EP0591049B1 - Method for antenna calibration in the near field for active antenna - Google Patents

Method for antenna calibration in the near field for active antenna Download PDF

Info

Publication number
EP0591049B1
EP0591049B1 EP93402377A EP93402377A EP0591049B1 EP 0591049 B1 EP0591049 B1 EP 0591049B1 EP 93402377 A EP93402377 A EP 93402377A EP 93402377 A EP93402377 A EP 93402377A EP 0591049 B1 EP0591049 B1 EP 0591049B1
Authority
EP
European Patent Office
Prior art keywords
antenna
active
sources
near field
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402377A
Other languages
German (de)
French (fr)
Other versions
EP0591049A1 (en
Inventor
Gerard Caille
Thierry Dusseux
Chritian Feat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Alcatel Alsthom Compagnie Generale dElectricite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA, Alcatel Alsthom Compagnie Generale dElectricite filed Critical Alcatel SA
Publication of EP0591049A1 publication Critical patent/EP0591049A1/en
Application granted granted Critical
Publication of EP0591049B1 publication Critical patent/EP0591049B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices

Definitions

  • the present invention relates to the measurement and manufacture of active antennas, which include a large number N of channels in parallel. Antennas active use this number N of channels to form the antenna radiation pattern, by superimposition fields resulting from the excitation of each element.
  • the invention relates to a calibration method active antennas, which, from measurements in near field on the antenna and its radiating sources, allows, by a specific calculation, the determination of control parameters to be applied to active modules, and the resulting fields in the far field.
  • the active antenna, object of the method according to the invention can operate either in transmission or in reception, either in the two configurations alternation (case of radar antennas).
  • the signal from a low level centralized transmitter is divided into N signals assumed to be identical on N channels at using a power distributor; then on each channel, an active module amplifies the signal according to a controllable gain, and applies a controllable phase shift, before transmitting the amplified signal to the source radiant (see Figure 1).
  • the signal received on each radiating source is amplified and phase shifted in an active module whose gain and phase shift are controllable.
  • the N signals amplified on the N channels are then brought together by a power, and transmitted on a single channel to a centralized receiver (see Figure 2).
  • This layout is the reverse of the previous layout, and, from a theoretical point of view, its treatment is rigorously symmetrical to the latter.
  • a single device In the case of antennas operating in transmission and in alternating reception, such as radar antennas, a single device is called to serve as a combiner reception and as a dispatcher on the show, and active modules have a switch between a channel receiving station fitted with a low noise amplifier, and a transmission channel fitted with an amplifier power.
  • active modules Depending on the design of the active module, a controllable phase shifter and attenuator are provided for each channel, or if they are of reciprocal type, they can be arranged on a single track, connected in alternation between the two transmission / reception channels by a SPDT switch (see Figure 3).
  • the sources are assumed to be identical, while they are subject to small variations in their radioelectric characteristics, coming from vagaries of their manufacture.
  • impedance, gain, insertion losses and phase shift can vary from module to module, so that an identical control signal does not produce a identical phase shift or amplitude from one source to another other.
  • gain controls are assumed rigorously exact, and completely independent of those of phase and vice versa, while in practice, they are not, and a weak influence from one on the other is inevitable.
  • the position of a source in the network may influence the radio characteristics of this source, by coupling with neighboring sources.
  • the characteristics of a source located at one end of the network are different from that of a more central source, surrounded by neighboring sources.
  • the calibration method according to the invention allows to take into account, during theoretical field calculations distant, from these gaps between reality and situation ideal theoretical in characterization and design an active antenna.
  • the results obtained are particularly appreciable for antennas having precisely formed radiation patterns, including antennas forming beams by calculation.
  • test antenna for example a horn or a dipole at a certain distance from the active antenna to be calibrated.
  • the transfer function between the test antenna and each of channels is determined by successive measurement of field delivered by each channel, according to the following method. All channels except the channel to be measured are switched off during the measurement of a given channel, each take turns.
  • a variant consists in keeping the commands of the other channels, while the channel scanned is variably controlled, which rotates the phase. This theoretically allows to characterize the different phase states of this channel.
  • a probe is placed in the near field in front of the network, and all of the phase shifters are controlled in an unspecified variable fashion, one after the other.
  • the probe is calibrated from the emission signal, part of which is sampled using a directional coupler.
  • This D1 method intrinsically takes into account couplings between radiating elements, which are melted in the resulting field thus measured. But he is not planned use of the information collected for determine the phases to be applied to the sources in order to produce a desired radiation pattern.
  • Document D2 EP-A2-496 381 teaches a method to check the operating status or not of a transmitting or receiving module within an antenna network, looking at changes in detected fields when the phase of the module to be controlled is switched between 0 ° and 180 °. If there is no difference, the module is Out of order.
  • the method according to the invention overcomes these disadvantages of the prior art, and what is more, of correct the three types of error recalled simultaneously above.
  • the invention proposes a method for calibrating an active antenna comprising N radiating sources; comprising the steps: a probe is successively placed in front of each radiating source so as to measure the near field in front of this source; characterized in that : the phases of the phase shifters are recorded at their nominal values for a desired antenna configuration in order to obtain a desired radiation pattern; and in that : during said measurement of the near field in front of said source, a phase shifter on each channel, in turn, is controlled so as to switch the radiation phase of this channel at 180 ° of phase shift relative to its value nominal, all N-1 other sources being controlled according to their nominal operating values in this configuration in order to obtain the desired radiation pattern.
  • the invention thus proposes a method for calibrating an active antenna comprising N radiating sources arranged in a network, this arrangement in network giving rise to a coupling between said sources, these sources being supplied by active modules, these active modules comprising phase control means and gain control means; these sources, these active modules, these phase control means and these gain control means having small dispersions of characteristics due to the manufacture of these different elements, these phase and gain control means also having inaccuracies in response aroused by a given order; characterized in that : using an appropriate probe, near-field measurements are carried out according to the above method, simultaneously characterizing the effects of said couplings between sources, of said dispersions of characteristics due to manufacturing, and of said inaccuracies of said means of ordered.
  • the gain and phase control values for a desired antenna configuration in order to obtain a desired radiation pattern are first determined by the aforementioned method, and these values of orders are applied to said means of order; this more precise method being characterized in that : the near field measurements are repeated with these control values, so as to obtain finer corrections to these values. If necessary, this procedure can be repeated; an iteration of this procedure for a sufficient number of cycles to obtain arbitrary precision of the specified parameters.
  • a calibration table is formulated at from measurements made on active modules before the antenna assembly, and this table then provides the refined values of the phase shift and gain which will be implemented for control after a only near-field measurement, using the basic method presented at the beginning of this text.
  • the method according to the invention and its variants can be applied to active antennas operating in transmission, reception, or alternately in transmission and in reception.
  • the method according to the invention will be applied twice: once for the antenna operating in transmission, to determine the phase shift and gain control values program ; and the other time for the antenna operating in reception, in order to determine the command values of phase shift and gain in reception.
  • the method according to the invention provides numerous advantages over prior art methods for the calibration of active antennas.
  • the method according to the invention allows the calibration of the antenna taking account for all dispersions that generate deviations between the real radiation diagram and the diagram theoretical calculated by software.
  • the method according to the invention thus provides a gain considerable time for antenna calibration (gain by a factor of 11 in the example above). Moreover, the proposed method is well suited to an iteration allowing to approach with an arbitrary precision the final performance of the antenna, and under the conditions actual operating conditions.
  • the method according to the invention takes into account variations in the radio characteristics of components of the antenna it is possible to widen the range of tolerances allowed for these components.
  • the cost of components can be reduced by this way, thereby reducing the overall cost of the antenna.
  • the realization of the antenna is also simplified, because the method according to the invention does not require circuits specific sampling or injection of calibration.
  • Figure 1 schematically shows in section an example of an active antenna arranged in a linear array, operating in transmission.
  • the example shown in this figure is easily generalizable to the case of a two-dimensional network or the like.
  • a low-level transmitter 1 supplies, through a passive power distributor 2, the N radiating sources of the linear network, S 1 ..., S i , ... S N.
  • active modules M i perform a phase shift ⁇ i and an amplification with a gain A i , the values of phase shift and amplification gain being controllable by the control unit 3.
  • the complex useful signals a i are routed to the radiating sources S i , from which they are radiated.
  • the complex useful signals a i are routed to the radiating sources S i , from which they are radiated.
  • the waves radiated by S sources are superimposed with the amplitudes and phases assigned to them, according to a beamforming calculation, to radiate in a desired direction with a lobe formed in the intended application.
  • Figure 2 schematically shows in section an example of an active antenna arranged in a linear array, operating in reception.
  • the example shown in this figure is easily generalizable to the case of a two-dimensional network or the like.
  • a receiver 11 is supplied, through a passive combiner 12, by the N sources of the linear network, S 1 ..., S i , ... S N.
  • active modules M i effect a phase shift ⁇ i and an amplification with a gain A i , the values of phase difference and amplification gain being controllable, in particular by the control unit 13
  • the complex useful signals a i are routed from the radiating sources S i to the inputs of the active modules M i , where they are amplified with the controllable gains and phases for each signal.
  • the waves arriving on S sources combined with the amplitudes and the phases which are allotted to them by a beam formation calculation, then arrive on the receiver 11, in a coherent manner, coming from a determined direction, with a lobe formed according to the intended application.
  • Figure 3 schematically shows an antenna active radar, operating alternately in transmission and in reception.
  • the alternation of transmission / reception is ensured by switches 25, 52 controlled by a synchronization clock 24.
  • orthogonal polarizations can be selected by switch 26, for reception as for the show.
  • phase and gain are controllable by control means 23, both in transmission and in reception.
  • the order values that will be provided for controlling a given reception channel, are not necessarily the same as for the same channel used for the show.
  • a single active transmission / module reception is shown, including controllable phase shifter 27 and a controllable attenuator 28, to adjust the gain of the module.
  • you need one active module per channel and, in this example, there are m ⁇ m 'channels, each channel being connected to a radiating source composed of K patches S 1 / ij to S k / ij, m 'being the number of columns of sources, of which only the first and second are (partially) represented.
  • the transmitter 21 supplies its signals to a distributor / combiner 22, which supplies the active I / O modules.
  • the phase and the attenuation of the signal will be determined by the controllable phase shifter 27 and the controllable attenuator 28, according to the instructions given by the control computer 23.
  • the switches 25 and 52 will be controlled by the clock 24 to engage the power transmission channel, and the signal will be amplified by the power amplifier 29, before being sent to the radiating sources S ij .
  • the receiver 31 receives the signals from the combiner / distributor 22, which are routed by the active E / R modules.
  • the signals coming from the radiating sources S ij are switched by the switches 25, 52 on the reception channel and pass through a low noise amplifier 30.
  • the phase shift and the attenuation are applied by the controllable phase shifter 27 and the controllable attenuator 28, controlled by the control computer 23.
  • the scalar quantities will be designated by Roman letters, possibly including indices which indicate their position in a vector or in a matrix; the vector quantities will be designated by underlined Roman letters; and the matrix quantities will be designated by capital letters GRAS . All the quantities are complex, comprising an amplitude and a phase. The relationship between these quantities is symbolically shown in Figure 4.
  • the vector represents the N commands of the active antenna, in amplitude and in phase, with:
  • max 1, which means that the maximum gain of the channels is taken as a reference, ie 0 dB. represents the N real excitations, which are the waves incident on the radiating sources.
  • the vector I represents "the illumination” or "the field on the opening”:
  • the physical quantity of I i is not necessarily a magnetic or electric field, but can be another quantity which characterizes the radiation of the source, this quantity being proportional to the field on the opening of the source.
  • the couplings can be written in the classic form of a diffraction matrix S having the elements [s ij ]; to the incident wave ai on the source Si, a reflected wave is superimposed:
  • the element s ii represents the reflection coefficient of the surrounded source S i , with all the other sources S i ⁇ j loaded.
  • E i is thus a linear function of the illuminations of each source, including mainly the source S i but also the others.
  • the final step in the construction of this formalism is to record the far field diagram of the active antenna.
  • a test receiving antenna is placed at a great distance from 2D 2 / ⁇ , where D is the largest dimension of the radiating plane of the antenna, and ⁇ the wavelength of the radiation.
  • D is the largest dimension of the radiating plane of the antenna
  • the wavelength of the radiation.
  • the calibration method according to the invention allows get the values of all the vectors and matrices from a set of field measurements close performed for a number N of positions of the probe equal to the number of radiation sources: for each position, N + 1 readings are carried out (command initial + switching of each of the N bits by 180 °); the total number of measurements is therefore N (N + 1).
  • the initial calibration can be followed by recalibration iteratively, to achieve desired precision given. We first describe the initial calibration.
  • the receiver used for the probe must be able to measure complex signals with good accuracy, for example a receiver with two mixers and two channels I (in phase) and Q (Quadrature of phase).
  • the matrix Q thus obtained is called initial calibration matrix, because it allows us to calculate the commands to obtain a desired radiation pattern in the far field.
  • the radiation diagram is characterized by the vector F of p field values recorded or calculated. To perform beamforming, these p values specified by the calculation represent the desired radiation in these main characteristics. The calculation must then determine how to obtain these far field values from control parameters which will be applied at the level of the control of the antenna.
  • the control values can be obtained from the vector F by matrix transformations using the initial calibration matrix Q.
  • Q -1 is obtained by inversion of the initial calibration NxN matrix Q , the measurement of which, term by term, has been described above.
  • L -1 represents the transformation of the far field to the field on the aperture
  • P is the transformation of the field on the aperture to the near field.
  • the matrix M Q -1 PL -1 which specifies the commands necessary for obtaining a desired far field, in the linear case.
  • the couplings are also taken into account in the matrix R.
  • the command values from this first measurement may not be sufficiently accurate. For the improve it is possible to iterate through from these first values, as described below.
  • the method begins with a first set of measurements such as described above.
  • the control values C from this calibration are applied to their respective phase shifters and attenuators.
  • the measurement procedure is then repeated, to obtain a second calibration matrix Q ' , slightly different from the first Q , since the dispersion matrix D will have changed somewhat for the new commands c i .
  • the method according to the invention can take into account measurement data that has already been performed before the antenna calibration.
  • an active antenna comprising several hundreds or even thousands of active modules, is usually made with components that have undergone tests before their integration into the antenna.
  • control characteristics can be noted on active modules, individually, to verify the correct operation of the latter before assembly.
  • the control errors are taken into account in the calibration of the antenna, from the data relating to each active module. These data consist of a complex value (amplitude and phase) for each active module considered, depending on the command applied.
  • each active module must be characterized individually, but then, to determine the elements of the calibration matrix Q , we will only need a single measurement of N (N + 1) values in the near field, every other control laws which can be calculated from Q and the table of measurements carried out on the active modules.
  • K a multiplicative factor
  • the method of the invention when each active module is connected to a "sub-network" of radiant patches, the surface of which is clearly greater than the grid ⁇ / 2 x ⁇ / 2 optimal in precision to raise the near field of the antenna, we perform readings with K positions by sub-network. This allows you to get closer to the ideal grid, at cost an increase in the duration of the calibration. But accuracy is improved by averaging each group of K measurements by a mathematical "projection" of the field close to these K points radiated by a single subnetwork radiant. The way to accomplish this "projection" mathematics will be described in the following paragraphs.
  • the advantage of this variant is the increase in the precision of the results by a factor K 1/2 , by averaging K measurements for the mesh located opposite each source. This advantage comes at the cost of a number of measurements increased by a factor of K, and the increase in the size of the matrices to be calculated in the same proportions.
  • the imperfections of the controllable elements - phase shifters, gain control - are taken into account by the iterative process, or by measurements carried out individually on the active modules.
  • the calibration according to the invention is therefore better than the calibrations of the prior art, because it takes into account errors which are not taken into account in the methods of the prior art.
  • the measurements of the present method are faster to perform, since a single scanning of the near-field probe is necessary (if there is no need for successive iterations, if for example the active modules are measured individually), with only N measurement positions, where N is the number of active modules.
  • the switching of N bits 180 ° for each position of the probe is done very quickly for an electronically controlled antenna.
  • the method according to the invention does not require any specific circuit in the active antenna.
  • the methods in the prior art ask for example integration of a "calibration BFN", a receiver specific by module, or a switch for setting on individual load of each module only for calibration needs.

