EP0236525A1 - Integrated field-effect transistor delay line for digital signals - Google Patents

Integrated field-effect transistor delay line for digital signals Download PDF

Info

Publication number
EP0236525A1
EP0236525A1 EP86103301A EP86103301A EP0236525A1 EP 0236525 A1 EP0236525 A1 EP 0236525A1 EP 86103301 A EP86103301 A EP 86103301A EP 86103301 A EP86103301 A EP 86103301A EP 0236525 A1 EP0236525 A1 EP 0236525A1
Authority
EP
European Patent Office
Prior art keywords
channel
current
transistor
cmos inverter
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86103301A
Other languages
German (de)
French (fr)
Other versions
EP0236525B1 (en
Inventor
Paul O'leary
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Micronas GmbH
Original Assignee
Deutsche ITT Industries GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche ITT Industries GmbH filed Critical Deutsche ITT Industries GmbH
Priority to EP86103301A priority Critical patent/EP0236525B1/en
Priority to DE8686103301T priority patent/DE3676297D1/en
Priority to US07/023,211 priority patent/US4806804A/en
Priority to JP62054314A priority patent/JPS62219813A/en
Publication of EP0236525A1 publication Critical patent/EP0236525A1/en
Application granted granted Critical
Publication of EP0236525B1 publication Critical patent/EP0236525B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • H03K19/00323Delay compensation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/08Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices
    • H03K19/094Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors
    • H03K19/0944Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET
    • H03K19/0948Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using semiconductor devices using field-effect transistors using MOSFET or insulated gate field-effect transistors, i.e. IGFET using CMOS or complementary insulated gate field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/0015Layout of the delay element
    • H03K2005/00195Layout of the delay element using FET's

Definitions

  • the invention relates to an integrated insulating layer field effect transistor delay line for digital signals with inverters connected in series in terms of signal flow.
  • the principle of such a delay line is described in the published patent application EP-A-59 802 (ITT-case W.Gollinger et al 14-13-12-9-3-2).
  • the delay time can be made equidistant step by step by tapping the output of every second inverter via a one-of-n selection switch.
  • the object of the invention is to create a delay line for digital signals, the delay time of which can be set electrically continuously.
  • the inverters are those with a load transistor connected as a resistor, that is to say the two inverter transistors are of the same line type
  • the invention results from the choice of the inverters as CMOS inverters in connection with their connection to the two poles of the operating voltage source the desired continuous, electrical setting option of the delay time via a respective constant current transistor, which is done in that the constant current transistors are dimensioned to carry the same currents, the size of which this currents can be adjusted together via a reference current.
  • the first stage 1 and the last stage n of the delay line are shown.
  • the individual stages are identical to one another and are constructed as follows: to the series circuit which forms the usual CMOS inverter c, the controlled current paths of the N-channel transistor nt and the P-channel transistor pt, the gates of which are connected to one another and the digital signal input eg and whose current path junction is the digital signal output ag, on the side of the N-channel transistor nt is the N-channel constant current transistor nc and on the side of the P-channel transistor pt is the P-channel constant current -Transistor pc connected in series to the respective pole of the operating voltage source u.
  • all N-channel constant current transistors are part of the N-channel multiple current mirror nm and all P-channel constant current transistors are part of the P-channel multiple current mirror pm. All transistors of the two current mirrors are dimensioned such that they are the same in amount and adjustable Reference current i can carry the same currents.
  • the adjustability of the reference current i is symbolized by the adjustable resistor r, which is connected to the operating voltage source u and to the input transistor en of the N current mirror mn.
  • the current i impressed on the input transistor can also be generated in a different manner than by means of a resistor. For example, it can be the control variable in a phase-locked loop.
  • the input transistor ep of the P current mirror pm receives its own reference current i impressed by the additional P channel constant current transistor na of the N current mirror.
  • the invention makes use of the property of the CMOS inverter that, depending on the binary signal level H or L at the input, either the P-channel transistor pt is conductive and the N-channel transistor nt is blocked or the P-channel transistor pt is blocked and the N-channel transistor nt are leading.
  • H / L or L / H signal change the input capacitance of the next stage connected to the output is charged or discharged by the current i after the gate threshold voltage of the transistor which is still blocked and is now conducting is exceeded. As is known, this charging takes place linearly and with a steepness which is directly proportional to the current i. The input signal change is thus switched through depending on the current i per stage to the output of each stage.
  • each stage has the two inputs eg1 (belonging to the CMOS inverter c) and eg2 (belonging to the further CMOS inverter c ⁇ ) and two corresponding outputs. Similar inputs and outputs are connected to each other within the delay line. As a result, both the inverted and the non-inverted input signal are available in one stage, which, in the arrangement according to FIG. 1, can only ever be tapped at one next but one stage.
  • the rising and falling edges of pulses are well matched to one another. Furthermore, the control characteristic of the delay line is independent of manufacturing process parameters.
  • the pair delay time of the two inverters of one stage can be set very low, in particular less than one nanosecond, so that the delay line can also be used at very high signal frequencies. This is especially true if 1.5 micron technology is used for the implementation. If the layout of the delay line is carefully designed, the fluctuation in the delay time of the individual stages can be kept below 1%.
  • the current mirror used in the invention results in a large range of variation in the delay time, e.g. by a factor of 10.
  • the noise behavior is also very good, which is due to the property of the current mirror.
  • the arrangement of the invention is much less noisy than the arrangement described above.

