EP0497702A1 - Radiating element structure for a plate antenna - Google Patents

Radiating element structure for a plate antenna Download PDF

Info

Publication number
EP0497702A1
EP0497702A1 EP92400247A EP92400247A EP0497702A1 EP 0497702 A1 EP0497702 A1 EP 0497702A1 EP 92400247 A EP92400247 A EP 92400247A EP 92400247 A EP92400247 A EP 92400247A EP 0497702 A1 EP0497702 A1 EP 0497702A1
Authority
EP
European Patent Office
Prior art keywords
line
conductive
radiating
slot
ground plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP92400247A
Other languages
German (de)
French (fr)
Other versions
EP0497702B1 (en
Inventor
Olivier Remondière
Jean-François David
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0497702A1 publication Critical patent/EP0497702A1/en
Application granted granted Critical
Publication of EP0497702B1 publication Critical patent/EP0497702B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot antennas
    • H01Q13/18Resonant slot antennas the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/064Two dimensional planar arrays using horn or slot aerials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0464Annular ring patch

Definitions

  • the invention relates to a radiating device for a planar antenna and in particular for a network antenna.
  • the frequencies covered range from UHF and VHF waves to millimeter waves.
  • the radiating elements are individually controlled in amplitude and / or in phase, this is called an active antenna: It is indeed possible to choose the shape of the antenna radiation diagram so as, for example, to select zones very different coverage (narrow, wide or formed beam) or perform an electronic scan.
  • the radiating elements which form the antenna condition the final performance, the technical characteristics (mass, resistance to the environment, reliability), and the cost thereof by their intrinsic radio performance, their ability to be networked and their technology.
  • An antenna being made up of a few tens to a few thousand of such radiating elements, the unit cost of these is decisive in the overall cost of the antenna. This same type of reasoning also applies to other parameters such as mass.
  • the choice of technologies is important because it simplifies the conditions for adapting the antenna to its environment: For example, for space applications in geostationary orbit, it is important to be able to thermally control the antenna by simple means ( thermal blankets, paints) without using a demand for reheating power which affects the energy balance of the system. Under these conditions, temperature ranges as wide as -150 ° C; + 120 ° C can be obtained taking into account the thermo-optical characteristics of the surfaces.
  • Such an antenna is, moreover, subjected to flows of charged particles which must neither deteriorate the materials, nor cause electrostatic discharges after accumulation on insulating areas or poorly connected to ground.
  • An antenna must, moreover, retain all of its radioelectric qualities after having undergone the strong mechanical stresses due to launching.
  • the object of the invention is to solve these various problems.
  • a radiating device for a planar antenna comprising first and second ground planes, a slot, formed in the first ground plane, being supplied by electromagnetic coupling from a supply line, characterized in what it comprises an assembly of several conductive parts of small thickness assembled together, the central part of the radiating slot being a conductive part supported at its center by a support column.
  • this device comprises a body, forming a cavity, which is a machined metal part ensuring the various functions of lower ground plane for the central part of the radiating slot and for the supply line, of mechanical structure of the entire device, interface with a support structure for the entire radiating slot and support for the electrical interface between the supply line and this slot.
  • This device comprises a conductive cover attached to the body to constitute the upper ground plane allowing propagation in the line; This line being a conductive track maintained in the middle of the ground planes by dielectric spacers.
  • This device includes moreover, a coaxial cable for supplying the line, the core of which is brazed or welded on this line, and the external conductor of which is welded or brazed directly on the body.
  • this device can be executed in the form of a sub-array of four identical elementary radiating elements, produced in a single mechanical assembly; A propagation line, which feeds four annular slots, comprising a 1 by 4 divider part between the radiating elements.
  • such a radiating device has a low mass, a low cost and remarkable radioelectric performance.
  • This device can be used both in isolation and within a network antenna. It has technical and economic qualities which are particularly suitable for spatial application, although simple adjustments do not call into question possible applications in other fields.
  • the radiating element is commonly called an annular slot.
  • annular slot Such an element is described in the article entitled "a new circularly polarized planar antenna fed by electromagnetical coupling and its subarray" by M. Haneishi, Y. Hakura, S. Saito, and T. Hasegawa ("18th European microwave conference proceeding" ; 12-15 September 1988; Swiss).
  • a slot 10 is formed in a first ground plane 11. It is supplied by electromagnetic coupling from a supply line 12, of the triplate type, located at a lower level between the first ground plane. 11 and a second ground plane 13; this line 12 being held in position by a dielectric element 14.
  • the radiating device is shown in the Figures 2 and 3. It comprises a body 16 forming a cavity 24, a radiating annular slot 25 which is formed between the latter and a central disc (or "patch") 15, and a supply line 17.
  • the body 16 is a conductive piece, for example metallic, preferably machined in a single block, which performs the various functions of lower ground plane for the "patch” 15 and for the supply line 17, of mechanical structure of the assembly of the device, of interface with a supporting structure for the assembly of the radiating slot 25 and of support for the electrical interface between the supply line and this slot 25.
  • the "patch" 15 is formed by a conductive part, for example circular, supported by a support column 18.
  • a conductive cover 19 is attached to the body 16 to form the upper ground plane allowing propagation in line 17.
  • This line 17 is a conductive track, monolithic or etched, held in the middle of the ground planes 16 and 19 by dielectric spacers 20. It can be supplied for example using a coaxial line 21.
  • the core 22 of this coaxial line 21 can be welded, or brazed, on line 17, while the external conductor 23 is welded or brazed directly on the body 16.
  • a couple of coaxial connectors is thus avoided.
  • excellent contacts are made between these different elements. These elements can either be obtained from the same block of material, or welded together (laser, electron bombardment, plasma, ...) or brazed with a filler metal known for its good properties with respect to PIMP generation.
  • This radiating device as shown in FIGS. 2 and 3, can be used alone or grouped into a sub-network, with the advantageous possibility of producing the distribution circuit of this sub-network on the same three-line line level.
  • the invention therefore provides a concrete, industrial, economical technological solution which presents exceptional radio performance, in particular from the point of view of losses and the generation of passive intermodulation product (PIMP). It presents in in addition to great environmental stability, simplifying the conditions of thermal control and protection against radiation (“Electro Static Discharge” phenomena).
  • PIMP passive intermodulation product
  • the various conductive parts used are made of light alloys, composite materials with a metallic matrix or any other insulating or conductive material provided that it is metallized; these parts being assembled together by welding, and / or by solder, selected for their low generation of PIMP. These parts have very thin walls; the necessary stiffness or additional resistance being provided by local reinforcements.
  • the support column 18 may optionally be made of dielectric material, and the pins 20 are made of dielectric.
  • a radiating device of the L-band subnetwork type with circular monopolarization comprises a sub-network of four elementary radiating elements identical to the previous one. This sub-network is produced in a single mechanical assembly. The propagation line supplying the annular slots then comprises a divider part (25) 1 by 4 between the radiating elements.
  • the production technology is identical in all respects to that described above.

