EP0353153A1 - Magnetic oscillation and guiding device for charged particles for the amplification of an electromagnetic emission - Google Patents

Magnetic oscillation and guiding device for charged particles for the amplification of an electromagnetic emission Download PDF

Info

Publication number
EP0353153A1
EP0353153A1 EP89402128A EP89402128A EP0353153A1 EP 0353153 A1 EP0353153 A1 EP 0353153A1 EP 89402128 A EP89402128 A EP 89402128A EP 89402128 A EP89402128 A EP 89402128A EP 0353153 A1 EP0353153 A1 EP 0353153A1
Authority
EP
European Patent Office
Prior art keywords
windings
axis
particles
amplification
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP89402128A
Other languages
German (de)
French (fr)
Inventor
Jacques Chevallier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Commissariat a lEnergie Atomique et aux Energies Alternatives CEA
Original Assignee
Commissariat a lEnergie Atomique CEA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat a lEnergie Atomique CEA filed Critical Commissariat a lEnergie Atomique CEA
Publication of EP0353153A1 publication Critical patent/EP0353153A1/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H7/00Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
    • H05H7/04Magnet systems, e.g. undulators, wigglers; Energisation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S1/00Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range
    • H01S1/005Masers, i.e. devices using stimulated emission of electromagnetic radiation in the microwave range using a relativistic beam of charged particles, e.g. electron cyclotron maser, gyrotron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/0903Free-electron laser

Definitions

  • the present invention relates to a magnetic oscillation and guidance device for charged particles, intended for the amplification of electromagnetic radiation. It applies in particular to the production of a microwave amplification system or of a free electron laser.
  • the corrugation device constituted by the permanent magnets or by the electromagnetic coils
  • a guiding device which is generally constituted by a set of magnetic quadrupoles or by a solenoid 4 which produces a magnetic field B P parallel to the electron propagation Z axis.
  • the object of the present invention is to remedy this drawback by proposing a single device capable of producing both the magnetic oscillation field B T and the magnetic guide field B P.
  • the subject of the present invention is a device for magnetic oscillation and guidance, along an axis, of charged particles, intended for the amplification of electromagnetic radiation, this device being characterized in that it comprises a succession of electrically conductive flat windings along said axis, each winding surrounding the latter, the respective planes of the windings being alternately inclined by a side and the other of said axis, so that all of the windings generates both magnetic fields of oscillation and of guiding the particles when these windings are supplied with electric current in such a way that they have the same polarity magnetic on the same side of said axis.
  • the device which is the subject of the invention may have a constant pitch or else may advantageously have a continuously variable pitch, the pitch being the distance which separates two windings from the device, which are of odd rank and which are separated by a single winding (of even rank), the first winding of the device being for example that which is first encountered by the particles when they enter the device.
  • each winding can form a short solenoid or a spiral.
  • windings can be mounted in series or in parallel or the set of windings can be organized in groups of adjacent windings, the windings of each group being mounted in series and the groups being mounted in parallel.
  • each of the windings of even rank which has two closest neighbors can be equidistant therefrom.
  • the charged particles can be electrons.
  • FIG 2 there is shown schematically and partially a device according to the invention.
  • This device comprises a plurality of electrically conductive planar windings which extend along the axis Z (average trajectory of the electrons). Each winding surrounds this axis Z. Only a few windings Ei-2, Ei-1, Ei, Ei + 1 and Ei + 2 are shown in Figure 2. Each winding is symbolized by a circular turn closed on itself, which is of course not the case in reality since the windings must be supplied with electric current (by means not shown).
  • each winding is traversed by an electric current I, the direction of which is the same for all the windings: if the device is observed in the direction of increasing Z for example (direction of the progression of the particles in the device ), all the windings have the same magnetic polarity to the observer who thus sees either the north faces of the windings, or the south faces of these.
  • the center of each winding denoted Oi for Ei, is on the Z axis and we define, for each winding, a normal axis denoted Ni for Ei, which passes through the center of this winding, is perpendicular to the plane of this last and oriented in the direction of the magnetic field which would exist at the center of the winding if the latter was alone.
  • the axes thus defined Ni, Ni + 1, Ni + 2, ... are in the YZ plane.
  • the windings are arranged so that their planes are alternately inclined on one side and the other of the Z axis with a constant inclination: each of these planes or axes Ui, Ui + 1, Ui + 2, .. makes the same acute angle t with the axis Z and the respective normal axes of the windings are alternately in one of the half-spaces delimited by the plane XZ and in the other of these half-spaces.
  • the device has a constant pitch P.
  • two windings inclined on the same side of Z and separated by a single winding are separated by a distance P and the winding which separates them is equidistant from these two windings: by considering for example Ei-1, Ei and Ei + 1, the distance from Oi-1 to Oi + 1 is equal to P and the distance from Oi-1 to Oi is equal to the distance from Oi to Oi + 1 which is equal to P / 2.
  • the magnetic field B has been constructed resulting, at a point of Z, from two adjacent windings such as Ei and Ei + 1.
  • the field Bi generated by Ei has a component B Ni parallel to Ni and a component B Ui parallel to Ui.
  • the field Bi + 1 generated by Ei + 1 has a component B Ni + 1 parallel to Ni + 1 and a component B Ui + 1 parallel to Ui + 1.
  • Field B results from the composition of Bi and Bi + 1 and breaks down into B T (parallel to Y) and B P (parallel to Z).
  • Each of the windings can be a very short solenoid, and therefore almost flat, comprising only a few turns, less than 10 turns for example (see FIG. 4 in which the means for supplying the windings with electric current are not shown).
  • each winding can be in a spiral with a few turns of electrical conductor, less than 10 turns for example (see FIG. 5 in which the means for supplying the windings with electric current are not shown).
  • each flat winding observed perpendicular to its plane, can be made up of circular or square or rectangular turns for example.
  • each winding is a solenoid of 4 turns (of the kind of those of FIG. 4), with an internal diameter of 10 cm, and only 6 solenoids are used.
  • the variations of the corresponding B T field, as a function of Z, are shown in FIG. 6 and the variations of the corresponding B P field, as a function of Z, are shown in FIG. 7.
  • the technique used in the present invention allows the construction of coils of large internal diameter relative to the diameter of the beam of charged particles. This technique also allows the use of slight inclinations (sharp acute angles t), which are compatible with a small distance between two adjacent windings in the device object of the invention.
  • the pitch P of this device is not necessarily constant, it can advantageously be continuously variable along the axis Z (see FIG. 8 on which the means for supplying the windings with electric current are not shown).
  • charged particles such as electrons, which pass through the device according to the invention (inverter) lose energy there as they progress along the Z axis.
  • the phase agreement between particles are no longer respected.
  • a continuously variable step allows to compensate for this, that is to say to maintain the phase agreement.
  • the step is decreased in the direction of increasing Z (direction of progression of particles in the device).
  • the wavelength l of the radiation that we want to amplify is substantially equal to: (1/2) .P. (1- (v / c) 2).
  • the device schematically represented in this figure comprises n windings E1, ..., En (n being assumed to be odd for example) and the steps P1.3 (distance from E1 to E3), P3.5 (distance from E3 to E5) ... Pn-2, n (distance from En-2 to En) form a decreasing sequence in the direction of the Z axis.
  • windings can be mounted in series ( Figure 9) in order to supply the assembly thus obtained by a pulse current generator 6. It will be noted that we can compare this assembly to a solenoid whose turns are distributed in groups of adjacent and contiguous turns, these groups being non-contiguous and tilted alternately on one side and the other of the Z axis.
  • the windings are mounted in parallel (FIG. 10) and supplied by the generator 6.
  • groups 8 of adjacent windings are formed, in each group the windings are mounted in series and the various groups are mounted in parallel and supplied by the generator 6 (FIG. 11).
  • the device which is the subject of the invention therefore lends itself well to adaptations of the magnetic field B T and of the distance between two adjacent windings along of the propagation axis Z of the particles.
  • the realistic configurations that can be envisaged lead to a distance d between two adjacent windings which can range from a few centimeters to around twenty centimeters, for example.
  • the inside diameter di of the turns, for its part, is liable to vary within the same range of values.
  • the minimum values of this distance d and of this diameter di are dependent on the transverse dimension of the particle beam.
  • the maxima of the distance d and of the diameter di are dependent on the intensities of the magnetic fields desired and on the intensity of the supply current achievable.
  • the device of the invention is applicable to the amplification, by means of charged particles such as electrons, of electromagnetic waves whose wavelengths can range from a few centimeters (hence a frequency of the order of a few GHz) to a few micrometers, depending on the energy of the electrons of course.
  • the applications of the invention therefore relate to a very wide range of systems covering microwave amplification systems and free electron lasers.
  • the duration of a current pulse generated by this generator must be greater than the duration of the puff of particles, or of the train of puffs of particles. , which passes through the inverter. It is indeed necessary that the fields B T and B P are constant in time during the duration of this puff or this train of puffs (we know that each puff sent to the inverter is structured there in bundles of particles, by interaction with electromagnetic radiation). AT purely indicative and in no way limitative, if the duration of the puff of particles, or of the train of puffs of particles, is of the order of 1 microsecond, it suffices to keep the fields B T and B P constant for approximately 1 ms.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Particle Accelerators (AREA)
  • Lasers (AREA)

