui sur la platine 40 du micromoteur 35 peut être fixée à cette platine 40 par des moyens de réglage en torsion tels que décrits ci-dessus, à savoir une couronne 29 sur laquelle l'extrémité du ressort est montée, qui est elle-même montée sur une collerette 31 de la platine 40 du micromoteur 35 par l'intermédiaire de vis 32 de blocage. Le micromoteur peut être alimenté en énergie électrique par des micropiles 41 , et son fonctionnement peut être commandé à travers la peau par une télécommande électromagnétique ou autre.
En variante ou en combinaison, une cale de réglage peut être constituée d'un dispositif 36 de réglage manuel (figures 5 et 6) comportant deux cylindres 142, 143 concentriques, dont l'un 143 est mobile en translation axiale verticale par rapport à l'autre 142 qui est fixe, et ce sous l'effet d'une vis 37 de commande qui s'étend radialeraent et qui porte, à son extrémité interne, un pignon 144 coopérant avec une crémaillère 1 5 solidaire du cylindre mobile 143 pour l'actionner en translation axiale relative dans un sens ou dans l'autre. Les cylindres 142, 143 sont bloqués en rotation l'un par rapport à l'autre. Le dispositif 36 de réglage manuel comprend également un perçage central axial 146 pour le passage de la tige 4a ou 4b à travers le cylindre mobile 143. Il est interposé entre une extrémité de ressort et un cylindre 10, 18 ou un écrou 34 d'extrémité de tige. Le dispositif 36 de réglage manuel peut être fixé à l'extrémité du ressort et au cylindre 10 ou 18 ou à l'écrou 34 de la même façon que le micromoteur 35, notamment par l'intermédiaire de moyens de réglage en torsion du ressort. En tournant la vis 37, par exemple en percutané, on fait coulisser axialement le cylindre mobile 143 par rapport au cylindre fixe 142.
Sur le mode de réalisation de la figure 1 , tous les ressorts 21a, 22a, 23a, 24a entourant la tige gauche 4a sont pourvus de moyens de réglage et blocage en torsion (couronne 29 et vis 32 de blocage). Les deux ressorts 21a, 22a de compression prenant appui de chaque côté sur le cylindre 18 des moyens 7a de couplage de la tige 4a à l'élément d'ancrage 3 médian, sont pourvus de moyens 35, 36 de réglage. Un micromoteur 35 électronique est représenté au-dessus du cylindre 18 pour le réglage du ressort 21a supérieur, et un dispositif tenseur manuel 36 avec sa vis 37 est représenté sous le cylindre 18 pour le * réglage de la longueur du ressort 22a inférieur. Les ressorts 21b, 22b de traction interposés entre les éléments d'ancrage autour de la tige droite 4b sont également pourvus de moyens de réglage et blocage en torsion 29, 32. Des micromoteurs 35 de réglage sont prévus entre les cylindres 10 des moyens 5b, 6b de couplage de la tige 4b aux éléments d'ancrage 1, 2 supérieur et inférieur, et les extrémités correspondantes des ressorts 23b, 24b d'extrémité.
Le réglage des forces de rappel exercées par les ressorts qui peut être effectué par l'intermédiaire des couronnes 29, des micromoteurs 35 et des dispositifs tenseurs manuels 36 permet d'adapter aisément les caractéristiques de l'orthèse en fonction des modifications physiologiques naturelles du patient (augmentation de longueur de la colonne vertébrale, poids du corps, force des muscles...). Néanmoins, si ces modifications physiologiques sont trop importantes, le réglage pourra s'avérer insuffisant. Dans ce cas, on pourra encore procéder aisément à un changement des tiges 4a, 4b et/ou des ressorts. Les éléments d'ancrage 1, 2, 3 n'ont pas en général à être modifiés compte tenu de ce que les moyens 5a, 5b, 6a, 6b, 7a, 7b de couplage autorisent le montage et le démontage peropératoires des tiges et des ressorts par rapport à ces éléments d'ancrage.
La figure 2 représente une vue de profil d'une variante de réalisation de l'orthèse précédemment décrite. Comme on le voit, la courbure, de la tige 4a permet de rétablir et de maintenir la cyphose. Dans cette variante de réalisation, le cylindre 18 des moyens 7a de couplage médian est pourvu d'un micromoteur 35 électronique de réglage de chaque côté. Les deux ressorts 21a, 22a interposés entre les éléments d'ancrage de part et d'autre du cylindre 18 médian sont pourvus d'une couronne 29 d'extrémité* de réglage et blocage en torsion. De la sorte, cette torsion des ressorts participe à la dérotation des vertèbres. Il est à noter que cette dérotation est également obtenue par la courbure élastique de la tige 4a elle-même et p r le fait qu'elle est posée avec son plan de courbure au repos incliné par rapport à un plan sagittal.
La figure 8 représente un mode de réalisation d'une orthèse selon l'invention plus particulièrement destinée au traitement d'une instabilité dégénérative lombaire. Contrairement à l'orthèse préalablement décrite qui permet d'instrumenter une longueur de colonne vertébrale correspondant à cinq vertèbres, cette orthèse courte lombaire s'étend sur un nombre plus limité de vertèbres notamment trois vertèbres 25 dans l'exemple représenté.
Cette orthèse courte comporte encore des éléments d'ancrage 1 , 2, 3 sur trois vertèbres, une ou deux tiges latérales postérieures 4a, 4b, des ressorts 21a, 22a, 21b, 22b, chacun d'entre eux étant interposé entre les éléments d'ancrage 1, 3 ou 3, 2 de deux vertèbres distinctes. Une telle orthèse lombaire a essentiellement pour fonction non pas de corriger une déformation, mais de corriger la valeur des efforts exercés entre vertèbres en réduisant les forces subies par les vertèbres du fait de l'instabilité dégénérative. Après la pose de 1Orthèse, c'est-à-dire en position dite corrigée des vertèbres, les ressorts et l'élasticité des tiges permettent de modifier ces efforts exercés entre vertèbres en réduisant les efforts demandés à la colonne vertébrale sans supprimer la mobilité physiologique naturelle. Dès lors, les ressorts 21a, 21b, 22a, 22b sont tous des ressorts de compression agissant dans le sens de l'écartement des vertèbres les unes par rapport aux autres afin de décharger les articulations vertébrales postérieures. Les tiges 4a, 4b sont courbées dans le sens de la lordose et permettent de maintenir la position relative des vertèbres, et notamment l'écartement des corps vertébraux, ce qui réduit les forces appliquées à l'appareil disco-ligamentaire antérieur. Les ressorts appuient directement sur les éléments d'ancrage puisqu'aucune correction n'est en général à effectuer dans le sens de la rotation autour de l'axe vertical.
L'orthèse représentée à la figure 8 diffère également des orthèses représentées aux figures 1 et 2 par les moyens 45a, 45b, 46a, 46b, 47a, 47b de couplage des tiges 4a, 4b aux éléments d'ancrage 1, 2, 3 (figure 9). En effet, ces moyens de couplage ne présentent pas les mêmes degrés de liberté. Plus précisément, pour maintenir l'écartement entre les corps vertébraux de façon plus efficace, le degré de liberté en rotation autour d'un axe perpendiculaire au plan sagittal est supprimé au niveau de toutes les vertèbres. Ainsi, les moyens 45a, 45b, 47a, 47b de couplage des tiges 4a, 4b aux éléments d'ancrage 1 supérieur et 3 médian autorisent des mouvements relatifs des tiges 4a, 4b par rapport à ces éléments 1, 3 d'ancrage en translation longitudinale selon un axe vertical, en rotation relative autour d'un axe perpendiculaire à un plan frontal, et en rotation propre de la tige autour d'un axe vertical, mais interdisent toute rotation relative autour d'un axe perpendiculaire à un plan sagittal. Pour ce faire, la sphère 8 de l'orthèse précédemment décrite est remplacée par une sphère 48 munie d'une saillie circonférentielle annulaire 52 et le logement 49 de réception de la sphère 48 est pourvu d'une gorge annulaire 53 dans laquelle la saillie 52 de la sphère est engagée. La saillie 52 et la gorge 53 s'étendent dans un plan frontal de façon à autoriser la rotation autour d'un axe perpendiculaire au plan frontal en interdisant les rotations autour d'un axe perpendiculaire au plan sagittal. En variante, ces moyens de couplage pourraient également être réalisés sous la forme d'un cylindre à axe horizontal muni d'un perçage radial pour le passage de la tige engagé dans un logement cylindrique à axe horizontal anteroposterieur du cylindre 50. L'organe 48 monté rotatif par rapport au cylindre 50 (c'est-à-dire la sphère 48 ou le cylindre à axe horizontal) comporte un alésage 51 à axe vertical pour le passage de la tige 4a, 4b. Les rotations autour d'un axe perpendiculaire au plan sagittal ne sont pas possibles au niveau des éléments de couplage mais sont rendus possibles au niveau des éléments de maintien et de rappel élastique par la flexibilité des tiges et des ressorts, de manière à permettre à la colonne vertébrale les mouvements physiologiques de flexion et d'extension dans le plan sagittal.
Les moyens 46a, 46b de couplage des tiges 4a, 4b aux éléments d'ancrage 2 inférieurs sont des moyens d'association rigide bloquant la tige dans toutes les directions, c'est-à-dire sont identiques aux moyens 7a, 7b de couplage des tiges aux éléments d'ancrage médian décrits en référence aux figures 1 et 2. Ces moyens 46a, 46b de couplage comportent donc un cylindre 18 muni d'un alésage 19 et d'au moins une vis 20 transversale de blocage. Un écrou 34 est fixé à l'extrémité inférieure 26a, 26b de chaque tige 4a, 4b. Au contraire, les extrémités libres supérieures 25a, 25b des tiges 4a, 4b sont laissées libres sans écrou ni ressort.
La figure 10 représente une variante de réalisation de l'orthèse courte lombaire selon l'invention. Dans cette variante, tous les moyens de couplage présentent les mêmes degrés de liberté et sont identiques aux moyens 45a, 45b, 47a, 47b de couplage du mode de réalisation représenté aux figures 8 et 9. Les tiges 4a, 4b sont maintenues en position par rapport aux moyens 45a, 45b, 46a, 46b, 47a, 47b de couplage et en regard des vertèbres correspondantes par une soudure 54a, 54b associant rigidement une spire des ressorts 22a, 22b à la surface extérieure des tiges 4a, 4b. Dans ce mode de réalisation, les ressorts 22a, 22b sont également pourvus à chacune de leurs extrémités d'une couronne 29 bloquée par des vis 32 par rapport aux cylindres 50 des moyens 46a, 46b, 47a, 47b de couplage correspondants permettant de bloquer ces ressorts 22a, 22b en rotation autour de l'axe vertical. La tige 4a, 4b est donc maintenue en rotation autour de l'axe vertical par les ressorts 22a, 22b, dans la position de lordose désirée. Les modes de réalisation représentés aux figures 8 et 10 peuvent également comporter, en cas de besoin, des moyens de réglage -notamment des micromoteurs 35 et/ou des dispositifs 36 tenseurs manuels- de la force de rappel élastique exercée par les ressorts 21a, 21b, 22a, 22b.
En outre, et dans tous les modes de réalisation de l'invention, 1 'orthèse peut comporter des moyens de réglage des forces de rappel élastique exercées par les moyens de rappel élastique réalisés sous la forme d'au moins une partie des moyens de maintien et/ou des moyens de rappel élastique constituée d'un alliage métallique à mémoire de forme. Par exemple, tout ou partie des tiges 4a, 4b et/ou tout ou partie des ressorts peut être constitué en alliage métallique à mémoire de forme. Des lors, après implantation, on pourra modifier les forces de rappel élastique exercées en procédant à un réchauffement transcutané de cette partie en alliage à mémoire de forme, et ce par exemple par micro-ondes.
Les éléments d'ancrage 1, 2, 3 comportent (figure 15) au moins une plaque 55 ayant une face convexe antérieure 56 venant en appui au contact d'une portion au moins de la surface concave de l'arc postérieur, notamment au contact de la lame vertébrale 57 et/ou d'un côté au moins de l'apophyse épineuse 58. Les cylindres 10, 18, 50 des moyens de couplage sont portés par une plaque 55 en regard de l'extrémité transverse de la lame 57 au voisinage de l'apophyse transverse 59. Chaque plaque 55 est fixée sur une vertèbre en au moins deux portions distinctes. Par exemple, chaque plaque 55 est fixée sur la vertèbre correspondante par une vis intrapédiculaire 61 et/ou des crochets 71 de serrage sur l'apophyse transverse 59 et/ou une bride de serrage 65 sur l'apophyse épineuse 58. Les éléments d'ancrage peuvent comporter deux plaques 55a, 55b, une de chaque côté de l'apophyse épineuse, et ce même lorsque l'orthèse ne comporte qu'une seule tige, d'un seul côté de l'apophyse épineuse (figure 15). En variante, une seule plaque 55 peut être prévue. Dans tous les cas, les éléments d'ancrage selon l'invention respectent les structures disco-ligamentaires et articulaires des vertèbres dont l'intégrité va permettre la conservation des mouvements physiologiques vertébraux. En particulier, les éléments d'ancrage selon l'invention permettent de conserver les mouvements autorisés par 1'orthèse dynamique. De plus, si cette orthèse est ensuite retirée, par exemple à la fin de la croissance du patient, les mouvements physiologiques naturels sont possibles.
L'orthèse selon l'invention peut être réalisée au moins en partie en alliage métallique (acier inoxydable, titane...) et/ou en matériau composite.
Les figures 16 et 17 représentent une pince d'un matériel ancillaire de correction pour la pose d'une orthèse vertébrale implantée selon l'invention. Cette pince comporte trois extrémités d'action 81, 82, 83 destinées à coopérer respectivement avec les éléments d'ancrage 1 , 2, 3 des vertèbres. Chacune des extrémités 81, 82, 83 d'action de la pince est formée d'un téton destiné à être engagé dans un perçage 78 à axe vertical ménagé au voisinage des moyens de couplage des éléments d'ancrage 1, 2, 3. Chaque téton 81, 82, 83 qui peut être orienté vers ,1e bas ou vers le haut (figure 16) peut agir en compression ou en détraction selon les besoins. Ainsi, chaque plaque 55 des éléments d'ancrage comporte un perçage 78 ménagé à travers une extension horizontale de la plaque 55 qui supporte un cylindre 10, 18 ou 50 de couplage d'une tige 4a, 4b. Le perçage 78 est ménagé de préférence du côté antérieur et latéral du cylindre 10, 18, 50.
Selon l'invention, la pince comporte également des moyens 93, 94, 95 dynamométriques de mesure des forces imparties sur les tétons d'extrémité 81, 82, 83 pour maintenir leurs positions relatives. Egalement, la pince comporte des moyens 112, 117, 127 de mesure des déplacements des tétons d'extrémité 81, 82, 83 lors des modifications de leurs positions relatives.
Chaque pince est composée de trois branches 90, 91, 92 articulées portant les tétons 81, 82, 83 à leur extrémité libre. Plus précisément, la pince comporte une branche supérieure 90 portant le téton d'extrémité 81 supérieur, une branche inférieure 91 portant le téton d'extrémité inférieure 82, et une branche médiane 92 portant le téton d'extrémité 83 médian. Les deux branches 90, 91 supérieure et inférieure sont articulées l'une à l'autre autour d'un axe horizontal 99 orthogonal à la direction passant par les deux tétons 81, 82. Les branches 90, 91, 92 sont articulées les unes par rapport aux autres et commandées dans leurs mouvements relatifs par trois tiges de commande 104, 114, 124 munies de poignées 113, 123, 135. Une tige de commande verticale 104 comporte un filetage 105 coopérant avec un taraudage 106 d'une extrémité 103 de la branche inférieure 91 opposée au téton 82. L'extrémité 102 de la branche supérieure 90 opposée au téton 81 est en forme de manchon coulissant autour d'un cylindre 109 solidaire de la tige de commande verticale 104 mais dont la position en translation par rapport à la tige 104 peut être ajustée. Ce manchon 102 est emprisonné entre deux ressorts de compression 107, 108 entourant la tige 104 et prenant appui à leurs extrémités opposées sur des capteurs dynamométriques 93. Le manchon 102 comporte également une lumière 111 permettant la lecture d'une échelle graduée 112 sur la tige 104. Lorsque la poignée 113 est tournée, les tétons d'extrémité 81, 82 sont écartés ou rapprochés l'un de l'autre. Si les tétons 81, 82 ne supportent pas de forces dans la direction verticale, le manchon 102 supérieur reste à mi-distance des deux capteurs 93, les ressorts 107, 108 n'étant pas activés. Si au contraire une force est nécessaire pour déplacer les tétons 81, 82, l'un des ressorts 107, 108 est activé en compression pour équilibrer cette force et permettre la modification de position. Les capteurs dynamométriques 93 délivrent alors un signal électrique proportionnel à cette force.
La branche médiane 92 est articulée sur l'ensemble ainsi formé par les branches supérieure 90 et inférieure ,91. Une tige 114 de commande sagittale s'étend selon l'axe 99 d'articulation des deux branches 90, 91 supérieure et inférieur***: dans la direction sagittale. Cette tige 114 est pourvue, à son extrémité, d'un filetage 115 engagé dans un taraudage 116 de l'une des branches 90, 91. La tige 114 porte également une échelle graduée 117 permettant de repérer sa position par rapport aux branches 90, 91. La branche médiane 92 comporte une lumière oblongue 118 traversée par la tige de commande 114. Cette lumière oblongue 118 s'étend selon une direction orthogonale à la direction verticale passant par les tétons d'extrémité 81, 82 supérieur et inférieur, et à l'axe 99 horizontal d'articulation des deux branches 90, 91 supérieure et inférieure. Ainsi, un déplacement de la branche médiane 92 par rapport à l'axe 99 d'articulation et selon , cette direction est possible. La lumière oblongue 118 de la branche médiane 92 est engagée autour de la tige de commande 114 emprisonnée entre deux ressorts 119, 120 dont les extrémités opposées appuient sur des capteurs dynamométriques 94. Ces capteurs dynamométriques 94 fournissent une mesure des efforts impartis au téton 83 dans la direction sagittale horizontale. En tournant la poignée 123, on modifie donc la position du téton 83 dans la direction sagittale horizontale par rapport au plan frontal contenant les tétons 81, 82 supérieur et inférieur.
L'extrémité 129 de la branche médiane 92 opposée au téton d'extrémité 83 est associée à une tige de commande frontale 124 qui permet de commander les mouvements de cette branche médiane dans la direction frontale horizontale perpendiculaire à la direction verticale passant par les tétons d'extrémités 81, 82 supérieur et inférieur et à l'axe 99 d'articulation des deux branches 90, 91 supérieure et inférieure. Cette tige de commande frontale 124 comporte une extrémité filetée 125 engagée dans un taraudage 126 ménagé dans un palier 110 comprenant un cylindre 121 entourant la tige de commande verticale 104. Le cylindre 121 porte une échelle graduée 127 visible à travers une lumière 128 de la branche médiane 92. L'extrémité 129 de la branche médiane 92 opposée au téton 83 coulisse autour de la tige de commande frontale 124 et est emprisonnée entre deux ressorts 130, 131 dont les extrémités opposées appuient: sur des capteurs dynamométriques 95. Le déplacement de la branche médiane 92 dans la direction frontale est autorisé grâce à la lumière oblongue 118. En tournant la poignée 135, on modifie donc la position du téton médian 83 dans la direction frontale par rapport au plan sagittal contenant les tétons 81 , 82 supérieur et inférieur. Les capteurs 95 fournissent une mesure des efforts nécessaires à ce déplacement. En variante non représentée, les branches 90, 91, 92 et les tiges de commande 104, 114, 124 peuvent être articulées à un support ou à un cadre commun.
Pour poser une orthèse selon l'invention, on découvre les vertèbres destinées à recevoir les éléments d'ancrage 1, 2, 3, on place et on fixe les éléments d'ancrage 1, 2, 3 sur chaque vertèbre concernée et bilatéralement (figure 11), on associe au moins une pince ancillaire de correction aux éléments d'ancrage 1, 2, 3 de chaque vertèbre à déplacer pour la correction recherchée, et notamment une pince pour chaque tige 4a ou 4b qui doit être posée (figure 12), on actionne les poignées 113, 123, 135 de chaque pince afin de placer les vertèbres en position corrigée pour réduire la déformation et/ou exercer les efforts statiques désirés (figure 13), on mesure les forces de maintien nécessaires appliquées sur les éléments d'ancrage 1, 2, 3 de chaque vertèbre grâce aux différents capteurs dynamométriques 93, 94, 95 pour maintenir ladite position corrigée, on détermine les caractéristiques des moyens de maintien et des moyens de rappel élastique de 1Orthèse pour engendrer les forces de rappel élastique similaires aux forces de maintien mesurées, on met en place les moyens de maintien et/ou de rappel élastique (figure 14), c'est-à-dire les tiges 4a, 4b et les ressorts en les associant par les différents moyens de couplage aux éléments d'ancrage 1, 2 , 3 , on ôte le matériel ancillaire de correction (figure 1), et on termine l'opération chirurgicale d'implantation. Sur les figures 12 à 14, la pince placée à droite des apophyses épineuses est similaire à celle décrite et représentée sur les figures 16 et 17, et la pince placée à gauche est renversée, la branche supérieure
90 étant associée aux éléments d'ancrage 2 inférieurs et la branche inférieure 91 étant associée aux éléments d'ancrage
1 supérieurs. Les dimensions et la forme des branches 90,
91 utilisées sont choisies en fonction de la distance entre les vertèbres correspondantes.
Selon l'invention, on corrige donc la déformation et/ou les efforts grâce aux pinces ancillaires entièrement avant d'associer les moyens de maintien et/ou de rappel élastique (tiges et ressorts), et ce contrairement aux dispositifs d1ostéosynthèse connus avec lesquels la correction est effectuée par ou avec les éléments de rigidification des vertèbres.
Les forces de maintien sont mesurées par des capteurs dynamométriques 93, 94, 95 solidaires du matériel ancillaire, c'est-à-dire selon trois axes orthogonaux de translation des tétons d'extrémité 81, 82, 83, à savoir un axe vertical (tige de commande verticale 104), un axe sagittal (tige de commande sagittale 114), et un axe frontal (tige de commande frontale 124). Les différentes caractéristiques et dimensions des moyens de maintien et/ou de moyens de rappel élastique sont déterminées, au moins de façon approximative, par calcul par un dispositif de traitement d'informations programmé à cet effet à partir des valeurs des forces de maintien mesurées par les différents capteurs dynamométriques. On vérifie l'efficacité voulue des moyens de maintien et/ou de rappel élastique de l'orthèse avant l'ablation des pinces par lecture de l'annulation des forces statiques enregistrées par les dynamomètres 93, 94, 95. Les moyens de maintien et de rappel élastique sont alors et au besoin ajustés ou changés en tout ou partie.
Grâce aux moyens de réglage des moyens de rappel élastique de 1'orthèse, après avoir ôté le matériel ancillaire de correction, on peut vérifier le maintien de la position corrigée et/ou de la valeur désirée des efforts statiques entre vertèbres, et on procède alors aux éventuels ajustements nécessaires avant de terminer l'opération ou après l'opération et le réveil du patient.
Les figures 18 et 19 illustrent un schéma permettant de déterminer les caractéristiques principales et l'orientation de chaque tige 4a, 4b d'une orthèse selon 1 ' invention.
La tige 4a, 4b est posée en orientant son plan de courbure d'un angle β (figure 18) par rapport au plan sagittal de la colonne vertébrale en position corrigée. Cet angle β permet d'imposer le positionnement de la vertèbre médiane V2 dans le plan sagittal des vertèbres supérieure et inférieure VI et V3. Si FI et F2 sont les 34 valeurs mesurées (données par les capteurs 95, 94) des forces de maintien respectivement dans la direction frontale et dans la direction sagittale, on a : tg β = F1/F2 A partir de cette valeur de β obtenue par calcul, on fixe une pince sur la tige avant sa pose dans le plan de sa courbure, et on oriente cette pince par rapport au plan sagittal après avoir engagé la tige dans les moyens de couplage de l'orthèse, et ce grâce à un rapporteur placé dans le plan horizontal du patient. On serre ensuite les vis 20 de blocage de la tige par rapport au cylindre 18 pour la bloquer en rotation autour de la direction verticale par rapport aux éléments d'ancrage 3 de la vertèbre médiane. Le déplacement sagittal MV2 qu'il faut ensuite donner à la vertèbre médiane par la tige de commande sagittale 114 pour rétablir la cyphose est illustré par la figure 19. Si α est l'angle de Cobb de la cyphose qu'il convient de donner entre les vertèbres extrêmes VI et V3, on a :
MV2 = tg (α/4) x ¥1 VÂ
où V1V3 est la distance verticale séparant les deux vertèbres supérieure et inférieure. <f Les calculs sont les mêmes pour la concavité et la convexité.
La courbure initiale de chaque tige 4a, 4b correspond à la courbure finale désirée donnée par l'angle σ modifiée par la déformation de la tige due aux forces élastiques de maintien qu'elle doit exercer. La force résultante FR élastique que la tige doit exercer est :
FR = - F12 + F22 La longueur de la tige dépend de la distance entre les vertèbres instrumentées, et son diamètre est choisi en fonction de la courbure et du matériau pour obtenir la force FR avec une souplesse résiduelle suffisante pour permettre les mouvements physiologiques vertébraux.
Les ressorts de compression et de traction sont dimensionnés de façon conventionnelle essentiellement à partir de la valeur des forces de maintien verticales fournies par les capteurs 93 de la tige de commande verticale 104. Les ressorts à spires travaillant en torsion sont mis en tension dans le sens opposé à l'enroulement des spires, c'est-à-dire en réduisant le diamètre du ressort. Les ressorts supérieurs 21a, 21b sont enroulés tous les deux dans le même sens, et en sens inverse des ressorts inférieurs 22a, 22b. Les spires des ressorts sont mises en tension pour réaliser la dérotation des vertèbres dans le sens souhaité.
L'orthèse selon l'invention pourra faire l'objet de nombreuses variantes, notamment en fonction de la déformation ou de l'instabilité à corriger, du patient, et des conditions opératoires rencontrées. En particulier, 1'orthèse peut comporter uniquement des tiges de maintien et de rappel élastique, ou uniquement des ressorts de maintien et de rappel élastique. Les ressorts peuvent être aussi des ressorts à lame(s) ou autres. Des enveloppes de protection des ressorts contre l'envahissement fibrotique peuvent être prévues.
Par ailleurs, une orthèse selon l'invention peut être utilisée pour instrumenter toute portion de colonne vertébrale, et n'est pas limitée aux corrections des cypho-scolioses dorsales et des instabilités dégénératives lombaires illustrées sur les exemples. En particulier, 1'orthèse selon l'invention est applicable avec des modifications mineures sur une portion de colonne cervicale.