Abstract

Radiating device for a plate antenna, comprising first and second earth planes, a slot (25), made in the first earth plane, being fed by electromagnetic coupling from a feed line (17), and an assembly of several conductive parts of small thickness; the central portion of the radiating slot (25) being a conductive part (15) supported at its centre by a support column (18). Application in particular to the field of space. <IMAGE>

Description

L'invention concerne un dispositif rayonnant pour antenne plane et notamment pour antenne réseau.The invention relates to a radiating device for a planar antenna and in particular for a network antenna.

Une antenne réseau présente la particularité de posséder une ouverture réalisée par un nombre important d'éléments rayonnants ; le rayonnement de cette antenne étant la synthèse des rayonnements de chaque élément rayonnant. Le développement de telles antennes est récent et on leur trouve actuellement des applications dans des domaines aussi variés que :

  • le contrôle du trafic aérien,
  • la réception par satellite (télévision, messagerie, communication avec les mobiles),
  • les antennes spatiales : télédétection et observation de la terre (radars), relais de données, antennes de télécommunications.
A network antenna has the particularity of having an opening produced by a large number of radiating elements; the radiation of this antenna being the synthesis of the radiations of each radiating element. The development of such antennas is recent and we currently find applications in fields as varied as:
  • air traffic control,
  • satellite reception (television, messaging, communication with mobiles),
  • space antennas: remote sensing and earth observation (radars), data relays, telecommunications antennas.

Les fréquences couvertes vont des ondes UHF et VHF jusqu'aux ondes millimétriques. Lorsque les éléments rayonnants sont commandés individuellement en amplitude et/ou en phase, on parle alors d'antenne active : Il est en effet possible de choisir la forme du diagramme de rayonnement de l'antenne de manière à, par exemple, sélectionner des zones de couverture très différentes (faisceau étroit, large ou formé) ou effectuer un balayage électronique.The frequencies covered range from UHF and VHF waves to millimeter waves. When the radiating elements are individually controlled in amplitude and / or in phase, this is called an active antenna: It is indeed possible to choose the shape of the antenna radiation diagram so as, for example, to select zones very different coverage (narrow, wide or formed beam) or perform an electronic scan.

Les éléments rayonnants qui forment l'antenne conditionnent les performances finales, les caractéristiques techniques (masse, tenue à l'environnement, fiabilité), et le coût de celle-ci par leurs performances radioélectriques intrinsèques, leur capacité à être mis en réseau et leur technologie.The radiating elements which form the antenna condition the final performance, the technical characteristics (mass, resistance to the environment, reliability), and the cost thereof by their intrinsic radio performance, their ability to be networked and their technology.

Une antenne étant constituée de quelques dizaines à quelques milliers de tels éléments rayonnants, le coût unitaire de ceux-ci est déterminant dans le coût global de l'antenne. Ce même type de raisonnement s'applique aussi à d'autres paramètres tels que la masse. Le choix des technologies est important car il permet de simplifier les conditions d'adaptation de l'antenne à son environnement : Par exemple, pour des applications spatiales en orbite géostationnaire, il est important de pouvoir contrôler thermiquement l'antenne par des moyens simples (couvertures thermiques, peintures) sans avoir recours à une demande de puissance de réchauffage qui grêve le bilan énergétique du système. Dans ces conditions, des gammes de températures aussi larges que -150°C ; + 120°C peuvent être obtenues en tenant compte des caractéristiques thermo-optiques des surfaces. Une telle antenne est, de plus, soumise à des flux de particules chargées quine doivent ni détériorer les matériaux, ni provoquer de décharges électrostatiques après accumulation sur des zones isolantes ou mal reliées à la masse.An antenna being made up of a few tens to a few thousand of such radiating elements, the unit cost of these is decisive in the overall cost of the antenna. This same type of reasoning also applies to other parameters such as mass. The choice of technologies is important because it simplifies the conditions for adapting the antenna to its environment: For example, for space applications in geostationary orbit, it is important to be able to thermally control the antenna by simple means ( thermal blankets, paints) without using a demand for reheating power which affects the energy balance of the system. Under these conditions, temperature ranges as wide as -150 ° C; + 120 ° C can be obtained taking into account the thermo-optical characteristics of the surfaces. Such an antenna is, moreover, subjected to flows of charged particles which must neither deteriorate the materials, nor cause electrostatic discharges after accumulation on insulating areas or poorly connected to ground.