Abstract

Magnetic oscillation and guiding device for charged particles for the amplification of an electromagnetic emission. The device comprises a succession of electrically conducting flat coils (Ei, Ei+1,...) along the axis (Z) corresponding to the mean trajectory of the particles. Each coil surrounds this axis. The respective planes of these coils are alternately inclined to one side and the other of the said axis so that the assembly of coils generates, at one and the same time, magnetic fields for oscillation (BT) and for guiding (BP) of the particles when these coils are supplied with electric current in such a way that they exhibit the same magnetic polarity on a same side of the said axis. Application to the amplification of microwaves and to the free- electron laser. <IMAGE>

Description

La présente invention concerne un dispositif d'oscillation et de guidage magnétiques de particules chargées, destiné à l'amplification d'un rayonnement électromagnétique. Elle s'applique notamment à la réalisation d'un système d'amplification de micro-ondes ou d'un laser à électrons libres.The present invention relates to a magnetic oscillation and guidance device for charged particles, intended for the amplification of electromagnetic radiation. It applies in particular to the production of a microwave amplification system or of a free electron laser.

Des indications sur ces systèmes sont données en particulier dans l'article de J.M. ORTEGA et M. BILLARDON auquel on pourra se reporter et qui est intitulé "Le laser à électrons libres" et publié dans la revue Pour la Science, avril 1986, pp. 91 à 100.Information on these systems is given in particular in the article by J.M. ORTEGA and M. BILLARDON which may be referred to and which is entitled "The free electron laser" and published in the journal Pour la Science, April 1986, pp. 91 to 100.

On sait que dans de tels systèmes, un champ magnétique BT variable périodiquement, appliqué transversalement à l'axe Z de propagation d'un faisceau d'électrons relativistes, permet de transférer l'énergie de ces derniers à un rayonnement électromagnétique cohérent Re sous certaines conditions. Les électrons sont contraints d'effectuer des oscillations dans un plan XZ perpendiculaire au champ magnétique BT, celui-ci restant parallèle à un axe Y qui est perpendiculaire au plan XZ comme on le voit sur la figure 1.We know that in such systems, a periodically variable magnetic field B T , applied transversely to the axis Z of propagation of a beam of relativistic electrons, makes it possible to transfer the energy of the latter to coherent electromagnetic radiation Re under certain conditions. The electrons are forced to perform oscillations in an XZ plane perpendicular to the magnetic field B T , the latter remaining parallel to an axis Y which is perpendicular to the XZ plane as seen in Figure 1.

