EP0520851B1 - Antenne mixte pour réception de signaux émis simultanément par satellite et par stations terrestres, notamment pour la réception de signaux de radiodiffusion sonore numérique - Google Patents

Antenne mixte pour réception de signaux émis simultanément par satellite et par stations terrestres, notamment pour la réception de signaux de radiodiffusion sonore numérique Download PDF

Info

Publication number
EP0520851B1
EP0520851B1 EP92401560A EP92401560A EP0520851B1 EP 0520851 B1 EP0520851 B1 EP 0520851B1 EP 92401560 A EP92401560 A EP 92401560A EP 92401560 A EP92401560 A EP 92401560A EP 0520851 B1 EP0520851 B1 EP 0520851B1
Authority
EP
European Patent Office
Prior art keywords
antenna
skirt
reception
signals
radioelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92401560A
Other languages
German (de)
English (en)
Other versions
EP0520851A1 (fr
Inventor
Philippe Piolé
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Telediffusion de France ets Public de Diffusion
Orange SA
Original Assignee
Telediffusion de France ets Public de Diffusion
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Telediffusion de France ets Public de Diffusion, France Telecom SA filed Critical Telediffusion de France ets Public de Diffusion
Publication of EP0520851A1 publication Critical patent/EP0520851A1/fr
Application granted granted Critical
Publication of EP0520851B1 publication Critical patent/EP0520851B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface

Definitions

  • the invention relates to an antenna for receiving signals transmitted simultaneously by land and satellite.
  • DAB Digital Audio Broad-casting
  • DAB Digital Audio Broad-casting
  • the broadcasting of high quality sound is however a particularly critical application in terms of performance and quality that the user is entitled to demand, in particular in the case of reception on board vehicles moving in urban environment, and it will be seen that, by its various characteristics, the antenna of the invention is particularly well suited to such use.
  • One of the aims of the present invention is to propose a mixed antenna, allowing the simultaneous reception of these two types of signals despite their very different reception conditions, and which is of simple and compact construction, in particular to allow its mounting on the roof of a vehicle, and which exhibits high radio performance.
  • the starting point of the invention is an antenna of the so-called “quarter-wave skirt” type, that is to say an antenna, to be placed above a radioelectric counterweight, comprising a closed vertical cylindrical tube in the upper part and a feed coaxial arranged inside the tube, the radiation diagram of this skirt antenna being an essentially omnidirectional diagram at low elevation angle.
  • Such an antenna is for example described in US-A-2,531,476. Given its diagram with a low elevation angle, such an antenna, which is moreover provided for land mobile radiocommunications in vertical polarization, does not allow to receive signals from satellites.
  • the basic idea of the invention is to associate with such a skirted antenna an antenna of the so-called “spiral” type, for example described in DE-B-1 056 673. But, taken as such, this antenna only allows reception in one mode, the axial mode.
  • the invention therefore proposes, in particular for the reception of digital sound broadcasting signals, to combine the skirt antenna (of the type described by the aforementioned US-A-2,531,476) according to the preamble of claim 1, which is suitable on reception of signals transmitted by earth stations, with: a helical antenna, arranged vertically above the skirt antenna and coaxially with respect thereto, the surface closing the upper part of the antenna tube at skirt constituting for the helical antenna a reflective plane whose distance from the helical antenna is defined to favor a hybrid mode of its own hybrid, partially axial and partially radial, by lowering the lobe of reception of the radiation diagram towards a angle of elevation conducive to reception of signals from satellites; and with coupling means connected to a point of attack of the cylindrical tube of the skirt antenna and to the base of the helical antenna, to combine the signals received by each of the two antennas and direct them towards the common coaxial line .
  • preamplifier means can also be provided, disposed between the output of the helical antenna and the input of the coupling means, and means forming a multi-pole filter with phase inversion on a narrow band, arranged between the output of the preamplifier means and the input of the coupling means.
  • the height of the skirt-propeller assembly above said radioelectric counterweight is adjustable.
  • the coaxial line is formed of a rigid or semi-rigid conductor, the assembly formed by the skirt, the spiral, the coupling means and the coaxial line being a self-supporting assembly supported by said conductor above said radioelectric counterweight, and this self-supporting assembly is surrounded by a radome connecting, at the bottom, to said radioelectric counterweight with interposition of sealing means.
  • the reference 1 designates a helical antenna, made up of a spiral conductive wire, which is combined with a skirted antenna 2 made up, in turn, of a conductive cylindrical tube, open at the bottom 3 and closed in the upper part 4 by a flat disc shorting the cylindrical tube at this location.
  • the skirt-propeller assembly is supported by a semi-rigid coaxial cable 5, self-supporting, on which is inserted an amplifier 6 and a phase shift filter 7.
  • the amplifier 6 and the filter 7 act on the signal picked up by the helical antenna 1, while the signal received by the skirt antenna 2 is picked up at an attack point 8 to be combined in a coupler 9 with the signal received by the helical antenna, previously amplified and filtered.
  • the output of the coupler is applied to a coaxial section 10 leading to a socket 11 intended to be connected to the receiver.
  • the assembly is for example mounted on the roof 12 of a vehicle, with a screw-nut system 13 making it possible to adjust the height of the skirt above this roof.
  • the assembly can advantageously be mounted inside a radome 14, for example made of polyester, bearing on the roof 12 of the vehicle with the interposition of a seal 15.
  • a radome 14 for example made of polyester
  • the assembly thus appears, above the vehicle, in the form of a cylinder having a height H of the order of 10 cm and a diameter D of the order of 3 cm (dimensions corresponding to a reception around 1.5 GHz).
  • Such an antenna consisting of a metallic conductor wound in a spiral excited at its base, is in itself well known.
  • the antenna can radiate in two essentially different modes: in the first mode, which corresponds to most of the known applications of helical antennas, the antenna essentially radiates with the diagram illustrated in dashed lines in Figure 2, that is to say with an axially directed radiation lobe ( ⁇ o being the axis of the helix) and with a circular polarization; on the other hand, in particular for very shortened antennas (that is to say whose pitch is very small compared to the diameter, a case in practice quite rare), the radiation diagram is an essentially radial diagram and with a polarization vertical rectilinear, as illustrated in solid line in FIG. 2 (in all cases, the diagram is omnidirectional in azimuth).
  • the lower end of the conductor that is to say the part of the conductor connecting the spiral proper to the outlet of the coaxial, is configured so as to act, in cooperation with the metal disc 4 of the skirt 2, in impedance adapter element, which avoids the need for any additional impedance adaptation component for this purpose.
  • One of the original features of the present invention consists in making the helical antenna radiate not on one or the other of these two typical modes, but according to an intermediate, hybrid mode, obtained by deforming the axial radiation diagram of so as to dig it in the axis and thus lower the main reception lobe towards a site angle suitable for reception of a signal emitted by a satellite.
  • FIG. 3 This deformed diagram corresponding to the proper hybrid mode is illustrated in FIG. 3 in solid lines (the dashed diagram corresponds to the pure axial mode): it can be seen that one can thus orient the axis A i of the main lobe towards a site angle a corresponding to the general direction of the satellites transmitting the signals that one wishes to receive, and this while preserving the circular polarization, typical of these emissions by satellite (of course, this distortion of the diagram leave it omnidirectional in azimuth).
  • Digging the diagram in the vertical axis A o corresponding to a direction in which there is no transmission to be received, provides additional gain in the direction A i of pointing to the satellite, of the order of 2 dB per compared to the isotropic.
  • the parameters which contribute to distort the diagram and make the mode of radiation hybrid are essentially: the size of the reflective disc 4, the position (distance) of the latter relative to the propeller, and the dimensions, diameter and pitch, of the turns of the propeller. It will also be noted that the presence of the reflective disc 4 advantageously makes it possible, by re-diffusion effect, to slightly increase the gain of the propeller.
  • skirt antenna 2 which is intended for the reception of the signals emitted by the earth stations.
  • Such an antenna is a section close to the quarter wave (in size and in radiation, a frequency of 1.5 GHz, typical of the diffusion of DAB signals, corresponding to a quarter-wave of 5 cm), supplied from the inside by an output of the coupler 9 at a point of attack 8 which corresponds to an impedance close to that of the coupler and of the complete antenna ( typically an impedance of 50 Q).
  • the point of attack is determined so that the real part of the admittance is equal to 50 Q, the reactive admittance being eliminated by the section of skirt located below the point of attack, which behaves like a stub correction.
  • the skirt is supported by the semi-rigid coaxial 5, which passes through the upper part 4 to supply the helical antenna.
  • the diameter of the skirt, the diameter of the coaxial 5 and the total height of the skirt are optimized to meet various mechanical and electrical constraints (the diameter of the skirt influencing in particular the bandwidth).
  • FIG. 4 illustrates the radiation diagram of the skirt, which has a gain of the order of 4 dB in a direction A 2 relative to the isotrope, for a low site angle ⁇ , typically of the order of 5 at 20 °.
  • the skirt antenna radiates in a vertical rectilinear polarization, unlike the circular polarization of the propeller.
  • skirt antenna it is necessary for the skirt antenna to be arranged above a metal surface, such as the metal roof of a vehicle. Otherwise, another configuration or non-metallic roof, there must be provided under the skirt a metal disc with a diameter of about 20 cm or other radioelectric counterweight playing a similar role.
  • FIG. 5 shows the overall diagram of the antenna according to the invention, which results from the combination of the two diagrams of FIGS. 3 (helix) and 4 (skirt): it can be seen that this resulting diagram has two preferred directions, one ⁇ 1 suitable for reception of signals transmitted by a satellite, with an angle of elevation a of the order of 60 ° and a circular polarization, the other A 2 adapted for the reception of signals transmitted by earth stations, with a very low ⁇ site angle (5 to 20 °) and vertical rectilinear polarization.
  • the diagram is of course omnidirectional in azimuth.
  • the signals received by the skirt 2 and by the propeller 1 are combined in a coupler 9 with low losses, ensuring sufficient insulation between its two input channels.
  • the adaptation is made to a typical value of 50 ohms.
  • the coupler 9 can be a commercially available 3 dB coupler or miniature “combiner” placed inside the skirt 2, this configuration allowing (as for the amplifier 6 and the filter 7) a noticeable gain in space while being neutral. from the radio point of view.
  • an amplifier 6 is provided upstream of the coupler, on the path of the helical antenna; the isolation provided by the coupler 9 makes it possible to put an amplifier stage on one of the input channels of the coupler, avoiding any feedback on the amplifier 6 which could generate parasitic modes.
  • the filter 7 is a component imposing a phase shift on a small frequency variation (typically, over a range of 3 MHz around a central frequency of 1.5 GHz), in order to implement the so-called COFDM reception technique ( Coded Orthogonal Frequency Division Multiplex: coded orthogonal frequency division multiplex), which is a spectral modulation and organization process proposed as an alternative to spread spectrum techniques: in fact, in the absence of any specific processing, the resource bandwidth for broadcasting a digital audio program would be prohibitive.
  • This COFDM method is based on the principle of dividing the initial frequency band into a large number of narrow-band subchannels, with respect to which the transmission does not introduce distortion.
  • the elementary signals are orthogonal to each other, which allows spectral overlap of subchannels providing high spectral efficiency by distributing the signal energy uniformly in the frequency band.
  • the delays introduced by the two different propagation paths mean that, overall, the transmission channel presents the characteristics of a Rayleigh channel, that is to say that its response to a pulse consists of a series of pseudo-pulses whose amplifier tude follows a Rayleigh law, which, in the absence of any particular measure, would create numerous errors in digital data transmission by signal weakening and distortion.
  • the COFDM process makes it possible, precisely, to overcome this drawback.
  • the filter 7 can be, instead of a long phase shift line, consisting of a multi-pole filter (typically, with 8 to 10 poles) or a surface wave filter. , whose effects will be similar.