Une antenne doit, en outre, conserver toutes ses qualités radioélectriques après avoir subi les fortes contraintes mécaniques dues au lancement.An antenna must, moreover, retain all of its radioelectric qualities after having undergone the strong mechanical stresses due to launching.

Certaines de ces qualités, par exemple l'aptitude à ne générer que de très faibles niveaux de produits d'intermodulation passifs, sont extrêmement liées aux technologies utilisées (association des différents matériau, géométries des éléments) et à la façon dont elles supportent l'environnement opérationnel (en particulier thermique).Some of these qualities, for example the ability to generate only very low levels of passive intermodulation products, are extremely linked to the technologies used (association of the different materials, geometries of the elements) and to the way they support the operational environment (especially thermal).

L'invention a pour objet de résoudre ces différents problèmes.The object of the invention is to solve these various problems.

Elle propose à cet effet un dispositif rayonnant pour antenne plane, comprenant un premier et un second plans de masse, une fente, pratiquée dans le premier plan de masse, étant alimentée par couplage électromagnétique à partir d'une ligne d'alimentation, caractérisé en ce qu'il comporte un assemblage de plusieurs pièces conductrices de faible épaisseur assemblées entre elles, la partie centrale de la fente rayonnante étant une pièce conductrice supportée en son centre par une colonne de soutien.To this end, it provides a radiating device for a planar antenna, comprising first and second ground planes, a slot, formed in the first ground plane, being supplied by electromagnetic coupling from a supply line, characterized in what it comprises an assembly of several conductive parts of small thickness assembled together, the central part of the radiating slot being a conductive part supported at its center by a support column.

Dans une réalisation avantageuse, ce dispositif comporte un corps, formant une cavité, qui est une pièce métallique usinée assurant les différentes fonctions de plan de masse inférieur pour la partie centrale de la fente rayonnante et pour la ligne d'alimentation, de structure mécanique de l'ensemble du dispositif, d'interface avec une structure porteuse pour l'ensemble de la fente rayonnante et de support pour l'interface électrique entre la ligne d'alimentation et cette fente. Ce dispositif comporte un couvercle conducteur rapporté sur le corps pour constituer le plan de masse supérieur autorisant la propagation dans la ligne ; Cette ligne étant une piste conductrice maintenue au milieu des plans de masse par des entretoises diélectriques. Ce dispositif comporte de plus un câble coaxial, d'alimentation de la ligne, dont l'âme est brasée ou soudée sur cette ligne, et dont le conducteur extérieur est soudé ou brasé directement sur le corps.In an advantageous embodiment, this device comprises a body, forming a cavity, which is a machined metal part ensuring the various functions of lower ground plane for the central part of the radiating slot and for the supply line, of mechanical structure of the entire device, interface with a support structure for the entire radiating slot and support for the electrical interface between the supply line and this slot. This device comprises a conductive cover attached to the body to constitute the upper ground plane allowing propagation in the line; This line being a conductive track maintained in the middle of the ground planes by dielectric spacers. This device includes moreover, a coaxial cable for supplying the line, the core of which is brazed or welded on this line, and the external conductor of which is welded or brazed directly on the body.

Dans un exemple de réalisation, ce dispositif peut être exécuté sous la forme d'un sous-réseau de quatre éléments rayonnants élémentaires identiques, réalisé en un seul ensemble mécanique ; Une ligne de propagation, qui alimente quatre fentes annulaires, comportant une partie diviseur 1 par 4 entre les éléments rayonnants.In an exemplary embodiment, this device can be executed in the form of a sub-array of four identical elementary radiating elements, produced in a single mechanical assembly; A propagation line, which feeds four annular slots, comprising a 1 by 4 divider part between the radiating elements.

Avantageusement un tel dispositif rayonnant présente une faible masse, un faible coût et des performances radioélectriques remarquables. Ce dispositif peut aussi bien être utilisé isolément qu'au sein d'une antenne réseau. Il présente des qualités techniques et économiques particulièrement appropriées pour une application spatiale, bien que de simple aménagements ne mettent pas en cause des applications éventuelles dans d'autres domaines.Advantageously, such a radiating device has a low mass, a low cost and remarkable radioelectric performance. This device can be used both in isolation and within a network antenna. It has technical and economic qualities which are particularly suitable for spatial application, although simple adjustments do not call into question possible applications in other fields.

Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :

  • La figure 1 illustre un dispositif de l'art connu ;
  • les figures 2 et 3 représentent respectivement une vue en coupe et une vue de dessus du dispositif selon l'invention ;
  • les figures 4 et 5 représentent deux exemples de réalisation du dispositif de l'invention.
The characteristics and advantages of the invention will become apparent from the description which follows, by way of nonlimiting example, with reference to the appended figures in which:
  • Figure 1 illustrates a device of the known art;
  • Figures 2 and 3 respectively show a sectional view and a top view of the device according to the invention;
  • Figures 4 and 5 show two embodiments of the device of the invention.