Il est connu d'engendrer ces oscillations au moyen d'aimants permanents 2 qui sont disposés périodiquement le long de l'axe Z et dont les pôles nord N et sud S sont alternés (voir la figure 1). On obtient ainsi le champ magnétique BT variable le long de l'axe Z et parallèle à l'axe Y qui est perpendiculaire à Z, ce dernier étant perpendiculaire à X.It is known to generate these oscillations by means of permanent magnets 2 which are arranged periodically along the axis Z and whose north N and south S poles are alternated (see Figure 1). The variable magnetic field B T is thus obtained along the Z axis and parallel to the Y axis which is perpendicular to Z, the latter being perpendicular to X.

On sait également que le même résultat peut être obtenu au moyen de bobines électromagnétiques (non représentées) disposées alternativement en sens inverse le long de l'axe Z (trajectoire moyenne des électrons), les axes de ces bobines étant tous parallèles à l'axe Y.We also know that the same result can be obtained by means of electromagnetic coils (not shown) arranged alternately in opposite directions along the Z axis (average trajectory of the electrons), the axes of these coils being all parallel to the axis Y.

On obtient ainsi les oscillations voulues. Cependant, le faisceau d'électrons ne se propage pas convenablement dans ces conditions en raison de phénomènes de charges d'espace et de diverses instabilités. Il faut adjoindre au dispositif d'ondulation (constitué par les aimants permanents ou par les bobines électromagnétiques) un dispositif de guidage qui est généralement constitué par un ensemble de quadrupôles magnétiques ou par un solénoïde 4 qui produit un champ magnétique BP parallèle à l'axe Z de propagation des électrons.The desired oscillations are thus obtained. However, the electron beam does not propagate properly under these conditions due to phenomena of space charges and various instabilities. It is necessary to add to the corrugation device (constituted by the permanent magnets or by the electromagnetic coils) a guiding device which is generally constituted by a set of magnetic quadrupoles or by a solenoid 4 which produces a magnetic field B P parallel to the electron propagation Z axis.

Les systèmes connus d'oscillation et de guidage sont donc compliqués et coûteux puisqu'ils nécessitent deux dispositifs distincts, l'un pour l'oscillation et l'autre pour le guidage.Known oscillation and guidance systems are therefore complicated and expensive since they require two separate devices, one for oscillation and the other for guidance.

La présente invention a pour but de remédier à cet inconvénient en proposant un dispositif unique, apte à produire à la fois le champ magnétique d'oscillation BT et le champ magnétique de guidage BP.The object of the present invention is to remedy this drawback by proposing a single device capable of producing both the magnetic oscillation field B T and the magnetic guide field B P.

De façon précise, la présente invention a pour objet un dispositif d'oscillation et de guidage magnétiques, le long d'un axe, de particules chargées, destiné à l'amplification d'un rayonnement électromagnétique, ce dispositif étant caractérisé en ce qu'il comprend une succession d'enroulements plans électriquement conducteurs le long dudit axe, chaque enroulement entourant ce dernier, les plans respectifs des enroulements étant alternativement inclinés d'un côté et de l'autre dudit axe, de sorte que l'ensemble des enroulements engendre à la fois des champs magnétiques d'oscillation et de guidage des particules lorsque ces enroulements sont alimentés en courant électrique de telle façon qu'ils présentent la même polarité magnétique d'un même côté dudit axe.Specifically, the subject of the present invention is a device for magnetic oscillation and guidance, along an axis, of charged particles, intended for the amplification of electromagnetic radiation, this device being characterized in that it comprises a succession of electrically conductive flat windings along said axis, each winding surrounding the latter, the respective planes of the windings being alternately inclined by a side and the other of said axis, so that all of the windings generates both magnetic fields of oscillation and of guiding the particles when these windings are supplied with electric current in such a way that they have the same polarity magnetic on the same side of said axis.

Le dispositif objet de l'invention peut avoir un pas constant ou bien peut avoir, de façon avantageuse, un pas continûment variable, le pas étant la distance qui sépare deux enroulements du dispositif, qui sont de rang impair et qui sont séparés par un seul enroulement (de rang pair), le premier enroulement du dispositif étant par exemple celui qui est rencontré en premier par les particules lorsqu'elles entrent dans le dispositif.The device which is the subject of the invention may have a constant pitch or else may advantageously have a continuously variable pitch, the pitch being the distance which separates two windings from the device, which are of odd rank and which are separated by a single winding (of even rank), the first winding of the device being for example that which is first encountered by the particles when they enter the device.

Dans le dispositif objet de l'invention, chaque enroulement peut former un court solénoïde ou une spirale.In the device which is the subject of the invention, each winding can form a short solenoid or a spiral.

En outre, les enroulements peuvent être montés en série ou en parallèle ou bien l'ensemble des enroulements peut être organisé en groupes d'enroulements adjacents, les enroulements de chaque groupe étant montés en série et les groupes étant montés en parallèle.In addition, the windings can be mounted in series or in parallel or the set of windings can be organized in groups of adjacent windings, the windings of each group being mounted in series and the groups being mounted in parallel.

De plus, dans le dispositif objet de l'invention, chacun des enroulements de rang pair qui a deux plus proches voisins peut en être équidistant.In addition, in the device which is the subject of the invention, each of the windings of even rank which has two closest neighbors can be equidistant therefrom.

Enfin, comme on l'a déjà mentionné, les particules chargées peuvent être des électrons.Finally, as already mentioned, the charged particles can be electrons.

