EP0417428B1 - Tube bundle heat exchanger - Google Patents

Tube bundle heat exchanger Download PDF

Info

Publication number
EP0417428B1
EP0417428B1 EP90113566A EP90113566A EP0417428B1 EP 0417428 B1 EP0417428 B1 EP 0417428B1 EP 90113566 A EP90113566 A EP 90113566A EP 90113566 A EP90113566 A EP 90113566A EP 0417428 B1 EP0417428 B1 EP 0417428B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
cooling channels
tube
tubes
tube plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90113566A
Other languages
German (de)
French (fr)
Other versions
EP0417428A3 (en
EP0417428A2 (en
Inventor
Peter Brücher
Helmut Lachmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Babcock Borsig AG
Original Assignee
Deutsche Babcock Borsig AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6389119&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0417428(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Deutsche Babcock Borsig AG filed Critical Deutsche Babcock Borsig AG
Priority to AT90113566T priority Critical patent/ATE95303T1/en
Publication of EP0417428A2 publication Critical patent/EP0417428A2/en
Publication of EP0417428A3 publication Critical patent/EP0417428A3/en
Application granted granted Critical
Publication of EP0417428B1 publication Critical patent/EP0417428B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0229Double end plates; Single end plates with hollow spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems

Definitions

  • the invention relates to a shell and tube heat exchanger with the features of the preamble of claim 1.
  • a heat exchanger is known from DE-C-3 533 219.
  • Such tube bundle heat exchangers serve as process gas waste heat boilers for the rapid cooling of reaction gases from cracking furnaces or chemical plant reactors with simultaneous generation of high pressure steam as a heat-dissipating medium.
  • the tube plate arranged on the gas inlet side is thin compared to the tube plate lying on the gas outlet side (DE-C-1 294 981, AT-B-361 953) .
  • the thin tube plate is stiffened by support plates which are arranged at a distance from the tube plate and are connected to it by anchors.
  • the thin tube plate is supported on a support plate by welded-in support fingers.
  • the space between the support plate and the tube plate is flowed through by cooling medium which is supplied through an annular chamber and enters the heat exchanger through annular gaps between the tubes and the support plate.
  • the cooling medium can be guided across the thin tube plate.
  • This water flow ensures good cooling of the tube plate and generates a high flow rate, which prevents deposits of particles from the cooling medium on the tube plate.
  • This double bottom has proven itself in operation, but its production is relatively complex.
  • the thick tube plate of a shell-and-tube heat exchanger of the generic type AT-B-361 953 arranged on the gas outlet side with cooling channels.
  • the cooling channels are arranged between the rows of tubes and at a relatively large distance from one another and from the side of the tube plate which comes into contact with the gas. The cooling of the tube plate effected by this arrangement of the cooling channels is just sufficient to control the gas temperatures on the gas outlet side of the heat exchanger.
  • DE-C-1 096 127 describes a thick-walled tube plate which receives the tubes of a heat exchanger, into which the tubes are rolled only over part of the plate thickness, while in the remaining part between the tubes and the tube plate, one each to the interior of the tube plate Heat exchanger open annular gap is provided. These ring gaps are connected by channels. Due to the heat conduction of the tube plate, cooling medium flows out of the heat exchanger through the annular gaps and the channels. This flow can also be positively supported by a cooling medium supply from the outside. Since the cooling surface created in this way is small, cooling of the tube plate caused in this way is inadequate. In the known tube plate, efforts are made to dimension the channel cross-section so large that no deposits can form on the channel walls. Nevertheless, the flow velocity at the end of the channel should have dropped so far that there is a risk of deposits at least at these points.
  • the invention has for its object to form a cooled tube plate of the generic tube bundle heat exchanger such that with a small wall thickness on the gas side and high flow rate of the cooling medium, a uniform cooling medium distribution is achieved, the manufacture of the tube plate is simplified and the stress distribution in the tube plate is evened out.
  • This object is achieved in a generic tube bundle heat exchanger according to the invention by the characterizing features of claim 1.
  • Advantageous embodiments of the invention are specified in the subclaims.
  • the tube plate according to the invention can be made thick overall and thus meet the requirement to withstand the high pressure of the cooling medium. Because the tubes penetrate the cooling channels and thus run straight along a row of tubes, the cooling channels can be laid close together so that the cooling medium flows over a large area. The channel base with a constant wall thickness avoids material accumulation on the inside of the channel. Both lead to such intensive cooling of the tube plate that high gas temperatures of more than 1,000 degrees C can be mastered.
  • the speed of the cooling medium in the cooling channels can be set to such a value that particles which may be contained in the cooling medium cannot be deposited, so that there is no risk of the tube plate overheating.
  • a thin base part can thus be formed on the gas inlet side of the tube plate, which is supported on a thick base part of the tube plate via the webs remaining between the cooling channels. This support is less expensive than support using individual anchors, which is reflected in a more even stress distribution.
  • the thin bottom part allows low thermal stress cooling and enables a gap-free and high-quality execution of the welding of the pipes into the pipe plate.
  • the heat exchanger shown is used in particular for cooling cracked gas with the help of boiling and partially evaporating water under high pressure.
  • the heat exchanger consists of a tube bundle made up of individual tubes 1, through which the gas to be cooled flows and which are surrounded by a jacket 2. For the sake of clarity, only individual tubes 1 are shown.
  • the tubes 1 are held in two tube plates 3, 4, which are followed by a gas inlet 5 and a gas outlet 6 and which are welded into the jacket 2.
  • the tube plate 3 arranged on the gas inlet side is provided with cooling channels 7 running parallel to one another.
  • the cooling channels 7 are laid in the tube plate 3 such that, seen in the axial direction of the tube plate 3, the cooling channels 7 are at a smaller distance from the gas side of the tube plate 3 than from the inside of the jacket 2. In this way, a thin base part 8 pointing towards the gas side is formed and a thicker bottom part 9 facing the jacket 2.
  • 1 to 6 are open on both sides and open into a chamber 10 which surrounds the tube plate 3 in a ring.
  • the inlet side of the chamber 10 is provided with one or more supply ports 11, via which the cooling medium under high pressure is supplied.
  • the cooling channels 7 can be guided through the tube plate 3 as cylindrical bores parallel to the plate surface. Subsequently, however, the initially circular cross-section is expanded by machining to a tunnel-shaped profile.
  • This tunnel-shaped cross-sectional shape is shown in the drawing and is characterized by a curved ceiling and by a flat sole 12 which runs parallel to the top of the tube plate 3. In this way, it is particularly easy to produce a thin base part with a constant wall thickness.
  • the side walls 13 of the tunnel-shaped cooling channels 7 are also flat and preferably run perpendicular to the sole 12. These side walls 13 form narrow webs 14, by means of which the thin bottom part 8 is supported on the thick bottom part 9 over a large support length.
  • the tube plate 3 is provided with bores 15 which are open to the inside of the jacket 2 and open into the cooling channels 7 perpendicular to their longitudinal extension. Through these recesses 15, the tubes 1 of the tube bundle are passed with play, forming an annular gap.
  • the tubes 1 of each row of tubes penetrate one of the cooling channels 7 and are welded into the thin bottom part 8 of the tube plate 3 by a fully welded seam 16 without any gaps.
  • the width of the cooling channels 7 thus formed corresponds approximately to 1 to 2 times the value of the diameter of the tubes 1.
  • the cooling medium fed through the supply pipe 11 into the inlet side of the chamber 10 enters the cooling channels 7 and partly enters the interior of the heat exchanger enclosed by the jacket 2 through the annular gaps between the pipes 1 and the bores 15. This part of the cooling medium rises along the outer sides of the tubes 1 in the jacket 2 and emerges as high-pressure steam from an outlet connection 17 welded into the jacket 2.
  • the amount of cooling medium that does not enter the interior of the heat exchanger through the annular gaps leaves the cooling channels 7 on the opposite side and reaches the outlet side of the chamber 10.
  • the outlet side is separated from the inlet side by two partition walls 22 which are in the chamber 10 perpendicular to the longitudinal axis of the cooling channels 7 are arranged and extend over the entire cross section of the chamber 10.
  • one end of each cooling channel 7 is connected to the inlet side and the other end to the outlet side.
  • a pipe bend 23 is connected to the outlet side of the chamber 10 and opens into the interior of the heat exchanger.
  • the remaining quantity of cooling medium enters the heat exchanger through the pipe bend 23 and is likewise converted into high-pressure steam. This transfer of a partial cooling medium quantity ensures that a sufficiently high flow rate of the cooling medium also prevails at the outlet end of the cooling channels 7, so that no solid particles from the cooling medium can deposit on the base 12 of the cooling channels 7.
  • the flow resistance of the outer, shorter cooling channels 7 can be adapted to the flow resistance of the central, longer cooling channels 7. This can be done in that the cross section of the external cooling channels 7 is smaller or that 7 throttling points are installed in these external cooling channels.
  • an internal inlet chamber 18 for the cooling medium is shown, which extends over half of the circumference of the heat exchanger.
  • the wall of this inlet chamber 18 is connected to the inner wall of the jacket 2 and in the edge area to the tube plate 3.
  • the cooling channels 7 are closed at each end by a cover 20.
  • a bore 19, 24 is provided, which are guided in the axial direction through the thicker bottom part 9 of the tube plate 3.
  • One bore 19 extends from the inlet chamber 18 and serves to supply the cooling medium into the cooling channels 7.
  • the other bore 24 opens into the interior of the heat exchanger and removes the remaining amount of the cooling medium, which is not caused by the annular gaps between the tubes 1 and the turns 15 emerges.
  • the cooling channels 7 can also be cut into the tube plate 3 as edge recesses.
  • the cooling channels 7 formed in this way can have a curved or a flat ceiling.
  • These edge recesses are covered by sheet metal strips 21 which are welded to the webs 14 remaining between the cooling channels 7.
  • the tubes 1 are welded into the sheet metal strips 21.
  • this embodiment requires an increased number of weld seams, which could lead to additional stresses and have a weakening effect, but may be easier to manufacture.