L'élément rayonnant, tel que représenté sur la figure 1, est communément appelé fente annulaire. Un tel élément est décrit dans l'article intitulé "a new circularly polarised planar antenna fed by electromagnetical coupling and its subarray" de M. Haneishi, Y. Hakura, S. Saito, et T. Hasegawa ("18th european microwave conference proceeding" ; 12-15 septembre 1988 ; Stockholm). Dans un tel élément rayonnant une fente 10 est pratiquée dans un premier plan de masse 11. Elle est alimentée par couplage électromagnétique à partir d'une ligne 12 d'alimentation, de type triplaque, située à un niveau inférieur entre le premier plan de masse 11 et un second plan de masse 13 ; cette ligne 12 étant maintenue en position grâce à un élément diélectrique 14.The radiating element, as shown in FIG. 1, is commonly called an annular slot. Such an element is described in the article entitled "a new circularly polarized planar antenna fed by electromagnetical coupling and its subarray" by M. Haneishi, Y. Hakura, S. Saito, and T. Hasegawa ("18th european microwave conference proceeding" ; 12-15 September 1988; Stockholm). In such a radiating element, a slot 10 is formed in a first ground plane 11. It is supplied by electromagnetic coupling from a supply line 12, of the triplate type, located at a lower level between the first ground plane. 11 and a second ground plane 13; this line 12 being held in position by a dielectric element 14.

Le dispositif rayonnant selon l'invention est représenté sur les figures 2 et 3. Il comporte un corps 16 formant une cavité 24, une fente annulaire rayonnante 25 qui est réalisée entre celui-ci et un disque central (ou "patch") 15, et une ligne 17 d'alimentation. Le corps 16 est une pièce conductrice, par exemple métallique, usinée de préférence en un seul bloc, qui assure les différentes fonctions de plan de masse inférieur pour le "patch" 15 et pour la ligne d'alimentation 17, de structure mécanique de l'ensemble du dispositif, d'interface avec une structure porteuse pour l'ensemble de la fente rayonnante 25 et de support pour l'interface électrique entre la ligne d'alimentation et cette fente 25. Le "patch" 15 est formé d'une pièce conductrice, par exemple circulaire, supportée par une colonne de soutien 18. Un couvercle conducteur 19 est rapporté sur le corps 16 pour constituer le plan de masse supérieur autorisant la propagation dans la ligne 17. Cette ligne 17 est une piste conductrice, monolithique ou gravée, maintenue au milieu des plans de masse 16 et 19 par des entretoises diélectriques 20. Elle peut être alimentée par exemple à l'aide d'une ligne coaxiale 21.The radiating device according to the invention is shown in the Figures 2 and 3. It comprises a body 16 forming a cavity 24, a radiating annular slot 25 which is formed between the latter and a central disc (or "patch") 15, and a supply line 17. The body 16 is a conductive piece, for example metallic, preferably machined in a single block, which performs the various functions of lower ground plane for the "patch" 15 and for the supply line 17, of mechanical structure of the assembly of the device, of interface with a supporting structure for the assembly of the radiating slot 25 and of support for the electrical interface between the supply line and this slot 25. The "patch" 15 is formed by a conductive part, for example circular, supported by a support column 18. A conductive cover 19 is attached to the body 16 to form the upper ground plane allowing propagation in line 17. This line 17 is a conductive track, monolithic or etched, held in the middle of the ground planes 16 and 19 by dielectric spacers 20. It can be supplied for example using a coaxial line 21.

Dans une application où une faible génération de produits d'intermodulation passifs (PIMP) est recherchée, l'âme 22 de cette ligne coaxiale 21 peut être soudée, ou brasée, sur la ligne 17, alors que le conducteur extérieur 23 est soudé ou brasé directement sur le corps 16. Un couple de connecteurs coaxiaux est ainsi évité. De plus, on réalise des contacts excellents entre ces différents éléments. Ces éléments peuvent être soit obtenus à partir du même bloc de matière, soit soudés entre eux (laser, bombardement électronique, plasma,...) soit brasés avec un métal d'apport connu pour ses bonnes propriétés vis-à-vis de la génération PIMP.In an application where a low generation of passive intermodulation products (PIMP) is sought, the core 22 of this coaxial line 21 can be welded, or brazed, on line 17, while the external conductor 23 is welded or brazed directly on the body 16. A couple of coaxial connectors is thus avoided. In addition, excellent contacts are made between these different elements. These elements can either be obtained from the same block of material, or welded together (laser, electron bombardment, plasma, ...) or brazed with a filler metal known for its good properties with respect to PIMP generation.

Ce dispositif rayonnant, tel que représenté sur les figures 2 et 3, peut être utilisé seul ou regroupé en sous-réseau, avec la possibilité avantageuse de réaliser le circuit de répartition de ce sous-réseau sur un même niveau de ligne triplaque.This radiating device, as shown in FIGS. 2 and 3, can be used alone or grouped into a sub-network, with the advantageous possibility of producing the distribution circuit of this sub-network on the same three-line line level.

L'invention propose donc une solution technologique concrête, industrielle, économique qui présente des performances radioélectriques exceptionnelles en particulier du point de vue des pertes et de la génération de produit d'intermodulation passifs (PIMP). Elle présente en outre une grande stabilité à l'environnement, en simplifiant les conditions de contrôle thermique et de protection contre les radiations (phénomènes "Electro Static Discharge").The invention therefore provides a concrete, industrial, economical technological solution which presents exceptional radio performance, in particular from the point of view of losses and the generation of passive intermodulation product (PIMP). It presents in in addition to great environmental stability, simplifying the conditions of thermal control and protection against radiation ("Electro Static Discharge" phenomena).