La présente invention sera mieux comprise à la lecture de la description qui suit d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif, en référence aux dessins annexés sur lesquels :

  • - la figure 1 est une vue schématique d'un dispositif connu d'oscillation et de guidage de particules chargées, destiné à l'amplification d'un rayonnement électromagnétique et a déjà été décrite,
  • - les figures 2 et 3 illustrent schématiquement et partiellement un dispositif conforme à l'invention,
  • - les figures 4 et 5 illustrent schématiquement des enroulements utilisables dans l'invention,
  • - les figures 6 et 7 représentent respectivement les variations, en fonction de Z, des champs BT et BP que l'on obtient avec des enroulements de type "solénoïde court" agencés conformément à l'invention,
  • - la figure 8 représente schématiquement un dispositif conforme à l'invention, à pas continûment variable, et
  • - les figures 9 à 11 représentent des dispositifs conformes à l'invention, comportant des enroulements montés en série (figure 9), en parallèle (figure 10), ou organisés en groupes d'enroulements, ces enroulements étant en série et les groupes en parallèle (figure 11).
The present invention will be better understood on reading the following description of exemplary embodiments given purely by way of indication and in no way limiting, with reference to the appended drawings in which:
  • - Figure 1 is a schematic view of a known device for oscillating and guiding charged particles, intended for the amplification of electromagnetic radiation and has already been described,
  • FIGS. 2 and 3 schematically and partially illustrate a device according to the invention,
  • FIGS. 4 and 5 schematically illustrate windings which can be used in the invention,
  • FIGS. 6 and 7 respectively represent the variations, as a function of Z, of the fields B T and B P which are obtained with windings of the "short solenoid" type arranged in accordance with the invention,
  • FIG. 8 schematically represents a device according to the invention, with continuously variable pitch, and
  • - Figures 9 to 11 show devices according to the invention, comprising windings mounted in series (Figure 9), in parallel (Figure 10), or organized in groups of windings, these windings being in series and groups in parallel (Figure 11).

Sur la figure 2, on a représenté schématiquement et partiellement un dispositif conforme à l'invention. Ce dispositif comprend une pluralité d'enroulements plans électriquement conducteurs qui s'étendent le long de l'axe Z (trajectoire moyenne des électrons). Chaque enroulement entoure cet axe Z. Seuls quelques enroulements Ei-2, Ei-1, Ei, Ei+1 et Ei+2 sont représentés sur la figure 2. Chaque enroulement est symbolisé par une spire circulaire fermée sur elle-­même, ce qui n'est bien entendu pas le cas dans la réalité puisque les enroulements doivent être alimentés en courant électrique (par des moyens non représentés).In Figure 2, there is shown schematically and partially a device according to the invention. This device comprises a plurality of electrically conductive planar windings which extend along the axis Z (average trajectory of the electrons). Each winding surrounds this axis Z. Only a few windings Ei-2, Ei-1, Ei, Ei + 1 and Ei + 2 are shown in Figure 2. Each winding is symbolized by a circular turn closed on itself, which is of course not the case in reality since the windings must be supplied with electric current (by means not shown).

Lorsque le dispositif fonctionne, chaque enroulement est parcouru par un courant électrique I dont le sens est le même pour tous les enroulements : si l'on observe le dispositif dans le sens des Z croissants par exemple (sens de la progression des particules dans le dispositif), tous les enroulements présentent la même polarité magnétique à l'observateur qui voit ainsi soit les faces nord des enroulements, soit les faces sud de ceux-ci.When the device is operating, each winding is traversed by an electric current I, the direction of which is the same for all the windings: if the device is observed in the direction of increasing Z for example (direction of the progression of the particles in the device ), all the windings have the same magnetic polarity to the observer who thus sees either the north faces of the windings, or the south faces of these.

Le centre de chaque enroulement, noté Oi pour Ei, est sur l'axe Z et l'on définit, pour chaque enroulement, un axe normal noté Ni pour Ei, qui passe par le centre de cet enroulement, est perpendiculaire au plan de ce dernier et orienté dans le sens du champ magnétique qui existerait au centre de l'enroulement si ce dernier était seul. Les axes ainsi définis Ni, Ni+1, Ni+2, ... sont dans le plan YZ.The center of each winding, denoted Oi for Ei, is on the Z axis and we define, for each winding, a normal axis denoted Ni for Ei, which passes through the center of this winding, is perpendicular to the plane of this last and oriented in the direction of the magnetic field which would exist at the center of the winding if the latter was alone. The axes thus defined Ni, Ni + 1, Ni + 2, ... are in the YZ plane.

On définit également, pour chaque enroulement, un autre axe noté Ui pour Ei, qui passe par le centre de l'enroulement, est dans le plan YZ et perpendiculaire à l'axe normal correspondant.We also define, for each winding, another axis denoted Ui for Ei, which passes through the center of the winding, is in the plane YZ and perpendicular to the corresponding normal axis.

Les enroulements sont disposés de façon que leurs plans soient alternativement inclinés d'un côté et de l'autre de l'axe Z avec une inclinaison constante : chacun de ces plans ou des axes Ui, Ui+1, Ui+2, ... fait le même angle aigu t avec l'axe Z et les axes normaux respectifs des enroulements sont alternativement dans l'un des demi-espaces délimités par le plan XZ et dans l'autre de ces demi-espaces.The windings are arranged so that their planes are alternately inclined on one side and the other of the Z axis with a constant inclination: each of these planes or axes Ui, Ui + 1, Ui + 2, .. makes the same acute angle t with the axis Z and the respective normal axes of the windings are alternately in one of the half-spaces delimited by the plane XZ and in the other of these half-spaces.

Dans l'exemple représenté sur la figure 2, le dispositif a un pas P constant. Ainsi, deux enroulements inclinés du même côté de Z et séparés par un seul enroulement, sont séparés par une distance P et l'enroulement qui les sépare est équidistant de ces deux enroulements : en considérant par exemple Ei-1, Ei et Ei+1, la distance de Oi-1 à Oi+1 vaut P et la distance de Oi-1 à Oi est égale à la distance de Oi à Oi+1 qui est égale à P/2.In the example shown in Figure 2, the device has a constant pitch P. Thus, two windings inclined on the same side of Z and separated by a single winding, are separated by a distance P and the winding which separates them is equidistant from these two windings: by considering for example Ei-1, Ei and Ei + 1, the distance from Oi-1 to Oi + 1 is equal to P and the distance from Oi-1 to Oi is equal to the distance from Oi to Oi + 1 which is equal to P / 2.