Claims

REVENDICATIONS 1/ - Orthèse vertébrale implantée préservant au moins pour partie la mobilité physiologique naturelle des vertèbres en permettant, sans ostéosynthèse, greffe ni arthrodèse, d'effectuer et de maintenir une correction de la position relative des vertèbres et/ou des efforts exercés sur les vertèbres, pour le traitement d'une déformation du rachis, congénitale ou acquise, notamment
1 idiopathique ou autre. telle qu'une cypho-scoliose, ou d'une instabilité du rachis post-traumatique, tumorale, infectieuse, dégénérative, ou autre, comprenant des éléments d'ancrage (1, 2, 3) fixés sur les vertèbres et des moyens (4a, 4b, 21a, 21b, 22a, 22b, 23a, 23b, 24a, 24b) de maintien associés aux éléments d'ancrage (1, 2, 3) pour maintenir les vertèbres les unes par rapport aux autres en position corrigée, caractérisée en ce que les moyens (4a, 4b, 21a, 21b, 22a, 22b, 23a, 23b, 24a, 24b) de maintien comportent ou sont constitués de moyens de rappel élastique exerçant des forces de rappel élastique dont l'orientation et la valeur sont déterminées pour maintenir les vertèbres en position corrigée à l'encontre des forces naturelles de déformation ou pour réduire les efforts exercés sur les vertèbres en conservant leur mobilité.
2/ - Orthèse selon la revendication 1 , caractérisée en ce qu'elle comporte au moins une tige (4a, 4b) de maintien qui est associée mobile aux éléments d'ancrage (1, 2, 3) d'au moins une vertèbre par des moyens (5a, 5b, 6a, 6b, 45a, 45b, 46a, 46b, 47a, 47b) de couplage qui interdisent tout mouvement relatif en translation horizontale par rapport à la vertèbre mais autorisent, après la pose, un mouvement relatif selon au moins un autre degré de liberté.
3/ - Orthèse selon la revendication 2, caractérisée en ce que chaque tige (4a, 4b) de maintien est associée rigidement aux éléments d'ancrage (3 ou 2) d'une vertèbre par des moyens (7a, 7b, ou 46a, 46b) de couplage interdisant tout mouvement relatif, et en ce que chaque tige (4a, 4b) de maintien est associée mobile à tous les éléments d'ancrage (1, 2 ou 1 , 3) des autres vertèbres par des moyens (5a, 5b, 6a, 6b ou 45a, 45b, 47a, 47b) de couplage qui autorisent, après la pose, un mouvement relatif selon au moins un degré de liberté. . 4/ - Orthèse selon l'une des revendications
2 et 3, caractérisée en ce que chaque tige (4a, 4b) de maintien est associée mobile : a) aux éléments d'ancrage (1, 2, 3) d'au moins une vertèbre par des moyens (5a, 5b, 6a, 6b, 45a, 45b, 46a, 46b, 47a, 47b) de couplage autorisant, après la pose, un coulissement en translation longitudinale relative selon un axe vertical, b) aux éléments d'ancrage (1, 2, 3) d'au moins une vertèbre par des moyens (5a, 5b, 6a, 6b, 45a, 45b, 46a, 46b, 47a, 47b) de couplage autorisant, après la pose, une rotation relative autour d'un axe perpendiculaire à un plan frontal, c) aux éléments d'ancrage (1, 2, 3) d'au moins une vertèbre par des moyens (5a, 5b, 6a, 6b, 45a, 45b, 46a, 46b, 47a, 47b) de couplage autorisant, après la pose, une rotation relative autour d'un axe vertical.
5/ - Orthèse selon l'une des revendications 2 à 4, caractérisée en ce que chaque tige (4a, 4b) de maintien est associé mobile : - d ) aux éléments d'ancrage (1, 2) d'au moins une vertèbre par des moyens (5a, 5b, 6a, 6b) de couplage autorisant, après la pose, une rotation relative autour d'un axe perpendiculaire à un plan sagittal.
6/ - Orthèse selon l'une des revendications 1 à 5, caractérisée en ce que les moyens (4a, 4b, 21a, 21b, 22a, 22b, 23a, 23b, 24a, 24b) de rappel élastique sont associés aux éléments d'ancrage (1, 2, 3) des vertèbres avec une forme distincte de leur forme au repos, de façon à exercer des forces élastiques de rappel lorsque les vertèbres sont en position corrigée.
7/ - Ortnèse selon l'une des revendications 1 à 6, caractérisée en ce que les moyens de maintien comportent au moins une tige (4a, 4b) de maintien courbe souple et élastique en flexion associée à des éléments d'ancrage (1, 2 , 3) d'au moins deux vertèbres distinctes, et en ce que chaque tige (4a, 4b) est apte, après sa pose, à exercer des forces élastiques de maintien des vertèbres en position corrigée tout en autorisant des mouvements physiologiques à partir de la position corrigée des vertèbres.
8/ - Orthèse selon l'une des revendications 1 à 7, caractérisée en ce que les moyens de maintien comportent au moins une tige (4a, 4b) courbe souple et élastique associée à des éléments d'ancrage (1, 2, 3) d'au moins deux vertèbres distinctes, et en ce que chaque tige (4a, 4b) est apte, après sa pose, à exercer des forces élastiques de maintien des vertèbres en position corrigée tout en autorisant des mouvements physiologiques à partir de la position corrigée, et en ce que les moyens (5a, 5b, 6a, 6b) de couplage de chaque tige (4a, 4b) aux éléments d'ancrage (1, 2) d'au moins une vertèbre comportent un alésage (11, 51) cylindrique traversé par la tige (4a, 4b) et dans lequel elle peut coulisser en translation.
9/ - Orthèse selon la revendication 8, caractérisée en ce que l'alésage (11, 51) est ménagé dans un organe (8, 48) monté rotatif par rapport aux éléments d'ancrage (1, 2) autour d'un axe perpendiculaire au plan frontal de la vertèbre correspondante.
10/ - Orthèse selon la revendication 9, caractérisée en ce que l'organe (8) est monté rotatif par rapport aux éléments d'ancrage autour d'un axe perpendiculaire au plan sagittal de la vertèbre correspondante.
11/ - Orthèse selon la revendication 9, caractérisée en ce l'organe (8) est une sphère percée de l'alésage cylindrique (11) et qui est enfermée dans un logement (9) spherique des éléments d'ancrage (1, 2). 12/ - Orthèse selon l'une des revendications 8 à 11, caractérisée en ce les moyens (5a, 5b, 6a, 6b, 45a, 45b, 46a, 46b, 47a, 47b) de couplage de la tige (4a, 4b) aux éléments d'ancrage (1, 2 , 3) d'au moins une vertèbre autorisent une rotation propre de la tige autour de son axe par rapport aux éléments d'ancrage (1, 2, 3).
13/ - Orthèse selon l'une des revendications 1 à 12, caractérisée en ce que les moyens de rappel élastique comportent au moins un ressort (21a, 21b,
22a, 22b, 23a, 23b, 24a, 24b) agissant sur les éléments d'ancrage (1, 2, 3) d'au moins une vertèbre.
14/ - Orthèse selon l'une des revendications 1 à 13, caractérisée en ce qu'elle comporte, du côté concave d'une déformation à corriger, une tige (4a) de maintien et au moins un ressort (21a, 22a, 23a, 24a) de compression entourant la tige (4a) de maintien.
15/ - Orthèse selon l'une des revendications 1 à 14, caractérisée en ce qu'elle comporte, du côté convexe d'une déformation à corriger, une tige (4b) de maintien et au moins un ressort (21b, 22b, 23b, 24b) de traction entourant la tige (4b) de maintien.
16/ - Orthèse selon l'une des revendications 1 à 15, caractérisée en ce qu'elle comporte au moins une tige (4a, 4b) de maintien et au moins un ressort de torsion (21a, 21b, 22a, 22b, 23a, 23b, 24a, 24b) à spires entourant la tige (4a, 4b), les extrémités (27) de ce ressort étant bloquées en rotation par rapport aux éléments d'ancrage (1, 2, 3) d'au moins une vertèbre de façon à imprimer un couple de torsion.
17/ - Orthèse selon l'une des revendications 1 à 16, caractérisée en ce qu'elle comporte des moyens (29, 35, 36) de réglage de la valeur des forces de rappel élastique exercées par des moyens de rappel élastique.
18/ - Orthèse selon la revendication 17, caractérisée en ce que les moyens (29, 35, 36) de réglage sont des moyens permettant de faire varier en position corrigée des vertèbres, l'allongement élastique des moyens de rappel élastique par rapport à leur forme au repos.
19/ - Orthèse selon l'une des revendications 17 et 18, caractérisée en ce que les moyens O 95/05
40
(29, 35, 36) de réglage comportent au moins un dispositif (35, 36) de réglage de la position d'une butée d'appui de moyens de rappel élastique par rapport à des éléments d'ancrage d'une vertèbre. 20/ - Orthèse selon l'une des revendications 17 à 19, caractérisée en ce que les moyens (29, 35, 36) de réglage comportent des moyens de commande transcutanée ou percutanée après implantation de l'orthèse.
21/ - Orthèse selon l'une des revendications 17 à 20, caractérisée en ce que les moyens de réglage comportent au moins une partie des moyens de maintien et/ou des moyens de rappel élastique formée en alliage métallique à mémoire de forme.
EP94922924A 1993-08-27 1994-07-15 Orthese vertebrale implantee dynamique Withdrawn EP0773747A1 (fr)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
FR9310291A FR2709245B1 (fr) 1993-08-27 1993-08-27 Orthèse vertébrale interne dynamique.
FR9310291 1993-08-27
FR9401438 1994-02-07
FR9401438A FR2709246B1 (fr) 1993-08-27 1994-02-07 Orthèse vertébrale implantée dynamique.
US19631994A 1994-02-15 1994-02-15
PCT/FR1994/000886 WO1995005783A1 (fr) 1993-08-27 1994-07-15 Orthese vertebrale implantee dynamique

Publications (1)

Publication Number Publication Date
EP0773747A1 true EP0773747A1 (fr) 1997-05-21

Family

ID=42983901

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94922924A Withdrawn EP0773747A1 (fr) 1993-08-27 1994-07-15 Orthese vertebrale implantee dynamique

Country Status (6)

Country Link
US (1) US5672175A (fr)
EP (1) EP0773747A1 (fr)
AU (1) AU7265994A (fr)
CA (1) CA2170276C (fr)
FR (1) FR2709246B1 (fr)
WO (1) WO1995005783A1 (fr)