Description

  • L'invention concerne une antenne pour la réception de signaux émis simultanément par voie terrestre et par satellite.
  • Elle s'applique tout particulièrement à la réception des signaux de radiodiffusion sonore numérique ou DAB (Digital Audio Broad-casting)quoique, bien entendu, elle ne soit pas limitée à cette application et puisse être utilisée pour la réception d'autres types de signaux (radiodiffusion numérique d'informations autres que des programmes sonores, radiotéléphonie, etc.), ou même, par application du principe de réciprocité, pour l'émission de signaux radio.
  • La diffusion d'un son de haute qualité constitue cependant une application particulièrement critique sur le plan des performances et de la qualité que l'utilisateur est en droit d'exiger, notamment dans le cas d'une réception à bord de véhicules se déplaçant en milieu urbain, et l'on verra que, de par ses diverses caractéristiques, l'antenne de l'invention est particulièrement bien adaptée à un tel usage.
  • Pour pallier la présence des obstacles naturels venant occulter la réception, notamment en milieu urbain, on est en effet amené à prévoir, pour un même programme, une diffusion simultanée à la fois par un satellite et par une pluralité de stations terrestres.
  • Or, les conditions de réception des signaux émis selon ces deux modes sont tout à fait différentes, tant en ce qui concerne le diagramme de rayonnement nécessaire, que la largeur de bande et le type de polarisation.
  • Plus précisément, dans le cas des signaux émis par les stations terrestres, il est nécessaire de disposer d'un diagramme de rayonnement présentant un gain maximal (direction du lobe principal) pour à un angle de site faible, de l'ordre de 5 à 20°, avec une large bande passante et sous une polarisation verticale, tandis que, dans le cas des signaux émis par le satellite, l'angle de site doit être beaucoup plus élevé (de l'ordre de 60°, typiquement), et la polarisation correspondante doit être une polarisation circulaire ; dans l'un et l'autre cas, le diagramme doit être omnidirectionnel en azimut.
  • L'un des buts de la présente invention est de proposer une antenne mixte, permettant la réception simultanée de ces deux types de signaux malgré leurs conditions de réception très différentes, et qui soit de construction simple et compacte, notamment pour permettre son montage sur le toit d'un véhicule, et qui présente des performances radioélectriques élevées.
  • Le point de départ de l'invention est une antenne du type dit « à jupe quart d'onde », c'est-à-dire une antenne, à disposer au-dessus d'un contrepoids radioélectrique, comportant un tube cylindrique vertical fermé en partie supérieure et un coaxial d'alimentation disposé à l'intérieur du tube, le diagramme de rayonnement de cette antenne à jupe étant un diagramme essentiellement omnidirectionnel à faible angle de site.
  • Une telle antenne est par exemple décrite dans le US-A-2 531 476. Compte tenu de son diagramme à faible angle de site, une telle antenne, qui est d'ailleurs prévue pour des radiocommunications mobiles terrestres en polarisation verticale, ne permet pas de recevoir des signaux en provenance de satellites.
  • L'idée de base de l'invention est d'associer à une telle antenne à jupe une antenne du type dit « spirale », par exemple décrite dans le DE-B-1 056 673. Mais, prise en tant que telle, cette antenne ne permet la réception que dans un seul mode, le mode axial.
  • L'invention propose donc, notamment pour la réception de signaux de radiodiffusion sonore numérique, de combiner l'antenne à jupe (du type décrit par le US-A-2 531 476 précité) selon le préambule de la revendication 1, qui est propice à une réception de signaux émis par des stations terrestres, avec : une antenne hélicoïdale, disposée verticalement au-dessus de l'antenne à jupe et coaxialement par rapport à celle-ci, la surface fermant la partie supérieure du tube de l'antenne à jupe constituant pour l'antenne hélicoïdale un plan réflecteur dont la distance à l'antenne hélicoïdale est définie pour privilégier un mode de rayonnement hybride propre de cette dernière, partiellement axial et partiellement radial, en abaissant le lobe de réception du diagramme de rayonnement vers un angle de site propice à une réception de signaux émis par des satellites ; et avec des moyens de couplage reliés à un point d'attaque du tube cylindrique de l'antenne à jupe et à la base de l'antenne hélicoïdale, pour combiner les signaux reçus par chacune des deux antennes et les diriger vers la ligne coaxiale commune.
  • Il peut en outre être avantageusement prévu des moyens préamplificateurs, disposés entre la sortie de l'antenne hélicoïdale et l'entrée des moyens de couplage, et des moyens formant filtre multi-pôles à inversion de phase sur bande étroite, disposés entre la sortie des moyens préamplificateurs et l'entrée des moyens de couplage.
  • De préférence, la hauteur de l'ensemble jupe-hélice au-dessus dudit contrepoids radioélectrique est réglable.
  • De préférence également, la ligne coaxiale est formée d'un conducteur rigide ou semi-rigide, l'ensemble formé par la jupe, la spirale, les moyens de couplage et la ligne coaxiale étant un ensemble autoporteur soutenu par ledit conducteur au-dessus dudit contrepoids radioélectrique, et cet ensemble autoporteur est entouré par un radôme se raccordant, en partie inférieure, audit contrepoids radioélectrique avec interposition de moyens d'étanchéité.
  • On va maintenant décrire un exemple de réalisation de l'invention, en référence aux dessins annexés.
    • La figure 1 est une vue schématique, en perspective cavalière, de l'antenne de l'invention.
    • Les figures 2 et 3 illustrent la manière dont est modifié le diagramme propre de l'antenne hélicoïdale, destinée à la réception du signal émis par le satellite.