Sur la figure 3, on a construit le champ magnétique B résultant, en un point de Z, de deux enroulements adjacents tels que Ei et Ei+1. Le champ Bi engendré par Ei a une composante BNi parallèle à Ni et une composante BUi parallèle à Ui. De même, le champ Bi+1 engendré par Ei+1 a une composante BNi+1 parallèle à Ni+1 et une composante BUi+1 parallèle à Ui+1. Le champ B résulte de la composition de Bi et Bi+1 et se décompose en BT (parallèle à Y) et BP (parallèle à Z).In FIG. 3, the magnetic field B has been constructed resulting, at a point of Z, from two adjacent windings such as Ei and Ei + 1. The field Bi generated by Ei has a component B Ni parallel to Ni and a component B Ui parallel to Ui. Similarly, the field Bi + 1 generated by Ei + 1 has a component B Ni + 1 parallel to Ni + 1 and a component B Ui + 1 parallel to Ui + 1. Field B results from the composition of Bi and Bi + 1 and breaks down into B T (parallel to Y) and B P (parallel to Z).

On voit donc que, conformément à l'invention, on obtient, avec un dispositif unique, à la fois le champ d'oscillation BT, qui est parallèle à Y et dont l'intensité varie de façon sinusoïdale dans le plan YZ, et le champ de guidage BP qui est parallèle à Z et conserve le même sens en tout point de Z.We therefore see that, in accordance with the invention, with a single device, we obtain both the oscillation field B T , which is parallel to Y and whose intensity varies sinusoidally in the YZ plane, and the guide field B P which is parallel to Z and retains the same direction at any point of Z.

Chacun des enroulements peut être un solénoïde très court, et donc quasiment plat, ne comportant que quelques spires, moins de 10 spires par exemple (voir la figure 4 sur laquelle les moyens d'alimentation des enroulements en courant électrique ne sont pas représentés).Each of the windings can be a very short solenoid, and therefore almost flat, comprising only a few turns, less than 10 turns for example (see FIG. 4 in which the means for supplying the windings with electric current are not shown).

En variante, chaque enroulement peut être en spirale avec quelques tours de conducteur électrique, moins de 10 tours par exemple (voir la figure 5 sur laquelle les moyens d'alimentation des enroulements en courant électrique ne sont pas représentés).As a variant, each winding can be in a spiral with a few turns of electrical conductor, less than 10 turns for example (see FIG. 5 in which the means for supplying the windings with electric current are not shown).

Par ailleurs, chaque enroulement plan, observé perpendiculairement à son plan, peut être constitué de spires circulaires ou carrées ou rectangulaires par exemple.Furthermore, each flat winding, observed perpendicular to its plane, can be made up of circular or square or rectangular turns for example.

Dans un exemple de réalisation (donné à titre purement indicatif et nullement limitatif) I=20A, t=60°, chaque enroulement est un solénoïde de 4 spires (du genre de ceux de la figure 4), de 10 cm de diamètre intérieur, et l'on n'utilise que 6 solénoïdes. Les variations du champ BT correspondant, en fonction de Z, sont représentées sur la figure 6 et les variations du champ BP correspondant, en fonction de Z, sont représentées sur la figure 7.In an exemplary embodiment (given for purely indicative and in no way limiting) I = 20A, t = 60 °, each winding is a solenoid of 4 turns (of the kind of those of FIG. 4), with an internal diameter of 10 cm, and only 6 solenoids are used. The variations of the corresponding B T field, as a function of Z, are shown in FIG. 6 and the variations of the corresponding B P field, as a function of Z, are shown in FIG. 7.

L'utilisation de courants impulsionnels élevés, dont l'intensité peut aller de plusieurs kA à plusieurs dizaines de kA et dont les impulsions peuvent avoir une période de l'ordre de 1 ms à quelques ms par exemple, permet d'obtenir des champs magnétiques intenses, de l'ordre de 1T, voire plus.The use of high pulse currents, the intensity of which can range from several kA to several tens of kA and whose pulses can have a period of the order of 1 ms to a few ms for example, makes it possible to obtain magnetic fields. intense, of the order of 1T or more.

La technique utilisée dans la présente invention autorise la construction de bobines de grand diamètre intérieur par rapport au diamètre du faisceau de particules chargées. Cette technique permet également l'utilisation d'inclinaisons peu importantes (angles aigus t importants), qui sont compatibles avec une faible distance entre deux enroulements adjacents dans le dispositif objet de l'invention.The technique used in the present invention allows the construction of coils of large internal diameter relative to the diameter of the beam of charged particles. This technique also allows the use of slight inclinations (sharp acute angles t), which are compatible with a small distance between two adjacent windings in the device object of the invention.

En outre, le pas P de ce dispositif n'est pas nécessairement constant, il peut être, de façon avantageuse, continûment variable le long de l'axe Z (voir la figure 8 sur laquelle les moyens d'alimentation des enroulements en courant électrique ne sont pas représentés). En effet, les particules chargées telles que des électrons, qui passent dans le dispositif selon l'invention (onduleur) y perdent de l'énergie au fur et à mesure qu'elles progressent suivant l'axé Z. L'accord de phase entre les particules n'est plus respecté. Un pas continûment variable permet de compenser ceci, c'est-à-dire de maintenir l'accord de phase. A cet effet, on fait décroître le pas dans le sens des Z croissants (sens de la progression des particules dans le dispositif). En effet, la longueur d'onde l du rayonnement que l'on veut amplifier est sensiblement égale à :
(1/2).P.(1-(v/c) ²).(1+(K²/2)) avec K= 93,4 BT.P
P étant exprimé en mètres, BT en teslas, v (vitesse des électrons) en m/s et c (vitesse de la lumière dans le vide) en m/s.
In addition, the pitch P of this device is not necessarily constant, it can advantageously be continuously variable along the axis Z (see FIG. 8 on which the means for supplying the windings with electric current are not shown). Indeed, charged particles such as electrons, which pass through the device according to the invention (inverter) lose energy there as they progress along the Z axis. The phase agreement between particles are no longer respected. A continuously variable step allows to compensate for this, that is to say to maintain the phase agreement. To this end, the step is decreased in the direction of increasing Z (direction of progression of particles in the device). Indeed, the wavelength l of the radiation that we want to amplify is substantially equal to:
(1/2) .P. (1- (v / c) ²). (1+ (K² / 2)) with K = 93.4 B T .P
P being expressed in meters, B T in teslas, v (speed of electrons) in m / s and c (speed of light in a vacuum) in m / s.