Families Citing this family (545)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6273912B1 (en) * 1996-02-28 2001-08-14 Impra, Inc. Flanged graft for end-to-side anastomosis
DE69631128T2 (de) * 1996-03-27 2004-09-23 Lubos Rehak Vorrichtung zur korrektur von verformungen der wirbelsäule
US6416515B1 (en) 1996-10-24 2002-07-09 Spinal Concepts, Inc. Spinal fixation system
CA2264672C (fr) 1996-10-24 2010-11-30 Spinal Concepts, Inc. Procede et appareil de fixation vertebrale
JP4467647B2 (ja) 1997-02-11 2010-05-26 ウォーソー・オーソペディック・インコーポレーテッド 骨プレーティングシステム
ES2299202T3 (es) * 1997-02-11 2008-05-16 Warsaw Orthopedic, Inc. Sistema de placas esqueleticas.
US6045579A (en) 1997-05-01 2000-04-04 Spinal Concepts, Inc. Adjustable height fusion device
US5928243A (en) 1997-07-16 1999-07-27 Spinal Concepts, Inc. Pedicle probe and depth gage
US6454769B2 (en) 1997-08-04 2002-09-24 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6030389A (en) 1997-08-04 2000-02-29 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6053921A (en) 1997-08-26 2000-04-25 Spinal Concepts, Inc. Surgical cable system and method
US5964769A (en) 1997-08-26 1999-10-12 Spinal Concepts, Inc. Surgical cable system and method
US6258089B1 (en) * 1998-05-19 2001-07-10 Alphatec Manufacturing, Inc. Anterior cervical plate and fixation system
EP1253854A4 (fr) 1999-03-07 2010-01-06 Discure Ltd Procede et appareil de chirurgie informatisee
AU782017B2 (en) * 1999-10-18 2005-06-30 Lg Electronics Inc. A driving unit for a drum type washing machine
US6530929B1 (en) * 1999-10-20 2003-03-11 Sdgi Holdings, Inc. Instruments for stabilization of bony structures
US6610091B1 (en) 1999-10-22 2003-08-26 Archus Orthopedics Inc. Facet arthroplasty devices and methods
US8187303B2 (en) 2004-04-22 2012-05-29 Gmedelaware 2 Llc Anti-rotation fixation element for spinal prostheses
US7674293B2 (en) 2004-04-22 2010-03-09 Facet Solutions, Inc. Crossbar spinal prosthesis having a modular design and related implantation methods
US6974478B2 (en) 1999-10-22 2005-12-13 Archus Orthopedics, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US7691145B2 (en) 1999-10-22 2010-04-06 Facet Solutions, Inc. Prostheses, systems and methods for replacement of natural facet joints with artificial facet joint surfaces
US6331179B1 (en) 2000-01-06 2001-12-18 Spinal Concepts, Inc. System and method for stabilizing the human spine with a bone plate
US6293949B1 (en) * 2000-03-01 2001-09-25 Sdgi Holdings, Inc. Superelastic spinal stabilization system and method
US6402750B1 (en) 2000-04-04 2002-06-11 Spinlabs, Llc Devices and methods for the treatment of spinal disorders
US6689125B1 (en) 2000-04-04 2004-02-10 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6579291B1 (en) 2000-10-10 2003-06-17 Spinalabs, Llc Devices and methods for the treatment of spinal disorders
US6805695B2 (en) 2000-04-04 2004-10-19 Spinalabs, Llc Devices and methods for annular repair of intervertebral discs
US6395033B1 (en) * 2000-04-10 2002-05-28 Tyco Healthcare Group Lp Dynamic fusion mechanostat devices
FR2812186B1 (fr) 2000-07-25 2003-02-28 Spine Next Sa Piece de liaison souple pour la stabilisation du rachis
FR2812185B1 (fr) 2000-07-25 2003-02-28 Spine Next Sa Piece de liaison semi-rigide pour la stabilisation du rachis
US7833250B2 (en) 2004-11-10 2010-11-16 Jackson Roger P Polyaxial bone screw with helically wound capture connection
US6554831B1 (en) * 2000-09-01 2003-04-29 Hopital Sainte-Justine Mobile dynamic system for treating spinal disorder
ATE296580T1 (de) * 2000-09-18 2005-06-15 Zimmer Gmbh Pedikelschraube für intervertebrale stützelemente
US6565568B1 (en) 2000-09-28 2003-05-20 Chaim Rogozinski Apparatus and method for the manipulation of the spine and sacrum in the treatment of spondylolisthesis
US20050080486A1 (en) 2000-11-29 2005-04-14 Fallin T. Wade Facet joint replacement
US6579319B2 (en) 2000-11-29 2003-06-17 Medicinelodge, Inc. Facet joint replacement
US6565605B2 (en) 2000-12-13 2003-05-20 Medicinelodge, Inc. Multiple facet joint replacement
US6419703B1 (en) * 2001-03-01 2002-07-16 T. Wade Fallin Prosthesis for the replacement of a posterior element of a vertebra
US7090698B2 (en) 2001-03-02 2006-08-15 Facet Solutions Method and apparatus for spine joint replacement
AU2002250593A1 (en) * 2001-04-19 2002-11-05 Spineology, Inc. Stacked intermedular rods for spinal fixation
US10258382B2 (en) 2007-01-18 2019-04-16 Roger P. Jackson Rod-cord dynamic connection assemblies with slidable bone anchor attachment members along the cord
US7862587B2 (en) 2004-02-27 2011-01-04 Jackson Roger P Dynamic stabilization assemblies, tool set and method
US10729469B2 (en) 2006-01-09 2020-08-04 Roger P. Jackson Flexible spinal stabilization assembly with spacer having off-axis core member
US8292926B2 (en) * 2005-09-30 2012-10-23 Jackson Roger P Dynamic stabilization connecting member with elastic core and outer sleeve
US8353932B2 (en) 2005-09-30 2013-01-15 Jackson Roger P Polyaxial bone anchor assembly with one-piece closure, pressure insert and plastic elongate member
EP1275347A1 (fr) * 2001-07-10 2003-01-15 Waldemar Link (GmbH &amp; Co.) Ensemble de vis pédiculaire
FR2827498B1 (fr) * 2001-07-18 2004-05-14 Frederic Fortin Dispositif de liaison vertebrale souple constitue d'elements palliant une deficience du rachis
JP4755781B2 (ja) * 2001-08-01 2011-08-24 昭和医科工業株式会社 骨接合用連結部材
US7766947B2 (en) 2001-10-31 2010-08-03 Ortho Development Corporation Cervical plate for stabilizing the human spine
AU2002218099B2 (en) * 2001-12-07 2006-04-27 Synthes Gmbh Damping element
WO2003071966A1 (fr) * 2002-02-25 2003-09-04 Dinh Dzung H Methodes et dispositifs destines a favoriser la fusion de vertebres
US6966910B2 (en) * 2002-04-05 2005-11-22 Stephen Ritland Dynamic fixation device and method of use
EP2457529A1 (fr) 2002-05-08 2012-05-30 Stephen Ritland Dispositif de fixation dynamique et procédé d'utilisation
US20030220643A1 (en) * 2002-05-24 2003-11-27 Ferree Bret A. Devices to prevent spinal extension
US7004947B2 (en) * 2002-06-24 2006-02-28 Endius Incorporated Surgical instrument for moving vertebrae
DE10236691B4 (de) * 2002-08-09 2005-12-01 Biedermann Motech Gmbh Dynamische Stabilisierungseinrichtung für Knochen, insbesondere für Wirbel
FR2843538B1 (fr) * 2002-08-13 2005-08-12 Frederic Fortin Dispositif de distraction et d'amortissement ajustable a la croissance du rachis
US7052497B2 (en) * 2002-08-14 2006-05-30 Sdgi Holdings, Inc. Techniques for spinal surgery and attaching constructs to vertebral elements
US20040143264A1 (en) * 2002-08-23 2004-07-22 Mcafee Paul C. Metal-backed UHMWPE rod sleeve system preserving spinal motion
US7976568B2 (en) * 2002-08-25 2011-07-12 University Of Hong Kong Device for correcting spinal deformities
US8876868B2 (en) 2002-09-06 2014-11-04 Roger P. Jackson Helical guide and advancement flange with radially loaded lip
WO2006052796A2 (fr) 2004-11-10 2006-05-18 Jackson Roger P Guide helicoidal et rebord de glissement comportant des prolongements cassables
FR2844180B1 (fr) * 2002-09-11 2005-08-05 Spinevision Element de liaison pour la stabilisation dynamique d'un systeme de fixation rachidien et systeme de fixation rachidien comportant un tel element
US7887539B2 (en) 2003-01-24 2011-02-15 Depuy Spine, Inc. Spinal rod approximators
US7988698B2 (en) 2003-01-28 2011-08-02 Depuy Spine, Inc. Spinal rod approximator
ITFI20030084A1 (it) * 2003-03-28 2004-09-29 Cousin Biotech S A S Protesi vertebrale interlaminare
IL155222A0 (en) * 2003-04-03 2003-11-23 Hadasit Med Res Service An implant for treating idiopathic scoliosis and a method for using the same
US8540753B2 (en) 2003-04-09 2013-09-24 Roger P. Jackson Polyaxial bone screw with uploaded threaded shank and method of assembly and use
US7621918B2 (en) 2004-11-23 2009-11-24 Jackson Roger P Spinal fixation tool set and method
WO2004098452A2 (fr) * 2003-05-02 2004-11-18 Yale University Stabilisateur dynamique d'epine dorsale
US8652175B2 (en) * 2003-05-02 2014-02-18 Rachiotek, Llc Surgical implant devices and systems including a sheath member
US7713287B2 (en) * 2003-05-02 2010-05-11 Applied Spine Technologies, Inc. Dynamic spine stabilizer
US20050171543A1 (en) * 2003-05-02 2005-08-04 Timm Jens P. Spine stabilization systems and associated devices, assemblies and methods
US20050177164A1 (en) * 2003-05-02 2005-08-11 Carmen Walters Pedicle screw devices, systems and methods having a preloaded set screw
US7615068B2 (en) * 2003-05-02 2009-11-10 Applied Spine Technologies, Inc. Mounting mechanisms for pedicle screws and related assemblies
US7635379B2 (en) * 2003-05-02 2009-12-22 Applied Spine Technologies, Inc. Pedicle screw assembly with bearing surfaces
US20050182401A1 (en) * 2003-05-02 2005-08-18 Timm Jens P. Systems and methods for spine stabilization including a dynamic junction
DE10320417A1 (de) * 2003-05-07 2004-12-02 Biedermann Motech Gmbh Dynamische Verankerungsvorrichtung und dynamische Stabilisierungseinrichtung für Knochen, insbesondere für Wirbel, mit einer derartigen Verankerungsvorrichtung
US7608104B2 (en) 2003-05-14 2009-10-27 Archus Orthopedics, Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
US20040230304A1 (en) 2003-05-14 2004-11-18 Archus Orthopedics Inc. Prostheses, tools and methods for replacement of natural facet joints with artifical facet joint surfaces
US7377923B2 (en) 2003-05-22 2008-05-27 Alphatec Spine, Inc. Variable angle spinal screw assembly
WO2004105577A2 (fr) * 2003-05-23 2004-12-09 Globus Medical, Inc. Systeme de stabilisation de la colonne vertebrale
US6986771B2 (en) * 2003-05-23 2006-01-17 Globus Medical, Inc. Spine stabilization system
DE10327358A1 (de) * 2003-06-16 2005-01-05 Ulrich Gmbh & Co. Kg Implantat zur Korrektur und Stabilisierung der Wirbelsäule
US7766915B2 (en) 2004-02-27 2010-08-03 Jackson Roger P Dynamic fixation assemblies with inner core and outer coil-like member
US8092500B2 (en) 2007-05-01 2012-01-10 Jackson Roger P Dynamic stabilization connecting member with floating core, compression spacer and over-mold
US8936623B2 (en) 2003-06-18 2015-01-20 Roger P. Jackson Polyaxial bone screw assembly
US7776067B2 (en) 2005-05-27 2010-08-17 Jackson Roger P Polyaxial bone screw with shank articulation pressure insert and method
US8366753B2 (en) 2003-06-18 2013-02-05 Jackson Roger P Polyaxial bone screw assembly with fixed retaining structure
US7967850B2 (en) * 2003-06-18 2011-06-28 Jackson Roger P Polyaxial bone anchor with helical capture connection, insert and dual locking assembly
WO2005000135A1 (fr) * 2003-06-27 2005-01-06 Medicrea Technologies Dispositif d'osteosynthese vertebrale
US7074238B2 (en) 2003-07-08 2006-07-11 Archus Orthopedics, Inc. Prostheses, tools and methods for replacement of natural facet joints with artificial facet joint surfaces
US7785351B2 (en) 2003-08-05 2010-08-31 Flexuspine, Inc. Artificial functional spinal implant unit system and method for use
US20060229729A1 (en) * 2003-08-05 2006-10-12 Gordon Charles R Expandable intervertebral implant for use with instrument
US7753958B2 (en) 2003-08-05 2010-07-13 Gordon Charles R Expandable intervertebral implant
US20050065516A1 (en) 2003-09-24 2005-03-24 Tae-Ahn Jahng Method and apparatus for flexible fixation of a spine
US20050203513A1 (en) * 2003-09-24 2005-09-15 Tae-Ahn Jahng Spinal stabilization device
US7763052B2 (en) * 2003-12-05 2010-07-27 N Spine, Inc. Method and apparatus for flexible fixation of a spine
US7815665B2 (en) * 2003-09-24 2010-10-19 N Spine, Inc. Adjustable spinal stabilization system
US8979900B2 (en) 2003-09-24 2015-03-17 DePuy Synthes Products, LLC Spinal stabilization device
US7255714B2 (en) 2003-09-30 2007-08-14 Michel H. Malek Vertically adjustable intervertebral disc prosthesis
US20070198088A1 (en) * 2003-10-17 2007-08-23 Lutz Biedermann Flexible implant
DE102004021861A1 (de) * 2004-05-04 2005-11-24 Biedermann Motech Gmbh Flexibler Platzhalter
DE10348329B3 (de) * 2003-10-17 2005-02-17 Biedermann Motech Gmbh Stabförmiges Element für die Anwendung in der Wirbelsäulen- oder Unfallchirurgie,Stabilisierungseinrichtung mit einem solchen stabförmigen Element und Herstellungsverfahren für das stabförmige Element
US8632570B2 (en) * 2003-11-07 2014-01-21 Biedermann Technologies Gmbh & Co. Kg Stabilization device for bones comprising a spring element and manufacturing method for said spring element
JP4936896B2 (ja) * 2003-11-07 2012-05-23 ビーダーマン・モテーク・ゲゼルシャフト・ミット・ベシュレンクタ・ハフツング 骨用の安定化装置のための弾性部材、および弾性部材の製造方法
US7083622B2 (en) * 2003-11-10 2006-08-01 Simonson Peter M Artificial facet joint and method
US7708764B2 (en) 2003-11-10 2010-05-04 Simonson Peter M Method for creating an artificial facet
US20050101953A1 (en) * 2003-11-10 2005-05-12 Simonson Peter M. Artificial facet joint and method
US7862586B2 (en) 2003-11-25 2011-01-04 Life Spine, Inc. Spinal stabilization systems
US7588590B2 (en) 2003-12-10 2009-09-15 Facet Solutions, Inc Spinal facet implant with spherical implant apposition surface and bone bed and methods of use
US20050131406A1 (en) 2003-12-15 2005-06-16 Archus Orthopedics, Inc. Polyaxial adjustment of facet joint prostheses
US11419642B2 (en) 2003-12-16 2022-08-23 Medos International Sarl Percutaneous access devices and bone anchor assemblies
US7179261B2 (en) 2003-12-16 2007-02-20 Depuy Spine, Inc. Percutaneous access devices and bone anchor assemblies
US7527638B2 (en) 2003-12-16 2009-05-05 Depuy Spine, Inc. Methods and devices for minimally invasive spinal fixation element placement
US7842044B2 (en) 2003-12-17 2010-11-30 Depuy Spine, Inc. Instruments and methods for bone anchor engagement and spinal rod reduction
US7806914B2 (en) 2003-12-31 2010-10-05 Spine Wave, Inc. Dynamic spinal stabilization system
US7901459B2 (en) * 2004-01-09 2011-03-08 Warsaw Orthopedic, Inc. Split spinal device and method
US7771479B2 (en) 2004-01-09 2010-08-10 Warsaw Orthopedic, Inc. Dual articulating spinal device and method
US7556651B2 (en) * 2004-01-09 2009-07-07 Warsaw Orthopedic, Inc. Posterior spinal device and method
US7875077B2 (en) * 2004-01-09 2011-01-25 Warsaw Orthopedic, Inc. Support structure device and method
US20050171610A1 (en) * 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Mobile bearing spinal device and method
US20050171608A1 (en) * 2004-01-09 2005-08-04 Sdgi Holdings, Inc. Centrally articulating spinal device and method
US7297146B2 (en) * 2004-01-30 2007-11-20 Warsaw Orthopedic, Inc. Orthopedic distraction implants and techniques
US8029548B2 (en) * 2008-05-05 2011-10-04 Warsaw Orthopedic, Inc. Flexible spinal stabilization element and system
US7597694B2 (en) * 2004-01-30 2009-10-06 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive spinal stabilization
US7468069B2 (en) 2004-02-10 2008-12-23 Atlas Spine, Inc. Static anterior cervical plate
US8562649B2 (en) 2004-02-17 2013-10-22 Gmedelaware 2 Llc System and method for multiple level facet joint arthroplasty and fusion
US8353933B2 (en) 2007-04-17 2013-01-15 Gmedelaware 2 Llc Facet joint replacement
US7993373B2 (en) 2005-02-22 2011-08-09 Hoy Robert W Polyaxial orthopedic fastening apparatus
US7160300B2 (en) 2004-02-27 2007-01-09 Jackson Roger P Orthopedic implant rod reduction tool set and method
US8152810B2 (en) 2004-11-23 2012-04-10 Jackson Roger P Spinal fixation tool set and method
WO2005092218A1 (fr) 2004-02-27 2005-10-06 Jackson Roger P Ensemble d'instruments de reduction de tige d'implant orthopedique et methode associee
US20050203511A1 (en) * 2004-03-02 2005-09-15 Wilson-Macdonald James Orthopaedics device and system
US8523904B2 (en) 2004-03-09 2013-09-03 The Board Of Trustees Of The Leland Stanford Junior University Methods and systems for constraint of spinous processes with attachment
US7458981B2 (en) 2004-03-09 2008-12-02 The Board Of Trustees Of The Leland Stanford Junior University Spinal implant and method for restricting spinal flexion