Dans le dispositif de l'invention les différentes pièces conductrices utilisées sont réalisées dans des alliages légers, des matériaux composites à matrice métallique ou tout autre matériau isolant ou conducteur pourvu qu'il soit métallisé ; ces pièces étant assemblées entre elles par soudure, et/ou par des brasures, sélectionnées pour leur faible génération de PIMP. Ces pièces ont des parois de très faible épaisseur ; la raideur ou la résistance supplémentaire nécessaire étant fournies par des renforts locaux. Par contre la colonne de soutien 18 peut éventuellement être réalisée en matériau diélectrique, et les pions 20 sont réalisés en diélectrique.In the device of the invention, the various conductive parts used are made of light alloys, composite materials with a metallic matrix or any other insulating or conductive material provided that it is metallized; these parts being assembled together by welding, and / or by solder, selected for their low generation of PIMP. These parts have very thin walls; the necessary stiffness or additional resistance being provided by local reinforcements. Against by the support column 18 may optionally be made of dielectric material, and the pins 20 are made of dielectric.

Dans un premier exemple de réalisation de l'invention, tel que représenté sur la figure 4, on considère un dispositif simple rayonnant, en bande L, et en monopolarisation circulaire. Le métal utilisé est un alliage d'aluminium. Le corps est obtenu par usinage à commande numérique, en laissant des épaisseurs de parois aussi faibles que 0,6 mm environ, et des renforts locaux pour pouvoir supporter un environnement de lancement spatial. Le "patch" 15 ainsi que le couvercle 19 sont obtenus par découpe d'une tôle en alliage d'aluminium de faible épaisseur (par exemple environ 5/10 mm). Ces éléments sont rapportés respectivement sur la colonne de soutien 18 et sur le corps 16 par soudure laser (sans métal d'apport). La piste 17 est découpée dans une tôle d'alliage de cuivre (d'épaisseur par exemple environ 3/10 mm). Elle est maintenue entre les plans de masse par des pions diélectriques 20. La piste 17 est alimentée par un câble coaxial 21 dont le conducteur extérieur est brasé (23) à l'or/étain sur le corps 16 argenté alors que l'âme est soudée par soudure laser 22 sur la piste 17 avant fermeture par le couvercle. Après une optimisation radioélectrique, il est apparu que deux étages de "patch" 15 et 15′ étaient nécessaires pour obtenir les caractéristiques radioélectriques recherchées. Ce dispositif rayonnant a été soumis à des vibrations aléatoires avec un niveau intégré entre 20 et 2000 Hz de 70 gRMS (RMS = valeur quadratique moyenne), sans dégradations. Ses caractéristiques sont les suivantes :

  • directivité : 9,7 dB
  • pertes : < 0,3 dB
  • TE : < 2 dB
  • TOS : < - 20 dB
  • bande passante : 5,5 %
  • dimensions : épaisseur = 20 mm ; largeur = 12 cm ; longueur = 18 cm
  • masse : 0,1 kg
In a first embodiment of the invention, as shown in FIG. 4, a simple radiating device, in L-band, and in circular monopolarization is considered. The metal used is an aluminum alloy. The body is obtained by CNC machining, leaving wall thicknesses as low as about 0.6 mm, and local reinforcements to be able to withstand a space launch environment. The "patch" 15 as well as the cover 19 are obtained by cutting a sheet of aluminum alloy of small thickness (for example about 5/10 mm). These elements are attached respectively to the support column 18 and to the body 16 by laser welding (without filler metal). The track 17 is cut from a sheet of copper alloy (for example about 3/10 mm thick). It is held between the ground planes by dielectric pins 20. The track 17 is supplied by a coaxial cable 21 whose outer conductor is brazed (23) with gold / tin on the silver body 16 while the core is welded by laser welding 22 on track 17 before closing by the cover. After a radioelectric optimization, it appeared that two stages of "patch" 15 and 15 ′ were necessary to obtain the desired radioelectric characteristics. This radiating device was subjected to random vibrations with an integrated level between 20 and 2000 Hz of 70 g RMS (RMS = mean square value), without degradations. Its characteristics are as follows:
  • directivity: 9.7 dB
  • losses: <0.3 dB
  • TE: <2 dB
  • TOS: <- 20 dB
  • bandwidth: 5.5%
  • dimensions: thickness = 20 mm; width = 12 cm; length = 18 cm
  • mass: 0.1 kg

Dans un second exemple de réalisation on considère un dispositif rayonnant de type sous-réseau en bande L à monopolarisation circulaire. Ce dispositif comprend un sous-réseau de quatre éléments rayonnants élémentaires identiques au précédent. Ce sous-réseau est réalisé en un seul ensemble mécanique. La ligne de propagation alimentant les fentes annulaires comporte alors une partie diviseur (25) 1 par 4 entre les éléments rayonnants. La technologie de réalisation est en tous points identique à celle décrite précédemment.In a second exemplary embodiment, a radiating device of the L-band subnetwork type with circular monopolarization is considered. This device comprises a sub-network of four elementary radiating elements identical to the previous one. This sub-network is produced in a single mechanical assembly. The propagation line supplying the annular slots then comprises a divider part (25) 1 by 4 between the radiating elements. The production technology is identical in all respects to that described above.