Abstract

Zur kontinuierlichen Einstellung der Verzögerungs­zeit dieser Verzögerungsleitung besteht sie aus gleich­artigen Stufen (1,n) und enthält pro Stufe einen übli­chen CMOS-Inverter (c), dem auf der P-Kanal-Transistor-­Seite ein P-Kanal-Konstantstrom-Transistor (pc) und auf der N-Kanal-Transistor-Seite ein N-Kanal-Konstantstrom-­Transistor (nc) in Serie geschaltet ist. Die N-Kanal-­Konstantstrom-Transistoren sind Bestandteil eines N-Ka­nal-Mehrfach-Stromspiegels (nm) und ebenso die P-Kanal-­Konstantstrom-Transistoren eines P-Kanal-Mehrfach-Strom­spiegels (pm). Sämtliche Transistoren der beiden Strom­spiegel können untereinander gleiche und einem einstell­baren Referenzstrom (i) gleiche Ströme führen.

Figure imgaf001
For the continuous setting of the delay time of this delay line, it consists of stages of the same type (1, n) and contains a conventional CMOS inverter (c) per stage, on the P-channel transistor side of which a P-channel constant current transistor (pc ) and an N-channel constant current transistor (nc) is connected in series on the N-channel transistor side. The N-channel constant current transistors are part of an N-channel multiple current mirror (nm) and also the P-channel constant current transistors of a P-channel multiple current mirror (pm). All transistors of the two current mirrors can carry the same currents and the same as an adjustable reference current (i).
Figure imgaf001

Description

Die Erfinding betrifft eine integrierte Isolier­schicht-Feldeffekttransistor-Verzögerungsleitung für Di­gitalsignale mit signalflußmäßig in Serie geschalteten Invertern. Das Prinzip einer derartigen Verzöogerungslei­tung ist in der veröffentlichten Patentanmeldung EP-A-59 802 (ITT-case W.Gollinger et al 14-13-12-9-3-2) beschrieben. Die Verzögerungszeit ist dadurch äquidi­stant stufenweise einstellbar gemacht, daß der Ausgang jedes zweiten Inverters über einen Eins-aus-n-Auswahl­schalter abgegriffen werden kann.The invention relates to an integrated insulating layer field effect transistor delay line for digital signals with inverters connected in series in terms of signal flow. The principle of such a delay line is described in the published patent application EP-A-59 802 (ITT-case W.Gollinger et al 14-13-12-9-3-2). The delay time can be made equidistant step by step by tapping the output of every second inverter via a one-of-n selection switch.

Demgegenüber liegt der in den Ansprüchen gekennzeichne­ten Erfindung die Aufgabe zugrunde, eine Verzögerungs­leitung für Digitalsignale zu schaffen, deren Verzöge­rungszeit elektrisch kontinuierlich einstellbar ist.In contrast, the object of the invention is to create a delay line for digital signals, the delay time of which can be set electrically continuously.

Während bei der vorbeschriebenen Anordnung die Inverter solche mit einem als Widerstand geschalteten Lasttransi­stor sind, d.h. die beiden Invertertransistoren sind vom selben Leitungstyp, ergibt sich bei der Erfindung durch die Wahl der Inverter als CMOS-Inverter in Verbindung mit deren Anschluß an die beiden Pole der Betriebsspan­nungsquelle über jeweils einen Konstantstromtransistor die gewünschte kontinuierliche, elektrische Einstellmög­lichkeit der Verzögerungszeit, was dadurch geschieht, daß die Konstantstromtransistoren auf das Führen glei­cher Ströme hin dimensioniert sind, wobei die Größe die­ ser Ströme gemeinsam über einen Referenzstrom einstell­bar ist.While in the arrangement described above, the inverters are those with a load transistor connected as a resistor, that is to say the two inverter transistors are of the same line type, the invention results from the choice of the inverters as CMOS inverters in connection with their connection to the two poles of the operating voltage source the desired continuous, electrical setting option of the delay time via a respective constant current transistor, which is done in that the constant current transistors are dimensioned to carry the same currents, the size of which this currents can be adjusted together via a reference current.