Abstract

A nested-tube heat exchanger with tubes (1) secured at each end in tube plates (3 & 4) for transferring heat between a hot gas that flows through the tubes (1) and a liquid or vaporous contact that flows around the pipes. The tube plates are secured to a jacket (2) that surrounds the nest of tubes. One of the tube plates has parallel cooling channels (7) in the half that faces away from the jacket with coolant flowing through the cooling channels. The tube plate has bores (15) that open into the jacket, communicate with the cooling channels, and concentrically surround the tubes. The tube plate that has the cooling channels is at the gas-intake end of the heat exchanger. The tubes in each row extend through cooling channels. The base (12) of the cooling channels on the side that is impacted by the gas is uniformly thick.

Description

Die Erfindung betrifft einen Rohrbündel-Wärmetauscher mit den Merkmalen des Oberbegriffes des Patentanspruches 1. Ein derartige Wärmetausche ist aus der DE-C-3 533 219 bekannt.The invention relates to a shell and tube heat exchanger with the features of the preamble of claim 1. Such a heat exchanger is known from DE-C-3 533 219.

Derartige Rohrbündel-Wärmetauscher dienen als Prozeßgas-Abhitzekessel zur schnellen Abkühlung von Reaktionsgasen aus Spaltöfen oder Chemieanlagen-Reaktoren bei gleichzeitiger Erzeugung von Hochdruckdampf als wärmeabführendes Medium. Zur Beherrschung der hohen Gastemperaturen und des hohen Druckunterschiedes zwischen dem Gas und dem wärmeabführenden Kühlmedium ist die auf der Gaseintrittsseite angeordnete Rohrplatte im Vergleich zu der auf der Gasaustrittsseite liegenden Rohrplatte dünn ausgeführt (DE-C-1 294 981, AT-B-361 953). Dabei ist die dünne Rohrplatte durch Tragbleche versteift, die mit Abstand von der Rohrplatte angeordnet und durch Anker mit dieser verbunden sind.Such tube bundle heat exchangers serve as process gas waste heat boilers for the rapid cooling of reaction gases from cracking furnaces or chemical plant reactors with simultaneous generation of high pressure steam as a heat-dissipating medium. To control the high gas temperatures and the high pressure difference between the gas and the heat-dissipating cooling medium, the tube plate arranged on the gas inlet side is thin compared to the tube plate lying on the gas outlet side (DE-C-1 294 981, AT-B-361 953) . The thin tube plate is stiffened by support plates which are arranged at a distance from the tube plate and are connected to it by anchors.