Par conséquent, si l'énergie des électrons diminue (d'où une diminution de leur vitesse v), il faut diminuer P pour que l demeure constant.Consequently, if the energy of the electrons decreases (from where a decrease in their speed v), it is necessary to decrease P so that l remains constant.

C'est ce que l'on voit sur la figure 8 : le dispositif schématiquement représenté sur cette figure comporte n enroulements E1,..., En (n étant supposé impair par exemple) et les pas P1,3 (distance de E1 à E3), P3,5 (distance de E3 à E5)... Pn-2,n (distance de En-2 à En) forment une suite décroissante dans le sens de l'axe Z.This is what we see in FIG. 8: the device schematically represented in this figure comprises n windings E1, ..., En (n being assumed to be odd for example) and the steps P1.3 (distance from E1 to E3), P3.5 (distance from E3 to E5) ... Pn-2, n (distance from En-2 to En) form a decreasing sequence in the direction of the Z axis.

Enfin, on peut monter les enroulements en série (figure 9) en vue d'alimenter l'ensemble ainsi obtenu par un générateur impulsionnel de courant 6. On notera que l'on peut comparer cet ensemble à un solénoïde dont les spires sont réparties en groupes de spires adjacentes et jointives, ces groupes étant non jointifs et inclinés alternativement d'un côté et de l'autre de l'axe Z.Finally, the windings can be mounted in series (Figure 9) in order to supply the assembly thus obtained by a pulse current generator 6. It will be noted that we can compare this assembly to a solenoid whose turns are distributed in groups of adjacent and contiguous turns, these groups being non-contiguous and tilted alternately on one side and the other of the Z axis.

En variante, les enroulements sont montés en parallèle (figure 10) et alimentés par le générateur 6.As a variant, the windings are mounted in parallel (FIG. 10) and supplied by the generator 6.

Dans une autre variante, on forme des groupes 8 d'enroulements adjacents, dans chaque groupe les enroulements sont montés en série et les différents groupes sont montés en parallèle et alimentés par le générateur 6 (figure 11).In another variant, groups 8 of adjacent windings are formed, in each group the windings are mounted in series and the various groups are mounted in parallel and supplied by the generator 6 (FIG. 11).

Le dispositif objet de l'invention se prête donc bien aux adaptations du champ magnétique BT et de la distance entre deux enroulements adjacents le long de l'axe de propagation Z des particules.The device which is the subject of the invention therefore lends itself well to adaptations of the magnetic field B T and of the distance between two adjacent windings along of the propagation axis Z of the particles.

Les configurations réalistes envisageables conduisent à une distance d entre deux enroulements adjacents qui peut aller de quelques centimètres à une vingtaine de centimètres par exemple. Le diamètre intérieur di des spires, quant à lui, est susceptible de varier dans la même plage de valeurs. Les valeurs minimales de cette distance d et de ce diamètre di sont dépendantes de la dimension transverse du faisceau de particules. Les maxima de la distance d et du diamètre di sont tributaires des intensités des champs magnétiques souhaités et de l'intensité du courant d'alimentation réalisable.The realistic configurations that can be envisaged lead to a distance d between two adjacent windings which can range from a few centimeters to around twenty centimeters, for example. The inside diameter di of the turns, for its part, is liable to vary within the same range of values. The minimum values of this distance d and of this diameter di are dependent on the transverse dimension of the particle beam. The maxima of the distance d and of the diameter di are dependent on the intensities of the magnetic fields desired and on the intensity of the supply current achievable.

Les ordres de grandeur précédents montrent que le dispositif de l'invention est applicable à l'amplification, au moyen de particules chargées telles que les électrons, d'ondes électromagnétiques dont les longueurs d'ondes peuvent aller de quelques centimètres (d'où une fréquence de l'ordre de quelques GHz) à quelques micromètres, en fonction de l'énergie des électrons bien entendu. Les applications de l'invention concernent donc une gamme très étendue de systèmes couvrant les systèmes d'amplification de micro-ondes et les lasers à électrons libres.The preceding orders of magnitude show that the device of the invention is applicable to the amplification, by means of charged particles such as electrons, of electromagnetic waves whose wavelengths can range from a few centimeters (hence a frequency of the order of a few GHz) to a few micrometers, depending on the energy of the electrons of course. The applications of the invention therefore relate to a very wide range of systems covering microwave amplification systems and free electron lasers.

En revenant au cas de l'utilisation d'un générateur impulsionnel de courant, on notera que la durée d'une impulsion de courant engendrée par ce générateur doit être supérieure à la durée de la bouffée de particules, ou du train de bouffées de particules, qui traverse l'onduleur. Il faut en effet que les champs BT et BP soient constants dans le temps pendant la durée de cette bouffée ou de ce train de bouffées (on sait que chaque bouffée envoyée dans l'onduleur s'y structure en paquets de particules, par interaction avec le rayonnement électromagnétique). A titre purement indicatif et nullement limitatif, si la durée de la bouffée de particules, ou du train de bouffées de particules, est de l'ordre de 1 microseconde, il suffit de maintenir constants les champs BT et BP pendant environ 1 ms.Returning to the case of the use of a pulse current generator, it will be noted that the duration of a current pulse generated by this generator must be greater than the duration of the puff of particles, or of the train of puffs of particles. , which passes through the inverter. It is indeed necessary that the fields B T and B P are constant in time during the duration of this puff or this train of puffs (we know that each puff sent to the inverter is structured there in bundles of particles, by interaction with electromagnetic radiation). AT purely indicative and in no way limitative, if the duration of the puff of particles, or of the train of puffs of particles, is of the order of 1 microsecond, it suffices to keep the fields B T and B P constant for approximately 1 ms.