    • La figure 4 illustre le diagramme propre de l'antenne à jupe, destinée à la réception du signal émis par les stations terrestres.
    • La figure 5 illustre le diagramme global de l'antenne.
  • Sur la figure 1, la référence 1 désigne une antenne hélicoïdale, constituée d'un fil conducteur spiralé, que l'on combine à une antenne à jupe 2 constituée, quant à elle, d'un tube cylindrique conducteur, ouvert en partie inférieure 3 et fermé en partie supérieure 4 par un disque plan venant court-circuiter le tube cylindrique en cet endroit.
  • L'ensemble jupe-hélice est supporté par un câble coaxial semi-rigide 5, autoporteur, sur lequel est inséré un amplificateur 6 et un filtre déphaseur 7. L'amplificateur 6 et le filtre 7 agissent sur le signal capté par l'antenne hélicoïdale 1, tandis que le signal reçu par l'antenne à jupe 2 est capté en un point d'attaque 8 pour être combiné dans un coupleur9 au signal reçu par l'antenne hélicoïdale, préalablement amplifié et filtré. La sortie du coupleur est appliquée à une section de coaxial 10 débouchant sur une prise 11 destinée à être raccordée au récepteur. L'ensemble est par exemple monté sur le toit 12 d'un véhicule, avec un système à vis-écrou 13 permettant de régler la hauteur de la jupe au-dessus de ce toit.
  • L'ensemble peut être avantageusement monté à l'intérieur d'un radôme 14, par exemple en polyester, venant en appui sur le toit 12 du véhicule avec interposition d'un joint d'étanchéité 15.
  • L'ensemble se présente ainsi, au-dessus du véhicule, sous la forme d'un cylindre ayant une hauteur H de l'ordre de 10 cm et un diamètre D de l'ordre de 3 cm (dimensions correspondant à une réception autour de 1,5 GHz).
  • On va maintenant expliciter les divers composants de cette antenne.
  • On va tout d'abord décrire l'antenne hélicoïdale 1, qui est destinée à la réception des signaux émis par satellite.
  • Une telle antenne, constituée d'un conducteur métallique enroulé en spirale excité à sa base, est en elle-même bien connue. Cependant, selon le pas et le diamètre de l'hélice, l'antenne peut rayonner selon deux modes essentiellement différents: dans le premier mode, qui correspond à la majeure partie des applications connues des antennes hélicoïdales, l'antenne rayonne essentiellement avec le diagramme illustré en tiretés figure 2, c'est-à-dire avec un lobe de rayonnement dirigé axialement (Δo étant l'axe de l'hélice) et avec une polarisation circulaire ; en revanche, notamment pour des antennes très raccourcies (c'est-à-dire dont le pas est très faible en regard du diamètre, cas de figure en pratique assez rare), le diagramme de rayonnement est un diagramme essentiellement radial et avec une polarisation rectiligne verticale, comme illustré en trait plein sur la figure 2 (dans tous les cas, le diagramme est omnidirectionnel en azimut).
  • Par ailleurs, l'extrémité inférieure du conducteur, c'est-à-dire la partie de conducteur reliant la spirale proprement dite au débouché du coaxial, est configurée de manière à agir, en coopération avec le disque métallique 4 de lajupe 2, en élément adaptateurd'impédance, ce qui évite le recours à tout composant additionnel d'adaptation d'impédance à cette fin.
  • L'une des originalités de la présente invention consiste à faire rayonner l'antenne hélicoïdale non pas sur l'un ou l'autre de ces deux modes typiques, mais selon un mode intermédiaire, hybride, obtenu en déformant le diagramme de rayonnement axial de manière à le creuser dans l'axe et abaisser ainsi le lobe principal de réception vers un angle de site propice à une réception d'un signal émis par un satellite.
  • Ce diagramme déformé correspondant au mode hybride propre est illustré figure 3 en trait plein (le diagramme en tiretés correspond au mode axial pur): on voit que l'on peut ainsi orienter l'axe Ai du lobe principal vers un angle de site a correspondant à la direction générale des satellites émettant les signaux que l'on souhaite recevoir, et ceci tout en conservant la polarisation circulaire, typique de ces émissions par satellite (bien entendu, cette déformation du diagramme laisser celui-ci omnidirectionnel en azimut). Le creusement du diagramme dans l'axe vertical Ao, correspondant à une direction dans laquelle on ne trouve aucune émission à recevoir, procure un surcroît de gain dans la direction Ai de pointage vers le satellite, de l'ordre de 2 dB par rapport à l'isotrope.
  • De façon caractéristique de l'invention, cette déformation du diagramme pour faire rayonner l'antenne en mode hybride est obtenue grâce à la présence du disque plat4 court-circuitant la jupe 2 en partie supérieure et qui, dans la configuration proposée par l'invention, constitue pour l'hélice un plan réflecteur permettant la modification du diagramme dans le sens souhaité. On notera ici incidemment que le toit métallique 12, disposé relativement loin en arrière de l'hélice, est pratiquement sans effet sur le diagramme de cette dernière.
  • Les paramètres qui contribuent à déformer le diagramme et rendre hybride le mode de rayonnement sont essentiellement : la dimension du disque réflecteur 4, la position (éloignement) de ce dernier rapport à l'hélice, et les dimensions, diamètre et pas, des spires de l'hélice. On notera en outre que la présence du disque réflecteur 4 permet avantageusement, par effet de rediffusion, d'augmenter légèrement le gain de l'hélice.
  • On va maintenant décrire l'antenne à jupe 2, qui est destinée à la réception des signaux émis par les stations terrestres.
  • Le fonctionnement d'une telle antenne, en tant que telle, est connu : il s'agit d'un tronçon proche du quart d'onde (en dimension et en rayonnement, une fréquence de 1,5 GHz, typique de la diffusion de signaux DAB, correspondant à un quart d'onde de 5 cm), alimenté de l'intérieur par une sortie du coupleur 9 en un point d'attaque 8 qui correspond à une impédance proche de celle du coupleur et de l'antenne complète (typiquement, une impédance de 50 Q). Le point d'attaque est déterminé de manière que la partie réelle de l'admittance soit égale à 50 Q, l'admittance réactive étant éliminée par le tronçon de jupe situé au-dessous du point d'attaque, qui se comporte comme un stub de correction.