Die Erfindung wird nun anhand der Figuren der Zeichnun­gen näher erläutert.

  • Fig.1 zeigt die erste und die letzte Stufe eines Ausfüh­rungsbeispiels der Verzögerungsleitung zusammen mit den erforderlichen Stromspiegeln, und
  • Fig.2 zeigt eine Weiterbildung der Anordnung nach Fig.1.
The invention will now be explained in more detail with reference to the figures in the drawings.
  • 1 shows the first and the last stage of an embodiment of the delay line together with the required current mirrors, and
  • 2 shows a development of the arrangement according to FIG. 1.

Im Ausführungsbeispiel der Fig.1 sind die erste Stufe 1 und die letzte Stufe n der Verzögerungsleitung gezeigt. Dabei sind die einzelnen Stufen untereinander gleich und sind wie folgt aufgebaut: Zu der den üblichen CMOS-In­verter c bildenden Serienschaltung der gesteuerten Strompfade des N-Kanal-Transistors nt und des P-Kanal-­Transistors pt, deren miteinander verbundene Gates den Digitalsignal-Eingang eg und deren Strompfad-Verbin­dungspunkt der Digitalsignal-Ausgang ag ist, ist auf der Seite des N-Kanal-Transistors nt der N-Kanal-Konstant­strom-Transistor nc und auf der Seite des P-Kanal-Tran­sistors pt der P-Kanal-Konstantstrom-Transistor pc zum jeweiligen Pol der Betriebsspannungsquelle u hin in Rei­he geschaltet.In the exemplary embodiment in FIG. 1, the first stage 1 and the last stage n of the delay line are shown. The individual stages are identical to one another and are constructed as follows: to the series circuit which forms the usual CMOS inverter c, the controlled current paths of the N-channel transistor nt and the P-channel transistor pt, the gates of which are connected to one another and the digital signal input eg and whose current path junction is the digital signal output ag, on the side of the N-channel transistor nt is the N-channel constant current transistor nc and on the side of the P-channel transistor pt is the P-channel constant current -Transistor pc connected in series to the respective pole of the operating voltage source u.

Ferner sind sämtliche N-Kanal-Konstantstrom-Transistoren Bestandteil des N-Kanal-Mehrfach-Stromspiegels nm und sämtliche P-Kanal-Konstantstrom-Transistoren Bestandteil des P-Kanal-Mehrfach-Stromspiegels pm. Sämtliche Transi­storen der beiden Stromspiegel sind so dimensioniert, daß sie dem Betrag nach gleiche und zum einstellbaren Referenzstrom i gleiche Ströme führen können. Die Ein­stellbarkeit des Referenzstroms i ist im Ausführungsbei­spiel der Fig.1 durch den einstellbaren Widerstand r symbolisiert, der an der Betriebsspannungsquelle u und am Eingangstransistor en des N-Stromspiegels mn ange­schlossen ist. Der dem Eingangstransistor en eingepräg­ten Strom i kann jedoch auch auf andere Art und Weise als mittels eines Widerstandes erzeugt sein. So kann er beispielsweise die Steuergröße in einer phasenverriegel­ten Schleife sein. Der Eingangstransistor ep des P-­Stromspiegels pm erhält seinen eigenen Referenzstrom i vom zusätzlichen P-Kanal-Konstantstrom- Transistor na des N-Stromspiegels eingeprägt.Furthermore, all N-channel constant current transistors are part of the N-channel multiple current mirror nm and all P-channel constant current transistors are part of the P-channel multiple current mirror pm. All transistors of the two current mirrors are dimensioned such that they are the same in amount and adjustable Reference current i can carry the same currents. In the exemplary embodiment in FIG. 1, the adjustability of the reference current i is symbolized by the adjustable resistor r, which is connected to the operating voltage source u and to the input transistor en of the N current mirror mn. However, the current i impressed on the input transistor can also be generated in a different manner than by means of a resistor. For example, it can be the control variable in a phase-locked loop. The input transistor ep of the P current mirror pm receives its own reference current i impressed by the additional P channel constant current transistor na of the N current mirror.