Description

La présente invention concerne la mesure et la fabrication des antennes actives, qui comprennent un grand nombre N de voies en parallèle. Les antennes actives utilisent ce nombre N de voies pour former le diagramme de rayonnement de l'antenne, par superposition des champs résultant de l'excitation de chaque élément.The present invention relates to the measurement and manufacture of active antennas, which include a large number N of channels in parallel. Antennas active use this number N of channels to form the antenna radiation pattern, by superimposition fields resulting from the excitation of each element.

Lors de la conception d'une antenne, des calculs théoriques permettent, à partir des caractéristiques radioélectriques désirées, la détermination de la géométrie des sources rayonnantes, ainsi que celle des paramètres de fonctionnement de ces sources et des modules actifs qui leur sont associés ; ces paramètres sont notamment le gain des amplificateurs, la dynamique, et/ou le déphasage relatif nécessaire pour obtenir un dépointage recherché. Ces calculs sont d'une part faits à partir de certaines hypothèses et de relations mathématiques qui décrivent des principes physiques, et d'autre part à partir des données physiques concernant l'antenne et ses composants. Ces données doivent être déterminées ou confirmées par des mesures des caractéristiques radioélectriques de l'antenne.When designing an antenna, calculations theoretical allow, from the characteristics desired radio frequencies, determining the geometry of the radiating sources, as well as that of operating parameters of these sources and active modules associated with them; these parameters are in particular the gain of the amplifiers, the dynamics, and / or the relative phase shift necessary to obtain a depointing sought. These calculations are on the one hand made from certain assumptions and relationships mathematics which describe physical principles, and secondly from physical data concerning the antenna and its components. This data must be determined or confirmed by measurements of radio characteristics of the antenna.

L'invention concerne une méthode de calibration d'antennes actives, qui, à partir de mesures effectuées en champ proche sur l'antenne et ses sources rayonnantes, permet, par un calcul spécifique, la détermination des paramètres de commande à appliquer aux modules actifs, et les champs résultants en champ lointain.The invention relates to a calibration method active antennas, which, from measurements in near field on the antenna and its radiating sources, allows, by a specific calculation, the determination of control parameters to be applied to active modules, and the resulting fields in the far field.

L'antenne active, objet de la méthode selon l'invention, peut fonctionner soit en émission, soit en réception, soit dans les deux configurations en alternance (cas des antennes radar).The active antenna, object of the method according to the invention can operate either in transmission or in reception, either in the two configurations alternation (case of radar antennas).

Dans le cas d'une antenne fonctionnant en émission, le signal provenant d'un émetteur centralisé bas niveau est divisé en N signaux supposés identiques sur N voies à l'aide d'un répartiteur de puissance ; ensuite, sur chaque voie, un module actif amplifie le signal selon un gain commandable, et applique un déphasage commandable, avant de transmettre le signal amplifié vers la source rayonnante (voir la figure 1).In the case of an antenna operating in transmission, the signal from a low level centralized transmitter is divided into N signals assumed to be identical on N channels at using a power distributor; then on each channel, an active module amplifies the signal according to a controllable gain, and applies a controllable phase shift, before transmitting the amplified signal to the source radiant (see Figure 1).

Dans le cas d'une antenne fonctionnant en réception, le signal reçu sur chaque source rayonnante est amplifié et déphasé dans un module actif dont le gain et le déphasage sont commandables. Les N signaux amplifiés sur les N voies sont ensuite rassemblés par un combineur de puissance, et transmis sur une voie unique vers un récepteur centralisé (voir la figure 2). Cette disposition est l'inverse de la disposition précédente, et, du point de vue théorique, son traitement est rigoureusement symétrique à cette dernière.In the case of an antenna operating in reception, the signal received on each radiating source is amplified and phase shifted in an active module whose gain and phase shift are controllable. The N signals amplified on the N channels are then brought together by a power, and transmitted on a single channel to a centralized receiver (see Figure 2). This layout is the reverse of the previous layout, and, from a theoretical point of view, its treatment is rigorously symmetrical to the latter.

Dans le cas des antennes fonctionnant en émission et en réception en alternance, telles les antennes radar, un dispositif unique est appelé à servir comme combineur à la réception et comme répartiteur à l'émission, et les modules actifs comportent un commutateur entre une voie de réception munie d'un amplificateur à faible bruit, et une voie d'émission munie d'un amplificateur de puissance. Selon la conception du module actif, un déphaseur et un atténuateur commandables sont prévus pour chaque voie, ou alors s'ils sont de type réciproque, ils peuvent être disposés sur une voie unique, reliée en alternance aux deux voies émission/réception par un commutateur SPDT (voir la figure 3).In the case of antennas operating in transmission and in alternating reception, such as radar antennas, a single device is called to serve as a combiner reception and as a dispatcher on the show, and active modules have a switch between a channel receiving station fitted with a low noise amplifier, and a transmission channel fitted with an amplifier power. Depending on the design of the active module, a controllable phase shifter and attenuator are provided for each channel, or if they are of reciprocal type, they can be arranged on a single track, connected in alternation between the two transmission / reception channels by a SPDT switch (see Figure 3).

Dans la conception d'une antenne active, les signaux de commande nécessaires à la formation de faisceaux sont calculés par ordinateur à partir d'hypothèses et approximations qui rendent les calculs possibles, mais qui ne sont pas toujours conformes à la réalité mesurable en ce qui concerne les performances de l'antenne.In the design of an active antenna, the signals necessary for the formation of beams are calculated by computer from assumptions and approximations that make calculations possible but which are not always consistent with measurable reality regarding the antenna performance.

Par exemple, les sources sont présumées identiques, alors qu'elles sont sujettes à de petites variations de leurs caractéristiques radioélectriques, provenant des aléas de leur fabrication. Il en est de même pour les modules actifs : impédance, gain, pertes d'insertion et déphasage peuvent varier d'un module à l'autre, de sorte qu'un signal de commande identique ne produit pas un déphasage ou une amplitude identiques d'une source à une autre.For example, the sources are assumed to be identical, while they are subject to small variations in their radioelectric characteristics, coming from vagaries of their manufacture. The same is true for active modules: impedance, gain, insertion losses and phase shift can vary from module to module, so that an identical control signal does not produce a identical phase shift or amplitude from one source to another other.

D'autre part, les commandes de gain sont supposées rigoureusement exactes, et totalement indépendantes de celles de phase et réciproquement, alors qu'en pratique, elles ne le sont pas, et une faible influence de l'une sur l'autre est inévitable.On the other hand, gain controls are assumed rigorously exact, and completely independent of those of phase and vice versa, while in practice, they are not, and a weak influence from one on the other is inevitable.

De plus, la position d'une source dans le réseau peut influencer les caractéristiques radioélectriques de cette source, par couplage avec les sources avoisinantes. Par exemple, les caractéristiques d'une source située à une extrémité du réseau sont différentes de celles d'une source plus centrale, entourée par des sources voisines.In addition, the position of a source in the network may influence the radio characteristics of this source, by coupling with neighboring sources. For example, the characteristics of a source located at one end of the network are different from that of a more central source, surrounded by neighboring sources.

Finalement, on présume, pour les calculs théoriques, que les amplificateurs des sources sont linéaires. Ceci signifie que les champs résultants à la source sont prévisibles à partir du niveau de commande appliqué aux amplificateurs. Or, si l'amplificateur fonctionne près de la saturation, ce qui est souvent le cas en émission, les signaux de commande nécessaires pour obtenir une amplitude recherchée diffèrent des calculs théoriques linéaires.Finally, we assume, for theoretical calculations, that the source amplifiers are linear. This means that the resulting fields at source are predictable from the order level applied to amplifiers. Now, if the amplifier works close saturation, which is often the case in transmission, the control signals necessary to obtain a amplitude sought differ from theoretical calculations linear.

La méthode de calibration selon l'invention permet de tenir compte, lors des calculs théoriques de champs lointains, de ces écarts entre la réalité et la situation théorique idéale dans la caractérisation et la conception d'une antenne active. Les résultats obtenus sont particulièrement appréciables pour les antennes ayant des diagrammes de rayonnement précisément formés, notamment les antennes à formation de faisceaux par calcul.The calibration method according to the invention allows to take into account, during theoretical field calculations distant, from these gaps between reality and situation ideal theoretical in characterization and design an active antenna. The results obtained are particularly appreciable for antennas having precisely formed radiation patterns, including antennas forming beams by calculation.

Le problème soulevé par l'existence de ces erreurs, par rapport à l'antenne idéale réalisée uniquement avec des composants idéaux, n'est pas nouveau. On rappelle pour le lecteur les trois types d'erreurs visés par la méthode selon l'invention : la dispersion (résultant de la fabrication) des caractéristiques radioélectriques des composants ; les erreurs de commande (en phase et en gain) ; et les couplages (variables) entre sources rayonnantes, suivant leur position dans le réseau. Les solutions apportées par l'art antérieur restent insatisfaisantes, pour les raisons énumérées ci-après.The problem raised by the existence of these errors, compared to the ideal antenna made only with ideal components, is not new. We recall for the reader the three types of errors covered by the method according to the invention: the dispersion (resulting from manufacture) of the radioelectric characteristics of components; control errors (in phase and in gain); and the (variable) couplings between sources radiant, according to their position in the network. The solutions provided by the prior art remain unsatisfactory, for the reasons listed below.