Les caractéristiques mesurées sont les suivantes :

  • directivité : 15 dB
  • pertes < 0,3 dB
  • TE :< 2 dB
  • TOS : < - 20 dB
  • bande passante : 10%
  • tenue en puissance : > 100 watts
  • niveau de PIMP à l'ordre 7 et 9 sous 2 x 40 W, entre - 110°C et + 110°C : < 155 dBc (dBc : dB en dessous de la valeur crête de la puissance transmise)
  • dimensions : épaisseur = 7 mm ; largeur = 35 cm ; longueur = 35 cm
  • masse : environ 0,4 kg.
The characteristics measured are as follows:
  • directivity: 15 dB
  • losses <0.3 dB
  • TE: <2 dB
  • TOS: <- 20 dB
  • bandwidth: 10%
  • power handling:> 100 watts
  • PIMP level at order 7 and 9 at 2 x 40 W, between - 110 ° C and + 110 ° C: <155 dBc (dBc: dB below the peak value of the transmitted power)
  • dimensions: thickness = 7 mm; width = 35 cm; length = 35 cm
  • mass: about 0.4 kg.

En utilisant les caractéristiques de l'invention, il est également possible de réaliser d'autres dispositifs rayonnants, tel que :

  • . Elément simple en bande C, simple polarisation linéaire,
  • . Elément simple et sous réseau de quatre en bande Ku simple polarisation linéaire,
  • . Elément simple en bande Ku, double polarisation linéaire.
By using the characteristics of the invention, it is also possible to produce other radiating devices, such as:
  • . Simple element in C band, simple linear polarization,
  • . Single element and sub-network of four in Ku band, single linear polarization,
  • . Single element in Ku band, double linear polarization.

Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.It is understood that the present invention has only been described and shown as a preferred example and that its constituent elements can be replaced by equivalent elements without, however, departing from the scope of the invention.

Claims (8)

1/ Dispositif rayonnant pour antenne plane, comprenant un premier et un second plans de masse, une fente (25), pratiquée dans le premier plan de masse autour d'une partie centrale étant alimentée par couplage électromagnétique à partir d'une ligne d'alimentation (17), caractérisé en ce qu'il comporte un assemblage de plusieurs pièces conductrices de faible épaisseur incluant un corps (16) formant une cavité (24), qui est une pièce conductrice usinée assurant les fonctions de plan de masse inférieur pour la partie centrale (15) de la fente rayonnante et pour la ligne d'alimentation (17) et de structure mécanique de l'ensemble du dispositif, la partie centrale de la fente rayonnante (25) étant une pièce conductrice (15) disposée dans ladite cavité (24) et supportée en son centre par une colonne de soutien (18), elle-même supportée par ledit corps (16). 1 / Radiating device for planar antenna, comprising first and second ground planes, a slot (25), formed in the first ground plane around a central part being supplied by electromagnetic coupling from a line of power supply (17), characterized in that it comprises an assembly of several conductive parts of small thickness including a body (16) forming a cavity (24), which is a machined conductive part ensuring the functions of lower ground plane for the central part (15) of the radiating slot and for the supply line (17) and of mechanical structure of the entire device, the central part of the radiating slot (25) being a conductive part (15) disposed in said cavity (24) and supported in its center by a support column (18), itself supported by said body (16). 2/ Dispositif selon la revendication 1, caractérisé en ce que ledit corps (16) sert aussi d'interface avec une structure porteuse pour l'ensemble de la fente rayonnante (25) et de support pour l'interface électrique entre la ligne d'alimentation et cette fente (25). 2 / Device according to claim 1, characterized in that said body (16) also serves as an interface with a support structure for the whole of the radiating slot (25) and support for the electrical interface between the line of power supply and this slot (25). 3/ Dispositif selon la revendication 2, caractérisé en ce qu'il comporte un couvercle conducteur (19) rapporté sur le corps (16) pour constituer le plan de masse supérieur autorisant la propagation dans la ligne
(17) ; cette ligne (17) étant une piste conductrice maintenue au milieu des plans de masse par des entretoises diélectriques (20).
3 / Device according to claim 2, characterized in that it comprises a conductive cover (19) attached to the body (16) to form the upper ground plane allowing propagation in the line
(17); this line (17) being a conductive track maintained in the middle of the ground planes by dielectric spacers (20).
4/ Dispositif selon la revendication 3, caractérisé en ce qu'il comporte un câble coaxial (21), d'alimentation de la ligne (17), dont l'âme est brasée ou soudée sur cette ligne (17), et dont le conducteur extérieur (23) est soudé ou brasé directement sur le corps (16). 4 / Device according to claim 3, characterized in that it comprises a coaxial cable (21), for supplying the line (17), the core of which is brazed or welded on this line (17), and the outer conductor (23) is soldered or brazed directly to the body (16). 5/ Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un sous-réseau de quatre éléments rayonnants élémentaires identiques réalisé en un seul ensemble mécanique ; une ligne de propagation, qui alimente quatre fentes annulaires, comportant une partie diviseur (25) 1 par 4 entre les éléments rayonnants. 5 / Device according to any one of the preceding claims, characterized in that it comprises a sub-network of four identical elementary radiating elements produced in a single mechanical assembly; a propagation line, which feeds four annular slots, comprising a divider part (25) 1 by 4 between the radiating elements. 6/ Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la pièce conductrice (15) est recouverte par au moins un autre dispositif résonant (15′) destiné à en modifier les caractéristiques radioélectriques. 6 / Device according to any one of the preceding claims, characterized in that the conductive part (15) is covered by at least one other resonant device (15 ′) intended to modify its radioelectric characteristics. 7/ Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les pièces conductrices sont réalisées dans des alliages légers, des matériaux composites à matrice métallique ou tout autre matériau isolant ou conducteur pourvu qu'il soit métallisé. 7 / Device according to any one of claims 1 to 3, characterized in that the conductive parts are made of light alloys, composite materials with a metal matrix or any other insulating or conductive material provided that it is metallized. 8/ Dispositif selon la revendication 7, caractérisé en ce que les pièces conductrices sont assemblées entre elles par soudage (laser, faisceau d'électron,...) ou brasque ou assemblage vissé. 8 / Device according to claim 7, characterized in that the conductive parts are assembled together by welding (laser, electron beam, ...) or pot lining or screw connection.
EP92400247A 1991-02-01 1992-01-30 Radiating element structure for a plate antenna Expired - Lifetime EP0497702B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9101152A FR2672437B1 (en) 1991-02-01 1991-02-01 RADIANT DEVICE FOR FLAT ANTENNA.
FR9101152 1991-02-01