Bei dem oben genannten Rohrbündel-Wärmetauscher (DE-C-3 533 219) ist die dünne Rohrplatte über eingeschweißte Tragfinger auf einer Tragplatte abgestützt. Der Raum zwischen der Tragplatte und der Rohrplatte ist von Kühlmedium durchströmt, das durch eine Ringkammer zugeführt und durch Ringspalte zwischen den Rohren und der Tragplatte in den Wärmetauscher eintritt. Auf diese Weise läßt sich eine Führung des Kühlmediums quer über die dünne Rohrplatte erreichen. Diese Wasserführung bewirkt eine gute Kühlung der Rohrplatte und erzeugt eine hohe Strömungsgeschwindigkeit, die Ablagerungen von Partikeln aus dem Kühlmedium auf der Rohrplatte verhindert. Dieser doppelte Boden hat sich im Betrieb gut bewährt, jedoch ist seine Herstellung verhältnismäßig aufwendig.In the above-mentioned tube bundle heat exchanger (DE-C-3 533 219), the thin tube plate is supported on a support plate by welded-in support fingers. The space between the support plate and the tube plate is flowed through by cooling medium which is supplied through an annular chamber and enters the heat exchanger through annular gaps between the tubes and the support plate. In this way, the cooling medium can be guided across the thin tube plate. This water flow ensures good cooling of the tube plate and generates a high flow rate, which prevents deposits of particles from the cooling medium on the tube plate. This double bottom has proven itself in operation, but its production is relatively complex.

Weiterhin ist es bekannt, die auf der Gasaustrittsseite angeordnete dicke Rohrplatte eines Rohrbündelwärmetauschers der gattungsgemäßen Art (AT-B-361 953) mit Kühlkanälen zu versehen. Auf diese Weise kann bei einer ausreichenden Festigkeit der Rohrplatte eine hohe Gasaustrittstemperatur von 550 bis 650 Grad C zugelassen werden. Bei dieser bekannten Rohrplatte sind die Kühlkanäle zwischen den Rohrreihen und in einem verhältnismäßig großen Abstand voneinander und von der mit dem Gas in Berührung kommenden Seite der Rohrplatte angeordnet. Die durch diese Anordnung der Kühlkanäle erwirkte Kühlung der Rohrplatte reicht gerade aus, um die Gastemperaturen auf der Gasaustrittsseite des Wärmetauschers zu beherrschen.Furthermore, it is known to provide the thick tube plate of a shell-and-tube heat exchanger of the generic type (AT-B-361 953) arranged on the gas outlet side with cooling channels. In this way, a high gas outlet temperature of 550 to 650 degrees C can be permitted if the tube plate is sufficiently strong. In this known tube plate, the cooling channels are arranged between the rows of tubes and at a relatively large distance from one another and from the side of the tube plate which comes into contact with the gas. The cooling of the tube plate effected by this arrangement of the cooling channels is just sufficient to control the gas temperatures on the gas outlet side of the heat exchanger.

In der DE-C-1 096 127 ist eine dickwandige, die Rohre eines Wärmetauschers aufnehmende Rohrplatte beschrieben, in die die Rohre nur über einen Teil der Plattendicke eingewalzt sind, während in dem restlichen Teil zwischen den Rohren und der Rohrplatte jeweils ein zum Innenraum des Wärmetauschers hin offener Ringspalt vorgesehen ist. Diese Ringspalte sind durch Kanäle verbunden. Aufgrund der Wärmeleitung der Rohrplatte strömt Kühlmedium aus dem Wärmetauscher durch die Ringspalte und die Kanäle. Diese Strömung kann auch zwangsweise durch eine Kühlmediumzufuhr von außen unterstützt werden. Da die so geschaffene gekühlte Fläche klein ist, ist auf diese Weise bewirkte Kühlung der Rohrplatte unzureichend. Zwar ist man bei der bekannten Rohrplatte bestrebt, den Kanalquerschnitt so groß zu bemessen, daß sich an den Kanalwänden keine Ablagerungen bilden können. Dennoch dürfte am Kanalende die Strömungsgeschwindigkeit soweit abgesunken sein, daß zumindest an diesen Stellen die Gefahr von Ablagerungen besteht.DE-C-1 096 127 describes a thick-walled tube plate which receives the tubes of a heat exchanger, into which the tubes are rolled only over part of the plate thickness, while in the remaining part between the tubes and the tube plate, one each to the interior of the tube plate Heat exchanger open annular gap is provided. These ring gaps are connected by channels. Due to the heat conduction of the tube plate, cooling medium flows out of the heat exchanger through the annular gaps and the channels. This flow can also be positively supported by a cooling medium supply from the outside. Since the cooling surface created in this way is small, cooling of the tube plate caused in this way is inadequate. In the known tube plate, efforts are made to dimension the channel cross-section so large that no deposits can form on the channel walls. Nevertheless, the flow velocity at the end of the channel should have dropped so far that there is a risk of deposits at least at these points.

Der Erfindung liegt die Aufgabe zugrunde, eine gekühlte Rohrplatte des gattungsgemäßen Rohrbündel-Wärmetauschers derart auszubilden, daß bei geringer Wanddicke auf der Gasseite und hoher Strömungsgeschwindigkeit des Kühlmediums eine gleichmäßige Kühlmediumverteilung erreicht, die Herstellung der Rohrplatte vereinfacht und die Spannungsverteilung in der Rohrplatte vergleichmäßigt wird. Diese Aufgabe wird bei einem gattungsgemäßen Rohrbündel-Wärmetauscher erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The invention has for its object to form a cooled tube plate of the generic tube bundle heat exchanger such that with a small wall thickness on the gas side and high flow rate of the cooling medium, a uniform cooling medium distribution is achieved, the manufacture of the tube plate is simplified and the stress distribution in the tube plate is evened out. This object is achieved in a generic tube bundle heat exchanger according to the invention by the characterizing features of claim 1. Advantageous embodiments of the invention are specified in the subclaims.

Die erfindungsgemäße Rohrplatte kann insgesamt dick ausgeführt werden und damit die Anforderung erfüllen, dem hohen Druck des Kühlmediums zu widerstehen. Dadurch, daß die Rohre die Kühlkanäle durchdringen und damit geradlinig längs einer Rohrreihe verlaufen, können die Kühlkanäle eng beieinander verlegt werden, so daß das Kühlmedium eine große Fläche beströmt. Die Kanalsohle von gleichbleibender Wanddicke vermeidet eine Materialanhäufung auf der Kanalinnenseite. Beides führt zu einer so intensiven Kühlung der Rohrplatte, daß hohe Gastemperaturen von mehr als 1 000 Grad C zu beherrschen sind.The tube plate according to the invention can be made thick overall and thus meet the requirement to withstand the high pressure of the cooling medium. Because the tubes penetrate the cooling channels and thus run straight along a row of tubes, the cooling channels can be laid close together so that the cooling medium flows over a large area. The channel base with a constant wall thickness avoids material accumulation on the inside of the channel. Both lead to such intensive cooling of the tube plate that high gas temperatures of more than 1,000 degrees C can be mastered.