US7717939B2 (en) 2004-03-31 2010-05-18 Depuy Spine, Inc. Rod attachment for head to head cross connector
US7645294B2 (en) 2004-03-31 2010-01-12 Depuy Spine, Inc. Head-to-head connector spinal fixation system
US7914556B2 (en) 2005-03-02 2011-03-29 Gmedelaware 2 Llc Arthroplasty revision system and method
US7406775B2 (en) 2004-04-22 2008-08-05 Archus Orthopedics, Inc. Implantable orthopedic device component selection instrument and methods
US20050245933A1 (en) * 2004-05-03 2005-11-03 Sevrain Lionel C Multi coaxial screw system
US20050267470A1 (en) * 2004-05-13 2005-12-01 Mcbride Duncan Q Spinal stabilization system to flexibly connect vertebrae
CA2567833A1 (fr) * 2004-05-27 2005-12-15 Depuy Spine, Inc. Prothese de trepied vertebral
US7507242B2 (en) 2004-06-02 2009-03-24 Facet Solutions Surgical measurement and resection framework
US7758581B2 (en) * 2005-03-28 2010-07-20 Facet Solutions, Inc. Polyaxial reaming apparatus and method
US8764801B2 (en) 2005-03-28 2014-07-01 Gmedelaware 2 Llc Facet joint implant crosslinking apparatus and method
US8858599B2 (en) * 2004-06-09 2014-10-14 Warsaw Orthopedic, Inc. Systems and methods for flexible spinal stabilization
US7604638B2 (en) * 2004-06-21 2009-10-20 Depuy Spine, Inc. Instruments and methods for holding a bone plate
US7931675B2 (en) * 2004-06-23 2011-04-26 Yale University Dynamic stabilization device including overhanging stabilizing member
US7261738B2 (en) 2004-06-30 2007-08-28 Depuy Spine, Inc. C-shaped disc prosthesis
US7351261B2 (en) * 2004-06-30 2008-04-01 Depuy Spine, Inc. Multi-joint implant
US8021428B2 (en) * 2004-06-30 2011-09-20 Depuy Spine, Inc. Ceramic disc prosthesis
US7955357B2 (en) 2004-07-02 2011-06-07 Ellipse Technologies, Inc. Expandable rod system to treat scoliosis and method of using the same
US8753348B2 (en) 2004-07-02 2014-06-17 DePuy Synthes Products, LLC Compressor-distractor
US8079823B2 (en) * 2004-07-21 2011-12-20 Delta T Corporation Fan blades
US8114158B2 (en) 2004-08-03 2012-02-14 Kspine, Inc. Facet device and method
US20060036324A1 (en) 2004-08-03 2006-02-16 Dan Sachs Adjustable spinal implant device and method
US7854752B2 (en) * 2004-08-09 2010-12-21 Theken Spine, Llc System and method for dynamic skeletal stabilization
AU2005274013A1 (en) * 2004-08-09 2006-02-23 Innovative Spinal Technologies System and method for dynamic skeletal stabilization
US7288095B2 (en) 2004-08-12 2007-10-30 Atlas Spine, Inc. Bone plate with screw lock
DE102004046163A1 (de) 2004-08-12 2006-02-23 Columbus Trading-Partners Pos und Brendel GbR (vertretungsberechtigte Gesellschafter Karin Brendel, 95503 Hummeltal und Bohumila Pos, 95445 Bayreuth) Kindersitz für Kraftfahrzeuge
CA2576636A1 (fr) 2004-08-18 2006-03-02 Archus Orthopedics, Inc. Dispositifs d'arthroplastie a facette pour le traitement de la degenerescence de segment adjacent, systemes de stabilisation de colonne vertebrale et methodes
US7717938B2 (en) 2004-08-27 2010-05-18 Depuy Spine, Inc. Dual rod cross connectors and inserter tools
US7887566B2 (en) * 2004-09-16 2011-02-15 Hynes Richard A Intervertebral support device with bias adjustment and related methods
BRPI0419057A (pt) * 2004-09-22 2007-12-11 Kyung-Woo Park aparelho de fixação espinhal
US7651502B2 (en) 2004-09-24 2010-01-26 Jackson Roger P Spinal fixation tool set and method for rod reduction and fastener insertion
US7896906B2 (en) * 2004-12-30 2011-03-01 Depuy Spine, Inc. Artificial facet joint
US7766940B2 (en) * 2004-12-30 2010-08-03 Depuy Spine, Inc. Posterior stabilization system
US8092496B2 (en) * 2004-09-30 2012-01-10 Depuy Spine, Inc. Methods and devices for posterior stabilization
US20060084976A1 (en) * 2004-09-30 2006-04-20 Depuy Spine, Inc. Posterior stabilization systems and methods
US20060085075A1 (en) * 2004-10-04 2006-04-20 Archus Orthopedics, Inc. Polymeric joint complex and methods of use
DE102004048938B4 (de) * 2004-10-07 2015-04-02 Synthes Gmbh Vorrichtung zur dynamischen Stabilisierung von Rückenwirbelkörpern
US20060085076A1 (en) * 2004-10-15 2006-04-20 Manoj Krishna Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc and an artificial facet joint
US8162985B2 (en) 2004-10-20 2012-04-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for posterior dynamic stabilization of the spine
US8267969B2 (en) 2004-10-20 2012-09-18 Exactech, Inc. Screw systems and methods for use in stabilization of bone structures
US20080262554A1 (en) * 2004-10-20 2008-10-23 Stanley Kyle Hayes Dyanamic rod
US8226690B2 (en) 2005-07-22 2012-07-24 The Board Of Trustees Of The Leland Stanford Junior University Systems and methods for stabilization of bone structures
US8025680B2 (en) * 2004-10-20 2011-09-27 Exactech, Inc. Systems and methods for posterior dynamic stabilization of the spine
US20090228045A1 (en) * 2004-10-20 2009-09-10 Stanley Kyle Hayes Dynamic rod
US20090030465A1 (en) * 2004-10-20 2009-01-29 Moti Altarac Dynamic rod
US7935134B2 (en) * 2004-10-20 2011-05-03 Exactech, Inc. Systems and methods for stabilization of bone structures
US20060265074A1 (en) 2004-10-21 2006-11-23 Manoj Krishna Posterior spinal arthroplasty-development of a new posteriorly inserted artificial disc, a new anteriorly inserted artifical disc and an artificial facet joint
AU2005307005A1 (en) 2004-10-25 2006-05-26 Fsi Acquisition Sub, Llc Crossbar spinal prosthesis having a modular design and systems for treating spinal pathologies
JP2008518658A (ja) * 2004-10-28 2008-06-05 アクシアル・バイオテック・インコーポレーテッド 凹状の脊柱側弯症を膨張させる装置及び方法
US8641738B1 (en) 2004-10-28 2014-02-04 James W. Ogilvie Method of treating scoliosis using a biological implant
US8123787B2 (en) * 2004-10-28 2012-02-28 Ogilvie James W Method of treating scoliosis using a biological implant
US8926672B2 (en) 2004-11-10 2015-01-06 Roger P. Jackson Splay control closure for open bone anchor
DE102004055454A1 (de) * 2004-11-17 2006-05-24 Biedermann Motech Gmbh Elastisches Element zur Verwendung in einer Stabilisierungseinrichtung für Knochen oder Wirbel
US9216041B2 (en) 2009-06-15 2015-12-22 Roger P. Jackson Spinal connecting members with tensioned cords and rigid sleeves for engaging compression inserts
WO2006057837A1 (fr) 2004-11-23 2006-06-01 Jackson Roger P Structure d'accrochage pour outil de fixation spinale
US9168069B2 (en) 2009-06-15 2015-10-27 Roger P. Jackson Polyaxial bone anchor with pop-on shank and winged insert with lower skirt for engaging a friction fit retainer
US8444681B2 (en) 2009-06-15 2013-05-21 Roger P. Jackson Polyaxial bone anchor with pop-on shank, friction fit retainer and winged insert
US9393047B2 (en) 2009-06-15 2016-07-19 Roger P. Jackson Polyaxial bone anchor with pop-on shank and friction fit retainer with low profile edge lock
US9980753B2 (en) 2009-06-15 2018-05-29 Roger P Jackson pivotal anchor with snap-in-place insert having rotation blocking extensions
ATE524121T1 (de) 2004-11-24 2011-09-15 Abdou Samy Vorrichtungen zur platzierung eines orthopädischen intervertebralen implantats
EP1858425A1 (fr) * 2004-12-15 2007-11-28 Stryker Spine SA Tiges pour colonne vertébrale comportant des segments de propriétés élastiques différentes et méthodes d'emploi desdites tiges
WO2006069089A2 (fr) 2004-12-21 2006-06-29 Packaging Service Corporation Of Kentucky Systeme de plaque cervicale
EP1830723A4 (fr) * 2004-12-27 2010-03-10 N Spine Inc Systeme de stabilisation vertebrale reglable
US20060229613A1 (en) * 2004-12-31 2006-10-12 Timm Jens P Sheath assembly for spinal stabilization device
US7322984B2 (en) 2005-01-06 2008-01-29 Spinal, Llc Spinal plate with internal screw locks
US7438715B2 (en) * 2005-01-06 2008-10-21 Spinal Llc Spinal implant kit
US7901437B2 (en) 2007-01-26 2011-03-08 Jackson Roger P Dynamic stabilization member with molded connection
US10076361B2 (en) 2005-02-22 2018-09-18 Roger P. Jackson Polyaxial bone screw with spherical capture, compression and alignment and retention structures
US8403962B2 (en) * 2005-02-22 2013-03-26 Roger P. Jackson Polyaxial bone screw assembly
US7604654B2 (en) 2005-02-22 2009-10-20 Stryker Spine Apparatus and method for dynamic vertebral stabilization
WO2006090380A2 (fr) * 2005-02-22 2006-08-31 Orthogon Technologies 2003 Ltd. Dispositif et methode pour une distraction et pour une oscillation de colonne vertebrale
ATE531346T1 (de) * 2005-02-24 2011-11-15 Morphogeny Llc Verbundene, verschiebbare und zusammensteckbare drehbare komponenten
US20060212033A1 (en) * 2005-03-03 2006-09-21 Accin Corporation Vertebral stabilization using flexible rods
US7556639B2 (en) * 2005-03-03 2009-07-07 Accelerated Innovation, Llc Methods and apparatus for vertebral stabilization using sleeved springs
US7951175B2 (en) 2005-03-04 2011-05-31 Depuy Spine, Inc. Instruments and methods for manipulating a vertebra
US7951172B2 (en) 2005-03-04 2011-05-31 Depuy Spine Sarl Constrained motion bone screw assembly
US7722647B1 (en) 2005-03-14 2010-05-25 Facet Solutions, Inc. Apparatus and method for posterior vertebral stabilization
US8496686B2 (en) 2005-03-22 2013-07-30 Gmedelaware 2 Llc Minimally invasive spine restoration systems, devices, methods and kits
US8163261B2 (en) * 2005-04-05 2012-04-24 Voltaix, Llc System and method for making Si2H6 and higher silanes
CA2604008A1 (fr) 2005-04-08 2006-10-19 Paradigm Spine, Llc Dispositifs de stabilisation vertebrale et lombo-sacree interepineux et procedes d'utilisation correspondants
US7708762B2 (en) * 2005-04-08 2010-05-04 Warsaw Orthopedic, Inc. Systems, devices and methods for stabilization of the spinal column
US20060271048A1 (en) * 2005-05-12 2006-11-30 Jeffery Thramann Pedicle screw based vertebral body stabilization apparatus
FR2886129B1 (fr) * 2005-05-26 2007-08-10 Xavier Renard Fixateur externe elastique entre deux portions d'os
US20060293692A1 (en) * 2005-06-02 2006-12-28 Whipple Dale E Instruments and methods for manipulating a spinal fixation element
US20060282080A1 (en) * 2005-06-08 2006-12-14 Accin Corporation Vertebral facet stabilizer
US7967844B2 (en) * 2005-06-10 2011-06-28 Depuy Spine, Inc. Multi-level posterior dynamic stabilization systems and methods
US20070016301A1 (en) * 2005-07-14 2007-01-18 Medical Device Concepts Llc. Multi-axial interbody spacer device
US20070016204A1 (en) * 2005-07-14 2007-01-18 Medical Device Concepts Llc. Spinal buttress device and method
US20070016190A1 (en) * 2005-07-14 2007-01-18 Medical Device Concepts Llc Dynamic spinal stabilization system
US8083773B2 (en) * 2005-07-15 2011-12-27 Muhammad Abubakar Atiq Durrani Apparatus for minimally invasive posterior correction of spinal deformity
AU2006269900A1 (en) 2005-07-19 2007-01-25 Stephen Ritland Rod extension for extending fusion construct
US8523865B2 (en) * 2005-07-22 2013-09-03 Exactech, Inc. Tissue splitter
US7811309B2 (en) * 2005-07-26 2010-10-12 Applied Spine Technologies, Inc. Dynamic spine stabilization device with travel-limiting functionality
US7699875B2 (en) * 2006-04-17 2010-04-20 Applied Spine Technologies, Inc. Spinal stabilization device with weld cap
US7713288B2 (en) * 2005-08-03 2010-05-11 Applied Spine Technologies, Inc. Spring junction and assembly methods for spinal device
DE602005007223D1 (de) * 2005-08-24 2008-07-10 Biedermann Motech Gmbh Stabförmiges Element für die Anwendung in der Wirbelsäulen- oder Unfallchirurgie und Stabilisierungseinrichtung mit einem solchen Element
US7695475B2 (en) * 2005-08-26 2010-04-13 Warsaw Orthopedic, Inc. Instruments for minimally invasive stabilization of bony structures
US20080287959A1 (en) * 2005-09-26 2008-11-20 Archus Orthopedics, Inc. Measurement and trialing system and methods for orthopedic device component selection
US7879074B2 (en) 2005-09-27 2011-02-01 Depuy Spine, Inc. Posterior dynamic stabilization systems and methods
AU2006294772B2 (en) 2005-09-27 2013-10-10 Paradigm Spine, Llc. Interspinous vertebral stabilization devices
US8167915B2 (en) 2005-09-28 2012-05-01 Nuvasive, Inc. Methods and apparatus for treating spinal stenosis
US7993376B2 (en) 2005-09-29 2011-08-09 Depuy Spine, Inc. Methods of implanting a motion segment repair system
US8105368B2 (en) 2005-09-30 2012-01-31 Jackson Roger P Dynamic stabilization connecting member with slitted core and outer sleeve
FR2891727B1 (fr) * 2005-10-06 2008-09-26 Frederic Fortin Dispositif d'autoblocage perfectionne pour dispositif de distraction costal
US20070093815A1 (en) * 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilizer
US20070093813A1 (en) * 2005-10-11 2007-04-26 Callahan Ronald Ii Dynamic spinal stabilizer
GB0521582D0 (en) 2005-10-22 2005-11-30 Depuy Int Ltd An implant for supporting a spinal column
US8267970B2 (en) * 2005-10-25 2012-09-18 Depuy Spine, Inc. Laminar hook spring
US8357181B2 (en) 2005-10-27 2013-01-22 Warsaw Orthopedic, Inc. Intervertebral prosthetic device for spinal stabilization and method of implanting same
US8137385B2 (en) 2005-10-31 2012-03-20 Stryker Spine System and method for dynamic vertebral stabilization
US8100946B2 (en) 2005-11-21 2012-01-24 Synthes Usa, Llc Polyaxial bone anchors with increased angulation
US8034078B2 (en) 2008-05-30 2011-10-11 Globus Medical, Inc. System and method for replacement of spinal motion segment
US7704271B2 (en) 2005-12-19 2010-04-27 Abdou M Samy Devices and methods for inter-vertebral orthopedic device placement
EP1968466A2 (fr) * 2005-12-19 2008-09-17 M. S. Abdou Dispositifs et procédés de mise en place d'un dispositif orthopédique intervertébral
GB0600662D0 (en) 2006-01-13 2006-02-22 Depuy Int Ltd Spinal support rod kit
US8518084B2 (en) * 2006-01-24 2013-08-27 Biedermann Technologies Gmbh & Co. Kg Connecting rod with external flexible element
DE102006003374A1 (de) * 2006-01-24 2007-07-26 Biedermann Motech Gmbh Verbindungsstab mit äußerem flexiblem Element
US8348952B2 (en) 2006-01-26 2013-01-08 Depuy International Ltd. System and method for cooling a spinal correction device comprising a shape memory material for corrective spinal surgery
US7682376B2 (en) 2006-01-27 2010-03-23 Warsaw Orthopedic, Inc. Interspinous devices and methods of use
US7837711B2 (en) 2006-01-27 2010-11-23 Warsaw Orthopedic, Inc. Artificial spinous process for the sacrum and methods of use
US7578849B2 (en) 2006-01-27 2009-08-25 Warsaw Orthopedic, Inc. Intervertebral implants and methods of use
US7691130B2 (en) * 2006-01-27 2010-04-06 Warsaw Orthopedic, Inc. Spinal implants including a sensor and methods of use
US7815663B2 (en) * 2006-01-27 2010-10-19 Warsaw Orthopedic, Inc. Vertebral rods and methods of use
US7811326B2 (en) 2006-01-30 2010-10-12 Warsaw Orthopedic Inc. Posterior joint replacement device
US7635389B2 (en) 2006-01-30 2009-12-22 Warsaw Orthopedic, Inc. Posterior joint replacement device
US7655008B2 (en) * 2006-02-09 2010-02-02 Warsaw Orthopedic, Inc. Methods and instruments for spinal derotation
US7794464B2 (en) * 2006-02-09 2010-09-14 Warsaw Orthopedic, Inc. Spinal derotation instruments and methods
US20070233068A1 (en) * 2006-02-22 2007-10-04 Sdgi Holdings, Inc. Intervertebral prosthetic assembly for spinal stabilization and method of implanting same
US8118869B2 (en) * 2006-03-08 2012-02-21 Flexuspine, Inc. Dynamic interbody device
US8025681B2 (en) 2006-03-29 2011-09-27 Theken Spine, Llc Dynamic motion spinal stabilization system
WO2007123920A2 (fr) * 2006-04-18 2007-11-01 Joseph Nicholas Logan Système de tige rachidienne
US20070270959A1 (en) * 2006-04-18 2007-11-22 Sdgi Holdings, Inc. Arthroplasty device
US20070288012A1 (en) * 2006-04-21 2007-12-13 Dennis Colleran Dynamic motion spinal stabilization system and device
US8303660B1 (en) 2006-04-22 2012-11-06 Samy Abdou Inter-vertebral disc prosthesis with variable rotational stop and methods of use
US20070270821A1 (en) * 2006-04-28 2007-11-22 Sdgi Holdings, Inc. Vertebral stabilizer
US20070288009A1 (en) * 2006-06-08 2007-12-13 Steven Brown Dynamic spinal stabilization device