Publications (2)

Publication Number Publication Date
EP0497702A1 true EP0497702A1 (en) 1992-08-05
EP0497702B1 EP0497702B1 (en) 1995-04-26

Family

ID=9409276

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92400247A Expired - Lifetime EP0497702B1 (en) 1991-02-01 1992-01-30 Radiating element structure for a plate antenna

Country Status (6)

Country Link
US (1) US5465100A (en)
EP (1) EP0497702B1 (en)
JP (1) JPH04320101A (en)
DE (1) DE69202160T2 (en)
ES (1) ES2072717T3 (en)
FR (1) FR2672437B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1421644A1 (en) * 2001-06-28 2004-05-26 Harris Corporation Patch dipole array antenna including a feed line organizer body and related methods
CN110086000A (en) * 2019-05-15 2019-08-02 南京理工大学 A kind of wide bandwidth scan angle phased array antenna

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100312364B1 (en) * 1997-05-30 2001-12-28 가나이 쓰도무 Tunable slot antenna
US6160522A (en) * 1998-04-02 2000-12-12 L3 Communications Corporation, Randtron Antenna Systems Division Cavity-backed slot antenna
US6643989B1 (en) * 1999-02-23 2003-11-11 Renke Bienert Electric flush-mounted installation unit with an antenna
US6384788B2 (en) * 2000-04-07 2002-05-07 Omnipless (Proprietary) Limited Antenna with a stripline feed
CN1312948C (en) 2000-05-26 2007-04-25 松下电器产业株式会社 Antenna, antenna arrangement and radio arrangement
DE60014594T2 (en) * 2000-05-26 2006-02-23 Sony International (Europe) Gmbh Double spiral slot antenna for circular polarization
DE60106452T2 (en) * 2000-07-13 2006-02-02 Thomson Licensing S.A. MORE BAND PLANAR ANTENNA
WO2002013313A2 (en) * 2000-08-07 2002-02-14 Xtremespectrum, Inc. Electrically small planar uwb antenna apparatus and system thereof
DE60110017T2 (en) * 2000-10-13 2006-03-09 Matsushita Electric Industrial Co., Ltd., Kadoma Flat wire-fed cavity slot antenna with a frequency-selective feed network for matching to two resonance frequencies
FR2826512B1 (en) * 2001-06-22 2003-08-29 Thomson Licensing Sa COMPACT ANTENNA WITH ANNULAR SLOT
US6583766B1 (en) * 2002-01-03 2003-06-24 Harris Corporation Suppression of mutual coupling in an array of planar antenna elements
US6731245B1 (en) * 2002-10-11 2004-05-04 Raytheon Company Compact conformal patch antenna
CN1954461A (en) * 2004-01-26 2007-04-25 科学、技术与研究机构 Compact multi-tiered plate antenna arrays
US7595765B1 (en) * 2006-06-29 2009-09-29 Ball Aerospace & Technologies Corp. Embedded surface wave antenna with improved frequency bandwidth and radiation performance
EP2198479B1 (en) * 2007-10-11 2016-11-30 Raytheon Company Patch antenna
DE112008003704T5 (en) * 2008-02-04 2010-12-09 AGC Automotive Americas R&D, Inc., Ypsilanti Cavity-coupled multi-element antenna
US8736502B1 (en) 2008-08-08 2014-05-27 Ball Aerospace & Technologies Corp. Conformal wide band surface wave radiating element
US8836589B2 (en) 2008-09-12 2014-09-16 Advanced Automotive Antennas, S.L. Flush-mounted low-profile resonant hole antenna
US8159409B2 (en) * 2009-01-20 2012-04-17 Raytheon Company Integrated patch antenna
GB2497771A (en) 2011-12-19 2013-06-26 Aceaxis Ltd Patch antenna with an impedance matching transmission line feed arrangement
CN110400779B (en) * 2018-04-25 2022-01-11 华为技术有限公司 Packaging structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
EP0216331A2 (en) * 1985-09-23 1987-04-01 AT&T Corp. A multidirectional feed and flush-mounted surface wave antenna
EP0271458A2 (en) * 1986-11-13 1988-06-15 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines
FR2627636A1 (en) * 1988-02-19 1989-08-25 Thomson Csf Feed and radiation arrangement for microstrip antenna - has substrate ground plane with separated radiators and feeder strips beneath and radiator ground plane behind
EP0394931A2 (en) * 1989-04-26 1990-10-31 Siemens Aktiengesellschaft Annular slot antenna