Die Geschwindigkeit des Kühlmediums in den Kühlkanälen läßt sich auf einen solchen Wert einstellen, daß sich eventuell in dem Kühlmedium enthaltene Partikel nicht ablagern können, so daß keine Gefahr einer Überhitzung der Rohrplatte entsteht. Auf der Gaseintrittsseite der Rohrplatte kann somit ein dünner Bodenteil gebildet werden, der sich über die zwischen den Kühlkanälen verbleibenden Stege auf einem dicken Bodenteil der Rohrplatte abstützt. Diese Abstützung ist günstiger als eine Abstützung über einzelne Anker, was sich in einer gleichmäßigeren Spannungsverteilung bemerkbar macht. Der dünne Bodenteil läßt eine wärmespannungsarme Kühlung zu und ermöglicht eine spaltfreie und qualitativ hochwertige Ausführung der Einschweißung der Rohre in die Rohrplatte.The speed of the cooling medium in the cooling channels can be set to such a value that particles which may be contained in the cooling medium cannot be deposited, so that there is no risk of the tube plate overheating. A thin base part can thus be formed on the gas inlet side of the tube plate, which is supported on a thick base part of the tube plate via the webs remaining between the cooling channels. This support is less expensive than support using individual anchors, which is reflected in a more even stress distribution. The thin bottom part allows low thermal stress cooling and enables a gap-free and high-quality execution of the welding of the pipes into the pipe plate.

Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und werden im folgenden näher erläutert. Es zeigen

  • Fig. 1 den Längsschnitt durch einen Wärmetauscher,
  • Fig. 2 die Draufsicht auf die der Gaseintrittsseite zugeordnete Rohrplatte,
  • Fig. 3 den Schnitt III - III nach Fig. 2,
  • Fig. 4 den Schnitt IV - IV nach Fig. 2,
  • Fig. 5 die Einzelheit Z nach Fig. 3,
  • Fig. 6 die Draufsicht auf Fig. 5,
  • Fig. 7 die Draufsicht auf eine dem Gaseintritt zugeordnete Rohrplatte gemäß einer anderen Ausführungsform,
  • Fig. 8 den Schnitt VIII - VIII nach Fig. 7 und
  • Fig. 9 die Einzelheit Z nach Fig. 3 gemäß einer anderen Ausführungsform.
Several embodiments of the invention are shown in the drawing and are explained in more detail below. Show it
  • 1 shows the longitudinal section through a heat exchanger,
  • 2 is a top view of the tube plate assigned to the gas inlet side,
  • 3 shows the section III - III of FIG. 2,
  • 4 shows the section IV - IV according to FIG. 2,
  • 5 shows the detail Z according to FIG. 3,
  • 6 is a top view of FIG. 5,
  • 7 shows the top view of a tube plate associated with the gas inlet according to another embodiment,
  • Fig. 8 section VIII - VIII of Fig. 7 and
  • Fig. 9 shows the detail Z of FIG. 3 according to another embodiment.

Der dargestellte Wärmetauscher dient insbesondere zum Kühlen von Spaltgas mit Hilfe von unter Hochdruck stehendem, siedendem und teilweise verdampfenden Wasser. Der Wärmetauscher besteht aus einem Rohrbündel aus einzelnen Rohren 1, die von dem zu kühlenden Gas durchströmt und von einem Mantel 2 umgeben sind. Der Übersichtlichkeit halber sind nur einzelne Rohre 1 gezeigt. Die Rohre 1 sind in zwei Rohrplatten 3, 4 gehalten, an die sich ein Gaseintritt 5 und ein Gasaustritt 6 anschließen und die in den Mantel 2 eingeschweißt sind.The heat exchanger shown is used in particular for cooling cracked gas with the help of boiling and partially evaporating water under high pressure. The heat exchanger consists of a tube bundle made up of individual tubes 1, through which the gas to be cooled flows and which are surrounded by a jacket 2. For the sake of clarity, only individual tubes 1 are shown. The tubes 1 are held in two tube plates 3, 4, which are followed by a gas inlet 5 and a gas outlet 6 and which are welded into the jacket 2.

Die auf der Gaseintrittsseite angeordnete Rohrplatte 3 ist mit parallel zueinander verlaufenden Kühlkanälen 7 versehen. Die Kühlkanäle 7 sind so in die Rohrplatte 3 verlegt, daß in axialer Richtung der Rohrplatte 3 gesehen, die Kühlkanäle 7 zur Gasseite der Rohrplatte 3 einen geringeren Abstand aufweisen als zum Inneren des Mantels 2. Auf diese Weise entsteht ein dünner zur Gasseite weisender Bodenteil 8 und ein zum Mantel 2 weisender dickerer Bodenteil 9.The tube plate 3 arranged on the gas inlet side is provided with cooling channels 7 running parallel to one another. The cooling channels 7 are laid in the tube plate 3 such that, seen in the axial direction of the tube plate 3, the cooling channels 7 are at a smaller distance from the gas side of the tube plate 3 than from the inside of the jacket 2. In this way, a thin base part 8 pointing towards the gas side is formed and a thicker bottom part 9 facing the jacket 2.

Die Kühlkanäle 7 gemäß den Fig. 1 bis 6 sind beidseitig offen und munden in eine Kammer 10 ein, die die Rohrplatte 3 ringförmig umgibt. Die Eintrittsseite der Kammer 10 ist mit einem oder mehreren Zuführungsstutzen 11 versehen, über die das unter hohem Druck stehende Kühlmedium zugeführt wird.1 to 6 are open on both sides and open into a chamber 10 which surrounds the tube plate 3 in a ring. The inlet side of the chamber 10 is provided with one or more supply ports 11, via which the cooling medium under high pressure is supplied.