US7905906B2 (en) * 2006-06-08 2011-03-15 Disc Motion Technologies, Inc. System and method for lumbar arthroplasty
US8858600B2 (en) * 2006-06-08 2014-10-14 Spinadyne, Inc. Dynamic spinal stabilization device
US8043337B2 (en) 2006-06-14 2011-10-25 Spartek Medical, Inc. Implant system and method to treat degenerative disorders of the spine
US7666211B2 (en) * 2006-12-28 2010-02-23 Mi4Spine, Llc Vertebral disc annular fibrosis tensioning and lengthening device
WO2008003047A2 (fr) * 2006-06-28 2008-01-03 Synthes (U.S.A.) Système de fixation dynamique
US8303630B2 (en) 2006-07-27 2012-11-06 Samy Abdou Devices and methods for the minimally invasive treatment of spinal stenosis
US8834526B2 (en) * 2006-08-09 2014-09-16 Rolando Garcia Methods and apparatus for treating spinal stenosis
WO2008019397A2 (fr) 2006-08-11 2008-02-14 Archus Orthopedics, Inc. Connexion polyaxiale de rondelle inclinée pour une prothèse de colonne vertébrale dynamique
US8317830B2 (en) * 2006-08-29 2012-11-27 Warsaw Orthopedic, Inc. Orthopaedic screw system with linear motion
US8425601B2 (en) * 2006-09-11 2013-04-23 Warsaw Orthopedic, Inc. Spinal stabilization devices and methods of use
US20080119845A1 (en) * 2006-09-25 2008-05-22 Archus Orthopedics, Inc. Facet replacement device removal and revision systems and methods
US8092533B2 (en) * 2006-10-03 2012-01-10 Warsaw Orthopedic, Inc. Dynamic devices and methods for stabilizing vertebral members
US20080161920A1 (en) * 2006-10-03 2008-07-03 Warsaw Orthopedic, Inc. Dynamizing Interbody Implant and Methods for Stabilizing Vertebral Members
US8187307B2 (en) * 2006-10-19 2012-05-29 Simpirica Spine, Inc. Structures and methods for constraining spinal processes with single connector
US8029541B2 (en) 2006-10-19 2011-10-04 Simpirica Spine, Inc. Methods and systems for laterally stabilized constraint of spinous processes
US8162982B2 (en) 2006-10-19 2012-04-24 Simpirica Spine, Inc. Methods and systems for constraint of multiple spine segments
US7862502B2 (en) 2006-10-20 2011-01-04 Ellipse Technologies, Inc. Method and apparatus for adjusting a gastrointestinal restriction device
US8096996B2 (en) * 2007-03-20 2012-01-17 Exactech, Inc. Rod reducer
US8361117B2 (en) 2006-11-08 2013-01-29 Depuy Spine, Inc. Spinal cross connectors
AR064013A1 (es) * 2006-11-30 2009-03-04 Paradigm Spine Llc Sistema de estabilizacion vertebral, interlaminar, interespinoso
WO2008070716A2 (fr) 2006-12-05 2008-06-12 Spine Wave, Inc. Dispositifs et procédés de stabilisation dynamique
EP2088945A4 (fr) 2006-12-08 2010-02-17 Roger P Jackson Systeme d'instruments pour implants rachidiens dynamiques
JP2010512228A (ja) 2006-12-10 2010-04-22 パラダイム・スパイン・リミテッド・ライアビリティ・カンパニー 後部機能的動的安定化システム
FR2910267B1 (fr) * 2006-12-21 2009-01-23 Ldr Medical Soc Par Actions Si Dispositif de soutien vertebral
AU2008204784A1 (en) 2007-01-10 2008-07-17 Facet Solutions, Inc. Taper-locking fixation system
US8075596B2 (en) * 2007-01-12 2011-12-13 Warsaw Orthopedic, Inc. Spinal prosthesis systems
US8475498B2 (en) 2007-01-18 2013-07-02 Roger P. Jackson Dynamic stabilization connecting member with cord connection
US7931676B2 (en) * 2007-01-18 2011-04-26 Warsaw Orthopedic, Inc. Vertebral stabilizer
US8366745B2 (en) 2007-05-01 2013-02-05 Jackson Roger P Dynamic stabilization assembly having pre-compressed spacers with differential displacements
US7959677B2 (en) * 2007-01-19 2011-06-14 Flexuspine, Inc. Artificial functional spinal unit system and method for use
US8435268B2 (en) * 2007-01-19 2013-05-07 Reduction Technologies, Inc. Systems, devices and methods for the correction of spinal deformities
US8029547B2 (en) * 2007-01-30 2011-10-04 Warsaw Orthopedic, Inc. Dynamic spinal stabilization assembly with sliding collars
US8109975B2 (en) * 2007-01-30 2012-02-07 Warsaw Orthopedic, Inc. Collar bore configuration for dynamic spinal stabilization assembly
US8034081B2 (en) 2007-02-06 2011-10-11 CollabComl, LLC Interspinous dynamic stabilization implant and method of implanting
US20080195153A1 (en) * 2007-02-08 2008-08-14 Matthew Thompson Dynamic spinal deformity correction
US8926667B2 (en) * 2007-02-09 2015-01-06 Transcendental Spine, Llc Connector
WO2008098206A1 (fr) * 2007-02-09 2008-08-14 Altiva Corporation Dispositif de stabilisation dynamique
US8012177B2 (en) 2007-02-12 2011-09-06 Jackson Roger P Dynamic stabilization assembly with frusto-conical connection
US20080249531A1 (en) * 2007-02-27 2008-10-09 Warsaw Orthopedic, Inc. Instruments and methods for minimally invasive insertion of dynamic implants
US20080255615A1 (en) * 2007-03-27 2008-10-16 Warsaw Orthopedic, Inc. Treatments for Correcting Spinal Deformities
US8172847B2 (en) 2007-03-29 2012-05-08 Depuy Spine, Inc. In-line rod reduction device and methods
US20080269805A1 (en) 2007-04-25 2008-10-30 Warsaw Orthopedic, Inc. Methods for correcting spinal deformities
US8241362B2 (en) 2007-04-26 2012-08-14 Voorhies Rand M Lumbar disc replacement implant for posterior implantation with dynamic spinal stabilization device and method
EP2142121B1 (fr) * 2007-04-30 2014-04-16 Globus Medical, Inc. Système souple de stabilisation de la colonne vertébrale
US10383660B2 (en) 2007-05-01 2019-08-20 Roger P. Jackson Soft stabilization assemblies with pretensioned cords
US8088166B2 (en) * 2007-05-01 2012-01-03 Moximed, Inc. Adjustable absorber designs for implantable device
US8480715B2 (en) 2007-05-22 2013-07-09 Zimmer Spine, Inc. Spinal implant system and method
CA2690038C (fr) 2007-05-31 2012-11-27 Roger P. Jackson Element de raccord a stabilisation dynamique avec noyau solide precontraint
US8864832B2 (en) 2007-06-20 2014-10-21 Hh Spinal Llc Posterior total joint replacement
US8083772B2 (en) 2007-06-05 2011-12-27 Spartek Medical, Inc. Dynamic spinal rod assembly and method for dynamic stabilization of the spine
US8147520B2 (en) 2007-06-05 2012-04-03 Spartek Medical, Inc. Horizontally loaded dynamic stabilization and motion preservation spinal implantation system and method
US8114134B2 (en) 2007-06-05 2012-02-14 Spartek Medical, Inc. Spinal prosthesis having a three bar linkage for motion preservation and dynamic stabilization of the spine
US8070776B2 (en) 2007-06-05 2011-12-06 Spartek Medical, Inc. Deflection rod system for use with a vertebral fusion implant for dynamic stabilization and motion preservation spinal implantation system and method
US8021396B2 (en) 2007-06-05 2011-09-20 Spartek Medical, Inc. Configurable dynamic spinal rod and method for dynamic stabilization of the spine
US8092501B2 (en) 2007-06-05 2012-01-10 Spartek Medical, Inc. Dynamic spinal rod and method for dynamic stabilization of the spine
US8048121B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Spine implant with a defelction rod system anchored to a bone anchor and method
US8048115B2 (en) 2007-06-05 2011-11-01 Spartek Medical, Inc. Surgical tool and method for implantation of a dynamic bone anchor
US8105359B2 (en) 2007-06-05 2012-01-31 Spartek Medical, Inc. Deflection rod system for a dynamic stabilization and motion preservation spinal implantation system and method
CA2689965A1 (fr) 2007-06-06 2008-12-18 Kspine, Inc. Dispositif et procede medical de correction d'une difformite
US10821003B2 (en) 2007-06-20 2020-11-03 3Spline Sezc Spinal osteotomy
JP2010530780A (ja) * 2007-06-22 2010-09-16 シンピライカ スパイン, インコーポレイテッド 脊髄分節の制御された屈曲制限のための方法およびデバイス
US20100036424A1 (en) 2007-06-22 2010-02-11 Simpirica Spine, Inc. Methods and systems for increasing the bending stiffness and constraining the spreading of a spinal segment
US20150119939A1 (en) * 2007-07-13 2015-04-30 George Frey Systems and Methods for Spinal Stabilization
US9439681B2 (en) 2007-07-20 2016-09-13 DePuy Synthes Products, Inc. Polyaxial bone fixation element
US7887541B2 (en) 2007-07-26 2011-02-15 Depuy Spine, Inc. Spinal rod reduction instruments and methods for use
BRPI0814831A2 (pt) * 2007-08-07 2015-03-31 Synthes Gmbh Sistema de cabo dinâmico, e, sistema de fixação dinâmico.
US8080038B2 (en) * 2007-08-17 2011-12-20 Jmea Corporation Dynamic stabilization device for spine
US8790348B2 (en) 2007-09-28 2014-07-29 Depuy Spine, Inc. Dual pivot instrument for reduction of a fixation element and method of use
US20090088803A1 (en) * 2007-10-01 2009-04-02 Warsaw Orthopedic, Inc. Flexible members for correcting spinal deformities
ES2374577T3 (es) * 2007-10-11 2012-02-20 Biedermann Motech Gmbh Sistema de varilla modular para la estabilización de la columna vertebral.
US20090099608A1 (en) * 2007-10-12 2009-04-16 Aesculap Implant Systems, Inc. Rod assembly for dynamic posterior stabilization
US8182514B2 (en) * 2007-10-22 2012-05-22 Flexuspine, Inc. Dampener system for a posterior stabilization system with a fixed length elongated member
US8523912B2 (en) * 2007-10-22 2013-09-03 Flexuspine, Inc. Posterior stabilization systems with shared, dual dampener systems
US8187330B2 (en) * 2007-10-22 2012-05-29 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8267965B2 (en) * 2007-10-22 2012-09-18 Flexuspine, Inc. Spinal stabilization systems with dynamic interbody devices
US8157844B2 (en) * 2007-10-22 2012-04-17 Flexuspine, Inc. Dampener system for a posterior stabilization system with a variable length elongated member
US8911477B2 (en) 2007-10-23 2014-12-16 Roger P. Jackson Dynamic stabilization member with end plate support and cable core extension
GB0720762D0 (en) 2007-10-24 2007-12-05 Depuy Spine Sorl Assembly for orthopaedic surgery
US20090112263A1 (en) 2007-10-30 2009-04-30 Scott Pool Skeletal manipulation system
US20090125032A1 (en) * 2007-11-14 2009-05-14 Gutierrez Robert C Rod removal instrument
WO2009076239A2 (fr) * 2007-12-06 2009-06-18 Vertiflex, Inc. Système et procédé de réduction de spondylolisthésis
US8252028B2 (en) * 2007-12-19 2012-08-28 Depuy Spine, Inc. Posterior dynamic stabilization device
US9232968B2 (en) 2007-12-19 2016-01-12 DePuy Synthes Products, Inc. Polymeric pedicle rods and methods of manufacturing
US8617214B2 (en) * 2008-01-07 2013-12-31 Mmsn Limited Partnership Spinal tension band
US7935133B2 (en) 2008-02-08 2011-05-03 Mmsn Limited Partnership Interlaminar hook
US8267979B2 (en) 2008-02-26 2012-09-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and axial spring and method for dynamic stabilization of the spine
US8337536B2 (en) 2008-02-26 2012-12-25 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post with a compliant ring and method for stabilization of the spine
US8097024B2 (en) 2008-02-26 2012-01-17 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for stabilization of the spine
US8016861B2 (en) 2008-02-26 2011-09-13 Spartek Medical, Inc. Versatile polyaxial connector assembly and method for dynamic stabilization of the spine
US8057515B2 (en) 2008-02-26 2011-11-15 Spartek Medical, Inc. Load-sharing anchor having a deflectable post and centering spring and method for dynamic stabilization of the spine
US20100030224A1 (en) 2008-02-26 2010-02-04 Spartek Medical, Inc. Surgical tool and method for connecting a dynamic bone anchor and dynamic vertical rod
US8083775B2 (en) 2008-02-26 2011-12-27 Spartek Medical, Inc. Load-sharing bone anchor having a natural center of rotation and method for dynamic stabilization of the spine
US8333792B2 (en) 2008-02-26 2012-12-18 Spartek Medical, Inc. Load-sharing bone anchor having a deflectable post and method for dynamic stabilization of the spine
US8211155B2 (en) 2008-02-26 2012-07-03 Spartek Medical, Inc. Load-sharing bone anchor having a durable compliant member and method for dynamic stabilization of the spine
US8608746B2 (en) 2008-03-10 2013-12-17 DePuy Synthes Products, LLC Derotation instrument with reduction functionality
US8709015B2 (en) 2008-03-10 2014-04-29 DePuy Synthes Products, LLC Bilateral vertebral body derotation system
EP2265200B1 (fr) * 2008-03-14 2020-05-27 Mazor Robotics Ltd. Insert segmenté pour support intervertébral
US11202707B2 (en) 2008-03-25 2021-12-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant system
US20090248077A1 (en) * 2008-03-31 2009-10-01 Derrick William Johns Hybrid dynamic stabilization
US8549888B2 (en) 2008-04-04 2013-10-08 Nuvasive, Inc. System and device for designing and forming a surgical implant
US20090264933A1 (en) * 2008-04-22 2009-10-22 Warsaw Orthopedic, Inc. Anchors for securing a rod to a vertebral member
FR2930718B1 (fr) * 2008-05-02 2010-05-14 Warsaw Orthopedic Inc Element de liaison d'un dispositif d'osteosynthese vertebrale, et dispositif d'osteosynthese vertebrale le comprenant
AU2009246848B2 (en) * 2008-05-13 2014-10-02 Stryker European Holdings I, Llc Composite spinal rod
WO2009146377A1 (fr) * 2008-05-28 2009-12-03 Kerflin Orthopedic Innovations, Llc Instrument d'élongation actionné par fluide pour corriger des malformations orthopédiques
WO2009149414A1 (fr) 2008-06-06 2009-12-10 Simpirica Spine, Inc. Procédé et appareil pour verrouillage d'un ruban
EP2296566A4 (fr) * 2008-06-06 2013-01-02 Simpirica Spine Inc Méthodes et appareil de mise en place d'éléments de contrainte de l'apophyse épineuse
US8784453B1 (en) 2008-06-09 2014-07-22 Melvin Law Dynamic spinal stabilization system
US8043340B1 (en) * 2008-06-09 2011-10-25 Melvin Law Dynamic spinal stabilization system
US10973556B2 (en) 2008-06-17 2021-04-13 DePuy Synthes Products, Inc. Adjustable implant assembly
US20100063548A1 (en) * 2008-07-07 2010-03-11 Depuy International Ltd Spinal Correction Method Using Shape Memory Spinal Rod
US8414584B2 (en) 2008-07-09 2013-04-09 Icon Orthopaedic Concepts, Llc Ankle arthrodesis nail and outrigger assembly
WO2010006195A1 (fr) 2008-07-09 2010-01-14 Amei Technologies, Inc. Clou d'arthrodèse de cheville et ensemble stabilisateur
CA2739997C (fr) 2008-08-01 2013-08-13 Roger P. Jackson Element longitudinal de liaison avec cordons tendus gaines
US8287571B2 (en) 2008-08-12 2012-10-16 Blackstone Medical, Inc. Apparatus for stabilizing vertebral bodies
WO2010019791A2 (fr) * 2008-08-14 2010-02-18 Vertiflex, Inc. Tige dynamique
EP2337512B1 (fr) 2008-09-12 2012-03-14 Synthes GmbH Système de fixation de stabilisation et de guidage de colonne vertébrale
DE09793113T8 (de) 2008-09-29 2013-04-25 Synthes Gmbh Polyaxiale bodenladungsschraube und stangenanordnung
ES2462759T3 (es) 2008-10-01 2014-05-26 Sherwin Hua Sistema para estabilización de tornillo pedicular guiado por alambre de vertebras de la columna
KR100898962B1 (ko) * 2008-10-02 2009-05-25 (주) 코리아나메디칼 척추 고정 장치
ES2394670T3 (es) * 2008-10-08 2013-02-04 Biedermann Technologies Gmbh & Co. Kg Dispositivo de implante alargado y dispositivo de estabilización vertebral
US20100094306A1 (en) * 2008-10-13 2010-04-15 Arvin Chang Spinal distraction system
US11241257B2 (en) 2008-10-13 2022-02-08 Nuvasive Specialized Orthopedics, Inc. Spinal distraction system
FR2937531B1 (fr) * 2008-10-23 2016-01-29 Lotfi Miladi Systeme d'osteosynthese rachidienne
CA2742399A1 (fr) 2008-11-03 2010-06-03 Dustin M. Harvey Ensemble fixation osseuse plane
US8382756B2 (en) * 2008-11-10 2013-02-26 Ellipse Technologies, Inc. External adjustment device for distraction device
US8187304B2 (en) 2008-11-10 2012-05-29 Malek Michel H Facet fusion system
US8828058B2 (en) 2008-11-11 2014-09-09 Kspine, Inc. Growth directed vertebral fixation system with distractible connector(s) and apical control
JP5555711B2 (ja) * 2008-11-24 2014-07-23 シンピライカ スパイン, インコーポレイテッド 脊椎分節の屈曲および伸展を制限する方法およびデバイス
IT1392200B1 (it) * 2008-12-17 2012-02-22 N B R New Biotechnology Res Stabilizzatore vertebrale modulare.
EP2373236B1 (fr) 2008-12-17 2014-05-21 Synthes GmbH Stabilisateur dynamique vertébral postérieur
US9492214B2 (en) * 2008-12-18 2016-11-15 Michel H. Malek Flexible spinal stabilization system
US8641734B2 (en) 2009-02-13 2014-02-04 DePuy Synthes Products, LLC Dual spring posterior dynamic stabilization device with elongation limiting elastomers