Die Erfindung nützt die Eigenschaft des CMOS-Inverters aus, daß in Abhängigkeit vom am Eingang liegenden Binär­signalpegel H bzw. L entweder der P-Kanaltransistor pt leitend und der N-Kanaltransistor nt gesperrt bzw. der P-Kanaltransistor pt gesperrt und der N-Kanaltransistor nt leitend sind. Bei einem H/L- bzw. L/H-Signalwechsel wird nach Überschreiten der Gateschwellspannung des noch gesperrten und nunmehr gerade leitend werdenden Transi­stors die Eingangskapazität der am Ausgang angeschlosse­nen nächsten Stufe vom Strom i aufgeladen bzw. entladen. Diese Aufladung geschieht bekanntlich linear und mit ei­ner Steilheit, die dem Strom i direkt proportional ist. Der Eingangssignalwechsel wird somit in Abhängigkeit vom Strom i pro Stufe verzögert an den Ausgang jeder Stufe durchgeschaltet.The invention makes use of the property of the CMOS inverter that, depending on the binary signal level H or L at the input, either the P-channel transistor pt is conductive and the N-channel transistor nt is blocked or the P-channel transistor pt is blocked and the N-channel transistor nt are leading. In the event of an H / L or L / H signal change, the input capacitance of the next stage connected to the output is charged or discharged by the current i after the gate threshold voltage of the transistor which is still blocked and is now conducting is exceeded. As is known, this charging takes place linearly and with a steepness which is directly proportional to the current i. The input signal change is thus switched through depending on the current i per stage to the output of each stage.

Die Fig.2 zeigt eine Weiterbildung der Anordnung nach Fig.1. In jeder Stufe ist dem Strompfad des CMOS-Inver­ters c der Strompfad des weiteren CMOS-Inverters cʹ par­ allelgeschaltet. Dadurch hat jede Stufe die beiden Ein­gänge eg1 (zum CMOS-Inverter c gehörend) und eg2 (zum weiteren CMOS-Inverter cʹ gehörend) sowie zwei entspre­chende Ausgänge. Innerhalb der Verzögerungsleitung sind gleichartige Eingänge und Ausgänge miteinander verbun­den. Dadurch steht in einer Stufe sowohl das invertierte als auch das nichtinvertierte Eingangssignal zur Verfü­gung, das bei der Anordnung nach Fig.1 immer nur an ei­ner übernächsten Stufe abgreifbar ist.2 shows a further development of the arrangement according to FIG. In each stage, the current path of the CMOS inverter c is the current path of the further CMOS inverter cʹ par allele switched. This means that each stage has the two inputs eg1 (belonging to the CMOS inverter c) and eg2 (belonging to the further CMOS inverter cʹ) and two corresponding outputs. Similar inputs and outputs are connected to each other within the delay line. As a result, both the inverted and the non-inverted input signal are available in one stage, which, in the arrangement according to FIG. 1, can only ever be tapped at one next but one stage.

Bei der Verzögerungsleitung nach der Erfindung sind die Anstiegs- und Abfallflanken von Impulsen gut aneinander angepaßt.Ferner ist die Steuercharakteristik der Verzö­gerungsleitung unabhängig von Herstellprozeß-Parametern. Mittels der Weiterbildung nach Fig.2 läßt sich die Paar-­Verzögerungszeit der beiden Inverter einer Stufe sehr niedrig, insbesondere kleiner als eine Nanosekunde ein­stellen, so daß die Verzögerungsleitung auch bei sehr hohen Signalfrequenzen angewendet werden kann. Dies gilt insbesondere, wenn zur Realisierung eine 1,5-Mikrometer-­Technologie verwendet wird. Bei sorgfältiger Auslegung des Layouts der Verzögerungsleitung läßt sich die Schwankung der Verzögerunsgzeit der einzelnen Stufen kleiner als 1% halten.In the delay line according to the invention, the rising and falling edges of pulses are well matched to one another. Furthermore, the control characteristic of the delay line is independent of manufacturing process parameters. By means of the development according to FIG. 2, the pair delay time of the two inverters of one stage can be set very low, in particular less than one nanosecond, so that the delay line can also be used at very high signal frequencies. This is especially true if 1.5 micron technology is used for the implementation. If the layout of the delay line is carefully designed, the fluctuation in the delay time of the individual stages can be kept below 1%.

