EP0741402B1 - Elektrische Entladungsröhre oder Entladungslampe, Flachbildschirm, Niedertemperaturkathode und Verfahren zu deren Herstellung - Google Patents

Elektrische Entladungsröhre oder Entladungslampe, Flachbildschirm, Niedertemperaturkathode und Verfahren zu deren Herstellung Download PDF

Info

Publication number
EP0741402B1
EP0741402B1 EP96201180A EP96201180A EP0741402B1 EP 0741402 B1 EP0741402 B1 EP 0741402B1 EP 96201180 A EP96201180 A EP 96201180A EP 96201180 A EP96201180 A EP 96201180A EP 0741402 B1 EP0741402 B1 EP 0741402B1
Authority
EP
European Patent Office
Prior art keywords
low
temperature
cathode
cathodes
top coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96201180A
Other languages
English (en)
French (fr)
Other versions
EP0741402A3 (de
EP0741402A2 (de
Inventor
Dr. c/o Philips Patentverw. GmbH Gärtner Georg
Dr. c/o Philips Patentverw. GmbH Geittner Peter
Dr. c/o Philips Patentverw. GmbH Lydtin Hans
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP0741402A2 publication Critical patent/EP0741402A2/de
Publication of EP0741402A3 publication Critical patent/EP0741402A3/de
Application granted granted Critical
Publication of EP0741402B1 publication Critical patent/EP0741402B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/939Electron emitter, e.g. spindt emitter tip coated with nanoparticles