  • La jupe est supportée par le coaxial semi-rigide 5, qui traverse la partie supérieure 4 pour alimenter l'antenne hélicoïdale. Le diamètre de la jupe, le diamètre du coaxial 5 et la hauteur totale de la jupe sont optimisés pour répondre aux diverses contraintes mécaniques et électriques (le diamètre de la jupe influant notamment sur la bande passante).
  • L'influence de l'antenne hélicoïdale sur l'antenne à jupe est faible (mais le contraire n'est pas vrai, comme on l'a vu plus haut), car l'hélice et la jupe ne sont pas reliées électriquement entre elles (le coupleur 9 est un coupleur isolant). Un léger effet de capacité terminale est cependant possible, ce qui implique que l'ajustement de la jupe soit fait en présence de l'hélice.
  • La figure 4 illustre le diagramme de rayonnement de la jupe, qui présente un gain de l'ordre de 4 dB dans une direction A2 par rapport à l'isotrope, pour un angle de site β faible, typiquement de l'ordre de 5 à 20°. L'antenne à jupe rayonne selon une polarisation rectiligne verticale, à la différence de la polarisation circulaire de l'hélice.
  • On notera que, pour obtenir un tel diagramme, il est nécessaire que l'antenne à jupe soit disposée au-dessus d'une surface métallique, telle que le toit métallique d'un véhicule. Dans le cas contraire, autre configuration ou toit non métallique, il doit être prévu sous la jupe un disque métallique avec un diamètre de l'ordre de 20 cm ou autre contrepoids radioélectrique jouant un rôle semblable.
  • La figure 5 montre le diagramme global de l'antenne selon l'invention, qui résulte de la combinaison des deux diagrammes des figures 3 (hélice) et 4 (jupe) : on voit que ce diagramme résultant présente deux directions privilégiées, l'une Δ1 adaptée à une réception de signaux émis par un satellite, avec un angle de site a de l'ordre de 60° et une polarisation circulaire, l'autre A2 adaptée à la réception de signaux émis par des stations terrestres, avec un très faible angle de site β (5 à 20°) et une polarisation rectiligne verticale. Le diagramme est bien entendu omnidirectionnel en azimut.
  • On va maintenant décrire les circuits proprement électriques de l'antenne.
  • Les signaux reçus par la jupe 2 et par l'hélice 1 sont combinés dans un coupleur 9 à faibles pertes, assurant une isolation suffisante entre ses deux voies d'entrée. L'adaptation est faite sur une valeur typique de 50 ohms. Le coupleur 9 peut être un coupleur 3 dB ou « combineur » miniature du commerce disposé à l'intérieur de la jupe 2, cette configuration permettant (comme pour l'amplificateur 6 et le filtre 7) un gain de place notable tout en étant neutre du point de vue radioélectrique.
  • On peut avantageusement prévoir, également à l'intérieur de la jupe, un amplificateur miniature (non représenté) en sortie du coupleur 9, amplificateur dont l'alimentation serait assurée par le câble coaxial et qui permettrait de remonter le niveau du signal haute fréquence de 10 à 20 dB environ, améliorant ainsi de façon notable le rapport signal/bruit par une amplification au niveau de l'antenne, en amont du câble de liaison au récepteur (antenne « active »).
  • De préférence également, pour relever le niveau du signal satellite et compenser la perte d'insertion due au filtre 7, il est prévu en amont du coupleur, sur la voie de l'antenne hélicoïdale, un amplificateur 6 ; l'isolement procuré par le coupleur 9 permet en effet de mettre un étage amplificateur sur l'une des voies d'entrée du coupleur, en évitant toute rétroaction sur l'amplificateur 6 qui pourrait engendrer des modes parasites.
  • Le filtre 7 est un composant imposant un déphasage de sur une variation de fréquence faible (typiquement, sur une plage de 3 MHz autour d'une fréquence centrale de 1,5 GHz), afin de mettre en oeuvre la technique de réception dite COFDM (Coded Orthogonal Frequency Division Multiplex : multiplex orthogonal codé à division de fréquence), qui est un procédé de modulation et d'organisation spectrale proposé comme alternative aux techniques d'étalement de spectre: en effet, en l'absence de traitement particulier, la ressource en largeur de bande pour la diffusion d'un programme audionumérique serait prohibitive. Cette méthode COFDM repose sur le principe d'une division de la bande de fréquence initiale en un grand nombre de sous-canaux à bande étroite, vis-à-vis desquels la transmission n'introduit pas de distorsion. Les signaux élémentaires sont orthogonaux entre eux, ce qui autorise un inter-recouvrement spectral de sous-canaux procurant une grande efficacité spectrale en répartissant de façon uniforme l'énergie du signal dans la bande de fréquences.
  • En cas de réception simultanée des signaux par les deux antennes (hélice et jupe), les retards introduits par les deux trajets différents de propagation (depuis la station terrestre et depuis le satellite) font en sorte que, globalement, le canal de transmission présente les caractéristiques d'un canal de Rayleigh, c'est-à-dire que sa réponse à une impulsion est constituée d'une suite de pseudo-impulsions dont l'amplitude suit une loi de Rayleigh, ce qui, en l'absence de toute mesure particulière, créerait de nombreuses erreurs de transmission de données numériques par affaiblissement et distorsion du signal. Le procédé COFDM permet, précisément, de pallier cet inconvénient.
  • Pour conserver la compacité d'ensemble du système, le filtre 7 peut être, au lieu d'une ligne de déphasage longue, constitué d'un filtre multipôle (typiquement, à 8 à 10 pôles) ou d'un filtre à ondes de surface, dont les effets seront semblables.