Toutefois, dans le cas particulier d'enroulements supraconducteurs, on peut utiliser un générateur de courant continu en vue de produire les champs Bet BT. On notera que ceux-ci doivent être au moins égaux à 0,1 T dans le cas d'un laser à électrons libres (utilisant des bouffées d'électrons ou un faisceau continu d'électrons).However, in the particular case of superconductive windings, it is possible to use a direct current generator in order to produce the fields Bet B T. It will be noted that these must be at least equal to 0.1 T in the case of a free electron laser (using bursts of electrons or a continuous beam of electrons).

Claims (9)

1. Dispositif d'oscillation et de guidage magnétiques, le long d'un axe (Z), de particules chargées, destiné à l'amplification d'un rayonnement électromagnétique (Re), ce dispositif étant caractérisé en ce qu'il comprend une succession d'enroulements plans électriquement conducteurs (E1,..., En) le long dudit axe, chaque enroulement entourant ce dernier, les plans respectifs des enroulements étant alternativement inclinés d'un côté et de l'autre dudit axe, de sorte que l'ensemble des enroulements engendre à la fois des champs magnétiques d'oscillation (BT ) et de guidage (BP ) des particules lorsque ces enroulements sont alimentés en courant électrique de telle façon qu'ils présentent la même polarité magnétique d'un même côté dudit axe.1. Device for magnetic oscillation and guidance, along an axis (Z), of charged particles, intended for the amplification of electromagnetic radiation (Re), this device being characterized in that it comprises a succession of electrically conductive flat windings (E1, ..., En) along said axis, each winding surrounding the latter, the respective planes of the windings being alternately inclined on one side and the other of said axis, so that all the windings generate both magnetic fields of oscillation (B T ) and guide (B P ) of the particles when these windings are supplied with electric current in such a way that they have the same magnetic polarity as one same side of said axis. 2. Dispositif selon la revendication 1, caractérisé en ce que ce dispositif a un pas continûment variable.2. Device according to claim 1, characterized in that this device has a continuously variable pitch. 3. Dispositif selon l'une quelconque des revendications 1 et 2, caractérisé en ce que chaque enroulement forme un court solénoïde (sl).3. Device according to any one of claims 1 and 2, characterized in that each winding forms a short solenoid (sl). 4. Dispositif selon l'une quelconque des revendications 1 et 2, caractérisé en ce que chaque enroulement forme une spirale (sp).4. Device according to any one of claims 1 and 2, characterized in that each winding forms a spiral (sp). 5. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les enroulements (E1,..., En) sont montés en série.5. Device according to any one of claims 1 to 4, characterized in that the windings (E1, ..., En) are mounted in series. 6. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les enroulements (E1,..., En) sont montés en parallèle.6. Device according to any one of claims 1 to 4, characterized in that the windings (E1, ..., En) are mounted in parallel. 7. Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que l'ensemble des enroulements est organisé en groupes (8) d'enroulements adjacents, les enroulements de chaque groupe étant montés en série et les groupes étant montés en parallèle.7. Device according to any one of claims 1 to 4, characterized in that all of the windings are organized in groups (8) adjacent windings, the windings of each group being mounted in series and the groups being mounted in parallel. 8. Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce que chacun des enroulements de rang pair qui a deux plus proches voisins en est équidistant.8. Device according to any one of claims 1 to 7, characterized in that each of the even rank windings which has two closest neighbors is equidistant therefrom. 9. Dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce que les particules sont des électrons.9. Device according to any one of claims 1 to 8, characterized in that the particles are electrons.
EP89402128A 1988-07-28 1989-07-26 Magnetic oscillation and guiding device for charged particles for the amplification of an electromagnetic emission Ceased EP0353153A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8810195 1988-07-28
FR8810195A FR2634965B1 (en) 1988-07-28 1988-07-28 MAGNETIC OSCILLATION AND GUIDANCE DEVICE FOR CHARGED PARTICLES, FOR THE AMPLIFICATION OF ELECTROMAGNETIC RADIATION

Publications (1)

Publication Number Publication Date
EP0353153A1 true EP0353153A1 (en) 1990-01-31

Family

ID=9368881

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89402128A Ceased EP0353153A1 (en) 1988-07-28 1989-07-26 Magnetic oscillation and guiding device for charged particles for the amplification of an electromagnetic emission

Country Status (2)

Country Link
EP (1) EP0353153A1 (en)
FR (1) FR2634965B1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009143370A1 (en) * 2008-05-22 2009-11-26 Advanced Magnet Lab, Inc. Coil magnets with constant or variable phase shifts
US7864019B2 (en) 2008-04-03 2011-01-04 Advanced Magnet Lab, Inc. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor
US7872562B2 (en) 2008-06-04 2011-01-18 Advanced Magnet Lab, Inc. Magnetic coil capable of simultaneously providing multiple multipole orders with an improved transfer function
US7880578B2 (en) 2007-10-02 2011-02-01 Advanced Magnet Lab, Inc. Conductor assembly including a flared aperture region
US7889042B2 (en) 2008-02-18 2011-02-15 Advanced Magnet Lab, Inc. Helical coil design and process for direct fabrication from a conductive layer
US8040012B2 (en) 2008-06-02 2011-10-18 Advanced Magnet Lab, Inc. Electrical machinery incorporating double helix coil designs for superconducting and resistive windings
US8107211B2 (en) 2007-08-29 2012-01-31 Advanced Magnet Lab, Inc. High temperature superconducting electromechanical system with frequency controlled commutation for rotor excitation
US9911525B2 (en) 2008-04-03 2018-03-06 Advanced Magnet Lab, Inc. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822410A (en) * 1972-05-08 1974-07-02 J Madey Stimulated emission of radiation in periodically deflected electron beam
US4283687A (en) * 1979-07-27 1981-08-11 The United States Of America As Represented By The Secretary Of The Air Force Free electron laser with end tapered wiggler strength
US4542510A (en) * 1983-08-26 1985-09-17 Rockwell International Corporation Low inductance magnetic wiggler
US4644548A (en) * 1984-01-25 1987-02-17 The United States Of America As Represented By The Secretary Of The Navy Free electron laser with tapered axial magnetic field