US8197490B2 (en) 2009-02-23 2012-06-12 Ellipse Technologies, Inc. Non-invasive adjustable distraction system
US8118840B2 (en) 2009-02-27 2012-02-21 Warsaw Orthopedic, Inc. Vertebral rod and related method of manufacture
EP2405839A4 (fr) 2009-03-10 2013-12-11 Simpirica Spine Inc Dispositif d'attache chirurgicale et procédés d'utilisation
US8562653B2 (en) 2009-03-10 2013-10-22 Simpirica Spine, Inc. Surgical tether apparatus and methods of use
EP2405840B1 (fr) 2009-03-10 2024-02-21 Empirical Spine, Inc. Dispositif d'attache chirurgicale
AU2015230721B2 (en) * 2009-03-26 2017-11-16 K2M, Inc. Semi - constrained anchoring system for correcting a spinal deformity
US8372146B2 (en) * 2009-03-26 2013-02-12 Warsaw Orthopedic, Inc. Distensible ligament systems
US8357182B2 (en) * 2009-03-26 2013-01-22 Kspine, Inc. Alignment system with longitudinal support features
WO2010114853A1 (fr) * 2009-03-30 2010-10-07 Simpirica Spine, Inc. Procédés et appareils destinés à améliorer la capacité de charge de cisaillement d'un segment spinal
CN102368967B (zh) 2009-04-15 2016-03-02 斯恩蒂斯有限公司 用于脊椎结构的修正连接器
US20100268119A1 (en) * 2009-04-15 2010-10-21 Warsaw Orthopedic, Inc., An Indiana Corporation Integrated feedback for in-situ surgical device
US9622792B2 (en) 2009-04-29 2017-04-18 Nuvasive Specialized Orthopedics, Inc. Interspinous process device and method
WO2010144458A1 (fr) * 2009-06-08 2010-12-16 Reduction Technologies Inc. Systèmes, procédés et dispositifs de correction de déformations vertébrales
US11229457B2 (en) 2009-06-15 2022-01-25 Roger P. Jackson Pivotal bone anchor assembly with insert tool deployment
CN103826560A (zh) 2009-06-15 2014-05-28 罗杰.P.杰克逊 具有套接杆和带摩擦配合压缩套爪的带翼插件的多轴骨锚
US9668771B2 (en) 2009-06-15 2017-06-06 Roger P Jackson Soft stabilization assemblies with off-set connector
US8998959B2 (en) 2009-06-15 2015-04-07 Roger P Jackson Polyaxial bone anchors with pop-on shank, fully constrained friction fit retainer and lock and release insert
EP2442738B1 (fr) 2009-06-17 2014-04-30 Synthes GmbH Connecteur de révision pour constructions rachidiennes
US8394124B2 (en) 2009-06-18 2013-03-12 The University Of Toledo Unidirectional rotatory pedicle screw and spinal deformity correction device for correction of spinal deformity in growing children
US9320543B2 (en) * 2009-06-25 2016-04-26 DePuy Synthes Products, Inc. Posterior dynamic stabilization device having a mobile anchor
US20110166610A1 (en) * 2009-08-07 2011-07-07 Moti Altarac Systems and methods for stabilization of bone structures, including thorocolumbar stabilization systems and methods
US8657856B2 (en) * 2009-08-28 2014-02-25 Pioneer Surgical Technology, Inc. Size transition spinal rod
RU2016101629A (ru) 2009-09-04 2018-12-04 Нувэйсив Спешилайзд Ортопэдикс, Инк. Устройство и способ для наращивания кости
US9168071B2 (en) 2009-09-15 2015-10-27 K2M, Inc. Growth modulation system
US9011494B2 (en) 2009-09-24 2015-04-21 Warsaw Orthopedic, Inc. Composite vertebral rod system and methods of use
WO2011043805A1 (fr) 2009-10-05 2011-04-14 Roger Jackson P Ancrage osseux polyaxial avec élément de rétention non rotatif et tige fixée par pression, et ajustement par frottement
WO2011043799A1 (fr) * 2009-10-05 2011-04-14 Coligne Ag Système de fixation rachidienne et tournevis utilisé avec ce système
US8523948B2 (en) 2009-10-20 2013-09-03 Moximed, Inc. Extra-articular implantable mechanical energy absorbing assemblies having a tension member, and methods
US8679178B2 (en) 2009-10-20 2014-03-25 Moximed, Inc. Extra-articular implantable mechanical energy absorbing assemblies having two deflecting members and compliance member
US8277453B2 (en) * 2009-10-30 2012-10-02 Warsaw Orthopedic, Inc. Instruments and systems for vertebral column manipulation
CN102695465A (zh) 2009-12-02 2012-09-26 斯帕泰克医疗股份有限公司 结合具有可偏转柱和复合脊柱杆的骨锚固件的小轮廓脊柱假体
US8764806B2 (en) 2009-12-07 2014-07-01 Samy Abdou Devices and methods for minimally invasive spinal stabilization and instrumentation
US8262697B2 (en) 2010-01-14 2012-09-11 X-Spine Systems, Inc. Modular interspinous fixation system and method
US9445844B2 (en) 2010-03-24 2016-09-20 DePuy Synthes Products, Inc. Composite material posterior dynamic stabilization spring rod
WO2011119690A1 (fr) 2010-03-26 2011-09-29 Echostar Technologies L.L.C. Poste de télévision à entrées multiples
EP2552333A4 (fr) 2010-03-30 2014-11-26 Sherwin Hua Systèmes et procédés pour la stabilisation par vis pédiculaire de vertèbres spinales
US8641723B2 (en) 2010-06-03 2014-02-04 Orthonex LLC Skeletal adjustment device
US20110307015A1 (en) 2010-06-10 2011-12-15 Spartek Medical, Inc. Adaptive spinal rod and methods for stabilization of the spine
US9248043B2 (en) 2010-06-30 2016-02-02 Ellipse Technologies, Inc. External adjustment device for distraction device
WO2012021378A2 (fr) 2010-08-09 2012-02-16 Ellipse Technologies, Inc. Élément de maintenance dans un implant magnétique
JP2013540468A (ja) 2010-09-08 2013-11-07 ロジャー・ピー・ジャクソン 弾性部および非弾性部を有する動的固定化部材
US9301787B2 (en) 2010-09-27 2016-04-05 Mmsn Limited Partnership Medical apparatus and method for spinal surgery
US8282671B2 (en) 2010-10-25 2012-10-09 Orthonex Smart device for non-invasive skeletal adjustment
GB2502449A (en) 2010-11-02 2013-11-27 Roger P Jackson Polyaxial bone anchor with pop-on shank and pivotable retainer
US8721566B2 (en) 2010-11-12 2014-05-13 Robert A. Connor Spinal motion measurement device
WO2012076005A2 (fr) 2010-12-08 2012-06-14 Aces Gmbh Dispositif d'ancrage osseux dynamique
WO2012112396A2 (fr) 2011-02-14 2012-08-23 Ellipse Technologies, Inc. Dispositif et méthode de traitement d'os fracturés
US9480510B2 (en) 2011-03-23 2016-11-01 Spinecraft, LLC Devices, systems and methods of attaching same to the spine
JP5865479B2 (ja) 2011-03-24 2016-02-17 ロジャー・ピー・ジャクソン 複合関節とポップ装着式シャンクとを有する多軸の骨アンカー
US8388687B2 (en) 2011-03-25 2013-03-05 Flexuspine, Inc. Interbody device insertion systems and methods
US9907582B1 (en) 2011-04-25 2018-03-06 Nuvasive, Inc. Minimally invasive spinal fixation system and related methods
CA2838047A1 (fr) 2011-06-03 2012-12-06 Kspine, Inc. Actionneurs de systeme de correction de colonne vertebrale
CN102949230A (zh) * 2011-08-23 2013-03-06 常州市康辉医疗器械有限公司 一种动力自动撑开矫形系统及其应用
US8845728B1 (en) 2011-09-23 2014-09-30 Samy Abdou Spinal fixation devices and methods of use
US10743794B2 (en) 2011-10-04 2020-08-18 Nuvasive Specialized Orthopedics, Inc. Devices and methods for non-invasive implant length sensing
US10016220B2 (en) 2011-11-01 2018-07-10 Nuvasive Specialized Orthopedics, Inc. Adjustable magnetic devices and methods of using same
AU2015210458B2 (en) * 2011-11-16 2020-04-16 K2M, Inc. System and method for spinal correction
US8920472B2 (en) * 2011-11-16 2014-12-30 Kspine, Inc. Spinal correction and secondary stabilization
US9451987B2 (en) * 2011-11-16 2016-09-27 K2M, Inc. System and method for spinal correction
WO2014172632A2 (fr) * 2011-11-16 2014-10-23 Kspine, Inc. Correction et stabilisation secondaire de la colonne vertébrale
US9468469B2 (en) 2011-11-16 2016-10-18 K2M, Inc. Transverse coupler adjuster spinal correction systems and methods
US9468468B2 (en) 2011-11-16 2016-10-18 K2M, Inc. Transverse connector for spinal stabilization system
US20130123853A1 (en) * 2011-11-16 2013-05-16 Kspine, Inc. Spinal correction and secondary stabilization
US9526627B2 (en) 2011-11-17 2016-12-27 Exactech, Inc. Expandable interbody device system and method
US8911479B2 (en) 2012-01-10 2014-12-16 Roger P. Jackson Multi-start closures for open implants
US9125703B2 (en) * 2012-01-16 2015-09-08 K2M, Inc. Rod reducer, compressor, distractor system
US8430916B1 (en) 2012-02-07 2013-04-30 Spartek Medical, Inc. Spinal rod connectors, methods of use, and spinal prosthesis incorporating spinal rod connectors
US20130226240A1 (en) 2012-02-22 2013-08-29 Samy Abdou Spinous process fixation devices and methods of use
US11207132B2 (en) 2012-03-12 2021-12-28 Nuvasive, Inc. Systems and methods for performing spinal surgery
US8808328B2 (en) * 2012-04-05 2014-08-19 Tufts Medical Center, Inc. Spring loaded mechanism for managing scoliosis
AU2012380394B2 (en) * 2012-05-16 2017-04-20 Universiteit Twente Implantation system for treatment of a defective curvature of the spinal column.
US9078711B2 (en) 2012-06-06 2015-07-14 Ellipse Technologies, Inc. Devices and methods for detection of slippage of magnetic coupling in implantable medical devices
US20130338714A1 (en) 2012-06-15 2013-12-19 Arvin Chang Magnetic implants with improved anatomical compatibility
US10098665B2 (en) 2012-08-01 2018-10-16 DePuy Synthes Products, Inc. Spine derotation system
US9179957B2 (en) 2012-08-09 2015-11-10 Spinecraft, LLC Systems, assemblies and methods for spinal derotation
US9572598B2 (en) 2012-08-09 2017-02-21 Spine Craft, LLC Uniplanar surgical screw assembly
US9198767B2 (en) 2012-08-28 2015-12-01 Samy Abdou Devices and methods for spinal stabilization and instrumentation
US9924969B2 (en) * 2012-09-04 2018-03-27 Zimmer, Inc. External fixation
US9301782B2 (en) 2012-09-04 2016-04-05 Zimmer, Inc. External fixation
US9044281B2 (en) 2012-10-18 2015-06-02 Ellipse Technologies, Inc. Intramedullary implants for replacing lost bone
US9320617B2 (en) 2012-10-22 2016-04-26 Cogent Spine, LLC Devices and methods for spinal stabilization and instrumentation
CA2889769A1 (fr) 2012-10-29 2014-05-08 Ellipse Technologies, Inc. Dispositifs ajustables pour traiter l'arthrite du genou
GB201220042D0 (en) * 2012-11-07 2012-12-19 Murray David W Adjusting spinal curvature
US9763702B2 (en) 2012-11-16 2017-09-19 DePuy Synthes Products, Inc. Bone fixation assembly
US8911478B2 (en) 2012-11-21 2014-12-16 Roger P. Jackson Splay control closure for open bone anchor
US10058354B2 (en) 2013-01-28 2018-08-28 Roger P. Jackson Pivotal bone anchor assembly with frictional shank head seating surfaces
US8852239B2 (en) 2013-02-15 2014-10-07 Roger P Jackson Sagittal angle screw with integral shank and receiver
US9492288B2 (en) 2013-02-20 2016-11-15 Flexuspine, Inc. Expandable fusion device for positioning between adjacent vertebral bodies
US9179938B2 (en) 2013-03-08 2015-11-10 Ellipse Technologies, Inc. Distraction devices and method of assembling the same
US9532804B2 (en) * 2013-03-15 2017-01-03 Moximed, Inc. Implantation approach and instrumentality for an energy absorbing system
US9968408B1 (en) 2013-03-15 2018-05-15 Nuvasive, Inc. Spinal balance assessment
AU2014253786B2 (en) * 2013-04-18 2018-07-05 K2M, Inc. Spinal correction and secondary stabilization
FR3004919B1 (fr) * 2013-04-30 2015-05-08 Xavier Renard Perfectionnement aux fixateurs externes
US10226242B2 (en) 2013-07-31 2019-03-12 Nuvasive Specialized Orthopedics, Inc. Noninvasively adjustable suture anchors
US9801734B1 (en) 2013-08-09 2017-10-31 Nuvasive, Inc. Lordotic expandable interbody implant
US9468471B2 (en) 2013-09-17 2016-10-18 K2M, Inc. Transverse coupler adjuster spinal correction systems and methods
US9848922B2 (en) 2013-10-09 2017-12-26 Nuvasive, Inc. Systems and methods for performing spine surgery
US10751094B2 (en) 2013-10-10 2020-08-25 Nuvasive Specialized Orthopedics, Inc. Adjustable spinal implant
US9566092B2 (en) 2013-10-29 2017-02-14 Roger P. Jackson Cervical bone anchor with collet retainer and outer locking sleeve
US9717533B2 (en) 2013-12-12 2017-08-01 Roger P. Jackson Bone anchor closure pivot-splay control flange form guide and advancement structure
US9451993B2 (en) 2014-01-09 2016-09-27 Roger P. Jackson Bi-radial pop-on cervical bone anchor
US9517144B2 (en) 2014-04-24 2016-12-13 Exactech, Inc. Limited profile intervertebral implant with incorporated fastening mechanism
US10398565B2 (en) 2014-04-24 2019-09-03 Choice Spine, Llc Limited profile intervertebral implant with incorporated fastening and locking mechanism
CN111345867A (zh) 2014-04-28 2020-06-30 诺威适骨科专科公司 遥控装置
US10758274B1 (en) 2014-05-02 2020-09-01 Nuvasive, Inc. Spinal fixation constructs and related methods
US9597119B2 (en) 2014-06-04 2017-03-21 Roger P. Jackson Polyaxial bone anchor with polymer sleeve
US10064658B2 (en) 2014-06-04 2018-09-04 Roger P. Jackson Polyaxial bone anchor with insert guides
US9962187B2 (en) 2014-08-11 2018-05-08 Zimmer, Inc. External fixation
US10433893B1 (en) 2014-10-17 2019-10-08 Nuvasive, Inc. Systems and methods for performing spine surgery
JP6672289B2 (ja) 2014-10-23 2020-03-25 ニューベイシブ スペシャライズド オーソペディックス,インコーポレイテッド 遠隔調整可能なインタラクティブ骨再形成インプラント
JP6847341B2 (ja) 2014-12-26 2021-03-24 ニューベイシブ スペシャライズド オーソペディックス,インコーポレイテッド 伸延のためのシステム及び方法
US10238427B2 (en) 2015-02-19 2019-03-26 Nuvasive Specialized Orthopedics, Inc. Systems and methods for vertebral adjustment
US9987052B2 (en) 2015-02-24 2018-06-05 X-Spine Systems, Inc. Modular interspinous fixation system with threaded component
US20160367291A1 (en) 2015-06-17 2016-12-22 Nathan Erickson Ankle fixation system
FR3037784B1 (fr) * 2015-06-29 2017-12-15 Gexfix Sa Dispositif de fixation externe dynamique d'osteosynthese
US10857003B1 (en) 2015-10-14 2020-12-08 Samy Abdou Devices and methods for vertebral stabilization
WO2017066774A1 (fr) 2015-10-16 2017-04-20 Nuvasive Specialized Orthopedics, Inc. Dispositifs ajustables pour traiter l'arthrite du genou
US10022155B1 (en) * 2015-11-11 2018-07-17 Neil Robert Crawford Dynamic lumbar spine stabilization device and methods
US10194960B1 (en) 2015-12-03 2019-02-05 Nuvasive, Inc. Spinal compression instrument and related methods
CN108601611B (zh) 2015-12-10 2021-11-02 诺威适骨科专科公司 用于牵张装置的外部调节装置
CN108882953B (zh) 2016-01-28 2021-09-03 诺威适骨科专科公司 骨搬移用的系统
WO2017139548A1 (fr) 2016-02-10 2017-08-17 Nuvasive Specialized Orthopedics, Inc. Systèmes et procédés de commande de variables chirurgicales multiples
EP3413820B1 (fr) 2016-02-12 2024-04-10 Nuvasive, Inc. Dispositifs de fixation vertébrale à réglage postopératoire
US10456172B2 (en) 2016-02-12 2019-10-29 Nuvasive, Inc. Magnetically actuateable rod insertion for minimally invasive surgery
JP2019514450A (ja) 2016-03-02 2019-06-06 ニューヴェイジヴ,インコーポレイテッド 脊椎矯正外科計画のためのシステムおよび方法
US10335199B2 (en) * 2016-07-28 2019-07-02 Warsaw Orthopedic. Inc. Spinal correction construct and method
US10548636B2 (en) * 2016-10-03 2020-02-04 Christopher B. Gordon Force adjustable spring distractor
US10973648B1 (en) 2016-10-25 2021-04-13 Samy Abdou Devices and methods for vertebral bone realignment
US10744000B1 (en) 2016-10-25 2020-08-18 Samy Abdou Devices and methods for vertebral bone realignment
US10779866B2 (en) 2016-12-29 2020-09-22 K2M, Inc. Rod reducer assembly
US10966762B2 (en) 2017-12-15 2021-04-06 Medos International Sarl Unilateral implant holders and related methods
US11179248B2 (en) 2018-10-02 2021-11-23 Samy Abdou Devices and methods for spinal implantation
US11583318B2 (en) 2018-12-21 2023-02-21 Paradigm Spine, Llc Modular spine stabilization system and associated instruments
EP3922039A1 (fr) 2019-02-07 2021-12-15 NuVasive Specialized Orthopedics, Inc. Communication ultrasonore dans des dispositifs médicaux
US11589901B2 (en) 2019-02-08 2023-02-28 Nuvasive Specialized Orthopedics, Inc. External adjustment device
US11291481B2 (en) 2019-03-21 2022-04-05 Medos International Sarl Rod reducers and related methods
USD1004774S1 (en) 2019-03-21 2023-11-14 Medos International Sarl Kerrison rod reducer
US11291482B2 (en) 2019-03-21 2022-04-05 Medos International Sarl Rod reducers and related methods
US11160580B2 (en) 2019-04-24 2021-11-02 Spine23 Inc. Systems and methods for pedicle screw stabilization of spinal vertebrae
AU2022225229A1 (en) 2021-02-23 2023-09-21 Nuvasive Specialized Orthopedics, Inc. Adjustable implant, system and methods
US11737787B1 (en) 2021-05-27 2023-08-29 Nuvasive, Inc. Bone elongating devices and methods of use
WO2023009587A1 (fr) * 2021-07-29 2023-02-02 Skaggs Dr David Systèmes et procédés de traitement de déformations rachidiennes