Definitions

  • the invention relates to an electric discharge tube or discharge lamp one or more low temperature cathodes, a flat screen with one or more low temperature cathodes, one low temperature cathode and one Process for the production of the low temperature cathode.
  • the present invention relates, inter alia, to flat screens with active systems where the screen does not work with the light of the surroundings like the liquid crystal screens, but shines itself. This includes the plasma screen and the flat tube.
  • Flat screens were developed for the three market segments of office automation, audio / video technology as well as navigation and entertainment.
  • the mobile applications are particularly noteworthy, starting with notebook computers, personal digital assistants, fax machines and mobile phones.
  • the flat screens should not only be used in camcorders, but also in television sets and monitors.
  • the third area includes flat screens as monitors for navigation systems in cars and airplanes, but also the displays of game consoles.
  • the large space requirement of the Braun tube is a disadvantage. He will causes all electrons to be provided from a single cathode and can be brought to the desired position of the fluorescent screen via deflection units and are responsible for all pixels.
  • the cathodes of this conventional one Cathode ray tubes are hot cathodes ("thermionic cathodes"). Electron beam generation is based on the glow emission.
  • the conventional heatable Cathode is e.g. from a nickel tube, on the front of which a special one easily electron-emitting oxide layer, e.g. made of barium oxide.
  • the heating wire embedded in the nickel tube insulates the cathode about 1200 Kelvin (900 ° C) so that electrons from the oxide layer into the vacuum be "steamed" out of the tube.
  • the flat screens on the other hand, have the electrons in several wire cathodes, Ribbon cathodes or generated in flat field emitters. Every cathode is therefore only responsible for a few pixels.
  • cathodes for all types of flat screens a key technology. Considerable efforts have already been made to cathodes adapted to the flat screen technology and new cathode materials to develop.
  • Tips field emitter Microtip emitter
  • AC cathodes avalanche Cold Cathodes
  • WO-A-9 423 571 which is a microcrystalline Describes amorphous diamond emission material.
  • a disadvantage of the tip field emitter cathodes is burnout individual peaks and the high current noise of the individual peaks.
  • AC cathode have the disadvantage that their emission is extremely localized and high Adjustment accuracy in cathode positioning required.
  • Another aspect of the invention relates to a flat screen with a improved cathode and an improved cathode.
  • the object is achieved by an electrical discharge tube or discharge lamp with one or more low-temperature cathodes, the one Bracket, possibly with heating or cooling, one on the bracket applied conductive sub-layer, possibly a substrate with dispensing material, and a top layer with a nanostructure made of ultrafine particles, the top layer having a surface layer made of an emission material has several components formed emitter complex.
  • Such discharge tubes or discharge lamps are characterized by high Reliability and a long service life under normal loads.
  • the emission is stable, this favors a constant image quality throughout Lifetime of the discharge lamp or discharge tube.
  • the invention Discharge tubes or discharge lamps have short switching times and offer that Advantage that their construction is simplified and their energy consumption is low.
  • a preferred embodiment of the discharge tubes or Discharge lamps are characterized in that they have a grid control electrode includes.
  • a flat screen according to the invention contains one or more low temperature cathodes, a bracket, possibly with heating or cooling, a conductive sub-layer applied to the holder, optionally a Substrate with dispensing material, and a top layer with a nanostructure ultrafine particles, the top layer being a surface layer made of a Has emitter complex formed with multiple components, include.
  • a flat screen according to the invention is easy to manufacture because of the manufacturing no submicron lithography is required. It has low energy consumption, it is brighter and can operate within wide temperature ranges of the ambient temperature operated from -30 ° C to 100 ° C. It has a very good resolution and is suitable for black and white screens and color screens.
  • a low-temperature cathode according to the invention is composed of one Bracket, possibly with heating or cooling, one on the bracket applied conductive sub-layer, possibly a substrate with dispensing material, and a top layer with a nanostructure made of ultrafine particles, wherein the cover layer is a surface layer made of an emission material with multiple components formed emitter complex.
  • the low-temperature cathode after the Invention is characterized in that it is for an operating temperature is prepared between 20 ° C and 500 ° C.
  • the low-temperature cathode according to the invention can be used on the one hand as a real cold cathode and is particularly well suited as a cold controllable electron emitter for flat displays.
  • the threshold field strength can be reduced to almost zero.
  • 500 ° C that is 250 ° C below the operating temperature of oxide wire cathodes, the current density of 0.1 A / cm 2 required for line cathodes is already achieved.
  • the emission material comprises a first component, the metals, especially refractory metals, and their alloys, contains a second component, the scandium, yttrium, lathan, the lanthanides, or actinides, and / or their compounds, in particular their oxides, contains and / or a third Component that contains alkaline earths and / or their compounds.
  • An emitter complex is formed from these components during the formation a particularly low work function.
  • the emission material comprises as the first component tungsten, as the second component oxidic compounds of the Scandiums and as third components oxidic compounds of barium.
  • the components of the emission material individually or together in the lower layer and / or the substrate and / or the cover layer are included. In this way, a reservoir of emission material be provided to form the emitter complex.
  • the emitter complex formed has a work function ⁇ 2.8 eV Has.
  • a low-temperature cathode which is characterized by this, has particular advantages is that the ultrafine particles have a grain size of 1 to 100 nm. They are particularly well suited as field emitters because they have surface structures and Surface modulations from particles in the diameter range from 1 to 100 nm have, i.e. relatively small radii of curvature in dense particle and tip distribution have on the macroscopic surface.
  • the nanostructure of the cover layer is nanocrystalline or nanoamorphic and is optionally nanoporous and the structure size 1 to 1000 nm is.
  • the invention also has the task of a manufacturing method for the invention To provide low-temperature cathodes.
  • this object is achieved by a method in which first step a pre-body with a holder, with one on the holder applied conductive sub-layer, optionally with a substrate Dispensing material and with a top layer with a nanostructure made of ultra-fine Particles, and the components of the emission material individually or together in the lower layer and / or the substrate and / or the cover layer contains, is produced and in a second step the emitter complex as Surface layer is formed on the top layer.
  • This method creates very uniformly emitting low-temperature cathodes get their emission properties, especially the cold emission scatters little.
  • the residual gas pressure is 10 10 -4 mbar and the residual gas contains noble gases, nitrogen, hydrogen and / or oxygen, each with a partial pressure of 10 10 -5 mbar.
  • a method is further preferred in which the formation by a Sintering treatment at a temperature> 500 ° C and under vacuum or Gas atmosphere containing noble gases, nitrogen, hydrogen and / or oxygen, he follows.
  • the top layer be made with an ultrafine nanostructure Particles is produced by laser ablation.
  • laser ablation deposition be performed under vacuum he follows. This results in a particularly thin and even top layer.