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3822410A (en) * 1972-05-08 1974-07-02 J Madey Stimulated emission of radiation in periodically deflected electron beam
US4283687A (en) * 1979-07-27 1981-08-11 The United States Of America As Represented By The Secretary Of The Air Force Free electron laser with end tapered wiggler strength
US4542510A (en) * 1983-08-26 1985-09-17 Rockwell International Corporation Low inductance magnetic wiggler
US4644548A (en) * 1984-01-25 1987-02-17 The United States Of America As Represented By The Secretary Of The Navy Free electron laser with tapered axial magnetic field

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107211B2 (en) 2007-08-29 2012-01-31 Advanced Magnet Lab, Inc. High temperature superconducting electromechanical system with frequency controlled commutation for rotor excitation
US7889046B2 (en) 2007-10-02 2011-02-15 Advanced Magnet Lab, Inc. Conductor assembly formed about a curved axis
US8510932B2 (en) 2007-10-02 2013-08-20 Advanced Magnet Lab, Inc. Method of reducing multipole content in a conductor assembly during manufacture
US7992284B2 (en) 2007-10-02 2011-08-09 Advanced Magnet Lab, Inc. Method of reducing multipole content in a conductor assembly during manufacture
US9349513B2 (en) 2007-10-02 2016-05-24 Advanced Magnet Lab, Inc. Method of reducing multipole content in a conductor assembly during manufacture
US8001672B2 (en) 2007-10-02 2011-08-23 Advanced Magnet Lab, Inc Methods of fabricating a conductor assembly having a curvilinear arcuate shape
US7893808B2 (en) 2007-10-02 2011-02-22 Advanced Magnet Lab, Inc. Conductor assembly having an axial field in combination with high quality main transverse field
US7971342B2 (en) * 2007-10-02 2011-07-05 Advanced Magnet Lab, Inc. Method of manufacturing a conductor assembly
US7880578B2 (en) 2007-10-02 2011-02-01 Advanced Magnet Lab, Inc. Conductor assembly including a flared aperture region
US7889042B2 (en) 2008-02-18 2011-02-15 Advanced Magnet Lab, Inc. Helical coil design and process for direct fabrication from a conductive layer
US7864019B2 (en) 2008-04-03 2011-01-04 Advanced Magnet Lab, Inc. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor
US9911525B2 (en) 2008-04-03 2018-03-06 Advanced Magnet Lab, Inc. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel
US10002696B2 (en) 2008-04-03 2018-06-19 Advanced Magnet Lab, Inc. Wiring assembly and method of forming a channel in a wiring assembly for receiving conductor and providing separate regions of conductor contact with the channel
US7990247B2 (en) 2008-05-22 2011-08-02 Advanced Magnet Lab, Inc Coil magnets with constant or variable phase shifts
US8424193B2 (en) 2008-05-22 2013-04-23 Advanced Magnet Lab, Inc. Method of providing and operating a conductor assembly
WO2009143370A1 (en) * 2008-05-22 2009-11-26 Advanced Magnet Lab, Inc. Coil magnets with constant or variable phase shifts
US8040012B2 (en) 2008-06-02 2011-10-18 Advanced Magnet Lab, Inc. Electrical machinery incorporating double helix coil designs for superconducting and resistive windings
US7872562B2 (en) 2008-06-04 2011-01-18 Advanced Magnet Lab, Inc. Magnetic coil capable of simultaneously providing multiple multipole orders with an improved transfer function

Also Published As

Publication number Publication date
FR2634965B1 (en) 1990-09-21
FR2634965A1 (en) 1990-02-02

Similar Documents

Publication Publication Date Title
EP0165146B1 (en) Free electron laser
EP0248689A1 (en) Multiple-beam klystron
CH623182A5 (en)
EP0152339B1 (en) Electric drive means for low tension of a rotating mass of high inertia and motor being part of such means
EP0353153A1 (en) Magnetic oscillation and guiding device for charged particles for the amplification of an electromagnetic emission
FR2527413A1 (en) LINEAR ACCELERATOR OF CHARGED PARTICLES COMPRISING SLIP TUBES
BE1005864A5 (en) RESONANT CAVITY ELECTRON ACCELERATOR.
EP1130949A1 (en) Electromagnetic device for cold atom production
CA3051790C (en) Electric machine powered at low voltage and associated multicellular traction chain
FR2650448A1 (en) ELECTRONIC FREE ELECTRONS LASER WITH PERFECTIONAL ELECTRONIC ACCELERATOR
FR2974458A1 (en) LASER WAVE EMISSION DEVICE IN THE FIELD OF TERAHERTZ
EP0012054B1 (en) Ion beam bundling device with two acceleration intervals of differing lengths, working in a broad range of speeds
EP0049198A1 (en) Electrons accelerator, and millimeter and infra-millimeter waves generator including the same
EP0642144A1 (en) Device for the transmission of electric power signals to a rotating system
EP2472555B1 (en) Device for the generation of microwaves, comprising a plurality of magnetrons
EP0401066B1 (en) Permanent magnet helical wiggler for free-electron lasers
EP0124395B1 (en) Electron gun for microwave generators
EP0407558B1 (en) Amplifier or oscillator device operating at ultrahigh frequency
FR2999796A1 (en) ELECTRONIC OPTICAL DEVICE
FR2785471A1 (en) Travelling-wave tube amplifier for microwave signal, has collector electrodes and magnetic nodes with openings for pairs of conductors generating flux in opposite directions
EP0206879A1 (en) Broad frequency band magnetic field detector
FR2936648A1 (en) HIGH POWER COMPACT MICROWAVE TUBE
EP0122186B1 (en) Microwave generator
EP0720788B1 (en) High efficiency electrostatic motor
EP1191350B1 (en) Optical sensor with controlled emission

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19900705

17Q First examination report despatched

Effective date: 19920630

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19921221