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB780652A (en) * 1954-04-30 1957-08-07 Zimmer Orthopaedic Ltd Improvements in or relating to apparatus for use in spinal fixation
FR1397395A (fr) * 1964-03-17 1965-04-30 Réducteur de fracture per opératoire
NL7306853A (fr) * 1973-05-16 1974-11-19
SU485739A1 (ru) * 1974-01-23 1975-09-30 Крымский Медицинский Институт Устройство дл коррекции и фиксации позвоночника при лечении сколиозов
US3977397A (en) * 1974-11-27 1976-08-31 Kalnberz Viktor Konstantinovic Surgical compression-distraction instrument
FI53062C (fr) * 1975-05-30 1978-02-10 Erkki Einari Nissinen
PL105977B1 (pl) * 1976-06-28 1979-11-30 Wyzsza Szkola Inzynierska Przyrzad do korekcji skrzywien kregoslupa
CH628803A5 (en) * 1978-05-12 1982-03-31 Sulzer Ag Implant insertable between adjacent vertebrae
DE2845647C2 (de) * 1978-10-20 1982-09-09 Messerschmitt-Bölkow-Blohm GmbH, 8000 München Korrekturgerät für die operative Skoliosebehandlung
SU888968A1 (ru) * 1979-01-11 1981-12-15 Новосибирский научно-исследовательский институт травматологии и ортопедии Устройство дл коррекции позвоночника
SU848009A1 (ru) * 1979-10-08 1981-07-23 Научно-Исследовательский Институт Трав-Матологии И Ортопедии Дистрактор дл позвоночника
US4289123A (en) * 1980-03-31 1981-09-15 Dunn Harold K Orthopedic appliance
US4386603A (en) * 1981-03-23 1983-06-07 Mayfield Jack K Distraction device for spinal distraction systems
DE3121271A1 (de) * 1981-05-29 1982-12-23 Max Bernhard 7900 Ulm Ulrich Distraktionsgeraet zur korrektur insbesondere kyphotischer wirbelsaeulenbereiche
US4448191A (en) * 1981-07-07 1984-05-15 Rodnyansky Lazar I Implantable correctant of a spinal curvature and a method for treatment of a spinal curvature
US4573456A (en) * 1983-05-03 1986-03-04 Span-America Medical Systems, Inc. Foam body support
FR2553993B1 (fr) * 1983-10-28 1986-02-07 Peze William Procede et appareil de correction dynamique des deformations rachidiennes
US4611582A (en) * 1983-12-27 1986-09-16 Wisconsin Alumni Research Foundation Vertebral clamp
DE3434753C2 (de) * 1984-03-14 1986-12-04 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 8000 München Implantat zur operativen Korrektur der seitlichen Wirbelsäulenverkrümmung
US4863475A (en) * 1984-08-31 1989-09-05 Zimmer, Inc. Implant and method for production thereof
DE3614101C1 (de) * 1986-04-25 1987-10-22 Juergen Prof Dr Med Harms Pedikelschraube
GB8620937D0 (en) * 1986-08-29 1986-10-08 Shepperd J A N Spinal implant
GB8629490D0 (en) * 1986-12-10 1987-01-21 Jumper R Surgical instruments
US4854496A (en) * 1987-01-16 1989-08-08 Dynamet, Inc. Porous metal coated implant and method for producing same
US4836196A (en) * 1988-01-11 1989-06-06 Acromed Corporation Surgically implantable spinal correction system
WO1990002527A1 (fr) * 1988-09-09 1990-03-22 Australian Defence Industries Pty. Limited Ecarteur spinal
NL9001778A (nl) * 1990-08-07 1992-03-02 Stichting Tech Wetenschapp Scoliose-correctie.
FR2672203B1 (fr) * 1991-02-01 1993-06-04 Biostab Cadre pour rigidification d'un os ou ensemble d'os.
US5219349A (en) * 1991-02-15 1993-06-15 Howmedica, Inc. Spinal fixator reduction frame
FR2689750B1 (fr) * 1992-04-10 1997-01-31 Eurosurgical Element d'ancrage osseux et dispositif d'osteosynthese rachidienne incorporant de tels elements.
US5281223A (en) * 1992-09-21 1994-01-25 Ray R Charles Tool and method for derotating scoliotic spine
FR2697744B1 (fr) * 1992-11-10 1995-03-03 Fabrication Mat Orthopedique S Instrumentation d'ostéosynthèse rachidienne par voie antérieure.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9505783A1 *