Die Kühlkanäle 7 können als zylindrische Bohrungen parallel zur Plattenoberfläche durch die Rohrplatte 3 geführt sein. Anschließend wird jedoch der zunächst kreisförmige Querschnitt durch spanende Bearbeitung zu einem tunnelförmigen Profil erweitert. Diese tunnelförmige Querschnittsform ist in der Zeichnung dargestellt und zeichnet sich durch eine gewölbte Decke und durch eine ebene Sohle 12 aus, die parallel zur Oberseite der Rohrplatte 3 verläuft. Auf diese Weise läßt sich besonders einfach ein dünner Bodenteil von gleichbleibender Wanddicke herstellen. Die Seitenwände 13 der tunnelförmigen Kühlkanäle 7 sind ebenfalls eben und verlaufen vorzugsweise senkrecht zur Sohle 12. Diese Seitenwände 13 bilden schmale Stege 14, über die sich der dünne Bodenteil 8 auf dem dicken Bodenteil 9 über eine große Stützlänge abstützt.The cooling channels 7 can be guided through the tube plate 3 as cylindrical bores parallel to the plate surface. Subsequently, however, the initially circular cross-section is expanded by machining to a tunnel-shaped profile. This tunnel-shaped cross-sectional shape is shown in the drawing and is characterized by a curved ceiling and by a flat sole 12 which runs parallel to the top of the tube plate 3. In this way, it is particularly easy to produce a thin base part with a constant wall thickness. The side walls 13 of the tunnel-shaped cooling channels 7 are also flat and preferably run perpendicular to the sole 12. These side walls 13 form narrow webs 14, by means of which the thin bottom part 8 is supported on the thick bottom part 9 over a large support length.

Innerhalb des dicken Bodenteiles 9 ist die Rohrplatte 3 mit Ausdrehungen 15 versehen, die zum Inneren des Mantels 2 hin offen sind und in die Kühlkanäle 7 senkrecht zu deren Längserstreckung münden. Durch diese Ausdrehungen 15 sind die Rohre 1 des Rohrbündels unter Bildung eines Ringspaltes mit Spiel hindurchgeführt. Die Rohre 1 jeweils einer Rohrreihe durchdringen einen der Kühlkanäle 7 und sind in den dünnen Bodenteil 8 der Rohrplatte 3 durch eine voll durchschweißte Naht 16 spaltfrei eingeschweißt. Die Breite der so gebildeten Kühlkanäle 7 entspricht etwa dem 1- bis 2-fachen Wert des Durchmessers der Rohre 1.Within the thick bottom part 9, the tube plate 3 is provided with bores 15 which are open to the inside of the jacket 2 and open into the cooling channels 7 perpendicular to their longitudinal extension. Through these recesses 15, the tubes 1 of the tube bundle are passed with play, forming an annular gap. The tubes 1 of each row of tubes penetrate one of the cooling channels 7 and are welded into the thin bottom part 8 of the tube plate 3 by a fully welded seam 16 without any gaps. The width of the cooling channels 7 thus formed corresponds approximately to 1 to 2 times the value of the diameter of the tubes 1.

Das durch den Zuführungsstutzen 11 in die Eintrittsseite der Kammer 10 eingespeiste Kühlmedium gelangt in die Kühlkanäle 7 und tritt teilweise durch die Ringspalten zwischen den Rohren 1 und den Ausdrehungen 15 in den von dem Mantel 2 umschlossenen Innenraum des Wärmetauschers ein. Dieser Teil des Kühlmediums steigt entlang den Außenseiten der Rohre 1 in dem Mantel 2 auf und tritt als Hochdruckdampf aus einem in den Mantel 2 eingeschweißten Austrittsstutzen 17 aus.The cooling medium fed through the supply pipe 11 into the inlet side of the chamber 10 enters the cooling channels 7 and partly enters the interior of the heat exchanger enclosed by the jacket 2 through the annular gaps between the pipes 1 and the bores 15. This part of the cooling medium rises along the outer sides of the tubes 1 in the jacket 2 and emerges as high-pressure steam from an outlet connection 17 welded into the jacket 2.

Die nicht durch die Ringspalten in den Innenraum des Wärmetauschers eintretende Kühlmediummenge verläßt die Kühlkanäle 7 auf der gegenüberliegenden Seite und gelangt in die Austrittsseite der Kammer 10. Die Austrittsseite ist von der Eintrittsseite durch zwei Trennwände 22 abgetrennt, die in der Kammer 10 senkrecht zu der Längsachse der Kühlkanäle 7 angeordnet sind und sich über den gesamten Querschnitt der Kammer 10 erstrecken. Dadurch steht jeweils ein Ende jedes Kühlkanals 7 mit der Eintrittsseite und das andere Ende mit der Austrittsseite in Verbindung. An die Austrittsseite der Kammer 10 ist ein Rohrbogen 23 angeschlossen, der in den Innenraum des Wärmetauschers mündet. Durch den Rohrbogen 23 tritt die restliche Kühlmediummenge in den Wärmetauscher ein und wird ebenfalls in Hochdruckdampf umgewandelt. Durch diese Überführung einer Kühlmediumteilmenge wird erreicht, daß auch am Austrittsende der Kühlkanäle 7 eine ausreichend hohe Strömungsgeschwindigkeit des Kühlmediums herrscht, so daß sich keine Feststoffpartikel aus dem Kühlmedium auf der Sohle 12 der Kühlkanäle 7 ablagern können.The amount of cooling medium that does not enter the interior of the heat exchanger through the annular gaps leaves the cooling channels 7 on the opposite side and reaches the outlet side of the chamber 10. The outlet side is separated from the inlet side by two partition walls 22 which are in the chamber 10 perpendicular to the longitudinal axis of the cooling channels 7 are arranged and extend over the entire cross section of the chamber 10. As a result, one end of each cooling channel 7 is connected to the inlet side and the other end to the outlet side. A pipe bend 23 is connected to the outlet side of the chamber 10 and opens into the interior of the heat exchanger. The remaining quantity of cooling medium enters the heat exchanger through the pipe bend 23 and is likewise converted into high-pressure steam. This transfer of a partial cooling medium quantity ensures that a sufficiently high flow rate of the cooling medium also prevails at the outlet end of the cooling channels 7, so that no solid particles from the cooling medium can deposit on the base 12 of the cooling channels 7.

Vielmehr werden die im Kühlmedium enthaltenen Feststoffpartikel durch die Kühlkanäle 7 hindurchgespült.Rather, the solid particles contained in the cooling medium are flushed through the cooling channels 7.