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4242685A (en) * 1979-04-27 1980-12-30 Ball Corporation Slotted cavity antenna
US4761654A (en) * 1985-06-25 1988-08-02 Communications Satellite Corporation Electromagnetically coupled microstrip antennas having feeding patches capacitively coupled to feedlines
US4724443A (en) * 1985-10-31 1988-02-09 X-Cyte, Inc. Patch antenna with a strip line feed element
JPS6350202A (en) * 1986-08-20 1988-03-03 Matsushita Electric Works Ltd Plane antenna
US4821040A (en) * 1986-12-23 1989-04-11 Ball Corporation Circular microstrip vehicular rf antenna
US4987421A (en) * 1988-06-09 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
FR2648626B1 (en) * 1989-06-20 1991-08-23 Alcatel Espace RADIANT DIPLEXANT ELEMENT
US4994817A (en) * 1989-07-24 1991-02-19 Ball Corporation Annular slot antenna
JPH06350202A (en) * 1993-06-10 1994-12-22 Toshiba Corp Semiconductor light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4208660A (en) * 1977-11-11 1980-06-17 Raytheon Company Radio frequency ring-shaped slot antenna
EP0216331A2 (en) * 1985-09-23 1987-04-01 AT&T Corp. A multidirectional feed and flush-mounted surface wave antenna
EP0271458A2 (en) * 1986-11-13 1988-06-15 Communications Satellite Corporation Electromagnetically coupled printed-circuit antennas having patches or slots capacitively coupled to feedlines
FR2627636A1 (en) * 1988-02-19 1989-08-25 Thomson Csf Feed and radiation arrangement for microstrip antenna - has substrate ground plane with separated radiators and feeder strips beneath and radiator ground plane behind
EP0394931A2 (en) * 1989-04-26 1990-10-31 Siemens Aktiengesellschaft Annular slot antenna

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 12, no. 268 (E-638)(3115), 27 juillet 1988; & JP - A - 6350202 (MATSUSHITA ELECTRIC) 03.03.1988 *
PROCEEDINGS 18TH EUROPEAN MICROWAVE CONFERENCE 12-15 septembre 1988, pages 1074-1079, Stockholm, SE; M. HANEISHI et al.: "A New Circularly Polarised Planar Antenna Fed by Electromagnetical Coupling and its Subarray" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1421644A1 (en) * 2001-06-28 2004-05-26 Harris Corporation Patch dipole array antenna including a feed line organizer body and related methods
EP1421644A4 (en) * 2001-06-28 2004-07-21 Harris Corp Patch dipole array antenna including a feed line organizer body and related methods
CN110086000A (en) * 2019-05-15 2019-08-02 南京理工大学 A kind of wide bandwidth scan angle phased array antenna

Also Published As

Publication number Publication date
DE69202160D1 (en) 1995-06-01
DE69202160T2 (en) 1995-08-31
US5465100A (en) 1995-11-07
EP0497702B1 (en) 1995-04-26
FR2672437B1 (en) 1993-09-17
ES2072717T3 (en) 1995-07-16
JPH04320101A (en) 1992-11-10
FR2672437A1 (en) 1992-08-07

Similar Documents

Publication Publication Date Title
EP0497702B1 (en) Radiating element structure for a plate antenna
EP3392959B1 (en) Elementary cell of a transmitter network for a reconfigurable antenna
EP0497249B1 (en) Array antenna, particularly for space application
EP0542595B1 (en) Microstrip antenna device especially for satellite telephone transmissions
EP0481417B1 (en) Device for feeding an antenna element radiating two orthogonal polarisations
EP0315141B1 (en) Excitation arrangement of a circular polarised wave with a patch antenna in a waveguide
EP0012055B1 (en) Microstrip monopulse primary feed and antenna using same
EP2710676B1 (en) Radiating element for an active array antenna consisting of elementary tiles
FR3039711A1 (en) ELEMENTARY CELL OF A TRANSMITTER NETWORK FOR A RECONFIGURABLE ANTENNA.
EP2673842B1 (en) Waveguide antenna having annular slots
EP1519444A1 (en) Low loss reconfigurable reflectarray antenna
EP4012834B1 (en) Antenna source for an array antenna with direct radiation, radiating panel and antenna comprising a plurality of antenna sources
EP1979987A1 (en) Circularly or linearly polarized antenna
EP1346442A1 (en) Printed patch antenna
EP0377155B1 (en) Dual frequency radiating device
EP0106740B1 (en) Microwave power oscillator
FR2678438A1 (en) LINEAR NETWORK ANTENNA.
EP0860894B1 (en) Miniature resonant antenna in the form of annular microstrips
FR2724491A1 (en) MINIATURIZED, DOUBLE-POLARIZED, VERY WIDE BAND PLATED ANTENNA
WO1991018428A1 (en) Planar orientable antenna operating in the microwave band
FR3105612A1 (en) Compact resonant cavity antenna
FR2705167A1 (en) Small-sized, wide-band patch antenna, and corresponding transmitting/receiving device
WO2015189136A1 (en) Flat antenna for satellite communication
FR2943464A1 (en) Radiating element for use on electronically-scanned active antenna of e.g. radar, has slot line and notch formed by absence of metallization surfaces, where element and another element are formed on single multilayer radiofrequency circuit
FR2847718A1 (en) PIN type diode with polycrystalline heterostructures incorporating three different semiconductor materials for the fabrication of dephasing panels for radar and telecommunication antennae

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19920908

17Q First examination report despatched

Effective date: 19940726

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 69202160

Country of ref document: DE

Date of ref document: 19950601

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2072717

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950707

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991213

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991217

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19991220

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19991221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000121

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010131

EUG Se: european patent has lapsed

Ref document number: 92400247.0

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050130