Durch die bei der Erfindung verwendeten Stromspiegel er­gibt sich ein großer Variationsbereich der Verzögerungs­zeit, z.B. um den Faktor 10. Auch das Rauschverhalten ist sehr gut, was durch die Eigenschaft der Stromspiegel bedingt ist. Die Anordnung der Erfindung rauscht wesent­lich weniger als die eingangs erwähnte, vorbeschriebene Anordnung.The current mirror used in the invention results in a large range of variation in the delay time, e.g. by a factor of 10. The noise behavior is also very good, which is due to the property of the current mirror. The arrangement of the invention is much less noisy than the arrangement described above.

Claims (2)

1. Integrierte Isolierschicht-Feldeffekttransistor-­Verzögerungsleitung für Digitalsignale mit signalflußmä­ßig in Serie geschalteten Invertern,
gekennzeichnet durch folgende Merkmale:
- die Inverter sind übliche, von der Serienschaltung der gesteuerten Strompfade eines N-Kanal-Transistors (nt) und eines P-Kanal-Transistors (pt) gebildete CMOS-Inver­ter (c),
- zu jedem CMOS-Inverter (c) ist auf der Seite des N-Ka­nal-Transistors (nt) ein N-Kanal-Konstantstrom-Transi­stor (nc) und auf der Seite des P-Kanal-Transistors (pt) ein P-Kanal-Konstantstrom-Transistor (pc) zum jeweiligen Pol der Betriebsspannungsquelle (u) hin in Reihe ge­schaltet,
- sämtliche N-Kanal-Konstantstrom-Transistoren sind Be­standteil eines N-Kanal-Mehrfach-Stromspiegels (nm),
- sämtliche P-Kanal-Konstantstrom-Transistoren sind Be­standteil eines P-Kanal-Mehrfach-Stromspiegels (pm), und
- sämtliche Transistoren der beiden Stromspiegel sind so dimensioniert, daß sie dem Betrag nach gleiche und zu einem einstellbaren Referenzstrom (i) gleiche Ströme führen können.
1. Integrated insulating layer field-effect transistor delay line for digital signals with inverters connected in series in terms of signal flow,
characterized by the following features:
the inverters are conventional CMOS inverters (c) formed by the series connection of the controlled current paths of an N-channel transistor (nt) and a P-channel transistor (pt),
- For each CMOS inverter (c) on the side of the N-channel transistor (nt) is an N-channel constant current transistor (nc) and on the side of the P-channel transistor (pt) is a P-channel -Constant current transistor (pc) connected in series to the respective pole of the operating voltage source (u),
- All N-channel constant current transistors are part of an N-channel multiple current mirror (nm),
- All P-channel constant current transistors are part of a P-channel multiple current mirror (pm), and
- All the transistors of the two current mirrors are dimensioned such that they can lead to the same currents in terms of amount and to an adjustable reference current (i).
2. CMOS-Verzögerungsleitung nach Anspruch 1, dadurch ge­kennzeichnet, daß in jeder Stufe (1,n) dem Strompfad des CMOS-Inverters (c) der Strompfad eines weiteren CMOS-In­verters (cʹ) parallelgeschaltet ist und daß in jeder Stufe (1,n) der Ausgang des CMOS-Inverters bzw. des wei­teren CMOS-Inverters mit dem Eingang des CMOS-Inverters bzw. des weiteren CMOS-Inverters der in Signalflußrich­tung liegenden nächsten Stufe verbunden ist.2. CMOS delay line according to claim 1, characterized in that in each stage (1, n) the current path of the CMOS inverter (c), the current path of a further CMOS inverter (cʹ) is connected in parallel and that in each stage (1, n) the output of the CMOS inverter or of the further CMOS inverter is connected to the input of the CMOS inverter or of the further CMOS inverter of the next stage lying in the signal flow direction.
EP86103301A 1986-03-12 1986-03-12 Integrated field-effect transistor delay line for digital signals Expired - Lifetime EP0236525B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP86103301A EP0236525B1 (en) 1986-03-12 1986-03-12 Integrated field-effect transistor delay line for digital signals
DE8686103301T DE3676297D1 (en) 1986-03-12 1986-03-12 INTEGRATED INSULATION LAYER FIELD EFFECT TRANSISTOR DELAY LINE FOR DIGITAL SIGNALS.
US07/023,211 US4806804A (en) 1986-03-12 1987-03-09 Mosfet integrated delay line for digital signals
JP62054314A JPS62219813A (en) 1986-03-12 1987-03-11 Mosfet integrated delay circuit for digital signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP86103301A EP0236525B1 (en) 1986-03-12 1986-03-12 Integrated field-effect transistor delay line for digital signals

Publications (2)

Publication Number Publication Date
EP0236525A1 true EP0236525A1 (en) 1987-09-16
EP0236525B1 EP0236525B1 (en) 1990-12-19