Also Published As

Publication number Publication date
CA2170276C (fr) 2006-01-10
FR2709246A1 (fr) 1995-03-03
FR2709246B1 (fr) 1995-09-29
AU7265994A (en) 1995-03-21
CA2170276A1 (fr) 1995-03-02
WO1995005783A1 (fr) 1995-03-02
US5672175A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
EP0773747A1 (fr) Orthese vertebrale implantee dynamique
EP0722298B1 (fr) Materiel ancillaire de correction d&#39;une deformation vertebrale
CA2170273C (fr) Dispositif d&#39;ancrage d&#39;une instrumentation rachidienne sur une vertebre
CA2170277C (fr) Materiel ancillaire de pose d&#39;une instrumentation rachidienne
EP0679375B1 (fr) Ensemble prothétique modulaire pour l&#39;articulation de l&#39;épaule
FR2722980A1 (fr) Implant vertebral inter-epineux
WO2007051924A1 (fr) Dispositif de correction scoliotique ajustable avec la croissance
EP0953317B1 (fr) Implant squelettique
FR2910267A1 (fr) Dispositif de soutien vertebral
FR2712482A1 (fr) Prothèse intervertébrale extradiscale.
FR2833151A1 (fr) Implant d&#39;ancrage osseux a tete polyaxiale
FR2844180A1 (fr) Element de liaison pour la stabilisation dynamique d&#39;un systeme de fixation rachidien et systeme de fixation rachidien comportant un tel element
FR2894129A1 (fr) Dispositif de stabilisation du rachis
FR2835173A1 (fr) Implant vertebral inter-epineux
WO2006010844A1 (fr) Dispositif d’autocorrection scoliotique ne necessitant plus d’interventions apres implantation
WO1996014022A1 (fr) Systeme de fixation vertebrale
FR2745706A1 (fr) Dispositif prothetique a vis pediculaires
FR2672203A1 (fr) Cadre pour rigidification d&#39;un os ou ensemble d&#39;os.
FR2734471A1 (fr) Dispositif d&#39;osteosynthese rachidienne
CA3031012C (fr) Dispositif de stabilisation vertebrale
FR2709245A1 (fr) Orthèse vertébrale interne dynamique.
FR2918261A1 (fr) Dispositif destine a relier au moins trois vertebres entre elles
WO2001030279A1 (fr) Dispositif de liaison mecanique reglable de deux elements l&#39;un a l&#39;autre

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 19970919

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19980331