Damit alle Kühlkanäle 7 gleichmäßig durchströmt sind, kann der Strömungswiderstand der außenliegenden, kürzeren Kühlkanäle 7 dem Strömungswiderstand der zentralen, längeren Kühlkanäle 7 angepaßt werden. Das kann dadurch geschehen, daß der Querschnitt der außenliegenden Kühlkanäle 7 geringer ist oder daß in diesen außenliegenden Kühlkanälen 7 Drosselstellen eingebaut sind.So that all cooling channels 7 are evenly flowed through, the flow resistance of the outer, shorter cooling channels 7 can be adapted to the flow resistance of the central, longer cooling channels 7. This can be done in that the cross section of the external cooling channels 7 is smaller or that 7 throttling points are installed in these external cooling channels.

In den Fig. 7 und 8 ist eine innenliegende Eintrittskammer 18 für das Kühlmedium gezeigt, die sich über eine Hälfte des Umfanges des Wärmetauschers erstreckt. Die Wandung dieser Eintrittskammer 18 ist mit der Innenwand des Mantels 2 und im Randbereich mit der Rohrplatte 3 verbunden. Die Kühlkanäle 7 sind bei dieser Ausführungsform an beiden Enden durch jeweils einen Deckel 20 verschlossen. An jedem Ende eines Kühlkanals 7 ist eine Bohrung 19, 24 vorgesehen, die in axialer Richtung durch den dickeren Bodenteil 9 der Rohrplatte 3 hindurchgeführt sind. Die eine Bohrung 19 geht von der Eintrittskammer 18 aus und dient der Zuführung des Kühlmediums in die Kühlkanäle 7. Die andere Bohrung 24 mündet in den Innenraum des Wärmetauschers und führt die restliche Menge des Kühlmediums ab, die nicht durch die Ringspalten zwischen den Rohren 1 und den Ausdrehungen 15 austritt.7 and 8, an internal inlet chamber 18 for the cooling medium is shown, which extends over half of the circumference of the heat exchanger. The wall of this inlet chamber 18 is connected to the inner wall of the jacket 2 and in the edge area to the tube plate 3. In this embodiment, the cooling channels 7 are closed at each end by a cover 20. At each end of a cooling channel 7, a bore 19, 24 is provided, which are guided in the axial direction through the thicker bottom part 9 of the tube plate 3. One bore 19 extends from the inlet chamber 18 and serves to supply the cooling medium into the cooling channels 7. The other bore 24 opens into the interior of the heat exchanger and removes the remaining amount of the cooling medium, which is not caused by the annular gaps between the tubes 1 and the turns 15 emerges.

Die Kühlkanäle 7 können auch, wie in Fig. 9 gezeigt ist, als Randausnehmungen in die Rohrplatte 3 eingeschnitten werden. Die so gebildeten Kühlkanäle 7 können eine gewölbte oder eine ebene Decke aufweisen. Diese Randausnehmungen sind durch Blechstreifen 21 abgedeckt, die mit den zwischen den Kühlkanälen 7 verbleibenden Stege 14 verschweißt werden. In die Blechstreifen 21 sind die Rohre 1 eingeschweißt. Diese Ausführungsform erfordert gegenüber der in den Fig. 1 bis 8 dargestellten Ausführungsform eine erhöhte Anzahl an Schweißnähten, die zu zusätzlichen Spannungen führen und schwächend wirken könnte, ist aber unter Umständen in der Herstellung einfacher.As shown in FIG. 9, the cooling channels 7 can also be cut into the tube plate 3 as edge recesses. The cooling channels 7 formed in this way can have a curved or a flat ceiling. These edge recesses are covered by sheet metal strips 21 which are welded to the webs 14 remaining between the cooling channels 7. The tubes 1 are welded into the sheet metal strips 21. Compared to the embodiment shown in FIGS. 1 to 8, this embodiment requires an increased number of weld seams, which could lead to additional stresses and have a weakening effect, but may be easier to manufacture.

Claims (9)

  1. Tube nest heat exchanger with tubes (1), which are retained at both ends in tube plates (3, 4), for heat exchange between a hot gas flowing through the tubes (1) and a liquid or vaporous coolant flowing around the tubes (1), wherein the tube plates (3, 4) are connected with a casing (2) enclosing the tube nest, wherein the tube plate (3) arranged on the gas entry side is provided in the half remote from the casing (2) with a throughflow cross-section, which opens into the space within the casing (2), for the coolant and in the half facing the casing (2) with bored recesses (15), which are open towards the space within the casing (2), surround the tubes (1) concentrically and stand in communiation with the throughflow cross-section, wherein the throughflow cross-section on the side flowed towards by the gas displays a base (12) of constant wall thickness, characterised thereby, that the throughflow cross-section within the tube plate (3) consists of parallel cooling channels (7), which are each penetrated by the tubes (1) and stand in communication with the space within the casing (2) by way of the bored recesses (15) as well as also on the exit side.
  2. Tube nest heat exchanger according to claim 1, characterised thereby, that an entry chamber (18) for the coolant extends over one half of the circumference of the heat exchanger, that this entry chamber (18) is connected with the inward side of the casing (2) and with the rim region of the tube plate (3) and that each of the cooling channels (7) is closed at both ends and connected by way of an axial bore (19) with the entry chamber (18).
  3. Tube nest heat exchanger according to claim 2, characterised thereby, that a further bore (24) is led between the cooling channels (7) and the interior space of the heat exchanger through the tube plate (3) in axial direction at that end of the cooling channels (7), which is remote from the bore (19).
  4. Tube nest heat exchanger according to one of the claims 1 to 3, characterised thereby, that the cooling channels (7) display a tunnel-shaped profile with an arched ceiling, a planar base (12) and with planar side walls (13) extending perpendicularly thereto.
  5. Tube nest heat exchanger according to one of the claims 1 to 4, characterised thereby, that the cooling channels (7) are machined into the tube plate (3) as rim recesses and covered by planar sheet metal strips (21).
  6. Tube nest heat exchanger according to one of the claims 1 to 4, characterised thereby, that the cooling channels (7) are machined into a one-piece plate.
  7. Tube nest heat exchanger according to one of the claims 1 to 6, characterised thereby, that the cooling channels (7) lying outwards display a greater flow resistance than the cooling channels (7) lying inwards.
  8. Tube nest heat exchanger according to one of the claims 1 and 4 to 7, characterised thereby, that the tube plate (3) is surrounded by an annular chamber (10),intowhich open the cooling channels (7), which are open at both ends.
  9. Tube nest heat exchanger according to claim 8, characterised thereby, that the annular chamber (10) is divided perpendicularly to the longitudinal axis of the cooling channels (7) by two partitions (22) into an entry side and an exit side and that a tube bend (23) is connected to the exit side of the annular chamber (10) and the casing (2) of the heat exchanger.
EP90113566A 1989-09-09 1990-07-16 Tube bundle heat exchanger Expired - Lifetime EP0417428B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT90113566T ATE95303T1 (en) 1989-09-09 1990-07-16 TUBE BUNDLE HEAT EXCHANGER.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3930205 1989-09-09
DE3930205A DE3930205A1 (en) 1989-09-09 1989-09-09 TUBE BUNCH HEAT EXCHANGER