Pour pallier la dispersion des caractéristiques radioélectriques entre les modules, supposés identiques pour des composants identiques, il est connu d'incorporer à l'antenne active des circuits de calibration spécifiques. Pour une antenne fonctionnant en émission, ces circuits prélèvent une fraction connue du signal issu de chaque module actif, et la renvoient vers l'unité de contrôle de l'antenne : pour une antenne fonctionnant en réception, ces circuits injectent un signal connu dans le circuit de réception, et le récupèrent après qu'il ait suivi le trajet normal d'une voie de réception de l'antenne.To overcome the dispersion of characteristics between the modules, assumed to be identical for identical components, it is known to incorporate to the active antenna of the calibration circuits specific. For an antenna operating in transmission, these circuits take a known fraction of the signal from of each active module, and return it to the unit of antenna control: for an antenna operating in reception, these circuits inject a known signal into the receiving circuit, and recover it after it has followed the normal path of a reception channel of the antenna.

Cette solution souffre de deux inconvénients majeurs : la nécessité d'un circuit spécifique pour chaque module ajoute un surcoût considérable au prix déjà élevé d'une antenne active ; de même, l'encombrement, le poids, la consommation de puissance électrique, la dissipation thermique, et la complexité de l'ensemble croissent en conséquence. D'autre part, la calibration résultante ne tient compte que des dispersions affectant les circuits, mais néglige l'influence de couplage entre sources, ainsi que l'influence de la dispersion de fabrication des sources rayonnantes elles-mêmes.This solution suffers from two drawbacks major: the need for a specific circuit for each module adds a considerable additional cost to the price already high from an active antenna; Similarly, the size, the weight, electrical power consumption, heat dissipation, and the complexity of the whole grow accordingly. On the other hand, the calibration resulting only takes into account dispersions affecting circuits, but neglects the influence of coupling between sources, as well as the influence of the dispersion of manufacture of the radiating sources themselves.

Une autre méthode connue consiste à installer une antenne de test, par exemple un cornet ou un dipôle à une certaine distance de l'antenne active à calibrer. La fonction de transfert entre l'antenne de test et chacune des voies est déterminée par la mesure successive du champ délivré par chaque voie, selon la méthode suivante. Toutes les voies, sauf la voie à mesurer, sont commutées hors circuit pendant la mesure d'une voie donnée, chaque voie à tour de rôle.Another known method is to install a test antenna, for example a horn or a dipole at a certain distance from the active antenna to be calibrated. The transfer function between the test antenna and each of channels is determined by successive measurement of field delivered by each channel, according to the following method. All channels except the channel to be measured are switched off during the measurement of a given channel, each take turns.

La mise en oeuvre de cette solution de l'art antérieur requiert des modifications dans la réalisation du module actif de base, pour incorporer la fonction de mise sur charge adaptée pour toutes les voies, sauf celle à mesurer, à tour de rôle.The implementation of this art solution previous requires modifications in the realization of the basic active module, to incorporate the function of charging suitable for all channels except that to measure, in turn.

Une variante consiste à maintenir fixes les commandes des autres voies, pendant que la voie scrutée est commandée de façon variable, ce qui fait tourner la phase. Ceci permet théoriquement de caractériser les différents états de phase de cette voie.A variant consists in keeping the commands of the other channels, while the channel scanned is variably controlled, which rotates the phase. This theoretically allows to characterize the different phase states of this channel.

Mais cette méthode souffre du problème de couplage entre sources voisines, qui n'est pas mesuré dans des conditions représentatives de l'état de fonctionnement normal : en faisant tourner la phase de la voie sous calibration, on perturbe quelque peu le rayonnement des autres sources, donc la mesure du champ rayonné.But this method suffers from the coupling problem between neighboring sources, which is not measured in conditions representative of the operating state normal: by rotating the phase of the channel under calibration, we slightly disturb the radiation of other sources, therefore the measurement of the radiated field.

Une méthode inverse est esquissée par le document D1 = Patent Abstracts of Japan, vol.9 no.236 (21.9.1985) publ. no. 60-89766, pour aider la détermination du diagramme de rayonnement, inconnu a priori, d'une antenne réseau. Selon ce document, une sonde est placée en champ proche devant le réseau, et l'ensemble des déphaseurs est commandée de façon variable non-spécifiée, l'un après l'autre. La sonde est étalonnée a partir du signal d'émission dont une partie est prélevée à l'aide d'un coupleur directionnel.A reverse method is outlined by the document D1 = Patent Abstracts of Japan, vol.9 no.236 (21.9.1985) publ. no. 60-89766, to help determine the radiation pattern, unknown a priori, of a network antenna. According to this document, a probe is placed in the near field in front of the network, and all of the phase shifters are controlled in an unspecified variable fashion, one after the other. The probe is calibrated from the emission signal, part of which is sampled using a directional coupler.

Cette méthode de D1 tient compte intrinsèquement des couplages entre éléments rayonnants, qui sont fondus dans le champ résultant ainsi mesuré. Mais il n'est pas prévue l'utilisation des informations recueillies pour déterminer les phases à appliquer aux sources afin de produire un diagramme de rayonnement voulu.This D1 method intrinsically takes into account couplings between radiating elements, which are melted in the resulting field thus measured. But he is not planned use of the information collected for determine the phases to be applied to the sources in order to produce a desired radiation pattern.

Le document D2 = EP-A2-496 381 enseigne une méthode de contrôle de l'état de fonctionnement ou non d'un module d'émission ou de réception au sein d'une antenne réseau, en regardant les changements des champs détectés quand la phase du module à contrôler est commutée entre 0° et 180 °. S'il n'y a pas de différence, le module est en panne.Document D2 = EP-A2-496 381 teaches a method to check the operating status or not of a transmitting or receiving module within an antenna network, looking at changes in detected fields when the phase of the module to be controlled is switched between 0 ° and 180 °. If there is no difference, the module is Out of order.

Le problème de modélisation théorique de ces couplages a aussi été abordé dans l'art antérieur. De nombreuses modélisations ont été proposées, selon le type de source rayonnante. Les modèles visent à savoir par le calcul, quel sera le véritable rayonnement de la source Si lorsqu'elle est entourée des N-1 autres sources Sj, j≠j , qui sont toutes excitées par des ondes aj. Cependant, les sources réelles sont très difficiles à modéliser correctement, notamment les antennes imprimées (connues sous le nom "patches" en anglais). Or, ces "patches" se trouvent employés de plus en plus souvent dans les antennes actives, et les couplages entre des sources rayonnantes de ce type sont particulièrement importants. Les méthodes de calcul théorique de couplage sont souvent entachées d'erreur, de même que les méthodes de modification de ces couplages (pour diminuer la désadaptation induite sur l'antenne) par des trous de couplage pratiqués entre les guides d'accès, par la disposition judicieuse d'un radôme diélectrique, ... Les méthodes de prédiction théorique des couplages pourraient surtout permettre de corriger par le calcul leurs effets perturbateurs dans une séquence de calibration ; mais ceci est toujours, dans l'art antérieur, indépendant de la mesure des dispersions de fabrication, ou des erreurs de commande.The problem of theoretical modeling of these couplings has also been addressed in the prior art. Many models have been proposed, depending on the type of radiating source. The models aim to know by calculation, what will be the true radiation of the source Si when it is surrounded by the N-1 other sources S j , j ≠ j, which are all excited by waves a j . However, real sources are very difficult to model correctly, especially printed antennas (known as "patches" in English). However, these "patches" are used more and more often in active antennas, and the couplings between radiating sources of this type are particularly important. The theoretical calculation methods for coupling are often flawed, as are methods for modifying these couplings (to reduce the mismatch induced on the antenna) by coupling holes made between the access guides, by the judicious arrangement of a dielectric radome, etc. The methods of theoretical prediction of couplings could above all make it possible to correct by calculation their disturbing effects in a calibration sequence; but this is always, in the prior art, independent of the measurement of manufacturing dispersions, or of control errors.

La méthode selon l'invention permet de pallier ces inconvénients de l'art antérieur, et qui plus est, de corriger simultanément les trois types d'erreur rappelés ci-dessus.The method according to the invention overcomes these disadvantages of the prior art, and what is more, of correct the three types of error recalled simultaneously above.

A ces fins, l'invention propose une méthode de calibration d'une antenne active comprenant N sources rayonnantes ; comprenant les étapes : une sonde est placée successivement devant chaque source rayonnante de façon à mesurer le champ proche devant cette source ; caractérisée en ce que : les phases des déphaseurs sont consignées à leurs valeurs nominales pour une configuration d'antenne désirée en vue d'obtenir un diagramme de rayonnement recherché ; et en ce que : lors de ladite mesure du champ proche devant ladite source, un déphaseur sur chaque voie, à tour de rôle, est commandé de façon à commuter la phase de rayonnement de cette voie à 180° de déphasage par rapport à sa valeur nominale, toutes les N-1 autres sources étant commandées selon leurs valeurs nominales de fonctionnement dans cette configuration en vue d'obtenir le diagramme de rayonnement recherché.For these purposes, the invention proposes a method for calibrating an active antenna comprising N radiating sources; comprising the steps: a probe is successively placed in front of each radiating source so as to measure the near field in front of this source; characterized in that : the phases of the phase shifters are recorded at their nominal values for a desired antenna configuration in order to obtain a desired radiation pattern; and in that : during said measurement of the near field in front of said source, a phase shifter on each channel, in turn, is controlled so as to switch the radiation phase of this channel at 180 ° of phase shift relative to its value nominal, all N-1 other sources being controlled according to their nominal operating values in this configuration in order to obtain the desired radiation pattern.

L'invention propose ainsi une méthode de calibration d'une antenne active comprenant N sources rayonnantes disposées dans un réseau, cette disposition en réseau donnant lieu à un couplage entre lesdites sources, ces sources étant alimentées par des modules actifs, ces modules actifs comportant des moyens de commande de phase et des moyens de commande de gain ; ces sources, ces modules actifs, ces moyens de commandes de phase et ces moyens de commande de gain présentant de faibles dispersions de caractéristiques dues à la fabrication de ces différents éléments, ces moyens de commande de phase et de gain présentant également des imprécisions de réponse suscitées par une commande donnée ; caractérisée en ce que : utilisant une sonde appropriée, l'on effectue des mesures en champ proche selon la méthode ci-dessus, caractérisant simultanément les effets desdits couplages entre sources, desdites dispersions de caractéristiques dues à la fabrication, et desdites imprécisions desdits moyens de commande.The invention thus proposes a method for calibrating an active antenna comprising N radiating sources arranged in a network, this arrangement in network giving rise to a coupling between said sources, these sources being supplied by active modules, these active modules comprising phase control means and gain control means; these sources, these active modules, these phase control means and these gain control means having small dispersions of characteristics due to the manufacture of these different elements, these phase and gain control means also having inaccuracies in response aroused by a given order; characterized in that : using an appropriate probe, near-field measurements are carried out according to the above method, simultaneously characterizing the effects of said couplings between sources, of said dispersions of characteristics due to manufacturing, and of said inaccuracies of said means of ordered.

Dans une méthode plus précise selon l'invention, les valeurs de commandes de gain et de phase pour une configuration d'antenne désirée en vue d'obtenir un diagramme de rayonnement recherché sont d'abord déterminées par la méthode précitée, et ces valeurs de commandes sont appliquées audits moyens de commande ; cette méthode plus précise étant caractérisé en ce que : les mesures en champ proche sont répétées avec ces valeurs de commande, de manière à obtenir des corrections plus fines à ces valeurs. Au besoin, cette procédure peut être répétée ; une itération de cette procédure pendant un nombre suffisant de cycles permettant d'obtenir une précision arbitraire des paramètres spécifiés.In a more precise method according to the invention, the gain and phase control values for a desired antenna configuration in order to obtain a desired radiation pattern are first determined by the aforementioned method, and these values of orders are applied to said means of order; this more precise method being characterized in that : the near field measurements are repeated with these control values, so as to obtain finer corrections to these values. If necessary, this procedure can be repeated; an iteration of this procedure for a sufficient number of cycles to obtain arbitrary precision of the specified parameters.

Dans une autre méthode plus précise selon l'invention, un tableau de calibration est formulé à partir de mesures effectuées sur les modules actifs avant l'assemblage de l'antenne, et ce tableau fournit ensuite les valeurs affinées des commandes de déphasage et de gain qui seront mises en oeuvre pour contrôle après une seule mesure en champ proche, selon la méthode de base présentée au début de ce texte. In another more precise method according to the invention, a calibration table is formulated at from measurements made on active modules before the antenna assembly, and this table then provides the refined values of the phase shift and gain which will be implemented for control after a only near-field measurement, using the basic method presented at the beginning of this text.

La méthode selon l'invention et ses variantes peuvent être appliquées à des antennes actives fonctionnant en émission, en réception, ou alternativement en émission et en réception.The method according to the invention and its variants can be applied to active antennas operating in transmission, reception, or alternately in transmission and in reception.