Family

ID=8194956

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86103301A Expired - Lifetime EP0236525B1 (en) 1986-03-12 1986-03-12 Integrated field-effect transistor delay line for digital signals

Country Status (4)

Country Link
US (1) US4806804A (en)
EP (1) EP0236525B1 (en)
JP (1) JPS62219813A (en)
DE (1) DE3676297D1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315385A2 (en) * 1987-10-31 1989-05-10 Sony Corporation Delay circuits for integrated circuits
FR2635239A1 (en) * 1988-08-02 1990-02-09 Standard Microsyst Smc DELAY ELEMENT FOR DIGITAL CIRCUIT
FR2667743A1 (en) * 1990-10-09 1992-04-10 Sgs Thomson Microelectronics SINGLE-SPINDLE AMPLIFIER IN AN INTEGRATED CIRCUIT.
FR2681992A1 (en) * 1991-09-30 1993-04-02 Bull Sa Digitally controlled delay circuit
EP0535359A1 (en) * 1991-09-30 1993-04-07 Siemens Aktiengesellschaft Analog delay circuit arrangement
WO1993009599A2 (en) * 1991-10-30 1993-05-13 Harris Corporation Analog-to-digital converter and method of fabrication
US5221910A (en) * 1990-10-09 1993-06-22 Sgs-Thomson Microelectronics S.A. Single-pin amplifier in integrated circuit form
EP0566375A1 (en) * 1992-04-15 1993-10-20 Nokia Mobile Phones Ltd. Controlled oscillator
EP0637792A1 (en) * 1993-08-03 1995-02-08 Siemens Aktiengesellschaft Phase control apparatus
EP0598260B1 (en) * 1992-11-19 1997-06-25 Codex Corporation High frequency voltage controlled oscillator
US5994755A (en) * 1991-10-30 1999-11-30 Intersil Corporation Analog-to-digital converter and method of fabrication
WO2010052066A1 (en) * 2008-11-10 2010-05-14 Robert Bosch Gmbh Circuit arrangement for amplifying a digital signal, and transceiver circuit for a bus system

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5086238A (en) * 1985-07-22 1992-02-04 Hitachi, Ltd. Semiconductor supply incorporating internal power supply for compensating for deviation in operating condition and fabrication process conditions
JPH01161913A (en) * 1987-12-18 1989-06-26 Toshiba Corp Clock driver circuit
KR910005794B1 (en) * 1988-06-09 1991-08-03 삼성전자 주식회사 Semiconductor time-delay element
US5160863A (en) * 1989-06-30 1992-11-03 Dallas Semiconductor Corporation Delay circuit using primarily a transistor's parasitic capacitance
US5012142A (en) * 1989-07-28 1991-04-30 At&T Bell Laboratories Differential controlled delay elements and skew correcting detector for delay-locked loops and the like
US5051630A (en) * 1990-03-12 1991-09-24 Tektronix, Inc. Accurate delay generator having a compensation feature for power supply voltage and semiconductor process variations
US5192886A (en) * 1990-03-15 1993-03-09 Hewlett-Packard Company Sub-nanosecond calibrated delay line structure
US5231319A (en) * 1991-08-22 1993-07-27 Ncr Corporation Voltage variable delay circuit
US5233637A (en) * 1991-11-01 1993-08-03 Hewlett-Packard Company System for generating an analog regulating voltage
US5214680A (en) * 1991-11-01 1993-05-25 Hewlett-Packard Company CMOS pseudo-NMOS programmable capacitance time vernier and method of calibration
US5227679A (en) * 1992-01-02 1993-07-13 Advanced Micro Devices, Inc. Cmos digital-controlled delay gate
US5220216A (en) * 1992-01-02 1993-06-15 Woo Ann K Programmable driving power of a CMOS gate
JP2905669B2 (en) * 1993-07-20 1999-06-14 シャープ株式会社 Delay circuit
TW253083B (en) * 1993-10-05 1995-08-01 Advanced Micro Devices Inc
JPH08130449A (en) * 1994-11-01 1996-05-21 Mitsubishi Electric Corp Voltage controlled delay circuit and internal clock generating circuit using the circuit
US5936451A (en) * 1994-12-29 1999-08-10 Stmicroeletronics, Inc. Delay circuit and method
USRE42250E1 (en) 1994-12-29 2011-03-29 Stmicroelectronics, Inc. Delay circuit and method
KR0172758B1 (en) * 1995-12-29 1999-03-30 김주용 Frequency generator
US5994937A (en) * 1996-11-06 1999-11-30 International Business Machines Corporation Temperature and power supply adjusted address transition detector
US6034557A (en) * 1998-07-31 2000-03-07 Xilinx, Inc. Delay circuit with temperature and voltage stability
US6204708B1 (en) * 1998-10-29 2001-03-20 Microchip Technology Incorporated Apparatus and method for an improved master-slave flip-flop with non-overlapping clocks
US6529058B2 (en) * 2001-01-11 2003-03-04 Broadcom Corporation Apparatus and method for obtaining stable delays for clock signals
JP3919176B2 (en) * 2002-05-28 2007-05-23 シャープ株式会社 Correction circuit, delay circuit, and ring oscillator circuit
US7498846B1 (en) 2004-06-08 2009-03-03 Transmeta Corporation Power efficient multiplexer
US7667514B2 (en) * 2007-01-10 2010-02-23 Seiko Epson Corporation Delay circuit and electronic device including delay circuit
US8390352B2 (en) * 2009-04-06 2013-03-05 Honeywell International Inc. Apparatus and method for compensating for process, voltage, and temperature variation of the time delay of a digital delay line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260959A (en) * 1979-07-16 1981-04-07 Motorola, Inc. FET Relaxation oscillator with reduced sensitivity to supply voltage and threshold variations
US4387349A (en) * 1980-12-15 1983-06-07 National Semiconductor Corporation Low power CMOS crystal oscillator
EP0171022A2 (en) * 1984-07-31 1986-02-12 Yamaha Corporation Signal delay device
EP0175501A2 (en) * 1984-08-23 1986-03-26 Fujitsu Limited Delay circuit for gate-array LSI