Claims (6)

1. Une antenne, comprenant :
- une antenne à jupe quart d'onde, disposée au-dessus d'un contrepoids radioélectrique (12), cette antenne à jupe comportant un tube cylindrique vertical (2) fermé par une surface métallique en partie supérieure et une ligne coaxiale d'alimentation (10) disposé à l'intérieur du tube, le diagramme de rayonnement de cette antenne à jupe étant un diagramme essentiellement omnidirectionnel à faible angle de site, selon une polarisation verticale,

caractérisée en ce que, notamment pour la réception de signaux de radiodiffusion sonore numérique, cette antenne à jupe, propice à une réception de signaux émis par des stations terrestres, est combinée avec:
- une antenne hélicoïdale (1), disposée verticalement au-dessus de l'antenne à jupe et coaxialement par rapport à celle-ci, la surface (4) fermant la partie supérieure du tube de l'antenne à jupe constituant pour l'antenne hélicoïdale un plan réflecteur dont la distance à l'antenne hélicoïdale est définie pour privilégier un mode de rayonnement hybride propre de cette dernière, partiellement axial et partiellement radial, en abaissant le lobe de réception du diagramme de rayonnement vers un angle de site propice à une réception de signaux émis par des satellites, et
- des moyens de couplage (9) reliés à un point d'attaque du tube cylindrique de l'antenne à jupe et à la base de l'antenne hélicoïdale, pour combiner les signaux reçus par chacune des deux antennes et les diriger vers la ligne coaxiale commune.
2. L'antenne de la revendication 1, dans laquelle il est en outre prévu des moyens préamplificateurs (6), disposés entre la sortie de l'antenne hélicoïdale et l'entrée des moyens de couplage.
3. L'antenne de la revendication 2, dans laquelle il est en outre prévu des moyens formant filtre mul- tipôles à inversion de phase sur bande étroite (7), disposés entre la sortie des moyens préamplificateurs et l'entrée des moyens de couplage.
4. L'antenne de la revendication 1, dans laquelle il est en outre prévu des moyens (13) pour régler la hauteur de l'ensemble jupe-hélice au-dessus dudit contrepoids radioélectrique (12).
5. L'antenne de la revendication 1, dans laquelle la ligne coaxiale (5) est formée d'un conducteur rigide ou semi-rigide, l'ensemble formé par la jupe, l'hélice, les moyens de couplage et la ligne coaxiale étant un ensemble autoporteur soutenu par ledit conducteur au-dessus dudit contrepoids radioélectrique.
6. L'antenne de la revendication 5, dans laquelle ledit ensemble autoporteur est entouré par u radôme (14) se raccordant, en partie inférieure, audit contrepoids radioélectrique avec interposition de moyens d'étanchéité (15).
EP92401560A 1991-06-28 1992-06-05 Antenne mixte pour réception de signaux émis simultanément par satellite et par stations terrestres, notamment pour la réception de signaux de radiodiffusion sonore numérique Expired - Lifetime EP0520851B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9108089A FR2678437B1 (fr) 1991-06-28 1991-06-28 Antenne mixte pour reception de signaux emis simultanement par satellite et par stations terrestres, notamment pour la reception de signaux de radiodiffusion sonore numerique.
FR9108089 1991-06-28