Dans le cas d'une antenne radar, la méthode selon l'invention sera appliquée deux fois : une fois pour l'antenne fonctionnant en émission, pour déterminer les valeurs de commandes de déphasage et de gain en émission ; et l'autre fois pour l'antenne fonctionnant en réception, afin de déterminer les valeurs de commandes de déphasage et de gain en réception.In the case of a radar antenna, the method according to the invention will be applied twice: once for the antenna operating in transmission, to determine the phase shift and gain control values program ; and the other time for the antenna operating in reception, in order to determine the command values of phase shift and gain in reception.

La méthode selon l'invention procure de nombreux avantages par rapport aux méthodes de l'art antérieur pour la calibration d'antennes actives. La méthode selon l'invention permet la calibration de l'antenne en tenant compte de toutes les dispersions qui génèrent des écarts entre le diagramme de rayonnement réel et le diagramme théorique calculé par logiciel.The method according to the invention provides numerous advantages over prior art methods for the calibration of active antennas. The method according to the invention allows the calibration of the antenna taking account for all dispersions that generate deviations between the real radiation diagram and the diagram theoretical calculated by software.

Dans l'art antérieur, la caractérisation d'une antenne par mesure en champ proche demande un nombre de relevés ponctuels bien plus élevé. Pour chacune des N sources rayonnantes (les autres étant sur charge adaptée) il faut effectué un relevé à chaque point d'un quadrillage en carrés de côté λ/2, sur une surface débordant nettement celle de l'antenne : en prenant pour exemple une antenne de N=96 sources, chacune d'une surface de 2,8 λ2, environ 100.000 relevés sont nécessaires pour la calibration complète des 96 sources ; tandis que la méthode selon l'invention ne demande que N (N+1) mesures, où N est le nombre de sources rayonnantes, soit 9312 dans l'exemple choisi.In the prior art, the characterization of an antenna by near-field measurement requires a much higher number of point readings. For each of the N radiating sources (the others being on a suitable load), it is necessary to take a reading at each point of a grid in squares of side λ / 2, on a surface clearly extending beyond that of the antenna: taking for example a antenna of N = 96 sources, each with a surface of 2.8 λ 2 , approximately 100,000 readings are necessary for the complete calibration of the 96 sources; while the method according to the invention requires only N (N + 1) measurements, where N is the number of radiating sources, ie 9312 in the example chosen.

La méthode selon l'invention procure ainsi un gain de temps considérable pour la calibration de l'antenne (gain d'un facteur 11 dans l'exemple ci-dessus). De plus, la méthode proposée est bien adaptée à une itération permettant d'approcher à une précision arbitraire les performances finales de l'antenne, et dans les conditions réelles de fonctionnement.The method according to the invention thus provides a gain considerable time for antenna calibration (gain by a factor of 11 in the example above). Moreover, the proposed method is well suited to an iteration allowing to approach with an arbitrary precision the final performance of the antenna, and under the conditions actual operating conditions.

Puisque la méthode selon l'invention prend en compte des variations des caractéristiques radioélectriques des composants de l'antenne, il est possible d'élargir la fourchette des tolérances admises pour ces composants. Le coût des composants peut être diminué de cette manière, réduisant ainsi le coût global de l'antenne.Since the method according to the invention takes into account variations in the radio characteristics of components of the antenna it is possible to widen the range of tolerances allowed for these components. The cost of components can be reduced by this way, thereby reducing the overall cost of the antenna.

Par rapport à certaines méthodes de l'art antérieur, la réalisation de l'antenne est aussi simplifiée, car la méthode selon l'invention ne requiert pas de circuits spécifiques de prélèvement ou d'injection de signaux de calibration.Compared to certain methods of the prior art, the realization of the antenna is also simplified, because the method according to the invention does not require circuits specific sampling or injection of calibration.

D'autres avantages et caractéristiques de la méthode de l'invention ressortiront de la description détaillée qui suit, avec ses dessins annexés dont :

  • la figure 1, déjà citée, montre schématiquement une antenne active fonctionnant en émission ;
  • la figure 2, déjà citée, montre schématiquement une antenne active fonctionnant en réception ;
  • la figure 3, déjà citée, montre schématiquement une antenne active de radar, fonctionnant alternativement en émission et en réception ;
  • la figure 4, montre symboliquement la relation entre différentes quantités vectorielles et matricielles déterminées par la méthode selon l'invention.
  • Other advantages and characteristics of the method of the invention will emerge from the detailed description which follows, with its appended drawings, in which:
  • Figure 1, already cited, schematically shows an active antenna operating in transmission;
  • Figure 2, already cited, schematically shows an active antenna operating in reception;
  • FIG. 3, already cited, schematically shows an active radar antenna, operating alternately in transmission and in reception;
  • FIG. 4 symbolically shows the relationship between different vector and matrix quantities determined by the method according to the invention.
  • Sur les figures, les mêmes éléments portent les mêmes références, et aux fonctions immatérielles sont attribuées des symboles pour faciliter l'explication de la méthode de l'invention.In the figures, the same elements bear the same references, and to the intangible functions are assigned symbols to facilitate the explanation of the method of the invention.

    La figure 1 montre schématiquement en coupe un exemple d'une antenne active disposée en réseau linéaire, fonctionnant en émission. L'exemple montré sur cette figure est facilement généralisable au cas d'un réseau bidimensionnel ou similaire. Sur la figure, un émetteur 1 de bas niveau alimente, à travers un répartiteur passif de puissance 2, les N sources rayonnantes du réseau linéaire, S1...,Si,...SN . Entre le répartiteur 2 et les sources Si, des modules actifs Mi effectuent un déphasage i et une amplification avec un gain Ai, les valeurs de déphasage et de gain d'amplification étant commandables par l'unité de commande 3. A la sortie des modules actifs Mi, les signaux utiles complexes ai sont acheminés vers les sources rayonnantes Si, d'où ils sont rayonnés. En cas de désadaptation d'impédance entre les modules M et les sources S, il y aura éventuellement des signaux réfléchis bi se propageant en sens inverse par rapport aux signaux utiles.Figure 1 schematically shows in section an example of an active antenna arranged in a linear array, operating in transmission. The example shown in this figure is easily generalizable to the case of a two-dimensional network or the like. In the figure, a low-level transmitter 1 supplies, through a passive power distributor 2, the N radiating sources of the linear network, S 1 ..., S i , ... S N. Between the distributor 2 and the sources S i , active modules M i perform a phase shift  i and an amplification with a gain A i , the values of phase shift and amplification gain being controllable by the control unit 3. A at the output of the active modules M i , the complex useful signals a i are routed to the radiating sources S i , from which they are radiated. In the event of an impedance mismatch between the modules M and the sources S, there will possibly be reflected signals b i propagating in opposite directions with respect to the useful signals.

    Les ondes rayonnées par les sources S se superposent avec les amplitudes et phases qui leur sont attribuées, selon un calcul de formation de faisceaux, pour rayonner selon une direction voulue avec un lobe formé selon l'application envisagée.The waves radiated by S sources are superimposed with the amplitudes and phases assigned to them, according to a beamforming calculation, to radiate in a desired direction with a lobe formed in the intended application.

    La figure 2 montre schématiquement en coupe un exemple d'une antenne active disposée en réseau linéaire, fonctionnant en réception. L'exemple montré sur cette figure est facilement généralisable au cas d'un réseau bidimensionnel ou similaire. Sur la figure, un récepteur 11 est alimenté, à travers un combineur passif 12, par les N sources du réseau linéaire, S1...,Si,...SN. Entre le combineur 12 et les sources Si, des modules actifs Mi effectuent un déphasage i et une amplification avec un gain Ai, les valeurs de déphasage et de gain d'amplification étant commandables, notamment par l'unité de commande 13. Les signaux utiles complexes ai sont acheminés depuis les sources rayonnantes Si vers les entrées des modules actifs Mi, où ils sont amplifiés avec les gains et phases commandables pour chaque signal. En cas de désadaptation d'impédance à l'entrée des sources S, il y aura éventuellement des signaux réfléchis bi se propageant en sens inverse par rapport aux signaux utiles.Figure 2 schematically shows in section an example of an active antenna arranged in a linear array, operating in reception. The example shown in this figure is easily generalizable to the case of a two-dimensional network or the like. In the figure, a receiver 11 is supplied, through a passive combiner 12, by the N sources of the linear network, S 1 ..., S i , ... S N. Between the combiner 12 and the sources S i , active modules M i effect a phase shift  i and an amplification with a gain A i , the values of phase difference and amplification gain being controllable, in particular by the control unit 13 The complex useful signals a i are routed from the radiating sources S i to the inputs of the active modules M i , where they are amplified with the controllable gains and phases for each signal. In the event of an impedance mismatch at the input of the sources S, there will possibly be reflected signals b i propagating in opposite directions with respect to the useful signals.

    Les ondes arrivant sur les sources S, combinées avec les amplitudes et les phases qui leur sont attribuées par un calcul de formation de faisceaux, arrivent ensuite sur le récepteur 11, d'une façon cohérente, provenant d'une direction déterminée, avec un lobe formé selon l'application envisagée.The waves arriving on S sources, combined with the amplitudes and the phases which are allotted to them by a beam formation calculation, then arrive on the receiver 11, in a coherent manner, coming from a determined direction, with a lobe formed according to the intended application.

    La figure 3 montre schématiquement une antenne active de radar, fonctionnant alternativement en émission et en réception. L'alternance des fonctions émission / réception est assurée par des commutateurs 25, 52 commandés par une horloge de synchronisation 24. Sur la figure 3, des polarisations orthogonales peuvent être sélectionnées par le commutateur 26, pour la réception comme pour l'émission. Comme dans les deux exemples précédents, la phase et le gain sont commandables par des moyens de commande 23, aussi bien en émission qu'en réception. Les valeurs de commande qui seront fournies pour la commande d'une voie de réception donnée, ne sont pas forcément les mêmes que pour la même voie utilisée pour l'émission.Figure 3 schematically shows an antenna active radar, operating alternately in transmission and in reception. The alternation of transmission / reception is ensured by switches 25, 52 controlled by a synchronization clock 24. On the Figure 3, orthogonal polarizations can be selected by switch 26, for reception as for the show. As in the two examples previous, phase and gain are controllable by control means 23, both in transmission and in reception. The order values that will be provided for controlling a given reception channel, are not necessarily the same as for the same channel used for the show.

    Sur la figure, un seul module actif émission / réception est montré, comprenant le déphaseur commandable 27 et un atténuateur commandable 28, pour ajuster le gain du module. Cependant, il faut un module actif par voie, et, dans cet exemple, il y a m·m' voies, chaque voie étant reliée à une source rayonnante composée de K patches S 1  / ij à S k  / ij,m' étant le nombre de colonnes de sources, dont seule la première et la deuxième sont (partiellement) représentées.In the figure, a single active transmission / module reception is shown, including controllable phase shifter 27 and a controllable attenuator 28, to adjust the gain of the module. However, you need one active module per channel, and, in this example, there are m · m 'channels, each channel being connected to a radiating source composed of K patches S 1 / ij to S k / ij, m 'being the number of columns of sources, of which only the first and second are (partially) represented.

    En mode émission, l'émetteur 21 fournit ses signaux à un répartiteur/combineur 22, qui alimente les modules actifs E/R. La phase et l'atténuation du signal seront déterminées par le déphaseur commandable 27 et l'atténuateur commandable 28, selon les instructions données par le calculateur de commande 23. Ensuite, les commutateurs 25 et 52 seront commandés par l'horloge 24 pour engager la voie émission de puissance, et le signal sera amplifié par l'amplificateur de puissance 29, avant d'être envoyé sur les sources rayonnantes Sij.In transmission mode, the transmitter 21 supplies its signals to a distributor / combiner 22, which supplies the active I / O modules. The phase and the attenuation of the signal will be determined by the controllable phase shifter 27 and the controllable attenuator 28, according to the instructions given by the control computer 23. Then, the switches 25 and 52 will be controlled by the clock 24 to engage the power transmission channel, and the signal will be amplified by the power amplifier 29, before being sent to the radiating sources S ij .

    En mode réception, le récepteur 31 reçoit les signaux du combineur/répartiteur 22, qui sont acheminés par les modules actifs E/R. Dans les modules E/R, les signaux provenant des sources rayonnantes Sij sont commutés par les commutateurs 25, 52 sur la voie réception et traversent un amplificateur faible bruit 30. Ensuite, le déphasage et l'atténuation sont appliqués par le déphaseur commandable 27 et l'atténuateur commandable 28, commandés par le calculateur de commande 23.In reception mode, the receiver 31 receives the signals from the combiner / distributor 22, which are routed by the active E / R modules. In the E / R modules, the signals coming from the radiating sources S ij are switched by the switches 25, 52 on the reception channel and pass through a low noise amplifier 30. Then, the phase shift and the attenuation are applied by the controllable phase shifter 27 and the controllable attenuator 28, controlled by the control computer 23.