Publications (3)

Publication Number Publication Date
EP0417428A2 EP0417428A2 (en) 1991-03-20
EP0417428A3 EP0417428A3 (en) 1991-11-06
EP0417428B1 true EP0417428B1 (en) 1993-09-29

Family

ID=6389119

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90113566A Expired - Lifetime EP0417428B1 (en) 1989-09-09 1990-07-16 Tube bundle heat exchanger

Country Status (12)

Country Link
US (1) US5035283A (en)
EP (1) EP0417428B1 (en)
JP (1) JP3129727B2 (en)
KR (1) KR0145700B1 (en)
CN (1) CN1018024B (en)
AT (1) ATE95303T1 (en)
AU (1) AU632607B2 (en)
BR (1) BR9004567A (en)
CA (1) CA2024900C (en)
DD (1) DD297697A5 (en)
DE (2) DE3930205A1 (en)
RU (1) RU2011942C1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8071687B2 (en) 2002-10-15 2011-12-06 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
EP3032209A1 (en) 2014-12-11 2016-06-15 Borsig GmbH Quench cooling system

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4404068C1 (en) * 1994-02-09 1995-08-17 Wolfgang Engelhardt Heat exchanger
DE4407594A1 (en) * 1994-03-08 1995-09-14 Borsig Babcock Ag Heat exchanger for cooling hot reaction gas
DE4416932C2 (en) * 1994-05-13 1997-10-16 Shg Schack Gmbh Heat exchanger
DE4445687A1 (en) * 1994-12-21 1996-06-27 Borsig Babcock Ag Heat exchanger for cooling cracked gas
US5630470A (en) * 1995-04-14 1997-05-20 Sonic Environmental Systems, Inc. Ceramic heat exchanger system
US5813453A (en) * 1996-06-01 1998-09-29 Deutsche Babcock-Borsig Ag Heat exchanger for cooling cracked gas
SE510240C3 (en) * 1996-10-14 1999-05-25 Edmeston Ab Pipe heat exchanger with beam plate divided into a number of channels
CZ286748B6 (en) * 1998-07-24 2000-06-14 Petr Ing. Krčmář Process of removing sludges and apparatus for making the same
DE19846481A1 (en) * 1998-10-09 2000-05-04 Christian Schneider Device for thermal treatment and for driving a gaseous medium
JP4451520B2 (en) * 1999-11-08 2010-04-14 株式会社日本触媒 Vertical heat exchanger
NL1014916C2 (en) * 2000-04-11 2001-10-12 Bronswerk Heat Transfer Bv Heat exchanger.
DE60109930T2 (en) * 2001-09-26 2006-02-09 Bronswerk Heat Transfer B.V. heat exchangers
US7550528B2 (en) 2002-10-15 2009-06-23 Exxonmobil Chemical Patents Inc. Functionalized olefin polymers
US7223822B2 (en) 2002-10-15 2007-05-29 Exxonmobil Chemical Patents Inc. Multiple catalyst and reactor system for olefin polymerization and polymers produced therefrom
US7541402B2 (en) 2002-10-15 2009-06-02 Exxonmobil Chemical Patents Inc. Blend functionalized polyolefin adhesive
KR101129917B1 (en) * 2005-03-21 2012-03-27 주식회사 포스코 An apparatus for cleaning a heat-exchanging machine
DE102005023956A1 (en) * 2005-05-20 2006-11-23 Universität Stuttgart Compact total evaporator
WO2007144911A1 (en) * 2006-06-14 2007-12-21 Villa Scambiatori S.R.L. Heat exchange
JP5077159B2 (en) * 2008-09-10 2012-11-21 パナソニック株式会社 Electric vacuum cleaner
EP2273119B1 (en) * 2009-06-02 2011-10-12 AGO AG Energie + Anlagen Fluid piston inverter
US8672021B2 (en) 2010-02-12 2014-03-18 Alfred N. Montestruc, III Simplified flow shell and tube type heat exchanger for transfer line exchangers and like applications
CN102384046A (en) * 2011-06-24 2012-03-21 清华大学 Energy conversion system used in intensified geothermal system with CO2 as working medium
US9541289B2 (en) 2011-07-14 2017-01-10 Mitsubishi Hitachi Power Systems, Ltd. Gas cooler, gasification furnace, and integrated gasification combined cycle for carbon-containing fuel
SE537215C2 (en) * 2012-02-13 2015-03-03 Aktiebolaget Ka Ekstroems & Son Heat exchanger adapted for the production of carbon black
KR200476519Y1 (en) * 2013-11-29 2015-03-09 한전케이피에스 주식회사 Tube plug of heat exchanger
CN107860144B (en) * 2017-12-29 2019-10-08 湖南中大经纬地热开发科技有限公司 The heat-exchange system that can for tunnel develop
IT201800020257A1 (en) 2018-12-20 2020-06-20 Hexsol Italy Srl Joints for double-walled pipes in heat exchangers and heat exchangers and exchangers with such joints
CN109708514A (en) * 2019-03-12 2019-05-03 江苏欧迈格板式换热器制造有限公司 Simple heat exchanger end plate
CN112782197A (en) * 2021-01-06 2021-05-11 蚌埠凯盛工程技术有限公司 Online monitoring device for annealing kiln fried plate
CN113155015A (en) * 2021-03-24 2021-07-23 中国石油大学(华东) Strain monitoring method and system during pipeline operation
CN116877381A (en) * 2023-09-07 2023-10-13 山西常村大成节能科技有限公司 Air compressor with energy-saving transformation function and use method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1096127B (en) * 1957-12-21 1960-12-29 Babcock & Wilcox Dampfkessel Connection of pipes with a thick-walled pipe plate
US3132691A (en) * 1959-02-06 1964-05-12 Babcock & Wilcox Co Heat exchanger construction and thermal shield therefor
CH416697A (en) * 1962-08-15 1966-07-15 Kobe Steel Ltd Tube sheet occupied with tubes with a lining and method for making such a tube sheet
US3356135A (en) * 1964-12-24 1967-12-05 Robert K Sayre Once-through steam generator with means to provide saturated feed water
US3387652A (en) * 1966-07-06 1968-06-11 Borsig Ag Heat exchanger reinforcing means
DE1953628B2 (en) * 1969-10-24 1973-05-24 L & C Steinmuller GmbH, 5270 Gum mersbach PIPE HEAT EXCHANGER
DE2818892C2 (en) * 1978-04-28 1988-12-22 Bronswerk B.V., Amersfoort Heat exchanger for cooling down hot gases
NL7905640A (en) * 1978-09-14 1980-03-18 Borsig Gmbh HEAT EXCHANGER PROVIDED WITH A PIPE BUNDLE.
JPS5931668B2 (en) * 1978-09-25 1984-08-03 東レ株式会社 Vertical fixed tube sheet heat exchanger
AT361953B (en) * 1979-07-10 1981-04-10 Borsig Gmbh TUBE BUNDLE HEAT EXCHANGER
JPS6042843B2 (en) * 1979-07-30 1985-09-25 東洋エンジニアリング株式会社 Waste heat boiler
JPS5677692A (en) * 1979-11-27 1981-06-26 Toyo Eng Corp Heat exchanger
DE3533219C1 (en) * 1985-09-18 1986-11-13 Borsig Gmbh, 1000 Berlin Tube bundle heat exchanger
DE3641710A1 (en) * 1986-12-06 1988-06-16 Uhde Gmbh DEVICE FOR EXCHANGING HEAT BETWEEN A CIRCUIT GAS AND WATER LEAVING AN NH (DOWN ARROW) 3 (DOWN ARROW) CONVERTER
DE3715712C1 (en) * 1987-05-12 1988-07-21 Borsig Gmbh Heat exchanger especially for cooling cracked gas
DE3715713C1 (en) * 1987-05-12 1988-07-21 Borsig Gmbh Heat exchanger in particular for cooling cracked gases