Publications (2)

Publication Number Publication Date
EP0520851A1 EP0520851A1 (fr) 1992-12-30
EP0520851B1 true EP0520851B1 (fr) 1995-11-29

Family

ID=9414480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92401560A Expired - Lifetime EP0520851B1 (fr) 1991-06-28 1992-06-05 Antenne mixte pour réception de signaux émis simultanément par satellite et par stations terrestres, notamment pour la réception de signaux de radiodiffusion sonore numérique

Country Status (5)

Country Link
US (1) US5317327A (fr)
EP (1) EP0520851B1 (fr)
DE (1) DE69206333T2 (fr)
ES (1) ES2084303T3 (fr)
FR (1) FR2678437B1 (fr)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0622864B1 (fr) * 1993-04-28 2000-06-21 Casio Computer Co., Ltd. Dispositif d'antenne capable de produire des diagrammes de rayonnement désirables sans modifier la structure de l'antenne
US5604506A (en) * 1994-12-13 1997-02-18 Trimble Navigation Limited Dual frequency vertical antenna
US5805113A (en) * 1995-01-31 1998-09-08 Ogino; Toshikazu Multiband antenna receiver system with, LNA, AMP, combiner, voltage regulator, splitter, noise filter and common single feeder
US5621420A (en) * 1995-04-07 1997-04-15 Comant Industries, Inc. Duplex monopole antenna
US5572172A (en) * 1995-08-09 1996-11-05 Qualcomm Incorporated 180° power divider for a helix antenna
US5793338A (en) * 1995-08-09 1998-08-11 Qualcomm Incorporated Quadrifilar helix antenna and feed network
GB2321356B (en) * 1995-09-20 1999-08-04 Secr Defence Source location system
US5828348A (en) * 1995-09-22 1998-10-27 Qualcomm Incorporated Dual-band octafilar helix antenna
GB9520018D0 (en) * 1995-09-28 1995-12-06 Galtronics Uk Ltd Broad band antenna
US6757913B2 (en) 1996-07-15 2004-06-29 Gregory D. Knox Wireless music and data transceiver system
EP0822609B1 (fr) * 1996-07-29 2002-05-08 Koninklijke Philips Electronics N.V. Appareil pour recevoir et/ou émettre d'onde électromagnétique
US5859618A (en) * 1996-12-20 1999-01-12 At&T Corp Composite rooftop antenna for terrestrial and satellite reception
FR2758012B1 (fr) * 1996-12-27 1999-05-28 Thomson Csf Antenne double, en particulier pour vehicule
JP3397234B2 (ja) * 1998-03-03 2003-04-14 日本電気株式会社 移動通信端末装置及びその待ち受け受信方法
US6031499A (en) * 1998-05-22 2000-02-29 Intel Corporation Multi-purpose vehicle antenna
NO993414L (no) 1998-07-22 2000-01-23 Vistar Telecommunications Inc Integrert antenne
DE19924349A1 (de) * 1999-05-27 2000-12-21 Kathrein Werke Kg Mobilantenne, insbesondere Fahrzeugantenne für zumindest eine zirkulare und zumindest eine lineare, vorzugsweise vertikale Polarisation
US6329954B1 (en) * 2000-04-14 2001-12-11 Receptec L.L.C. Dual-antenna system for single-frequency band
US7068233B2 (en) * 2002-05-06 2006-06-27 Db Systems, Inc. Integrated multipath limiting ground based antenna
US6806838B2 (en) 2002-08-14 2004-10-19 Delphi-D Antenna Systems Combination satellite and terrestrial antenna
US7019708B2 (en) * 2004-04-08 2006-03-28 Florenio Pinili Regala Portable co-located LOS and SATCOM antenna
US7633998B2 (en) * 2004-12-21 2009-12-15 Delphi Technologies, Inc. Wireless home repeater for satellite radio products
US7224319B2 (en) * 2005-01-07 2007-05-29 Agc Automotive Americas R&D Inc. Multiple-element beam steering antenna
TWI337426B (en) * 2007-03-20 2011-02-11 Wistron Neweb Corp Portable electronic device with function of receiving and radiating rf signal and multi-frenquency antenna thereof
TWI340503B (en) * 2007-09-07 2011-04-11 Quanta Comp Inc Antenna module
US8558744B2 (en) * 2008-05-15 2013-10-15 Mitsubishi Electric Corporation Antenna device
US8667836B2 (en) * 2011-03-22 2014-03-11 Orange Electronic Co., Ltd. Anti-interference antenna of a wireless tire pressure receiver
CN102709670B (zh) * 2012-06-24 2015-04-15 电子科技大学 一种增强电磁波在等离子体中穿透性的磁体天线
US9899746B2 (en) * 2013-12-14 2018-02-20 The Charles Stark Draper Laboratory, Inc. Electronically steerable single helix/spiral antenna