    Ces architectures d'antennes selon les figures 1 à 3 sont bien connues de l'homme de l'art, et une description plus détaillée n'est pas nécessaire pour illustrer les principes de l'invention.These antenna architectures according to Figures 1 to 3 are well known to those skilled in the art, and a description more detailed is not necessary to illustrate the principles of the invention.

    Pour mieux faire comprendre la méthode de calibration selon l'invention, une description sera proposée ci-après utilisant un formalisme mathématique appartenant à l'algèbre matricielle. Dans cet exposé, les quantités scalaires seront désignées par des lettres romaines, comportant éventuellement des indices qui indiquent leur position dans un vecteur ou dans une matrice ; les quantités vectorielles seront désignées par des lettres romaines soulignées ; et les quantités matricielles seront désignées par des majuscules GRAS. Toutes les quantités sont complexes, comportant une amplitude et une phase. La relation entre ces quantités est représentée symboliquement sur la figure 4.To better understand the calibration method according to the invention, a description will be given below using a mathematical formalism belonging to matrix algebra. In this presentation, the scalar quantities will be designated by Roman letters, possibly including indices which indicate their position in a vector or in a matrix; the vector quantities will be designated by underlined Roman letters; and the matrix quantities will be designated by capital letters GRAS . All the quantities are complex, comprising an amplitude and a phase. The relationship between these quantities is symbolically shown in Figure 4.

    Par exemple, le vecteur :

    Figure 00140001
    représente les N commandes de l'antenne active, en amplitude et en phase, avec : |ci|max = 1 , ce qui veut dire que le gain maximal des voies est pris comme référence, soit 0 dB.
    Figure 00140002
    représente les N excitations réelles, qui sont les ondes incidentes sur les sources rayonnantes.For example, the vector:
    Figure 00140001
    represents the N commands of the active antenna, in amplitude and in phase, with: | c i | max = 1, which means that the maximum gain of the channels is taken as a reference, ie 0 dB.
    Figure 00140002
    represents the N real excitations, which are the waves incident on the radiating sources.

    Nous définissons une matrice de dispersions D qui nous donne la relation entre les commandes et les excitations :
    A = D C . La matrice D est NxN et diagonale, avec l'élément
    di = ai/ci qui représente la différence en amplitude et en phase entre l'excitation commandée et l'excitation réelle de la voie i. Cette matrice prend en compte les effets de dispersions de caractéristiques dus à la fabrication, ainsi que les imprécisions de commandes.
    We define a matrix of dispersions D which gives us the relation between the commands and the excitations:
    A = D C. The matrix D is NxN and diagonal, with the element
    d i = a i / c i which represents the difference in amplitude and phase between the commanded excitation and the real excitation of the channel i. This matrix takes into account the effects of dispersion of characteristics due to manufacturing, as well as the inaccuracies of orders.

    Le vecteur I représente "l'illumination" ou "le champ sur l'ouverture" :

    Figure 00140003
    The vector I represents "the illumination" or "the field on the opening":
    Figure 00140003

    Ces termes sont utilisés couramment dans la littérature spécialisée pour caractériser le champ électromagnétique sur le plan rayonnant. Pour simplifier les calculs, on suppose que les sources rayonnantes sont monomodes et on ne s'intéresse qu'à la direction de polarisation nominale. La conséquence de ces hypothèses est que la distribution de ce champ électrique peut être ainsi caractérisée par un seul nombre complexe (amplitude et phase). Quelques exemples serviront à illustrer ce propos :

    • Dans le cas où les sources rayonnantes sont des guides ouverts, Ii représente l'amplitude et la phase du champ électrique à l'endroit où il est maximal, dans le plan médian parallèle aux petits côtés du guide pour une onde en mode fondamental, TE10.
    • Si les sources rayonnantes sont des dipôles demi-onde, Ii représente le courant en leur milieu ; si ce sont des "patches", Ii représente la densité de courant en leur centre.
    • Si les sources rayonnantes sont des fentes résonnantes dans la paroi d'un guide, Ii représente la tension entre les deux bords de la fente au milieu de sa longueur, c'est à dire à l'endroit ou cette tension est maximale.
    These terms are commonly used in the specialized literature to characterize the electromagnetic field on the radiating plane. To simplify the calculations, it is assumed that the radiating sources are monomode and one is interested only in the direction of nominal polarization. The consequence of these hypotheses is that the distribution of this electric field can thus be characterized by a single complex number (amplitude and phase). Some examples will serve to illustrate this point:
    • In the case where the radiating sources are open guides, I i represents the amplitude and the phase of the electric field at the place where it is maximum, in the median plane parallel to the short sides of the guide for a wave in fundamental mode, TE 10 .
    • If the radiating sources are half-wave dipoles, I i represents the current in their middle; if they are "patches", I i represents the current density at their center.
    • If the radiating sources are resonant slots in the wall of a guide, I i represents the tension between the two edges of the slot in the middle of its length, ie at the place where this tension is maximum.

    Ces deux derniers exemples nous montrent que la grandeur physique de Ii n'est pas forcément un champ magnétique ou électrique, mais peut être une autre grandeur qui caractérise le rayonnement de la source, cette grandeur étant proportionnelle au champ sur l'ouverture de la source.These last two examples show us that the physical quantity of I i is not necessarily a magnetic or electric field, but can be another quantity which characterizes the radiation of the source, this quantity being proportional to the field on the opening of the source.

    Nous définissons ensuite une matrice R caractérisant les phénomènes de rayonnement, qui nous permet d'obtenir l'illumination I à partir des excitations réelles A par la relation : I = R A . R est une matrice NxN qui serait diagonale en l'absence de couplage entre les sources : Ii = riai montre que l'illumination ne dépendrait dans ce cas que de l'onde incidente sur la source i.We then define a matrix R characterizing the radiation phenomena, which allows us to obtain the illumination I from the real excitations A by the relation: I = R A. R is an NxN matrix which would be diagonal in the absence of coupling between the sources: I i = r i a i shows that the illumination would in this case only depend on the incident wave on the source i.

    Mais comme nous l'avons souligné ci-dessus, les couplages entre les sources avoisinantes introduisent des erreurs d'estimation de champs rayonnés s'ils ne sont pas pris en compte dans les calculs. Donc notre matrice R comprend des éléments non-diagonaux, qui représentent des contributions, à l'illumination d'un endroit donné, des sources avoisinantes. Ainsi, le champ sur la source Si dépend des ondes aj incidentes sur les autres sources, par des coefficients rij de couplage :

    Figure 00160001
    qui s'écrit en notation matricielle : I = R A .But as we underlined above, the couplings between the neighboring sources introduce errors of estimation of radiated fields if they are not taken into account in computations. So our matrix R includes non-diagonal elements, which represent contributions, to the illumination of a given place, from neighboring sources. Thus, the field on the source S i depends on the waves a j incident on the other sources, by coupling coefficients r ij :
    Figure 00160001
    which is written in matrix notation: I = R A.

    Si l'on prend l'exemple précité de dipôles ou des "patches", les couplages peuvent être écrits sous la forme classique d'une matrice de diffraction S ayant les éléments [sij] ; à l'onde incidente ai sur la source Si, se superpose une onde réfléchie :

    Figure 00160002
    Dans ce formalisme, l'élément sii représente le coefficient de réflexion de la source Si entourée, avec toutes les autres sources Si≠j mises sur charge.If we take the above example of dipoles or "patches", the couplings can be written in the classic form of a diffraction matrix S having the elements [s ij ]; to the incident wave ai on the source Si, a reflected wave is superimposed:
    Figure 00160002
    In this formalism, the element s ii represents the reflection coefficient of the surrounded source S i , with all the other sources S i ≠ j loaded.

    Le rayonnement est en fait proportionnel au courant normalisé par rapport à l'impédance de la ligne :

    Figure 00160003
    où : I = (U - S)A, U étant la matrice diagonale unitaire NxN.The radiation is in fact proportional to the normalized current with respect to the line impedance:
    Figure 00160003
    where: I = ( U - S ) A , U being the unitary diagonal matrix NxN.

    Dans un deuxième exemple, nous considérons le cas d'un réseau de guides à fentes, avec toutes les fentes identiques et disposées de la même façon dans chaque guide. L'illumination dépend alors des tensions sur les fentes, soit :

    Figure 00160004
    où : I = (U + S)A, U étant la matrice diagonale unitaire NxN, et S étant toujours la matrice "de diffraction" des coefficients de couplage.In a second example, we consider the case of a network of slot guides, with all the slots identical and arranged in the same way in each guide. The illumination then depends on the tensions on the slits, that is:
    Figure 00160004
    where: I = ( U + S ) A , U being the unitary diagonal matrix NxN, and S being always the "diffraction" matrix of the coupling coefficients.

    Lorsque l'on place une sonde "champ proche" à quelques longueurs d'onde en face du centre de la source Si, on recueille un champ électrique :

    Figure 00170001
    When a "near field" probe is placed at a few wavelengths opposite the center of the source S i , an electric field is collected:
    Figure 00170001

    Nous observons que Ei est ainsi une fonction linéaire des illuminations de chaque source, dont principalement la source Si mais aussi les autres.We observe that E i is thus a linear function of the illuminations of each source, including mainly the source S i but also the others.

    Nous définissons ainsi un vecteur colonne "champ proche" E et la matrice NxN "rayonnement champ proche" P telle que E = P I avec :

    Figure 00170002
    We thus define a column vector "near field" E and the matrix NxN "near field radiation" P such that E = P I with:
    Figure 00170002

    L'ultime étape dans la construction de ce formalisme est de relever le diagramme en champ lointain de l'antenne active. Pour effectuer cette mesure, on place une antenne réceptrice de test à une distance grande par rapport à 2D2/λ, où D est la plus grande dimension du plan rayonnant de l'antenne, et λ la longueur d'onde du rayonnement. En faisant tourner l'antenne active, on échantillonne son diagramme de rayonnement en un nombre suffisant p directions de l'espace, en relevant chaque fois l'amplitude et la phase du signal reçu par l'antenne de test, pour obtenir les valeurs Fj du "diagramme champ lointain" que l'on représente par le vecteur colonne :

    Figure 00180001
    The final step in the construction of this formalism is to record the far field diagram of the active antenna. To carry out this measurement, a test receiving antenna is placed at a great distance from 2D 2 / λ, where D is the largest dimension of the radiating plane of the antenna, and λ the wavelength of the radiation. By rotating the active antenna, its radiation pattern is sampled in a sufficient number p directions in space, taking note each time of the amplitude and phase of the signal received by the test antenna, to obtain the values F j of the "far field diagram" which is represented by the column vector:
    Figure 00180001

    Ensuite nous définissons une matrice Nxp "rayonnement champ lointain" L : F = L I .Then we define a matrix Nxp "far field radiation" L : F = L I.

    Le formalisme exposé jusqu'ici est strictement linéaire, et ne peut prendre en compte les non-linéarités dues, par exemple, à des amplificateurs fonctionnant près de la saturation. Pour un traitement plus exact dans ce cas, la méthode doit être adaptée comme nous expliquerons ci-après. De toute manière, ce phénomène ne concerne que la transformation : A = D C , toutes les autres relations restant linéaires.The formalism exposed so far is strictly linear, and cannot take into account non-linearities due, for example, to amplifiers operating near saturation. For a more exact treatment in this case, the method must be adapted as we will explain below. In any case, this phenomenon only concerns the transformation: A = D C , all the other relationships remaining linear.

    Dans le cas d'une antenne fonctionnant en réception, toutes les équations restent linéaires. Nous considérons d'abord le cas le plus simple d'une antenne linéaire en émission pour illustrer le principe de la méthode de calibration selon l'invention. Il s'agit d'abord de mesurer chacun des NxN termes complexes qij de la matrice : Q = PRD ,
    que nous obtenons à partir de : E = Q C = PRD C.
    En effet, la sonde en champ proche nous permet de mesurer directement les éléments Ei du vecteur E comme nous l'avons expliqué ci-dessus.
    In the case of an antenna operating in reception, all the equations remain linear. We first consider the simplest case of a linear transmit antenna to illustrate the principle of the calibration method according to the invention. It is first a question of measuring each of the NxN complex terms q ij of the matrix: Q = PRD ,
    which we get from: E = Q C = PRD C.
    Indeed, the near-field probe allows us to directly measure the elements E i of the vector E as we explained above.

    La méthode de calibration selon l'invention permet d'obtenir les valeurs de tous les vecteurs et des matrices à partir d'un ensemble de mesures en champ proche effectuées pour un nombre N de positions de la sonde égal au nombre de sources de rayonnement : pour chaque position, on effectue N+1 relevés (commande initiale + commutation de chacun des N bits par 180°) ; le nombre total de mesures est donc N (N+1). La calibration initiale peut être suivie d'une recalibration de façon itérative, pour obtenir une précision voulue donnée. Nous décrivons d'abord la calibration initiale.The calibration method according to the invention allows get the values of all the vectors and matrices from a set of field measurements close performed for a number N of positions of the probe equal to the number of radiation sources: for each position, N + 1 readings are carried out (command initial + switching of each of the N bits by 180 °); the total number of measurements is therefore N (N + 1). The initial calibration can be followed by recalibration iteratively, to achieve desired precision given. We first describe the initial calibration.

    La mesure est effectuée de la manière suivante :

  • 1) on commande une loi équi-amplitude et équi-phase, c'est-à-dire ci = 1 pour tout i de = 1 à N ;
  • 2) on place successivement la sonde champ proche devant chaque source Si ; on relève alors un signal complexe zi sur le récepteur, proportionnel au champ électrique Ei au niveau de la sonde ;
  • 3) on commute le bit 180° du déphaseur de la voie n° j de l'antenne active ; on relève alors un nouveau signal z'ij sur le récepteur.
  • The measurement is carried out as follows:
  • 1) an equi-amplitude and equi-phase law is controlled, that is to say c i = 1 for all i from = 1 to N;
  • 2) the near field probe is successively placed in front of each source S i ; a complex signal z i is then noted on the receiver, proportional to the electric field E i at the level of the probe;
  • 3) the 180 ° bit of the phase shifter of channel n ° j of the active antenna is switched; a new signal z ′ ij is then noted on the receiver.
  • Ces deux mesures sont caractérisées par les équations suivantes :

    Figure 00190001
    où la constante q caractérise la base de mesure du champ proche (q est une fonction de la sonde et du récepteur). z'ij = q(qi1c1+...+qij(-cj)+...+qiNcN); En faisant la différence complexe entre ces deux équations (1) et (2), on obtient : zi - z'ij = 2q(qij·cj) , soit, car nous avons pris cj = 1 : qij = zi - z'ij 2q . These two measures are characterized by the following equations:
    Figure 00190001
    where the constant q characterizes the measurement base of the near field (q is a function of the probe and the receiver). z ' ij = q (q i1 vs 1 + ... + q ij (-vs j ) + ... + q iN vs NOT ); By making the complex difference between these two equations (1) and (2), we obtain: z i - z ' ij = 2q (q ij · c j ), that is, because we have taken c j = 1: q ij = z i - z ' ij 2q .

    A chaque position de la sonde devant une source Si, la mesure de zi est effectuée, puis les N mesures des z'ij sont effectuées en commutant à tour de rôle les bits 180° de toutes les voies. Par la relation (3) ci-dessus, l'on obtient immédiatement les N éléments qij de la ligne i de la matrice Q.At each position of the probe in front of a source S i , the measurement of z i is carried out, then the N measurements of the z ′ ij are carried out by switching the 180 ° bits of all the channels in turn. By relation (3) above, we immediately obtain the N elements q ij of line i of the matrix Q.

    Le récepteur utilisé pour la sonde doit pouvoir mesurer les signaux complexes avec une bonne précision, par exemple un récepteur à deux mélangeurs et à deux voies I (en phase) et Q (Quadrature de phase).The receiver used for the probe must be able to measure complex signals with good accuracy, for example a receiver with two mixers and two channels I (in phase) and Q (Quadrature of phase).

    La matrice Q ainsi obtenue est appelée matrice de calibration initiale, car elle nous permet le calcul des commandes pour obtenir un diagramme de rayonnement voulu en champ lointain. Le diagramme de rayonnement est caractérisé par le vecteur F de p valeurs de champ relevées ou calculées. Pour effectuer la formation de faisceau, ces p valeurs spécifiées par le calcul représentent le rayonnement voulu dans ces principales caractéristiques. Le calcul doit ensuite déterminer comment obtenir ces valeurs de champ lointain à partir de paramètres de commande qui seront appliqués au niveau de la commande de l'antenne.The matrix Q thus obtained is called initial calibration matrix, because it allows us to calculate the commands to obtain a desired radiation pattern in the far field. The radiation diagram is characterized by the vector F of p field values recorded or calculated. To perform beamforming, these p values specified by the calculation represent the desired radiation in these main characteristics. The calculation must then determine how to obtain these far field values from control parameters which will be applied at the level of the control of the antenna.

    Les valeurs de commande peuvent être obtenues à partir du vecteur F par des transformations matricielles utilisant la matrice de calibration initiale Q. Nous résumons : Les mesures par sonde en champ proche nous donnent : E = PI = QC . Nous avons également :    F = L II = L -1 F.
    Il en résulte que :    C = Q -1 E = Q -1 P I = Q -1 PL -1 F
    Les commandes sont ainsi calculées par :    C = Q -1 PL -1 F .
    The control values can be obtained from the vector F by matrix transformations using the initial calibration matrix Q. We summarize: Measurements by near-field probe give us: E = P I = Q VS . We also have: F = L II = L -1 F.
    It follows that: C = Q -1 E = Q -1 P I = Q -1 PL -1 F
    The orders are thus calculated by: C = Q -1 PL -1 F.

    Q -1 s'obtient par inversion de la matrice NxN de calibration initiale Q, dont la mesure, terme par terme, à été décrite ci-dessus. L -1 représente la transformation du champ lointain au champ sur l'ouverture, et P est la transformation du champ sur l'ouverture au champ proche. Ces deux dernières matrices sont régies par les formules de base de la théorie des antennes, familières à l'homme de l'art ; leur mise sous forme informatique matricielle ne présente aucune difficulté. Q -1 is obtained by inversion of the initial calibration NxN matrix Q , the measurement of which, term by term, has been described above. L -1 represents the transformation of the far field to the field on the aperture, and P is the transformation of the field on the aperture to the near field. These last two matrices are governed by the basic formulas of antenna theory, familiar to those skilled in the art; putting them into matrix computer form presents no difficulty.

    Ainsi, l'on peut obtenir, par la méthode de calibration selon l'invention, la matrice M = Q -1 PL -1 qui nous précise les commandes nécessaires pour obtenir un champ lointain recherché, dans le cas linéaire. Les dispersions de fabrication sont prises en compte dans cette matrice M, car Q = PRD, où D est la matrice de dispersion. Les couplages sont pris en compte également, dans la matrice R.Thus, it is possible to obtain, by the calibration method according to the invention, the matrix M = Q -1 PL -1 which specifies the commands necessary for obtaining a desired far field, in the linear case. Manufacturing dispersions are taken into account in this matrix M , because Q = PRD , where D is the dispersion matrix. The couplings are also taken into account in the matrix R.

    Pour une antenne fonctionnant en réception, les relations ci-dessus restent les mêmes : comme seule différence, lors des mesures en champ proche, la sonde émet et l'antenne active reçoit.For an antenna operating in reception, the above relationships remain the same: as single difference, during near-field measurements, the probe transmits and the active antenna receives.

    Dans le cas d'une antenne émission non-linéaire, les valeurs de commande issus de cette première mesure peuvent s'avérer insuffisamment exactes. Pour les améliorer, il est possible de faire une itération à partir de ces premières valeurs, comme décrit ci-après.In the case of a non-linear transmit antenna, the command values from this first measurement may not be sufficiently accurate. For the improve it is possible to iterate through from these first values, as described below.

    Pour pallier les erreurs de commande provenant des non-linéarités des amplificateurs, ou des imperfections des déphaseurs et des atténuateurs commandables, (non-linéarités aussi), la méthode selon une variante préférée de l'invention commence avec un premier ensemble de mesures tel que décrit ci-dessus. Les valeurs de commande C issus de cette calibration sont appliquées à leurs déphaseurs et atténuateurs respectifs. La procédure de mesures est ensuite répétée, pour obtenir une deuxième matrice de calibration Q', légèrement différente de la première Q, car la matrice de dispersion D aura quelque peu changé pour les nouvelles commandes ci. La nouvelle matrice de dispersion D' aura des termes diagonaux de la forme : d' i = a' i / c' i . To overcome the control errors originating from the non-linearities of the amplifiers, or from the imperfections of the phase-shifters and controllable attenuators (also non-linearities), the method according to a preferred variant of the invention begins with a first set of measurements such as described above. The control values C from this calibration are applied to their respective phase shifters and attenuators. The measurement procedure is then repeated, to obtain a second calibration matrix Q ' , slightly different from the first Q , since the dispersion matrix D will have changed somewhat for the new commands c i . The new dispersion matrix D 'will have diagonal terms of the form: d '' i = a '' i / vs '' i.

    On calcule alors une deuxième valeur des commandes : C' = (Q'-1PL-1)F , ainsi que l'écart quadratique entre cette loi de commande et la précédente :

    Figure 00220001
    We then calculate a second value of the commands: VS '= (Q' -1 PL -1 ) F , as well as the quadratic difference between this control law and the previous one:
    Figure 00220001

    Si l'écart quadratique est inférieur à l'objectif de précision visé, le processus itératif s'arrête là ; par exemple pour un objectif de précision de 1° en phase et 0,15 dB en amplitude, on prendra :

    Figure 00220002
    ou ε et εa sont les précisions exprimées en radians et en amplitude relative.If the quadratic deviation is less than the targeted precision objective, the iterative process stops there; for example for a precision objective of 1 ° in phase and 0.15 dB in amplitude, we will take:
    Figure 00220002
    where ε and ε a are the precisions expressed in radians and in relative amplitude.

    Si le critère de convergence n'est pas respecté, le processus d'itération continue de la même manière, en mesurant la nouvelle matrice de calibration Q'' pour les commandes C', pour obtenir les nouvelles commandes réoptimisées :
       C'' = (Q'' -1 PL -1)F . L'itération continue ainsi jusqu'au niveau de précision visé. En pratique, il faut quelques itérations seulement.
    If the convergence criterion is not respected, the iteration process continues in the same way, by measuring the new calibration matrix Q '' for commands C ', to obtain the new reoptimized commands:
    C '' = ( Q '' -1 PL -1 ) F. The iteration thus continues up to the level of precision targeted. In practice, it takes only a few iterations.

    Dans quelques cas la méthode selon l'invention peut prendre en compte des données de mesures qui ont été déjà effectuées avant la calibration de l'antenne. Par exemple, une antenne active comportant plusieurs centaines, voire plusieurs milliers de modules actifs, est généralement réalisé avec des composants qui ont subi des essais avant leur intégration à l'antenne. En outre, des caractéristiques de commande peuvent être relevés sur des modules actifs, à l'unité, pour vérifier le bon fonctionnement de ces derniers avant l'assemblage.In some cases the method according to the invention can take into account measurement data that has already been performed before the antenna calibration. By example, an active antenna comprising several hundreds or even thousands of active modules, is usually made with components that have undergone tests before their integration into the antenna. In addition, control characteristics can be noted on active modules, individually, to verify the correct operation of the latter before assembly.

    Selon une variante de la méthode de l'invention, les erreurs de commande sont prises en compte dans la calibration de l'antenne, à partir des données concernant chaque module actif. Ces données consistent en une valeur complexe (d'amplitude et de phase) pour chaque module actif considéré, en fonction de la commande appliquée. La mesure des champs proche de l'antenne est ensuite effectuée comme avant, pour une loi d'excitation uniforme ci=1, pour tout i ; ensuite pour chaque diagramme en champ lointain recherché, on calcule les commandes C= Q -1 PL -1 F en prenant dans Q= PRD la matrice de dispersion pour ci = 1, pour tout i ; mais pour C trouvée, D sera légèrement différente (D'), d'où une nouvelle valeur C' ; et ainsi de suite par un petit logiciel travaillant à partir des tableaux de mesures des modules. Dans cette variante on effectue donc qu'un relevé champ proche ; il sert à calculer la commande C adaptée à chaque diagramme F, grâce à ce logiciel annexe. L'itération porte uniquement sur la matrice de dispersion D, en tant que composante de la transformation matricielle Q = PRD. Cette dernière équation nous montre que les deux méthodes sont théoriquement équivalentes, dans la mesure ou les matrices P et R sont indépendantes de l'état de commande.According to a variant of the method of the invention, the control errors are taken into account in the calibration of the antenna, from the data relating to each active module. These data consist of a complex value (amplitude and phase) for each active module considered, depending on the command applied. The measurement of the fields close to the antenna is then carried out as before, for a uniform excitation law c i = 1, for all i; then for each far field diagram sought, the commands C = Q -1 PL -1 F are calculated by taking in Q = PRD the dispersion matrix for c i = 1, for all i; but for C found, D will be slightly different ( D ' ), hence a new value C' ; and so on by a small software working from the module measurement tables. In this variant, therefore, a near field survey is carried out; it is used to calculate the command C adapted to each diagram F , using this additional software. The iteration relates only to the dispersion matrix D , as a component of the matrix transformation Q = PRD . This last equation shows us that the two methods are theoretically equivalent, insofar as the matrices P and R are independent of the control state.