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827648B2 (en) * 1979-02-21 1983-06-10 株式会社日立製作所 Transformer with built-in reactor
US4438352A (en) * 1980-06-02 1984-03-20 Xerox Corporation TTL Compatible CMOS input buffer
EP0059802B1 (en) * 1981-03-06 1984-08-08 Deutsche ITT Industries GmbH Delay circuit with integrated insulated-layer field-effect transistor for digital signals, and application of the same to colour television receivers
US4565934A (en) * 1982-03-01 1986-01-21 Texas Instruments Incorporated Dynamic clocking system using six clocks to achieve six delays
JPS5961312A (en) * 1982-09-30 1984-04-07 Toshiba Corp Pulse delay circuit
US4613772A (en) * 1984-04-11 1986-09-23 Harris Corporation Current compensation for logic gates
US4712021A (en) * 1985-06-28 1987-12-08 Deutsche Itt Industries Gmbh Cmos inverter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4260959A (en) * 1979-07-16 1981-04-07 Motorola, Inc. FET Relaxation oscillator with reduced sensitivity to supply voltage and threshold variations
US4387349A (en) * 1980-12-15 1983-06-07 National Semiconductor Corporation Low power CMOS crystal oscillator
EP0171022A2 (en) * 1984-07-31 1986-02-12 Yamaha Corporation Signal delay device
EP0175501A2 (en) * 1984-08-23 1986-03-26 Fujitsu Limited Delay circuit for gate-array LSI