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2531476A (en) * 1947-04-28 1950-11-28 Farnsworth Res Corp Ultra high frequency antenna
US2781514A (en) * 1953-04-29 1957-02-12 Itt Helical antenna system
DE963162C (de) * 1955-07-19 1957-05-02 Telefunken Gmbh Hochfrequenzleitung fuer Antennenanordnungen
DE1056673B (de) * 1957-04-26 1959-05-06 Marconi Wireless Telegraph Co Zirkularpolarisierte Antennenanordnung
CH391803A (de) * 1961-10-06 1965-05-15 Patelhold Patentverwertung Axial rückwärtsstrahlende Wendelantenne
US3523251A (en) * 1967-02-27 1970-08-04 William S Halstead Antenna structure with an integrated amplifier responsive to signals of varied polarization
DE2629502A1 (de) * 1976-06-30 1978-01-05 Siemens Ag Mehrfachrundstrahlantenne
GB1595277A (en) * 1978-05-09 1981-08-12 Communications Patents Ltd Antenna arrangements
US4442438A (en) * 1982-03-29 1984-04-10 Motorola, Inc. Helical antenna structure capable of resonating at two different frequencies
US4494122A (en) * 1982-12-22 1985-01-15 Motorola, Inc. Antenna apparatus capable of resonating at two different frequencies
US4730195A (en) * 1985-07-01 1988-03-08 Motorola, Inc. Shortened wideband decoupled sleeve dipole antenna

Also Published As

Publication number Publication date
FR2678437A1 (fr) 1992-12-31
FR2678437B1 (fr) 1994-01-28
DE69206333T2 (de) 1996-05-23
EP0520851A1 (fr) 1992-12-30
ES2084303T3 (es) 1996-05-01
US5317327A (en) 1994-05-31
DE69206333D1 (de) 1996-01-11

Similar Documents

Publication Publication Date Title
EP0520851B1 (fr) Antenne mixte pour réception de signaux émis simultanément par satellite et par stations terrestres, notamment pour la réception de signaux de radiodiffusion sonore numérique
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
FR2817661A1 (fr) Dispositif pour la reception et/ou l'emission de signaux multifaisceaux
FR2652453A1 (fr) Antenne coaxiale a fentes du type a alimentation a ondes progressives.
EP2416449A1 (fr) Antenne à réflecteur parabolique
FR2850794A1 (fr) Antenne large bande et a rayonnement omnidirectionnel
EP1883991A1 (fr) Antenne monopole
FR2859824A1 (fr) Antenne a diversite de polarisation
EP1181744B1 (fr) Antenne a polarisation verticale
EP1516393B1 (fr) Dispositif rayonnant bi-bande a double polarisation
EP2610966B1 (fr) Antenne compacte large bande à très faible épaisseur et à double polarisations linéaires orthogonales opérant dans les bandes V/UHF
EP1949496B1 (fr) Systeme d'antenne plate a acces direct en guide d'ondes
WO2009077529A2 (fr) Antenne active tres large bande pour radar passif
FR2629644A1 (fr) Antenne boucle large bande a alimentation dissymetrique, notamment antenne pour emission, et antenne reseau formee d'une pluralite de telles antennes
FR2552273A1 (fr) Antenne hyperfrequence omnidirectionnelle
CA2327371C (fr) Source rayonnante pour antenne d'emission et de reception destinee a etre installee a bord d'un satellite
EP2772985A1 (fr) Système de fixation d'un radôme plan sur le réflecteur concave d'une antenne
EP3902059A1 (fr) Antenne directive large bande à émission longitudinale
EP2889955B1 (fr) Structure antennaire compacte pour télécommunications par satellites
FR2867904A1 (fr) Systeme de reception et de decodage d'ondes electromagnetiques muni d'une antenne compacte
FR3050077B1 (fr) Antenne plane
EP2449623B1 (fr) Dispositif d'extension de bande modulable pour antenne omnidirectionnelle tres large bande
FR2747843A1 (fr) Antennes a guides a fentes a occultation de lobes secondaires
EP2610965A1 (fr) Antenne compacte à large bande à double polarisation linéaire
FR2814593A1 (fr) Antenne de telecommunication, notamment entre avions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES GB IT

17P Request for examination filed

Effective date: 19930429

17Q First examination report despatched

Effective date: 19950113

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

REF Corresponds to:

Ref document number: 69206333

Country of ref document: DE

Date of ref document: 19960111

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19960229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2084303

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110609

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20110606

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110524

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110606

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69206333

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69206333

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20120604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120604

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20121207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20120606