    Le choix entre ces deux variantes sera fait en fonction des critères de facilité de mise en oeuvre. Dans la première variante, on effectue M itérations, chacune comportant N(N+1) mesures de sonde en champ proche, et ceci pour chaque diagramme de rayonnement différent souhaité. Dans la deuxième variante, chaque module actif doit être caractérisé individuellement, mais ensuite, pour déterminer les éléments de la matrice de calibration Q, on aura besoin que d'une seule mesure de N(N+1) valeurs en champ proche, toutes les autres lois de commande pouvant être calculées à partir de Q et le tableau de mesures effectuées sur les modules actifs.The choice between these two variants will be made according to the criteria of ease of implementation. In the first variant, M iterations are carried out, each comprising N (N + 1) near-field probe measurements, and this for each desired different radiation pattern. In the second variant, each active module must be characterized individually, but then, to determine the elements of the calibration matrix Q , we will only need a single measurement of N (N + 1) values in the near field, every other control laws which can be calculated from Q and the table of measurements carried out on the active modules.

    Bien sur, la méthode selon l'invention peut donner des mesures plus précises si l'on est prêt à effectuer un plus grand nombre de relevés de champ proche, par exemple K fois plus, où K est un facteur multiplicatif (K = nombre entier). Selon une variante de la méthode de l'invention, lorsque chaque module actif est relié à un "sous-réseau" de patches rayonnants, dont la surface est nettement supérieure au quadrillage λ/2 x λ/2 optimal en précision pour relever le champ proche de l'antenne, on effectue les relevés avec K positions par sous réseau. Ceci permet de se rapprocher du quadrillage idéal, au coût d'une augmentation de la durée de la calibration. Mais la précision est améliorée en moyennant chaque groupe de K mesures par une "projection" mathématique du champ proche en ces K points rayonné par un seul sous-réseau rayonnant. La manière d'accomplir cette "projection" mathématique sera décrite dans les paragraphes suivants.Of course, the method according to the invention can give more precise measurements if one is ready to perform a higher number of near field readings, for example K times more, where K is a multiplicative factor (K = whole number). According to a variant of the method of the invention, when each active module is connected to a "sub-network" of radiant patches, the surface of which is clearly greater than the grid λ / 2 x λ / 2 optimal in precision to raise the near field of the antenna, we perform readings with K positions by sub-network. This allows you to get closer to the ideal grid, at cost an increase in the duration of the calibration. But accuracy is improved by averaging each group of K measurements by a mathematical "projection" of the field close to these K points radiated by a single subnetwork radiant. The way to accomplish this "projection" mathematics will be described in the following paragraphs.

    On effectue les relevés champ proche, notés : E '  / nk en N·K points, ce qui correspond à un nombre égal de directions p = N·K d'échantillonage du champ lointain. On dispose ainsi de K fois trop de mesures E '  / nk pour caractériser les N commandes de l'antenne. La "projection sur le diagramme champ proche d'une source" consiste à suivre les étapes suivantes :

    • Avant la calibration de l'antenne active complète, on mesure le diagramme champ proche e :
      Figure 00240001
      d'une source rayonnante seule, aux K points d'échantillonage de sa surface choisis plus haut.
    • Après avoir relevé les E '  / nk en p = N . K points devant l'antenne active (K points devant chaque source rayonnante, donnant la "maille" du relevé champ proche), on projete sur e les K relevés correspondant à chaque maille ; soit pour la maille de numéro n0 :
      Figure 00250001
    The near field measurements are made, noted: E '/ nk at N · K points, which corresponds to an equal number of directions p = N · K of far field sampling. There are thus K times too many E '/ nk measurements to characterize the N commands of the antenna. The "projection on the near field diagram of a source" consists of following the following steps:
    • Before calibrating the complete active antenna, the near field diagram e is measured:
      Figure 00240001
      from a single radiating source, at the K sampling points of its surface chosen above.
    • After having noted the E '/ nk in p = N. K points in front of the active antenna (K points in front of each radiating source, giving the "mesh" of the near field survey), the K readings corresponding to each mesh are projected onto e ; either for the mesh of number n 0 :
      Figure 00250001

    Mathématiquement cette projection s'exprime par le produit scalaire complexe : E n0 = E '  n0 .e* , où le symbole "*" indique le conjugué complexe

    • Ensuite on remplace les N.K releves E '  / nk par N valeurs :
      Figure 00250002
      qui sont les moyennes des diagrammes champ prodche sur chaque maille, pondérées par le diagramme de la source située en face de cette maille.
    • A partir de cette étape, on procède au calcul de la matrice NxN de calibration Q comme précédemment, où l'on a fait correspondre N relevés champ proche En à chaque jeu de N commandes ci .
    Mathematically this projection is expressed by the complex dot product: E not 0 = E '' not 0 . e *, where the symbol "*" indicates the complex conjugate
    • Then we replace the NK readings E '/ nk by N values:
      Figure 00250002
      which are the averages of the field field diagrams on each mesh, weighted by the diagram of the source located opposite this mesh.
    • From this step, we proceed to the calculation of the calibration matrix NxN Q as above, where we made N readings near field E n to each set of N commands c i .

    L'opération mathématique de projection peut être representé dans une formalisme matricielle par l'équation
       E = T·E' , ou T est une matrice N x p. La formule de calibration devient alors :
       vecteur colonne C = (Q-1T·P·L-1 )F . Dans cette équation,

  • F est une matrice colonne de p = N·K termes ;
  • P et L sont des matrices carrées de p x p termes ;
  • T ramène à N termes seulement ;
  • Q est toujours une matrice NxN ; et
  • C est un vecteur colonne de N termes.
  • The mathematical operation of projection can be represented in a matrix formalism by the equation
    E = T · E ', where T is an N x p matrix. The calibration formula then becomes:
    column vector C = ( Q -1 T · P · L -1 ) F. In this equation,
  • F is a column matrix of p = N · K terms;
  • P and L are square matrices of pxp terms;
  • T brings back to N terms only;
  • Q is always an NxN matrix; and
  • C is a column vector of N terms.
  • L'avantage de cette variante est l'augmentation de la précision des résultats d'un facteur K1/2, en moyennant K mesures pour la maille située en face de chaque source. Cette avantage est au prix d'un nombre de mesures augmenté par un facteur de K, et l'augmentation de la taille des matrices à calculer dans les mêmes proportions.The advantage of this variant is the increase in the precision of the results by a factor K 1/2 , by averaging K measurements for the mesh located opposite each source. This advantage comes at the cost of a number of measurements increased by a factor of K, and the increase in the size of the matrices to be calculated in the same proportions.

    Le choix sera ainsi optimisé en fonction du nombre de modules actifs, du nombre de diagrammes de rayonnement différents, du nombre d'itérations nécessaires pour avoir la précision requise.The choice will thus be optimized according to the number active modules, number of radiation patterns different, the number of iterations necessary to have the required precision.

    La méthode selon l'invention et ses variantes présentent entre autres les avantages sus-mentionnés. La matrice de calibration Q = [qij] relie directement les commandes de l'antenne active au champ proche rayonné, et prend en compte toutes les dispersions qui génèrent des écarts entre les diagrammes de rayonnement réel et théorique calculé par logiciel. Les dispersions de fabrication sont prises en compte dans la matrice D = [di] . Les imperfections des éléments commandables -- déphaseurs, contrôle de gain -- sont prises en compte par le processus itératif, ou par des mesures effectuées individuellement sur les modules actifs. L'influence des couplages entre les sources rayonnantes sur leurs diagrammes élémentaires est prise en compte par les termes non-diagonaux de la matrice R = [rij].The method according to the invention and its variants have inter alia the advantages mentioned above. The calibration matrix Q = [q ij ] directly links the commands of the active antenna to the near-radiated field, and takes into account all the dispersions which generate deviations between the real and theoretical radiation diagrams calculated by software. Manufacturing dispersions are taken into account in the matrix D = [d i ]. The imperfections of the controllable elements - phase shifters, gain control - are taken into account by the iterative process, or by measurements carried out individually on the active modules. The influence of the couplings between the radiating sources on their elementary diagrams is taken into account by the non-diagonal terms of the matrix R = [r ij ].

    La calibration selon l'invention est donc meilleure que les calibrations de l'art antérieur, car elle prend en compte des erreurs qui ne sont pas prises en compte dans les méthodes de l'art antérieur. De plus, les mesures de la présente méthode sont plus rapides à effectuer, car un seul balayage de la sonde en champ proche est nécessaire (s'il n'y a pas besoin d'itérations successives, si par exemple les modules actifs sont mesurés individuellement), avec seulement N positions de mesure, où N est le nombre de modules actifs. Dans l'art antérieur, il faut faire une cartographie de tout le champ proche, avec un espacement maximal de (λ/2)2 sur une surface 2 à 3 fois supérieure à celle de l'antenne. La commutation des N bits 180° pour chaque position de la sonde se fait très rapidement pour une antenne à commande électronique.The calibration according to the invention is therefore better than the calibrations of the prior art, because it takes into account errors which are not taken into account in the methods of the prior art. In addition, the measurements of the present method are faster to perform, since a single scanning of the near-field probe is necessary (if there is no need for successive iterations, if for example the active modules are measured individually), with only N measurement positions, where N is the number of active modules. In the prior art, it is necessary to make a mapping of the whole near field, with a maximum spacing of (λ / 2) 2 on a surface 2 to 3 times greater than that of the antenna. The switching of N bits 180 ° for each position of the probe is done very quickly for an electronically controlled antenna.

    Du fait que les dispersions de fabrication sont prises en compte par la méthode selon l'invention, la fourchette de valeurs admises pour ces paramètres (gain, déphasage en fonction de commandes) peut être élargie. Les spécifications sévères qui entraínent le rejet d'un grand nombre de composants, deviennent inutiles. En outre, la méthode selon l'invention ne requiert aucun circuit spécifique dans l'antenne active. Les méthodes de l'art antérieur par contre, demandent par exemple l'intégration d'un "BFN de calibration", d'un récepteur spécifique par module, ou encore un commutateur pour mise sur charge individuelle de chaque module uniquement pour les besoins de calibration.Because the manufacturing dispersions are taken into account by the method according to the invention, the range of values allowed for these parameters (gain, phase shift depending on commands) can be extended. The severe specifications that lead to the rejection of a large number of components, become useless. In in addition, the method according to the invention does not require any specific circuit in the active antenna. The methods in the prior art, however, ask for example integration of a "calibration BFN", a receiver specific by module, or a switch for setting on individual load of each module only for calibration needs.

    Claims (9)

    1. Method of calibrating an active antenna having N radiating sources comprising the following steps: a probe is placed in front of each radiating source in succession to measure the near field in front of said source, characterised in that: for an antenna configuration required to obtain a required radiation diagram and in that: during said measurement of said near field in front of said source a phase shifter of each channel in turn is caused to shift the phase of radiation by said channel 180° relative to its nominal value with each of the other N - 1 sources operating at their respective nominal value for said configuration in order to obtain the required radiation diagram.
    2. Method of calibrating an active antenna having N radiating sources disposed in an array with coupling between said sources which are energised by active modules comprising variable phase shift means and variable gain control means, said sources, said active modules, said phase shift means and said gain control means having close manufacturing tolerances and said phase shift means and said gain control means being subject to inaccuracies of response conditioned by a given control value, characterised in that: near field measurements are carried out using the method claimed in claim 1 and an appropriate probe to characterise simultaneously the effects of said coupling between sources, said manufacturing tolerances and said inaccuracies.
    3. Method according to claim 1 or claim 2 wherein the gain and phase control values for a required antenna configuration to obtain a required radiation diagram are first determined by one of the methods of the aforementioned claims, and said control values are applied to said phase shift and gain control means this method being further characterised in that: the near field measurements are repeated with said control values to obtain closer corrections to said values by successive iterations as required.
    4. Method according to claim 1 or claim 2 characterised in that: a calibration table is drawn up on the basis of measurements carried out on said active modules before the antenna is assembled and in that: after the control values are determined by one of the methods of the aforementioned claim the control values are further refined by an iterative subroutine using said module calibration table.
    5. Method according to claim 1 for calibrating an active antenna whose modules are arranged in a mesh whose size is significantly greater than λ/2 in at least one dimension of the antenna, characterised in that: K near field measurements are carried out in front of each radiating source corresponding to a mesh of substantially λ/2 and said K measurements are then averaged by projection onto the near field diagram of an isolated source.
    6. Method according to any one of claims 1 to 4 applied to transmit active antennas.
    7. Method according to any one of claims 1 to 4 applied to receive active antennas.
    8. Method according to any one of claims 1 to 4 applied to receive active antennas alternately transmitting and receiving.
    9. Method according to claim 7 characterised in that the method is applied to a radar antenna and in that the method is applied twice: once for the antenna transmitting to determine the transmit phase shift and gain control values and again for the antenna receiving to determine the receive phase shift and gain control values.
    EP93402377A 1992-10-01 1993-09-29 Method for antenna calibration in the near field for active antenna Expired - Lifetime EP0591049B1 (en)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR9212092A FR2696553B1 (en) 1992-10-01 1992-10-01 Near field antenna calibration method for active antenna.
    FR9212092 1992-10-01

    Publications (2)

    Publication Number Publication Date
    EP0591049A1 EP0591049A1 (en) 1994-04-06
    EP0591049B1 true EP0591049B1 (en) 1998-03-04

    Family

    ID=9434381

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP93402377A Expired - Lifetime EP0591049B1 (en) 1992-10-01 1993-09-29 Method for antenna calibration in the near field for active antenna

    Country Status (4)

    Country Link
    US (1) US5477229A (en)
    EP (1) EP0591049B1 (en)
    DE (1) DE69317195T2 (en)
    FR (1) FR2696553B1 (en)

    Cited By (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7068218B2 (en) 2002-08-19 2006-06-27 Kathrein-Werke Kg Calibration device for an antenna array, antenna array and methods for antenna array operation
    CN106872798A (en) * 2017-01-23 2017-06-20 国家电网公司 A kind of array signal filtering, the method for amplitude detection

    Families Citing this family (49)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US5657023A (en) * 1996-05-02 1997-08-12 Hughes Electronics Self-phase up of array antennas with non-uniform element mutual coupling and arbitrary lattice orientation
    US5745076A (en) * 1996-09-05 1998-04-28 Northrop Grumman Corporation Transmit/receive module for planar active apertures
    SE508958C2 (en) * 1997-03-07 1998-11-16 Ericsson Telefon Ab L M Method and apparatus for calibrating a phase controlled array antenna
    SE509434C2 (en) * 1997-05-16 1999-01-25 Ericsson Telefon Ab L M Antenna calibration device and method
    US6046697A (en) * 1997-09-05 2000-04-04 Northern Telecom Limited Phase control of transmission antennas
    JP3504495B2 (en) * 1998-04-28 2004-03-08 松下電器産業株式会社 Array antenna wireless communication device
    US7783299B2 (en) 1999-01-08 2010-08-24 Trueposition, Inc. Advanced triggers for location-based service applications in a wireless location system
    US6184829B1 (en) * 1999-01-08 2001-02-06 Trueposition, Inc. Calibration for wireless location system
    US6522296B2 (en) * 2001-06-25 2003-02-18 Harris Corporation Method and system for calibrating wireless location systems
    WO2003019722A1 (en) * 2001-08-23 2003-03-06 Paratek Microwave, Inc. Nearfield calibration method for phased array containing tunable phase shifters
    AUPS278402A0 (en) * 2002-06-06 2002-06-27 Interactive Communications Closest point algorithm for off-axis near-field radiation calculation
    DE10237822B3 (en) * 2002-08-19 2004-07-22 Kathrein-Werke Kg Calibration device for a switchable antenna array and an associated operating method
    US6720919B1 (en) * 2002-09-20 2004-04-13 Lucent Technologies Inc. Phased array calibration using sparse arbitrarily spaced rotating electric vectors and a scalar measurement system
    FR2845218B1 (en) * 2002-09-27 2004-11-05 Thales Sa METHOD AND DEVICE FOR SCALE-EQUALIZATION OF A RECEPTION SYSTEM
    AU2003286971A1 (en) * 2002-12-20 2004-07-14 Amplet Inc. System and method for measuring radiation characteristic of antenna
    US7015857B1 (en) * 2004-10-20 2006-03-21 Raytheon Company Calibrating an antenna by determining polarization
    US6961016B1 (en) * 2004-10-20 2005-11-01 Raytheon Company Estimating an antenna pointing error by determining polarization
    DE102005011127B4 (en) * 2005-03-10 2012-06-21 Imst Gmbh Calibration of an electronically controllable planar antenna and electronically controllable planar antenna with one cavity
    US7199753B2 (en) * 2005-06-16 2007-04-03 Raytheon Company Calibration method for receive only phased array radar antenna
    US7215298B1 (en) * 2005-09-06 2007-05-08 Lockheed Martin Corporation Extendable/retractable antenna calibration element
    US7876276B1 (en) 2006-08-02 2011-01-25 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Antenna near-field probe station scanner
    US20080129613A1 (en) * 2006-12-05 2008-06-05 Nokia Corporation Calibration for re-configurable active antennas
    US7764935B2 (en) * 2006-12-21 2010-07-27 Nokia Corporation Phase and power calibration in active antennas
    US20120020396A1 (en) * 2007-08-09 2012-01-26 Nokia Corporation Calibration of smart antenna systems
    US8213957B2 (en) 2009-04-22 2012-07-03 Trueposition, Inc. Network autonomous wireless location system
    US8154452B2 (en) * 2009-07-08 2012-04-10 Raytheon Company Method and apparatus for phased array antenna field recalibration
    TWI394969B (en) * 2009-10-30 2013-05-01 Wistron Neweb Corp Test system
    US8299964B2 (en) * 2010-02-19 2012-10-30 University Of Massachusetts System and method for adaptive correction to phased array antenna array coefficients through dithering and near-field sensing
    JP2013530381A (en) * 2010-04-22 2013-07-25 ノキア シーメンス ネットワークス オサケユキチュア Apparatus for measuring radiation patterns of active antenna configurations
    JP5246250B2 (en) * 2010-12-09 2013-07-24 株式会社デンソー Phased array antenna phase calibration method and phased array antenna
    US8686896B2 (en) 2011-02-11 2014-04-01 Src, Inc. Bench-top measurement method, apparatus and system for phased array radar apparatus calibration
    US8704705B2 (en) 2011-03-16 2014-04-22 Src, Inc. Radar apparatus calibration via individual radar components
    US8970427B2 (en) 2011-05-18 2015-03-03 Mediatek Singapore Pte. Ltd. Phase-arrayed device and method for calibrating the phase-arrayed device
    WO2013058842A1 (en) * 2011-06-29 2013-04-25 Technology Service Corporation Systems and methods for near field target simulation
    US9209523B2 (en) 2012-02-24 2015-12-08 Futurewei Technologies, Inc. Apparatus and method for modular multi-sector active antenna system
    US9130271B2 (en) * 2012-02-24 2015-09-08 Futurewei Technologies, Inc. Apparatus and method for an active antenna system with near-field radio frequency probes
    DE102012204174B4 (en) * 2012-03-16 2022-03-10 Rohde & Schwarz GmbH & Co. Kommanditgesellschaft Method, system and calibration object for the automatic calibration of an imaging antenna arrangement
    CN102857309B (en) 2012-07-27 2016-09-28 中兴通讯股份有限公司 The method of testing of a kind of radio frequency index of active antenna system and device
    CN102830298B (en) 2012-07-27 2017-04-12 中兴通讯股份有限公司 Method and device for testing radio frequency index and wireless index of active antenna system
    WO2018137148A1 (en) * 2017-01-24 2018-08-02 华为技术有限公司 Antenna correction method and device
    CN107219410B (en) * 2017-06-21 2019-09-06 西安空间无线电技术研究所 A kind of Planar Near-Field Measurement modification method based on probe frequency sweep shift offset
    CN108963459B (en) * 2018-06-30 2021-05-18 华为技术有限公司 Measuring method and device
    US11276928B1 (en) 2019-04-10 2022-03-15 The Governors Of The University Of Alberta Calibrating/monitoring method and apparatus for phased array antenna employing very near field
    CN110361705B (en) * 2019-06-27 2023-03-03 中国航空工业集团公司雷华电子技术研究所 Phased array antenna near field iterative calibration method
    WO2021000262A1 (en) * 2019-07-02 2021-01-07 瑞声声学科技(深圳)有限公司 Base station antenna
    CN111044802A (en) * 2019-12-04 2020-04-21 上海霍莱沃电子系统技术股份有限公司 Phased array antenna unit amplitude and phase balancing method and device based on aperture field
    CN113900058A (en) * 2021-09-14 2022-01-07 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Near-field probe calibration method, device, system, equipment and storage medium
    CN115113124A (en) * 2022-05-27 2022-09-27 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) Composite probe calibration method and device, computer equipment and storage medium
    CN115118355B (en) * 2022-07-08 2024-02-13 电子科技大学 Array antenna far-field detection device and method based on near-field power feedback

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS6089766A (en) * 1983-10-21 1985-05-20 Mitsubishi Electric Corp Antenna measurement system
    US4926186A (en) * 1989-03-20 1990-05-15 Allied-Signal Inc. FFT-based aperture monitor for scanning phased arrays
    EP0417689B1 (en) * 1989-09-11 1995-04-26 Nec Corporation Phased array antenna with temperature compensating capability
    US5038146A (en) * 1990-08-22 1991-08-06 Raytheon Company Array built in test
    US5081460A (en) * 1991-01-22 1992-01-14 Hughes Aircraft Company Method and apparatus for testing phase shifter modules of a phased array antenna
    US5248982A (en) * 1991-08-29 1993-09-28 Hughes Aircraft Company Method and apparatus for calibrating phased array receiving antennas
    US5241316A (en) * 1991-09-26 1993-08-31 Hughes Aircraft Company Use of iteration to improve the correction of AGC dependent channel-to-channel gain imbalance

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7068218B2 (en) 2002-08-19 2006-06-27 Kathrein-Werke Kg Calibration device for an antenna array, antenna array and methods for antenna array operation
    CN106872798A (en) * 2017-01-23 2017-06-20 国家电网公司 A kind of array signal filtering, the method for amplitude detection
    CN106872798B (en) * 2017-01-23 2021-05-04 国家电网公司 Array signal filtering and amplitude detection method

    Also Published As

    Publication number Publication date
    EP0591049A1 (en) 1994-04-06
    US5477229A (en) 1995-12-19
    DE69317195D1 (en) 1998-04-09
    FR2696553B1 (en) 1994-11-25
    DE69317195T2 (en) 1998-06-25
    FR2696553A1 (en) 1994-04-08

    Similar Documents

    Publication Publication Date Title
    EP0591049B1 (en) Method for antenna calibration in the near field for active antenna
    Boyarsky et al. Electronically steered metasurface antenna
    JP7324916B2 (en) light structure
    US7408507B1 (en) Antenna calibration method and system
    CA2797803C (en) System for simulating electromagnetic environments comprising an array including a plurality of probes
    FR2788133A1 (en) High frequency satellite imaging radiometric synthetic aperture antenna having horizontal/vertical dipole sets each rotated round 180 degrees from last and composite response cross polarization reduced.
    EP2380235B1 (en) System for emitting electromagnetic beams, comprising a network of antennae
    EP0752736B1 (en) A method and apparatus for remotely calibrating a phased array system used for satellite communication
    Hoang et al. Frequency selective computational through wall imaging using a dynamically reconfigurable metasurface aperture
    Re et al. FMCW radar with enhanced resolution and processing time by beam switching
    Alamzadeh et al. Sensing and reconfigurable reflection of electromagnetic waves from a metasurface with sparse sensing elements
    WO2013139939A1 (en) Millimetre band transmitting/receiving system
    EP2422215B1 (en) Method for electromagnetically characterizing a target
    FR2946152A1 (en) HYPERFREQUENCY ABSOLUTE HIGH-PRECISION TELEMETER WITH MULTI-STATE REFLECTION DEVICE.
    FR2829298A1 (en) SWITCHING DEVICE FOR ELECTROMAGNETIC WAVE RECEIVING AND / OR TRANSMITTING APPARATUS
    WO2018108723A1 (en) Method for producing a direction-finding antenna array and antenna array produced according to such a method
    Irazoqui An investigation and solution to spatial interferers before RF front end for phased arrays
    EP0613019A1 (en) Off-boresight antenna for monopulse radar
    EP0624804A1 (en) Tracking system for estimating the pointing error of a HF antenna
    FR2930845A1 (en) Flat active electronic scanning radio frequency antenna for e.g. air-borne radar application, has signals distribution circuit such that electrical length of lines between input of element and output of phase-shift circuit is identical
    FR2743939A1 (en) Radiation pattern provision method for adaptive beam antenna array
    FR3034872A1 (en) METHOD OF CHARACTERIZING AN ACTIVE ANTENNA
    Zmuda Optical Beamforming for Phased Array Antennas
    ÁLVAREZ-NARCIANDI et al. Frequency Selective Computational Through Wall Imaging Using a Dynamically Reconfigurable Metasurface Aperture
    Capozzoli et al. The design of an optical time steered antenna based on a new integrated true time delay unit

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB IT SE

    17P Request for examination filed

    Effective date: 19940701

    17Q First examination report despatched

    Effective date: 19960709

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB IT SE

    ITF It: translation for a ep patent filed

    Owner name: JACOBACCI & PERANI S.P.A.

    REF Corresponds to:

    Ref document number: 69317195

    Country of ref document: DE

    Date of ref document: 19980409

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980518

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

    Owner name: ALCATEL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20000814

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: SE

    Payment date: 20000825

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20000830

    Year of fee payment: 8

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20000831

    Year of fee payment: 8

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010929

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20010930

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020501

    EUG Se: european patent has lapsed

    Ref document number: 93402377.1

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20010929

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20020531

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

    Effective date: 20050929