  • Fig. 1 shows the current-voltage characteristics of a low-temperature cathode according to the invention at 300 ° C, 200 ° C and room temperature.
  • An electric discharge tube or discharge lamp consists of four functional groups, electron beam generation, beam focusing, beam deflection and the fluorescent screen.
  • the electron gun of the discharge tubes according to the invention or discharge lamps contains an arrangement of one or more low-temperature cathodes.
  • the electron gun system a point cathode or a system of one or more wire cathodes, flat ribbon cathodes or be flat cathodes.
  • Wire cathodes, ribbon cathodes and Area cathodes do not have to be activated over their entire area, they can the active top layer is only contained in individual surface segments.
  • the electron gun can also be a grid control electrode included, each of one of several of the low-temperature cathodes of the invention or one or more surface segments of a low-temperature cathode can be controlled.
  • a grid control electrode included, each of one of several of the low-temperature cathodes of the invention or one or more surface segments of a low-temperature cathode can be controlled.
  • an electric field strength E with values of 5 V / ⁇ ⁇ E ⁇ 15 V / ⁇ m is applied and the Emission of these segments or single cathodes by changing the field strength controlled.
  • a flat panel display according to the invention can be a modified cathode ray tube, a flat tube, or its variation, the field emitter display.
  • the invention relates to a field emitter display.
  • Field emitter displays are a modification of the cathode ray tubes. Both use one high energy electron beam to activate light emitting phosphors and to create an image. With the conventional cathode ray tube, a single one touches Electron beam from each of the three fairly large electron guns - one each for each color - one after the other from the many picture elements (pixels). On the other hand provides the electron generation system of a field emitter display with countless small ones Electron sources are available, one for each pixel.
  • the field emitter display according to the invention can thus have the following structure to have: Two glass plates, an anode plate and a cathode plate are by spacers Cut.
  • the cathode plate has metallic conductive strips with a thin layer of cold cathode material according to the invention are covered.
  • the Anode plate has similar stripes that have a transparent conductor, e.g. out doped tin oxide, as a base layer and as a top layer with a layer a phosphor.
  • Anode plate and cathode plate are with spacers interconnected, with the cathode and anode strips at 90 ° to each other turned and facing each other. The two plates become vacuum tight connected. On the outside an electronic circuit is attached, which allows that each strip can be controlled independently.
  • the principle of this embodiment is that of a matrix controlled diode.
  • the flat screen according to the invention can a flat tube containing a series of linear wire cathodes which a beam of rays is generated, each individual beam a small rectangular area of the screen is assigned.
  • the low temperature cathodes according to the invention can be of their type Be point cathodes or wire cathodes. Particularly advantageous properties is achieved, however, if the cathodes according to the invention are used as surface cathodes are trained. To do this, they can be applied to a flat ribbon substrate, or on a plate through which emitting cathode strips or segments insulating strips are separated. Also a type with a large "emitter lawn" is possible.
  • the holder can be a silicon wafer or a glass plate, e.g. for a Field emitter display.
  • the holder can also be a wire, e.g. for flat Screen tubes with multiple cathode wires.
  • the holder also from the well-known metal tubes made of nickel, molybdenum or similar. exist, which is equipped with a heating coil that allows the cathode Operating temperatures up to 500 ° C, especially at 200 ° C to 300 ° C.
  • the conductive underlayer is usually made of a metal, e.g. Tungsten. It can also consist of several layers of metal, e.g. from a layer of tungsten and a tungsten / rhenium layer.
  • the substrate in the sense of the invention can be a porous tungsten layer, as is known from conventional I-cathodes.
  • Such porous tungsten layers can contain rhenium, iridium, osmium, ruthenium, tantalum, molybdenum or scandium oxide in the laminate.
  • These porous layers with a percolation structure are produced by powder metallurgy. They contain a barium compound in the pores of the layer as a source of barium.
  • the top layer is covered with an active surface layer that has a very low work function. This layer is very thin, on the order of a monolayer, and contains an emitter complex that contains barium, scandium and oxygen.
  • the substrate layer is omitted.
  • the cover layer contains tungsten, which is alloyed with rhenium, osmium, optionally also with iridium, ruthenium, tantalum, and / or molybdenum. It also contains scandium oxide or scandium oxide mixed with the oxides of other rare earth metals such as europium, samarium and cerium. It is also possible that it consists of scandium tungstates such as Sc 6 WO 12 or Sc 2 W 3 O 12 .
  • the cover layer can also be built up in multiple layers, in particular as a double layer, from the above-mentioned layer compositions, the best results being achieved if a layer containing scandium is the outer layer.
  • barium-containing compounds can be mixed with calcium or strontium oxide.
  • This cover layer is preferably 100 to 500 nm thick.
  • the tungsten portion of the Top layer consists of ultrafine particles with a diameter of 1 to 50 nm deposited in a nanostructured layer. The others both components are also deposited as ultra-fine particles and partly between, partly on the tungsten particles. From the three components is formed upon activation of the emitting surface complex, which as Surface layer lies on the top layer.
  • the low-temperature cathodes according to the invention are in a two-stage Process manufactured.
  • cathodes such as L-cathodes, I-cathodes, B-cathodes or M-cathodes
  • gas or silicon disks which are coated with an underlayer made of conductive material according to the invention.
  • These documents are brought into the deposition chamber of a laser ablation deposition system. It is favorable to use an excimer laser as the laser, which, in contrast to CO 2 lasers, can also ablate tungsten without any problems.
  • the tungsten-containing component is deposited first, the scandium-containing component second, and the barium-containing component third.
  • the emission properties of the finished low-temperature cathode are influenced favorably if the gas atmosphere in the ablation deposition process consists of high-purity argon or argon / hydrogen. Furthermore, it is advantageous if the underlays for the cover layer are heated in the process.
  • the emitter complex is in the surface layer educated.
  • This activation step can be a thermal, voltage based Activation, a simple sintering or a superficial sintering in one Be a laser beam.
  • the thermal, voltage-based activation should take place under vacuum.
  • the simple option is to place the low-temperature cathode in the finished discharge tube to activate.
  • the cathode is heated to approx. 800 ° C and voltage created.
  • the associated current-voltage diagram also sets one Quality control.
  • the activation can also be carried out in a simple sintering at 800 ° C consist. In the case of cover layers with larger particles, the activation step in pulsed laser treatment at 1000 ° C to 1100 ° C.
  • the low-temperature cathodes according to the invention are distinguished by excellent Emission at low temperatures because it has a very low work function to have.
  • the total emission consists of glow emission and field emission.
  • the contribution of the glow emission according to the Richardson equation i 0 A R T 2 exp (- ⁇ / kT) falls below 1nA at 200 ° C.
  • field emission starts at a threshold of 1.2 kV, which very quickly delivers emission currents> 3 ⁇ A when the field is increased further.
  • diode spacing d 160 ⁇ m, as can be determined from the Child-Langmuir equation, there follows a field emission threshold field strength of 7.5 V / ⁇ m, which represents a very good value for cold emission and is only reached as a peak value by a few other cathodes ,

Description

Die Erfindung betrifft eine elektrische Entladungsröhre oder Entladungslampe mit einer oder mehreren Niedertemperaturkathoden, einen Flachbildschirm mit einer oder mehreren Niedertemperaturkathoden, eine Niedertemperaturkathode und ein Verfahren zur Herstellung der Niedertemperaturkathode.
Herkömmliche Bildschirme enthalten eine elektrische Entladungsröhre, die nach dem Prinzip der Braunschen Röhre arbeitet. Dabei werden Elektronen von einer Kathode aus beschleunigt, abgelenkt und treffen schließlich auf einen gekrümmten Leuchtschirm. Diese Bauart bedingt eine große Bautiefe oder eine starke Krümmung des Bildschirms, da sonst aufgrund der unterschiedlichen Wegstrecken von der Elektronenquelle zur Frontseite des Bildschirms nur die Darstellung der Zeichen in der Mitte scharf, am Rand jedoch verzerrt erscheinen würden.
Seit einer Reihe von Jahren sind auch Flachbildschirme auf dem Markt. Bei der Enwicklung von Flachbildschirmen konkurrieren mehrere Prinzipien. Die vorliegende Erfindung betrifft unter anderem Flachbildschirme mit aktiven Systemen, bei denen der Bildschirm nicht mit dem Licht der Umgebung arbeitet wie die Flüssigkristallbildschirme, sondern selbst leuchtet. Dazu gehören der Plasmabildschirm und die Flachbildröhre.
Flachbildschirme wurden für die drei Marktsegmente Büroautomatisierung, Audio/Video-Technik sowie Navigation und Unterhaltung entwickelt.
Im Bürobereich sind vorallem die mobilen Anwendungen zu nennen, angefangen vom Notebook-Computer, Personal Digital Assistant, Faxgerät bis hin zum Mobilte lefon. Im Audio- und Videobereich sollen die Flachbildschirme nicht nur in Camcordern Verwendung finden, sondern auch in Fernsehgeräten und Monitoren.
Der dritte Bereich umfaßt Flachbildschirme als Monitore für Navigationssysteme in Autos und Flugzeugen, aber auch die Displays von Spielekonsolen.
Der große Platzbedarf der Braunschen Röhre ist ein Nachteil. Er wird dadurch verursacht, daß alle Elektronen aus einer einzigen Kathode bereitgestellt werden und über Ablenkeinheiten auf die gewünschte Stelle des Leuchtschirms gebracht werden und so für alle Bildpunkte zuständig sind. Die Kathoden dieser konventionellen Kathodenstrahlröhren sind Glühkathoden ("Thermionische Kathoden"). Die Elektronenstrahlerzeugung beruht auf der Glühemission. Die konventionelle heizbare Kathode besteht z.B. aus einem Nickelröhrchen, auf dessen Stirnseite eine besonders leicht Elektronen emittierende Oxidschicht, z.B. aus Bariumoxid, aufgebracht ist. Der isoliert in das Nickelröhrchen eingebettete Heizdraht bringt die Kathode auf etwa 1200 Kelvin (900°C), so daß Elektronen aus der Oxidschicht in das Vakuum der Röhre "herausgedampft" werden.
Bei den flachen Bildschirmen werden dagegen die Elektronen in mehreren Drahtkathoden, Flachbandkathoden oder in flächigen Feldemittern erzeugt. Jede Kathode ist daher nur für wenige Bildpunkte verantwortlich.
Für alle Arten von Flachbildschirmen ist die Herstellung entsprechender Kathoden eine Schlüsseltechnologie. Es sind bereits beträchtliche Anstrengungen unternommen worden, um an die Flachbildschirmtechnik angepasste Kathoden und neue Kathodenwerkstoffe zu entwickeln. Die ausgedehnten Drahtkathoden, Flachbandkathoden oder Flächenkathoden, die in Flachbildschirmen eingesetzt werden, können mit deutlich niederer Emission als die konventionelle Punktkathode betrieben werden. Nachdem es ein Nachteil der herkömmlichen Glühkathoden ist, das die hohe Kathodentemperatur konstant gehalten werden muß und die Heizung zusätzlich Energie verbraucht, betrifft eine dieser Entwicklungen die Herstellung von Kaltkathoden.
Bisherige Entwicklungen auf dem Gebiet der Kaltkathoden sind z.B. Spitzen-Feldemitter (Microtip-Emitter) oder Halbleiteremitter (AC-Kathoden = Avalanche Cold Cathodes). siehe z.B. WO-A-9 423 571, die ein mikrokristallines Emissionmaterial aus amorphen Diamant beschreibt. Ein Nachteil der Spitzen-Feldemitterkathoden ist das Ausbrennen einzelner Spitzen und das hohe Stromrauschen der einzelnen Spitzen. AC-Kathoden haben den Nachteil, daß deren Emission extrem lokalisiert ist und eine hohe Justiergenauigkeit bei der Kathodenpositionierung erfordert.
Es ist daher die Aufgabe der vorliegenden Erfindung, eine elektrische Entladungsröhre oder Entladungslampe mit einer verbesserten Kathode zur Verfügung zu stellen. Ein weiterer Aspekt der Erfindung betrifft einen Flachbildschirm mit einer verbesserten Kathode und eine verbesserte Kathode .
Erfindungsgemäß wird die Aufgabe gelöst durch eine elektrische Entladungsröhre oder Entladungslampe mit ein oder mehreren Niedertemperaturkathoden, die eine Halterung, gegebenenfalls mit einer Heizung oder Kühlung, eine auf der Halterung aufgebrachte leitfähigen Unterschicht, gegebenenfalls ein Substrat mit Dispensionsmaterial, und eine Deckschicht mit einer Nanostruktur aus ultrafeinen Partikeln, wobei die Deckschicht eine Oberflächenschicht aus aus einem Emissionsmaterial mit mehreren Komponenten formierten Emitterkomplex hat, umfaßen.
Derartige Entladungsröhren oder Entladungslampen zeichnen sich durch hohe Zuverlässigkeit und eine lange Lebensdauer bei üblicher Belastung aus. Die Emission ist stabil, dies begünstigt eine konstante Bildqualität während der gesamten Lebensdauer der Entladungslampe oder Entladungsröhre. Die erfindungsgemäßen Entladungsröhren oder Entladungslampen haben kurze Schaltzeiten und bieten den Vorteil, daß ihre Konstruktion vereinfacht und ihr Energieverbrauch niedrig ist.
Eine bevorzugte Ausführungsform der erfindungsgemäßen Entladungsröhren oder Entladungslampen ist dadurch gekennzeichnet, daß sie eine Gitter-Steuerelektrode umfaßt.
Mit einer derartigen Gitter-Steuerelektrode ist es möglich, die Emission einer von mehreren erfindungsgemäßen Niedertemperaturkathoden oder einzelne Oberflächensegmente einer Niedertemperaturkathode über die Änderung der Feldstärke zu steuern.
Ein Flachbildschirm nach der Erfindung enthält ein oder mehreren Niedertemperaturkathoden, die eine Halterung, gegebenenfalls mit einer Heizung oder Kühlung, eine auf der Halterung aufgebrachte leitfähigen Unterschicht, gegebenenfalls ein Substrat mit Dispensionsmaterial, und eine Deckschicht mit einer Nanostruktur aus ultrafeinen Partikeln, wobei die Deckschicht eine Oberflächenschicht aus aus einem Emissionsmaterial mit mehreren Komponenten formierten Emitterkomplex hat, umfaßen.
Ein Flachbildschirm nach der Erfindung ist leicht herzustellen, da für die Fertigung keine Submikron-Lithographie erforderlich ist. Er hat einen niedrige Energieverbrauch, er ist heller und kann innerhalb weiter Temperaturbereiche der Umgebungstemperatur betrieben werden, von -30°C bis 100°C. Er hat eine sehr gute Auflösung und ist für Schwarz/Weiß-Bildschirme und Farbbildschirme geeignet.
Eine Niedertemperaturkathode nach der Erfindung setzt sich zusammen aus einer Halterung, gegebenenfalls mit einer Heizung oder Kühlung, einer auf der Halterung aufgebrachte leitfähigen Unterschicht, gegebenenfalls einem Substrat mit Dispensionsmaterial, und einer Deckschicht mit einer Nanostruktur aus ultrafeinen Partikeln, wobei die Deckschicht eine Oberflächenschicht aus aus einem Emissionsmaterial mit mehreren Komponenten formierten Emitterkomplex hat.
Derartige Niedertemperaturkathoden bieten die folgenden Vorteile:
  • niedrige Austrittsarbeit auf der makroskopischen Oberfläche
  • hohe Dichte an "Kristallitspitzen" aus ultrafeinen Partikeln
  • niedriger Krümmungsradius der emittierenden Kristallitspitzen, dies unterbindet ein Ausbrennen der Spitzen
  • hohe elektrische Leitfähigkeit und gute Strombelastbarkeit.
  • unempfindlich gegen Kontamination
  • große Uniformität
  • hohe Emissionsreserve bei Ionenbombardement.
Nach einer bevorzugten Ausführungsform der Niedertemperaturkathode nach der Erfindung ist sie dadurch gekennzeichnet, daß sie für eine Betriebstemperatur zwischen 20°C und 500°C hergerichtet ist.
Die erfindungsgemäße Niedertemperaturkathode kann einerseits als echte Kaltkathode verwendet werden, und ist besonders gut als kalter steuerbarer Elektronenemitter für flache Displays geeignet. Andererseits kann mit einer moderaten Heizung auf eine Betriebstemperatur von 200°C bis 300°C die Schwellenfeldstärke auf fast Null reduziert werden. Bei 500°C, also 250 °C unter der Betriebstemperatur von Oxiddrahtkathoden, wird bereits die für Linienkathoden erforderliche Stromdichte von 0,1 A/cm2 erreicht.
Es ist bevorzugt, daß das Emissionsmaterial eine erste Komponente, die Metalle, insbesondere Refraktärmetalle, und deren Legierungen enthält, eine zweite Komponente, die Scandium, Yttrium, Lathan, den Lanthaniden, oder Aktiniden, und/oder deren Verbindungen, insbesondere deren Oxide, enthält und/oder eine dritte Komponente, die Erdalkalien und/oder deren Verbindungen enthält, umfaßt.
Aus diesen Komponenten entsteht bei der Formierung ein Emitterkomplexes mit einer besonders niedrigen Austrittsarbeit.
Nach einer besonders bevorzugten Ausführungsform umfaßt das Emissionsmaterial als erste Komponente Wolfram, als zweite Komponente oxidische Verbindungen des Scandiums und als dritte Komponenten oxidische Verbindungen des Bariums.
Mit dieser Zusammensetzung des Emissionsmaterials wurden die niedrigsten Werte für die Austrittsarbeit erreicht.
Es ist bevorzugt, daß die Komponenten des Emissionsmaterials einzeln oder gemeinsam in der Unterschicht und/oder dem Substrat und/oder der Deckschicht enthalten sind. Auf diese Art und Weise kann ein Reservoir an Emissionsmaterial zur Bildung des Emitterkomplexes zur Verfügung gestellt werden.
Es ist bevorzugt, daß der formierte Emitterkomplex eine Austrittsarbeit < 2.8 eV hat.
Besondere Vorteile zeigt eine Niedertemperaturkathode, die dadurch gekennzeichnet ist, daß die ultrafeinen Partikel eine Korngröße von 1 bis 100 nm haben. Sie sind besonders gut als Feldemitter geeignet, da sie Oberflächenstrukturen und Oberflächenmodulationen aus Partikeln im Durchmesserbereich von 1 bis 100 nm aufweisen, also relativ kleine Krümmungsradien in dichter Partikel- und Spitzenverteilng auf der makroskopischen Oberfläche aufweisen.
Es ist bevorzugt, daß die Nanostruktur der Deckschicht nanokristallin oder nanoamorph und gegebenenfalls nanoporös ist und die Strukturgröße 1 bis 1000 nm beträgt.
Die Erfindung hat weiterhin die Aufgabe, ein Herstellungsverfahren für die erfindungsgemäßen Niedertemperaturkathoden zur Verfügung zu stellen.
Erfindungsgemäß wird diese Aufgabe durch ein Verfahren gelöst, bei dem in einem ersten Schritt ein Vorkörper mit einer Halterung, mit einer auf der Halterung aufgebrachten leitfähigen Unterschicht, mit gegebenenfalls einem Substrat mit Dispensionsmaterial und mit einer Deckschicht mit einer Nanostruktur aus ultrafeinen Partikeln, und der die Komponenten des Emissionsmaterials einzeln oder gemeinsam in der Unterschicht und/oder dem Substrat und/oder der Deckschicht enthält, hergestellt wird und in einem zweiten Schritt der Emitterkomplex als Oberflächenschicht auf der Deckschicht formiert wird.
Durch dieses Verfahren werden sehr gleichmäßig emittierende Niedertemperaturkathoden erhalten, deren Emissionseigenschaften, insbesondere die Kaltemission wenig streut.
Es ist bevorzugt, daß die Formierung bei einer Temperatur ≥ 800°C im Ultrahochvakuum oder Hochvakuum mit einem Restgasdruck und unter Anlegen eines elektrischen Feldes erfolgt.
Es ist besonders bevorzugt, daß der Restgasdruck ≤ 10-4 mbar ist und das Restgas Edelgase , Stickstoff, Wasserstoff und/oder Sauerstoff mit einem Partialdruck von jeweils ≤ 10-5 mbar enthält.
Es ist weiterhin ein Verfahren bevorzugt, bei dem die Formierung durch eine Sinterbehandlung bei einer Temperatur > 500°C und unter Vakuum oder einer Gasatmosphäre, die Edelgase, Stickstoff, Wasserstoff und/oder Sauerstoff enthält, erfolgt.
Es ist bevorzugt, daß die Deckschicht mit einer Nanostruktur aus ultrafeinen Partikeln durch Laser-Ablationsabscheidung hergestellt wird.
Es ist besonders bevorzugt, daß die Laserablationsabscheidung bei Unterdruck erfolgt. Dies ergibt eine besonders dünne und gleichmäßige Deckschicht.
Im folgenden wird die Erfindung anhand einer Figur weiter erläutert und es werden Beispiele angegeben.
Fig. 1 zeigt die Strom-Spannungscharakteristika einer Niedertemperaturkathode gemäß der Erfindung bei 300°C, 200°c und Raumtemperatur.
Eine elektrische Entladungsröhre oder Entladungslampe besteht aus vier Funktionsgruppen, der Elektronenstrahlerzeugung, der Strahlfokussierung, der Strahlablenkung und dem Leuchtschirm.
Das Elektronenstrahlerzeugungssystem der erfindungsgemäßen Entladungsröhren oder Entladungslampen enthält eine Anordnung aus ein oder mehreren Niedertemperaturkathoden. Beispielsweise kann das Elektronenstahlerzeugungssystem eine Punktkathode oder ein System aus ein oder mehreren Drahtkathoden, Flachbandkathoden oder Flächenkathoden sein. Drahtkathoden, Flachbandkathoden und Flächenkathoden müssen nicht über ihre gesamte Fläche aktiviert sein, sie können die aktive Deckschicht auch nur in einzelnen Oberflächensegmenten enthalten.
Das Elektronenstrahlerzeugungssystem kann weiterhin eine Gitter-Steuerelektrode enthalten, über die jeweils eine von mehreren der erfindungsgemäßen Niedertemperaturkathoden oder ein oder mehrere Oberflächensegmente einer Niedertemperaurkathode gesteuert werden können. Über diese Gitter-Steuerelektrode wird eine elektrische Feldstärke E mit Werten 5 V/µ ≤ E ≤ 15 V/µm angelegt und die Emission dieser Segmente oder Einzelkathoden über die Änderung der Feldstärke gesteuert.
Ein Flachbildschirm gemäß der Erfindung kann eine modifizierte Kathodenstrahlröhre, eine Flachbildröhre, oder deren Abwandlung, das Feldemitter-Display, sein. Besonders bezieht sich die Erfindung auf ein Feldemitter-Display. Feldemitter-Displays sind eine Abwandlungen der Kathodenstrahlröhren. Beide benutzen einen energiereichen Elektronenstrahl, um lichtemittierende Leuchtstoffe zu aktivieren und ein Bild zu erzeugen. Bei der konventionellen Kathodenstrahlröhre tastet ein einziger Elektronenstrahl von jeder der drei ziemlich großen Elektronenkanonen - je einen für jede Farbe - nacheinander jeden der vielen Bildelemente (Pixel) ab. Dagegen stellt das Elektronenerzeugungssystem eines Feldemitter-Displays unzählige kleine Elektronenquellen zur Verfügung, eine für jedes Pixel.
Das Feldemitter-Display gemäß der Erfindung kann damit den folgenden Aufbau haben: Zwei Glasplatten, eine Anodenplatte und eine Katkhodenplatte sind durch Abstandshalter getrennt. Die Kathodenplatte hat metallisch leitende Streifen, die mit einer dünnen Schicht Kaltkathodenmaterial gemäß der Erfindung bedeckt sind. Die Anodenplatte weist ähnliche Streifen auf, die einen transparenten Leiter, z.B. aus dotiertem Zinnoxid, als Grundschicht haben und als Deckschicht eine Schicht mit einem Leuchtstoff. Anodenplatte und Kathodenplatte werden mit Abstandshaltern miteinander verbunden, wobei die Kathoden- und Anodenstreifen um 90° gegeneinander gedreht und einander zugewandt sind. Die beiden Platten werden vakuumdicht verbunden. Außen wird ein elektronische Schaltung angebracht, die es erlaubt, daß jeder Streifen unabhängig angesteuert werden kann. Das Prinzip dieser Ausführungsform ist das einer matrixgesteuerten Diode.
Nach einer anderen Ausführungsform kann der erfindungsgemäße Flachbildschirm eine Flachbildröhre sein, die eine Reihe von linearen Drahtkathoden enthält, aus denen ein Strahlenbündel erzeugt wird, wobei jeder Einzelstrahl einem kleinen rechteckigen Bereich des Bildschirms zugeordnet ist.
Die Niedertemperaturkathoden gemäß der Erfindung können nach ihrer Bauart Punktkathoden oder Drahtkathoden sein. Besonders vorteilhafte Eigenschaften erreicht man jedoch, wenn die erfindungsgemäßen Kathoden als Flächenkathoden ausgebildet sind. Dazu können sie auf ein Flachbandsubstrat aufgebracht werden, oder auf eine Platte, bei der emittierende Kathodenstreifen oder -segmente durch isolierende Streifen getrennt sind. Auch eine Bauart mit großflächigem "Emitterrasen" ist möglich.
Die Halterung kann eine Siliziumscheibe oder eine Glasplatte sein, z.B. für ein Feldemitter-Display. Die Halterung kann aber auch ein Draht sein, z.B. für flache Bildschirmröhren mit mehreren Kathodendrähten. Für punktförmige Kathoden kann die Halterung auch aus den bekannten Metallröhrchen aus Nickel, Molybdän o.ä. bestehen, die mit einer Heizspule ausgestattet ist, die es erlaubt, die Kathode bei Temperaturen bis 500°C, insbesondere bei 200°C bis 300°C, zu betreiben.
Die leitfähige Unterschicht besteht üblicherweise aus einem Metall, z.B. Wolfram. Es kann auch aus mehreren Metallschichten bestehen, z.B. aus einer Wolframschicht und einer Wolfram/Rheniumschicht.
Das Substrat im Sinne der Erfindung kann eine poröse Wolframschicht sein, wie sie aus herkömmlichen I-Kathoden bekannt ist. Derartige poröse Wolframschichten können im Schichtkörper Rhenium, Iridium, Osmium, Ruthenium, Tantal, Molybdän oder Scandiumoxid enthalten. Diese porösen Schichten mit Perkolationsstruktur werden pulvermetallurgisch erzeugt. In den Poren der Schicht enthalten sie eine Bariumverbindung als Bariumquelle. Derartige Bariumverbindungen sind beispielsweise oxidische Barium- Calcium-Aluminiumverbindungen, der allgemeinen Zusammensetzung xBaO2 yCaO zAl2O3 mit x=4, y=1, z=1 oder x=5, y=3, z=2 oder x=5, y=3, z=0. Nach der Formierung ist die Deckschicht mit einer aktiven Oberflächenschicht bedeckt, die eine sehr niedrige Austrittsarbeit hat. Diese Schicht ist sehr dünn, in der Größenordnung einer Monolage, und enthält einen Emitterkom plex, der Barium, Scandium und Sauerstoff enthält.
Nach einer anderen Ausführungsform der Erfindung besteht die kompakte, flächige Unterschicht aus Wolfram, das Rhenium, Iridium, Osmium, Ruthenium, Tantal, Molybdän oder Scandiumoxid enthält.
Bei dieser Ausführungsform entfällt die Substratschicht. Die Deckschicht enthält Wolfram, das mit Rhenium, Osmium, gegebenenfalls auch mit Iridium, Ruthenium, Tantal, und/oder Molybdän legiert ist. Weiterhin enthält sie auch Scandiumoxid oder Scandiumoxid gemischt mit den Oxiden anderer Seltenerdmetalle wie Europium, Samarium und Cer. Es ist auch möglich, daß sie aus Scandiumwolframaten, wie Sc6WO12 oder Sc2W3O12 besteht.
Die Deckschicht kann aber auch mehrschichtig, insbesondere als Doppelschicht, aus den oben genannten Schichtzusammensetzungen aufgebaut sein, wobei dann die besten Ergebnisse erzielt werden, wenn eine scandiumhaltige Schicht die äußere Schicht ist. Diese Deckschicht enthält weiterhin eine Bariumquelle, die eine bariumhaltige oxidische Verbindung wie BaO oder xBaO2 yCaO zAl2O3 mit x=4, y=1, z=1 oder x=5, y=3, z=2 oder x=5, y=3, z=0, sein kann. Diese bariumhaltigen Verbindungen können mit Calcium- oder Strontiumoxid gemischt werden.
Diese Deckschicht ist bevorzugt 100 bis 500nm dick. Der Wolframanteil der Deckschicht besteht aus ultrafeinen Partikeln mit einem Durchmesser von 1 bis 50 nm, die in einer nanostrukturierten Schicht abgeschieden wurden. Die anderen beiden Komponenten werden ebenfalls als ultrafeine Partikel abgeschieden und liegen teils zwischen, teils auf den Wolframpartikeln. Aus den drei Komponenten wird bei der Aktivierung der emittierende Oberflächenkomplex gebildet, der als Oberflächenschicht auf der Deckschicht liegt.
Die erfindungsgemäßen Niedertemperaturkathoden werden in einem zweistufigen Verfahren hergestellt.
Es ist möglich von bekannten Kathodentypen, wie z.B. L-Kathoden, I-Kathoden, B-Kathoden oder M-Kathoden auszugehen und ein Hybrid aus diesen Unterlagen mit der neuen Deckschicht herzustellen. Andererseits ist es auch möglich, Gas- oder Siliziumscheiben zu verwenden, die mit einer Unterschicht aus leitfähigem Material gemäß der Erfindung beschichtet sind. Diese Unterlagen werden in die Depositionskammer einer Laser-Ablations-Depositionsanlage gebracht. Es ist günstig, als Laser einen Excimer-Laser zu verwenden, der im Gegensatz zu CO2-Lasern auch Wolfram problemlos ablatieren kann. Als erstes wird die wolframhaltige Komponente abgeschieden, als zweites die scandiumhaltige und als drittes die bariumhaltige. Es ist günstig, Multitargets zu verwenden, die alle drei Komponenten auf einer Targetanordnung enthalten. Die Emissionseigenschaften der fertigen Niedertemperaturkathode werden günstig beeinflußt, wenn die Gasatmosphäre bei dem Ablations-Depositionsverfahren aus hochreinem Argon oder Argon/Wasserstoff besteht. Weiterhin ist es günstig, wenn die Unterlagen für die Deckschicht bei dem Verfahren geheizt werden.
In dem zweiten Verfahrenschritt wird der Emitterkomplex in der Oberflächenschicht gebildet. Dieser Aktivierungsschritt kann eine thermische, spannungsgestützte Aktivierung, eine einfache Sinterung oder eine oberflächliche Sinterung in einem Laserstrahl sein.
Die thermische, spannungsgestützte Aktivierung soll unter Vakuum erfolgen. Ein einfache Möglichkeit ist es, die Niedertemperaturkathode in der fertigen Entladungsröhre zu aktivieren. Dazu wird die Kathode auf ca. 800°C hochgeheizt und Spannung angelegt. Das zugehörige Strom-Spannungsdiagramm stellt gleichzeitig eine Qualitätskontrolle dar.
Wenn die Deckschicht aus sehr feinen Partikeln mit einer mittleren Korngröße > 10 nm besteht, kann die Aktivierung auch in einer einfachen Sinterung bei 800°C bestehen. Bei Deckschichten mit größeren Teilchen kann der Aktivierungsschritt in einer gepulsten Laserbehandlung bei 1000°C bis 1100°C bestehen.
Die erfindungsgemäßen Niedertemperaturkathoden zeichnen sich durch hervorragendes Emission bei niedrigen Temperaturen aus, weil sie eine sehr niedrige Austrittsarbeit haben.
In Fig. 1 is die Strom-Spannungscharakteristik von erfindungsgemäßen Niedertemperaturkathoden in doppelt logarithmischer Auftragung bei 300°C, 200°C und bei Zimmertempeeratur daargestellt. Dabei wurden die Temperaturen als Strahlungstemperaturen angegeben. Sie wurden pyrometrisch bestimmt.
Die Gesamtemission setzt sich aus Glühemission und Feldemission zusammen. Der Beitrag der Glühemission gemäß der Richardson-Gleichung i0 = AR T2 exp (-/kT) fällt bei 200°C schon unter 1nA ab. Jedoch setzt ab einer Schwelle von 1.2 kV Feldemission ein, die bei weiterer Felderhöhung sehr schnell Emissionströme > 3µA liefert. Bei einem Diodensabstand d = 160 µm, wie er aus der Child-Langmuir-Gleichung bestimmt werden kann, folgt eine Feldemissionsschwellenfeldstärke von 7,5 V/µm, die einen sehr guten Wert für Kaltemission darstellt und nur von wenigen anderen Kathoden als Spitzenwert erreicht wird.
Bei einem ALT-Test wurde eine Lebensdauer von 1000 Stunden erreicht.

Claims (17)

  1. Niedertemperaturkathode, die eine Halterung, gegebenenfalls mit einer Heizung oder Kühlung, eine auf der Halterung aufgebrachte leitfähigen Unterschicht, gegebenenfalls ein Substrat mit Dispensionsmaterial, und eine Deckschicht mit einer Nanostruktur aus ultrafeinen Partikeln, wobei die Deckschicht eine Oberflächenschicht aus aus einem Emissionsmaterial mit mehreren Komponenten formierten Emitterkomplex hat, umfaßt.
  2. Elektrische Entladungsröhre oder Entladungslampe mit ein oder mehreren Niedertemperaturkathoden gemäß Anspruch 1.
  3. Elektrische Entladungsröhre oder Entladungslampe nach Anspruch 2,
    dadurch gekennzeichnet, daß sie eine Gitter-Steuerelektrode umfaßt.
  4. Flachbildschirm mit ein oder mehreren Niedertemperaturkathoden, gemäß Anspruch 1.
  5. Niedertemperaturkathode nach Anspruch 1,
    dadurch gekennzeichnet, daß sie für eine Betriebstemperatur zwischen 20°C und 500°C hergerichtet ist.
  6. Niedertemperaturkathode nach Anspruch 1 und 5,
    dadurch gekennzeichnet, daß das Emissionsmaterial eine erste Komponente, die Metalle, insbesondere Refraktärmetalle, und deren Legierungen enthält, eine zweite Komponente, die Scandium, Yttrium, Lathan, den Lanthaniden, oder Aktiniden, und/oder deren Verbindungen, insbesondere deren Oxide, enthält und/oder eine dritte Komponente, die Erdalkalien und/oder deren Verbindungen enthält, umfaßt.
  7. Niedertemperaturkathode nach Anspruch 1, 5 und 6,
    dadurch gekennzeichnet, daß das Emissionsmaterial als erste Komponente Wolfram, als zweite Komponente oxidische Verbindungen des Scandiums und als dritte Komponenten oxidische Verbindungen des Bariums enthält.
  8. Niedertemperaturkathode nach Anspruch 1 und 5 bis 7,
    dadurch gekennzeichnet, daß die Komponenten des Emissionsmaterials einzeln oder gemeinsam in der Unterschicht und/oder dem Substrat und/oder der Deckschicht enthalten sind.
  9. Niedertemperaturkathode nach Anspruch 1 und 5 bis 8,
    dadurch gekennzeichnet, daß der formierte Emitterkomplex eine Austrittsarbeit < 2.8 eV hat.
  10. Niedertemperaturkathode nach Anspruch 1 und 5 bis 9,
    dadurch gekennzeichnet, daß die ultrafeinen Partikel eine Korngröße von 1 bis 100 nm haben.
  11. Niedertemperaturkathode nach Anspruch 1 und 5 bis 10,
    dadurch gekennzeichnet, daß die Nanostruktur der Deckschicht nanokristallin oder nanoamorph und gegebenenfalls nanoporös ist und die Strukturgröße 1 bis 1000 nm beträgt.
  12. Verfahren zur Herstellung einer Niedertemperaturkathode nach Anspruch 1,
    wobei in einem ersten Schritt ein Vorkörper mit einer Halterung, mit einer auf der Halterung aufgebrachten leitfähigen Unterschicht, mit gegebenenfalls einem Substrat mit Dispensionsmaterial und mit einer Deckschicht mit einer Nanostruktur aus ultrafeinen Partikeln, und der die Komponenten des Emissionsmaterials einzeln oder gemeinsam in der Unterschicht und/oder dem Substrat und/oder der Deckschicht enthält, hergestellt wird und
    in einem zweiten Schritt der Emitterkomplex als Oberflächenschicht auf der Deckschicht formiert wird.
  13. Verfahren nach Anspruch 12,
    dadurch gekennzeichnet, daß die Formierung bei einer Temperatur ≥ 800°C im Ultrahochvakuum oder Hochvakuum mit einem Restgasdruck und unter Anlegen eines elektrischen Feldes erfolgt.
  14. Verfahren nach Anspruch 13,
    dadurch gekennzeichnet, daß der Restgasdruck ≤ 10-4 mbar ist und das Restgas Edelgase , Stickstoff, Wasserstoff und/oder Sauerstoff mit einem Partialdruck von jeweils ≤ 10-5 mbar enthält.
  15. Verfahren nach Anspruch 12 bis 14,
    dadurch gekennzeichnet, daß die Formierung durch eine Sinterbehandlung bei einer Temperatur > 500°C und unter Vakuum oder einer Gasatmosphäre, die Edelgase, Stickstoff, Wasserstoff und/oder Sauerstoff enthält, erfolgt.
  16. Verfahren nach Anspruch 12 bis 15,
    dadurch gekennzeichnet, daß die Deckschicht mit einer Nanostruktur aus ultrafeinen Partikeln durch Laser-Ablationsabscheidung hergestellt wird.
  17. Verfahren nach Anspruch 16,
    dadurch gekennzeichnet, daß die Laserablationsabscheidung bei Unterdruck erfolgt.
EP96201180A 1995-05-02 1996-04-29 Elektrische Entladungsröhre oder Entladungslampe, Flachbildschirm, Niedertemperaturkathode und Verfahren zu deren Herstellung Expired - Lifetime EP0741402B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19515596A DE19515596A1 (de) 1995-05-02 1995-05-02 Elektrische Entladungsröhre oder Entladungslampe, Flachbildschirm, Niedertemperaturkathode und Verfahren zu deren Herstellung
DE19515596 1995-05-02

Publications (3)

Publication Number Publication Date
EP0741402A2 EP0741402A2 (de) 1996-11-06
EP0741402A3 EP0741402A3 (de) 1997-11-26
EP0741402B1 true EP0741402B1 (de) 2003-08-27

Family

ID=7760557

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96201180A Expired - Lifetime EP0741402B1 (de) 1995-05-02 1996-04-29 Elektrische Entladungsröhre oder Entladungslampe, Flachbildschirm, Niedertemperaturkathode und Verfahren zu deren Herstellung

Country Status (4)

Country Link
US (1) US5866975A (de)
EP (1) EP0741402B1 (de)
JP (1) JPH08306301A (de)
DE (2) DE19515596A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL312940A1 (en) * 1994-06-16 1996-05-27 Firmenich & Cie Seasoning composition and method
US6344271B1 (en) * 1998-11-06 2002-02-05 Nanoenergy Corporation Materials and products using nanostructured non-stoichiometric substances
CA2229290A1 (en) * 1997-05-16 1998-11-16 John T. Jankowski Discharge lamp electrode
JP3902883B2 (ja) * 1998-03-27 2007-04-11 キヤノン株式会社 ナノ構造体及びその製造方法
US6120857A (en) * 1998-05-18 2000-09-19 The Regents Of The University Of California Low work function surface layers produced by laser ablation using short-wavelength photons
US6965199B2 (en) * 2001-03-27 2005-11-15 The University Of North Carolina At Chapel Hill Coated electrode with enhanced electron emission and ignition characteristics
EA003573B1 (ru) * 2001-06-29 2003-06-26 Александр Михайлович Ильянок Плоский дисплей с самосканирующей разверткой
KR100530765B1 (ko) * 2002-10-04 2005-11-23 이규왕 나노 다공성 유전체를 이용한 플라즈마 발생장치
WO2005106913A1 (en) * 2004-04-28 2005-11-10 Kye-Seung Lee Flat tzpe fluorescent lamp
DE102004043247B4 (de) * 2004-09-07 2010-04-15 Osram Gesellschaft mit beschränkter Haftung Elektrode für Hochdruckentladungslampen sowie Hochdruckentladungslampe mit derartigen Elektroden
CN103713420A (zh) * 2013-12-30 2014-04-09 京东方科技集团股份有限公司 一种阵列基板及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1410641A (fr) * 1963-10-04 1965-09-10 Philips Nv Corps métallique poreux et son procédé de fabrication
US4160191A (en) * 1977-12-27 1979-07-03 Hausfeld David A Self-sustaining plasma discharge display device
US4810926A (en) * 1987-07-13 1989-03-07 Syracuse University Impregnated thermionic cathode
JPH01225040A (ja) * 1988-03-02 1989-09-07 Hitachi Ltd 電子放出用電極及び表示装置
JPH06203742A (ja) * 1992-12-29 1994-07-22 Canon Inc 電子放出素子、電子線発生装置及び画像形成装置
JPH08510858A (ja) * 1993-06-02 1996-11-12 マイクロイレクトラニクス、アンド、カムピュータ、テクナラジ、コーパレイシャン 非晶質ダイヤモンド・フイルムの平坦な電界放出陰極
ATE167755T1 (de) * 1993-10-28 1998-07-15 Philips Electronics Nv Vorratskathode und herstellungsverfahren
US5623180A (en) * 1994-10-31 1997-04-22 Lucent Technologies Inc. Electron field emitters comprising particles cooled with low voltage emitting material

Also Published As

Publication number Publication date
JPH08306301A (ja) 1996-11-22
DE19515596A1 (de) 1996-11-07
EP0741402A3 (de) 1997-11-26
DE59610682D1 (de) 2003-10-02
EP0741402A2 (de) 1996-11-06
US5866975A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
Talin et al. Field emission displays: a critical review
DE60014461T2 (de) Feld Emissions Vorrichtung mit ausgerichteten und verkürzten Kohlenstoffnanoröhren und Herstellungsverfahren
DE60021778T2 (de) Kohlenstofftinte, elektronenemittierendes Element, Verfahren zur Herstellung eines elektronenemittierenden Elements und Bildanzeigevorrichtung
US6414442B1 (en) Field emission display device with conductive layer disposed between light emitting layer and cathode
US5341063A (en) Field emitter with diamond emission tips
DE69816479T2 (de) Feldemissionselektronenmaterialen und herstellungsverfahren
DE10122602B4 (de) Nanoröhren-Emitterstruktur für eine Feldemissionsanzeige
EP0741402B1 (de) Elektrische Entladungsröhre oder Entladungslampe, Flachbildschirm, Niedertemperaturkathode und Verfahren zu deren Herstellung
US20010017515A1 (en) Display device using thin film cathode and its process
DE4026301A1 (de) Elektronenemitter einer roentgenroehre
EP0012920B1 (de) Leuchtschirm für Bildanzeigeröhren und Verfahren zu seiner Herstellung
US6215243B1 (en) Radioactive cathode emitter for use in field emission display devices
EP1302964A1 (de) Durch elektrisches Feld verbesserter Elektronenerzeuger mit MIS/MIM Struktur
EP0757370B1 (de) Elektrische Entladungsröhre oder Entladungslampe und Scandat-Vorratskathode
EP1232511B1 (de) Oxidkathode
US6833659B2 (en) Cathode ray tube comprising a cathode of a composite material
DE19828729B4 (de) Scandat-Vorratskathode mit Barium-Calcium-Aluminat-Schichtabfolge und korrespondierende elektrische Entladungsröhre
US6759799B2 (en) Oxide-coated cathode and method for making same
US6144145A (en) High performance field emitter and method of producing the same
DE1201865B (de) Schirm fuer Fernsehaufnahmeroehren vom Vidicontyp
DE69838476T2 (de) Elektronenquelle mit Fotokathode und Extraktionsgitter
JP4593816B2 (ja) 電子放出素子、画像形成装置及び電子放出素子の製造方法
DE10045406A1 (de) Kathodenstrahlröhre mit dotierter Oxidkathode
DE60032466T2 (de) Kathodenstruktur für eine feldemissionsanzeigevorrichtung
DE19961672B4 (de) Scandat-Vorratskathode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980526

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS PATENTVERWALTUNG GMBH

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59610682

Country of ref document: DE

Date of ref document: 20031002

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20031121

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59610682

Country of ref document: DE

Owner name: PHILIPS GMBH, DE

Free format text: FORMER OWNER: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH, 20099 HAMBURG, DE

Effective date: 20140327

Ref country code: DE

Ref legal event code: R081

Ref document number: 59610682

Country of ref document: DE

Owner name: PHILIPS DEUTSCHLAND GMBH, DE

Free format text: FORMER OWNER: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH, 20099 HAMBURG, DE

Effective date: 20140327

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: PHILIPS INTELLECTUAL PROPERTY S

Effective date: 20141126

Ref country code: FR

Ref legal event code: CA

Effective date: 20141126

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59610682

Country of ref document: DE

Representative=s name: MEISSNER, BOLTE & PARTNER GBR, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59610682

Country of ref document: DE

Owner name: PHILIPS GMBH, DE

Free format text: FORMER OWNER: PHILIPS DEUTSCHLAND GMBH, 20099 HAMBURG, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20150430

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150430

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150630

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59610682

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160428