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7700707B2 (en) 2002-10-15 2010-04-20 Exxonmobil Chemical Patents Inc. Polyolefin adhesive compositions and articles made therefrom
US8071687B2 (en) 2002-10-15 2011-12-06 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US8088867B2 (en) 2002-10-15 2012-01-03 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
US8957159B2 (en) 2002-10-15 2015-02-17 Exxonmobil Chemical Patents Inc. Multiple catalyst system for olefin polymerization and polymers produced therefrom
EP3032209A1 (en) 2014-12-11 2016-06-15 Borsig GmbH Quench cooling system
DE102014018261A1 (en) 2014-12-11 2016-06-16 Borsig Gmbh Quenchkühlsystem
US10190829B2 (en) 2014-12-11 2019-01-29 Borsig Gmbh Quench-cooling system

Also Published As

Publication number Publication date
ATE95303T1 (en) 1993-10-15
AU6025590A (en) 1991-03-14
KR0145700B1 (en) 1998-08-17
CN1018024B (en) 1992-08-26
CA2024900A1 (en) 1991-03-10
AU632607B2 (en) 1993-01-07
CA2024900C (en) 1999-08-24
JP3129727B2 (en) 2001-01-31
KR910006683A (en) 1991-04-29
DD297697A5 (en) 1992-01-16
DE3930205A1 (en) 1991-03-14
RU2011942C1 (en) 1994-04-30
BR9004567A (en) 1991-09-10
CN1050928A (en) 1991-04-24
DE59002909D1 (en) 1993-11-04
EP0417428A3 (en) 1991-11-06
US5035283A (en) 1991-07-30
JPH03113295A (en) 1991-05-14
EP0417428A2 (en) 1991-03-20

Similar Documents

Publication Publication Date Title
EP0417428B1 (en) Tube bundle heat exchanger
EP0290812B1 (en) Heat-exchanger, especially for cooling cracked gas
DE4401247C2 (en) Heat exchanger
EP0718579B1 (en) Heat exchanger for cooling cracked gas
EP0290813B1 (en) Heat exchanger, especially for cooling cracked gases
DE3039787A1 (en) HEAT EXCHANGER
DE4404068C1 (en) Heat exchanger
DE10233506A1 (en) Mixer / heat exchanger
EP1060010B1 (en) Tubular reactor for catalytic reactions
EP0810414B1 (en) Heat exchanger for cooling cracked gases
EP0160161A1 (en) Heat exchanger for cooling gases
DD262420A1 (en) REACTOR FOR THE AMMONIA SYNTHESIS
EP3536763B1 (en) Quench system and process for cooling a cracked gas from a cracking furnace
DE3039745A1 (en) HEAT EXCHANGER
DE2631884A1 (en) STEAM HYDROCARBON REFORMING DEVICE
DE2149536A1 (en) Method for heating a heat transfer liquid
EP0436828B1 (en) Heat exchanger for cooling hot reaction gas
DE2913748C2 (en) Tube bundle heat exchanger for cooling slag-containing hot gases from coal gasification
CH665274A5 (en) HEAT EXCHANGER.
DE3121297C2 (en) Device for regulating the temperature of a corrosive gas, in particular synthesis gas
DE2441706A1 (en) HEATING BOILER WITH CAST-IRON RIBBED PIPES
EP0172363A2 (en) Heat-exchange apparatus, particularly for cooling gas from a high-temperature reactor
DE2224899A1 (en) Heat-exchanger - for steam raising in pipes surrounding hot gas pipes fed from an inlet chamber
DE19622139A1 (en) Heat exchanger for cooling gaseous products from a cracker
DE948692C (en) Heat exchange with U-shaped pipes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT NL

17P Request for examination filed

Effective date: 19911014

17Q First examination report despatched

Effective date: 19920727

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL

REF Corresponds to:

Ref document number: 95303

Country of ref document: AT

Date of ref document: 19931015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59002909

Country of ref document: DE

Date of ref document: 19931104

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931020

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: SCHMIDT'SCHE HEISSDAMPF GMBH

Effective date: 19940624

NLR1 Nl: opposition has been filed with the epo

Opponent name: SCHMIDT'SCHE HEISSDAMPF GMBH

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19950316

NLR2 Nl: decision of opposition
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090716

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090715

Year of fee payment: 20

Ref country code: NL

Payment date: 20090730

Year of fee payment: 20

Ref country code: GB

Payment date: 20090720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090918

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090723

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100716

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100716