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENTS ABSTRACTS OF JAPAN, Band 4, Nr. 162 (E-33)[644], 12. November 1980; & JP-A-55 111 158 (NIPPON PRECISION CIRCUITS K.K.) 27-08-1980 *
PATENTS ABSTRACTS OF JAPAN, Band 8, Nr. 161 (E-257)[1598] 26. Juli 1984; & JP-A-59 61 312 (TOSHIBA K.K.) 07-04-1984 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0315385A2 (en) * 1987-10-31 1989-05-10 Sony Corporation Delay circuits for integrated circuits
EP0315385B1 (en) * 1987-10-31 1994-04-13 Sony Corporation Delay circuits for integrated circuits
FR2635239A1 (en) * 1988-08-02 1990-02-09 Standard Microsyst Smc DELAY ELEMENT FOR DIGITAL CIRCUIT
FR2667743A1 (en) * 1990-10-09 1992-04-10 Sgs Thomson Microelectronics SINGLE-SPINDLE AMPLIFIER IN AN INTEGRATED CIRCUIT.
EP0480815A1 (en) * 1990-10-09 1992-04-15 STMicroelectronics S.A. Integrated amplifier circuit with one input signal connection
US5221910A (en) * 1990-10-09 1993-06-22 Sgs-Thomson Microelectronics S.A. Single-pin amplifier in integrated circuit form
FR2681992A1 (en) * 1991-09-30 1993-04-02 Bull Sa Digitally controlled delay circuit
EP0535359A1 (en) * 1991-09-30 1993-04-07 Siemens Aktiengesellschaft Analog delay circuit arrangement
WO1993009599A3 (en) * 1991-10-30 1993-08-05 Harris Corp Analog-to-digital converter and method of fabrication
WO1993009599A2 (en) * 1991-10-30 1993-05-13 Harris Corporation Analog-to-digital converter and method of fabrication
US5994755A (en) * 1991-10-30 1999-11-30 Intersil Corporation Analog-to-digital converter and method of fabrication
US6329260B1 (en) 1991-10-30 2001-12-11 Intersil Americas Inc. Analog-to-digital converter and method of fabrication
EP0566375A1 (en) * 1992-04-15 1993-10-20 Nokia Mobile Phones Ltd. Controlled oscillator
US5446417A (en) * 1992-04-15 1995-08-29 Nokia Mobile Phones Ltd. Controlled oscillator
EP0598260B1 (en) * 1992-11-19 1997-06-25 Codex Corporation High frequency voltage controlled oscillator
EP0637792A1 (en) * 1993-08-03 1995-02-08 Siemens Aktiengesellschaft Phase control apparatus
WO2010052066A1 (en) * 2008-11-10 2010-05-14 Robert Bosch Gmbh Circuit arrangement for amplifying a digital signal, and transceiver circuit for a bus system
DE102008057619B4 (en) 2008-11-10 2021-08-26 Robert Bosch Gmbh Circuit arrangement for amplifying a digital signal and transceiver circuit for a bus system

Also Published As

Publication number Publication date
US4806804A (en) 1989-02-21
EP0236525B1 (en) 1990-12-19
JPS62219813A (en) 1987-09-28
DE3676297D1 (en) 1991-01-31

Similar Documents

Publication Publication Date Title
EP0236525A1 (en) Integrated field-effect transistor delay line for digital signals
DE2252371C3 (en) Threshold value logic element with complementary symmetrical field effect transistors
DE3735948A1 (en) LEVEL CONVERTER SWITCHING
DE2620187C3 (en) Monostable multivibrator circuit
DE2430126A1 (en) HYBRID TRANSISTOR CIRCUIT
EP0080174A2 (en) Integrable digital-analog converter
DE2139170A1 (en) Binary adding and subtracting mechanism
DE3933986A1 (en) COMPLEMENTARY CURRENT MIRROR FOR CORRECTING AN INPUT OFFSET VOLTAGE OF A "DIAMOND FOLLOWER" OR. AN INPUT STAGE FOR A BROADBAND AMPLIFIER
DE2410205A1 (en) HYSTERESIS CIRCUIT
DE2631916C3 (en) Differential amplifier made of MOS field effect transistors built on a semiconductor chip
DE2435606A1 (en) Linear integrated impedance with depletion MOSFETs - uses drawn-source series with each FET gate coupled to its drain or source
DE2548457A1 (en) Light current constant voltage source using FETS - gives a constant voltage supply in easily integrated form using two series connected FETS
DE4308518A1 (en) Combined bipolar transistor and MOSFET amplifier for ECL-CMOS level shifting circuit - uses two bipolar transistors with series MOSFETs between two opposing potentials providing amplifier inputs and outputs
EP0905895A1 (en) Pulse shaping circuit
DE2543403B2 (en) Circuit arrangement for level-dependent change in the input impedance of an amplifier for bipolar signals
EP0024549B1 (en) Ttl-level converter for driving field-effect transistors
EP0021085A2 (en) Monolithically integratable transistor amplifier
EP0142182B1 (en) Circuit arrangement for the conversion of a digital input signal to an analogous output signal
DE2522588A1 (en) DRIVER CIRCUIT IN COMPLEMENTARY FIELD EFFECT TRANSISTOR TECHNOLOGY
EP0044021B1 (en) Electrical resistance for semiconductor integrated circuits consisting of mis field-effect transistors
EP0610770B1 (en) Multiplexing circuit arrangement using current switching
DE19719448A1 (en) Inverter circuit for level converter
EP0588111B1 (en) Memory element
EP0822656B1 (en) Circuit arrangement with an operational amplifier
EP0205649B1 (en) Inverter circuit realized by using cmos transistor technique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR NL

17P Request for examination filed

Effective date: 19871127

17Q First examination report despatched

Effective date: 19890706

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR NL

REF Corresponds to:

Ref document number: 3676297

Country of ref document: DE

Date of ref document: 19910131

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920317

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920327

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19920331

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19931001

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19931201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST